1 // SPDX-License-Identifier: GPL-2.0-only
2 // Copyright (C) 2019-2020 NVIDIA CORPORATION. All rights reserved.
3
4 #include <linux/bitfield.h>
5 #include <linux/delay.h>
6 #include <linux/of.h>
7 #include <linux/platform_device.h>
8 #include <linux/slab.h>
9
10 #include <soc/tegra/mc.h>
11
12 #include "arm-smmu.h"
13
14 /*
15 * Tegra194 has three ARM MMU-500 Instances.
16 * Two of them are used together and must be programmed identically for
17 * interleaved IOVA accesses across them and translates accesses from
18 * non-isochronous HW devices.
19 * Third one is used for translating accesses from isochronous HW devices.
20 *
21 * In addition, the SMMU driver needs to coordinate with the memory controller
22 * driver to ensure that the right SID override is programmed for any given
23 * memory client. This is necessary to allow for use-case such as seamlessly
24 * handing over the display controller configuration from the firmware to the
25 * kernel.
26 *
27 * This implementation supports programming of the two instances that must
28 * be programmed identically and takes care of invoking the memory controller
29 * driver for SID override programming after devices have been attached to an
30 * SMMU instance.
31 */
32 #define MAX_SMMU_INSTANCES 2
33
34 struct nvidia_smmu {
35 struct arm_smmu_device smmu;
36 void __iomem *bases[MAX_SMMU_INSTANCES];
37 unsigned int num_instances;
38 struct tegra_mc *mc;
39 };
40
to_nvidia_smmu(struct arm_smmu_device * smmu)41 static inline struct nvidia_smmu *to_nvidia_smmu(struct arm_smmu_device *smmu)
42 {
43 return container_of(smmu, struct nvidia_smmu, smmu);
44 }
45
nvidia_smmu_page(struct arm_smmu_device * smmu,unsigned int inst,int page)46 static inline void __iomem *nvidia_smmu_page(struct arm_smmu_device *smmu,
47 unsigned int inst, int page)
48 {
49 struct nvidia_smmu *nvidia_smmu;
50
51 nvidia_smmu = container_of(smmu, struct nvidia_smmu, smmu);
52 return nvidia_smmu->bases[inst] + (page << smmu->pgshift);
53 }
54
nvidia_smmu_read_reg(struct arm_smmu_device * smmu,int page,int offset)55 static u32 nvidia_smmu_read_reg(struct arm_smmu_device *smmu,
56 int page, int offset)
57 {
58 void __iomem *reg = nvidia_smmu_page(smmu, 0, page) + offset;
59
60 return readl_relaxed(reg);
61 }
62
nvidia_smmu_write_reg(struct arm_smmu_device * smmu,int page,int offset,u32 val)63 static void nvidia_smmu_write_reg(struct arm_smmu_device *smmu,
64 int page, int offset, u32 val)
65 {
66 struct nvidia_smmu *nvidia = to_nvidia_smmu(smmu);
67 unsigned int i;
68
69 for (i = 0; i < nvidia->num_instances; i++) {
70 void __iomem *reg = nvidia_smmu_page(smmu, i, page) + offset;
71
72 writel_relaxed(val, reg);
73 }
74 }
75
nvidia_smmu_read_reg64(struct arm_smmu_device * smmu,int page,int offset)76 static u64 nvidia_smmu_read_reg64(struct arm_smmu_device *smmu,
77 int page, int offset)
78 {
79 void __iomem *reg = nvidia_smmu_page(smmu, 0, page) + offset;
80
81 return readq_relaxed(reg);
82 }
83
nvidia_smmu_write_reg64(struct arm_smmu_device * smmu,int page,int offset,u64 val)84 static void nvidia_smmu_write_reg64(struct arm_smmu_device *smmu,
85 int page, int offset, u64 val)
86 {
87 struct nvidia_smmu *nvidia = to_nvidia_smmu(smmu);
88 unsigned int i;
89
90 for (i = 0; i < nvidia->num_instances; i++) {
91 void __iomem *reg = nvidia_smmu_page(smmu, i, page) + offset;
92
93 writeq_relaxed(val, reg);
94 }
95 }
96
nvidia_smmu_tlb_sync(struct arm_smmu_device * smmu,int page,int sync,int status)97 static void nvidia_smmu_tlb_sync(struct arm_smmu_device *smmu, int page,
98 int sync, int status)
99 {
100 struct nvidia_smmu *nvidia = to_nvidia_smmu(smmu);
101 unsigned int delay;
102
103 arm_smmu_writel(smmu, page, sync, 0);
104
105 for (delay = 1; delay < TLB_LOOP_TIMEOUT; delay *= 2) {
106 unsigned int spin_cnt;
107
108 for (spin_cnt = TLB_SPIN_COUNT; spin_cnt > 0; spin_cnt--) {
109 u32 val = 0;
110 unsigned int i;
111
112 for (i = 0; i < nvidia->num_instances; i++) {
113 void __iomem *reg;
114
115 reg = nvidia_smmu_page(smmu, i, page) + status;
116 val |= readl_relaxed(reg);
117 }
118
119 if (!(val & ARM_SMMU_sTLBGSTATUS_GSACTIVE))
120 return;
121
122 cpu_relax();
123 }
124
125 udelay(delay);
126 }
127
128 dev_err_ratelimited(smmu->dev,
129 "TLB sync timed out -- SMMU may be deadlocked\n");
130 }
131
nvidia_smmu_reset(struct arm_smmu_device * smmu)132 static int nvidia_smmu_reset(struct arm_smmu_device *smmu)
133 {
134 struct nvidia_smmu *nvidia = to_nvidia_smmu(smmu);
135 unsigned int i;
136
137 for (i = 0; i < nvidia->num_instances; i++) {
138 u32 val;
139 void __iomem *reg = nvidia_smmu_page(smmu, i, ARM_SMMU_GR0) +
140 ARM_SMMU_GR0_sGFSR;
141
142 /* clear global FSR */
143 val = readl_relaxed(reg);
144 writel_relaxed(val, reg);
145 }
146
147 return 0;
148 }
149
nvidia_smmu_global_fault_inst(int irq,struct arm_smmu_device * smmu,int inst)150 static irqreturn_t nvidia_smmu_global_fault_inst(int irq,
151 struct arm_smmu_device *smmu,
152 int inst)
153 {
154 u32 gfsr, gfsynr0, gfsynr1, gfsynr2;
155 void __iomem *gr0_base = nvidia_smmu_page(smmu, inst, 0);
156
157 gfsr = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSR);
158 if (!gfsr)
159 return IRQ_NONE;
160
161 gfsynr0 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR0);
162 gfsynr1 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR1);
163 gfsynr2 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR2);
164
165 dev_err_ratelimited(smmu->dev,
166 "Unexpected global fault, this could be serious\n");
167 dev_err_ratelimited(smmu->dev,
168 "\tGFSR 0x%08x, GFSYNR0 0x%08x, GFSYNR1 0x%08x, GFSYNR2 0x%08x\n",
169 gfsr, gfsynr0, gfsynr1, gfsynr2);
170
171 writel_relaxed(gfsr, gr0_base + ARM_SMMU_GR0_sGFSR);
172 return IRQ_HANDLED;
173 }
174
nvidia_smmu_global_fault(int irq,void * dev)175 static irqreturn_t nvidia_smmu_global_fault(int irq, void *dev)
176 {
177 unsigned int inst;
178 irqreturn_t ret = IRQ_NONE;
179 struct arm_smmu_device *smmu = dev;
180 struct nvidia_smmu *nvidia = to_nvidia_smmu(smmu);
181
182 for (inst = 0; inst < nvidia->num_instances; inst++) {
183 irqreturn_t irq_ret;
184
185 irq_ret = nvidia_smmu_global_fault_inst(irq, smmu, inst);
186 if (irq_ret == IRQ_HANDLED)
187 ret = IRQ_HANDLED;
188 }
189
190 return ret;
191 }
192
nvidia_smmu_context_fault_bank(int irq,struct arm_smmu_device * smmu,int idx,int inst)193 static irqreturn_t nvidia_smmu_context_fault_bank(int irq,
194 struct arm_smmu_device *smmu,
195 int idx, int inst)
196 {
197 u32 fsr, fsynr, cbfrsynra;
198 unsigned long iova;
199 void __iomem *gr1_base = nvidia_smmu_page(smmu, inst, 1);
200 void __iomem *cb_base = nvidia_smmu_page(smmu, inst, smmu->numpage + idx);
201
202 fsr = readl_relaxed(cb_base + ARM_SMMU_CB_FSR);
203 if (!(fsr & ARM_SMMU_CB_FSR_FAULT))
204 return IRQ_NONE;
205
206 fsynr = readl_relaxed(cb_base + ARM_SMMU_CB_FSYNR0);
207 iova = readq_relaxed(cb_base + ARM_SMMU_CB_FAR);
208 cbfrsynra = readl_relaxed(gr1_base + ARM_SMMU_GR1_CBFRSYNRA(idx));
209
210 dev_err_ratelimited(smmu->dev,
211 "Unhandled context fault: fsr=0x%x, iova=0x%08lx, fsynr=0x%x, cbfrsynra=0x%x, cb=%d\n",
212 fsr, iova, fsynr, cbfrsynra, idx);
213
214 writel_relaxed(fsr, cb_base + ARM_SMMU_CB_FSR);
215 return IRQ_HANDLED;
216 }
217
nvidia_smmu_context_fault(int irq,void * dev)218 static irqreturn_t nvidia_smmu_context_fault(int irq, void *dev)
219 {
220 int idx;
221 unsigned int inst;
222 irqreturn_t ret = IRQ_NONE;
223 struct arm_smmu_device *smmu;
224 struct arm_smmu_domain *smmu_domain = dev;
225 struct nvidia_smmu *nvidia;
226
227 smmu = smmu_domain->smmu;
228 nvidia = to_nvidia_smmu(smmu);
229
230 for (inst = 0; inst < nvidia->num_instances; inst++) {
231 irqreturn_t irq_ret;
232
233 /*
234 * Interrupt line is shared between all contexts.
235 * Check for faults across all contexts.
236 */
237 for (idx = 0; idx < smmu->num_context_banks; idx++) {
238 irq_ret = nvidia_smmu_context_fault_bank(irq, smmu,
239 idx, inst);
240 if (irq_ret == IRQ_HANDLED)
241 ret = IRQ_HANDLED;
242 }
243 }
244
245 return ret;
246 }
247
nvidia_smmu_probe_finalize(struct arm_smmu_device * smmu,struct device * dev)248 static void nvidia_smmu_probe_finalize(struct arm_smmu_device *smmu, struct device *dev)
249 {
250 struct nvidia_smmu *nvidia = to_nvidia_smmu(smmu);
251 int err;
252
253 err = tegra_mc_probe_device(nvidia->mc, dev);
254 if (err < 0)
255 dev_err(smmu->dev, "memory controller probe failed for %s: %d\n",
256 dev_name(dev), err);
257 }
258
nvidia_smmu_init_context(struct arm_smmu_domain * smmu_domain,struct io_pgtable_cfg * pgtbl_cfg,struct device * dev)259 static int nvidia_smmu_init_context(struct arm_smmu_domain *smmu_domain,
260 struct io_pgtable_cfg *pgtbl_cfg,
261 struct device *dev)
262 {
263 struct arm_smmu_device *smmu = smmu_domain->smmu;
264 const struct device_node *np = smmu->dev->of_node;
265
266 /*
267 * Tegra194 and Tegra234 SoCs have the erratum that causes walk cache
268 * entries to not be invalidated correctly. The problem is that the walk
269 * cache index generated for IOVA is not same across translation and
270 * invalidation requests. This is leading to page faults when PMD entry
271 * is released during unmap and populated with new PTE table during
272 * subsequent map request. Disabling large page mappings avoids the
273 * release of PMD entry and avoid translations seeing stale PMD entry in
274 * walk cache.
275 * Fix this by limiting the page mappings to PAGE_SIZE on Tegra194 and
276 * Tegra234.
277 */
278 if (of_device_is_compatible(np, "nvidia,tegra234-smmu") ||
279 of_device_is_compatible(np, "nvidia,tegra194-smmu")) {
280 smmu->pgsize_bitmap &= GENMASK(PAGE_SHIFT, 0);
281 pgtbl_cfg->pgsize_bitmap = smmu->pgsize_bitmap;
282 }
283
284 return 0;
285 }
286
287 static const struct arm_smmu_impl nvidia_smmu_impl = {
288 .read_reg = nvidia_smmu_read_reg,
289 .write_reg = nvidia_smmu_write_reg,
290 .read_reg64 = nvidia_smmu_read_reg64,
291 .write_reg64 = nvidia_smmu_write_reg64,
292 .reset = nvidia_smmu_reset,
293 .tlb_sync = nvidia_smmu_tlb_sync,
294 .global_fault = nvidia_smmu_global_fault,
295 .context_fault = nvidia_smmu_context_fault,
296 .probe_finalize = nvidia_smmu_probe_finalize,
297 .init_context = nvidia_smmu_init_context,
298 };
299
300 static const struct arm_smmu_impl nvidia_smmu_single_impl = {
301 .probe_finalize = nvidia_smmu_probe_finalize,
302 .init_context = nvidia_smmu_init_context,
303 };
304
nvidia_smmu_impl_init(struct arm_smmu_device * smmu)305 struct arm_smmu_device *nvidia_smmu_impl_init(struct arm_smmu_device *smmu)
306 {
307 struct resource *res;
308 struct device *dev = smmu->dev;
309 struct nvidia_smmu *nvidia_smmu;
310 struct platform_device *pdev = to_platform_device(dev);
311 unsigned int i;
312
313 nvidia_smmu = devm_krealloc(dev, smmu, sizeof(*nvidia_smmu), GFP_KERNEL);
314 if (!nvidia_smmu)
315 return ERR_PTR(-ENOMEM);
316
317 nvidia_smmu->mc = devm_tegra_memory_controller_get(dev);
318 if (IS_ERR(nvidia_smmu->mc))
319 return ERR_CAST(nvidia_smmu->mc);
320
321 /* Instance 0 is ioremapped by arm-smmu.c. */
322 nvidia_smmu->bases[0] = smmu->base;
323 nvidia_smmu->num_instances++;
324
325 for (i = 1; i < MAX_SMMU_INSTANCES; i++) {
326 res = platform_get_resource(pdev, IORESOURCE_MEM, i);
327 if (!res)
328 break;
329
330 nvidia_smmu->bases[i] = devm_ioremap_resource(dev, res);
331 if (IS_ERR(nvidia_smmu->bases[i]))
332 return ERR_CAST(nvidia_smmu->bases[i]);
333
334 nvidia_smmu->num_instances++;
335 }
336
337 if (nvidia_smmu->num_instances == 1)
338 nvidia_smmu->smmu.impl = &nvidia_smmu_single_impl;
339 else
340 nvidia_smmu->smmu.impl = &nvidia_smmu_impl;
341
342 return &nvidia_smmu->smmu;
343 }
344