xref: /linux/drivers/vfio/pci/nvgrace-gpu/main.c (revision a3ebb59eee2e558e8f8f27fc3f75cd367f17cd8e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2024, NVIDIA CORPORATION & AFFILIATES. All rights reserved
4  */
5 
6 #include <linux/sizes.h>
7 #include <linux/vfio_pci_core.h>
8 #include <linux/delay.h>
9 #include <linux/jiffies.h>
10 #include <linux/pci-p2pdma.h>
11 #include <linux/pm_runtime.h>
12 
13 /*
14  * The device memory usable to the workloads running in the VM is cached
15  * and showcased as a 64b device BAR (comprising of BAR4 and BAR5 region)
16  * to the VM and is represented as usemem.
17  * Moreover, the VM GPU device driver needs a non-cacheable region to
18  * support the MIG feature. This region is also exposed as a 64b BAR
19  * (comprising of BAR2 and BAR3 region) and represented as resmem.
20  */
21 #define RESMEM_REGION_INDEX VFIO_PCI_BAR2_REGION_INDEX
22 #define USEMEM_REGION_INDEX VFIO_PCI_BAR4_REGION_INDEX
23 
24 /* A hardwired and constant ABI value between the GPU FW and VFIO driver. */
25 #define MEMBLK_SIZE SZ_512M
26 
27 #define DVSEC_BITMAP_OFFSET 0xA
28 #define MIG_SUPPORTED_WITH_CACHED_RESMEM BIT(0)
29 
30 #define GPU_CAP_DVSEC_REGISTER 3
31 
32 #define C2C_LINK_BAR0_OFFSET 0x1498
33 #define HBM_TRAINING_BAR0_OFFSET 0x200BC
34 #define STATUS_READY 0xFF
35 
36 #define POLL_QUANTUM_MS 1000
37 #define POLL_TIMEOUT_MS (30 * 1000)
38 
39 /*
40  * The state of the two device memory region - resmem and usemem - is
41  * saved as struct mem_region.
42  */
43 struct mem_region {
44 	phys_addr_t memphys;    /* Base physical address of the region */
45 	size_t memlength;       /* Region size */
46 	size_t bar_size;        /* Reported region BAR size */
47 	__le64 bar_val;         /* Emulated BAR offset registers */
48 	union {
49 		void *memaddr;
50 		void __iomem *ioaddr;
51 	};                      /* Base virtual address of the region */
52 };
53 
54 struct nvgrace_gpu_pci_core_device {
55 	struct vfio_pci_core_device core_device;
56 	/* Cached and usable memory for the VM. */
57 	struct mem_region usemem;
58 	/* Non cached memory carved out from the end of device memory */
59 	struct mem_region resmem;
60 	/* Lock to control device memory kernel mapping */
61 	struct mutex remap_lock;
62 	bool has_mig_hw_bug;
63 	/* GPU has just been reset */
64 	bool reset_done;
65 };
66 
nvgrace_gpu_init_fake_bar_emu_regs(struct vfio_device * core_vdev)67 static void nvgrace_gpu_init_fake_bar_emu_regs(struct vfio_device *core_vdev)
68 {
69 	struct nvgrace_gpu_pci_core_device *nvdev =
70 		container_of(core_vdev, struct nvgrace_gpu_pci_core_device,
71 			     core_device.vdev);
72 
73 	nvdev->resmem.bar_val = 0;
74 	nvdev->usemem.bar_val = 0;
75 }
76 
77 /* Choose the structure corresponding to the fake BAR with a given index. */
78 static struct mem_region *
nvgrace_gpu_memregion(int index,struct nvgrace_gpu_pci_core_device * nvdev)79 nvgrace_gpu_memregion(int index,
80 		      struct nvgrace_gpu_pci_core_device *nvdev)
81 {
82 	if (index == USEMEM_REGION_INDEX)
83 		return &nvdev->usemem;
84 
85 	if (nvdev->resmem.memlength && index == RESMEM_REGION_INDEX)
86 		return &nvdev->resmem;
87 
88 	return NULL;
89 }
90 
nvgrace_gpu_open_device(struct vfio_device * core_vdev)91 static int nvgrace_gpu_open_device(struct vfio_device *core_vdev)
92 {
93 	struct vfio_pci_core_device *vdev =
94 		container_of(core_vdev, struct vfio_pci_core_device, vdev);
95 	struct nvgrace_gpu_pci_core_device *nvdev =
96 		container_of(core_vdev, struct nvgrace_gpu_pci_core_device,
97 			     core_device.vdev);
98 	int ret;
99 
100 	ret = vfio_pci_core_enable(vdev);
101 	if (ret)
102 		return ret;
103 
104 	if (nvdev->usemem.memlength) {
105 		nvgrace_gpu_init_fake_bar_emu_regs(core_vdev);
106 		mutex_init(&nvdev->remap_lock);
107 	}
108 
109 	/*
110 	 * GPU readiness is checked by reading the BAR0 registers.
111 	 *
112 	 * ioremap BAR0 to ensure that the BAR0 mapping is present before
113 	 * register reads on first fault before establishing any GPU
114 	 * memory mapping.
115 	 */
116 	ret = vfio_pci_core_setup_barmap(vdev, 0);
117 	if (ret) {
118 		vfio_pci_core_disable(vdev);
119 		return ret;
120 	}
121 
122 	vfio_pci_core_finish_enable(vdev);
123 
124 	return 0;
125 }
126 
nvgrace_gpu_close_device(struct vfio_device * core_vdev)127 static void nvgrace_gpu_close_device(struct vfio_device *core_vdev)
128 {
129 	struct nvgrace_gpu_pci_core_device *nvdev =
130 		container_of(core_vdev, struct nvgrace_gpu_pci_core_device,
131 			     core_device.vdev);
132 
133 	/* Unmap the mapping to the device memory cached region */
134 	if (nvdev->usemem.memaddr) {
135 		memunmap(nvdev->usemem.memaddr);
136 		nvdev->usemem.memaddr = NULL;
137 	}
138 
139 	/* Unmap the mapping to the device memory non-cached region */
140 	if (nvdev->resmem.ioaddr) {
141 		iounmap(nvdev->resmem.ioaddr);
142 		nvdev->resmem.ioaddr = NULL;
143 	}
144 
145 	mutex_destroy(&nvdev->remap_lock);
146 
147 	vfio_pci_core_close_device(core_vdev);
148 }
149 
nvgrace_gpu_wait_device_ready(void __iomem * io)150 static int nvgrace_gpu_wait_device_ready(void __iomem *io)
151 {
152 	unsigned long timeout = jiffies + msecs_to_jiffies(POLL_TIMEOUT_MS);
153 
154 	do {
155 		if ((ioread32(io + C2C_LINK_BAR0_OFFSET) == STATUS_READY) &&
156 		    (ioread32(io + HBM_TRAINING_BAR0_OFFSET) == STATUS_READY))
157 			return 0;
158 		msleep(POLL_QUANTUM_MS);
159 	} while (!time_after(jiffies, timeout));
160 
161 	return -ETIME;
162 }
163 
164 /*
165  * If the GPU memory is accessed by the CPU while the GPU is not ready
166  * after reset, it can cause harmless corrected RAS events to be logged.
167  * Make sure the GPU is ready before establishing the mappings.
168  */
169 static int
nvgrace_gpu_check_device_ready(struct nvgrace_gpu_pci_core_device * nvdev)170 nvgrace_gpu_check_device_ready(struct nvgrace_gpu_pci_core_device *nvdev)
171 {
172 	struct vfio_pci_core_device *vdev = &nvdev->core_device;
173 	int ret;
174 
175 	lockdep_assert_held_read(&vdev->memory_lock);
176 
177 	if (!nvdev->reset_done)
178 		return 0;
179 
180 	if (!__vfio_pci_memory_enabled(vdev))
181 		return -EIO;
182 
183 	ret = nvgrace_gpu_wait_device_ready(vdev->barmap[0]);
184 	if (ret)
185 		return ret;
186 
187 	nvdev->reset_done = false;
188 
189 	return 0;
190 }
191 
addr_to_pgoff(struct vm_area_struct * vma,unsigned long addr)192 static unsigned long addr_to_pgoff(struct vm_area_struct *vma,
193 				   unsigned long addr)
194 {
195 	u64 pgoff = vma->vm_pgoff &
196 		((1U << (VFIO_PCI_OFFSET_SHIFT - PAGE_SHIFT)) - 1);
197 
198 	return ((addr - vma->vm_start) >> PAGE_SHIFT) + pgoff;
199 }
200 
nvgrace_gpu_vfio_pci_huge_fault(struct vm_fault * vmf,unsigned int order)201 static vm_fault_t nvgrace_gpu_vfio_pci_huge_fault(struct vm_fault *vmf,
202 						  unsigned int order)
203 {
204 	struct vm_area_struct *vma = vmf->vma;
205 	struct nvgrace_gpu_pci_core_device *nvdev = vma->vm_private_data;
206 	struct vfio_pci_core_device *vdev = &nvdev->core_device;
207 	unsigned int index =
208 		vma->vm_pgoff >> (VFIO_PCI_OFFSET_SHIFT - PAGE_SHIFT);
209 	vm_fault_t ret = VM_FAULT_FALLBACK;
210 	struct mem_region *memregion;
211 	unsigned long pfn, addr;
212 
213 	memregion = nvgrace_gpu_memregion(index, nvdev);
214 	if (!memregion)
215 		return VM_FAULT_SIGBUS;
216 
217 	addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
218 	pfn = PHYS_PFN(memregion->memphys) + addr_to_pgoff(vma, addr);
219 
220 	if (is_aligned_for_order(vma, addr, pfn, order)) {
221 		scoped_guard(rwsem_read, &vdev->memory_lock) {
222 			if (vdev->pm_runtime_engaged ||
223 			    nvgrace_gpu_check_device_ready(nvdev))
224 				return VM_FAULT_SIGBUS;
225 
226 			ret = vfio_pci_vmf_insert_pfn(vdev, vmf, pfn, order);
227 		}
228 	}
229 
230 	dev_dbg_ratelimited(&vdev->pdev->dev,
231 			    "%s order = %d pfn 0x%lx: 0x%x\n",
232 			    __func__, order, pfn,
233 			    (unsigned int)ret);
234 
235 	return ret;
236 }
237 
nvgrace_gpu_vfio_pci_fault(struct vm_fault * vmf)238 static vm_fault_t nvgrace_gpu_vfio_pci_fault(struct vm_fault *vmf)
239 {
240 	return nvgrace_gpu_vfio_pci_huge_fault(vmf, 0);
241 }
242 
243 static const struct vm_operations_struct nvgrace_gpu_vfio_pci_mmap_ops = {
244 	.fault = nvgrace_gpu_vfio_pci_fault,
245 #ifdef CONFIG_ARCH_SUPPORTS_HUGE_PFNMAP
246 	.huge_fault = nvgrace_gpu_vfio_pci_huge_fault,
247 #endif
248 };
249 
nvgrace_gpu_mmap(struct vfio_device * core_vdev,struct vm_area_struct * vma)250 static int nvgrace_gpu_mmap(struct vfio_device *core_vdev,
251 			    struct vm_area_struct *vma)
252 {
253 	struct nvgrace_gpu_pci_core_device *nvdev =
254 		container_of(core_vdev, struct nvgrace_gpu_pci_core_device,
255 			     core_device.vdev);
256 	struct mem_region *memregion;
257 	u64 req_len, pgoff, end;
258 	unsigned int index;
259 
260 	index = vma->vm_pgoff >> (VFIO_PCI_OFFSET_SHIFT - PAGE_SHIFT);
261 
262 	memregion = nvgrace_gpu_memregion(index, nvdev);
263 	if (!memregion)
264 		return vfio_pci_core_mmap(core_vdev, vma);
265 
266 	/*
267 	 * Request to mmap the BAR. Map to the CPU accessible memory on the
268 	 * GPU using the memory information gathered from the system ACPI
269 	 * tables.
270 	 */
271 	pgoff = vma->vm_pgoff &
272 		((1U << (VFIO_PCI_OFFSET_SHIFT - PAGE_SHIFT)) - 1);
273 
274 	if (check_sub_overflow(vma->vm_end, vma->vm_start, &req_len) ||
275 	    check_add_overflow(PFN_PHYS(pgoff), req_len, &end))
276 		return -EOVERFLOW;
277 
278 	/*
279 	 * Check that the mapping request does not go beyond the exposed
280 	 * device memory size.
281 	 */
282 	if (end > memregion->memlength)
283 		return -EINVAL;
284 
285 	vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
286 
287 	/*
288 	 * The carved out region of the device memory needs the NORMAL_NC
289 	 * property. Communicate as such to the hypervisor.
290 	 */
291 	if (index == RESMEM_REGION_INDEX) {
292 		/*
293 		 * The nvgrace-gpu module has no issues with uncontained
294 		 * failures on NORMAL_NC accesses. VM_ALLOW_ANY_UNCACHED is
295 		 * set to communicate to the KVM to S2 map as NORMAL_NC.
296 		 * This opens up guest usage of NORMAL_NC for this mapping.
297 		 */
298 		vm_flags_set(vma, VM_ALLOW_ANY_UNCACHED);
299 
300 		vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
301 	}
302 
303 	vma->vm_ops = &nvgrace_gpu_vfio_pci_mmap_ops;
304 	vma->vm_private_data = nvdev;
305 
306 	return 0;
307 }
308 
nvgrace_gpu_ioctl_get_region_info(struct vfio_device * core_vdev,struct vfio_region_info * info,struct vfio_info_cap * caps)309 static int nvgrace_gpu_ioctl_get_region_info(struct vfio_device *core_vdev,
310 					     struct vfio_region_info *info,
311 					     struct vfio_info_cap *caps)
312 {
313 	struct nvgrace_gpu_pci_core_device *nvdev =
314 		container_of(core_vdev, struct nvgrace_gpu_pci_core_device,
315 			     core_device.vdev);
316 	struct vfio_region_info_cap_sparse_mmap *sparse;
317 	struct mem_region *memregion;
318 	u32 size;
319 	int ret;
320 
321 	/*
322 	 * Request to determine the BAR region information. Send the
323 	 * GPU memory information.
324 	 */
325 	memregion = nvgrace_gpu_memregion(info->index, nvdev);
326 	if (!memregion)
327 		return vfio_pci_ioctl_get_region_info(core_vdev, info, caps);
328 
329 	size = struct_size(sparse, areas, 1);
330 
331 	/*
332 	 * Setup for sparse mapping for the device memory. Only the
333 	 * available device memory on the hardware is shown as a
334 	 * mappable region.
335 	 */
336 	sparse = kzalloc(size, GFP_KERNEL);
337 	if (!sparse)
338 		return -ENOMEM;
339 
340 	sparse->nr_areas = 1;
341 	sparse->areas[0].offset = 0;
342 	sparse->areas[0].size = memregion->memlength;
343 	sparse->header.id = VFIO_REGION_INFO_CAP_SPARSE_MMAP;
344 	sparse->header.version = 1;
345 
346 	ret = vfio_info_add_capability(caps, &sparse->header, size);
347 	kfree(sparse);
348 	if (ret)
349 		return ret;
350 
351 	info->offset = VFIO_PCI_INDEX_TO_OFFSET(info->index);
352 	/*
353 	 * The region memory size may not be power-of-2 aligned.
354 	 * Given that the memory is a BAR and may not be
355 	 * aligned, roundup to the next power-of-2.
356 	 */
357 	info->size = memregion->bar_size;
358 	info->flags = VFIO_REGION_INFO_FLAG_READ |
359 		     VFIO_REGION_INFO_FLAG_WRITE |
360 		     VFIO_REGION_INFO_FLAG_MMAP;
361 	return 0;
362 }
363 
nvgrace_gpu_ioctl(struct vfio_device * core_vdev,unsigned int cmd,unsigned long arg)364 static long nvgrace_gpu_ioctl(struct vfio_device *core_vdev,
365 			      unsigned int cmd, unsigned long arg)
366 {
367 	switch (cmd) {
368 	case VFIO_DEVICE_IOEVENTFD:
369 		return -ENOTTY;
370 	case VFIO_DEVICE_RESET:
371 		nvgrace_gpu_init_fake_bar_emu_regs(core_vdev);
372 		fallthrough;
373 	default:
374 		return vfio_pci_core_ioctl(core_vdev, cmd, arg);
375 	}
376 }
377 
378 static __le64
nvgrace_gpu_get_read_value(size_t bar_size,u64 flags,__le64 val64)379 nvgrace_gpu_get_read_value(size_t bar_size, u64 flags, __le64 val64)
380 {
381 	u64 tmp_val;
382 
383 	tmp_val = le64_to_cpu(val64);
384 	tmp_val &= ~(bar_size - 1);
385 	tmp_val |= flags;
386 
387 	return cpu_to_le64(tmp_val);
388 }
389 
390 /*
391  * Both the usable (usemem) and the reserved (resmem) device memory region
392  * are exposed as a 64b fake device BARs in the VM. These fake BARs must
393  * respond to the accesses on their respective PCI config space offsets.
394  *
395  * resmem BAR owns PCI_BASE_ADDRESS_2 & PCI_BASE_ADDRESS_3.
396  * usemem BAR owns PCI_BASE_ADDRESS_4 & PCI_BASE_ADDRESS_5.
397  */
398 static ssize_t
nvgrace_gpu_read_config_emu(struct vfio_device * core_vdev,char __user * buf,size_t count,loff_t * ppos)399 nvgrace_gpu_read_config_emu(struct vfio_device *core_vdev,
400 			    char __user *buf, size_t count, loff_t *ppos)
401 {
402 	struct nvgrace_gpu_pci_core_device *nvdev =
403 		container_of(core_vdev, struct nvgrace_gpu_pci_core_device,
404 			     core_device.vdev);
405 	u64 pos = *ppos & VFIO_PCI_OFFSET_MASK;
406 	struct mem_region *memregion = NULL;
407 	__le64 val64;
408 	size_t register_offset;
409 	loff_t copy_offset;
410 	size_t copy_count;
411 	int ret;
412 
413 	ret = vfio_pci_core_read(core_vdev, buf, count, ppos);
414 	if (ret < 0)
415 		return ret;
416 
417 	if (vfio_pci_core_range_intersect_range(pos, count, PCI_BASE_ADDRESS_2,
418 						sizeof(val64),
419 						&copy_offset, &copy_count,
420 						&register_offset))
421 		memregion = nvgrace_gpu_memregion(RESMEM_REGION_INDEX, nvdev);
422 	else if (vfio_pci_core_range_intersect_range(pos, count,
423 						     PCI_BASE_ADDRESS_4,
424 						     sizeof(val64),
425 						     &copy_offset, &copy_count,
426 						     &register_offset))
427 		memregion = nvgrace_gpu_memregion(USEMEM_REGION_INDEX, nvdev);
428 
429 	if (memregion) {
430 		val64 = nvgrace_gpu_get_read_value(memregion->bar_size,
431 						   PCI_BASE_ADDRESS_MEM_TYPE_64 |
432 						   PCI_BASE_ADDRESS_MEM_PREFETCH,
433 						   memregion->bar_val);
434 		if (copy_to_user(buf + copy_offset,
435 				 (void *)&val64 + register_offset, copy_count)) {
436 			/*
437 			 * The position has been incremented in
438 			 * vfio_pci_core_read. Reset the offset back to the
439 			 * starting position.
440 			 */
441 			*ppos -= count;
442 			return -EFAULT;
443 		}
444 	}
445 
446 	return count;
447 }
448 
449 static ssize_t
nvgrace_gpu_write_config_emu(struct vfio_device * core_vdev,const char __user * buf,size_t count,loff_t * ppos)450 nvgrace_gpu_write_config_emu(struct vfio_device *core_vdev,
451 			     const char __user *buf, size_t count, loff_t *ppos)
452 {
453 	struct nvgrace_gpu_pci_core_device *nvdev =
454 		container_of(core_vdev, struct nvgrace_gpu_pci_core_device,
455 			     core_device.vdev);
456 	u64 pos = *ppos & VFIO_PCI_OFFSET_MASK;
457 	struct mem_region *memregion = NULL;
458 	size_t register_offset;
459 	loff_t copy_offset;
460 	size_t copy_count;
461 
462 	if (vfio_pci_core_range_intersect_range(pos, count, PCI_BASE_ADDRESS_2,
463 						sizeof(u64), &copy_offset,
464 						&copy_count, &register_offset))
465 		memregion = nvgrace_gpu_memregion(RESMEM_REGION_INDEX, nvdev);
466 	else if (vfio_pci_core_range_intersect_range(pos, count, PCI_BASE_ADDRESS_4,
467 						     sizeof(u64), &copy_offset,
468 						     &copy_count, &register_offset))
469 		memregion = nvgrace_gpu_memregion(USEMEM_REGION_INDEX, nvdev);
470 
471 	if (memregion) {
472 		if (copy_from_user((void *)&memregion->bar_val + register_offset,
473 				   buf + copy_offset, copy_count))
474 			return -EFAULT;
475 		*ppos += copy_count;
476 		return copy_count;
477 	}
478 
479 	return vfio_pci_core_write(core_vdev, buf, count, ppos);
480 }
481 
482 /*
483  * Ad hoc map the device memory in the module kernel VA space. Primarily needed
484  * as vfio does not require the userspace driver to only perform accesses through
485  * mmaps of the vfio-pci BAR regions and such accesses should be supported using
486  * vfio_device_ops read/write implementations.
487  *
488  * The usemem region is cacheable memory and hence is memremaped.
489  * The resmem region is non-cached and is mapped using ioremap_wc (NORMAL_NC).
490  */
491 static int
nvgrace_gpu_map_device_mem(int index,struct nvgrace_gpu_pci_core_device * nvdev)492 nvgrace_gpu_map_device_mem(int index,
493 			   struct nvgrace_gpu_pci_core_device *nvdev)
494 {
495 	struct mem_region *memregion;
496 	int ret = 0;
497 
498 	memregion = nvgrace_gpu_memregion(index, nvdev);
499 	if (!memregion)
500 		return -EINVAL;
501 
502 	mutex_lock(&nvdev->remap_lock);
503 
504 	if (memregion->memaddr)
505 		goto unlock;
506 
507 	if (index == USEMEM_REGION_INDEX)
508 		memregion->memaddr = memremap(memregion->memphys,
509 					      memregion->memlength,
510 					      MEMREMAP_WB);
511 	else
512 		memregion->ioaddr = ioremap_wc(memregion->memphys,
513 					       memregion->memlength);
514 
515 	if (!memregion->memaddr)
516 		ret = -ENOMEM;
517 
518 unlock:
519 	mutex_unlock(&nvdev->remap_lock);
520 
521 	return ret;
522 }
523 
524 /*
525  * Read the data from the device memory (mapped either through ioremap
526  * or memremap) into the user buffer.
527  */
528 static int
nvgrace_gpu_map_and_read(struct nvgrace_gpu_pci_core_device * nvdev,char __user * buf,size_t mem_count,loff_t * ppos)529 nvgrace_gpu_map_and_read(struct nvgrace_gpu_pci_core_device *nvdev,
530 			 char __user *buf, size_t mem_count, loff_t *ppos)
531 {
532 	unsigned int index = VFIO_PCI_OFFSET_TO_INDEX(*ppos);
533 	u64 offset = *ppos & VFIO_PCI_OFFSET_MASK;
534 	int ret;
535 
536 	if (!mem_count)
537 		return 0;
538 
539 	/*
540 	 * Handle read on the BAR regions. Map to the target device memory
541 	 * physical address and copy to the request read buffer.
542 	 */
543 	ret = nvgrace_gpu_map_device_mem(index, nvdev);
544 	if (ret)
545 		return ret;
546 
547 	if (index == USEMEM_REGION_INDEX) {
548 		if (copy_to_user(buf,
549 				 (u8 *)nvdev->usemem.memaddr + offset,
550 				 mem_count))
551 			ret = -EFAULT;
552 	} else {
553 		/*
554 		 * The hardware ensures that the system does not crash when
555 		 * the device memory is accessed with the memory enable
556 		 * turned off. It synthesizes ~0 on such read. So there is
557 		 * no need to check or support the disablement/enablement of
558 		 * BAR through PCI_COMMAND config space register. Pass
559 		 * test_mem flag as false.
560 		 */
561 		ret = vfio_pci_core_do_io_rw(&nvdev->core_device, false,
562 					     nvdev->resmem.ioaddr,
563 					     buf, offset, mem_count,
564 					     0, 0, false);
565 	}
566 
567 	return ret;
568 }
569 
570 /*
571  * Read count bytes from the device memory at an offset. The actual device
572  * memory size (available) may not be a power-of-2. So the driver fakes
573  * the size to a power-of-2 (reported) when exposing to a user space driver.
574  *
575  * Reads starting beyond the reported size generate -EINVAL; reads extending
576  * beyond the actual device size is filled with ~0; reads extending beyond
577  * the reported size are truncated.
578  */
579 static ssize_t
nvgrace_gpu_read_mem(struct nvgrace_gpu_pci_core_device * nvdev,char __user * buf,size_t count,loff_t * ppos)580 nvgrace_gpu_read_mem(struct nvgrace_gpu_pci_core_device *nvdev,
581 		     char __user *buf, size_t count, loff_t *ppos)
582 {
583 	struct vfio_pci_core_device *vdev = &nvdev->core_device;
584 	u64 offset = *ppos & VFIO_PCI_OFFSET_MASK;
585 	unsigned int index = VFIO_PCI_OFFSET_TO_INDEX(*ppos);
586 	struct mem_region *memregion;
587 	size_t mem_count, i;
588 	u8 val = 0xFF;
589 	int ret;
590 
591 	/* No need to do NULL check as caller does. */
592 	memregion = nvgrace_gpu_memregion(index, nvdev);
593 
594 	if (offset >= memregion->bar_size)
595 		return -EINVAL;
596 
597 	/* Clip short the read request beyond reported BAR size */
598 	count = min(count, memregion->bar_size - (size_t)offset);
599 
600 	/*
601 	 * Determine how many bytes to be actually read from the device memory.
602 	 * Read request beyond the actual device memory size is filled with ~0,
603 	 * while those beyond the actual reported size is skipped.
604 	 */
605 	if (offset >= memregion->memlength)
606 		mem_count = 0;
607 	else
608 		mem_count = min(count, memregion->memlength - (size_t)offset);
609 
610 	scoped_guard(rwsem_read, &vdev->memory_lock) {
611 		ret = nvgrace_gpu_check_device_ready(nvdev);
612 		if (ret)
613 			return ret;
614 
615 		ret = nvgrace_gpu_map_and_read(nvdev, buf, mem_count, ppos);
616 		if (ret)
617 			return ret;
618 	}
619 
620 	/*
621 	 * Only the device memory present on the hardware is mapped, which may
622 	 * not be power-of-2 aligned. A read to an offset beyond the device memory
623 	 * size is filled with ~0.
624 	 */
625 	for (i = mem_count; i < count; i++) {
626 		ret = put_user(val, (unsigned char __user *)(buf + i));
627 		if (ret)
628 			return ret;
629 	}
630 
631 	*ppos += count;
632 	return count;
633 }
634 
635 static ssize_t
nvgrace_gpu_read(struct vfio_device * core_vdev,char __user * buf,size_t count,loff_t * ppos)636 nvgrace_gpu_read(struct vfio_device *core_vdev,
637 		 char __user *buf, size_t count, loff_t *ppos)
638 {
639 	unsigned int index = VFIO_PCI_OFFSET_TO_INDEX(*ppos);
640 	struct nvgrace_gpu_pci_core_device *nvdev =
641 		container_of(core_vdev, struct nvgrace_gpu_pci_core_device,
642 			     core_device.vdev);
643 	struct vfio_pci_core_device *vdev = &nvdev->core_device;
644 	int ret;
645 
646 	if (nvgrace_gpu_memregion(index, nvdev)) {
647 		if (pm_runtime_resume_and_get(&vdev->pdev->dev))
648 			return -EIO;
649 		ret = nvgrace_gpu_read_mem(nvdev, buf, count, ppos);
650 		pm_runtime_put(&vdev->pdev->dev);
651 		return ret;
652 	}
653 
654 	if (index == VFIO_PCI_CONFIG_REGION_INDEX)
655 		return nvgrace_gpu_read_config_emu(core_vdev, buf, count, ppos);
656 
657 	return vfio_pci_core_read(core_vdev, buf, count, ppos);
658 }
659 
660 /*
661  * Write the data to the device memory (mapped either through ioremap
662  * or memremap) from the user buffer.
663  */
664 static int
nvgrace_gpu_map_and_write(struct nvgrace_gpu_pci_core_device * nvdev,const char __user * buf,size_t mem_count,loff_t * ppos)665 nvgrace_gpu_map_and_write(struct nvgrace_gpu_pci_core_device *nvdev,
666 			  const char __user *buf, size_t mem_count,
667 			  loff_t *ppos)
668 {
669 	unsigned int index = VFIO_PCI_OFFSET_TO_INDEX(*ppos);
670 	loff_t pos = *ppos & VFIO_PCI_OFFSET_MASK;
671 	int ret;
672 
673 	if (!mem_count)
674 		return 0;
675 
676 	ret = nvgrace_gpu_map_device_mem(index, nvdev);
677 	if (ret)
678 		return ret;
679 
680 	if (index == USEMEM_REGION_INDEX) {
681 		if (copy_from_user((u8 *)nvdev->usemem.memaddr + pos,
682 				   buf, mem_count))
683 			return -EFAULT;
684 	} else {
685 		/*
686 		 * The hardware ensures that the system does not crash when
687 		 * the device memory is accessed with the memory enable
688 		 * turned off. It drops such writes. So there is no need to
689 		 * check or support the disablement/enablement of BAR
690 		 * through PCI_COMMAND config space register. Pass test_mem
691 		 * flag as false.
692 		 */
693 		ret = vfio_pci_core_do_io_rw(&nvdev->core_device, false,
694 					     nvdev->resmem.ioaddr,
695 					     (char __user *)buf, pos, mem_count,
696 					     0, 0, true);
697 	}
698 
699 	return ret;
700 }
701 
702 /*
703  * Write count bytes to the device memory at a given offset. The actual device
704  * memory size (available) may not be a power-of-2. So the driver fakes the
705  * size to a power-of-2 (reported) when exposing to a user space driver.
706  *
707  * Writes extending beyond the reported size are truncated; writes starting
708  * beyond the reported size generate -EINVAL.
709  */
710 static ssize_t
nvgrace_gpu_write_mem(struct nvgrace_gpu_pci_core_device * nvdev,size_t count,loff_t * ppos,const char __user * buf)711 nvgrace_gpu_write_mem(struct nvgrace_gpu_pci_core_device *nvdev,
712 		      size_t count, loff_t *ppos, const char __user *buf)
713 {
714 	struct vfio_pci_core_device *vdev = &nvdev->core_device;
715 	unsigned int index = VFIO_PCI_OFFSET_TO_INDEX(*ppos);
716 	u64 offset = *ppos & VFIO_PCI_OFFSET_MASK;
717 	struct mem_region *memregion;
718 	size_t mem_count;
719 	int ret = 0;
720 
721 	/* No need to do NULL check as caller does. */
722 	memregion = nvgrace_gpu_memregion(index, nvdev);
723 
724 	if (offset >= memregion->bar_size)
725 		return -EINVAL;
726 
727 	/* Clip short the write request beyond reported BAR size */
728 	count = min(count, memregion->bar_size - (size_t)offset);
729 
730 	/*
731 	 * Determine how many bytes to be actually written to the device memory.
732 	 * Do not write to the offset beyond available size.
733 	 */
734 	if (offset >= memregion->memlength)
735 		goto exitfn;
736 
737 	/*
738 	 * Only the device memory present on the hardware is mapped, which may
739 	 * not be power-of-2 aligned. Drop access outside the available device
740 	 * memory on the hardware.
741 	 */
742 	mem_count = min(count, memregion->memlength - (size_t)offset);
743 
744 	scoped_guard(rwsem_read, &vdev->memory_lock) {
745 		ret = nvgrace_gpu_check_device_ready(nvdev);
746 		if (ret)
747 			return ret;
748 
749 		ret = nvgrace_gpu_map_and_write(nvdev, buf, mem_count, ppos);
750 		if (ret)
751 			return ret;
752 	}
753 
754 exitfn:
755 	*ppos += count;
756 	return count;
757 }
758 
759 static ssize_t
nvgrace_gpu_write(struct vfio_device * core_vdev,const char __user * buf,size_t count,loff_t * ppos)760 nvgrace_gpu_write(struct vfio_device *core_vdev,
761 		  const char __user *buf, size_t count, loff_t *ppos)
762 {
763 	struct nvgrace_gpu_pci_core_device *nvdev =
764 		container_of(core_vdev, struct nvgrace_gpu_pci_core_device,
765 			     core_device.vdev);
766 	struct vfio_pci_core_device *vdev = &nvdev->core_device;
767 	unsigned int index = VFIO_PCI_OFFSET_TO_INDEX(*ppos);
768 	int ret;
769 
770 	if (nvgrace_gpu_memregion(index, nvdev)) {
771 		if (pm_runtime_resume_and_get(&vdev->pdev->dev))
772 			return -EIO;
773 		ret = nvgrace_gpu_write_mem(nvdev, count, ppos, buf);
774 		pm_runtime_put(&vdev->pdev->dev);
775 		return ret;
776 	}
777 
778 	if (index == VFIO_PCI_CONFIG_REGION_INDEX)
779 		return nvgrace_gpu_write_config_emu(core_vdev, buf, count, ppos);
780 
781 	return vfio_pci_core_write(core_vdev, buf, count, ppos);
782 }
783 
nvgrace_get_dmabuf_phys(struct vfio_pci_core_device * core_vdev,struct p2pdma_provider ** provider,unsigned int region_index,struct dma_buf_phys_vec * phys_vec,struct vfio_region_dma_range * dma_ranges,size_t nr_ranges)784 static int nvgrace_get_dmabuf_phys(struct vfio_pci_core_device *core_vdev,
785 				   struct p2pdma_provider **provider,
786 				   unsigned int region_index,
787 				   struct dma_buf_phys_vec *phys_vec,
788 				   struct vfio_region_dma_range *dma_ranges,
789 				   size_t nr_ranges)
790 {
791 	struct nvgrace_gpu_pci_core_device *nvdev = container_of(
792 		core_vdev, struct nvgrace_gpu_pci_core_device, core_device);
793 	struct pci_dev *pdev = core_vdev->pdev;
794 	struct mem_region *mem_region;
795 
796 	/*
797 	 * if (nvdev->resmem.memlength && region_index == RESMEM_REGION_INDEX) {
798 	 * 	The P2P properties of the non-BAR memory is the same as the
799 	 * 	BAR memory, so just use the provider for index 0. Someday
800 	 * 	when CXL gets P2P support we could create CXLish providers
801 	 * 	for the non-BAR memory.
802 	 * } else if (region_index == USEMEM_REGION_INDEX) {
803 	 * 	This is actually cachable memory and isn't treated as P2P in
804 	 * 	the chip. For now we have no way to push cachable memory
805 	 * 	through everything and the Grace HW doesn't care what caching
806 	 * 	attribute is programmed into the SMMU. So use BAR 0.
807 	 * }
808 	 */
809 	mem_region = nvgrace_gpu_memregion(region_index, nvdev);
810 	if (mem_region) {
811 		*provider = pcim_p2pdma_provider(pdev, 0);
812 		if (!*provider)
813 			return -EINVAL;
814 		return vfio_pci_core_fill_phys_vec(phys_vec, dma_ranges,
815 						   nr_ranges,
816 						   mem_region->memphys,
817 						   mem_region->memlength);
818 	}
819 
820 	return vfio_pci_core_get_dmabuf_phys(core_vdev, provider, region_index,
821 					     phys_vec, dma_ranges, nr_ranges);
822 }
823 
824 static const struct vfio_pci_device_ops nvgrace_gpu_pci_dev_ops = {
825 	.get_dmabuf_phys = nvgrace_get_dmabuf_phys,
826 };
827 
828 static const struct vfio_device_ops nvgrace_gpu_pci_ops = {
829 	.name		= "nvgrace-gpu-vfio-pci",
830 	.init		= vfio_pci_core_init_dev,
831 	.release	= vfio_pci_core_release_dev,
832 	.open_device	= nvgrace_gpu_open_device,
833 	.close_device	= nvgrace_gpu_close_device,
834 	.ioctl		= nvgrace_gpu_ioctl,
835 	.get_region_info_caps = nvgrace_gpu_ioctl_get_region_info,
836 	.device_feature	= vfio_pci_core_ioctl_feature,
837 	.read		= nvgrace_gpu_read,
838 	.write		= nvgrace_gpu_write,
839 	.mmap		= nvgrace_gpu_mmap,
840 	.request	= vfio_pci_core_request,
841 	.match		= vfio_pci_core_match,
842 	.match_token_uuid = vfio_pci_core_match_token_uuid,
843 	.bind_iommufd	= vfio_iommufd_physical_bind,
844 	.unbind_iommufd	= vfio_iommufd_physical_unbind,
845 	.attach_ioas	= vfio_iommufd_physical_attach_ioas,
846 	.detach_ioas	= vfio_iommufd_physical_detach_ioas,
847 };
848 
849 static const struct vfio_pci_device_ops nvgrace_gpu_pci_dev_core_ops = {
850 	.get_dmabuf_phys = vfio_pci_core_get_dmabuf_phys,
851 };
852 
853 static const struct vfio_device_ops nvgrace_gpu_pci_core_ops = {
854 	.name		= "nvgrace-gpu-vfio-pci-core",
855 	.init		= vfio_pci_core_init_dev,
856 	.release	= vfio_pci_core_release_dev,
857 	.open_device	= nvgrace_gpu_open_device,
858 	.close_device	= vfio_pci_core_close_device,
859 	.ioctl		= vfio_pci_core_ioctl,
860 	.get_region_info_caps = vfio_pci_ioctl_get_region_info,
861 	.device_feature	= vfio_pci_core_ioctl_feature,
862 	.read		= vfio_pci_core_read,
863 	.write		= vfio_pci_core_write,
864 	.mmap		= vfio_pci_core_mmap,
865 	.request	= vfio_pci_core_request,
866 	.match		= vfio_pci_core_match,
867 	.match_token_uuid = vfio_pci_core_match_token_uuid,
868 	.bind_iommufd	= vfio_iommufd_physical_bind,
869 	.unbind_iommufd	= vfio_iommufd_physical_unbind,
870 	.attach_ioas	= vfio_iommufd_physical_attach_ioas,
871 	.detach_ioas	= vfio_iommufd_physical_detach_ioas,
872 };
873 
874 static int
nvgrace_gpu_fetch_memory_property(struct pci_dev * pdev,u64 * pmemphys,u64 * pmemlength)875 nvgrace_gpu_fetch_memory_property(struct pci_dev *pdev,
876 				  u64 *pmemphys, u64 *pmemlength)
877 {
878 	int ret;
879 
880 	/*
881 	 * The memory information is present in the system ACPI tables as DSD
882 	 * properties nvidia,gpu-mem-base-pa and nvidia,gpu-mem-size.
883 	 */
884 	ret = device_property_read_u64(&pdev->dev, "nvidia,gpu-mem-base-pa",
885 				       pmemphys);
886 	if (ret)
887 		return ret;
888 
889 	if (*pmemphys > type_max(phys_addr_t))
890 		return -EOVERFLOW;
891 
892 	ret = device_property_read_u64(&pdev->dev, "nvidia,gpu-mem-size",
893 				       pmemlength);
894 	if (ret)
895 		return ret;
896 
897 	if (*pmemlength > type_max(size_t))
898 		return -EOVERFLOW;
899 
900 	/*
901 	 * If the C2C link is not up due to an error, the coherent device
902 	 * memory size is returned as 0. Fail in such case.
903 	 */
904 	if (*pmemlength == 0)
905 		return -ENOMEM;
906 
907 	return ret;
908 }
909 
910 static int
nvgrace_gpu_init_nvdev_struct(struct pci_dev * pdev,struct nvgrace_gpu_pci_core_device * nvdev,u64 memphys,u64 memlength)911 nvgrace_gpu_init_nvdev_struct(struct pci_dev *pdev,
912 			      struct nvgrace_gpu_pci_core_device *nvdev,
913 			      u64 memphys, u64 memlength)
914 {
915 	int ret = 0;
916 	u64 resmem_size = 0;
917 
918 	/*
919 	 * On Grace Hopper systems, the VM GPU device driver needs a non-cacheable
920 	 * region to support the MIG feature owing to a hardware bug. Since the
921 	 * device memory is mapped as NORMAL cached, carve out a region from the end
922 	 * with a different NORMAL_NC property (called as reserved memory and
923 	 * represented as resmem). This region then is exposed as a 64b BAR
924 	 * (region 2 and 3) to the VM, while exposing the rest (termed as usable
925 	 * memory and represented using usemem) as cacheable 64b BAR (region 4 and 5).
926 	 *
927 	 *               devmem (memlength)
928 	 * |-------------------------------------------------|
929 	 * |                                           |
930 	 * usemem.memphys                              resmem.memphys
931 	 *
932 	 * This hardware bug is fixed on the Grace Blackwell platforms and the
933 	 * presence of the bug can be determined through nvdev->has_mig_hw_bug.
934 	 * Thus on systems with the hardware fix, there is no need to partition
935 	 * the GPU device memory and the entire memory is usable and mapped as
936 	 * NORMAL cached (i.e. resmem size is 0).
937 	 */
938 	if (nvdev->has_mig_hw_bug)
939 		resmem_size = SZ_1G;
940 
941 	nvdev->usemem.memphys = memphys;
942 
943 	/*
944 	 * The device memory exposed to the VM is added to the kernel by the
945 	 * VM driver module in chunks of memory block size. Note that only the
946 	 * usable memory (usemem) is added to the kernel for usage by the VM
947 	 * workloads.
948 	 */
949 	if (check_sub_overflow(memlength, resmem_size,
950 			       &nvdev->usemem.memlength)) {
951 		ret = -EOVERFLOW;
952 		goto done;
953 	}
954 
955 	/*
956 	 * The usemem region is exposed as a 64B Bar composed of region 4 and 5.
957 	 * Calculate and save the BAR size for the region.
958 	 */
959 	nvdev->usemem.bar_size = roundup_pow_of_two(nvdev->usemem.memlength);
960 
961 	/*
962 	 * If the hardware has the fix for MIG, there is no requirement
963 	 * for splitting the device memory to create RESMEM. The entire
964 	 * device memory is usable and will be USEMEM. Return here for
965 	 * such case.
966 	 */
967 	if (!nvdev->has_mig_hw_bug)
968 		goto done;
969 
970 	/*
971 	 * When the device memory is split to workaround the MIG bug on
972 	 * Grace Hopper, the USEMEM part of the device memory has to be
973 	 * MEMBLK_SIZE aligned. This is a hardwired ABI value between the
974 	 * GPU FW and VFIO driver. The VM device driver is also aware of it
975 	 * and make use of the value for its calculation to determine USEMEM
976 	 * size. Note that the device memory may not be 512M aligned.
977 	 */
978 	nvdev->usemem.memlength = round_down(nvdev->usemem.memlength,
979 					     MEMBLK_SIZE);
980 	if (nvdev->usemem.memlength == 0) {
981 		ret = -EINVAL;
982 		goto done;
983 	}
984 
985 	if ((check_add_overflow(nvdev->usemem.memphys,
986 				nvdev->usemem.memlength,
987 				&nvdev->resmem.memphys)) ||
988 	    (check_sub_overflow(memlength, nvdev->usemem.memlength,
989 				&nvdev->resmem.memlength))) {
990 		ret = -EOVERFLOW;
991 		goto done;
992 	}
993 
994 	/*
995 	 * The resmem region is exposed as a 64b BAR composed of region 2 and 3
996 	 * for Grace Hopper. Calculate and save the BAR size for the region.
997 	 */
998 	nvdev->resmem.bar_size = roundup_pow_of_two(nvdev->resmem.memlength);
999 done:
1000 	return ret;
1001 }
1002 
nvgrace_gpu_has_mig_hw_bug(struct pci_dev * pdev)1003 static bool nvgrace_gpu_has_mig_hw_bug(struct pci_dev *pdev)
1004 {
1005 	int pcie_dvsec;
1006 	u16 dvsec_ctrl16;
1007 
1008 	pcie_dvsec = pci_find_dvsec_capability(pdev, PCI_VENDOR_ID_NVIDIA,
1009 					       GPU_CAP_DVSEC_REGISTER);
1010 
1011 	if (pcie_dvsec) {
1012 		pci_read_config_word(pdev,
1013 				     pcie_dvsec + DVSEC_BITMAP_OFFSET,
1014 				     &dvsec_ctrl16);
1015 
1016 		if (dvsec_ctrl16 & MIG_SUPPORTED_WITH_CACHED_RESMEM)
1017 			return false;
1018 	}
1019 
1020 	return true;
1021 }
1022 
1023 /*
1024  * To reduce the system bootup time, the HBM training has
1025  * been moved out of the UEFI on the Grace-Blackwell systems.
1026  *
1027  * The onus of checking whether the HBM training has completed
1028  * thus falls on the module. The HBM training status can be
1029  * determined from a BAR0 register.
1030  *
1031  * Similarly, another BAR0 register exposes the status of the
1032  * CPU-GPU chip-to-chip (C2C) cache coherent interconnect.
1033  *
1034  * Poll these register and check for 30s. If the HBM training is
1035  * not complete or if the C2C link is not ready, fail the probe.
1036  *
1037  * While the wait is not required on Grace Hopper systems, it
1038  * is beneficial to make the check to ensure the device is in an
1039  * expected state.
1040  *
1041  * Ensure that the BAR0 region is enabled before accessing the
1042  * registers.
1043  */
nvgrace_gpu_probe_check_device_ready(struct pci_dev * pdev)1044 static int nvgrace_gpu_probe_check_device_ready(struct pci_dev *pdev)
1045 {
1046 	void __iomem *io;
1047 	int ret;
1048 
1049 	ret = pci_enable_device(pdev);
1050 	if (ret)
1051 		return ret;
1052 
1053 	ret = pci_request_selected_regions(pdev, 1 << 0, KBUILD_MODNAME);
1054 	if (ret)
1055 		goto request_region_exit;
1056 
1057 	io = pci_iomap(pdev, 0, 0);
1058 	if (!io) {
1059 		ret = -ENOMEM;
1060 		goto iomap_exit;
1061 	}
1062 
1063 	ret = nvgrace_gpu_wait_device_ready(io);
1064 
1065 	pci_iounmap(pdev, io);
1066 iomap_exit:
1067 	pci_release_selected_regions(pdev, 1 << 0);
1068 request_region_exit:
1069 	pci_disable_device(pdev);
1070 	return ret;
1071 }
1072 
nvgrace_gpu_probe(struct pci_dev * pdev,const struct pci_device_id * id)1073 static int nvgrace_gpu_probe(struct pci_dev *pdev,
1074 			     const struct pci_device_id *id)
1075 {
1076 	const struct vfio_device_ops *ops = &nvgrace_gpu_pci_core_ops;
1077 	struct nvgrace_gpu_pci_core_device *nvdev;
1078 	u64 memphys, memlength;
1079 	int ret;
1080 
1081 	ret = nvgrace_gpu_probe_check_device_ready(pdev);
1082 	if (ret)
1083 		return ret;
1084 
1085 	ret = nvgrace_gpu_fetch_memory_property(pdev, &memphys, &memlength);
1086 	if (!ret)
1087 		ops = &nvgrace_gpu_pci_ops;
1088 
1089 	nvdev = vfio_alloc_device(nvgrace_gpu_pci_core_device, core_device.vdev,
1090 				  &pdev->dev, ops);
1091 	if (IS_ERR(nvdev))
1092 		return PTR_ERR(nvdev);
1093 
1094 	dev_set_drvdata(&pdev->dev, &nvdev->core_device);
1095 
1096 	if (ops == &nvgrace_gpu_pci_ops) {
1097 		nvdev->has_mig_hw_bug = nvgrace_gpu_has_mig_hw_bug(pdev);
1098 
1099 		/*
1100 		 * Device memory properties are identified in the host ACPI
1101 		 * table. Set the nvgrace_gpu_pci_core_device structure.
1102 		 */
1103 		ret = nvgrace_gpu_init_nvdev_struct(pdev, nvdev,
1104 						    memphys, memlength);
1105 		if (ret)
1106 			goto out_put_vdev;
1107 		nvdev->core_device.pci_ops = &nvgrace_gpu_pci_dev_ops;
1108 	} else {
1109 		nvdev->core_device.pci_ops = &nvgrace_gpu_pci_dev_core_ops;
1110 	}
1111 
1112 	ret = vfio_pci_core_register_device(&nvdev->core_device);
1113 	if (ret)
1114 		goto out_put_vdev;
1115 
1116 	return ret;
1117 
1118 out_put_vdev:
1119 	vfio_put_device(&nvdev->core_device.vdev);
1120 	return ret;
1121 }
1122 
nvgrace_gpu_remove(struct pci_dev * pdev)1123 static void nvgrace_gpu_remove(struct pci_dev *pdev)
1124 {
1125 	struct vfio_pci_core_device *core_device = dev_get_drvdata(&pdev->dev);
1126 
1127 	vfio_pci_core_unregister_device(core_device);
1128 	vfio_put_device(&core_device->vdev);
1129 }
1130 
1131 static const struct pci_device_id nvgrace_gpu_vfio_pci_table[] = {
1132 	/* GH200 120GB */
1133 	{ PCI_DRIVER_OVERRIDE_DEVICE_VFIO(PCI_VENDOR_ID_NVIDIA, 0x2342) },
1134 	/* GH200 480GB */
1135 	{ PCI_DRIVER_OVERRIDE_DEVICE_VFIO(PCI_VENDOR_ID_NVIDIA, 0x2345) },
1136 	/* GH200 SKU */
1137 	{ PCI_DRIVER_OVERRIDE_DEVICE_VFIO(PCI_VENDOR_ID_NVIDIA, 0x2348) },
1138 	/* GB200 SKU */
1139 	{ PCI_DRIVER_OVERRIDE_DEVICE_VFIO(PCI_VENDOR_ID_NVIDIA, 0x2941) },
1140 	/* GB300 SKU */
1141 	{ PCI_DRIVER_OVERRIDE_DEVICE_VFIO(PCI_VENDOR_ID_NVIDIA, 0x31C2) },
1142 	{}
1143 };
1144 
1145 MODULE_DEVICE_TABLE(pci, nvgrace_gpu_vfio_pci_table);
1146 
1147 /*
1148  * The GPU reset is required to be serialized against the *first* mapping
1149  * faults and read/writes accesses to prevent potential RAS events logging.
1150  *
1151  * First fault or access after a reset needs to poll device readiness,
1152  * flag that a reset has occurred. The readiness test is done by holding
1153  * the memory_lock read lock and we expect all vfio-pci initiated resets to
1154  * hold the memory_lock write lock to avoid races. However, .reset_done
1155  * extends beyond the scope of vfio-pci initiated resets therefore we
1156  * cannot assert this behavior and use lockdep_assert_held_write.
1157  */
nvgrace_gpu_vfio_pci_reset_done(struct pci_dev * pdev)1158 static void nvgrace_gpu_vfio_pci_reset_done(struct pci_dev *pdev)
1159 {
1160 	struct vfio_pci_core_device *core_device = dev_get_drvdata(&pdev->dev);
1161 	struct nvgrace_gpu_pci_core_device *nvdev =
1162 		container_of(core_device, struct nvgrace_gpu_pci_core_device,
1163 			     core_device);
1164 
1165 	nvdev->reset_done = true;
1166 }
1167 
1168 static const struct pci_error_handlers nvgrace_gpu_vfio_pci_err_handlers = {
1169 	.reset_done = nvgrace_gpu_vfio_pci_reset_done,
1170 	.error_detected = vfio_pci_core_aer_err_detected,
1171 };
1172 
1173 static struct pci_driver nvgrace_gpu_vfio_pci_driver = {
1174 	.name = KBUILD_MODNAME,
1175 	.id_table = nvgrace_gpu_vfio_pci_table,
1176 	.probe = nvgrace_gpu_probe,
1177 	.remove = nvgrace_gpu_remove,
1178 	.err_handler = &nvgrace_gpu_vfio_pci_err_handlers,
1179 	.driver_managed_dma = true,
1180 };
1181 
1182 module_pci_driver(nvgrace_gpu_vfio_pci_driver);
1183 
1184 MODULE_LICENSE("GPL");
1185 MODULE_AUTHOR("Ankit Agrawal <ankita@nvidia.com>");
1186 MODULE_AUTHOR("Aniket Agashe <aniketa@nvidia.com>");
1187 MODULE_DESCRIPTION("VFIO NVGRACE GPU PF - User Level driver for NVIDIA devices with CPU coherently accessible device memory");
1188