xref: /linux/drivers/nvme/common/auth.c (revision 9b960d8cd6f712cb2c03e2bdd4d5ca058238037f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2020 Hannes Reinecke, SUSE Linux
4  */
5 
6 #include <linux/module.h>
7 #include <linux/crc32.h>
8 #include <linux/base64.h>
9 #include <linux/prandom.h>
10 #include <linux/scatterlist.h>
11 #include <linux/unaligned.h>
12 #include <crypto/hash.h>
13 #include <crypto/dh.h>
14 #include <crypto/hkdf.h>
15 #include <linux/nvme.h>
16 #include <linux/nvme-auth.h>
17 
18 #define HKDF_MAX_HASHLEN 64
19 
20 static u32 nvme_dhchap_seqnum;
21 static DEFINE_MUTEX(nvme_dhchap_mutex);
22 
nvme_auth_get_seqnum(void)23 u32 nvme_auth_get_seqnum(void)
24 {
25 	u32 seqnum;
26 
27 	mutex_lock(&nvme_dhchap_mutex);
28 	if (!nvme_dhchap_seqnum)
29 		nvme_dhchap_seqnum = get_random_u32();
30 	else {
31 		nvme_dhchap_seqnum++;
32 		if (!nvme_dhchap_seqnum)
33 			nvme_dhchap_seqnum++;
34 	}
35 	seqnum = nvme_dhchap_seqnum;
36 	mutex_unlock(&nvme_dhchap_mutex);
37 	return seqnum;
38 }
39 EXPORT_SYMBOL_GPL(nvme_auth_get_seqnum);
40 
41 static struct nvme_auth_dhgroup_map {
42 	const char name[16];
43 	const char kpp[16];
44 } dhgroup_map[] = {
45 	[NVME_AUTH_DHGROUP_NULL] = {
46 		.name = "null", .kpp = "null" },
47 	[NVME_AUTH_DHGROUP_2048] = {
48 		.name = "ffdhe2048", .kpp = "ffdhe2048(dh)" },
49 	[NVME_AUTH_DHGROUP_3072] = {
50 		.name = "ffdhe3072", .kpp = "ffdhe3072(dh)" },
51 	[NVME_AUTH_DHGROUP_4096] = {
52 		.name = "ffdhe4096", .kpp = "ffdhe4096(dh)" },
53 	[NVME_AUTH_DHGROUP_6144] = {
54 		.name = "ffdhe6144", .kpp = "ffdhe6144(dh)" },
55 	[NVME_AUTH_DHGROUP_8192] = {
56 		.name = "ffdhe8192", .kpp = "ffdhe8192(dh)" },
57 };
58 
nvme_auth_dhgroup_name(u8 dhgroup_id)59 const char *nvme_auth_dhgroup_name(u8 dhgroup_id)
60 {
61 	if (dhgroup_id >= ARRAY_SIZE(dhgroup_map))
62 		return NULL;
63 	return dhgroup_map[dhgroup_id].name;
64 }
65 EXPORT_SYMBOL_GPL(nvme_auth_dhgroup_name);
66 
nvme_auth_dhgroup_kpp(u8 dhgroup_id)67 const char *nvme_auth_dhgroup_kpp(u8 dhgroup_id)
68 {
69 	if (dhgroup_id >= ARRAY_SIZE(dhgroup_map))
70 		return NULL;
71 	return dhgroup_map[dhgroup_id].kpp;
72 }
73 EXPORT_SYMBOL_GPL(nvme_auth_dhgroup_kpp);
74 
nvme_auth_dhgroup_id(const char * dhgroup_name)75 u8 nvme_auth_dhgroup_id(const char *dhgroup_name)
76 {
77 	int i;
78 
79 	if (!dhgroup_name || !strlen(dhgroup_name))
80 		return NVME_AUTH_DHGROUP_INVALID;
81 	for (i = 0; i < ARRAY_SIZE(dhgroup_map); i++) {
82 		if (!strlen(dhgroup_map[i].name))
83 			continue;
84 		if (!strncmp(dhgroup_map[i].name, dhgroup_name,
85 			     strlen(dhgroup_map[i].name)))
86 			return i;
87 	}
88 	return NVME_AUTH_DHGROUP_INVALID;
89 }
90 EXPORT_SYMBOL_GPL(nvme_auth_dhgroup_id);
91 
92 static struct nvme_dhchap_hash_map {
93 	int len;
94 	const char hmac[15];
95 	const char digest[8];
96 } hash_map[] = {
97 	[NVME_AUTH_HASH_SHA256] = {
98 		.len = 32,
99 		.hmac = "hmac(sha256)",
100 		.digest = "sha256",
101 	},
102 	[NVME_AUTH_HASH_SHA384] = {
103 		.len = 48,
104 		.hmac = "hmac(sha384)",
105 		.digest = "sha384",
106 	},
107 	[NVME_AUTH_HASH_SHA512] = {
108 		.len = 64,
109 		.hmac = "hmac(sha512)",
110 		.digest = "sha512",
111 	},
112 };
113 
nvme_auth_hmac_name(u8 hmac_id)114 const char *nvme_auth_hmac_name(u8 hmac_id)
115 {
116 	if (hmac_id >= ARRAY_SIZE(hash_map))
117 		return NULL;
118 	return hash_map[hmac_id].hmac;
119 }
120 EXPORT_SYMBOL_GPL(nvme_auth_hmac_name);
121 
nvme_auth_digest_name(u8 hmac_id)122 const char *nvme_auth_digest_name(u8 hmac_id)
123 {
124 	if (hmac_id >= ARRAY_SIZE(hash_map))
125 		return NULL;
126 	return hash_map[hmac_id].digest;
127 }
128 EXPORT_SYMBOL_GPL(nvme_auth_digest_name);
129 
nvme_auth_hmac_id(const char * hmac_name)130 u8 nvme_auth_hmac_id(const char *hmac_name)
131 {
132 	int i;
133 
134 	if (!hmac_name || !strlen(hmac_name))
135 		return NVME_AUTH_HASH_INVALID;
136 
137 	for (i = 0; i < ARRAY_SIZE(hash_map); i++) {
138 		if (!strlen(hash_map[i].hmac))
139 			continue;
140 		if (!strncmp(hash_map[i].hmac, hmac_name,
141 			     strlen(hash_map[i].hmac)))
142 			return i;
143 	}
144 	return NVME_AUTH_HASH_INVALID;
145 }
146 EXPORT_SYMBOL_GPL(nvme_auth_hmac_id);
147 
nvme_auth_hmac_hash_len(u8 hmac_id)148 size_t nvme_auth_hmac_hash_len(u8 hmac_id)
149 {
150 	if (hmac_id >= ARRAY_SIZE(hash_map))
151 		return 0;
152 	return hash_map[hmac_id].len;
153 }
154 EXPORT_SYMBOL_GPL(nvme_auth_hmac_hash_len);
155 
nvme_auth_key_struct_size(u32 key_len)156 u32 nvme_auth_key_struct_size(u32 key_len)
157 {
158 	struct nvme_dhchap_key key;
159 
160 	return struct_size(&key, key, key_len);
161 }
162 EXPORT_SYMBOL_GPL(nvme_auth_key_struct_size);
163 
nvme_auth_extract_key(unsigned char * secret,u8 key_hash)164 struct nvme_dhchap_key *nvme_auth_extract_key(unsigned char *secret,
165 					      u8 key_hash)
166 {
167 	struct nvme_dhchap_key *key;
168 	unsigned char *p;
169 	u32 crc;
170 	int ret, key_len;
171 	size_t allocated_len = strlen(secret);
172 
173 	/* Secret might be affixed with a ':' */
174 	p = strrchr(secret, ':');
175 	if (p)
176 		allocated_len = p - secret;
177 	key = nvme_auth_alloc_key(allocated_len, 0);
178 	if (!key)
179 		return ERR_PTR(-ENOMEM);
180 
181 	key_len = base64_decode(secret, allocated_len, key->key);
182 	if (key_len < 0) {
183 		pr_debug("base64 key decoding error %d\n",
184 			 key_len);
185 		ret = key_len;
186 		goto out_free_secret;
187 	}
188 
189 	if (key_len != 36 && key_len != 52 &&
190 	    key_len != 68) {
191 		pr_err("Invalid key len %d\n", key_len);
192 		ret = -EINVAL;
193 		goto out_free_secret;
194 	}
195 
196 	/* The last four bytes is the CRC in little-endian format */
197 	key_len -= 4;
198 	/*
199 	 * The linux implementation doesn't do pre- and post-increments,
200 	 * so we have to do it manually.
201 	 */
202 	crc = ~crc32(~0, key->key, key_len);
203 
204 	if (get_unaligned_le32(key->key + key_len) != crc) {
205 		pr_err("key crc mismatch (key %08x, crc %08x)\n",
206 		       get_unaligned_le32(key->key + key_len), crc);
207 		ret = -EKEYREJECTED;
208 		goto out_free_secret;
209 	}
210 	key->len = key_len;
211 	key->hash = key_hash;
212 	return key;
213 out_free_secret:
214 	nvme_auth_free_key(key);
215 	return ERR_PTR(ret);
216 }
217 EXPORT_SYMBOL_GPL(nvme_auth_extract_key);
218 
nvme_auth_alloc_key(u32 len,u8 hash)219 struct nvme_dhchap_key *nvme_auth_alloc_key(u32 len, u8 hash)
220 {
221 	u32 num_bytes = nvme_auth_key_struct_size(len);
222 	struct nvme_dhchap_key *key = kzalloc(num_bytes, GFP_KERNEL);
223 
224 	if (key) {
225 		key->len = len;
226 		key->hash = hash;
227 	}
228 	return key;
229 }
230 EXPORT_SYMBOL_GPL(nvme_auth_alloc_key);
231 
nvme_auth_free_key(struct nvme_dhchap_key * key)232 void nvme_auth_free_key(struct nvme_dhchap_key *key)
233 {
234 	if (!key)
235 		return;
236 	kfree_sensitive(key);
237 }
238 EXPORT_SYMBOL_GPL(nvme_auth_free_key);
239 
nvme_auth_transform_key(struct nvme_dhchap_key * key,char * nqn)240 struct nvme_dhchap_key *nvme_auth_transform_key(
241 		struct nvme_dhchap_key *key, char *nqn)
242 {
243 	const char *hmac_name;
244 	struct crypto_shash *key_tfm;
245 	struct shash_desc *shash;
246 	struct nvme_dhchap_key *transformed_key;
247 	int ret, key_len;
248 
249 	if (!key) {
250 		pr_warn("No key specified\n");
251 		return ERR_PTR(-ENOKEY);
252 	}
253 	if (key->hash == 0) {
254 		key_len = nvme_auth_key_struct_size(key->len);
255 		transformed_key = kmemdup(key, key_len, GFP_KERNEL);
256 		if (!transformed_key)
257 			return ERR_PTR(-ENOMEM);
258 		return transformed_key;
259 	}
260 	hmac_name = nvme_auth_hmac_name(key->hash);
261 	if (!hmac_name) {
262 		pr_warn("Invalid key hash id %d\n", key->hash);
263 		return ERR_PTR(-EINVAL);
264 	}
265 
266 	key_tfm = crypto_alloc_shash(hmac_name, 0, 0);
267 	if (IS_ERR(key_tfm))
268 		return ERR_CAST(key_tfm);
269 
270 	shash = kmalloc(sizeof(struct shash_desc) +
271 			crypto_shash_descsize(key_tfm),
272 			GFP_KERNEL);
273 	if (!shash) {
274 		ret = -ENOMEM;
275 		goto out_free_key;
276 	}
277 
278 	key_len = crypto_shash_digestsize(key_tfm);
279 	transformed_key = nvme_auth_alloc_key(key_len, key->hash);
280 	if (!transformed_key) {
281 		ret = -ENOMEM;
282 		goto out_free_shash;
283 	}
284 
285 	shash->tfm = key_tfm;
286 	ret = crypto_shash_setkey(key_tfm, key->key, key->len);
287 	if (ret < 0)
288 		goto out_free_transformed_key;
289 	ret = crypto_shash_init(shash);
290 	if (ret < 0)
291 		goto out_free_transformed_key;
292 	ret = crypto_shash_update(shash, nqn, strlen(nqn));
293 	if (ret < 0)
294 		goto out_free_transformed_key;
295 	ret = crypto_shash_update(shash, "NVMe-over-Fabrics", 17);
296 	if (ret < 0)
297 		goto out_free_transformed_key;
298 	ret = crypto_shash_final(shash, transformed_key->key);
299 	if (ret < 0)
300 		goto out_free_transformed_key;
301 
302 	kfree(shash);
303 	crypto_free_shash(key_tfm);
304 
305 	return transformed_key;
306 
307 out_free_transformed_key:
308 	nvme_auth_free_key(transformed_key);
309 out_free_shash:
310 	kfree(shash);
311 out_free_key:
312 	crypto_free_shash(key_tfm);
313 
314 	return ERR_PTR(ret);
315 }
316 EXPORT_SYMBOL_GPL(nvme_auth_transform_key);
317 
nvme_auth_hash_skey(int hmac_id,u8 * skey,size_t skey_len,u8 * hkey)318 static int nvme_auth_hash_skey(int hmac_id, u8 *skey, size_t skey_len, u8 *hkey)
319 {
320 	const char *digest_name;
321 	struct crypto_shash *tfm;
322 	int ret;
323 
324 	digest_name = nvme_auth_digest_name(hmac_id);
325 	if (!digest_name) {
326 		pr_debug("%s: failed to get digest for %d\n", __func__,
327 			 hmac_id);
328 		return -EINVAL;
329 	}
330 	tfm = crypto_alloc_shash(digest_name, 0, 0);
331 	if (IS_ERR(tfm))
332 		return -ENOMEM;
333 
334 	ret = crypto_shash_tfm_digest(tfm, skey, skey_len, hkey);
335 	if (ret < 0)
336 		pr_debug("%s: Failed to hash digest len %zu\n", __func__,
337 			 skey_len);
338 
339 	crypto_free_shash(tfm);
340 	return ret;
341 }
342 
nvme_auth_augmented_challenge(u8 hmac_id,u8 * skey,size_t skey_len,u8 * challenge,u8 * aug,size_t hlen)343 int nvme_auth_augmented_challenge(u8 hmac_id, u8 *skey, size_t skey_len,
344 		u8 *challenge, u8 *aug, size_t hlen)
345 {
346 	struct crypto_shash *tfm;
347 	u8 *hashed_key;
348 	const char *hmac_name;
349 	int ret;
350 
351 	hashed_key = kmalloc(hlen, GFP_KERNEL);
352 	if (!hashed_key)
353 		return -ENOMEM;
354 
355 	ret = nvme_auth_hash_skey(hmac_id, skey,
356 				  skey_len, hashed_key);
357 	if (ret < 0)
358 		goto out_free_key;
359 
360 	hmac_name = nvme_auth_hmac_name(hmac_id);
361 	if (!hmac_name) {
362 		pr_warn("%s: invalid hash algorithm %d\n",
363 			__func__, hmac_id);
364 		ret = -EINVAL;
365 		goto out_free_key;
366 	}
367 
368 	tfm = crypto_alloc_shash(hmac_name, 0, 0);
369 	if (IS_ERR(tfm)) {
370 		ret = PTR_ERR(tfm);
371 		goto out_free_key;
372 	}
373 
374 	ret = crypto_shash_setkey(tfm, hashed_key, hlen);
375 	if (ret)
376 		goto out_free_hash;
377 
378 	ret = crypto_shash_tfm_digest(tfm, challenge, hlen, aug);
379 out_free_hash:
380 	crypto_free_shash(tfm);
381 out_free_key:
382 	kfree_sensitive(hashed_key);
383 	return ret;
384 }
385 EXPORT_SYMBOL_GPL(nvme_auth_augmented_challenge);
386 
nvme_auth_gen_privkey(struct crypto_kpp * dh_tfm,u8 dh_gid)387 int nvme_auth_gen_privkey(struct crypto_kpp *dh_tfm, u8 dh_gid)
388 {
389 	int ret;
390 
391 	ret = crypto_kpp_set_secret(dh_tfm, NULL, 0);
392 	if (ret)
393 		pr_debug("failed to set private key, error %d\n", ret);
394 
395 	return ret;
396 }
397 EXPORT_SYMBOL_GPL(nvme_auth_gen_privkey);
398 
nvme_auth_gen_pubkey(struct crypto_kpp * dh_tfm,u8 * host_key,size_t host_key_len)399 int nvme_auth_gen_pubkey(struct crypto_kpp *dh_tfm,
400 		u8 *host_key, size_t host_key_len)
401 {
402 	struct kpp_request *req;
403 	struct crypto_wait wait;
404 	struct scatterlist dst;
405 	int ret;
406 
407 	req = kpp_request_alloc(dh_tfm, GFP_KERNEL);
408 	if (!req)
409 		return -ENOMEM;
410 
411 	crypto_init_wait(&wait);
412 	kpp_request_set_input(req, NULL, 0);
413 	sg_init_one(&dst, host_key, host_key_len);
414 	kpp_request_set_output(req, &dst, host_key_len);
415 	kpp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
416 				 crypto_req_done, &wait);
417 
418 	ret = crypto_wait_req(crypto_kpp_generate_public_key(req), &wait);
419 	kpp_request_free(req);
420 	return ret;
421 }
422 EXPORT_SYMBOL_GPL(nvme_auth_gen_pubkey);
423 
nvme_auth_gen_shared_secret(struct crypto_kpp * dh_tfm,u8 * ctrl_key,size_t ctrl_key_len,u8 * sess_key,size_t sess_key_len)424 int nvme_auth_gen_shared_secret(struct crypto_kpp *dh_tfm,
425 		u8 *ctrl_key, size_t ctrl_key_len,
426 		u8 *sess_key, size_t sess_key_len)
427 {
428 	struct kpp_request *req;
429 	struct crypto_wait wait;
430 	struct scatterlist src, dst;
431 	int ret;
432 
433 	req = kpp_request_alloc(dh_tfm, GFP_KERNEL);
434 	if (!req)
435 		return -ENOMEM;
436 
437 	crypto_init_wait(&wait);
438 	sg_init_one(&src, ctrl_key, ctrl_key_len);
439 	kpp_request_set_input(req, &src, ctrl_key_len);
440 	sg_init_one(&dst, sess_key, sess_key_len);
441 	kpp_request_set_output(req, &dst, sess_key_len);
442 	kpp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
443 				 crypto_req_done, &wait);
444 
445 	ret = crypto_wait_req(crypto_kpp_compute_shared_secret(req), &wait);
446 
447 	kpp_request_free(req);
448 	return ret;
449 }
450 EXPORT_SYMBOL_GPL(nvme_auth_gen_shared_secret);
451 
nvme_auth_generate_key(u8 * secret,struct nvme_dhchap_key ** ret_key)452 int nvme_auth_generate_key(u8 *secret, struct nvme_dhchap_key **ret_key)
453 {
454 	struct nvme_dhchap_key *key;
455 	u8 key_hash;
456 
457 	if (!secret) {
458 		*ret_key = NULL;
459 		return 0;
460 	}
461 
462 	if (sscanf(secret, "DHHC-1:%hhd:%*s:", &key_hash) != 1)
463 		return -EINVAL;
464 
465 	/* Pass in the secret without the 'DHHC-1:XX:' prefix */
466 	key = nvme_auth_extract_key(secret + 10, key_hash);
467 	if (IS_ERR(key)) {
468 		*ret_key = NULL;
469 		return PTR_ERR(key);
470 	}
471 
472 	*ret_key = key;
473 	return 0;
474 }
475 EXPORT_SYMBOL_GPL(nvme_auth_generate_key);
476 
477 /**
478  * nvme_auth_generate_psk - Generate a PSK for TLS
479  * @hmac_id: Hash function identifier
480  * @skey: Session key
481  * @skey_len: Length of @skey
482  * @c1: Value of challenge C1
483  * @c2: Value of challenge C2
484  * @hash_len: Hash length of the hash algorithm
485  * @ret_psk: Pointer too the resulting generated PSK
486  * @ret_len: length of @ret_psk
487  *
488  * Generate a PSK for TLS as specified in NVMe base specification, section
489  * 8.13.5.9: Generated PSK for TLS
490  *
491  * The generated PSK for TLS shall be computed applying the HMAC function
492  * using the hash function H( ) selected by the HashID parameter in the
493  * DH-HMAC-CHAP_Challenge message with the session key KS as key to the
494  * concatenation of the two challenges C1 and C2 (i.e., generated
495  * PSK = HMAC(KS, C1 || C2)).
496  *
497  * Returns 0 on success with a valid generated PSK pointer in @ret_psk and
498  * the length of @ret_psk in @ret_len, or a negative error number otherwise.
499  */
nvme_auth_generate_psk(u8 hmac_id,u8 * skey,size_t skey_len,u8 * c1,u8 * c2,size_t hash_len,u8 ** ret_psk,size_t * ret_len)500 int nvme_auth_generate_psk(u8 hmac_id, u8 *skey, size_t skey_len,
501 		u8 *c1, u8 *c2, size_t hash_len, u8 **ret_psk, size_t *ret_len)
502 {
503 	struct crypto_shash *tfm;
504 	SHASH_DESC_ON_STACK(shash, tfm);
505 	u8 *psk;
506 	const char *hmac_name;
507 	int ret, psk_len;
508 
509 	if (!c1 || !c2)
510 		return -EINVAL;
511 
512 	hmac_name = nvme_auth_hmac_name(hmac_id);
513 	if (!hmac_name) {
514 		pr_warn("%s: invalid hash algorithm %d\n",
515 			__func__, hmac_id);
516 		return -EINVAL;
517 	}
518 
519 	tfm = crypto_alloc_shash(hmac_name, 0, 0);
520 	if (IS_ERR(tfm))
521 		return PTR_ERR(tfm);
522 
523 	psk_len = crypto_shash_digestsize(tfm);
524 	psk = kzalloc(psk_len, GFP_KERNEL);
525 	if (!psk) {
526 		ret = -ENOMEM;
527 		goto out_free_tfm;
528 	}
529 
530 	shash->tfm = tfm;
531 	ret = crypto_shash_setkey(tfm, skey, skey_len);
532 	if (ret)
533 		goto out_free_psk;
534 
535 	ret = crypto_shash_init(shash);
536 	if (ret)
537 		goto out_free_psk;
538 
539 	ret = crypto_shash_update(shash, c1, hash_len);
540 	if (ret)
541 		goto out_free_psk;
542 
543 	ret = crypto_shash_update(shash, c2, hash_len);
544 	if (ret)
545 		goto out_free_psk;
546 
547 	ret = crypto_shash_final(shash, psk);
548 	if (!ret) {
549 		*ret_psk = psk;
550 		*ret_len = psk_len;
551 	}
552 
553 out_free_psk:
554 	if (ret)
555 		kfree_sensitive(psk);
556 out_free_tfm:
557 	crypto_free_shash(tfm);
558 
559 	return ret;
560 }
561 EXPORT_SYMBOL_GPL(nvme_auth_generate_psk);
562 
563 /**
564  * nvme_auth_generate_digest - Generate TLS PSK digest
565  * @hmac_id: Hash function identifier
566  * @psk: Generated input PSK
567  * @psk_len: Length of @psk
568  * @subsysnqn: NQN of the subsystem
569  * @hostnqn: NQN of the host
570  * @ret_digest: Pointer to the returned digest
571  *
572  * Generate a TLS PSK digest as specified in TP8018 Section 3.6.1.3:
573  *   TLS PSK and PSK identity Derivation
574  *
575  * The PSK digest shall be computed by encoding in Base64 (refer to RFC
576  * 4648) the result of the application of the HMAC function using the hash
577  * function specified in item 4 above (ie the hash function of the cipher
578  * suite associated with the PSK identity) with the PSK as HMAC key to the
579  * concatenation of:
580  * - the NQN of the host (i.e., NQNh) not including the null terminator;
581  * - a space character;
582  * - the NQN of the NVM subsystem (i.e., NQNc) not including the null
583  *   terminator;
584  * - a space character; and
585  * - the seventeen ASCII characters "NVMe-over-Fabrics"
586  * (i.e., <PSK digest> = Base64(HMAC(PSK, NQNh || " " || NQNc || " " ||
587  *  "NVMe-over-Fabrics"))).
588  * The length of the PSK digest depends on the hash function used to compute
589  * it as follows:
590  * - If the SHA-256 hash function is used, the resulting PSK digest is 44
591  *   characters long; or
592  * - If the SHA-384 hash function is used, the resulting PSK digest is 64
593  *   characters long.
594  *
595  * Returns 0 on success with a valid digest pointer in @ret_digest, or a
596  * negative error number on failure.
597  */
nvme_auth_generate_digest(u8 hmac_id,u8 * psk,size_t psk_len,char * subsysnqn,char * hostnqn,u8 ** ret_digest)598 int nvme_auth_generate_digest(u8 hmac_id, u8 *psk, size_t psk_len,
599 		char *subsysnqn, char *hostnqn, u8 **ret_digest)
600 {
601 	struct crypto_shash *tfm;
602 	SHASH_DESC_ON_STACK(shash, tfm);
603 	u8 *digest, *enc;
604 	const char *hmac_name;
605 	size_t digest_len, hmac_len;
606 	int ret;
607 
608 	if (WARN_ON(!subsysnqn || !hostnqn))
609 		return -EINVAL;
610 
611 	hmac_name = nvme_auth_hmac_name(hmac_id);
612 	if (!hmac_name) {
613 		pr_warn("%s: invalid hash algorithm %d\n",
614 			__func__, hmac_id);
615 		return -EINVAL;
616 	}
617 
618 	switch (nvme_auth_hmac_hash_len(hmac_id)) {
619 	case 32:
620 		hmac_len = 44;
621 		break;
622 	case 48:
623 		hmac_len = 64;
624 		break;
625 	default:
626 		pr_warn("%s: invalid hash algorithm '%s'\n",
627 			__func__, hmac_name);
628 		return -EINVAL;
629 	}
630 
631 	enc = kzalloc(hmac_len + 1, GFP_KERNEL);
632 	if (!enc)
633 		return -ENOMEM;
634 
635 	tfm = crypto_alloc_shash(hmac_name, 0, 0);
636 	if (IS_ERR(tfm)) {
637 		ret = PTR_ERR(tfm);
638 		goto out_free_enc;
639 	}
640 
641 	digest_len = crypto_shash_digestsize(tfm);
642 	digest = kzalloc(digest_len, GFP_KERNEL);
643 	if (!digest) {
644 		ret = -ENOMEM;
645 		goto out_free_tfm;
646 	}
647 
648 	shash->tfm = tfm;
649 	ret = crypto_shash_setkey(tfm, psk, psk_len);
650 	if (ret)
651 		goto out_free_digest;
652 
653 	ret = crypto_shash_init(shash);
654 	if (ret)
655 		goto out_free_digest;
656 
657 	ret = crypto_shash_update(shash, hostnqn, strlen(hostnqn));
658 	if (ret)
659 		goto out_free_digest;
660 
661 	ret = crypto_shash_update(shash, " ", 1);
662 	if (ret)
663 		goto out_free_digest;
664 
665 	ret = crypto_shash_update(shash, subsysnqn, strlen(subsysnqn));
666 	if (ret)
667 		goto out_free_digest;
668 
669 	ret = crypto_shash_update(shash, " NVMe-over-Fabrics", 18);
670 	if (ret)
671 		goto out_free_digest;
672 
673 	ret = crypto_shash_final(shash, digest);
674 	if (ret)
675 		goto out_free_digest;
676 
677 	ret = base64_encode(digest, digest_len, enc);
678 	if (ret < hmac_len) {
679 		ret = -ENOKEY;
680 		goto out_free_digest;
681 	}
682 	*ret_digest = enc;
683 	ret = 0;
684 
685 out_free_digest:
686 	kfree_sensitive(digest);
687 out_free_tfm:
688 	crypto_free_shash(tfm);
689 out_free_enc:
690 	if (ret)
691 		kfree_sensitive(enc);
692 
693 	return ret;
694 }
695 EXPORT_SYMBOL_GPL(nvme_auth_generate_digest);
696 
697 /**
698  * nvme_auth_derive_tls_psk - Derive TLS PSK
699  * @hmac_id: Hash function identifier
700  * @psk: generated input PSK
701  * @psk_len: size of @psk
702  * @psk_digest: TLS PSK digest
703  * @ret_psk: Pointer to the resulting TLS PSK
704  *
705  * Derive a TLS PSK as specified in TP8018 Section 3.6.1.3:
706  *   TLS PSK and PSK identity Derivation
707  *
708  * The TLS PSK shall be derived as follows from an input PSK
709  * (i.e., either a retained PSK or a generated PSK) and a PSK
710  * identity using the HKDF-Extract and HKDF-Expand-Label operations
711  * (refer to RFC 5869 and RFC 8446) where the hash function is the
712  * one specified by the hash specifier of the PSK identity:
713  * 1. PRK = HKDF-Extract(0, Input PSK); and
714  * 2. TLS PSK = HKDF-Expand-Label(PRK, "nvme-tls-psk", PskIdentityContext, L),
715  * where PskIdentityContext is the hash identifier indicated in
716  * the PSK identity concatenated to a space character and to the
717  * Base64 PSK digest (i.e., "<hash> <PSK digest>") and L is the
718  * output size in bytes of the hash function (i.e., 32 for SHA-256
719  * and 48 for SHA-384).
720  *
721  * Returns 0 on success with a valid psk pointer in @ret_psk or a negative
722  * error number otherwise.
723  */
nvme_auth_derive_tls_psk(int hmac_id,u8 * psk,size_t psk_len,u8 * psk_digest,u8 ** ret_psk)724 int nvme_auth_derive_tls_psk(int hmac_id, u8 *psk, size_t psk_len,
725 		u8 *psk_digest, u8 **ret_psk)
726 {
727 	struct crypto_shash *hmac_tfm;
728 	const char *hmac_name;
729 	const char *psk_prefix = "tls13 nvme-tls-psk";
730 	static const char default_salt[HKDF_MAX_HASHLEN];
731 	size_t info_len, prk_len;
732 	char *info;
733 	unsigned char *prk, *tls_key;
734 	int ret;
735 
736 	hmac_name = nvme_auth_hmac_name(hmac_id);
737 	if (!hmac_name) {
738 		pr_warn("%s: invalid hash algorithm %d\n",
739 			__func__, hmac_id);
740 		return -EINVAL;
741 	}
742 	if (hmac_id == NVME_AUTH_HASH_SHA512) {
743 		pr_warn("%s: unsupported hash algorithm %s\n",
744 			__func__, hmac_name);
745 		return -EINVAL;
746 	}
747 
748 	hmac_tfm = crypto_alloc_shash(hmac_name, 0, 0);
749 	if (IS_ERR(hmac_tfm))
750 		return PTR_ERR(hmac_tfm);
751 
752 	prk_len = crypto_shash_digestsize(hmac_tfm);
753 	prk = kzalloc(prk_len, GFP_KERNEL);
754 	if (!prk) {
755 		ret = -ENOMEM;
756 		goto out_free_shash;
757 	}
758 
759 	if (WARN_ON(prk_len > HKDF_MAX_HASHLEN)) {
760 		ret = -EINVAL;
761 		goto out_free_prk;
762 	}
763 	ret = hkdf_extract(hmac_tfm, psk, psk_len,
764 			   default_salt, prk_len, prk);
765 	if (ret)
766 		goto out_free_prk;
767 
768 	ret = crypto_shash_setkey(hmac_tfm, prk, prk_len);
769 	if (ret)
770 		goto out_free_prk;
771 
772 	/*
773 	 * 2 addtional bytes for the length field from HDKF-Expand-Label,
774 	 * 2 addtional bytes for the HMAC ID, and one byte for the space
775 	 * separator.
776 	 */
777 	info_len = strlen(psk_digest) + strlen(psk_prefix) + 5;
778 	info = kzalloc(info_len + 1, GFP_KERNEL);
779 	if (!info) {
780 		ret = -ENOMEM;
781 		goto out_free_prk;
782 	}
783 
784 	put_unaligned_be16(psk_len, info);
785 	memcpy(info + 2, psk_prefix, strlen(psk_prefix));
786 	sprintf(info + 2 + strlen(psk_prefix), "%02d %s", hmac_id, psk_digest);
787 
788 	tls_key = kzalloc(psk_len, GFP_KERNEL);
789 	if (!tls_key) {
790 		ret = -ENOMEM;
791 		goto out_free_info;
792 	}
793 	ret = hkdf_expand(hmac_tfm, info, info_len, tls_key, psk_len);
794 	if (ret) {
795 		kfree(tls_key);
796 		goto out_free_info;
797 	}
798 	*ret_psk = tls_key;
799 
800 out_free_info:
801 	kfree(info);
802 out_free_prk:
803 	kfree(prk);
804 out_free_shash:
805 	crypto_free_shash(hmac_tfm);
806 
807 	return ret;
808 }
809 EXPORT_SYMBOL_GPL(nvme_auth_derive_tls_psk);
810 
811 MODULE_DESCRIPTION("NVMe Authentication framework");
812 MODULE_LICENSE("GPL v2");
813