xref: /linux/drivers/nvme/host/core.c (revision 6e11664f148454a127dd89e8698c3e3e80e5f62f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/async.h>
8 #include <linux/blkdev.h>
9 #include <linux/blk-mq.h>
10 #include <linux/blk-integrity.h>
11 #include <linux/compat.h>
12 #include <linux/delay.h>
13 #include <linux/errno.h>
14 #include <linux/hdreg.h>
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/backing-dev.h>
18 #include <linux/slab.h>
19 #include <linux/types.h>
20 #include <linux/pr.h>
21 #include <linux/ptrace.h>
22 #include <linux/nvme_ioctl.h>
23 #include <linux/pm_qos.h>
24 #include <linux/ratelimit.h>
25 #include <linux/unaligned.h>
26 
27 #include "nvme.h"
28 #include "fabrics.h"
29 #include <linux/nvme-auth.h>
30 
31 #define CREATE_TRACE_POINTS
32 #include "trace.h"
33 
34 #define NVME_MINORS		(1U << MINORBITS)
35 
36 struct nvme_ns_info {
37 	struct nvme_ns_ids ids;
38 	u32 nsid;
39 	__le32 anagrpid;
40 	u8 pi_offset;
41 	u16 endgid;
42 	u64 runs;
43 	bool is_shared;
44 	bool is_readonly;
45 	bool is_ready;
46 	bool is_removed;
47 	bool is_rotational;
48 	bool no_vwc;
49 };
50 
51 unsigned int admin_timeout = 60;
52 module_param(admin_timeout, uint, 0644);
53 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
54 EXPORT_SYMBOL_GPL(admin_timeout);
55 
56 unsigned int nvme_io_timeout = 30;
57 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
58 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
59 EXPORT_SYMBOL_GPL(nvme_io_timeout);
60 
61 static unsigned char shutdown_timeout = 5;
62 module_param(shutdown_timeout, byte, 0644);
63 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
64 
65 static u8 nvme_max_retries = 5;
66 module_param_named(max_retries, nvme_max_retries, byte, 0644);
67 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
68 
69 static unsigned long default_ps_max_latency_us = 100000;
70 module_param(default_ps_max_latency_us, ulong, 0644);
71 MODULE_PARM_DESC(default_ps_max_latency_us,
72 		 "max power saving latency for new devices; use PM QOS to change per device");
73 
74 static bool force_apst;
75 module_param(force_apst, bool, 0644);
76 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
77 
78 static unsigned long apst_primary_timeout_ms = 100;
79 module_param(apst_primary_timeout_ms, ulong, 0644);
80 MODULE_PARM_DESC(apst_primary_timeout_ms,
81 	"primary APST timeout in ms");
82 
83 static unsigned long apst_secondary_timeout_ms = 2000;
84 module_param(apst_secondary_timeout_ms, ulong, 0644);
85 MODULE_PARM_DESC(apst_secondary_timeout_ms,
86 	"secondary APST timeout in ms");
87 
88 static unsigned long apst_primary_latency_tol_us = 15000;
89 module_param(apst_primary_latency_tol_us, ulong, 0644);
90 MODULE_PARM_DESC(apst_primary_latency_tol_us,
91 	"primary APST latency tolerance in us");
92 
93 static unsigned long apst_secondary_latency_tol_us = 100000;
94 module_param(apst_secondary_latency_tol_us, ulong, 0644);
95 MODULE_PARM_DESC(apst_secondary_latency_tol_us,
96 	"secondary APST latency tolerance in us");
97 
98 /*
99  * Older kernels didn't enable protection information if it was at an offset.
100  * Newer kernels do, so it breaks reads on the upgrade if such formats were
101  * used in prior kernels since the metadata written did not contain a valid
102  * checksum.
103  */
104 static bool disable_pi_offsets = false;
105 module_param(disable_pi_offsets, bool, 0444);
106 MODULE_PARM_DESC(disable_pi_offsets,
107 	"disable protection information if it has an offset");
108 
109 /*
110  * nvme_wq - hosts nvme related works that are not reset or delete
111  * nvme_reset_wq - hosts nvme reset works
112  * nvme_delete_wq - hosts nvme delete works
113  *
114  * nvme_wq will host works such as scan, aen handling, fw activation,
115  * keep-alive, periodic reconnects etc. nvme_reset_wq
116  * runs reset works which also flush works hosted on nvme_wq for
117  * serialization purposes. nvme_delete_wq host controller deletion
118  * works which flush reset works for serialization.
119  */
120 struct workqueue_struct *nvme_wq;
121 EXPORT_SYMBOL_GPL(nvme_wq);
122 
123 struct workqueue_struct *nvme_reset_wq;
124 EXPORT_SYMBOL_GPL(nvme_reset_wq);
125 
126 struct workqueue_struct *nvme_delete_wq;
127 EXPORT_SYMBOL_GPL(nvme_delete_wq);
128 
129 static LIST_HEAD(nvme_subsystems);
130 DEFINE_MUTEX(nvme_subsystems_lock);
131 
132 static DEFINE_IDA(nvme_instance_ida);
133 static dev_t nvme_ctrl_base_chr_devt;
134 static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env);
135 static const struct class nvme_class = {
136 	.name = "nvme",
137 	.dev_uevent = nvme_class_uevent,
138 };
139 
140 static const struct class nvme_subsys_class = {
141 	.name = "nvme-subsystem",
142 };
143 
144 static DEFINE_IDA(nvme_ns_chr_minor_ida);
145 static dev_t nvme_ns_chr_devt;
146 static const struct class nvme_ns_chr_class = {
147 	.name = "nvme-generic",
148 };
149 
150 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
151 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
152 					   unsigned nsid);
153 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
154 				   struct nvme_command *cmd);
155 static int nvme_get_log_lsi(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page,
156 		u8 lsp, u8 csi, void *log, size_t size, u64 offset, u16 lsi);
157 
nvme_queue_scan(struct nvme_ctrl * ctrl)158 void nvme_queue_scan(struct nvme_ctrl *ctrl)
159 {
160 	/*
161 	 * Only new queue scan work when admin and IO queues are both alive
162 	 */
163 	if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE && ctrl->tagset)
164 		queue_work(nvme_wq, &ctrl->scan_work);
165 }
166 
167 /*
168  * Use this function to proceed with scheduling reset_work for a controller
169  * that had previously been set to the resetting state. This is intended for
170  * code paths that can't be interrupted by other reset attempts. A hot removal
171  * may prevent this from succeeding.
172  */
nvme_try_sched_reset(struct nvme_ctrl * ctrl)173 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
174 {
175 	if (nvme_ctrl_state(ctrl) != NVME_CTRL_RESETTING)
176 		return -EBUSY;
177 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
178 		return -EBUSY;
179 	return 0;
180 }
181 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
182 
nvme_failfast_work(struct work_struct * work)183 static void nvme_failfast_work(struct work_struct *work)
184 {
185 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
186 			struct nvme_ctrl, failfast_work);
187 
188 	if (nvme_ctrl_state(ctrl) != NVME_CTRL_CONNECTING)
189 		return;
190 
191 	set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
192 	dev_info(ctrl->device, "failfast expired\n");
193 	nvme_kick_requeue_lists(ctrl);
194 }
195 
nvme_start_failfast_work(struct nvme_ctrl * ctrl)196 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl)
197 {
198 	if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1)
199 		return;
200 
201 	schedule_delayed_work(&ctrl->failfast_work,
202 			      ctrl->opts->fast_io_fail_tmo * HZ);
203 }
204 
nvme_stop_failfast_work(struct nvme_ctrl * ctrl)205 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl)
206 {
207 	if (!ctrl->opts)
208 		return;
209 
210 	cancel_delayed_work_sync(&ctrl->failfast_work);
211 	clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
212 }
213 
214 
nvme_reset_ctrl(struct nvme_ctrl * ctrl)215 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
216 {
217 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
218 		return -EBUSY;
219 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
220 		return -EBUSY;
221 	return 0;
222 }
223 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
224 
nvme_reset_ctrl_sync(struct nvme_ctrl * ctrl)225 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
226 {
227 	int ret;
228 
229 	ret = nvme_reset_ctrl(ctrl);
230 	if (!ret) {
231 		flush_work(&ctrl->reset_work);
232 		if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE)
233 			ret = -ENETRESET;
234 	}
235 
236 	return ret;
237 }
238 
nvme_do_delete_ctrl(struct nvme_ctrl * ctrl)239 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
240 {
241 	dev_info(ctrl->device,
242 		 "Removing ctrl: NQN \"%s\"\n", nvmf_ctrl_subsysnqn(ctrl));
243 
244 	flush_work(&ctrl->reset_work);
245 	nvme_stop_ctrl(ctrl);
246 	nvme_remove_namespaces(ctrl);
247 	ctrl->ops->delete_ctrl(ctrl);
248 	nvme_uninit_ctrl(ctrl);
249 }
250 
nvme_delete_ctrl_work(struct work_struct * work)251 static void nvme_delete_ctrl_work(struct work_struct *work)
252 {
253 	struct nvme_ctrl *ctrl =
254 		container_of(work, struct nvme_ctrl, delete_work);
255 
256 	nvme_do_delete_ctrl(ctrl);
257 }
258 
nvme_delete_ctrl(struct nvme_ctrl * ctrl)259 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
260 {
261 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
262 		return -EBUSY;
263 	if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
264 		return -EBUSY;
265 	return 0;
266 }
267 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
268 
nvme_delete_ctrl_sync(struct nvme_ctrl * ctrl)269 void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
270 {
271 	/*
272 	 * Keep a reference until nvme_do_delete_ctrl() complete,
273 	 * since ->delete_ctrl can free the controller.
274 	 */
275 	nvme_get_ctrl(ctrl);
276 	if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
277 		nvme_do_delete_ctrl(ctrl);
278 	nvme_put_ctrl(ctrl);
279 }
280 
nvme_error_status(u16 status)281 static blk_status_t nvme_error_status(u16 status)
282 {
283 	switch (status & NVME_SCT_SC_MASK) {
284 	case NVME_SC_SUCCESS:
285 		return BLK_STS_OK;
286 	case NVME_SC_CAP_EXCEEDED:
287 		return BLK_STS_NOSPC;
288 	case NVME_SC_LBA_RANGE:
289 	case NVME_SC_CMD_INTERRUPTED:
290 	case NVME_SC_NS_NOT_READY:
291 		return BLK_STS_TARGET;
292 	case NVME_SC_BAD_ATTRIBUTES:
293 	case NVME_SC_INVALID_OPCODE:
294 	case NVME_SC_INVALID_FIELD:
295 	case NVME_SC_INVALID_NS:
296 		return BLK_STS_NOTSUPP;
297 	case NVME_SC_WRITE_FAULT:
298 	case NVME_SC_READ_ERROR:
299 	case NVME_SC_UNWRITTEN_BLOCK:
300 	case NVME_SC_ACCESS_DENIED:
301 	case NVME_SC_READ_ONLY:
302 	case NVME_SC_COMPARE_FAILED:
303 		return BLK_STS_MEDIUM;
304 	case NVME_SC_GUARD_CHECK:
305 	case NVME_SC_APPTAG_CHECK:
306 	case NVME_SC_REFTAG_CHECK:
307 	case NVME_SC_INVALID_PI:
308 		return BLK_STS_PROTECTION;
309 	case NVME_SC_RESERVATION_CONFLICT:
310 		return BLK_STS_RESV_CONFLICT;
311 	case NVME_SC_HOST_PATH_ERROR:
312 		return BLK_STS_TRANSPORT;
313 	case NVME_SC_ZONE_TOO_MANY_ACTIVE:
314 		return BLK_STS_ZONE_ACTIVE_RESOURCE;
315 	case NVME_SC_ZONE_TOO_MANY_OPEN:
316 		return BLK_STS_ZONE_OPEN_RESOURCE;
317 	default:
318 		return BLK_STS_IOERR;
319 	}
320 }
321 
nvme_retry_req(struct request * req)322 static void nvme_retry_req(struct request *req)
323 {
324 	unsigned long delay = 0;
325 	u16 crd;
326 
327 	/* The mask and shift result must be <= 3 */
328 	crd = (nvme_req(req)->status & NVME_STATUS_CRD) >> 11;
329 	if (crd)
330 		delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100;
331 
332 	nvme_req(req)->retries++;
333 	blk_mq_requeue_request(req, false);
334 	blk_mq_delay_kick_requeue_list(req->q, delay);
335 }
336 
nvme_log_error(struct request * req)337 static void nvme_log_error(struct request *req)
338 {
339 	struct nvme_ns *ns = req->q->queuedata;
340 	struct nvme_request *nr = nvme_req(req);
341 
342 	if (ns) {
343 		pr_err_ratelimited("%s: %s(0x%x) @ LBA %llu, %u blocks, %s (sct 0x%x / sc 0x%x) %s%s\n",
344 		       ns->disk ? ns->disk->disk_name : "?",
345 		       nvme_get_opcode_str(nr->cmd->common.opcode),
346 		       nr->cmd->common.opcode,
347 		       nvme_sect_to_lba(ns->head, blk_rq_pos(req)),
348 		       blk_rq_bytes(req) >> ns->head->lba_shift,
349 		       nvme_get_error_status_str(nr->status),
350 		       NVME_SCT(nr->status),		/* Status Code Type */
351 		       nr->status & NVME_SC_MASK,	/* Status Code */
352 		       nr->status & NVME_STATUS_MORE ? "MORE " : "",
353 		       nr->status & NVME_STATUS_DNR  ? "DNR "  : "");
354 		return;
355 	}
356 
357 	pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s\n",
358 			   dev_name(nr->ctrl->device),
359 			   nvme_get_admin_opcode_str(nr->cmd->common.opcode),
360 			   nr->cmd->common.opcode,
361 			   nvme_get_error_status_str(nr->status),
362 			   NVME_SCT(nr->status),	/* Status Code Type */
363 			   nr->status & NVME_SC_MASK,	/* Status Code */
364 			   nr->status & NVME_STATUS_MORE ? "MORE " : "",
365 			   nr->status & NVME_STATUS_DNR  ? "DNR "  : "");
366 }
367 
nvme_log_err_passthru(struct request * req)368 static void nvme_log_err_passthru(struct request *req)
369 {
370 	struct nvme_ns *ns = req->q->queuedata;
371 	struct nvme_request *nr = nvme_req(req);
372 
373 	pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s"
374 		"cdw10=0x%x cdw11=0x%x cdw12=0x%x cdw13=0x%x cdw14=0x%x cdw15=0x%x\n",
375 		ns ? ns->disk->disk_name : dev_name(nr->ctrl->device),
376 		ns ? nvme_get_opcode_str(nr->cmd->common.opcode) :
377 		     nvme_get_admin_opcode_str(nr->cmd->common.opcode),
378 		nr->cmd->common.opcode,
379 		nvme_get_error_status_str(nr->status),
380 		NVME_SCT(nr->status),		/* Status Code Type */
381 		nr->status & NVME_SC_MASK,	/* Status Code */
382 		nr->status & NVME_STATUS_MORE ? "MORE " : "",
383 		nr->status & NVME_STATUS_DNR  ? "DNR "  : "",
384 		le32_to_cpu(nr->cmd->common.cdw10),
385 		le32_to_cpu(nr->cmd->common.cdw11),
386 		le32_to_cpu(nr->cmd->common.cdw12),
387 		le32_to_cpu(nr->cmd->common.cdw13),
388 		le32_to_cpu(nr->cmd->common.cdw14),
389 		le32_to_cpu(nr->cmd->common.cdw15));
390 }
391 
392 enum nvme_disposition {
393 	COMPLETE,
394 	RETRY,
395 	FAILOVER,
396 	AUTHENTICATE,
397 };
398 
nvme_decide_disposition(struct request * req)399 static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
400 {
401 	if (likely(nvme_req(req)->status == 0))
402 		return COMPLETE;
403 
404 	if (blk_noretry_request(req) ||
405 	    (nvme_req(req)->status & NVME_STATUS_DNR) ||
406 	    nvme_req(req)->retries >= nvme_max_retries)
407 		return COMPLETE;
408 
409 	if ((nvme_req(req)->status & NVME_SCT_SC_MASK) == NVME_SC_AUTH_REQUIRED)
410 		return AUTHENTICATE;
411 
412 	if (req->cmd_flags & REQ_NVME_MPATH) {
413 		if (nvme_is_path_error(nvme_req(req)->status) ||
414 		    blk_queue_dying(req->q))
415 			return FAILOVER;
416 	} else {
417 		if (blk_queue_dying(req->q))
418 			return COMPLETE;
419 	}
420 
421 	return RETRY;
422 }
423 
nvme_end_req_zoned(struct request * req)424 static inline void nvme_end_req_zoned(struct request *req)
425 {
426 	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
427 	    req_op(req) == REQ_OP_ZONE_APPEND) {
428 		struct nvme_ns *ns = req->q->queuedata;
429 
430 		req->__sector = nvme_lba_to_sect(ns->head,
431 			le64_to_cpu(nvme_req(req)->result.u64));
432 	}
433 }
434 
__nvme_end_req(struct request * req)435 static inline void __nvme_end_req(struct request *req)
436 {
437 	if (unlikely(nvme_req(req)->status && !(req->rq_flags & RQF_QUIET))) {
438 		if (blk_rq_is_passthrough(req))
439 			nvme_log_err_passthru(req);
440 		else
441 			nvme_log_error(req);
442 	}
443 	nvme_end_req_zoned(req);
444 	nvme_trace_bio_complete(req);
445 	if (req->cmd_flags & REQ_NVME_MPATH)
446 		nvme_mpath_end_request(req);
447 }
448 
nvme_end_req(struct request * req)449 void nvme_end_req(struct request *req)
450 {
451 	blk_status_t status = nvme_error_status(nvme_req(req)->status);
452 
453 	__nvme_end_req(req);
454 	blk_mq_end_request(req, status);
455 }
456 
nvme_complete_rq(struct request * req)457 void nvme_complete_rq(struct request *req)
458 {
459 	struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
460 
461 	trace_nvme_complete_rq(req);
462 	nvme_cleanup_cmd(req);
463 
464 	/*
465 	 * Completions of long-running commands should not be able to
466 	 * defer sending of periodic keep alives, since the controller
467 	 * may have completed processing such commands a long time ago
468 	 * (arbitrarily close to command submission time).
469 	 * req->deadline - req->timeout is the command submission time
470 	 * in jiffies.
471 	 */
472 	if (ctrl->kas &&
473 	    req->deadline - req->timeout >= ctrl->ka_last_check_time)
474 		ctrl->comp_seen = true;
475 
476 	switch (nvme_decide_disposition(req)) {
477 	case COMPLETE:
478 		nvme_end_req(req);
479 		return;
480 	case RETRY:
481 		nvme_retry_req(req);
482 		return;
483 	case FAILOVER:
484 		nvme_failover_req(req);
485 		return;
486 	case AUTHENTICATE:
487 #ifdef CONFIG_NVME_HOST_AUTH
488 		queue_work(nvme_wq, &ctrl->dhchap_auth_work);
489 		nvme_retry_req(req);
490 #else
491 		nvme_end_req(req);
492 #endif
493 		return;
494 	}
495 }
496 EXPORT_SYMBOL_GPL(nvme_complete_rq);
497 
nvme_complete_batch_req(struct request * req)498 void nvme_complete_batch_req(struct request *req)
499 {
500 	trace_nvme_complete_rq(req);
501 	nvme_cleanup_cmd(req);
502 	__nvme_end_req(req);
503 }
504 EXPORT_SYMBOL_GPL(nvme_complete_batch_req);
505 
506 /*
507  * Called to unwind from ->queue_rq on a failed command submission so that the
508  * multipathing code gets called to potentially failover to another path.
509  * The caller needs to unwind all transport specific resource allocations and
510  * must return propagate the return value.
511  */
nvme_host_path_error(struct request * req)512 blk_status_t nvme_host_path_error(struct request *req)
513 {
514 	nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR;
515 	blk_mq_set_request_complete(req);
516 	nvme_complete_rq(req);
517 	return BLK_STS_OK;
518 }
519 EXPORT_SYMBOL_GPL(nvme_host_path_error);
520 
nvme_cancel_request(struct request * req,void * data)521 bool nvme_cancel_request(struct request *req, void *data)
522 {
523 	dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
524 				"Cancelling I/O %d", req->tag);
525 
526 	/* don't abort one completed or idle request */
527 	if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT)
528 		return true;
529 
530 	nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
531 	nvme_req(req)->flags |= NVME_REQ_CANCELLED;
532 	blk_mq_complete_request(req);
533 	return true;
534 }
535 EXPORT_SYMBOL_GPL(nvme_cancel_request);
536 
nvme_cancel_tagset(struct nvme_ctrl * ctrl)537 void nvme_cancel_tagset(struct nvme_ctrl *ctrl)
538 {
539 	if (ctrl->tagset) {
540 		blk_mq_tagset_busy_iter(ctrl->tagset,
541 				nvme_cancel_request, ctrl);
542 		blk_mq_tagset_wait_completed_request(ctrl->tagset);
543 	}
544 }
545 EXPORT_SYMBOL_GPL(nvme_cancel_tagset);
546 
nvme_cancel_admin_tagset(struct nvme_ctrl * ctrl)547 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl)
548 {
549 	if (ctrl->admin_tagset) {
550 		blk_mq_tagset_busy_iter(ctrl->admin_tagset,
551 				nvme_cancel_request, ctrl);
552 		blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
553 	}
554 }
555 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset);
556 
nvme_change_ctrl_state(struct nvme_ctrl * ctrl,enum nvme_ctrl_state new_state)557 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
558 		enum nvme_ctrl_state new_state)
559 {
560 	enum nvme_ctrl_state old_state;
561 	unsigned long flags;
562 	bool changed = false;
563 
564 	spin_lock_irqsave(&ctrl->lock, flags);
565 
566 	old_state = nvme_ctrl_state(ctrl);
567 	switch (new_state) {
568 	case NVME_CTRL_LIVE:
569 		switch (old_state) {
570 		case NVME_CTRL_CONNECTING:
571 			changed = true;
572 			fallthrough;
573 		default:
574 			break;
575 		}
576 		break;
577 	case NVME_CTRL_RESETTING:
578 		switch (old_state) {
579 		case NVME_CTRL_NEW:
580 		case NVME_CTRL_LIVE:
581 			changed = true;
582 			fallthrough;
583 		default:
584 			break;
585 		}
586 		break;
587 	case NVME_CTRL_CONNECTING:
588 		switch (old_state) {
589 		case NVME_CTRL_NEW:
590 		case NVME_CTRL_RESETTING:
591 			changed = true;
592 			fallthrough;
593 		default:
594 			break;
595 		}
596 		break;
597 	case NVME_CTRL_DELETING:
598 		switch (old_state) {
599 		case NVME_CTRL_LIVE:
600 		case NVME_CTRL_RESETTING:
601 		case NVME_CTRL_CONNECTING:
602 			changed = true;
603 			fallthrough;
604 		default:
605 			break;
606 		}
607 		break;
608 	case NVME_CTRL_DELETING_NOIO:
609 		switch (old_state) {
610 		case NVME_CTRL_DELETING:
611 		case NVME_CTRL_DEAD:
612 			changed = true;
613 			fallthrough;
614 		default:
615 			break;
616 		}
617 		break;
618 	case NVME_CTRL_DEAD:
619 		switch (old_state) {
620 		case NVME_CTRL_DELETING:
621 			changed = true;
622 			fallthrough;
623 		default:
624 			break;
625 		}
626 		break;
627 	default:
628 		break;
629 	}
630 
631 	if (changed) {
632 		WRITE_ONCE(ctrl->state, new_state);
633 		wake_up_all(&ctrl->state_wq);
634 	}
635 
636 	spin_unlock_irqrestore(&ctrl->lock, flags);
637 	if (!changed)
638 		return false;
639 
640 	if (new_state == NVME_CTRL_LIVE) {
641 		if (old_state == NVME_CTRL_CONNECTING)
642 			nvme_stop_failfast_work(ctrl);
643 		nvme_kick_requeue_lists(ctrl);
644 	} else if (new_state == NVME_CTRL_CONNECTING &&
645 		old_state == NVME_CTRL_RESETTING) {
646 		nvme_start_failfast_work(ctrl);
647 	}
648 	return changed;
649 }
650 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
651 
652 /*
653  * Waits for the controller state to be resetting, or returns false if it is
654  * not possible to ever transition to that state.
655  */
nvme_wait_reset(struct nvme_ctrl * ctrl)656 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
657 {
658 	wait_event(ctrl->state_wq,
659 		   nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
660 		   nvme_state_terminal(ctrl));
661 	return nvme_ctrl_state(ctrl) == NVME_CTRL_RESETTING;
662 }
663 EXPORT_SYMBOL_GPL(nvme_wait_reset);
664 
nvme_free_ns_head(struct kref * ref)665 static void nvme_free_ns_head(struct kref *ref)
666 {
667 	struct nvme_ns_head *head =
668 		container_of(ref, struct nvme_ns_head, ref);
669 
670 	nvme_mpath_put_disk(head);
671 	ida_free(&head->subsys->ns_ida, head->instance);
672 	cleanup_srcu_struct(&head->srcu);
673 	nvme_put_subsystem(head->subsys);
674 	kfree(head->plids);
675 	kfree(head);
676 }
677 
nvme_tryget_ns_head(struct nvme_ns_head * head)678 bool nvme_tryget_ns_head(struct nvme_ns_head *head)
679 {
680 	return kref_get_unless_zero(&head->ref);
681 }
682 
nvme_put_ns_head(struct nvme_ns_head * head)683 void nvme_put_ns_head(struct nvme_ns_head *head)
684 {
685 	kref_put(&head->ref, nvme_free_ns_head);
686 }
687 
nvme_free_ns(struct kref * kref)688 static void nvme_free_ns(struct kref *kref)
689 {
690 	struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
691 
692 	put_disk(ns->disk);
693 	nvme_put_ns_head(ns->head);
694 	nvme_put_ctrl(ns->ctrl);
695 	kfree(ns);
696 }
697 
nvme_get_ns(struct nvme_ns * ns)698 bool nvme_get_ns(struct nvme_ns *ns)
699 {
700 	return kref_get_unless_zero(&ns->kref);
701 }
702 
nvme_put_ns(struct nvme_ns * ns)703 void nvme_put_ns(struct nvme_ns *ns)
704 {
705 	kref_put(&ns->kref, nvme_free_ns);
706 }
707 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, "NVME_TARGET_PASSTHRU");
708 
nvme_clear_nvme_request(struct request * req)709 static inline void nvme_clear_nvme_request(struct request *req)
710 {
711 	nvme_req(req)->status = 0;
712 	nvme_req(req)->retries = 0;
713 	nvme_req(req)->flags = 0;
714 	req->rq_flags |= RQF_DONTPREP;
715 }
716 
717 /* initialize a passthrough request */
nvme_init_request(struct request * req,struct nvme_command * cmd)718 void nvme_init_request(struct request *req, struct nvme_command *cmd)
719 {
720 	struct nvme_request *nr = nvme_req(req);
721 	bool logging_enabled;
722 
723 	if (req->q->queuedata) {
724 		struct nvme_ns *ns = req->q->disk->private_data;
725 
726 		logging_enabled = ns->head->passthru_err_log_enabled;
727 		req->timeout = NVME_IO_TIMEOUT;
728 	} else { /* no queuedata implies admin queue */
729 		logging_enabled = nr->ctrl->passthru_err_log_enabled;
730 		req->timeout = NVME_ADMIN_TIMEOUT;
731 	}
732 
733 	if (!logging_enabled)
734 		req->rq_flags |= RQF_QUIET;
735 
736 	/* passthru commands should let the driver set the SGL flags */
737 	cmd->common.flags &= ~NVME_CMD_SGL_ALL;
738 
739 	req->cmd_flags |= REQ_FAILFAST_DRIVER;
740 	if (req->mq_hctx->type == HCTX_TYPE_POLL)
741 		req->cmd_flags |= REQ_POLLED;
742 	nvme_clear_nvme_request(req);
743 	memcpy(nr->cmd, cmd, sizeof(*cmd));
744 }
745 EXPORT_SYMBOL_GPL(nvme_init_request);
746 
747 /*
748  * For something we're not in a state to send to the device the default action
749  * is to busy it and retry it after the controller state is recovered.  However,
750  * if the controller is deleting or if anything is marked for failfast or
751  * nvme multipath it is immediately failed.
752  *
753  * Note: commands used to initialize the controller will be marked for failfast.
754  * Note: nvme cli/ioctl commands are marked for failfast.
755  */
nvme_fail_nonready_command(struct nvme_ctrl * ctrl,struct request * rq)756 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl,
757 		struct request *rq)
758 {
759 	enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
760 
761 	if (state != NVME_CTRL_DELETING_NOIO &&
762 	    state != NVME_CTRL_DELETING &&
763 	    state != NVME_CTRL_DEAD &&
764 	    !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) &&
765 	    !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH))
766 		return BLK_STS_RESOURCE;
767 
768 	if (!(rq->rq_flags & RQF_DONTPREP))
769 		nvme_clear_nvme_request(rq);
770 
771 	return nvme_host_path_error(rq);
772 }
773 EXPORT_SYMBOL_GPL(nvme_fail_nonready_command);
774 
__nvme_check_ready(struct nvme_ctrl * ctrl,struct request * rq,bool queue_live,enum nvme_ctrl_state state)775 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq,
776 		bool queue_live, enum nvme_ctrl_state state)
777 {
778 	struct nvme_request *req = nvme_req(rq);
779 
780 	/*
781 	 * currently we have a problem sending passthru commands
782 	 * on the admin_q if the controller is not LIVE because we can't
783 	 * make sure that they are going out after the admin connect,
784 	 * controller enable and/or other commands in the initialization
785 	 * sequence. until the controller will be LIVE, fail with
786 	 * BLK_STS_RESOURCE so that they will be rescheduled.
787 	 */
788 	if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD))
789 		return false;
790 
791 	if (ctrl->ops->flags & NVME_F_FABRICS) {
792 		/*
793 		 * Only allow commands on a live queue, except for the connect
794 		 * command, which is require to set the queue live in the
795 		 * appropinquate states.
796 		 */
797 		switch (state) {
798 		case NVME_CTRL_CONNECTING:
799 			if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) &&
800 			    (req->cmd->fabrics.fctype == nvme_fabrics_type_connect ||
801 			     req->cmd->fabrics.fctype == nvme_fabrics_type_auth_send ||
802 			     req->cmd->fabrics.fctype == nvme_fabrics_type_auth_receive))
803 				return true;
804 			break;
805 		default:
806 			break;
807 		case NVME_CTRL_DEAD:
808 			return false;
809 		}
810 	}
811 
812 	return queue_live;
813 }
814 EXPORT_SYMBOL_GPL(__nvme_check_ready);
815 
nvme_setup_flush(struct nvme_ns * ns,struct nvme_command * cmnd)816 static inline void nvme_setup_flush(struct nvme_ns *ns,
817 		struct nvme_command *cmnd)
818 {
819 	memset(cmnd, 0, sizeof(*cmnd));
820 	cmnd->common.opcode = nvme_cmd_flush;
821 	cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
822 }
823 
nvme_setup_discard(struct nvme_ns * ns,struct request * req,struct nvme_command * cmnd)824 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
825 		struct nvme_command *cmnd)
826 {
827 	unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
828 	struct nvme_dsm_range *range;
829 	struct bio *bio;
830 
831 	/*
832 	 * Some devices do not consider the DSM 'Number of Ranges' field when
833 	 * determining how much data to DMA. Always allocate memory for maximum
834 	 * number of segments to prevent device reading beyond end of buffer.
835 	 */
836 	static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
837 
838 	range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
839 	if (!range) {
840 		/*
841 		 * If we fail allocation our range, fallback to the controller
842 		 * discard page. If that's also busy, it's safe to return
843 		 * busy, as we know we can make progress once that's freed.
844 		 */
845 		if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
846 			return BLK_STS_RESOURCE;
847 
848 		range = page_address(ns->ctrl->discard_page);
849 	}
850 
851 	if (queue_max_discard_segments(req->q) == 1) {
852 		u64 slba = nvme_sect_to_lba(ns->head, blk_rq_pos(req));
853 		u32 nlb = blk_rq_sectors(req) >> (ns->head->lba_shift - 9);
854 
855 		range[0].cattr = cpu_to_le32(0);
856 		range[0].nlb = cpu_to_le32(nlb);
857 		range[0].slba = cpu_to_le64(slba);
858 		n = 1;
859 	} else {
860 		__rq_for_each_bio(bio, req) {
861 			u64 slba = nvme_sect_to_lba(ns->head,
862 						    bio->bi_iter.bi_sector);
863 			u32 nlb = bio->bi_iter.bi_size >> ns->head->lba_shift;
864 
865 			if (n < segments) {
866 				range[n].cattr = cpu_to_le32(0);
867 				range[n].nlb = cpu_to_le32(nlb);
868 				range[n].slba = cpu_to_le64(slba);
869 			}
870 			n++;
871 		}
872 	}
873 
874 	if (WARN_ON_ONCE(n != segments)) {
875 		if (virt_to_page(range) == ns->ctrl->discard_page)
876 			clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
877 		else
878 			kfree(range);
879 		return BLK_STS_IOERR;
880 	}
881 
882 	memset(cmnd, 0, sizeof(*cmnd));
883 	cmnd->dsm.opcode = nvme_cmd_dsm;
884 	cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
885 	cmnd->dsm.nr = cpu_to_le32(segments - 1);
886 	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
887 
888 	bvec_set_virt(&req->special_vec, range, alloc_size);
889 	req->rq_flags |= RQF_SPECIAL_PAYLOAD;
890 
891 	return BLK_STS_OK;
892 }
893 
nvme_set_app_tag(struct request * req,struct nvme_command * cmnd)894 static void nvme_set_app_tag(struct request *req, struct nvme_command *cmnd)
895 {
896 	cmnd->rw.lbat = cpu_to_le16(bio_integrity(req->bio)->app_tag);
897 	cmnd->rw.lbatm = cpu_to_le16(0xffff);
898 }
899 
nvme_set_ref_tag(struct nvme_ns * ns,struct nvme_command * cmnd,struct request * req)900 static void nvme_set_ref_tag(struct nvme_ns *ns, struct nvme_command *cmnd,
901 			      struct request *req)
902 {
903 	u32 upper, lower;
904 	u64 ref48;
905 
906 	/* both rw and write zeroes share the same reftag format */
907 	switch (ns->head->guard_type) {
908 	case NVME_NVM_NS_16B_GUARD:
909 		cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
910 		break;
911 	case NVME_NVM_NS_64B_GUARD:
912 		ref48 = ext_pi_ref_tag(req);
913 		lower = lower_32_bits(ref48);
914 		upper = upper_32_bits(ref48);
915 
916 		cmnd->rw.reftag = cpu_to_le32(lower);
917 		cmnd->rw.cdw3 = cpu_to_le32(upper);
918 		break;
919 	default:
920 		break;
921 	}
922 }
923 
nvme_setup_write_zeroes(struct nvme_ns * ns,struct request * req,struct nvme_command * cmnd)924 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
925 		struct request *req, struct nvme_command *cmnd)
926 {
927 	memset(cmnd, 0, sizeof(*cmnd));
928 
929 	if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
930 		return nvme_setup_discard(ns, req, cmnd);
931 
932 	cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
933 	cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
934 	cmnd->write_zeroes.slba =
935 		cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req)));
936 	cmnd->write_zeroes.length =
937 		cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1);
938 
939 	if (!(req->cmd_flags & REQ_NOUNMAP) &&
940 	    (ns->head->features & NVME_NS_DEAC))
941 		cmnd->write_zeroes.control |= cpu_to_le16(NVME_WZ_DEAC);
942 
943 	if (nvme_ns_has_pi(ns->head)) {
944 		cmnd->write_zeroes.control |= cpu_to_le16(NVME_RW_PRINFO_PRACT);
945 
946 		switch (ns->head->pi_type) {
947 		case NVME_NS_DPS_PI_TYPE1:
948 		case NVME_NS_DPS_PI_TYPE2:
949 			nvme_set_ref_tag(ns, cmnd, req);
950 			break;
951 		}
952 	}
953 
954 	return BLK_STS_OK;
955 }
956 
957 /*
958  * NVMe does not support a dedicated command to issue an atomic write. A write
959  * which does adhere to the device atomic limits will silently be executed
960  * non-atomically. The request issuer should ensure that the write is within
961  * the queue atomic writes limits, but just validate this in case it is not.
962  */
nvme_valid_atomic_write(struct request * req)963 static bool nvme_valid_atomic_write(struct request *req)
964 {
965 	struct request_queue *q = req->q;
966 	u32 boundary_bytes = queue_atomic_write_boundary_bytes(q);
967 
968 	if (blk_rq_bytes(req) > queue_atomic_write_unit_max_bytes(q))
969 		return false;
970 
971 	if (boundary_bytes) {
972 		u64 mask = boundary_bytes - 1, imask = ~mask;
973 		u64 start = blk_rq_pos(req) << SECTOR_SHIFT;
974 		u64 end = start + blk_rq_bytes(req) - 1;
975 
976 		/* If greater then must be crossing a boundary */
977 		if (blk_rq_bytes(req) > boundary_bytes)
978 			return false;
979 
980 		if ((start & imask) != (end & imask))
981 			return false;
982 	}
983 
984 	return true;
985 }
986 
nvme_setup_rw(struct nvme_ns * ns,struct request * req,struct nvme_command * cmnd,enum nvme_opcode op)987 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
988 		struct request *req, struct nvme_command *cmnd,
989 		enum nvme_opcode op)
990 {
991 	u16 control = 0;
992 	u32 dsmgmt = 0;
993 
994 	if (req->cmd_flags & REQ_FUA)
995 		control |= NVME_RW_FUA;
996 	if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
997 		control |= NVME_RW_LR;
998 
999 	if (req->cmd_flags & REQ_RAHEAD)
1000 		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
1001 
1002 	if (op == nvme_cmd_write && ns->head->nr_plids) {
1003 		u16 write_stream = req->bio->bi_write_stream;
1004 
1005 		if (WARN_ON_ONCE(write_stream > ns->head->nr_plids))
1006 			return BLK_STS_INVAL;
1007 
1008 		if (write_stream) {
1009 			dsmgmt |= ns->head->plids[write_stream - 1] << 16;
1010 			control |= NVME_RW_DTYPE_DPLCMT;
1011 		}
1012 	}
1013 
1014 	if (req->cmd_flags & REQ_ATOMIC && !nvme_valid_atomic_write(req))
1015 		return BLK_STS_INVAL;
1016 
1017 	cmnd->rw.opcode = op;
1018 	cmnd->rw.flags = 0;
1019 	cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
1020 	cmnd->rw.cdw2 = 0;
1021 	cmnd->rw.cdw3 = 0;
1022 	cmnd->rw.metadata = 0;
1023 	cmnd->rw.slba =
1024 		cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req)));
1025 	cmnd->rw.length =
1026 		cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1);
1027 	cmnd->rw.reftag = 0;
1028 	cmnd->rw.lbat = 0;
1029 	cmnd->rw.lbatm = 0;
1030 
1031 	if (ns->head->ms) {
1032 		/*
1033 		 * If formatted with metadata, the block layer always provides a
1034 		 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
1035 		 * we enable the PRACT bit for protection information or set the
1036 		 * namespace capacity to zero to prevent any I/O.
1037 		 */
1038 		if (!blk_integrity_rq(req)) {
1039 			if (WARN_ON_ONCE(!nvme_ns_has_pi(ns->head)))
1040 				return BLK_STS_NOTSUPP;
1041 			control |= NVME_RW_PRINFO_PRACT;
1042 		}
1043 
1044 		if (bio_integrity_flagged(req->bio, BIP_CHECK_GUARD))
1045 			control |= NVME_RW_PRINFO_PRCHK_GUARD;
1046 		if (bio_integrity_flagged(req->bio, BIP_CHECK_REFTAG)) {
1047 			control |= NVME_RW_PRINFO_PRCHK_REF;
1048 			if (op == nvme_cmd_zone_append)
1049 				control |= NVME_RW_APPEND_PIREMAP;
1050 			nvme_set_ref_tag(ns, cmnd, req);
1051 		}
1052 		if (bio_integrity_flagged(req->bio, BIP_CHECK_APPTAG)) {
1053 			control |= NVME_RW_PRINFO_PRCHK_APP;
1054 			nvme_set_app_tag(req, cmnd);
1055 		}
1056 	}
1057 
1058 	cmnd->rw.control = cpu_to_le16(control);
1059 	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
1060 	return 0;
1061 }
1062 
nvme_cleanup_cmd(struct request * req)1063 void nvme_cleanup_cmd(struct request *req)
1064 {
1065 	if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
1066 		struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
1067 
1068 		if (req->special_vec.bv_page == ctrl->discard_page)
1069 			clear_bit_unlock(0, &ctrl->discard_page_busy);
1070 		else
1071 			kfree(bvec_virt(&req->special_vec));
1072 		req->rq_flags &= ~RQF_SPECIAL_PAYLOAD;
1073 	}
1074 }
1075 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
1076 
nvme_setup_cmd(struct nvme_ns * ns,struct request * req)1077 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req)
1078 {
1079 	struct nvme_command *cmd = nvme_req(req)->cmd;
1080 	blk_status_t ret = BLK_STS_OK;
1081 
1082 	if (!(req->rq_flags & RQF_DONTPREP))
1083 		nvme_clear_nvme_request(req);
1084 
1085 	switch (req_op(req)) {
1086 	case REQ_OP_DRV_IN:
1087 	case REQ_OP_DRV_OUT:
1088 		/* these are setup prior to execution in nvme_init_request() */
1089 		break;
1090 	case REQ_OP_FLUSH:
1091 		nvme_setup_flush(ns, cmd);
1092 		break;
1093 	case REQ_OP_ZONE_RESET_ALL:
1094 	case REQ_OP_ZONE_RESET:
1095 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
1096 		break;
1097 	case REQ_OP_ZONE_OPEN:
1098 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
1099 		break;
1100 	case REQ_OP_ZONE_CLOSE:
1101 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
1102 		break;
1103 	case REQ_OP_ZONE_FINISH:
1104 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
1105 		break;
1106 	case REQ_OP_WRITE_ZEROES:
1107 		ret = nvme_setup_write_zeroes(ns, req, cmd);
1108 		break;
1109 	case REQ_OP_DISCARD:
1110 		ret = nvme_setup_discard(ns, req, cmd);
1111 		break;
1112 	case REQ_OP_READ:
1113 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
1114 		break;
1115 	case REQ_OP_WRITE:
1116 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
1117 		break;
1118 	case REQ_OP_ZONE_APPEND:
1119 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
1120 		break;
1121 	default:
1122 		WARN_ON_ONCE(1);
1123 		return BLK_STS_IOERR;
1124 	}
1125 
1126 	cmd->common.command_id = nvme_cid(req);
1127 	trace_nvme_setup_cmd(req, cmd);
1128 	return ret;
1129 }
1130 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
1131 
1132 /*
1133  * Return values:
1134  * 0:  success
1135  * >0: nvme controller's cqe status response
1136  * <0: kernel error in lieu of controller response
1137  */
nvme_execute_rq(struct request * rq,bool at_head)1138 int nvme_execute_rq(struct request *rq, bool at_head)
1139 {
1140 	blk_status_t status;
1141 
1142 	status = blk_execute_rq(rq, at_head);
1143 	if (nvme_req(rq)->flags & NVME_REQ_CANCELLED)
1144 		return -EINTR;
1145 	if (nvme_req(rq)->status)
1146 		return nvme_req(rq)->status;
1147 	return blk_status_to_errno(status);
1148 }
1149 EXPORT_SYMBOL_NS_GPL(nvme_execute_rq, "NVME_TARGET_PASSTHRU");
1150 
1151 /*
1152  * Returns 0 on success.  If the result is negative, it's a Linux error code;
1153  * if the result is positive, it's an NVM Express status code
1154  */
__nvme_submit_sync_cmd(struct request_queue * q,struct nvme_command * cmd,union nvme_result * result,void * buffer,unsigned bufflen,int qid,nvme_submit_flags_t flags)1155 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1156 		union nvme_result *result, void *buffer, unsigned bufflen,
1157 		int qid, nvme_submit_flags_t flags)
1158 {
1159 	struct request *req;
1160 	int ret;
1161 	blk_mq_req_flags_t blk_flags = 0;
1162 
1163 	if (flags & NVME_SUBMIT_NOWAIT)
1164 		blk_flags |= BLK_MQ_REQ_NOWAIT;
1165 	if (flags & NVME_SUBMIT_RESERVED)
1166 		blk_flags |= BLK_MQ_REQ_RESERVED;
1167 	if (qid == NVME_QID_ANY)
1168 		req = blk_mq_alloc_request(q, nvme_req_op(cmd), blk_flags);
1169 	else
1170 		req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), blk_flags,
1171 						qid - 1);
1172 
1173 	if (IS_ERR(req))
1174 		return PTR_ERR(req);
1175 	nvme_init_request(req, cmd);
1176 	if (flags & NVME_SUBMIT_RETRY)
1177 		req->cmd_flags &= ~REQ_FAILFAST_DRIVER;
1178 
1179 	if (buffer && bufflen) {
1180 		ret = blk_rq_map_kern(req, buffer, bufflen, GFP_KERNEL);
1181 		if (ret)
1182 			goto out;
1183 	}
1184 
1185 	ret = nvme_execute_rq(req, flags & NVME_SUBMIT_AT_HEAD);
1186 	if (result && ret >= 0)
1187 		*result = nvme_req(req)->result;
1188  out:
1189 	blk_mq_free_request(req);
1190 	return ret;
1191 }
1192 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
1193 
nvme_submit_sync_cmd(struct request_queue * q,struct nvme_command * cmd,void * buffer,unsigned bufflen)1194 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1195 		void *buffer, unsigned bufflen)
1196 {
1197 	return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen,
1198 			NVME_QID_ANY, 0);
1199 }
1200 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
1201 
nvme_command_effects(struct nvme_ctrl * ctrl,struct nvme_ns * ns,u8 opcode)1202 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1203 {
1204 	u32 effects = 0;
1205 
1206 	if (ns) {
1207 		effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
1208 		if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1209 			dev_warn_once(ctrl->device,
1210 				"IO command:%02x has unusual effects:%08x\n",
1211 				opcode, effects);
1212 
1213 		/*
1214 		 * NVME_CMD_EFFECTS_CSE_MASK causes a freeze all I/O queues,
1215 		 * which would deadlock when done on an I/O command.  Note that
1216 		 * We already warn about an unusual effect above.
1217 		 */
1218 		effects &= ~NVME_CMD_EFFECTS_CSE_MASK;
1219 	} else {
1220 		effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1221 
1222 		/* Ignore execution restrictions if any relaxation bits are set */
1223 		if (effects & NVME_CMD_EFFECTS_CSER_MASK)
1224 			effects &= ~NVME_CMD_EFFECTS_CSE_MASK;
1225 	}
1226 
1227 	return effects;
1228 }
1229 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, "NVME_TARGET_PASSTHRU");
1230 
nvme_passthru_start(struct nvme_ctrl * ctrl,struct nvme_ns * ns,u8 opcode)1231 u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1232 {
1233 	u32 effects = nvme_command_effects(ctrl, ns, opcode);
1234 
1235 	/*
1236 	 * For simplicity, IO to all namespaces is quiesced even if the command
1237 	 * effects say only one namespace is affected.
1238 	 */
1239 	if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1240 		mutex_lock(&ctrl->scan_lock);
1241 		mutex_lock(&ctrl->subsys->lock);
1242 		nvme_mpath_start_freeze(ctrl->subsys);
1243 		nvme_mpath_wait_freeze(ctrl->subsys);
1244 		nvme_start_freeze(ctrl);
1245 		nvme_wait_freeze(ctrl);
1246 	}
1247 	return effects;
1248 }
1249 EXPORT_SYMBOL_NS_GPL(nvme_passthru_start, "NVME_TARGET_PASSTHRU");
1250 
nvme_passthru_end(struct nvme_ctrl * ctrl,struct nvme_ns * ns,u32 effects,struct nvme_command * cmd,int status)1251 void nvme_passthru_end(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u32 effects,
1252 		       struct nvme_command *cmd, int status)
1253 {
1254 	if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1255 		nvme_unfreeze(ctrl);
1256 		nvme_mpath_unfreeze(ctrl->subsys);
1257 		mutex_unlock(&ctrl->subsys->lock);
1258 		mutex_unlock(&ctrl->scan_lock);
1259 	}
1260 	if (effects & NVME_CMD_EFFECTS_CCC) {
1261 		if (!test_and_set_bit(NVME_CTRL_DIRTY_CAPABILITY,
1262 				      &ctrl->flags)) {
1263 			dev_info(ctrl->device,
1264 "controller capabilities changed, reset may be required to take effect.\n");
1265 		}
1266 	}
1267 	if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1268 		nvme_queue_scan(ctrl);
1269 		flush_work(&ctrl->scan_work);
1270 	}
1271 	if (ns)
1272 		return;
1273 
1274 	switch (cmd->common.opcode) {
1275 	case nvme_admin_set_features:
1276 		switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) {
1277 		case NVME_FEAT_KATO:
1278 			/*
1279 			 * Keep alive commands interval on the host should be
1280 			 * updated when KATO is modified by Set Features
1281 			 * commands.
1282 			 */
1283 			if (!status)
1284 				nvme_update_keep_alive(ctrl, cmd);
1285 			break;
1286 		default:
1287 			break;
1288 		}
1289 		break;
1290 	default:
1291 		break;
1292 	}
1293 }
1294 EXPORT_SYMBOL_NS_GPL(nvme_passthru_end, "NVME_TARGET_PASSTHRU");
1295 
1296 /*
1297  * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1:
1298  *
1299  *   The host should send Keep Alive commands at half of the Keep Alive Timeout
1300  *   accounting for transport roundtrip times [..].
1301  */
nvme_keep_alive_work_period(struct nvme_ctrl * ctrl)1302 static unsigned long nvme_keep_alive_work_period(struct nvme_ctrl *ctrl)
1303 {
1304 	unsigned long delay = ctrl->kato * HZ / 2;
1305 
1306 	/*
1307 	 * When using Traffic Based Keep Alive, we need to run
1308 	 * nvme_keep_alive_work at twice the normal frequency, as one
1309 	 * command completion can postpone sending a keep alive command
1310 	 * by up to twice the delay between runs.
1311 	 */
1312 	if (ctrl->ctratt & NVME_CTRL_ATTR_TBKAS)
1313 		delay /= 2;
1314 	return delay;
1315 }
1316 
nvme_queue_keep_alive_work(struct nvme_ctrl * ctrl)1317 static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl)
1318 {
1319 	unsigned long now = jiffies;
1320 	unsigned long delay = nvme_keep_alive_work_period(ctrl);
1321 	unsigned long ka_next_check_tm = ctrl->ka_last_check_time + delay;
1322 
1323 	if (time_after(now, ka_next_check_tm))
1324 		delay = 0;
1325 	else
1326 		delay = ka_next_check_tm - now;
1327 
1328 	queue_delayed_work(nvme_wq, &ctrl->ka_work, delay);
1329 }
1330 
nvme_keep_alive_end_io(struct request * rq,blk_status_t status)1331 static enum rq_end_io_ret nvme_keep_alive_end_io(struct request *rq,
1332 						 blk_status_t status)
1333 {
1334 	struct nvme_ctrl *ctrl = rq->end_io_data;
1335 	unsigned long rtt = jiffies - (rq->deadline - rq->timeout);
1336 	unsigned long delay = nvme_keep_alive_work_period(ctrl);
1337 	enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
1338 
1339 	/*
1340 	 * Subtract off the keepalive RTT so nvme_keep_alive_work runs
1341 	 * at the desired frequency.
1342 	 */
1343 	if (rtt <= delay) {
1344 		delay -= rtt;
1345 	} else {
1346 		dev_warn(ctrl->device, "long keepalive RTT (%u ms)\n",
1347 			 jiffies_to_msecs(rtt));
1348 		delay = 0;
1349 	}
1350 
1351 	blk_mq_free_request(rq);
1352 
1353 	if (status) {
1354 		dev_err(ctrl->device,
1355 			"failed nvme_keep_alive_end_io error=%d\n",
1356 				status);
1357 		return RQ_END_IO_NONE;
1358 	}
1359 
1360 	ctrl->ka_last_check_time = jiffies;
1361 	ctrl->comp_seen = false;
1362 	if (state == NVME_CTRL_LIVE || state == NVME_CTRL_CONNECTING)
1363 		queue_delayed_work(nvme_wq, &ctrl->ka_work, delay);
1364 	return RQ_END_IO_NONE;
1365 }
1366 
nvme_keep_alive_work(struct work_struct * work)1367 static void nvme_keep_alive_work(struct work_struct *work)
1368 {
1369 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1370 			struct nvme_ctrl, ka_work);
1371 	bool comp_seen = ctrl->comp_seen;
1372 	struct request *rq;
1373 
1374 	ctrl->ka_last_check_time = jiffies;
1375 
1376 	if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1377 		dev_dbg(ctrl->device,
1378 			"reschedule traffic based keep-alive timer\n");
1379 		ctrl->comp_seen = false;
1380 		nvme_queue_keep_alive_work(ctrl);
1381 		return;
1382 	}
1383 
1384 	rq = blk_mq_alloc_request(ctrl->admin_q, nvme_req_op(&ctrl->ka_cmd),
1385 				  BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT);
1386 	if (IS_ERR(rq)) {
1387 		/* allocation failure, reset the controller */
1388 		dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq));
1389 		nvme_reset_ctrl(ctrl);
1390 		return;
1391 	}
1392 	nvme_init_request(rq, &ctrl->ka_cmd);
1393 
1394 	rq->timeout = ctrl->kato * HZ;
1395 	rq->end_io = nvme_keep_alive_end_io;
1396 	rq->end_io_data = ctrl;
1397 	blk_execute_rq_nowait(rq, false);
1398 }
1399 
nvme_start_keep_alive(struct nvme_ctrl * ctrl)1400 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1401 {
1402 	if (unlikely(ctrl->kato == 0))
1403 		return;
1404 
1405 	nvme_queue_keep_alive_work(ctrl);
1406 }
1407 
nvme_stop_keep_alive(struct nvme_ctrl * ctrl)1408 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1409 {
1410 	if (unlikely(ctrl->kato == 0))
1411 		return;
1412 
1413 	cancel_delayed_work_sync(&ctrl->ka_work);
1414 }
1415 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1416 
nvme_update_keep_alive(struct nvme_ctrl * ctrl,struct nvme_command * cmd)1417 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
1418 				   struct nvme_command *cmd)
1419 {
1420 	unsigned int new_kato =
1421 		DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000);
1422 
1423 	dev_info(ctrl->device,
1424 		 "keep alive interval updated from %u ms to %u ms\n",
1425 		 ctrl->kato * 1000 / 2, new_kato * 1000 / 2);
1426 
1427 	nvme_stop_keep_alive(ctrl);
1428 	ctrl->kato = new_kato;
1429 	nvme_start_keep_alive(ctrl);
1430 }
1431 
nvme_id_cns_ok(struct nvme_ctrl * ctrl,u8 cns)1432 static bool nvme_id_cns_ok(struct nvme_ctrl *ctrl, u8 cns)
1433 {
1434 	/*
1435 	 * The CNS field occupies a full byte starting with NVMe 1.2
1436 	 */
1437 	if (ctrl->vs >= NVME_VS(1, 2, 0))
1438 		return true;
1439 
1440 	/*
1441 	 * NVMe 1.1 expanded the CNS value to two bits, which means values
1442 	 * larger than that could get truncated and treated as an incorrect
1443 	 * value.
1444 	 *
1445 	 * Qemu implemented 1.0 behavior for controllers claiming 1.1
1446 	 * compliance, so they need to be quirked here.
1447 	 */
1448 	if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1449 	    !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS))
1450 		return cns <= 3;
1451 
1452 	/*
1453 	 * NVMe 1.0 used a single bit for the CNS value.
1454 	 */
1455 	return cns <= 1;
1456 }
1457 
nvme_identify_ctrl(struct nvme_ctrl * dev,struct nvme_id_ctrl ** id)1458 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1459 {
1460 	struct nvme_command c = { };
1461 	int error;
1462 
1463 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1464 	c.identify.opcode = nvme_admin_identify;
1465 	c.identify.cns = NVME_ID_CNS_CTRL;
1466 
1467 	*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1468 	if (!*id)
1469 		return -ENOMEM;
1470 
1471 	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1472 			sizeof(struct nvme_id_ctrl));
1473 	if (error) {
1474 		kfree(*id);
1475 		*id = NULL;
1476 	}
1477 	return error;
1478 }
1479 
nvme_process_ns_desc(struct nvme_ctrl * ctrl,struct nvme_ns_ids * ids,struct nvme_ns_id_desc * cur,bool * csi_seen)1480 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1481 		struct nvme_ns_id_desc *cur, bool *csi_seen)
1482 {
1483 	const char *warn_str = "ctrl returned bogus length:";
1484 	void *data = cur;
1485 
1486 	switch (cur->nidt) {
1487 	case NVME_NIDT_EUI64:
1488 		if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1489 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1490 				 warn_str, cur->nidl);
1491 			return -1;
1492 		}
1493 		if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1494 			return NVME_NIDT_EUI64_LEN;
1495 		memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1496 		return NVME_NIDT_EUI64_LEN;
1497 	case NVME_NIDT_NGUID:
1498 		if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1499 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1500 				 warn_str, cur->nidl);
1501 			return -1;
1502 		}
1503 		if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1504 			return NVME_NIDT_NGUID_LEN;
1505 		memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1506 		return NVME_NIDT_NGUID_LEN;
1507 	case NVME_NIDT_UUID:
1508 		if (cur->nidl != NVME_NIDT_UUID_LEN) {
1509 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1510 				 warn_str, cur->nidl);
1511 			return -1;
1512 		}
1513 		if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1514 			return NVME_NIDT_UUID_LEN;
1515 		uuid_copy(&ids->uuid, data + sizeof(*cur));
1516 		return NVME_NIDT_UUID_LEN;
1517 	case NVME_NIDT_CSI:
1518 		if (cur->nidl != NVME_NIDT_CSI_LEN) {
1519 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1520 				 warn_str, cur->nidl);
1521 			return -1;
1522 		}
1523 		memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1524 		*csi_seen = true;
1525 		return NVME_NIDT_CSI_LEN;
1526 	default:
1527 		/* Skip unknown types */
1528 		return cur->nidl;
1529 	}
1530 }
1531 
nvme_identify_ns_descs(struct nvme_ctrl * ctrl,struct nvme_ns_info * info)1532 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl,
1533 		struct nvme_ns_info *info)
1534 {
1535 	struct nvme_command c = { };
1536 	bool csi_seen = false;
1537 	int status, pos, len;
1538 	void *data;
1539 
1540 	if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
1541 		return 0;
1542 	if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1543 		return 0;
1544 
1545 	c.identify.opcode = nvme_admin_identify;
1546 	c.identify.nsid = cpu_to_le32(info->nsid);
1547 	c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1548 
1549 	data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1550 	if (!data)
1551 		return -ENOMEM;
1552 
1553 	status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1554 				      NVME_IDENTIFY_DATA_SIZE);
1555 	if (status) {
1556 		dev_warn(ctrl->device,
1557 			"Identify Descriptors failed (nsid=%u, status=0x%x)\n",
1558 			info->nsid, status);
1559 		goto free_data;
1560 	}
1561 
1562 	for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1563 		struct nvme_ns_id_desc *cur = data + pos;
1564 
1565 		if (cur->nidl == 0)
1566 			break;
1567 
1568 		len = nvme_process_ns_desc(ctrl, &info->ids, cur, &csi_seen);
1569 		if (len < 0)
1570 			break;
1571 
1572 		len += sizeof(*cur);
1573 	}
1574 
1575 	if (nvme_multi_css(ctrl) && !csi_seen) {
1576 		dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1577 			 info->nsid);
1578 		status = -EINVAL;
1579 	}
1580 
1581 free_data:
1582 	kfree(data);
1583 	return status;
1584 }
1585 
nvme_identify_ns(struct nvme_ctrl * ctrl,unsigned nsid,struct nvme_id_ns ** id)1586 int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
1587 			struct nvme_id_ns **id)
1588 {
1589 	struct nvme_command c = { };
1590 	int error;
1591 
1592 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1593 	c.identify.opcode = nvme_admin_identify;
1594 	c.identify.nsid = cpu_to_le32(nsid);
1595 	c.identify.cns = NVME_ID_CNS_NS;
1596 
1597 	*id = kmalloc(sizeof(**id), GFP_KERNEL);
1598 	if (!*id)
1599 		return -ENOMEM;
1600 
1601 	error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1602 	if (error) {
1603 		dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1604 		kfree(*id);
1605 		*id = NULL;
1606 	}
1607 	return error;
1608 }
1609 
nvme_ns_info_from_identify(struct nvme_ctrl * ctrl,struct nvme_ns_info * info)1610 static int nvme_ns_info_from_identify(struct nvme_ctrl *ctrl,
1611 		struct nvme_ns_info *info)
1612 {
1613 	struct nvme_ns_ids *ids = &info->ids;
1614 	struct nvme_id_ns *id;
1615 	int ret;
1616 
1617 	ret = nvme_identify_ns(ctrl, info->nsid, &id);
1618 	if (ret)
1619 		return ret;
1620 
1621 	if (id->ncap == 0) {
1622 		/* namespace not allocated or attached */
1623 		info->is_removed = true;
1624 		ret = -ENODEV;
1625 		goto error;
1626 	}
1627 
1628 	info->anagrpid = id->anagrpid;
1629 	info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1630 	info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1631 	info->is_ready = true;
1632 	info->endgid = le16_to_cpu(id->endgid);
1633 	if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) {
1634 		dev_info(ctrl->device,
1635 			 "Ignoring bogus Namespace Identifiers\n");
1636 	} else {
1637 		if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1638 		    !memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
1639 			memcpy(ids->eui64, id->eui64, sizeof(ids->eui64));
1640 		if (ctrl->vs >= NVME_VS(1, 2, 0) &&
1641 		    !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
1642 			memcpy(ids->nguid, id->nguid, sizeof(ids->nguid));
1643 	}
1644 
1645 error:
1646 	kfree(id);
1647 	return ret;
1648 }
1649 
nvme_ns_info_from_id_cs_indep(struct nvme_ctrl * ctrl,struct nvme_ns_info * info)1650 static int nvme_ns_info_from_id_cs_indep(struct nvme_ctrl *ctrl,
1651 		struct nvme_ns_info *info)
1652 {
1653 	struct nvme_id_ns_cs_indep *id;
1654 	struct nvme_command c = {
1655 		.identify.opcode	= nvme_admin_identify,
1656 		.identify.nsid		= cpu_to_le32(info->nsid),
1657 		.identify.cns		= NVME_ID_CNS_NS_CS_INDEP,
1658 	};
1659 	int ret;
1660 
1661 	id = kmalloc(sizeof(*id), GFP_KERNEL);
1662 	if (!id)
1663 		return -ENOMEM;
1664 
1665 	ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
1666 	if (!ret) {
1667 		info->anagrpid = id->anagrpid;
1668 		info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1669 		info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1670 		info->is_ready = id->nstat & NVME_NSTAT_NRDY;
1671 		info->is_rotational = id->nsfeat & NVME_NS_ROTATIONAL;
1672 		info->no_vwc = id->nsfeat & NVME_NS_VWC_NOT_PRESENT;
1673 		info->endgid = le16_to_cpu(id->endgid);
1674 	}
1675 	kfree(id);
1676 	return ret;
1677 }
1678 
nvme_features(struct nvme_ctrl * dev,u8 op,unsigned int fid,unsigned int dword11,void * buffer,size_t buflen,u32 * result)1679 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1680 		unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1681 {
1682 	union nvme_result res = { 0 };
1683 	struct nvme_command c = { };
1684 	int ret;
1685 
1686 	c.features.opcode = op;
1687 	c.features.fid = cpu_to_le32(fid);
1688 	c.features.dword11 = cpu_to_le32(dword11);
1689 
1690 	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1691 			buffer, buflen, NVME_QID_ANY, 0);
1692 	if (ret >= 0 && result)
1693 		*result = le32_to_cpu(res.u32);
1694 	return ret;
1695 }
1696 
nvme_set_features(struct nvme_ctrl * dev,unsigned int fid,unsigned int dword11,void * buffer,size_t buflen,void * result)1697 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1698 		      unsigned int dword11, void *buffer, size_t buflen,
1699 		      void *result)
1700 {
1701 	return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1702 			     buflen, result);
1703 }
1704 EXPORT_SYMBOL_GPL(nvme_set_features);
1705 
nvme_get_features(struct nvme_ctrl * dev,unsigned int fid,unsigned int dword11,void * buffer,size_t buflen,void * result)1706 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1707 		      unsigned int dword11, void *buffer, size_t buflen,
1708 		      void *result)
1709 {
1710 	return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1711 			     buflen, result);
1712 }
1713 EXPORT_SYMBOL_GPL(nvme_get_features);
1714 
nvme_set_queue_count(struct nvme_ctrl * ctrl,int * count)1715 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1716 {
1717 	u32 q_count = (*count - 1) | ((*count - 1) << 16);
1718 	u32 result;
1719 	int status, nr_io_queues;
1720 
1721 	status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1722 			&result);
1723 
1724 	/*
1725 	 * It's either a kernel error or the host observed a connection
1726 	 * lost. In either case it's not possible communicate with the
1727 	 * controller and thus enter the error code path.
1728 	 */
1729 	if (status < 0 || status == NVME_SC_HOST_PATH_ERROR)
1730 		return status;
1731 
1732 	/*
1733 	 * Degraded controllers might return an error when setting the queue
1734 	 * count.  We still want to be able to bring them online and offer
1735 	 * access to the admin queue, as that might be only way to fix them up.
1736 	 */
1737 	if (status > 0) {
1738 		dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1739 		*count = 0;
1740 	} else {
1741 		nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1742 		*count = min(*count, nr_io_queues);
1743 	}
1744 
1745 	return 0;
1746 }
1747 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1748 
1749 #define NVME_AEN_SUPPORTED \
1750 	(NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1751 	 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1752 
nvme_enable_aen(struct nvme_ctrl * ctrl)1753 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1754 {
1755 	u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1756 	int status;
1757 
1758 	if (!supported_aens)
1759 		return;
1760 
1761 	status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1762 			NULL, 0, &result);
1763 	if (status)
1764 		dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1765 			 supported_aens);
1766 
1767 	queue_work(nvme_wq, &ctrl->async_event_work);
1768 }
1769 
nvme_ns_open(struct nvme_ns * ns)1770 static int nvme_ns_open(struct nvme_ns *ns)
1771 {
1772 
1773 	/* should never be called due to GENHD_FL_HIDDEN */
1774 	if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head)))
1775 		goto fail;
1776 	if (!nvme_get_ns(ns))
1777 		goto fail;
1778 	if (!try_module_get(ns->ctrl->ops->module))
1779 		goto fail_put_ns;
1780 
1781 	return 0;
1782 
1783 fail_put_ns:
1784 	nvme_put_ns(ns);
1785 fail:
1786 	return -ENXIO;
1787 }
1788 
nvme_ns_release(struct nvme_ns * ns)1789 static void nvme_ns_release(struct nvme_ns *ns)
1790 {
1791 
1792 	module_put(ns->ctrl->ops->module);
1793 	nvme_put_ns(ns);
1794 }
1795 
nvme_open(struct gendisk * disk,blk_mode_t mode)1796 static int nvme_open(struct gendisk *disk, blk_mode_t mode)
1797 {
1798 	return nvme_ns_open(disk->private_data);
1799 }
1800 
nvme_release(struct gendisk * disk)1801 static void nvme_release(struct gendisk *disk)
1802 {
1803 	nvme_ns_release(disk->private_data);
1804 }
1805 
nvme_getgeo(struct block_device * bdev,struct hd_geometry * geo)1806 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1807 {
1808 	/* some standard values */
1809 	geo->heads = 1 << 6;
1810 	geo->sectors = 1 << 5;
1811 	geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1812 	return 0;
1813 }
1814 
nvme_init_integrity(struct nvme_ns_head * head,struct queue_limits * lim,struct nvme_ns_info * info)1815 static bool nvme_init_integrity(struct nvme_ns_head *head,
1816 		struct queue_limits *lim, struct nvme_ns_info *info)
1817 {
1818 	struct blk_integrity *bi = &lim->integrity;
1819 
1820 	memset(bi, 0, sizeof(*bi));
1821 
1822 	if (!head->ms)
1823 		return true;
1824 
1825 	/*
1826 	 * PI can always be supported as we can ask the controller to simply
1827 	 * insert/strip it, which is not possible for other kinds of metadata.
1828 	 */
1829 	if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) ||
1830 	    !(head->features & NVME_NS_METADATA_SUPPORTED))
1831 		return nvme_ns_has_pi(head);
1832 
1833 	switch (head->pi_type) {
1834 	case NVME_NS_DPS_PI_TYPE3:
1835 		switch (head->guard_type) {
1836 		case NVME_NVM_NS_16B_GUARD:
1837 			bi->csum_type = BLK_INTEGRITY_CSUM_CRC;
1838 			bi->tag_size = sizeof(u16) + sizeof(u32);
1839 			bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1840 			break;
1841 		case NVME_NVM_NS_64B_GUARD:
1842 			bi->csum_type = BLK_INTEGRITY_CSUM_CRC64;
1843 			bi->tag_size = sizeof(u16) + 6;
1844 			bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1845 			break;
1846 		default:
1847 			break;
1848 		}
1849 		break;
1850 	case NVME_NS_DPS_PI_TYPE1:
1851 	case NVME_NS_DPS_PI_TYPE2:
1852 		switch (head->guard_type) {
1853 		case NVME_NVM_NS_16B_GUARD:
1854 			bi->csum_type = BLK_INTEGRITY_CSUM_CRC;
1855 			bi->tag_size = sizeof(u16);
1856 			bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE |
1857 				     BLK_INTEGRITY_REF_TAG;
1858 			break;
1859 		case NVME_NVM_NS_64B_GUARD:
1860 			bi->csum_type = BLK_INTEGRITY_CSUM_CRC64;
1861 			bi->tag_size = sizeof(u16);
1862 			bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE |
1863 				     BLK_INTEGRITY_REF_TAG;
1864 			break;
1865 		default:
1866 			break;
1867 		}
1868 		break;
1869 	default:
1870 		break;
1871 	}
1872 
1873 	bi->metadata_size = head->ms;
1874 	if (bi->csum_type) {
1875 		bi->pi_tuple_size = head->pi_size;
1876 		bi->pi_offset = info->pi_offset;
1877 	}
1878 	return true;
1879 }
1880 
nvme_config_discard(struct nvme_ns * ns,struct queue_limits * lim)1881 static void nvme_config_discard(struct nvme_ns *ns, struct queue_limits *lim)
1882 {
1883 	struct nvme_ctrl *ctrl = ns->ctrl;
1884 
1885 	if (ctrl->dmrsl && ctrl->dmrsl <= nvme_sect_to_lba(ns->head, UINT_MAX))
1886 		lim->max_hw_discard_sectors =
1887 			nvme_lba_to_sect(ns->head, ctrl->dmrsl);
1888 	else if (ctrl->oncs & NVME_CTRL_ONCS_DSM)
1889 		lim->max_hw_discard_sectors = UINT_MAX;
1890 	else
1891 		lim->max_hw_discard_sectors = 0;
1892 
1893 	lim->discard_granularity = lim->logical_block_size;
1894 
1895 	if (ctrl->dmrl)
1896 		lim->max_discard_segments = ctrl->dmrl;
1897 	else
1898 		lim->max_discard_segments = NVME_DSM_MAX_RANGES;
1899 }
1900 
nvme_ns_ids_equal(struct nvme_ns_ids * a,struct nvme_ns_ids * b)1901 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1902 {
1903 	return uuid_equal(&a->uuid, &b->uuid) &&
1904 		memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1905 		memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
1906 		a->csi == b->csi;
1907 }
1908 
nvme_identify_ns_nvm(struct nvme_ctrl * ctrl,unsigned int nsid,struct nvme_id_ns_nvm ** nvmp)1909 static int nvme_identify_ns_nvm(struct nvme_ctrl *ctrl, unsigned int nsid,
1910 		struct nvme_id_ns_nvm **nvmp)
1911 {
1912 	struct nvme_command c = {
1913 		.identify.opcode	= nvme_admin_identify,
1914 		.identify.nsid		= cpu_to_le32(nsid),
1915 		.identify.cns		= NVME_ID_CNS_CS_NS,
1916 		.identify.csi		= NVME_CSI_NVM,
1917 	};
1918 	struct nvme_id_ns_nvm *nvm;
1919 	int ret;
1920 
1921 	nvm = kzalloc(sizeof(*nvm), GFP_KERNEL);
1922 	if (!nvm)
1923 		return -ENOMEM;
1924 
1925 	ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, nvm, sizeof(*nvm));
1926 	if (ret)
1927 		kfree(nvm);
1928 	else
1929 		*nvmp = nvm;
1930 	return ret;
1931 }
1932 
nvme_configure_pi_elbas(struct nvme_ns_head * head,struct nvme_id_ns * id,struct nvme_id_ns_nvm * nvm)1933 static void nvme_configure_pi_elbas(struct nvme_ns_head *head,
1934 		struct nvme_id_ns *id, struct nvme_id_ns_nvm *nvm)
1935 {
1936 	u32 elbaf = le32_to_cpu(nvm->elbaf[nvme_lbaf_index(id->flbas)]);
1937 	u8 guard_type;
1938 
1939 	/* no support for storage tag formats right now */
1940 	if (nvme_elbaf_sts(elbaf))
1941 		return;
1942 
1943 	guard_type = nvme_elbaf_guard_type(elbaf);
1944 	if ((nvm->pic & NVME_ID_NS_NVM_QPIFS) &&
1945 	     guard_type == NVME_NVM_NS_QTYPE_GUARD)
1946 		guard_type = nvme_elbaf_qualified_guard_type(elbaf);
1947 
1948 	head->guard_type = guard_type;
1949 	switch (head->guard_type) {
1950 	case NVME_NVM_NS_64B_GUARD:
1951 		head->pi_size = sizeof(struct crc64_pi_tuple);
1952 		break;
1953 	case NVME_NVM_NS_16B_GUARD:
1954 		head->pi_size = sizeof(struct t10_pi_tuple);
1955 		break;
1956 	default:
1957 		break;
1958 	}
1959 }
1960 
nvme_configure_metadata(struct nvme_ctrl * ctrl,struct nvme_ns_head * head,struct nvme_id_ns * id,struct nvme_id_ns_nvm * nvm,struct nvme_ns_info * info)1961 static void nvme_configure_metadata(struct nvme_ctrl *ctrl,
1962 		struct nvme_ns_head *head, struct nvme_id_ns *id,
1963 		struct nvme_id_ns_nvm *nvm, struct nvme_ns_info *info)
1964 {
1965 	head->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1966 	head->pi_type = 0;
1967 	head->pi_size = 0;
1968 	head->ms = le16_to_cpu(id->lbaf[nvme_lbaf_index(id->flbas)].ms);
1969 	if (!head->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1970 		return;
1971 
1972 	if (nvm && (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)) {
1973 		nvme_configure_pi_elbas(head, id, nvm);
1974 	} else {
1975 		head->pi_size = sizeof(struct t10_pi_tuple);
1976 		head->guard_type = NVME_NVM_NS_16B_GUARD;
1977 	}
1978 
1979 	if (head->pi_size && head->ms >= head->pi_size)
1980 		head->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1981 	if (!(id->dps & NVME_NS_DPS_PI_FIRST)) {
1982 		if (disable_pi_offsets)
1983 			head->pi_type = 0;
1984 		else
1985 			info->pi_offset = head->ms - head->pi_size;
1986 	}
1987 
1988 	if (ctrl->ops->flags & NVME_F_FABRICS) {
1989 		/*
1990 		 * The NVMe over Fabrics specification only supports metadata as
1991 		 * part of the extended data LBA.  We rely on HCA/HBA support to
1992 		 * remap the separate metadata buffer from the block layer.
1993 		 */
1994 		if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
1995 			return;
1996 
1997 		head->features |= NVME_NS_EXT_LBAS;
1998 
1999 		/*
2000 		 * The current fabrics transport drivers support namespace
2001 		 * metadata formats only if nvme_ns_has_pi() returns true.
2002 		 * Suppress support for all other formats so the namespace will
2003 		 * have a 0 capacity and not be usable through the block stack.
2004 		 *
2005 		 * Note, this check will need to be modified if any drivers
2006 		 * gain the ability to use other metadata formats.
2007 		 */
2008 		if (ctrl->max_integrity_segments && nvme_ns_has_pi(head))
2009 			head->features |= NVME_NS_METADATA_SUPPORTED;
2010 	} else {
2011 		/*
2012 		 * For PCIe controllers, we can't easily remap the separate
2013 		 * metadata buffer from the block layer and thus require a
2014 		 * separate metadata buffer for block layer metadata/PI support.
2015 		 * We allow extended LBAs for the passthrough interface, though.
2016 		 */
2017 		if (id->flbas & NVME_NS_FLBAS_META_EXT)
2018 			head->features |= NVME_NS_EXT_LBAS;
2019 		else
2020 			head->features |= NVME_NS_METADATA_SUPPORTED;
2021 	}
2022 }
2023 
2024 
nvme_configure_atomic_write(struct nvme_ns * ns,struct nvme_id_ns * id,struct queue_limits * lim,u32 bs)2025 static u32 nvme_configure_atomic_write(struct nvme_ns *ns,
2026 		struct nvme_id_ns *id, struct queue_limits *lim, u32 bs)
2027 {
2028 	u32 atomic_bs, boundary = 0;
2029 
2030 	/*
2031 	 * We do not support an offset for the atomic boundaries.
2032 	 */
2033 	if (id->nabo)
2034 		return bs;
2035 
2036 	if ((id->nsfeat & NVME_NS_FEAT_ATOMICS) && id->nawupf) {
2037 		/*
2038 		 * Use the per-namespace atomic write unit when available.
2039 		 */
2040 		atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
2041 		if (id->nabspf)
2042 			boundary = (le16_to_cpu(id->nabspf) + 1) * bs;
2043 	} else {
2044 		/*
2045 		 * Use the controller wide atomic write unit.  This sucks
2046 		 * because the limit is defined in terms of logical blocks while
2047 		 * namespaces can have different formats, and because there is
2048 		 * no clear language in the specification prohibiting different
2049 		 * values for different controllers in the subsystem.
2050 		 */
2051 		atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
2052 	}
2053 
2054 	lim->atomic_write_hw_max = atomic_bs;
2055 	lim->atomic_write_hw_boundary = boundary;
2056 	lim->atomic_write_hw_unit_min = bs;
2057 	lim->atomic_write_hw_unit_max = rounddown_pow_of_two(atomic_bs);
2058 	lim->features |= BLK_FEAT_ATOMIC_WRITES;
2059 	return atomic_bs;
2060 }
2061 
nvme_max_drv_segments(struct nvme_ctrl * ctrl)2062 static u32 nvme_max_drv_segments(struct nvme_ctrl *ctrl)
2063 {
2064 	return ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> SECTOR_SHIFT) + 1;
2065 }
2066 
nvme_set_ctrl_limits(struct nvme_ctrl * ctrl,struct queue_limits * lim)2067 static void nvme_set_ctrl_limits(struct nvme_ctrl *ctrl,
2068 		struct queue_limits *lim)
2069 {
2070 	lim->max_hw_sectors = ctrl->max_hw_sectors;
2071 	lim->max_segments = min_t(u32, USHRT_MAX,
2072 		min_not_zero(nvme_max_drv_segments(ctrl), ctrl->max_segments));
2073 	lim->max_integrity_segments = ctrl->max_integrity_segments;
2074 	lim->virt_boundary_mask = NVME_CTRL_PAGE_SIZE - 1;
2075 	lim->max_segment_size = UINT_MAX;
2076 	lim->dma_alignment = 3;
2077 }
2078 
nvme_update_disk_info(struct nvme_ns * ns,struct nvme_id_ns * id,struct queue_limits * lim)2079 static bool nvme_update_disk_info(struct nvme_ns *ns, struct nvme_id_ns *id,
2080 		struct queue_limits *lim)
2081 {
2082 	struct nvme_ns_head *head = ns->head;
2083 	u32 bs = 1U << head->lba_shift;
2084 	u32 atomic_bs, phys_bs, io_opt = 0;
2085 	bool valid = true;
2086 
2087 	/*
2088 	 * The block layer can't support LBA sizes larger than the page size
2089 	 * or smaller than a sector size yet, so catch this early and don't
2090 	 * allow block I/O.
2091 	 */
2092 	if (blk_validate_block_size(bs)) {
2093 		bs = (1 << 9);
2094 		valid = false;
2095 	}
2096 
2097 	phys_bs = bs;
2098 	atomic_bs = nvme_configure_atomic_write(ns, id, lim, bs);
2099 
2100 	if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
2101 		/* NPWG = Namespace Preferred Write Granularity */
2102 		phys_bs = bs * (1 + le16_to_cpu(id->npwg));
2103 		/* NOWS = Namespace Optimal Write Size */
2104 		if (id->nows)
2105 			io_opt = bs * (1 + le16_to_cpu(id->nows));
2106 	}
2107 
2108 	/*
2109 	 * Linux filesystems assume writing a single physical block is
2110 	 * an atomic operation. Hence limit the physical block size to the
2111 	 * value of the Atomic Write Unit Power Fail parameter.
2112 	 */
2113 	lim->logical_block_size = bs;
2114 	lim->physical_block_size = min(phys_bs, atomic_bs);
2115 	lim->io_min = phys_bs;
2116 	lim->io_opt = io_opt;
2117 	if ((ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) &&
2118 	    (ns->ctrl->oncs & NVME_CTRL_ONCS_DSM))
2119 		lim->max_write_zeroes_sectors = UINT_MAX;
2120 	else
2121 		lim->max_write_zeroes_sectors = ns->ctrl->max_zeroes_sectors;
2122 	return valid;
2123 }
2124 
nvme_ns_is_readonly(struct nvme_ns * ns,struct nvme_ns_info * info)2125 static bool nvme_ns_is_readonly(struct nvme_ns *ns, struct nvme_ns_info *info)
2126 {
2127 	return info->is_readonly || test_bit(NVME_NS_FORCE_RO, &ns->flags);
2128 }
2129 
nvme_first_scan(struct gendisk * disk)2130 static inline bool nvme_first_scan(struct gendisk *disk)
2131 {
2132 	/* nvme_alloc_ns() scans the disk prior to adding it */
2133 	return !disk_live(disk);
2134 }
2135 
nvme_set_chunk_sectors(struct nvme_ns * ns,struct nvme_id_ns * id,struct queue_limits * lim)2136 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id,
2137 		struct queue_limits *lim)
2138 {
2139 	struct nvme_ctrl *ctrl = ns->ctrl;
2140 	u32 iob;
2141 
2142 	if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
2143 	    is_power_of_2(ctrl->max_hw_sectors))
2144 		iob = ctrl->max_hw_sectors;
2145 	else
2146 		iob = nvme_lba_to_sect(ns->head, le16_to_cpu(id->noiob));
2147 
2148 	if (!iob)
2149 		return;
2150 
2151 	if (!is_power_of_2(iob)) {
2152 		if (nvme_first_scan(ns->disk))
2153 			pr_warn("%s: ignoring unaligned IO boundary:%u\n",
2154 				ns->disk->disk_name, iob);
2155 		return;
2156 	}
2157 
2158 	if (blk_queue_is_zoned(ns->disk->queue)) {
2159 		if (nvme_first_scan(ns->disk))
2160 			pr_warn("%s: ignoring zoned namespace IO boundary\n",
2161 				ns->disk->disk_name);
2162 		return;
2163 	}
2164 
2165 	lim->chunk_sectors = iob;
2166 }
2167 
nvme_update_ns_info_generic(struct nvme_ns * ns,struct nvme_ns_info * info)2168 static int nvme_update_ns_info_generic(struct nvme_ns *ns,
2169 		struct nvme_ns_info *info)
2170 {
2171 	struct queue_limits lim;
2172 	unsigned int memflags;
2173 	int ret;
2174 
2175 	lim = queue_limits_start_update(ns->disk->queue);
2176 	nvme_set_ctrl_limits(ns->ctrl, &lim);
2177 
2178 	memflags = blk_mq_freeze_queue(ns->disk->queue);
2179 	ret = queue_limits_commit_update(ns->disk->queue, &lim);
2180 	set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
2181 	blk_mq_unfreeze_queue(ns->disk->queue, memflags);
2182 
2183 	/* Hide the block-interface for these devices */
2184 	if (!ret)
2185 		ret = -ENODEV;
2186 	return ret;
2187 }
2188 
nvme_query_fdp_granularity(struct nvme_ctrl * ctrl,struct nvme_ns_info * info,u8 fdp_idx)2189 static int nvme_query_fdp_granularity(struct nvme_ctrl *ctrl,
2190 				      struct nvme_ns_info *info, u8 fdp_idx)
2191 {
2192 	struct nvme_fdp_config_log hdr, *h;
2193 	struct nvme_fdp_config_desc *desc;
2194 	size_t size = sizeof(hdr);
2195 	void *log, *end;
2196 	int i, n, ret;
2197 
2198 	ret = nvme_get_log_lsi(ctrl, 0, NVME_LOG_FDP_CONFIGS, 0,
2199 			       NVME_CSI_NVM, &hdr, size, 0, info->endgid);
2200 	if (ret) {
2201 		dev_warn(ctrl->device,
2202 			 "FDP configs log header status:0x%x endgid:%d\n", ret,
2203 			 info->endgid);
2204 		return ret;
2205 	}
2206 
2207 	size = le32_to_cpu(hdr.sze);
2208 	if (size > PAGE_SIZE * MAX_ORDER_NR_PAGES) {
2209 		dev_warn(ctrl->device, "FDP config size too large:%zu\n",
2210 			 size);
2211 		return 0;
2212 	}
2213 
2214 	h = kvmalloc(size, GFP_KERNEL);
2215 	if (!h)
2216 		return -ENOMEM;
2217 
2218 	ret = nvme_get_log_lsi(ctrl, 0, NVME_LOG_FDP_CONFIGS, 0,
2219 			       NVME_CSI_NVM, h, size, 0, info->endgid);
2220 	if (ret) {
2221 		dev_warn(ctrl->device,
2222 			 "FDP configs log status:0x%x endgid:%d\n", ret,
2223 			 info->endgid);
2224 		goto out;
2225 	}
2226 
2227 	n = le16_to_cpu(h->numfdpc) + 1;
2228 	if (fdp_idx > n) {
2229 		dev_warn(ctrl->device, "FDP index:%d out of range:%d\n",
2230 			 fdp_idx, n);
2231 		/* Proceed without registering FDP streams */
2232 		ret = 0;
2233 		goto out;
2234 	}
2235 
2236 	log = h + 1;
2237 	desc = log;
2238 	end = log + size - sizeof(*h);
2239 	for (i = 0; i < fdp_idx; i++) {
2240 		log += le16_to_cpu(desc->dsze);
2241 		desc = log;
2242 		if (log >= end) {
2243 			dev_warn(ctrl->device,
2244 				 "FDP invalid config descriptor list\n");
2245 			ret = 0;
2246 			goto out;
2247 		}
2248 	}
2249 
2250 	if (le32_to_cpu(desc->nrg) > 1) {
2251 		dev_warn(ctrl->device, "FDP NRG > 1 not supported\n");
2252 		ret = 0;
2253 		goto out;
2254 	}
2255 
2256 	info->runs = le64_to_cpu(desc->runs);
2257 out:
2258 	kvfree(h);
2259 	return ret;
2260 }
2261 
nvme_query_fdp_info(struct nvme_ns * ns,struct nvme_ns_info * info)2262 static int nvme_query_fdp_info(struct nvme_ns *ns, struct nvme_ns_info *info)
2263 {
2264 	struct nvme_ns_head *head = ns->head;
2265 	struct nvme_ctrl *ctrl = ns->ctrl;
2266 	struct nvme_fdp_ruh_status *ruhs;
2267 	struct nvme_fdp_config fdp;
2268 	struct nvme_command c = {};
2269 	size_t size;
2270 	int i, ret;
2271 
2272 	/*
2273 	 * The FDP configuration is static for the lifetime of the namespace,
2274 	 * so return immediately if we've already registered this namespace's
2275 	 * streams.
2276 	 */
2277 	if (head->nr_plids)
2278 		return 0;
2279 
2280 	ret = nvme_get_features(ctrl, NVME_FEAT_FDP, info->endgid, NULL, 0,
2281 				&fdp);
2282 	if (ret) {
2283 		dev_warn(ctrl->device, "FDP get feature status:0x%x\n", ret);
2284 		return ret;
2285 	}
2286 
2287 	if (!(fdp.flags & FDPCFG_FDPE))
2288 		return 0;
2289 
2290 	ret = nvme_query_fdp_granularity(ctrl, info, fdp.fdpcidx);
2291 	if (!info->runs)
2292 		return ret;
2293 
2294 	size = struct_size(ruhs, ruhsd, S8_MAX - 1);
2295 	ruhs = kzalloc(size, GFP_KERNEL);
2296 	if (!ruhs)
2297 		return -ENOMEM;
2298 
2299 	c.imr.opcode = nvme_cmd_io_mgmt_recv;
2300 	c.imr.nsid = cpu_to_le32(head->ns_id);
2301 	c.imr.mo = NVME_IO_MGMT_RECV_MO_RUHS;
2302 	c.imr.numd = cpu_to_le32(nvme_bytes_to_numd(size));
2303 	ret = nvme_submit_sync_cmd(ns->queue, &c, ruhs, size);
2304 	if (ret) {
2305 		dev_warn(ctrl->device, "FDP io-mgmt status:0x%x\n", ret);
2306 		goto free;
2307 	}
2308 
2309 	head->nr_plids = le16_to_cpu(ruhs->nruhsd);
2310 	if (!head->nr_plids)
2311 		goto free;
2312 
2313 	head->plids = kcalloc(head->nr_plids, sizeof(*head->plids),
2314 			      GFP_KERNEL);
2315 	if (!head->plids) {
2316 		dev_warn(ctrl->device,
2317 			 "failed to allocate %u FDP placement IDs\n",
2318 			 head->nr_plids);
2319 		head->nr_plids = 0;
2320 		ret = -ENOMEM;
2321 		goto free;
2322 	}
2323 
2324 	for (i = 0; i < head->nr_plids; i++)
2325 		head->plids[i] = le16_to_cpu(ruhs->ruhsd[i].pid);
2326 free:
2327 	kfree(ruhs);
2328 	return ret;
2329 }
2330 
nvme_update_ns_info_block(struct nvme_ns * ns,struct nvme_ns_info * info)2331 static int nvme_update_ns_info_block(struct nvme_ns *ns,
2332 		struct nvme_ns_info *info)
2333 {
2334 	struct queue_limits lim;
2335 	struct nvme_id_ns_nvm *nvm = NULL;
2336 	struct nvme_zone_info zi = {};
2337 	struct nvme_id_ns *id;
2338 	unsigned int memflags;
2339 	sector_t capacity;
2340 	unsigned lbaf;
2341 	int ret;
2342 
2343 	ret = nvme_identify_ns(ns->ctrl, info->nsid, &id);
2344 	if (ret)
2345 		return ret;
2346 
2347 	if (id->ncap == 0) {
2348 		/* namespace not allocated or attached */
2349 		info->is_removed = true;
2350 		ret = -ENXIO;
2351 		goto out;
2352 	}
2353 	lbaf = nvme_lbaf_index(id->flbas);
2354 
2355 	if (ns->ctrl->ctratt & NVME_CTRL_ATTR_ELBAS) {
2356 		ret = nvme_identify_ns_nvm(ns->ctrl, info->nsid, &nvm);
2357 		if (ret < 0)
2358 			goto out;
2359 	}
2360 
2361 	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
2362 	    ns->head->ids.csi == NVME_CSI_ZNS) {
2363 		ret = nvme_query_zone_info(ns, lbaf, &zi);
2364 		if (ret < 0)
2365 			goto out;
2366 	}
2367 
2368 	if (ns->ctrl->ctratt & NVME_CTRL_ATTR_FDPS) {
2369 		ret = nvme_query_fdp_info(ns, info);
2370 		if (ret < 0)
2371 			goto out;
2372 	}
2373 
2374 	lim = queue_limits_start_update(ns->disk->queue);
2375 
2376 	memflags = blk_mq_freeze_queue(ns->disk->queue);
2377 	ns->head->lba_shift = id->lbaf[lbaf].ds;
2378 	ns->head->nuse = le64_to_cpu(id->nuse);
2379 	capacity = nvme_lba_to_sect(ns->head, le64_to_cpu(id->nsze));
2380 	nvme_set_ctrl_limits(ns->ctrl, &lim);
2381 	nvme_configure_metadata(ns->ctrl, ns->head, id, nvm, info);
2382 	nvme_set_chunk_sectors(ns, id, &lim);
2383 	if (!nvme_update_disk_info(ns, id, &lim))
2384 		capacity = 0;
2385 
2386 	nvme_config_discard(ns, &lim);
2387 	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
2388 	    ns->head->ids.csi == NVME_CSI_ZNS)
2389 		nvme_update_zone_info(ns, &lim, &zi);
2390 
2391 	if ((ns->ctrl->vwc & NVME_CTRL_VWC_PRESENT) && !info->no_vwc)
2392 		lim.features |= BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA;
2393 	else
2394 		lim.features &= ~(BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA);
2395 
2396 	if (info->is_rotational)
2397 		lim.features |= BLK_FEAT_ROTATIONAL;
2398 
2399 	/*
2400 	 * Register a metadata profile for PI, or the plain non-integrity NVMe
2401 	 * metadata masquerading as Type 0 if supported, otherwise reject block
2402 	 * I/O to namespaces with metadata except when the namespace supports
2403 	 * PI, as it can strip/insert in that case.
2404 	 */
2405 	if (!nvme_init_integrity(ns->head, &lim, info))
2406 		capacity = 0;
2407 
2408 	lim.max_write_streams = ns->head->nr_plids;
2409 	if (lim.max_write_streams)
2410 		lim.write_stream_granularity = min(info->runs, U32_MAX);
2411 	else
2412 		lim.write_stream_granularity = 0;
2413 
2414 	/*
2415 	 * Only set the DEAC bit if the device guarantees that reads from
2416 	 * deallocated data return zeroes.  While the DEAC bit does not
2417 	 * require that, it must be a no-op if reads from deallocated data
2418 	 * do not return zeroes.
2419 	 */
2420 	if ((id->dlfeat & 0x7) == 0x1 && (id->dlfeat & (1 << 3))) {
2421 		ns->head->features |= NVME_NS_DEAC;
2422 		lim.max_hw_wzeroes_unmap_sectors = lim.max_write_zeroes_sectors;
2423 	}
2424 
2425 	ret = queue_limits_commit_update(ns->disk->queue, &lim);
2426 	if (ret) {
2427 		blk_mq_unfreeze_queue(ns->disk->queue, memflags);
2428 		goto out;
2429 	}
2430 
2431 	set_capacity_and_notify(ns->disk, capacity);
2432 	set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
2433 	set_bit(NVME_NS_READY, &ns->flags);
2434 	blk_mq_unfreeze_queue(ns->disk->queue, memflags);
2435 
2436 	if (blk_queue_is_zoned(ns->queue)) {
2437 		ret = blk_revalidate_disk_zones(ns->disk);
2438 		if (ret && !nvme_first_scan(ns->disk))
2439 			goto out;
2440 	}
2441 
2442 	ret = 0;
2443 out:
2444 	kfree(nvm);
2445 	kfree(id);
2446 	return ret;
2447 }
2448 
nvme_update_ns_info(struct nvme_ns * ns,struct nvme_ns_info * info)2449 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_ns_info *info)
2450 {
2451 	bool unsupported = false;
2452 	int ret;
2453 
2454 	switch (info->ids.csi) {
2455 	case NVME_CSI_ZNS:
2456 		if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
2457 			dev_info(ns->ctrl->device,
2458 	"block device for nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
2459 				info->nsid);
2460 			ret = nvme_update_ns_info_generic(ns, info);
2461 			break;
2462 		}
2463 		ret = nvme_update_ns_info_block(ns, info);
2464 		break;
2465 	case NVME_CSI_NVM:
2466 		ret = nvme_update_ns_info_block(ns, info);
2467 		break;
2468 	default:
2469 		dev_info(ns->ctrl->device,
2470 			"block device for nsid %u not supported (csi %u)\n",
2471 			info->nsid, info->ids.csi);
2472 		ret = nvme_update_ns_info_generic(ns, info);
2473 		break;
2474 	}
2475 
2476 	/*
2477 	 * If probing fails due an unsupported feature, hide the block device,
2478 	 * but still allow other access.
2479 	 */
2480 	if (ret == -ENODEV) {
2481 		ns->disk->flags |= GENHD_FL_HIDDEN;
2482 		set_bit(NVME_NS_READY, &ns->flags);
2483 		unsupported = true;
2484 		ret = 0;
2485 	}
2486 
2487 	if (!ret && nvme_ns_head_multipath(ns->head)) {
2488 		struct queue_limits *ns_lim = &ns->disk->queue->limits;
2489 		struct queue_limits lim;
2490 		unsigned int memflags;
2491 
2492 		lim = queue_limits_start_update(ns->head->disk->queue);
2493 		memflags = blk_mq_freeze_queue(ns->head->disk->queue);
2494 		/*
2495 		 * queue_limits mixes values that are the hardware limitations
2496 		 * for bio splitting with what is the device configuration.
2497 		 *
2498 		 * For NVMe the device configuration can change after e.g. a
2499 		 * Format command, and we really want to pick up the new format
2500 		 * value here.  But we must still stack the queue limits to the
2501 		 * least common denominator for multipathing to split the bios
2502 		 * properly.
2503 		 *
2504 		 * To work around this, we explicitly set the device
2505 		 * configuration to those that we just queried, but only stack
2506 		 * the splitting limits in to make sure we still obey possibly
2507 		 * lower limitations of other controllers.
2508 		 */
2509 		lim.logical_block_size = ns_lim->logical_block_size;
2510 		lim.physical_block_size = ns_lim->physical_block_size;
2511 		lim.io_min = ns_lim->io_min;
2512 		lim.io_opt = ns_lim->io_opt;
2513 		queue_limits_stack_bdev(&lim, ns->disk->part0, 0,
2514 					ns->head->disk->disk_name);
2515 		if (unsupported)
2516 			ns->head->disk->flags |= GENHD_FL_HIDDEN;
2517 		else
2518 			nvme_init_integrity(ns->head, &lim, info);
2519 		lim.max_write_streams = ns_lim->max_write_streams;
2520 		lim.write_stream_granularity = ns_lim->write_stream_granularity;
2521 		ret = queue_limits_commit_update(ns->head->disk->queue, &lim);
2522 
2523 		set_capacity_and_notify(ns->head->disk, get_capacity(ns->disk));
2524 		set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info));
2525 		nvme_mpath_revalidate_paths(ns);
2526 
2527 		blk_mq_unfreeze_queue(ns->head->disk->queue, memflags);
2528 	}
2529 
2530 	return ret;
2531 }
2532 
nvme_ns_get_unique_id(struct nvme_ns * ns,u8 id[16],enum blk_unique_id type)2533 int nvme_ns_get_unique_id(struct nvme_ns *ns, u8 id[16],
2534 		enum blk_unique_id type)
2535 {
2536 	struct nvme_ns_ids *ids = &ns->head->ids;
2537 
2538 	if (type != BLK_UID_EUI64)
2539 		return -EINVAL;
2540 
2541 	if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) {
2542 		memcpy(id, &ids->nguid, sizeof(ids->nguid));
2543 		return sizeof(ids->nguid);
2544 	}
2545 	if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) {
2546 		memcpy(id, &ids->eui64, sizeof(ids->eui64));
2547 		return sizeof(ids->eui64);
2548 	}
2549 
2550 	return -EINVAL;
2551 }
2552 
nvme_get_unique_id(struct gendisk * disk,u8 id[16],enum blk_unique_id type)2553 static int nvme_get_unique_id(struct gendisk *disk, u8 id[16],
2554 		enum blk_unique_id type)
2555 {
2556 	return nvme_ns_get_unique_id(disk->private_data, id, type);
2557 }
2558 
2559 #ifdef CONFIG_BLK_SED_OPAL
nvme_sec_submit(void * data,u16 spsp,u8 secp,void * buffer,size_t len,bool send)2560 static int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2561 		bool send)
2562 {
2563 	struct nvme_ctrl *ctrl = data;
2564 	struct nvme_command cmd = { };
2565 
2566 	if (send)
2567 		cmd.common.opcode = nvme_admin_security_send;
2568 	else
2569 		cmd.common.opcode = nvme_admin_security_recv;
2570 	cmd.common.nsid = 0;
2571 	cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2572 	cmd.common.cdw11 = cpu_to_le32(len);
2573 
2574 	return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
2575 			NVME_QID_ANY, NVME_SUBMIT_AT_HEAD);
2576 }
2577 
nvme_configure_opal(struct nvme_ctrl * ctrl,bool was_suspended)2578 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended)
2579 {
2580 	if (ctrl->oacs & NVME_CTRL_OACS_SEC_SUPP) {
2581 		if (!ctrl->opal_dev)
2582 			ctrl->opal_dev = init_opal_dev(ctrl, &nvme_sec_submit);
2583 		else if (was_suspended)
2584 			opal_unlock_from_suspend(ctrl->opal_dev);
2585 	} else {
2586 		free_opal_dev(ctrl->opal_dev);
2587 		ctrl->opal_dev = NULL;
2588 	}
2589 }
2590 #else
nvme_configure_opal(struct nvme_ctrl * ctrl,bool was_suspended)2591 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended)
2592 {
2593 }
2594 #endif /* CONFIG_BLK_SED_OPAL */
2595 
2596 #ifdef CONFIG_BLK_DEV_ZONED
nvme_report_zones(struct gendisk * disk,sector_t sector,unsigned int nr_zones,report_zones_cb cb,void * data)2597 static int nvme_report_zones(struct gendisk *disk, sector_t sector,
2598 		unsigned int nr_zones, report_zones_cb cb, void *data)
2599 {
2600 	return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb,
2601 			data);
2602 }
2603 #else
2604 #define nvme_report_zones	NULL
2605 #endif /* CONFIG_BLK_DEV_ZONED */
2606 
2607 const struct block_device_operations nvme_bdev_ops = {
2608 	.owner		= THIS_MODULE,
2609 	.ioctl		= nvme_ioctl,
2610 	.compat_ioctl	= blkdev_compat_ptr_ioctl,
2611 	.open		= nvme_open,
2612 	.release	= nvme_release,
2613 	.getgeo		= nvme_getgeo,
2614 	.get_unique_id	= nvme_get_unique_id,
2615 	.report_zones	= nvme_report_zones,
2616 	.pr_ops		= &nvme_pr_ops,
2617 };
2618 
nvme_wait_ready(struct nvme_ctrl * ctrl,u32 mask,u32 val,u32 timeout,const char * op)2619 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u32 mask, u32 val,
2620 		u32 timeout, const char *op)
2621 {
2622 	unsigned long timeout_jiffies = jiffies + timeout * HZ;
2623 	u32 csts;
2624 	int ret;
2625 
2626 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2627 		if (csts == ~0)
2628 			return -ENODEV;
2629 		if ((csts & mask) == val)
2630 			break;
2631 
2632 		usleep_range(1000, 2000);
2633 		if (fatal_signal_pending(current))
2634 			return -EINTR;
2635 		if (time_after(jiffies, timeout_jiffies)) {
2636 			dev_err(ctrl->device,
2637 				"Device not ready; aborting %s, CSTS=0x%x\n",
2638 				op, csts);
2639 			return -ENODEV;
2640 		}
2641 	}
2642 
2643 	return ret;
2644 }
2645 
nvme_disable_ctrl(struct nvme_ctrl * ctrl,bool shutdown)2646 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2647 {
2648 	int ret;
2649 
2650 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2651 	if (shutdown)
2652 		ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2653 	else
2654 		ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2655 
2656 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2657 	if (ret)
2658 		return ret;
2659 
2660 	if (shutdown) {
2661 		return nvme_wait_ready(ctrl, NVME_CSTS_SHST_MASK,
2662 				       NVME_CSTS_SHST_CMPLT,
2663 				       ctrl->shutdown_timeout, "shutdown");
2664 	}
2665 	if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2666 		msleep(NVME_QUIRK_DELAY_AMOUNT);
2667 	return nvme_wait_ready(ctrl, NVME_CSTS_RDY, 0,
2668 			       (NVME_CAP_TIMEOUT(ctrl->cap) + 1) / 2, "reset");
2669 }
2670 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2671 
nvme_enable_ctrl(struct nvme_ctrl * ctrl)2672 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2673 {
2674 	unsigned dev_page_min;
2675 	u32 timeout;
2676 	int ret;
2677 
2678 	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2679 	if (ret) {
2680 		dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2681 		return ret;
2682 	}
2683 	dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2684 
2685 	if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
2686 		dev_err(ctrl->device,
2687 			"Minimum device page size %u too large for host (%u)\n",
2688 			1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
2689 		return -ENODEV;
2690 	}
2691 
2692 	if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2693 		ctrl->ctrl_config = NVME_CC_CSS_CSI;
2694 	else
2695 		ctrl->ctrl_config = NVME_CC_CSS_NVM;
2696 
2697 	/*
2698 	 * Setting CRIME results in CSTS.RDY before the media is ready. This
2699 	 * makes it possible for media related commands to return the error
2700 	 * NVME_SC_ADMIN_COMMAND_MEDIA_NOT_READY. Until the driver is
2701 	 * restructured to handle retries, disable CC.CRIME.
2702 	 */
2703 	ctrl->ctrl_config &= ~NVME_CC_CRIME;
2704 
2705 	ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
2706 	ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2707 	ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2708 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2709 	if (ret)
2710 		return ret;
2711 
2712 	/* CAP value may change after initial CC write */
2713 	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2714 	if (ret)
2715 		return ret;
2716 
2717 	timeout = NVME_CAP_TIMEOUT(ctrl->cap);
2718 	if (ctrl->cap & NVME_CAP_CRMS_CRWMS) {
2719 		u32 crto, ready_timeout;
2720 
2721 		ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CRTO, &crto);
2722 		if (ret) {
2723 			dev_err(ctrl->device, "Reading CRTO failed (%d)\n",
2724 				ret);
2725 			return ret;
2726 		}
2727 
2728 		/*
2729 		 * CRTO should always be greater or equal to CAP.TO, but some
2730 		 * devices are known to get this wrong. Use the larger of the
2731 		 * two values.
2732 		 */
2733 		ready_timeout = NVME_CRTO_CRWMT(crto);
2734 
2735 		if (ready_timeout < timeout)
2736 			dev_warn_once(ctrl->device, "bad crto:%x cap:%llx\n",
2737 				      crto, ctrl->cap);
2738 		else
2739 			timeout = ready_timeout;
2740 	}
2741 
2742 	ctrl->ctrl_config |= NVME_CC_ENABLE;
2743 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2744 	if (ret)
2745 		return ret;
2746 	return nvme_wait_ready(ctrl, NVME_CSTS_RDY, NVME_CSTS_RDY,
2747 			       (timeout + 1) / 2, "initialisation");
2748 }
2749 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2750 
nvme_configure_timestamp(struct nvme_ctrl * ctrl)2751 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2752 {
2753 	__le64 ts;
2754 	int ret;
2755 
2756 	if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2757 		return 0;
2758 
2759 	ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2760 	ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2761 			NULL);
2762 	if (ret)
2763 		dev_warn_once(ctrl->device,
2764 			"could not set timestamp (%d)\n", ret);
2765 	return ret;
2766 }
2767 
nvme_configure_host_options(struct nvme_ctrl * ctrl)2768 static int nvme_configure_host_options(struct nvme_ctrl *ctrl)
2769 {
2770 	struct nvme_feat_host_behavior *host;
2771 	u8 acre = 0, lbafee = 0;
2772 	int ret;
2773 
2774 	/* Don't bother enabling the feature if retry delay is not reported */
2775 	if (ctrl->crdt[0])
2776 		acre = NVME_ENABLE_ACRE;
2777 	if (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)
2778 		lbafee = NVME_ENABLE_LBAFEE;
2779 
2780 	if (!acre && !lbafee)
2781 		return 0;
2782 
2783 	host = kzalloc(sizeof(*host), GFP_KERNEL);
2784 	if (!host)
2785 		return 0;
2786 
2787 	host->acre = acre;
2788 	host->lbafee = lbafee;
2789 	ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2790 				host, sizeof(*host), NULL);
2791 	kfree(host);
2792 	return ret;
2793 }
2794 
2795 /*
2796  * The function checks whether the given total (exlat + enlat) latency of
2797  * a power state allows the latter to be used as an APST transition target.
2798  * It does so by comparing the latency to the primary and secondary latency
2799  * tolerances defined by module params. If there's a match, the corresponding
2800  * timeout value is returned and the matching tolerance index (1 or 2) is
2801  * reported.
2802  */
nvme_apst_get_transition_time(u64 total_latency,u64 * transition_time,unsigned * last_index)2803 static bool nvme_apst_get_transition_time(u64 total_latency,
2804 		u64 *transition_time, unsigned *last_index)
2805 {
2806 	if (total_latency <= apst_primary_latency_tol_us) {
2807 		if (*last_index == 1)
2808 			return false;
2809 		*last_index = 1;
2810 		*transition_time = apst_primary_timeout_ms;
2811 		return true;
2812 	}
2813 	if (apst_secondary_timeout_ms &&
2814 		total_latency <= apst_secondary_latency_tol_us) {
2815 		if (*last_index <= 2)
2816 			return false;
2817 		*last_index = 2;
2818 		*transition_time = apst_secondary_timeout_ms;
2819 		return true;
2820 	}
2821 	return false;
2822 }
2823 
2824 /*
2825  * APST (Autonomous Power State Transition) lets us program a table of power
2826  * state transitions that the controller will perform automatically.
2827  *
2828  * Depending on module params, one of the two supported techniques will be used:
2829  *
2830  * - If the parameters provide explicit timeouts and tolerances, they will be
2831  *   used to build a table with up to 2 non-operational states to transition to.
2832  *   The default parameter values were selected based on the values used by
2833  *   Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic
2834  *   regeneration of the APST table in the event of switching between external
2835  *   and battery power, the timeouts and tolerances reflect a compromise
2836  *   between values used by Microsoft for AC and battery scenarios.
2837  * - If not, we'll configure the table with a simple heuristic: we are willing
2838  *   to spend at most 2% of the time transitioning between power states.
2839  *   Therefore, when running in any given state, we will enter the next
2840  *   lower-power non-operational state after waiting 50 * (enlat + exlat)
2841  *   microseconds, as long as that state's exit latency is under the requested
2842  *   maximum latency.
2843  *
2844  * We will not autonomously enter any non-operational state for which the total
2845  * latency exceeds ps_max_latency_us.
2846  *
2847  * Users can set ps_max_latency_us to zero to turn off APST.
2848  */
nvme_configure_apst(struct nvme_ctrl * ctrl)2849 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2850 {
2851 	struct nvme_feat_auto_pst *table;
2852 	unsigned apste = 0;
2853 	u64 max_lat_us = 0;
2854 	__le64 target = 0;
2855 	int max_ps = -1;
2856 	int state;
2857 	int ret;
2858 	unsigned last_lt_index = UINT_MAX;
2859 
2860 	/*
2861 	 * If APST isn't supported or if we haven't been initialized yet,
2862 	 * then don't do anything.
2863 	 */
2864 	if (!ctrl->apsta)
2865 		return 0;
2866 
2867 	if (ctrl->npss > 31) {
2868 		dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2869 		return 0;
2870 	}
2871 
2872 	table = kzalloc(sizeof(*table), GFP_KERNEL);
2873 	if (!table)
2874 		return 0;
2875 
2876 	if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2877 		/* Turn off APST. */
2878 		dev_dbg(ctrl->device, "APST disabled\n");
2879 		goto done;
2880 	}
2881 
2882 	/*
2883 	 * Walk through all states from lowest- to highest-power.
2884 	 * According to the spec, lower-numbered states use more power.  NPSS,
2885 	 * despite the name, is the index of the lowest-power state, not the
2886 	 * number of states.
2887 	 */
2888 	for (state = (int)ctrl->npss; state >= 0; state--) {
2889 		u64 total_latency_us, exit_latency_us, transition_ms;
2890 
2891 		if (target)
2892 			table->entries[state] = target;
2893 
2894 		/*
2895 		 * Don't allow transitions to the deepest state if it's quirked
2896 		 * off.
2897 		 */
2898 		if (state == ctrl->npss &&
2899 		    (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2900 			continue;
2901 
2902 		/*
2903 		 * Is this state a useful non-operational state for higher-power
2904 		 * states to autonomously transition to?
2905 		 */
2906 		if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE))
2907 			continue;
2908 
2909 		exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2910 		if (exit_latency_us > ctrl->ps_max_latency_us)
2911 			continue;
2912 
2913 		total_latency_us = exit_latency_us +
2914 			le32_to_cpu(ctrl->psd[state].entry_lat);
2915 
2916 		/*
2917 		 * This state is good. It can be used as the APST idle target
2918 		 * for higher power states.
2919 		 */
2920 		if (apst_primary_timeout_ms && apst_primary_latency_tol_us) {
2921 			if (!nvme_apst_get_transition_time(total_latency_us,
2922 					&transition_ms, &last_lt_index))
2923 				continue;
2924 		} else {
2925 			transition_ms = total_latency_us + 19;
2926 			do_div(transition_ms, 20);
2927 			if (transition_ms > (1 << 24) - 1)
2928 				transition_ms = (1 << 24) - 1;
2929 		}
2930 
2931 		target = cpu_to_le64((state << 3) | (transition_ms << 8));
2932 		if (max_ps == -1)
2933 			max_ps = state;
2934 		if (total_latency_us > max_lat_us)
2935 			max_lat_us = total_latency_us;
2936 	}
2937 
2938 	if (max_ps == -1)
2939 		dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2940 	else
2941 		dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2942 			max_ps, max_lat_us, (int)sizeof(*table), table);
2943 	apste = 1;
2944 
2945 done:
2946 	ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2947 				table, sizeof(*table), NULL);
2948 	if (ret)
2949 		dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2950 	kfree(table);
2951 	return ret;
2952 }
2953 
nvme_set_latency_tolerance(struct device * dev,s32 val)2954 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2955 {
2956 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2957 	u64 latency;
2958 
2959 	switch (val) {
2960 	case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2961 	case PM_QOS_LATENCY_ANY:
2962 		latency = U64_MAX;
2963 		break;
2964 
2965 	default:
2966 		latency = val;
2967 	}
2968 
2969 	if (ctrl->ps_max_latency_us != latency) {
2970 		ctrl->ps_max_latency_us = latency;
2971 		if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE)
2972 			nvme_configure_apst(ctrl);
2973 	}
2974 }
2975 
2976 struct nvme_core_quirk_entry {
2977 	/*
2978 	 * NVMe model and firmware strings are padded with spaces.  For
2979 	 * simplicity, strings in the quirk table are padded with NULLs
2980 	 * instead.
2981 	 */
2982 	u16 vid;
2983 	const char *mn;
2984 	const char *fr;
2985 	unsigned long quirks;
2986 };
2987 
2988 static const struct nvme_core_quirk_entry core_quirks[] = {
2989 	{
2990 		/*
2991 		 * This Toshiba device seems to die using any APST states.  See:
2992 		 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2993 		 */
2994 		.vid = 0x1179,
2995 		.mn = "THNSF5256GPUK TOSHIBA",
2996 		.quirks = NVME_QUIRK_NO_APST,
2997 	},
2998 	{
2999 		/*
3000 		 * This LiteON CL1-3D*-Q11 firmware version has a race
3001 		 * condition associated with actions related to suspend to idle
3002 		 * LiteON has resolved the problem in future firmware
3003 		 */
3004 		.vid = 0x14a4,
3005 		.fr = "22301111",
3006 		.quirks = NVME_QUIRK_SIMPLE_SUSPEND,
3007 	},
3008 	{
3009 		/*
3010 		 * This Kioxia CD6-V Series / HPE PE8030 device times out and
3011 		 * aborts I/O during any load, but more easily reproducible
3012 		 * with discards (fstrim).
3013 		 *
3014 		 * The device is left in a state where it is also not possible
3015 		 * to use "nvme set-feature" to disable APST, but booting with
3016 		 * nvme_core.default_ps_max_latency=0 works.
3017 		 */
3018 		.vid = 0x1e0f,
3019 		.mn = "KCD6XVUL6T40",
3020 		.quirks = NVME_QUIRK_NO_APST,
3021 	},
3022 	{
3023 		/*
3024 		 * The external Samsung X5 SSD fails initialization without a
3025 		 * delay before checking if it is ready and has a whole set of
3026 		 * other problems.  To make this even more interesting, it
3027 		 * shares the PCI ID with internal Samsung 970 Evo Plus that
3028 		 * does not need or want these quirks.
3029 		 */
3030 		.vid = 0x144d,
3031 		.mn = "Samsung Portable SSD X5",
3032 		.quirks = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3033 			  NVME_QUIRK_NO_DEEPEST_PS |
3034 			  NVME_QUIRK_IGNORE_DEV_SUBNQN,
3035 	}
3036 };
3037 
3038 /* match is null-terminated but idstr is space-padded. */
string_matches(const char * idstr,const char * match,size_t len)3039 static bool string_matches(const char *idstr, const char *match, size_t len)
3040 {
3041 	size_t matchlen;
3042 
3043 	if (!match)
3044 		return true;
3045 
3046 	matchlen = strlen(match);
3047 	WARN_ON_ONCE(matchlen > len);
3048 
3049 	if (memcmp(idstr, match, matchlen))
3050 		return false;
3051 
3052 	for (; matchlen < len; matchlen++)
3053 		if (idstr[matchlen] != ' ')
3054 			return false;
3055 
3056 	return true;
3057 }
3058 
quirk_matches(const struct nvme_id_ctrl * id,const struct nvme_core_quirk_entry * q)3059 static bool quirk_matches(const struct nvme_id_ctrl *id,
3060 			  const struct nvme_core_quirk_entry *q)
3061 {
3062 	return q->vid == le16_to_cpu(id->vid) &&
3063 		string_matches(id->mn, q->mn, sizeof(id->mn)) &&
3064 		string_matches(id->fr, q->fr, sizeof(id->fr));
3065 }
3066 
nvme_init_subnqn(struct nvme_subsystem * subsys,struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)3067 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
3068 		struct nvme_id_ctrl *id)
3069 {
3070 	size_t nqnlen;
3071 	int off;
3072 
3073 	if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
3074 		nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
3075 		if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
3076 			strscpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
3077 			return;
3078 		}
3079 
3080 		if (ctrl->vs >= NVME_VS(1, 2, 1))
3081 			dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
3082 	}
3083 
3084 	/*
3085 	 * Generate a "fake" NQN similar to the one in Section 4.5 of the NVMe
3086 	 * Base Specification 2.0.  It is slightly different from the format
3087 	 * specified there due to historic reasons, and we can't change it now.
3088 	 */
3089 	off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
3090 			"nqn.2014.08.org.nvmexpress:%04x%04x",
3091 			le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
3092 	memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
3093 	off += sizeof(id->sn);
3094 	memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
3095 	off += sizeof(id->mn);
3096 	memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
3097 }
3098 
nvme_release_subsystem(struct device * dev)3099 static void nvme_release_subsystem(struct device *dev)
3100 {
3101 	struct nvme_subsystem *subsys =
3102 		container_of(dev, struct nvme_subsystem, dev);
3103 
3104 	if (subsys->instance >= 0)
3105 		ida_free(&nvme_instance_ida, subsys->instance);
3106 	kfree(subsys);
3107 }
3108 
nvme_destroy_subsystem(struct kref * ref)3109 static void nvme_destroy_subsystem(struct kref *ref)
3110 {
3111 	struct nvme_subsystem *subsys =
3112 			container_of(ref, struct nvme_subsystem, ref);
3113 
3114 	mutex_lock(&nvme_subsystems_lock);
3115 	list_del(&subsys->entry);
3116 	mutex_unlock(&nvme_subsystems_lock);
3117 
3118 	ida_destroy(&subsys->ns_ida);
3119 	device_del(&subsys->dev);
3120 	put_device(&subsys->dev);
3121 }
3122 
nvme_put_subsystem(struct nvme_subsystem * subsys)3123 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
3124 {
3125 	kref_put(&subsys->ref, nvme_destroy_subsystem);
3126 }
3127 
__nvme_find_get_subsystem(const char * subsysnqn)3128 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
3129 {
3130 	struct nvme_subsystem *subsys;
3131 
3132 	lockdep_assert_held(&nvme_subsystems_lock);
3133 
3134 	/*
3135 	 * Fail matches for discovery subsystems. This results
3136 	 * in each discovery controller bound to a unique subsystem.
3137 	 * This avoids issues with validating controller values
3138 	 * that can only be true when there is a single unique subsystem.
3139 	 * There may be multiple and completely independent entities
3140 	 * that provide discovery controllers.
3141 	 */
3142 	if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
3143 		return NULL;
3144 
3145 	list_for_each_entry(subsys, &nvme_subsystems, entry) {
3146 		if (strcmp(subsys->subnqn, subsysnqn))
3147 			continue;
3148 		if (!kref_get_unless_zero(&subsys->ref))
3149 			continue;
3150 		return subsys;
3151 	}
3152 
3153 	return NULL;
3154 }
3155 
nvme_discovery_ctrl(struct nvme_ctrl * ctrl)3156 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl)
3157 {
3158 	return ctrl->opts && ctrl->opts->discovery_nqn;
3159 }
3160 
nvme_validate_cntlid(struct nvme_subsystem * subsys,struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)3161 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
3162 		struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
3163 {
3164 	struct nvme_ctrl *tmp;
3165 
3166 	lockdep_assert_held(&nvme_subsystems_lock);
3167 
3168 	list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
3169 		if (nvme_state_terminal(tmp))
3170 			continue;
3171 
3172 		if (tmp->cntlid == ctrl->cntlid) {
3173 			dev_err(ctrl->device,
3174 				"Duplicate cntlid %u with %s, subsys %s, rejecting\n",
3175 				ctrl->cntlid, dev_name(tmp->device),
3176 				subsys->subnqn);
3177 			return false;
3178 		}
3179 
3180 		if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
3181 		    nvme_discovery_ctrl(ctrl))
3182 			continue;
3183 
3184 		dev_err(ctrl->device,
3185 			"Subsystem does not support multiple controllers\n");
3186 		return false;
3187 	}
3188 
3189 	return true;
3190 }
3191 
nvme_init_subsystem(struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)3192 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
3193 {
3194 	struct nvme_subsystem *subsys, *found;
3195 	int ret;
3196 
3197 	subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
3198 	if (!subsys)
3199 		return -ENOMEM;
3200 
3201 	subsys->instance = -1;
3202 	mutex_init(&subsys->lock);
3203 	kref_init(&subsys->ref);
3204 	INIT_LIST_HEAD(&subsys->ctrls);
3205 	INIT_LIST_HEAD(&subsys->nsheads);
3206 	nvme_init_subnqn(subsys, ctrl, id);
3207 	memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
3208 	memcpy(subsys->model, id->mn, sizeof(subsys->model));
3209 	subsys->vendor_id = le16_to_cpu(id->vid);
3210 	subsys->cmic = id->cmic;
3211 	subsys->awupf = le16_to_cpu(id->awupf);
3212 
3213 	/* Versions prior to 1.4 don't necessarily report a valid type */
3214 	if (id->cntrltype == NVME_CTRL_DISC ||
3215 	    !strcmp(subsys->subnqn, NVME_DISC_SUBSYS_NAME))
3216 		subsys->subtype = NVME_NQN_DISC;
3217 	else
3218 		subsys->subtype = NVME_NQN_NVME;
3219 
3220 	if (nvme_discovery_ctrl(ctrl) && subsys->subtype != NVME_NQN_DISC) {
3221 		dev_err(ctrl->device,
3222 			"Subsystem %s is not a discovery controller",
3223 			subsys->subnqn);
3224 		kfree(subsys);
3225 		return -EINVAL;
3226 	}
3227 	nvme_mpath_default_iopolicy(subsys);
3228 
3229 	subsys->dev.class = &nvme_subsys_class;
3230 	subsys->dev.release = nvme_release_subsystem;
3231 	subsys->dev.groups = nvme_subsys_attrs_groups;
3232 	dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
3233 	device_initialize(&subsys->dev);
3234 
3235 	mutex_lock(&nvme_subsystems_lock);
3236 	found = __nvme_find_get_subsystem(subsys->subnqn);
3237 	if (found) {
3238 		put_device(&subsys->dev);
3239 		subsys = found;
3240 
3241 		if (!nvme_validate_cntlid(subsys, ctrl, id)) {
3242 			ret = -EINVAL;
3243 			goto out_put_subsystem;
3244 		}
3245 	} else {
3246 		ret = device_add(&subsys->dev);
3247 		if (ret) {
3248 			dev_err(ctrl->device,
3249 				"failed to register subsystem device.\n");
3250 			put_device(&subsys->dev);
3251 			goto out_unlock;
3252 		}
3253 		ida_init(&subsys->ns_ida);
3254 		list_add_tail(&subsys->entry, &nvme_subsystems);
3255 	}
3256 
3257 	ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
3258 				dev_name(ctrl->device));
3259 	if (ret) {
3260 		dev_err(ctrl->device,
3261 			"failed to create sysfs link from subsystem.\n");
3262 		goto out_put_subsystem;
3263 	}
3264 
3265 	if (!found)
3266 		subsys->instance = ctrl->instance;
3267 	ctrl->subsys = subsys;
3268 	list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
3269 	mutex_unlock(&nvme_subsystems_lock);
3270 	return 0;
3271 
3272 out_put_subsystem:
3273 	nvme_put_subsystem(subsys);
3274 out_unlock:
3275 	mutex_unlock(&nvme_subsystems_lock);
3276 	return ret;
3277 }
3278 
nvme_get_log_lsi(struct nvme_ctrl * ctrl,u32 nsid,u8 log_page,u8 lsp,u8 csi,void * log,size_t size,u64 offset,u16 lsi)3279 static int nvme_get_log_lsi(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page,
3280 		u8 lsp, u8 csi, void *log, size_t size, u64 offset, u16 lsi)
3281 {
3282 	struct nvme_command c = { };
3283 	u32 dwlen = nvme_bytes_to_numd(size);
3284 
3285 	c.get_log_page.opcode = nvme_admin_get_log_page;
3286 	c.get_log_page.nsid = cpu_to_le32(nsid);
3287 	c.get_log_page.lid = log_page;
3288 	c.get_log_page.lsp = lsp;
3289 	c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
3290 	c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
3291 	c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
3292 	c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
3293 	c.get_log_page.csi = csi;
3294 	c.get_log_page.lsi = cpu_to_le16(lsi);
3295 
3296 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
3297 }
3298 
nvme_get_log(struct nvme_ctrl * ctrl,u32 nsid,u8 log_page,u8 lsp,u8 csi,void * log,size_t size,u64 offset)3299 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
3300 		void *log, size_t size, u64 offset)
3301 {
3302 	return nvme_get_log_lsi(ctrl, nsid, log_page, lsp, csi, log, size,
3303 			offset, 0);
3304 }
3305 
nvme_get_effects_log(struct nvme_ctrl * ctrl,u8 csi,struct nvme_effects_log ** log)3306 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
3307 				struct nvme_effects_log **log)
3308 {
3309 	struct nvme_effects_log *old, *cel = xa_load(&ctrl->cels, csi);
3310 	int ret;
3311 
3312 	if (cel)
3313 		goto out;
3314 
3315 	cel = kzalloc(sizeof(*cel), GFP_KERNEL);
3316 	if (!cel)
3317 		return -ENOMEM;
3318 
3319 	ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi,
3320 			cel, sizeof(*cel), 0);
3321 	if (ret) {
3322 		kfree(cel);
3323 		return ret;
3324 	}
3325 
3326 	old = xa_store(&ctrl->cels, csi, cel, GFP_KERNEL);
3327 	if (xa_is_err(old)) {
3328 		kfree(cel);
3329 		return xa_err(old);
3330 	}
3331 out:
3332 	*log = cel;
3333 	return 0;
3334 }
3335 
nvme_mps_to_sectors(struct nvme_ctrl * ctrl,u32 units)3336 static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units)
3337 {
3338 	u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val;
3339 
3340 	if (check_shl_overflow(1U, units + page_shift - 9, &val))
3341 		return UINT_MAX;
3342 	return val;
3343 }
3344 
nvme_init_non_mdts_limits(struct nvme_ctrl * ctrl)3345 static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl)
3346 {
3347 	struct nvme_command c = { };
3348 	struct nvme_id_ctrl_nvm *id;
3349 	int ret;
3350 
3351 	/*
3352 	 * Even though NVMe spec explicitly states that MDTS is not applicable
3353 	 * to the write-zeroes, we are cautious and limit the size to the
3354 	 * controllers max_hw_sectors value, which is based on the MDTS field
3355 	 * and possibly other limiting factors.
3356 	 */
3357 	if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) &&
3358 	    !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
3359 		ctrl->max_zeroes_sectors = ctrl->max_hw_sectors;
3360 	else
3361 		ctrl->max_zeroes_sectors = 0;
3362 
3363 	if (ctrl->subsys->subtype != NVME_NQN_NVME ||
3364 	    !nvme_id_cns_ok(ctrl, NVME_ID_CNS_CS_CTRL) ||
3365 	    test_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags))
3366 		return 0;
3367 
3368 	id = kzalloc(sizeof(*id), GFP_KERNEL);
3369 	if (!id)
3370 		return -ENOMEM;
3371 
3372 	c.identify.opcode = nvme_admin_identify;
3373 	c.identify.cns = NVME_ID_CNS_CS_CTRL;
3374 	c.identify.csi = NVME_CSI_NVM;
3375 
3376 	ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
3377 	if (ret)
3378 		goto free_data;
3379 
3380 	ctrl->dmrl = id->dmrl;
3381 	ctrl->dmrsl = le32_to_cpu(id->dmrsl);
3382 	if (id->wzsl)
3383 		ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl);
3384 
3385 free_data:
3386 	if (ret > 0)
3387 		set_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags);
3388 	kfree(id);
3389 	return ret;
3390 }
3391 
nvme_init_effects_log(struct nvme_ctrl * ctrl,u8 csi,struct nvme_effects_log ** log)3392 static int nvme_init_effects_log(struct nvme_ctrl *ctrl,
3393 		u8 csi, struct nvme_effects_log **log)
3394 {
3395 	struct nvme_effects_log *effects, *old;
3396 
3397 	effects = kzalloc(sizeof(*effects), GFP_KERNEL);
3398 	if (!effects)
3399 		return -ENOMEM;
3400 
3401 	old = xa_store(&ctrl->cels, csi, effects, GFP_KERNEL);
3402 	if (xa_is_err(old)) {
3403 		kfree(effects);
3404 		return xa_err(old);
3405 	}
3406 
3407 	*log = effects;
3408 	return 0;
3409 }
3410 
nvme_init_known_nvm_effects(struct nvme_ctrl * ctrl)3411 static void nvme_init_known_nvm_effects(struct nvme_ctrl *ctrl)
3412 {
3413 	struct nvme_effects_log	*log = ctrl->effects;
3414 
3415 	log->acs[nvme_admin_format_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC |
3416 						NVME_CMD_EFFECTS_NCC |
3417 						NVME_CMD_EFFECTS_CSE_MASK);
3418 	log->acs[nvme_admin_sanitize_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC |
3419 						NVME_CMD_EFFECTS_CSE_MASK);
3420 
3421 	/*
3422 	 * The spec says the result of a security receive command depends on
3423 	 * the previous security send command. As such, many vendors log this
3424 	 * command as one to submitted only when no other commands to the same
3425 	 * namespace are outstanding. The intention is to tell the host to
3426 	 * prevent mixing security send and receive.
3427 	 *
3428 	 * This driver can only enforce such exclusive access against IO
3429 	 * queues, though. We are not readily able to enforce such a rule for
3430 	 * two commands to the admin queue, which is the only queue that
3431 	 * matters for this command.
3432 	 *
3433 	 * Rather than blindly freezing the IO queues for this effect that
3434 	 * doesn't even apply to IO, mask it off.
3435 	 */
3436 	log->acs[nvme_admin_security_recv] &= cpu_to_le32(~NVME_CMD_EFFECTS_CSE_MASK);
3437 
3438 	log->iocs[nvme_cmd_write] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3439 	log->iocs[nvme_cmd_write_zeroes] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3440 	log->iocs[nvme_cmd_write_uncor] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3441 }
3442 
nvme_init_effects(struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)3443 static int nvme_init_effects(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
3444 {
3445 	int ret = 0;
3446 
3447 	if (ctrl->effects)
3448 		return 0;
3449 
3450 	if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
3451 		ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
3452 		if (ret < 0)
3453 			return ret;
3454 	}
3455 
3456 	if (!ctrl->effects) {
3457 		ret = nvme_init_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
3458 		if (ret < 0)
3459 			return ret;
3460 	}
3461 
3462 	nvme_init_known_nvm_effects(ctrl);
3463 	return 0;
3464 }
3465 
nvme_check_ctrl_fabric_info(struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)3466 static int nvme_check_ctrl_fabric_info(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
3467 {
3468 	/*
3469 	 * In fabrics we need to verify the cntlid matches the
3470 	 * admin connect
3471 	 */
3472 	if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
3473 		dev_err(ctrl->device,
3474 			"Mismatching cntlid: Connect %u vs Identify %u, rejecting\n",
3475 			ctrl->cntlid, le16_to_cpu(id->cntlid));
3476 		return -EINVAL;
3477 	}
3478 
3479 	if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) {
3480 		dev_err(ctrl->device,
3481 			"keep-alive support is mandatory for fabrics\n");
3482 		return -EINVAL;
3483 	}
3484 
3485 	if (!nvme_discovery_ctrl(ctrl) && ctrl->ioccsz < 4) {
3486 		dev_err(ctrl->device,
3487 			"I/O queue command capsule supported size %d < 4\n",
3488 			ctrl->ioccsz);
3489 		return -EINVAL;
3490 	}
3491 
3492 	if (!nvme_discovery_ctrl(ctrl) && ctrl->iorcsz < 1) {
3493 		dev_err(ctrl->device,
3494 			"I/O queue response capsule supported size %d < 1\n",
3495 			ctrl->iorcsz);
3496 		return -EINVAL;
3497 	}
3498 
3499 	if (!ctrl->maxcmd) {
3500 		dev_warn(ctrl->device,
3501 			"Firmware bug: maximum outstanding commands is 0\n");
3502 		ctrl->maxcmd = ctrl->sqsize + 1;
3503 	}
3504 
3505 	return 0;
3506 }
3507 
nvme_init_identify(struct nvme_ctrl * ctrl)3508 static int nvme_init_identify(struct nvme_ctrl *ctrl)
3509 {
3510 	struct queue_limits lim;
3511 	struct nvme_id_ctrl *id;
3512 	u32 max_hw_sectors;
3513 	bool prev_apst_enabled;
3514 	int ret;
3515 
3516 	ret = nvme_identify_ctrl(ctrl, &id);
3517 	if (ret) {
3518 		dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
3519 		return -EIO;
3520 	}
3521 
3522 	if (!(ctrl->ops->flags & NVME_F_FABRICS))
3523 		ctrl->cntlid = le16_to_cpu(id->cntlid);
3524 
3525 	if (!ctrl->identified) {
3526 		unsigned int i;
3527 
3528 		/*
3529 		 * Check for quirks.  Quirk can depend on firmware version,
3530 		 * so, in principle, the set of quirks present can change
3531 		 * across a reset.  As a possible future enhancement, we
3532 		 * could re-scan for quirks every time we reinitialize
3533 		 * the device, but we'd have to make sure that the driver
3534 		 * behaves intelligently if the quirks change.
3535 		 */
3536 		for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
3537 			if (quirk_matches(id, &core_quirks[i]))
3538 				ctrl->quirks |= core_quirks[i].quirks;
3539 		}
3540 
3541 		ret = nvme_init_subsystem(ctrl, id);
3542 		if (ret)
3543 			goto out_free;
3544 
3545 		ret = nvme_init_effects(ctrl, id);
3546 		if (ret)
3547 			goto out_free;
3548 	}
3549 	memcpy(ctrl->subsys->firmware_rev, id->fr,
3550 	       sizeof(ctrl->subsys->firmware_rev));
3551 
3552 	if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
3553 		dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
3554 		ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
3555 	}
3556 
3557 	ctrl->crdt[0] = le16_to_cpu(id->crdt1);
3558 	ctrl->crdt[1] = le16_to_cpu(id->crdt2);
3559 	ctrl->crdt[2] = le16_to_cpu(id->crdt3);
3560 
3561 	ctrl->oacs = le16_to_cpu(id->oacs);
3562 	ctrl->oncs = le16_to_cpu(id->oncs);
3563 	ctrl->mtfa = le16_to_cpu(id->mtfa);
3564 	ctrl->oaes = le32_to_cpu(id->oaes);
3565 	ctrl->wctemp = le16_to_cpu(id->wctemp);
3566 	ctrl->cctemp = le16_to_cpu(id->cctemp);
3567 
3568 	atomic_set(&ctrl->abort_limit, id->acl + 1);
3569 	ctrl->vwc = id->vwc;
3570 	if (id->mdts)
3571 		max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts);
3572 	else
3573 		max_hw_sectors = UINT_MAX;
3574 	ctrl->max_hw_sectors =
3575 		min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
3576 
3577 	lim = queue_limits_start_update(ctrl->admin_q);
3578 	nvme_set_ctrl_limits(ctrl, &lim);
3579 	ret = queue_limits_commit_update(ctrl->admin_q, &lim);
3580 	if (ret)
3581 		goto out_free;
3582 
3583 	ctrl->sgls = le32_to_cpu(id->sgls);
3584 	ctrl->kas = le16_to_cpu(id->kas);
3585 	ctrl->max_namespaces = le32_to_cpu(id->mnan);
3586 	ctrl->ctratt = le32_to_cpu(id->ctratt);
3587 
3588 	ctrl->cntrltype = id->cntrltype;
3589 	ctrl->dctype = id->dctype;
3590 
3591 	if (id->rtd3e) {
3592 		/* us -> s */
3593 		u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
3594 
3595 		ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
3596 						 shutdown_timeout, 60);
3597 
3598 		if (ctrl->shutdown_timeout != shutdown_timeout)
3599 			dev_info(ctrl->device,
3600 				 "D3 entry latency set to %u seconds\n",
3601 				 ctrl->shutdown_timeout);
3602 	} else
3603 		ctrl->shutdown_timeout = shutdown_timeout;
3604 
3605 	ctrl->npss = id->npss;
3606 	ctrl->apsta = id->apsta;
3607 	prev_apst_enabled = ctrl->apst_enabled;
3608 	if (ctrl->quirks & NVME_QUIRK_NO_APST) {
3609 		if (force_apst && id->apsta) {
3610 			dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
3611 			ctrl->apst_enabled = true;
3612 		} else {
3613 			ctrl->apst_enabled = false;
3614 		}
3615 	} else {
3616 		ctrl->apst_enabled = id->apsta;
3617 	}
3618 	memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
3619 
3620 	if (ctrl->ops->flags & NVME_F_FABRICS) {
3621 		ctrl->icdoff = le16_to_cpu(id->icdoff);
3622 		ctrl->ioccsz = le32_to_cpu(id->ioccsz);
3623 		ctrl->iorcsz = le32_to_cpu(id->iorcsz);
3624 		ctrl->maxcmd = le16_to_cpu(id->maxcmd);
3625 
3626 		ret = nvme_check_ctrl_fabric_info(ctrl, id);
3627 		if (ret)
3628 			goto out_free;
3629 	} else {
3630 		ctrl->hmpre = le32_to_cpu(id->hmpre);
3631 		ctrl->hmmin = le32_to_cpu(id->hmmin);
3632 		ctrl->hmminds = le32_to_cpu(id->hmminds);
3633 		ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
3634 	}
3635 
3636 	ret = nvme_mpath_init_identify(ctrl, id);
3637 	if (ret < 0)
3638 		goto out_free;
3639 
3640 	if (ctrl->apst_enabled && !prev_apst_enabled)
3641 		dev_pm_qos_expose_latency_tolerance(ctrl->device);
3642 	else if (!ctrl->apst_enabled && prev_apst_enabled)
3643 		dev_pm_qos_hide_latency_tolerance(ctrl->device);
3644 out_free:
3645 	kfree(id);
3646 	return ret;
3647 }
3648 
3649 /*
3650  * Initialize the cached copies of the Identify data and various controller
3651  * register in our nvme_ctrl structure.  This should be called as soon as
3652  * the admin queue is fully up and running.
3653  */
nvme_init_ctrl_finish(struct nvme_ctrl * ctrl,bool was_suspended)3654 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl, bool was_suspended)
3655 {
3656 	int ret;
3657 
3658 	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
3659 	if (ret) {
3660 		dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
3661 		return ret;
3662 	}
3663 
3664 	ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
3665 
3666 	if (ctrl->vs >= NVME_VS(1, 1, 0))
3667 		ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
3668 
3669 	ret = nvme_init_identify(ctrl);
3670 	if (ret)
3671 		return ret;
3672 
3673 	ret = nvme_configure_apst(ctrl);
3674 	if (ret < 0)
3675 		return ret;
3676 
3677 	ret = nvme_configure_timestamp(ctrl);
3678 	if (ret < 0)
3679 		return ret;
3680 
3681 	ret = nvme_configure_host_options(ctrl);
3682 	if (ret < 0)
3683 		return ret;
3684 
3685 	nvme_configure_opal(ctrl, was_suspended);
3686 
3687 	if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) {
3688 		/*
3689 		 * Do not return errors unless we are in a controller reset,
3690 		 * the controller works perfectly fine without hwmon.
3691 		 */
3692 		ret = nvme_hwmon_init(ctrl);
3693 		if (ret == -EINTR)
3694 			return ret;
3695 	}
3696 
3697 	clear_bit(NVME_CTRL_DIRTY_CAPABILITY, &ctrl->flags);
3698 	ctrl->identified = true;
3699 
3700 	nvme_start_keep_alive(ctrl);
3701 
3702 	return 0;
3703 }
3704 EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish);
3705 
nvme_dev_open(struct inode * inode,struct file * file)3706 static int nvme_dev_open(struct inode *inode, struct file *file)
3707 {
3708 	struct nvme_ctrl *ctrl =
3709 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3710 
3711 	switch (nvme_ctrl_state(ctrl)) {
3712 	case NVME_CTRL_LIVE:
3713 		break;
3714 	default:
3715 		return -EWOULDBLOCK;
3716 	}
3717 
3718 	nvme_get_ctrl(ctrl);
3719 	if (!try_module_get(ctrl->ops->module)) {
3720 		nvme_put_ctrl(ctrl);
3721 		return -EINVAL;
3722 	}
3723 
3724 	file->private_data = ctrl;
3725 	return 0;
3726 }
3727 
nvme_dev_release(struct inode * inode,struct file * file)3728 static int nvme_dev_release(struct inode *inode, struct file *file)
3729 {
3730 	struct nvme_ctrl *ctrl =
3731 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3732 
3733 	module_put(ctrl->ops->module);
3734 	nvme_put_ctrl(ctrl);
3735 	return 0;
3736 }
3737 
3738 static const struct file_operations nvme_dev_fops = {
3739 	.owner		= THIS_MODULE,
3740 	.open		= nvme_dev_open,
3741 	.release	= nvme_dev_release,
3742 	.unlocked_ioctl	= nvme_dev_ioctl,
3743 	.compat_ioctl	= compat_ptr_ioctl,
3744 	.uring_cmd	= nvme_dev_uring_cmd,
3745 };
3746 
nvme_find_ns_head(struct nvme_ctrl * ctrl,unsigned nsid)3747 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_ctrl *ctrl,
3748 		unsigned nsid)
3749 {
3750 	struct nvme_ns_head *h;
3751 
3752 	lockdep_assert_held(&ctrl->subsys->lock);
3753 
3754 	list_for_each_entry(h, &ctrl->subsys->nsheads, entry) {
3755 		/*
3756 		 * Private namespaces can share NSIDs under some conditions.
3757 		 * In that case we can't use the same ns_head for namespaces
3758 		 * with the same NSID.
3759 		 */
3760 		if (h->ns_id != nsid || !nvme_is_unique_nsid(ctrl, h))
3761 			continue;
3762 		if (nvme_tryget_ns_head(h))
3763 			return h;
3764 	}
3765 
3766 	return NULL;
3767 }
3768 
nvme_subsys_check_duplicate_ids(struct nvme_subsystem * subsys,struct nvme_ns_ids * ids)3769 static int nvme_subsys_check_duplicate_ids(struct nvme_subsystem *subsys,
3770 		struct nvme_ns_ids *ids)
3771 {
3772 	bool has_uuid = !uuid_is_null(&ids->uuid);
3773 	bool has_nguid = memchr_inv(ids->nguid, 0, sizeof(ids->nguid));
3774 	bool has_eui64 = memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
3775 	struct nvme_ns_head *h;
3776 
3777 	lockdep_assert_held(&subsys->lock);
3778 
3779 	list_for_each_entry(h, &subsys->nsheads, entry) {
3780 		if (has_uuid && uuid_equal(&ids->uuid, &h->ids.uuid))
3781 			return -EINVAL;
3782 		if (has_nguid &&
3783 		    memcmp(&ids->nguid, &h->ids.nguid, sizeof(ids->nguid)) == 0)
3784 			return -EINVAL;
3785 		if (has_eui64 &&
3786 		    memcmp(&ids->eui64, &h->ids.eui64, sizeof(ids->eui64)) == 0)
3787 			return -EINVAL;
3788 	}
3789 
3790 	return 0;
3791 }
3792 
nvme_cdev_rel(struct device * dev)3793 static void nvme_cdev_rel(struct device *dev)
3794 {
3795 	ida_free(&nvme_ns_chr_minor_ida, MINOR(dev->devt));
3796 }
3797 
nvme_cdev_del(struct cdev * cdev,struct device * cdev_device)3798 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device)
3799 {
3800 	cdev_device_del(cdev, cdev_device);
3801 	put_device(cdev_device);
3802 }
3803 
nvme_cdev_add(struct cdev * cdev,struct device * cdev_device,const struct file_operations * fops,struct module * owner)3804 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device,
3805 		const struct file_operations *fops, struct module *owner)
3806 {
3807 	int minor, ret;
3808 
3809 	minor = ida_alloc(&nvme_ns_chr_minor_ida, GFP_KERNEL);
3810 	if (minor < 0)
3811 		return minor;
3812 	cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor);
3813 	cdev_device->class = &nvme_ns_chr_class;
3814 	cdev_device->release = nvme_cdev_rel;
3815 	device_initialize(cdev_device);
3816 	cdev_init(cdev, fops);
3817 	cdev->owner = owner;
3818 	ret = cdev_device_add(cdev, cdev_device);
3819 	if (ret)
3820 		put_device(cdev_device);
3821 
3822 	return ret;
3823 }
3824 
nvme_ns_chr_open(struct inode * inode,struct file * file)3825 static int nvme_ns_chr_open(struct inode *inode, struct file *file)
3826 {
3827 	return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev));
3828 }
3829 
nvme_ns_chr_release(struct inode * inode,struct file * file)3830 static int nvme_ns_chr_release(struct inode *inode, struct file *file)
3831 {
3832 	nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev));
3833 	return 0;
3834 }
3835 
3836 static const struct file_operations nvme_ns_chr_fops = {
3837 	.owner		= THIS_MODULE,
3838 	.open		= nvme_ns_chr_open,
3839 	.release	= nvme_ns_chr_release,
3840 	.unlocked_ioctl	= nvme_ns_chr_ioctl,
3841 	.compat_ioctl	= compat_ptr_ioctl,
3842 	.uring_cmd	= nvme_ns_chr_uring_cmd,
3843 	.uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll,
3844 };
3845 
nvme_add_ns_cdev(struct nvme_ns * ns)3846 static int nvme_add_ns_cdev(struct nvme_ns *ns)
3847 {
3848 	int ret;
3849 
3850 	ns->cdev_device.parent = ns->ctrl->device;
3851 	ret = dev_set_name(&ns->cdev_device, "ng%dn%d",
3852 			   ns->ctrl->instance, ns->head->instance);
3853 	if (ret)
3854 		return ret;
3855 
3856 	return nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops,
3857 			     ns->ctrl->ops->module);
3858 }
3859 
nvme_alloc_ns_head(struct nvme_ctrl * ctrl,struct nvme_ns_info * info)3860 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3861 		struct nvme_ns_info *info)
3862 {
3863 	struct nvme_ns_head *head;
3864 	size_t size = sizeof(*head);
3865 	int ret = -ENOMEM;
3866 
3867 #ifdef CONFIG_NVME_MULTIPATH
3868 	size += num_possible_nodes() * sizeof(struct nvme_ns *);
3869 #endif
3870 
3871 	head = kzalloc(size, GFP_KERNEL);
3872 	if (!head)
3873 		goto out;
3874 	ret = ida_alloc_min(&ctrl->subsys->ns_ida, 1, GFP_KERNEL);
3875 	if (ret < 0)
3876 		goto out_free_head;
3877 	head->instance = ret;
3878 	INIT_LIST_HEAD(&head->list);
3879 	ret = init_srcu_struct(&head->srcu);
3880 	if (ret)
3881 		goto out_ida_remove;
3882 	head->subsys = ctrl->subsys;
3883 	head->ns_id = info->nsid;
3884 	head->ids = info->ids;
3885 	head->shared = info->is_shared;
3886 	head->rotational = info->is_rotational;
3887 	ratelimit_state_init(&head->rs_nuse, 5 * HZ, 1);
3888 	ratelimit_set_flags(&head->rs_nuse, RATELIMIT_MSG_ON_RELEASE);
3889 	kref_init(&head->ref);
3890 
3891 	if (head->ids.csi) {
3892 		ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
3893 		if (ret)
3894 			goto out_cleanup_srcu;
3895 	} else
3896 		head->effects = ctrl->effects;
3897 
3898 	ret = nvme_mpath_alloc_disk(ctrl, head);
3899 	if (ret)
3900 		goto out_cleanup_srcu;
3901 
3902 	list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3903 
3904 	kref_get(&ctrl->subsys->ref);
3905 
3906 	return head;
3907 out_cleanup_srcu:
3908 	cleanup_srcu_struct(&head->srcu);
3909 out_ida_remove:
3910 	ida_free(&ctrl->subsys->ns_ida, head->instance);
3911 out_free_head:
3912 	kfree(head);
3913 out:
3914 	if (ret > 0)
3915 		ret = blk_status_to_errno(nvme_error_status(ret));
3916 	return ERR_PTR(ret);
3917 }
3918 
nvme_global_check_duplicate_ids(struct nvme_subsystem * this,struct nvme_ns_ids * ids)3919 static int nvme_global_check_duplicate_ids(struct nvme_subsystem *this,
3920 		struct nvme_ns_ids *ids)
3921 {
3922 	struct nvme_subsystem *s;
3923 	int ret = 0;
3924 
3925 	/*
3926 	 * Note that this check is racy as we try to avoid holding the global
3927 	 * lock over the whole ns_head creation.  But it is only intended as
3928 	 * a sanity check anyway.
3929 	 */
3930 	mutex_lock(&nvme_subsystems_lock);
3931 	list_for_each_entry(s, &nvme_subsystems, entry) {
3932 		if (s == this)
3933 			continue;
3934 		mutex_lock(&s->lock);
3935 		ret = nvme_subsys_check_duplicate_ids(s, ids);
3936 		mutex_unlock(&s->lock);
3937 		if (ret)
3938 			break;
3939 	}
3940 	mutex_unlock(&nvme_subsystems_lock);
3941 
3942 	return ret;
3943 }
3944 
nvme_init_ns_head(struct nvme_ns * ns,struct nvme_ns_info * info)3945 static int nvme_init_ns_head(struct nvme_ns *ns, struct nvme_ns_info *info)
3946 {
3947 	struct nvme_ctrl *ctrl = ns->ctrl;
3948 	struct nvme_ns_head *head = NULL;
3949 	int ret;
3950 
3951 	ret = nvme_global_check_duplicate_ids(ctrl->subsys, &info->ids);
3952 	if (ret) {
3953 		/*
3954 		 * We've found two different namespaces on two different
3955 		 * subsystems that report the same ID.  This is pretty nasty
3956 		 * for anything that actually requires unique device
3957 		 * identification.  In the kernel we need this for multipathing,
3958 		 * and in user space the /dev/disk/by-id/ links rely on it.
3959 		 *
3960 		 * If the device also claims to be multi-path capable back off
3961 		 * here now and refuse the probe the second device as this is a
3962 		 * recipe for data corruption.  If not this is probably a
3963 		 * cheap consumer device if on the PCIe bus, so let the user
3964 		 * proceed and use the shiny toy, but warn that with changing
3965 		 * probing order (which due to our async probing could just be
3966 		 * device taking longer to startup) the other device could show
3967 		 * up at any time.
3968 		 */
3969 		nvme_print_device_info(ctrl);
3970 		if ((ns->ctrl->ops->flags & NVME_F_FABRICS) || /* !PCIe */
3971 		    ((ns->ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) &&
3972 		     info->is_shared)) {
3973 			dev_err(ctrl->device,
3974 				"ignoring nsid %d because of duplicate IDs\n",
3975 				info->nsid);
3976 			return ret;
3977 		}
3978 
3979 		dev_err(ctrl->device,
3980 			"clearing duplicate IDs for nsid %d\n", info->nsid);
3981 		dev_err(ctrl->device,
3982 			"use of /dev/disk/by-id/ may cause data corruption\n");
3983 		memset(&info->ids.nguid, 0, sizeof(info->ids.nguid));
3984 		memset(&info->ids.uuid, 0, sizeof(info->ids.uuid));
3985 		memset(&info->ids.eui64, 0, sizeof(info->ids.eui64));
3986 		ctrl->quirks |= NVME_QUIRK_BOGUS_NID;
3987 	}
3988 
3989 	mutex_lock(&ctrl->subsys->lock);
3990 	head = nvme_find_ns_head(ctrl, info->nsid);
3991 	if (!head) {
3992 		ret = nvme_subsys_check_duplicate_ids(ctrl->subsys, &info->ids);
3993 		if (ret) {
3994 			dev_err(ctrl->device,
3995 				"duplicate IDs in subsystem for nsid %d\n",
3996 				info->nsid);
3997 			goto out_unlock;
3998 		}
3999 		head = nvme_alloc_ns_head(ctrl, info);
4000 		if (IS_ERR(head)) {
4001 			ret = PTR_ERR(head);
4002 			goto out_unlock;
4003 		}
4004 	} else {
4005 		ret = -EINVAL;
4006 		if ((!info->is_shared || !head->shared) &&
4007 		    !list_empty(&head->list)) {
4008 			dev_err(ctrl->device,
4009 				"Duplicate unshared namespace %d\n",
4010 				info->nsid);
4011 			goto out_put_ns_head;
4012 		}
4013 		if (!nvme_ns_ids_equal(&head->ids, &info->ids)) {
4014 			dev_err(ctrl->device,
4015 				"IDs don't match for shared namespace %d\n",
4016 					info->nsid);
4017 			goto out_put_ns_head;
4018 		}
4019 
4020 		if (!multipath) {
4021 			dev_warn(ctrl->device,
4022 				"Found shared namespace %d, but multipathing not supported.\n",
4023 				info->nsid);
4024 			dev_warn_once(ctrl->device,
4025 				"Shared namespace support requires core_nvme.multipath=Y.\n");
4026 		}
4027 	}
4028 
4029 	list_add_tail_rcu(&ns->siblings, &head->list);
4030 	ns->head = head;
4031 	mutex_unlock(&ctrl->subsys->lock);
4032 
4033 #ifdef CONFIG_NVME_MULTIPATH
4034 	cancel_delayed_work(&head->remove_work);
4035 #endif
4036 	return 0;
4037 
4038 out_put_ns_head:
4039 	nvme_put_ns_head(head);
4040 out_unlock:
4041 	mutex_unlock(&ctrl->subsys->lock);
4042 	return ret;
4043 }
4044 
nvme_find_get_ns(struct nvme_ctrl * ctrl,unsigned nsid)4045 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
4046 {
4047 	struct nvme_ns *ns, *ret = NULL;
4048 	int srcu_idx;
4049 
4050 	srcu_idx = srcu_read_lock(&ctrl->srcu);
4051 	list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
4052 				 srcu_read_lock_held(&ctrl->srcu)) {
4053 		if (ns->head->ns_id == nsid) {
4054 			if (!nvme_get_ns(ns))
4055 				continue;
4056 			ret = ns;
4057 			break;
4058 		}
4059 		if (ns->head->ns_id > nsid)
4060 			break;
4061 	}
4062 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
4063 	return ret;
4064 }
4065 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, "NVME_TARGET_PASSTHRU");
4066 
4067 /*
4068  * Add the namespace to the controller list while keeping the list ordered.
4069  */
nvme_ns_add_to_ctrl_list(struct nvme_ns * ns)4070 static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns)
4071 {
4072 	struct nvme_ns *tmp;
4073 
4074 	list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) {
4075 		if (tmp->head->ns_id < ns->head->ns_id) {
4076 			list_add_rcu(&ns->list, &tmp->list);
4077 			return;
4078 		}
4079 	}
4080 	list_add_rcu(&ns->list, &ns->ctrl->namespaces);
4081 }
4082 
nvme_alloc_ns(struct nvme_ctrl * ctrl,struct nvme_ns_info * info)4083 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, struct nvme_ns_info *info)
4084 {
4085 	struct queue_limits lim = { };
4086 	struct nvme_ns *ns;
4087 	struct gendisk *disk;
4088 	int node = ctrl->numa_node;
4089 	bool last_path = false;
4090 
4091 	ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
4092 	if (!ns)
4093 		return;
4094 
4095 	if (ctrl->opts && ctrl->opts->data_digest)
4096 		lim.features |= BLK_FEAT_STABLE_WRITES;
4097 	if (ctrl->ops->supports_pci_p2pdma &&
4098 	    ctrl->ops->supports_pci_p2pdma(ctrl))
4099 		lim.features |= BLK_FEAT_PCI_P2PDMA;
4100 
4101 	disk = blk_mq_alloc_disk(ctrl->tagset, &lim, ns);
4102 	if (IS_ERR(disk))
4103 		goto out_free_ns;
4104 	disk->fops = &nvme_bdev_ops;
4105 	disk->private_data = ns;
4106 
4107 	ns->disk = disk;
4108 	ns->queue = disk->queue;
4109 	ns->ctrl = ctrl;
4110 	kref_init(&ns->kref);
4111 
4112 	if (nvme_init_ns_head(ns, info))
4113 		goto out_cleanup_disk;
4114 
4115 	/*
4116 	 * If multipathing is enabled, the device name for all disks and not
4117 	 * just those that represent shared namespaces needs to be based on the
4118 	 * subsystem instance.  Using the controller instance for private
4119 	 * namespaces could lead to naming collisions between shared and private
4120 	 * namespaces if they don't use a common numbering scheme.
4121 	 *
4122 	 * If multipathing is not enabled, disk names must use the controller
4123 	 * instance as shared namespaces will show up as multiple block
4124 	 * devices.
4125 	 */
4126 	if (nvme_ns_head_multipath(ns->head)) {
4127 		sprintf(disk->disk_name, "nvme%dc%dn%d", ctrl->subsys->instance,
4128 			ctrl->instance, ns->head->instance);
4129 		disk->flags |= GENHD_FL_HIDDEN;
4130 	} else if (multipath) {
4131 		sprintf(disk->disk_name, "nvme%dn%d", ctrl->subsys->instance,
4132 			ns->head->instance);
4133 	} else {
4134 		sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance,
4135 			ns->head->instance);
4136 	}
4137 
4138 	if (nvme_update_ns_info(ns, info))
4139 		goto out_unlink_ns;
4140 
4141 	mutex_lock(&ctrl->namespaces_lock);
4142 	/*
4143 	 * Ensure that no namespaces are added to the ctrl list after the queues
4144 	 * are frozen, thereby avoiding a deadlock between scan and reset.
4145 	 */
4146 	if (test_bit(NVME_CTRL_FROZEN, &ctrl->flags)) {
4147 		mutex_unlock(&ctrl->namespaces_lock);
4148 		goto out_unlink_ns;
4149 	}
4150 	nvme_ns_add_to_ctrl_list(ns);
4151 	mutex_unlock(&ctrl->namespaces_lock);
4152 	synchronize_srcu(&ctrl->srcu);
4153 	nvme_get_ctrl(ctrl);
4154 
4155 	if (device_add_disk(ctrl->device, ns->disk, nvme_ns_attr_groups))
4156 		goto out_cleanup_ns_from_list;
4157 
4158 	if (!nvme_ns_head_multipath(ns->head))
4159 		nvme_add_ns_cdev(ns);
4160 
4161 	nvme_mpath_add_disk(ns, info->anagrpid);
4162 	nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
4163 
4164 	/*
4165 	 * Set ns->disk->device->driver_data to ns so we can access
4166 	 * ns->head->passthru_err_log_enabled in
4167 	 * nvme_io_passthru_err_log_enabled_[store | show]().
4168 	 */
4169 	dev_set_drvdata(disk_to_dev(ns->disk), ns);
4170 
4171 	return;
4172 
4173  out_cleanup_ns_from_list:
4174 	nvme_put_ctrl(ctrl);
4175 	mutex_lock(&ctrl->namespaces_lock);
4176 	list_del_rcu(&ns->list);
4177 	mutex_unlock(&ctrl->namespaces_lock);
4178 	synchronize_srcu(&ctrl->srcu);
4179  out_unlink_ns:
4180 	mutex_lock(&ctrl->subsys->lock);
4181 	list_del_rcu(&ns->siblings);
4182 	if (list_empty(&ns->head->list)) {
4183 		list_del_init(&ns->head->entry);
4184 		/*
4185 		 * If multipath is not configured, we still create a namespace
4186 		 * head (nshead), but head->disk is not initialized in that
4187 		 * case.  As a result, only a single reference to nshead is held
4188 		 * (via kref_init()) when it is created. Therefore, ensure that
4189 		 * we do not release the reference to nshead twice if head->disk
4190 		 * is not present.
4191 		 */
4192 		if (ns->head->disk)
4193 			last_path = true;
4194 	}
4195 	mutex_unlock(&ctrl->subsys->lock);
4196 	if (last_path)
4197 		nvme_put_ns_head(ns->head);
4198 	nvme_put_ns_head(ns->head);
4199  out_cleanup_disk:
4200 	put_disk(disk);
4201  out_free_ns:
4202 	kfree(ns);
4203 }
4204 
nvme_ns_remove(struct nvme_ns * ns)4205 static void nvme_ns_remove(struct nvme_ns *ns)
4206 {
4207 	bool last_path = false;
4208 
4209 	if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
4210 		return;
4211 
4212 	clear_bit(NVME_NS_READY, &ns->flags);
4213 	set_capacity(ns->disk, 0);
4214 	nvme_fault_inject_fini(&ns->fault_inject);
4215 
4216 	/*
4217 	 * Ensure that !NVME_NS_READY is seen by other threads to prevent
4218 	 * this ns going back into current_path.
4219 	 */
4220 	synchronize_srcu(&ns->head->srcu);
4221 
4222 	/* wait for concurrent submissions */
4223 	if (nvme_mpath_clear_current_path(ns))
4224 		synchronize_srcu(&ns->head->srcu);
4225 
4226 	mutex_lock(&ns->ctrl->subsys->lock);
4227 	list_del_rcu(&ns->siblings);
4228 	if (list_empty(&ns->head->list)) {
4229 		if (!nvme_mpath_queue_if_no_path(ns->head))
4230 			list_del_init(&ns->head->entry);
4231 		last_path = true;
4232 	}
4233 	mutex_unlock(&ns->ctrl->subsys->lock);
4234 
4235 	/* guarantee not available in head->list */
4236 	synchronize_srcu(&ns->head->srcu);
4237 
4238 	if (!nvme_ns_head_multipath(ns->head))
4239 		nvme_cdev_del(&ns->cdev, &ns->cdev_device);
4240 
4241 	nvme_mpath_remove_sysfs_link(ns);
4242 
4243 	del_gendisk(ns->disk);
4244 
4245 	mutex_lock(&ns->ctrl->namespaces_lock);
4246 	list_del_rcu(&ns->list);
4247 	mutex_unlock(&ns->ctrl->namespaces_lock);
4248 	synchronize_srcu(&ns->ctrl->srcu);
4249 
4250 	if (last_path)
4251 		nvme_mpath_remove_disk(ns->head);
4252 	nvme_put_ns(ns);
4253 }
4254 
nvme_ns_remove_by_nsid(struct nvme_ctrl * ctrl,u32 nsid)4255 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
4256 {
4257 	struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
4258 
4259 	if (ns) {
4260 		nvme_ns_remove(ns);
4261 		nvme_put_ns(ns);
4262 	}
4263 }
4264 
nvme_validate_ns(struct nvme_ns * ns,struct nvme_ns_info * info)4265 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_info *info)
4266 {
4267 	int ret = NVME_SC_INVALID_NS | NVME_STATUS_DNR;
4268 
4269 	if (!nvme_ns_ids_equal(&ns->head->ids, &info->ids)) {
4270 		dev_err(ns->ctrl->device,
4271 			"identifiers changed for nsid %d\n", ns->head->ns_id);
4272 		goto out;
4273 	}
4274 
4275 	ret = nvme_update_ns_info(ns, info);
4276 out:
4277 	/*
4278 	 * Only remove the namespace if we got a fatal error back from the
4279 	 * device, otherwise ignore the error and just move on.
4280 	 *
4281 	 * TODO: we should probably schedule a delayed retry here.
4282 	 */
4283 	if (ret > 0 && (ret & NVME_STATUS_DNR))
4284 		nvme_ns_remove(ns);
4285 }
4286 
nvme_scan_ns(struct nvme_ctrl * ctrl,unsigned nsid)4287 static void nvme_scan_ns(struct nvme_ctrl *ctrl, unsigned nsid)
4288 {
4289 	struct nvme_ns_info info = { .nsid = nsid };
4290 	struct nvme_ns *ns;
4291 	int ret = 1;
4292 
4293 	if (nvme_identify_ns_descs(ctrl, &info))
4294 		return;
4295 
4296 	if (info.ids.csi != NVME_CSI_NVM && !nvme_multi_css(ctrl)) {
4297 		dev_warn(ctrl->device,
4298 			"command set not reported for nsid: %d\n", nsid);
4299 		return;
4300 	}
4301 
4302 	/*
4303 	 * If available try to use the Command Set Independent Identify Namespace
4304 	 * data structure to find all the generic information that is needed to
4305 	 * set up a namespace.  If not fall back to the legacy version.
4306 	 */
4307 	if ((ctrl->cap & NVME_CAP_CRMS_CRIMS) ||
4308 	    (info.ids.csi != NVME_CSI_NVM && info.ids.csi != NVME_CSI_ZNS) ||
4309 	    ctrl->vs >= NVME_VS(2, 0, 0))
4310 		ret = nvme_ns_info_from_id_cs_indep(ctrl, &info);
4311 	if (ret > 0)
4312 		ret = nvme_ns_info_from_identify(ctrl, &info);
4313 
4314 	if (info.is_removed)
4315 		nvme_ns_remove_by_nsid(ctrl, nsid);
4316 
4317 	/*
4318 	 * Ignore the namespace if it is not ready. We will get an AEN once it
4319 	 * becomes ready and restart the scan.
4320 	 */
4321 	if (ret || !info.is_ready)
4322 		return;
4323 
4324 	ns = nvme_find_get_ns(ctrl, nsid);
4325 	if (ns) {
4326 		nvme_validate_ns(ns, &info);
4327 		nvme_put_ns(ns);
4328 	} else {
4329 		nvme_alloc_ns(ctrl, &info);
4330 	}
4331 }
4332 
4333 /**
4334  * struct async_scan_info - keeps track of controller & NSIDs to scan
4335  * @ctrl:	Controller on which namespaces are being scanned
4336  * @next_nsid:	Index of next NSID to scan in ns_list
4337  * @ns_list:	Pointer to list of NSIDs to scan
4338  *
4339  * Note: There is a single async_scan_info structure shared by all instances
4340  * of nvme_scan_ns_async() scanning a given controller, so the atomic
4341  * operations on next_nsid are critical to ensure each instance scans a unique
4342  * NSID.
4343  */
4344 struct async_scan_info {
4345 	struct nvme_ctrl *ctrl;
4346 	atomic_t next_nsid;
4347 	__le32 *ns_list;
4348 };
4349 
nvme_scan_ns_async(void * data,async_cookie_t cookie)4350 static void nvme_scan_ns_async(void *data, async_cookie_t cookie)
4351 {
4352 	struct async_scan_info *scan_info = data;
4353 	int idx;
4354 	u32 nsid;
4355 
4356 	idx = (u32)atomic_fetch_inc(&scan_info->next_nsid);
4357 	nsid = le32_to_cpu(scan_info->ns_list[idx]);
4358 
4359 	nvme_scan_ns(scan_info->ctrl, nsid);
4360 }
4361 
nvme_remove_invalid_namespaces(struct nvme_ctrl * ctrl,unsigned nsid)4362 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
4363 					unsigned nsid)
4364 {
4365 	struct nvme_ns *ns, *next;
4366 	LIST_HEAD(rm_list);
4367 
4368 	mutex_lock(&ctrl->namespaces_lock);
4369 	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
4370 		if (ns->head->ns_id > nsid) {
4371 			list_del_rcu(&ns->list);
4372 			synchronize_srcu(&ctrl->srcu);
4373 			list_add_tail_rcu(&ns->list, &rm_list);
4374 		}
4375 	}
4376 	mutex_unlock(&ctrl->namespaces_lock);
4377 
4378 	list_for_each_entry_safe(ns, next, &rm_list, list)
4379 		nvme_ns_remove(ns);
4380 }
4381 
nvme_scan_ns_list(struct nvme_ctrl * ctrl)4382 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
4383 {
4384 	const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
4385 	__le32 *ns_list;
4386 	u32 prev = 0;
4387 	int ret = 0, i;
4388 	ASYNC_DOMAIN(domain);
4389 	struct async_scan_info scan_info;
4390 
4391 	ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
4392 	if (!ns_list)
4393 		return -ENOMEM;
4394 
4395 	scan_info.ctrl = ctrl;
4396 	scan_info.ns_list = ns_list;
4397 	for (;;) {
4398 		struct nvme_command cmd = {
4399 			.identify.opcode	= nvme_admin_identify,
4400 			.identify.cns		= NVME_ID_CNS_NS_ACTIVE_LIST,
4401 			.identify.nsid		= cpu_to_le32(prev),
4402 		};
4403 
4404 		ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
4405 					    NVME_IDENTIFY_DATA_SIZE);
4406 		if (ret) {
4407 			dev_warn(ctrl->device,
4408 				"Identify NS List failed (status=0x%x)\n", ret);
4409 			goto free;
4410 		}
4411 
4412 		atomic_set(&scan_info.next_nsid, 0);
4413 		for (i = 0; i < nr_entries; i++) {
4414 			u32 nsid = le32_to_cpu(ns_list[i]);
4415 
4416 			if (!nsid)	/* end of the list? */
4417 				goto out;
4418 			async_schedule_domain(nvme_scan_ns_async, &scan_info,
4419 						&domain);
4420 			while (++prev < nsid)
4421 				nvme_ns_remove_by_nsid(ctrl, prev);
4422 		}
4423 		async_synchronize_full_domain(&domain);
4424 	}
4425  out:
4426 	nvme_remove_invalid_namespaces(ctrl, prev);
4427  free:
4428 	async_synchronize_full_domain(&domain);
4429 	kfree(ns_list);
4430 	return ret;
4431 }
4432 
nvme_scan_ns_sequential(struct nvme_ctrl * ctrl)4433 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
4434 {
4435 	struct nvme_id_ctrl *id;
4436 	u32 nn, i;
4437 
4438 	if (nvme_identify_ctrl(ctrl, &id))
4439 		return;
4440 	nn = le32_to_cpu(id->nn);
4441 	kfree(id);
4442 
4443 	for (i = 1; i <= nn; i++)
4444 		nvme_scan_ns(ctrl, i);
4445 
4446 	nvme_remove_invalid_namespaces(ctrl, nn);
4447 }
4448 
nvme_clear_changed_ns_log(struct nvme_ctrl * ctrl)4449 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
4450 {
4451 	size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
4452 	__le32 *log;
4453 	int error;
4454 
4455 	log = kzalloc(log_size, GFP_KERNEL);
4456 	if (!log)
4457 		return;
4458 
4459 	/*
4460 	 * We need to read the log to clear the AEN, but we don't want to rely
4461 	 * on it for the changed namespace information as userspace could have
4462 	 * raced with us in reading the log page, which could cause us to miss
4463 	 * updates.
4464 	 */
4465 	error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
4466 			NVME_CSI_NVM, log, log_size, 0);
4467 	if (error)
4468 		dev_warn(ctrl->device,
4469 			"reading changed ns log failed: %d\n", error);
4470 
4471 	kfree(log);
4472 }
4473 
nvme_scan_work(struct work_struct * work)4474 static void nvme_scan_work(struct work_struct *work)
4475 {
4476 	struct nvme_ctrl *ctrl =
4477 		container_of(work, struct nvme_ctrl, scan_work);
4478 	int ret;
4479 
4480 	/* No tagset on a live ctrl means IO queues could not created */
4481 	if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE || !ctrl->tagset)
4482 		return;
4483 
4484 	/*
4485 	 * Identify controller limits can change at controller reset due to
4486 	 * new firmware download, even though it is not common we cannot ignore
4487 	 * such scenario. Controller's non-mdts limits are reported in the unit
4488 	 * of logical blocks that is dependent on the format of attached
4489 	 * namespace. Hence re-read the limits at the time of ns allocation.
4490 	 */
4491 	ret = nvme_init_non_mdts_limits(ctrl);
4492 	if (ret < 0) {
4493 		dev_warn(ctrl->device,
4494 			"reading non-mdts-limits failed: %d\n", ret);
4495 		return;
4496 	}
4497 
4498 	if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
4499 		dev_info(ctrl->device, "rescanning namespaces.\n");
4500 		nvme_clear_changed_ns_log(ctrl);
4501 	}
4502 
4503 	mutex_lock(&ctrl->scan_lock);
4504 	if (!nvme_id_cns_ok(ctrl, NVME_ID_CNS_NS_ACTIVE_LIST)) {
4505 		nvme_scan_ns_sequential(ctrl);
4506 	} else {
4507 		/*
4508 		 * Fall back to sequential scan if DNR is set to handle broken
4509 		 * devices which should support Identify NS List (as per the VS
4510 		 * they report) but don't actually support it.
4511 		 */
4512 		ret = nvme_scan_ns_list(ctrl);
4513 		if (ret > 0 && ret & NVME_STATUS_DNR)
4514 			nvme_scan_ns_sequential(ctrl);
4515 	}
4516 	mutex_unlock(&ctrl->scan_lock);
4517 
4518 	/* Requeue if we have missed AENs */
4519 	if (test_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events))
4520 		nvme_queue_scan(ctrl);
4521 #ifdef CONFIG_NVME_MULTIPATH
4522 	else if (ctrl->ana_log_buf)
4523 		/* Re-read the ANA log page to not miss updates */
4524 		queue_work(nvme_wq, &ctrl->ana_work);
4525 #endif
4526 }
4527 
4528 /*
4529  * This function iterates the namespace list unlocked to allow recovery from
4530  * controller failure. It is up to the caller to ensure the namespace list is
4531  * not modified by scan work while this function is executing.
4532  */
nvme_remove_namespaces(struct nvme_ctrl * ctrl)4533 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
4534 {
4535 	struct nvme_ns *ns, *next;
4536 	LIST_HEAD(ns_list);
4537 
4538 	/*
4539 	 * make sure to requeue I/O to all namespaces as these
4540 	 * might result from the scan itself and must complete
4541 	 * for the scan_work to make progress
4542 	 */
4543 	nvme_mpath_clear_ctrl_paths(ctrl);
4544 
4545 	/*
4546 	 * Unquiesce io queues so any pending IO won't hang, especially
4547 	 * those submitted from scan work
4548 	 */
4549 	nvme_unquiesce_io_queues(ctrl);
4550 
4551 	/* prevent racing with ns scanning */
4552 	flush_work(&ctrl->scan_work);
4553 
4554 	/*
4555 	 * The dead states indicates the controller was not gracefully
4556 	 * disconnected. In that case, we won't be able to flush any data while
4557 	 * removing the namespaces' disks; fail all the queues now to avoid
4558 	 * potentially having to clean up the failed sync later.
4559 	 */
4560 	if (nvme_ctrl_state(ctrl) == NVME_CTRL_DEAD)
4561 		nvme_mark_namespaces_dead(ctrl);
4562 
4563 	/* this is a no-op when called from the controller reset handler */
4564 	nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
4565 
4566 	mutex_lock(&ctrl->namespaces_lock);
4567 	list_splice_init_rcu(&ctrl->namespaces, &ns_list, synchronize_rcu);
4568 	mutex_unlock(&ctrl->namespaces_lock);
4569 	synchronize_srcu(&ctrl->srcu);
4570 
4571 	list_for_each_entry_safe(ns, next, &ns_list, list)
4572 		nvme_ns_remove(ns);
4573 }
4574 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
4575 
nvme_class_uevent(const struct device * dev,struct kobj_uevent_env * env)4576 static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env)
4577 {
4578 	const struct nvme_ctrl *ctrl =
4579 		container_of(dev, struct nvme_ctrl, ctrl_device);
4580 	struct nvmf_ctrl_options *opts = ctrl->opts;
4581 	int ret;
4582 
4583 	ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
4584 	if (ret)
4585 		return ret;
4586 
4587 	if (opts) {
4588 		ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
4589 		if (ret)
4590 			return ret;
4591 
4592 		ret = add_uevent_var(env, "NVME_TRSVCID=%s",
4593 				opts->trsvcid ?: "none");
4594 		if (ret)
4595 			return ret;
4596 
4597 		ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
4598 				opts->host_traddr ?: "none");
4599 		if (ret)
4600 			return ret;
4601 
4602 		ret = add_uevent_var(env, "NVME_HOST_IFACE=%s",
4603 				opts->host_iface ?: "none");
4604 	}
4605 	return ret;
4606 }
4607 
nvme_change_uevent(struct nvme_ctrl * ctrl,char * envdata)4608 static void nvme_change_uevent(struct nvme_ctrl *ctrl, char *envdata)
4609 {
4610 	char *envp[2] = { envdata, NULL };
4611 
4612 	kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4613 }
4614 
nvme_aen_uevent(struct nvme_ctrl * ctrl)4615 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
4616 {
4617 	char *envp[2] = { NULL, NULL };
4618 	u32 aen_result = ctrl->aen_result;
4619 
4620 	ctrl->aen_result = 0;
4621 	if (!aen_result)
4622 		return;
4623 
4624 	envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
4625 	if (!envp[0])
4626 		return;
4627 	kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4628 	kfree(envp[0]);
4629 }
4630 
nvme_async_event_work(struct work_struct * work)4631 static void nvme_async_event_work(struct work_struct *work)
4632 {
4633 	struct nvme_ctrl *ctrl =
4634 		container_of(work, struct nvme_ctrl, async_event_work);
4635 
4636 	nvme_aen_uevent(ctrl);
4637 
4638 	/*
4639 	 * The transport drivers must guarantee AER submission here is safe by
4640 	 * flushing ctrl async_event_work after changing the controller state
4641 	 * from LIVE and before freeing the admin queue.
4642 	*/
4643 	if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE)
4644 		ctrl->ops->submit_async_event(ctrl);
4645 }
4646 
nvme_ctrl_pp_status(struct nvme_ctrl * ctrl)4647 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4648 {
4649 
4650 	u32 csts;
4651 
4652 	if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4653 		return false;
4654 
4655 	if (csts == ~0)
4656 		return false;
4657 
4658 	return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4659 }
4660 
nvme_get_fw_slot_info(struct nvme_ctrl * ctrl)4661 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4662 {
4663 	struct nvme_fw_slot_info_log *log;
4664 	u8 next_fw_slot, cur_fw_slot;
4665 
4666 	log = kmalloc(sizeof(*log), GFP_KERNEL);
4667 	if (!log)
4668 		return;
4669 
4670 	if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
4671 			 log, sizeof(*log), 0)) {
4672 		dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4673 		goto out_free_log;
4674 	}
4675 
4676 	cur_fw_slot = log->afi & 0x7;
4677 	next_fw_slot = (log->afi & 0x70) >> 4;
4678 	if (!cur_fw_slot || (next_fw_slot && (cur_fw_slot != next_fw_slot))) {
4679 		dev_info(ctrl->device,
4680 			 "Firmware is activated after next Controller Level Reset\n");
4681 		goto out_free_log;
4682 	}
4683 
4684 	memcpy(ctrl->subsys->firmware_rev, &log->frs[cur_fw_slot - 1],
4685 		sizeof(ctrl->subsys->firmware_rev));
4686 
4687 out_free_log:
4688 	kfree(log);
4689 }
4690 
nvme_fw_act_work(struct work_struct * work)4691 static void nvme_fw_act_work(struct work_struct *work)
4692 {
4693 	struct nvme_ctrl *ctrl = container_of(work,
4694 				struct nvme_ctrl, fw_act_work);
4695 	unsigned long fw_act_timeout;
4696 
4697 	nvme_auth_stop(ctrl);
4698 
4699 	if (ctrl->mtfa)
4700 		fw_act_timeout = jiffies + msecs_to_jiffies(ctrl->mtfa * 100);
4701 	else
4702 		fw_act_timeout = jiffies + secs_to_jiffies(admin_timeout);
4703 
4704 	nvme_quiesce_io_queues(ctrl);
4705 	while (nvme_ctrl_pp_status(ctrl)) {
4706 		if (time_after(jiffies, fw_act_timeout)) {
4707 			dev_warn(ctrl->device,
4708 				"Fw activation timeout, reset controller\n");
4709 			nvme_try_sched_reset(ctrl);
4710 			return;
4711 		}
4712 		msleep(100);
4713 	}
4714 
4715 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING) ||
4716 	    !nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4717 		return;
4718 
4719 	nvme_unquiesce_io_queues(ctrl);
4720 	/* read FW slot information to clear the AER */
4721 	nvme_get_fw_slot_info(ctrl);
4722 
4723 	queue_work(nvme_wq, &ctrl->async_event_work);
4724 }
4725 
nvme_aer_type(u32 result)4726 static u32 nvme_aer_type(u32 result)
4727 {
4728 	return result & 0x7;
4729 }
4730 
nvme_aer_subtype(u32 result)4731 static u32 nvme_aer_subtype(u32 result)
4732 {
4733 	return (result & 0xff00) >> 8;
4734 }
4735 
nvme_handle_aen_notice(struct nvme_ctrl * ctrl,u32 result)4736 static bool nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4737 {
4738 	u32 aer_notice_type = nvme_aer_subtype(result);
4739 	bool requeue = true;
4740 
4741 	switch (aer_notice_type) {
4742 	case NVME_AER_NOTICE_NS_CHANGED:
4743 		set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4744 		nvme_queue_scan(ctrl);
4745 		break;
4746 	case NVME_AER_NOTICE_FW_ACT_STARTING:
4747 		/*
4748 		 * We are (ab)using the RESETTING state to prevent subsequent
4749 		 * recovery actions from interfering with the controller's
4750 		 * firmware activation.
4751 		 */
4752 		if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) {
4753 			requeue = false;
4754 			queue_work(nvme_wq, &ctrl->fw_act_work);
4755 		}
4756 		break;
4757 #ifdef CONFIG_NVME_MULTIPATH
4758 	case NVME_AER_NOTICE_ANA:
4759 		if (!ctrl->ana_log_buf)
4760 			break;
4761 		queue_work(nvme_wq, &ctrl->ana_work);
4762 		break;
4763 #endif
4764 	case NVME_AER_NOTICE_DISC_CHANGED:
4765 		ctrl->aen_result = result;
4766 		break;
4767 	default:
4768 		dev_warn(ctrl->device, "async event result %08x\n", result);
4769 	}
4770 	return requeue;
4771 }
4772 
nvme_handle_aer_persistent_error(struct nvme_ctrl * ctrl)4773 static void nvme_handle_aer_persistent_error(struct nvme_ctrl *ctrl)
4774 {
4775 	dev_warn(ctrl->device,
4776 		"resetting controller due to persistent internal error\n");
4777 	nvme_reset_ctrl(ctrl);
4778 }
4779 
nvme_complete_async_event(struct nvme_ctrl * ctrl,__le16 status,volatile union nvme_result * res)4780 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4781 		volatile union nvme_result *res)
4782 {
4783 	u32 result = le32_to_cpu(res->u32);
4784 	u32 aer_type = nvme_aer_type(result);
4785 	u32 aer_subtype = nvme_aer_subtype(result);
4786 	bool requeue = true;
4787 
4788 	if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4789 		return;
4790 
4791 	trace_nvme_async_event(ctrl, result);
4792 	switch (aer_type) {
4793 	case NVME_AER_NOTICE:
4794 		requeue = nvme_handle_aen_notice(ctrl, result);
4795 		break;
4796 	case NVME_AER_ERROR:
4797 		/*
4798 		 * For a persistent internal error, don't run async_event_work
4799 		 * to submit a new AER. The controller reset will do it.
4800 		 */
4801 		if (aer_subtype == NVME_AER_ERROR_PERSIST_INT_ERR) {
4802 			nvme_handle_aer_persistent_error(ctrl);
4803 			return;
4804 		}
4805 		fallthrough;
4806 	case NVME_AER_SMART:
4807 	case NVME_AER_CSS:
4808 	case NVME_AER_VS:
4809 		ctrl->aen_result = result;
4810 		break;
4811 	default:
4812 		break;
4813 	}
4814 
4815 	if (requeue)
4816 		queue_work(nvme_wq, &ctrl->async_event_work);
4817 }
4818 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4819 
nvme_alloc_admin_tag_set(struct nvme_ctrl * ctrl,struct blk_mq_tag_set * set,const struct blk_mq_ops * ops,unsigned int cmd_size)4820 int nvme_alloc_admin_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
4821 		const struct blk_mq_ops *ops, unsigned int cmd_size)
4822 {
4823 	struct queue_limits lim = {};
4824 	int ret;
4825 
4826 	memset(set, 0, sizeof(*set));
4827 	set->ops = ops;
4828 	set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
4829 	if (ctrl->ops->flags & NVME_F_FABRICS)
4830 		/* Reserved for fabric connect and keep alive */
4831 		set->reserved_tags = 2;
4832 	set->numa_node = ctrl->numa_node;
4833 	if (ctrl->ops->flags & NVME_F_BLOCKING)
4834 		set->flags |= BLK_MQ_F_BLOCKING;
4835 	set->cmd_size = cmd_size;
4836 	set->driver_data = ctrl;
4837 	set->nr_hw_queues = 1;
4838 	set->timeout = NVME_ADMIN_TIMEOUT;
4839 	ret = blk_mq_alloc_tag_set(set);
4840 	if (ret)
4841 		return ret;
4842 
4843 	ctrl->admin_q = blk_mq_alloc_queue(set, &lim, NULL);
4844 	if (IS_ERR(ctrl->admin_q)) {
4845 		ret = PTR_ERR(ctrl->admin_q);
4846 		goto out_free_tagset;
4847 	}
4848 
4849 	if (ctrl->ops->flags & NVME_F_FABRICS) {
4850 		ctrl->fabrics_q = blk_mq_alloc_queue(set, NULL, NULL);
4851 		if (IS_ERR(ctrl->fabrics_q)) {
4852 			ret = PTR_ERR(ctrl->fabrics_q);
4853 			goto out_cleanup_admin_q;
4854 		}
4855 	}
4856 
4857 	ctrl->admin_tagset = set;
4858 	return 0;
4859 
4860 out_cleanup_admin_q:
4861 	blk_mq_destroy_queue(ctrl->admin_q);
4862 	blk_put_queue(ctrl->admin_q);
4863 out_free_tagset:
4864 	blk_mq_free_tag_set(set);
4865 	ctrl->admin_q = NULL;
4866 	ctrl->fabrics_q = NULL;
4867 	return ret;
4868 }
4869 EXPORT_SYMBOL_GPL(nvme_alloc_admin_tag_set);
4870 
nvme_remove_admin_tag_set(struct nvme_ctrl * ctrl)4871 void nvme_remove_admin_tag_set(struct nvme_ctrl *ctrl)
4872 {
4873 	/*
4874 	 * As we're about to destroy the queue and free tagset
4875 	 * we can not have keep-alive work running.
4876 	 */
4877 	nvme_stop_keep_alive(ctrl);
4878 	blk_mq_destroy_queue(ctrl->admin_q);
4879 	blk_put_queue(ctrl->admin_q);
4880 	if (ctrl->ops->flags & NVME_F_FABRICS) {
4881 		blk_mq_destroy_queue(ctrl->fabrics_q);
4882 		blk_put_queue(ctrl->fabrics_q);
4883 	}
4884 	blk_mq_free_tag_set(ctrl->admin_tagset);
4885 }
4886 EXPORT_SYMBOL_GPL(nvme_remove_admin_tag_set);
4887 
nvme_alloc_io_tag_set(struct nvme_ctrl * ctrl,struct blk_mq_tag_set * set,const struct blk_mq_ops * ops,unsigned int nr_maps,unsigned int cmd_size)4888 int nvme_alloc_io_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
4889 		const struct blk_mq_ops *ops, unsigned int nr_maps,
4890 		unsigned int cmd_size)
4891 {
4892 	int ret;
4893 
4894 	memset(set, 0, sizeof(*set));
4895 	set->ops = ops;
4896 	set->queue_depth = min_t(unsigned, ctrl->sqsize, BLK_MQ_MAX_DEPTH - 1);
4897 	/*
4898 	 * Some Apple controllers requires tags to be unique across admin and
4899 	 * the (only) I/O queue, so reserve the first 32 tags of the I/O queue.
4900 	 */
4901 	if (ctrl->quirks & NVME_QUIRK_SHARED_TAGS)
4902 		set->reserved_tags = NVME_AQ_DEPTH;
4903 	else if (ctrl->ops->flags & NVME_F_FABRICS)
4904 		/* Reserved for fabric connect */
4905 		set->reserved_tags = 1;
4906 	set->numa_node = ctrl->numa_node;
4907 	if (ctrl->ops->flags & NVME_F_BLOCKING)
4908 		set->flags |= BLK_MQ_F_BLOCKING;
4909 	set->cmd_size = cmd_size;
4910 	set->driver_data = ctrl;
4911 	set->nr_hw_queues = ctrl->queue_count - 1;
4912 	set->timeout = NVME_IO_TIMEOUT;
4913 	set->nr_maps = nr_maps;
4914 	ret = blk_mq_alloc_tag_set(set);
4915 	if (ret)
4916 		return ret;
4917 
4918 	if (ctrl->ops->flags & NVME_F_FABRICS) {
4919 		struct queue_limits lim = {
4920 			.features	= BLK_FEAT_SKIP_TAGSET_QUIESCE,
4921 		};
4922 
4923 		ctrl->connect_q = blk_mq_alloc_queue(set, &lim, NULL);
4924         	if (IS_ERR(ctrl->connect_q)) {
4925 			ret = PTR_ERR(ctrl->connect_q);
4926 			goto out_free_tag_set;
4927 		}
4928 	}
4929 
4930 	ctrl->tagset = set;
4931 	return 0;
4932 
4933 out_free_tag_set:
4934 	blk_mq_free_tag_set(set);
4935 	ctrl->connect_q = NULL;
4936 	return ret;
4937 }
4938 EXPORT_SYMBOL_GPL(nvme_alloc_io_tag_set);
4939 
nvme_remove_io_tag_set(struct nvme_ctrl * ctrl)4940 void nvme_remove_io_tag_set(struct nvme_ctrl *ctrl)
4941 {
4942 	if (ctrl->ops->flags & NVME_F_FABRICS) {
4943 		blk_mq_destroy_queue(ctrl->connect_q);
4944 		blk_put_queue(ctrl->connect_q);
4945 	}
4946 	blk_mq_free_tag_set(ctrl->tagset);
4947 }
4948 EXPORT_SYMBOL_GPL(nvme_remove_io_tag_set);
4949 
nvme_stop_ctrl(struct nvme_ctrl * ctrl)4950 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4951 {
4952 	nvme_mpath_stop(ctrl);
4953 	nvme_auth_stop(ctrl);
4954 	nvme_stop_failfast_work(ctrl);
4955 	flush_work(&ctrl->async_event_work);
4956 	cancel_work_sync(&ctrl->fw_act_work);
4957 	if (ctrl->ops->stop_ctrl)
4958 		ctrl->ops->stop_ctrl(ctrl);
4959 }
4960 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4961 
nvme_start_ctrl(struct nvme_ctrl * ctrl)4962 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4963 {
4964 	nvme_enable_aen(ctrl);
4965 
4966 	/*
4967 	 * persistent discovery controllers need to send indication to userspace
4968 	 * to re-read the discovery log page to learn about possible changes
4969 	 * that were missed. We identify persistent discovery controllers by
4970 	 * checking that they started once before, hence are reconnecting back.
4971 	 */
4972 	if (test_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags) &&
4973 	    nvme_discovery_ctrl(ctrl))
4974 		nvme_change_uevent(ctrl, "NVME_EVENT=rediscover");
4975 
4976 	if (ctrl->queue_count > 1) {
4977 		nvme_queue_scan(ctrl);
4978 		nvme_unquiesce_io_queues(ctrl);
4979 		nvme_mpath_update(ctrl);
4980 	}
4981 
4982 	nvme_change_uevent(ctrl, "NVME_EVENT=connected");
4983 	set_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags);
4984 }
4985 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4986 
nvme_uninit_ctrl(struct nvme_ctrl * ctrl)4987 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4988 {
4989 	nvme_stop_keep_alive(ctrl);
4990 	nvme_hwmon_exit(ctrl);
4991 	nvme_fault_inject_fini(&ctrl->fault_inject);
4992 	dev_pm_qos_hide_latency_tolerance(ctrl->device);
4993 	cdev_device_del(&ctrl->cdev, ctrl->device);
4994 	nvme_put_ctrl(ctrl);
4995 }
4996 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4997 
nvme_free_cels(struct nvme_ctrl * ctrl)4998 static void nvme_free_cels(struct nvme_ctrl *ctrl)
4999 {
5000 	struct nvme_effects_log	*cel;
5001 	unsigned long i;
5002 
5003 	xa_for_each(&ctrl->cels, i, cel) {
5004 		xa_erase(&ctrl->cels, i);
5005 		kfree(cel);
5006 	}
5007 
5008 	xa_destroy(&ctrl->cels);
5009 }
5010 
nvme_free_ctrl(struct device * dev)5011 static void nvme_free_ctrl(struct device *dev)
5012 {
5013 	struct nvme_ctrl *ctrl =
5014 		container_of(dev, struct nvme_ctrl, ctrl_device);
5015 	struct nvme_subsystem *subsys = ctrl->subsys;
5016 
5017 	if (!subsys || ctrl->instance != subsys->instance)
5018 		ida_free(&nvme_instance_ida, ctrl->instance);
5019 	nvme_free_cels(ctrl);
5020 	nvme_mpath_uninit(ctrl);
5021 	cleanup_srcu_struct(&ctrl->srcu);
5022 	nvme_auth_stop(ctrl);
5023 	nvme_auth_free(ctrl);
5024 	__free_page(ctrl->discard_page);
5025 	free_opal_dev(ctrl->opal_dev);
5026 
5027 	if (subsys) {
5028 		mutex_lock(&nvme_subsystems_lock);
5029 		list_del(&ctrl->subsys_entry);
5030 		sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
5031 		mutex_unlock(&nvme_subsystems_lock);
5032 	}
5033 
5034 	ctrl->ops->free_ctrl(ctrl);
5035 
5036 	if (subsys)
5037 		nvme_put_subsystem(subsys);
5038 }
5039 
5040 /*
5041  * Initialize a NVMe controller structures.  This needs to be called during
5042  * earliest initialization so that we have the initialized structured around
5043  * during probing.
5044  *
5045  * On success, the caller must use the nvme_put_ctrl() to release this when
5046  * needed, which also invokes the ops->free_ctrl() callback.
5047  */
nvme_init_ctrl(struct nvme_ctrl * ctrl,struct device * dev,const struct nvme_ctrl_ops * ops,unsigned long quirks)5048 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
5049 		const struct nvme_ctrl_ops *ops, unsigned long quirks)
5050 {
5051 	int ret;
5052 
5053 	WRITE_ONCE(ctrl->state, NVME_CTRL_NEW);
5054 	ctrl->passthru_err_log_enabled = false;
5055 	clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
5056 	spin_lock_init(&ctrl->lock);
5057 	mutex_init(&ctrl->namespaces_lock);
5058 
5059 	ret = init_srcu_struct(&ctrl->srcu);
5060 	if (ret)
5061 		return ret;
5062 
5063 	mutex_init(&ctrl->scan_lock);
5064 	INIT_LIST_HEAD(&ctrl->namespaces);
5065 	xa_init(&ctrl->cels);
5066 	ctrl->dev = dev;
5067 	ctrl->ops = ops;
5068 	ctrl->quirks = quirks;
5069 	ctrl->numa_node = NUMA_NO_NODE;
5070 	INIT_WORK(&ctrl->scan_work, nvme_scan_work);
5071 	INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
5072 	INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
5073 	INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
5074 	init_waitqueue_head(&ctrl->state_wq);
5075 
5076 	INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
5077 	INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work);
5078 	memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
5079 	ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
5080 	ctrl->ka_last_check_time = jiffies;
5081 
5082 	BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
5083 			PAGE_SIZE);
5084 	ctrl->discard_page = alloc_page(GFP_KERNEL);
5085 	if (!ctrl->discard_page) {
5086 		ret = -ENOMEM;
5087 		goto out;
5088 	}
5089 
5090 	ret = ida_alloc(&nvme_instance_ida, GFP_KERNEL);
5091 	if (ret < 0)
5092 		goto out;
5093 	ctrl->instance = ret;
5094 
5095 	ret = nvme_auth_init_ctrl(ctrl);
5096 	if (ret)
5097 		goto out_release_instance;
5098 
5099 	nvme_mpath_init_ctrl(ctrl);
5100 
5101 	device_initialize(&ctrl->ctrl_device);
5102 	ctrl->device = &ctrl->ctrl_device;
5103 	ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt),
5104 			ctrl->instance);
5105 	ctrl->device->class = &nvme_class;
5106 	ctrl->device->parent = ctrl->dev;
5107 	if (ops->dev_attr_groups)
5108 		ctrl->device->groups = ops->dev_attr_groups;
5109 	else
5110 		ctrl->device->groups = nvme_dev_attr_groups;
5111 	ctrl->device->release = nvme_free_ctrl;
5112 	dev_set_drvdata(ctrl->device, ctrl);
5113 
5114 	return ret;
5115 
5116 out_release_instance:
5117 	ida_free(&nvme_instance_ida, ctrl->instance);
5118 out:
5119 	if (ctrl->discard_page)
5120 		__free_page(ctrl->discard_page);
5121 	cleanup_srcu_struct(&ctrl->srcu);
5122 	return ret;
5123 }
5124 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
5125 
5126 /*
5127  * On success, returns with an elevated controller reference and caller must
5128  * use nvme_uninit_ctrl() to properly free resources associated with the ctrl.
5129  */
nvme_add_ctrl(struct nvme_ctrl * ctrl)5130 int nvme_add_ctrl(struct nvme_ctrl *ctrl)
5131 {
5132 	int ret;
5133 
5134 	ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
5135 	if (ret)
5136 		return ret;
5137 
5138 	cdev_init(&ctrl->cdev, &nvme_dev_fops);
5139 	ctrl->cdev.owner = ctrl->ops->module;
5140 	ret = cdev_device_add(&ctrl->cdev, ctrl->device);
5141 	if (ret)
5142 		return ret;
5143 
5144 	/*
5145 	 * Initialize latency tolerance controls.  The sysfs files won't
5146 	 * be visible to userspace unless the device actually supports APST.
5147 	 */
5148 	ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
5149 	dev_pm_qos_update_user_latency_tolerance(ctrl->device,
5150 		min(default_ps_max_latency_us, (unsigned long)S32_MAX));
5151 
5152 	nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
5153 	nvme_get_ctrl(ctrl);
5154 
5155 	return 0;
5156 }
5157 EXPORT_SYMBOL_GPL(nvme_add_ctrl);
5158 
5159 /* let I/O to all namespaces fail in preparation for surprise removal */
nvme_mark_namespaces_dead(struct nvme_ctrl * ctrl)5160 void nvme_mark_namespaces_dead(struct nvme_ctrl *ctrl)
5161 {
5162 	struct nvme_ns *ns;
5163 	int srcu_idx;
5164 
5165 	srcu_idx = srcu_read_lock(&ctrl->srcu);
5166 	list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
5167 				 srcu_read_lock_held(&ctrl->srcu))
5168 		blk_mark_disk_dead(ns->disk);
5169 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
5170 }
5171 EXPORT_SYMBOL_GPL(nvme_mark_namespaces_dead);
5172 
nvme_unfreeze(struct nvme_ctrl * ctrl)5173 void nvme_unfreeze(struct nvme_ctrl *ctrl)
5174 {
5175 	struct nvme_ns *ns;
5176 	int srcu_idx;
5177 
5178 	srcu_idx = srcu_read_lock(&ctrl->srcu);
5179 	list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
5180 				 srcu_read_lock_held(&ctrl->srcu))
5181 		blk_mq_unfreeze_queue_non_owner(ns->queue);
5182 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
5183 	clear_bit(NVME_CTRL_FROZEN, &ctrl->flags);
5184 }
5185 EXPORT_SYMBOL_GPL(nvme_unfreeze);
5186 
nvme_wait_freeze_timeout(struct nvme_ctrl * ctrl,long timeout)5187 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
5188 {
5189 	struct nvme_ns *ns;
5190 	int srcu_idx;
5191 
5192 	srcu_idx = srcu_read_lock(&ctrl->srcu);
5193 	list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
5194 				 srcu_read_lock_held(&ctrl->srcu)) {
5195 		timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
5196 		if (timeout <= 0)
5197 			break;
5198 	}
5199 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
5200 	return timeout;
5201 }
5202 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
5203 
nvme_wait_freeze(struct nvme_ctrl * ctrl)5204 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
5205 {
5206 	struct nvme_ns *ns;
5207 	int srcu_idx;
5208 
5209 	srcu_idx = srcu_read_lock(&ctrl->srcu);
5210 	list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
5211 				 srcu_read_lock_held(&ctrl->srcu))
5212 		blk_mq_freeze_queue_wait(ns->queue);
5213 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
5214 }
5215 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
5216 
nvme_start_freeze(struct nvme_ctrl * ctrl)5217 void nvme_start_freeze(struct nvme_ctrl *ctrl)
5218 {
5219 	struct nvme_ns *ns;
5220 	int srcu_idx;
5221 
5222 	set_bit(NVME_CTRL_FROZEN, &ctrl->flags);
5223 	srcu_idx = srcu_read_lock(&ctrl->srcu);
5224 	list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
5225 				 srcu_read_lock_held(&ctrl->srcu))
5226 		/*
5227 		 * Typical non_owner use case is from pci driver, in which
5228 		 * start_freeze is called from timeout work function, but
5229 		 * unfreeze is done in reset work context
5230 		 */
5231 		blk_freeze_queue_start_non_owner(ns->queue);
5232 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
5233 }
5234 EXPORT_SYMBOL_GPL(nvme_start_freeze);
5235 
nvme_quiesce_io_queues(struct nvme_ctrl * ctrl)5236 void nvme_quiesce_io_queues(struct nvme_ctrl *ctrl)
5237 {
5238 	if (!ctrl->tagset)
5239 		return;
5240 	if (!test_and_set_bit(NVME_CTRL_STOPPED, &ctrl->flags))
5241 		blk_mq_quiesce_tagset(ctrl->tagset);
5242 	else
5243 		blk_mq_wait_quiesce_done(ctrl->tagset);
5244 }
5245 EXPORT_SYMBOL_GPL(nvme_quiesce_io_queues);
5246 
nvme_unquiesce_io_queues(struct nvme_ctrl * ctrl)5247 void nvme_unquiesce_io_queues(struct nvme_ctrl *ctrl)
5248 {
5249 	if (!ctrl->tagset)
5250 		return;
5251 	if (test_and_clear_bit(NVME_CTRL_STOPPED, &ctrl->flags))
5252 		blk_mq_unquiesce_tagset(ctrl->tagset);
5253 }
5254 EXPORT_SYMBOL_GPL(nvme_unquiesce_io_queues);
5255 
nvme_quiesce_admin_queue(struct nvme_ctrl * ctrl)5256 void nvme_quiesce_admin_queue(struct nvme_ctrl *ctrl)
5257 {
5258 	if (!test_and_set_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
5259 		blk_mq_quiesce_queue(ctrl->admin_q);
5260 	else
5261 		blk_mq_wait_quiesce_done(ctrl->admin_q->tag_set);
5262 }
5263 EXPORT_SYMBOL_GPL(nvme_quiesce_admin_queue);
5264 
nvme_unquiesce_admin_queue(struct nvme_ctrl * ctrl)5265 void nvme_unquiesce_admin_queue(struct nvme_ctrl *ctrl)
5266 {
5267 	if (test_and_clear_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
5268 		blk_mq_unquiesce_queue(ctrl->admin_q);
5269 }
5270 EXPORT_SYMBOL_GPL(nvme_unquiesce_admin_queue);
5271 
nvme_sync_io_queues(struct nvme_ctrl * ctrl)5272 void nvme_sync_io_queues(struct nvme_ctrl *ctrl)
5273 {
5274 	struct nvme_ns *ns;
5275 	int srcu_idx;
5276 
5277 	srcu_idx = srcu_read_lock(&ctrl->srcu);
5278 	list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
5279 				 srcu_read_lock_held(&ctrl->srcu))
5280 		blk_sync_queue(ns->queue);
5281 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
5282 }
5283 EXPORT_SYMBOL_GPL(nvme_sync_io_queues);
5284 
nvme_sync_queues(struct nvme_ctrl * ctrl)5285 void nvme_sync_queues(struct nvme_ctrl *ctrl)
5286 {
5287 	nvme_sync_io_queues(ctrl);
5288 	if (ctrl->admin_q)
5289 		blk_sync_queue(ctrl->admin_q);
5290 }
5291 EXPORT_SYMBOL_GPL(nvme_sync_queues);
5292 
nvme_ctrl_from_file(struct file * file)5293 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
5294 {
5295 	if (file->f_op != &nvme_dev_fops)
5296 		return NULL;
5297 	return file->private_data;
5298 }
5299 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, "NVME_TARGET_PASSTHRU");
5300 
5301 /*
5302  * Check we didn't inadvertently grow the command structure sizes:
5303  */
_nvme_check_size(void)5304 static inline void _nvme_check_size(void)
5305 {
5306 	BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
5307 	BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
5308 	BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
5309 	BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
5310 	BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
5311 	BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
5312 	BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
5313 	BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
5314 	BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
5315 	BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
5316 	BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
5317 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
5318 	BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
5319 	BUILD_BUG_ON(sizeof(struct nvme_id_ns_cs_indep) !=
5320 			NVME_IDENTIFY_DATA_SIZE);
5321 	BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
5322 	BUILD_BUG_ON(sizeof(struct nvme_id_ns_nvm) != NVME_IDENTIFY_DATA_SIZE);
5323 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
5324 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE);
5325 	BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
5326 	BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
5327 	BUILD_BUG_ON(sizeof(struct nvme_endurance_group_log) != 512);
5328 	BUILD_BUG_ON(sizeof(struct nvme_rotational_media_log) != 512);
5329 	BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
5330 	BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
5331 	BUILD_BUG_ON(sizeof(struct nvme_feat_host_behavior) != 512);
5332 }
5333 
5334 
nvme_core_init(void)5335 static int __init nvme_core_init(void)
5336 {
5337 	unsigned int wq_flags = WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS;
5338 	int result = -ENOMEM;
5339 
5340 	_nvme_check_size();
5341 
5342 	nvme_wq = alloc_workqueue("nvme-wq", wq_flags, 0);
5343 	if (!nvme_wq)
5344 		goto out;
5345 
5346 	nvme_reset_wq = alloc_workqueue("nvme-reset-wq", wq_flags, 0);
5347 	if (!nvme_reset_wq)
5348 		goto destroy_wq;
5349 
5350 	nvme_delete_wq = alloc_workqueue("nvme-delete-wq", wq_flags, 0);
5351 	if (!nvme_delete_wq)
5352 		goto destroy_reset_wq;
5353 
5354 	result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0,
5355 			NVME_MINORS, "nvme");
5356 	if (result < 0)
5357 		goto destroy_delete_wq;
5358 
5359 	result = class_register(&nvme_class);
5360 	if (result)
5361 		goto unregister_chrdev;
5362 
5363 	result = class_register(&nvme_subsys_class);
5364 	if (result)
5365 		goto destroy_class;
5366 
5367 	result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS,
5368 				     "nvme-generic");
5369 	if (result < 0)
5370 		goto destroy_subsys_class;
5371 
5372 	result = class_register(&nvme_ns_chr_class);
5373 	if (result)
5374 		goto unregister_generic_ns;
5375 
5376 	result = nvme_init_auth();
5377 	if (result)
5378 		goto destroy_ns_chr;
5379 	return 0;
5380 
5381 destroy_ns_chr:
5382 	class_unregister(&nvme_ns_chr_class);
5383 unregister_generic_ns:
5384 	unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
5385 destroy_subsys_class:
5386 	class_unregister(&nvme_subsys_class);
5387 destroy_class:
5388 	class_unregister(&nvme_class);
5389 unregister_chrdev:
5390 	unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
5391 destroy_delete_wq:
5392 	destroy_workqueue(nvme_delete_wq);
5393 destroy_reset_wq:
5394 	destroy_workqueue(nvme_reset_wq);
5395 destroy_wq:
5396 	destroy_workqueue(nvme_wq);
5397 out:
5398 	return result;
5399 }
5400 
nvme_core_exit(void)5401 static void __exit nvme_core_exit(void)
5402 {
5403 	nvme_exit_auth();
5404 	class_unregister(&nvme_ns_chr_class);
5405 	class_unregister(&nvme_subsys_class);
5406 	class_unregister(&nvme_class);
5407 	unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
5408 	unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
5409 	destroy_workqueue(nvme_delete_wq);
5410 	destroy_workqueue(nvme_reset_wq);
5411 	destroy_workqueue(nvme_wq);
5412 	ida_destroy(&nvme_ns_chr_minor_ida);
5413 	ida_destroy(&nvme_instance_ida);
5414 }
5415 
5416 MODULE_LICENSE("GPL");
5417 MODULE_VERSION("1.0");
5418 MODULE_DESCRIPTION("NVMe host core framework");
5419 module_init(nvme_core_init);
5420 module_exit(nvme_core_exit);
5421