1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2013 Red Hat
4 * Copyright (c) 2014-2018, 2020-2021 The Linux Foundation. All rights reserved.
5 * Copyright (c) 2022-2024 Qualcomm Innovation Center, Inc. All rights reserved.
6 *
7 * Author: Rob Clark <robdclark@gmail.com>
8 */
9
10 #define pr_fmt(fmt) "[drm:%s:%d] " fmt, __func__, __LINE__
11 #include <linux/debugfs.h>
12 #include <linux/kthread.h>
13 #include <linux/seq_file.h>
14
15 #include <drm/drm_atomic.h>
16 #include <drm/drm_crtc.h>
17 #include <drm/drm_file.h>
18 #include <drm/drm_probe_helper.h>
19 #include <drm/drm_framebuffer.h>
20
21 #include "msm_drv.h"
22 #include "dpu_kms.h"
23 #include "dpu_hwio.h"
24 #include "dpu_hw_catalog.h"
25 #include "dpu_hw_intf.h"
26 #include "dpu_hw_ctl.h"
27 #include "dpu_hw_cwb.h"
28 #include "dpu_hw_dspp.h"
29 #include "dpu_hw_dsc.h"
30 #include "dpu_hw_merge3d.h"
31 #include "dpu_hw_cdm.h"
32 #include "dpu_formats.h"
33 #include "dpu_encoder_phys.h"
34 #include "dpu_crtc.h"
35 #include "dpu_trace.h"
36 #include "dpu_core_irq.h"
37 #include "disp/msm_disp_snapshot.h"
38
39 #define DPU_DEBUG_ENC(e, fmt, ...) DRM_DEBUG_ATOMIC("enc%d " fmt,\
40 (e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
41
42 #define DPU_ERROR_ENC(e, fmt, ...) DPU_ERROR("enc%d " fmt,\
43 (e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
44
45 #define DPU_ERROR_ENC_RATELIMITED(e, fmt, ...) DPU_ERROR_RATELIMITED("enc%d " fmt,\
46 (e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
47
48 /*
49 * Two to anticipate panels that can do cmd/vid dynamic switching
50 * plan is to create all possible physical encoder types, and switch between
51 * them at runtime
52 */
53 #define NUM_PHYS_ENCODER_TYPES 2
54
55 #define MAX_PHYS_ENCODERS_PER_VIRTUAL \
56 (MAX_H_TILES_PER_DISPLAY * NUM_PHYS_ENCODER_TYPES)
57
58 #define MAX_CHANNELS_PER_ENC 2
59 #define MAX_CWB_PER_ENC 2
60
61 #define IDLE_SHORT_TIMEOUT 1
62
63 /* timeout in frames waiting for frame done */
64 #define DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES 5
65
66 /**
67 * enum dpu_enc_rc_events - events for resource control state machine
68 * @DPU_ENC_RC_EVENT_KICKOFF:
69 * This event happens at NORMAL priority.
70 * Event that signals the start of the transfer. When this event is
71 * received, enable MDP/DSI core clocks. Regardless of the previous
72 * state, the resource should be in ON state at the end of this event.
73 * @DPU_ENC_RC_EVENT_FRAME_DONE:
74 * This event happens at INTERRUPT level.
75 * Event signals the end of the data transfer after the PP FRAME_DONE
76 * event. At the end of this event, a delayed work is scheduled to go to
77 * IDLE_PC state after IDLE_TIMEOUT time.
78 * @DPU_ENC_RC_EVENT_PRE_STOP:
79 * This event happens at NORMAL priority.
80 * This event, when received during the ON state, leave the RC STATE
81 * in the PRE_OFF state. It should be followed by the STOP event as
82 * part of encoder disable.
83 * If received during IDLE or OFF states, it will do nothing.
84 * @DPU_ENC_RC_EVENT_STOP:
85 * This event happens at NORMAL priority.
86 * When this event is received, disable all the MDP/DSI core clocks, and
87 * disable IRQs. It should be called from the PRE_OFF or IDLE states.
88 * IDLE is expected when IDLE_PC has run, and PRE_OFF did nothing.
89 * PRE_OFF is expected when PRE_STOP was executed during the ON state.
90 * Resource state should be in OFF at the end of the event.
91 * @DPU_ENC_RC_EVENT_ENTER_IDLE:
92 * This event happens at NORMAL priority from a work item.
93 * Event signals that there were no frame updates for IDLE_TIMEOUT time.
94 * This would disable MDP/DSI core clocks and change the resource state
95 * to IDLE.
96 */
97 enum dpu_enc_rc_events {
98 DPU_ENC_RC_EVENT_KICKOFF = 1,
99 DPU_ENC_RC_EVENT_FRAME_DONE,
100 DPU_ENC_RC_EVENT_PRE_STOP,
101 DPU_ENC_RC_EVENT_STOP,
102 DPU_ENC_RC_EVENT_ENTER_IDLE
103 };
104
105 /*
106 * enum dpu_enc_rc_states - states that the resource control maintains
107 * @DPU_ENC_RC_STATE_OFF: Resource is in OFF state
108 * @DPU_ENC_RC_STATE_PRE_OFF: Resource is transitioning to OFF state
109 * @DPU_ENC_RC_STATE_ON: Resource is in ON state
110 * @DPU_ENC_RC_STATE_MODESET: Resource is in modeset state
111 * @DPU_ENC_RC_STATE_IDLE: Resource is in IDLE state
112 */
113 enum dpu_enc_rc_states {
114 DPU_ENC_RC_STATE_OFF,
115 DPU_ENC_RC_STATE_PRE_OFF,
116 DPU_ENC_RC_STATE_ON,
117 DPU_ENC_RC_STATE_IDLE
118 };
119
120 /**
121 * struct dpu_encoder_virt - virtual encoder. Container of one or more physical
122 * encoders. Virtual encoder manages one "logical" display. Physical
123 * encoders manage one intf block, tied to a specific panel/sub-panel.
124 * Virtual encoder defers as much as possible to the physical encoders.
125 * Virtual encoder registers itself with the DRM Framework as the encoder.
126 * @base: drm_encoder base class for registration with DRM
127 * @enc_spinlock: Virtual-Encoder-Wide Spin Lock for IRQ purposes
128 * @enabled: True if the encoder is active, protected by enc_lock
129 * @commit_done_timedout: True if there has been a timeout on commit after
130 * enabling the encoder.
131 * @num_phys_encs: Actual number of physical encoders contained.
132 * @phys_encs: Container of physical encoders managed.
133 * @cur_master: Pointer to the current master in this mode. Optimization
134 * Only valid after enable. Cleared as disable.
135 * @cur_slave: As above but for the slave encoder.
136 * @hw_pp: Handle to the pingpong blocks used for the display. No.
137 * pingpong blocks can be different than num_phys_encs.
138 * @hw_cwb: Handle to the CWB muxes used for concurrent writeback
139 * display. Number of CWB muxes can be different than
140 * num_phys_encs.
141 * @hw_dsc: Handle to the DSC blocks used for the display.
142 * @dsc_mask: Bitmask of used DSC blocks.
143 * @cwb_mask: Bitmask of used CWB muxes
144 * @intfs_swapped: Whether or not the phys_enc interfaces have been swapped
145 * for partial update right-only cases, such as pingpong
146 * split where virtual pingpong does not generate IRQs
147 * @crtc: Pointer to the currently assigned crtc. Normally you
148 * would use crtc->state->encoder_mask to determine the
149 * link between encoder/crtc. However in this case we need
150 * to track crtc in the disable() hook which is called
151 * _after_ encoder_mask is cleared.
152 * @connector: If a mode is set, cached pointer to the active connector
153 * @enc_lock: Lock around physical encoder
154 * create/destroy/enable/disable
155 * @frame_busy_mask: Bitmask tracking which phys_enc we are still
156 * busy processing current command.
157 * Bit0 = phys_encs[0] etc.
158 * @frame_done_timeout_ms: frame done timeout in ms
159 * @frame_done_timeout_cnt: atomic counter tracking the number of frame
160 * done timeouts
161 * @frame_done_timer: watchdog timer for frame done event
162 * @disp_info: local copy of msm_display_info struct
163 * @idle_pc_supported: indicate if idle power collaps is supported
164 * @rc_lock: resource control mutex lock to protect
165 * virt encoder over various state changes
166 * @rc_state: resource controller state
167 * @delayed_off_work: delayed worker to schedule disabling of
168 * clks and resources after IDLE_TIMEOUT time.
169 * @topology: topology of the display
170 * @idle_timeout: idle timeout duration in milliseconds
171 * @wide_bus_en: wide bus is enabled on this interface
172 * @dsc: drm_dsc_config pointer, for DSC-enabled encoders
173 */
174 struct dpu_encoder_virt {
175 struct drm_encoder base;
176 spinlock_t enc_spinlock;
177
178 bool enabled;
179 bool commit_done_timedout;
180
181 unsigned int num_phys_encs;
182 struct dpu_encoder_phys *phys_encs[MAX_PHYS_ENCODERS_PER_VIRTUAL];
183 struct dpu_encoder_phys *cur_master;
184 struct dpu_encoder_phys *cur_slave;
185 struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC];
186 struct dpu_hw_cwb *hw_cwb[MAX_CWB_PER_ENC];
187 struct dpu_hw_dsc *hw_dsc[MAX_CHANNELS_PER_ENC];
188
189 unsigned int dsc_mask;
190 unsigned int cwb_mask;
191
192 bool intfs_swapped;
193
194 struct drm_crtc *crtc;
195 struct drm_connector *connector;
196
197 struct mutex enc_lock;
198 DECLARE_BITMAP(frame_busy_mask, MAX_PHYS_ENCODERS_PER_VIRTUAL);
199
200 atomic_t frame_done_timeout_ms;
201 atomic_t frame_done_timeout_cnt;
202 struct timer_list frame_done_timer;
203
204 struct msm_display_info disp_info;
205
206 bool idle_pc_supported;
207 struct mutex rc_lock;
208 enum dpu_enc_rc_states rc_state;
209 struct delayed_work delayed_off_work;
210 struct msm_display_topology topology;
211
212 u32 idle_timeout;
213
214 bool wide_bus_en;
215
216 /* DSC configuration */
217 struct drm_dsc_config *dsc;
218 };
219
220 #define to_dpu_encoder_virt(x) container_of(x, struct dpu_encoder_virt, base)
221
222 static u32 dither_matrix[DITHER_MATRIX_SZ] = {
223 15, 7, 13, 5, 3, 11, 1, 9, 12, 4, 14, 6, 0, 8, 2, 10
224 };
225
226 /**
227 * dpu_encoder_get_drm_fmt - return DRM fourcc format
228 * @phys_enc: Pointer to physical encoder structure
229 */
dpu_encoder_get_drm_fmt(struct dpu_encoder_phys * phys_enc)230 u32 dpu_encoder_get_drm_fmt(struct dpu_encoder_phys *phys_enc)
231 {
232 struct drm_encoder *drm_enc;
233 struct dpu_encoder_virt *dpu_enc;
234 struct drm_display_info *info;
235 struct drm_display_mode *mode;
236
237 drm_enc = phys_enc->parent;
238 dpu_enc = to_dpu_encoder_virt(drm_enc);
239 info = &dpu_enc->connector->display_info;
240 mode = &phys_enc->cached_mode;
241
242 if (drm_mode_is_420_only(info, mode))
243 return DRM_FORMAT_YUV420;
244
245 return DRM_FORMAT_RGB888;
246 }
247
248 /**
249 * dpu_encoder_needs_periph_flush - return true if physical encoder requires
250 * peripheral flush
251 * @phys_enc: Pointer to physical encoder structure
252 */
dpu_encoder_needs_periph_flush(struct dpu_encoder_phys * phys_enc)253 bool dpu_encoder_needs_periph_flush(struct dpu_encoder_phys *phys_enc)
254 {
255 struct drm_encoder *drm_enc;
256 struct dpu_encoder_virt *dpu_enc;
257 struct msm_display_info *disp_info;
258 struct msm_drm_private *priv;
259 struct drm_display_mode *mode;
260
261 drm_enc = phys_enc->parent;
262 dpu_enc = to_dpu_encoder_virt(drm_enc);
263 disp_info = &dpu_enc->disp_info;
264 priv = drm_enc->dev->dev_private;
265 mode = &phys_enc->cached_mode;
266
267 return phys_enc->hw_intf->cap->type == INTF_DP &&
268 msm_dp_needs_periph_flush(priv->kms->dp[disp_info->h_tile_instance[0]], mode);
269 }
270
271 /**
272 * dpu_encoder_is_widebus_enabled - return bool value if widebus is enabled
273 * @drm_enc: Pointer to previously created drm encoder structure
274 */
dpu_encoder_is_widebus_enabled(const struct drm_encoder * drm_enc)275 bool dpu_encoder_is_widebus_enabled(const struct drm_encoder *drm_enc)
276 {
277 const struct dpu_encoder_virt *dpu_enc;
278 struct msm_drm_private *priv = drm_enc->dev->dev_private;
279 const struct msm_display_info *disp_info;
280 int index;
281
282 dpu_enc = to_dpu_encoder_virt(drm_enc);
283 disp_info = &dpu_enc->disp_info;
284 index = disp_info->h_tile_instance[0];
285
286 if (disp_info->intf_type == INTF_DP)
287 return msm_dp_wide_bus_available(priv->kms->dp[index]);
288 else if (disp_info->intf_type == INTF_DSI)
289 return msm_dsi_wide_bus_enabled(priv->kms->dsi[index]);
290
291 return false;
292 }
293
294 /**
295 * dpu_encoder_is_dsc_enabled - indicate whether dsc is enabled
296 * for the encoder.
297 * @drm_enc: Pointer to previously created drm encoder structure
298 */
dpu_encoder_is_dsc_enabled(const struct drm_encoder * drm_enc)299 bool dpu_encoder_is_dsc_enabled(const struct drm_encoder *drm_enc)
300 {
301 const struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
302
303 return dpu_enc->dsc ? true : false;
304 }
305
306 /**
307 * dpu_encoder_get_crc_values_cnt - get number of physical encoders contained
308 * in virtual encoder that can collect CRC values
309 * @drm_enc: Pointer to previously created drm encoder structure
310 * Returns: Number of physical encoders for given drm encoder
311 */
dpu_encoder_get_crc_values_cnt(const struct drm_encoder * drm_enc)312 int dpu_encoder_get_crc_values_cnt(const struct drm_encoder *drm_enc)
313 {
314 struct dpu_encoder_virt *dpu_enc;
315 int i, num_intf = 0;
316
317 dpu_enc = to_dpu_encoder_virt(drm_enc);
318
319 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
320 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
321
322 if (phys->hw_intf && phys->hw_intf->ops.setup_misr
323 && phys->hw_intf->ops.collect_misr)
324 num_intf++;
325 }
326
327 return num_intf;
328 }
329
330 /**
331 * dpu_encoder_setup_misr - enable misr calculations
332 * @drm_enc: Pointer to previously created drm encoder structure
333 */
dpu_encoder_setup_misr(const struct drm_encoder * drm_enc)334 void dpu_encoder_setup_misr(const struct drm_encoder *drm_enc)
335 {
336 struct dpu_encoder_virt *dpu_enc;
337
338 int i;
339
340 dpu_enc = to_dpu_encoder_virt(drm_enc);
341
342 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
343 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
344
345 if (!phys->hw_intf || !phys->hw_intf->ops.setup_misr)
346 continue;
347
348 phys->hw_intf->ops.setup_misr(phys->hw_intf);
349 }
350 }
351
352 /**
353 * dpu_encoder_get_crc - get the crc value from interface blocks
354 * @drm_enc: Pointer to previously created drm encoder structure
355 * @crcs: array to fill with CRC data
356 * @pos: offset into the @crcs array
357 * Returns: 0 on success, error otherwise
358 */
dpu_encoder_get_crc(const struct drm_encoder * drm_enc,u32 * crcs,int pos)359 int dpu_encoder_get_crc(const struct drm_encoder *drm_enc, u32 *crcs, int pos)
360 {
361 struct dpu_encoder_virt *dpu_enc;
362
363 int i, rc = 0, entries_added = 0;
364
365 if (!drm_enc->crtc) {
366 DRM_ERROR("no crtc found for encoder %d\n", drm_enc->index);
367 return -EINVAL;
368 }
369
370 dpu_enc = to_dpu_encoder_virt(drm_enc);
371
372 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
373 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
374
375 if (!phys->hw_intf || !phys->hw_intf->ops.collect_misr)
376 continue;
377
378 rc = phys->hw_intf->ops.collect_misr(phys->hw_intf, &crcs[pos + entries_added]);
379 if (rc)
380 return rc;
381 entries_added++;
382 }
383
384 return entries_added;
385 }
386
_dpu_encoder_setup_dither(struct dpu_hw_pingpong * hw_pp,unsigned bpc)387 static void _dpu_encoder_setup_dither(struct dpu_hw_pingpong *hw_pp, unsigned bpc)
388 {
389 struct dpu_hw_dither_cfg dither_cfg = { 0 };
390
391 if (!hw_pp->ops.setup_dither)
392 return;
393
394 switch (bpc) {
395 case 6:
396 dither_cfg.c0_bitdepth = 6;
397 dither_cfg.c1_bitdepth = 6;
398 dither_cfg.c2_bitdepth = 6;
399 dither_cfg.c3_bitdepth = 6;
400 dither_cfg.temporal_en = 0;
401 break;
402 default:
403 hw_pp->ops.setup_dither(hw_pp, NULL);
404 return;
405 }
406
407 memcpy(&dither_cfg.matrix, dither_matrix,
408 sizeof(u32) * DITHER_MATRIX_SZ);
409
410 hw_pp->ops.setup_dither(hw_pp, &dither_cfg);
411 }
412
dpu_encoder_helper_get_intf_type(enum dpu_intf_mode intf_mode)413 static char *dpu_encoder_helper_get_intf_type(enum dpu_intf_mode intf_mode)
414 {
415 switch (intf_mode) {
416 case INTF_MODE_VIDEO:
417 return "INTF_MODE_VIDEO";
418 case INTF_MODE_CMD:
419 return "INTF_MODE_CMD";
420 case INTF_MODE_WB_BLOCK:
421 return "INTF_MODE_WB_BLOCK";
422 case INTF_MODE_WB_LINE:
423 return "INTF_MODE_WB_LINE";
424 default:
425 return "INTF_MODE_UNKNOWN";
426 }
427 }
428
429 /**
430 * dpu_encoder_helper_report_irq_timeout - utility to report error that irq has
431 * timed out, including reporting frame error event to crtc and debug dump
432 * @phys_enc: Pointer to physical encoder structure
433 * @intr_idx: Failing interrupt index
434 */
dpu_encoder_helper_report_irq_timeout(struct dpu_encoder_phys * phys_enc,enum dpu_intr_idx intr_idx)435 void dpu_encoder_helper_report_irq_timeout(struct dpu_encoder_phys *phys_enc,
436 enum dpu_intr_idx intr_idx)
437 {
438 DRM_ERROR("irq timeout id=%u, intf_mode=%s intf=%d wb=%d, pp=%d, intr=%d\n",
439 DRMID(phys_enc->parent),
440 dpu_encoder_helper_get_intf_type(phys_enc->intf_mode),
441 phys_enc->hw_intf ? phys_enc->hw_intf->idx - INTF_0 : -1,
442 phys_enc->hw_wb ? phys_enc->hw_wb->idx - WB_0 : -1,
443 phys_enc->hw_pp->idx - PINGPONG_0, intr_idx);
444
445 dpu_encoder_frame_done_callback(phys_enc->parent, phys_enc,
446 DPU_ENCODER_FRAME_EVENT_ERROR);
447 }
448
449 static int dpu_encoder_helper_wait_event_timeout(int32_t drm_id,
450 u32 irq_idx, struct dpu_encoder_wait_info *info);
451
452 /**
453 * dpu_encoder_helper_wait_for_irq - utility to wait on an irq.
454 * note: will call dpu_encoder_helper_wait_for_irq on timeout
455 * @phys_enc: Pointer to physical encoder structure
456 * @irq_idx: IRQ index
457 * @func: IRQ callback to be called in case of timeout
458 * @wait_info: wait info struct
459 * @return: 0 or -ERROR
460 */
dpu_encoder_helper_wait_for_irq(struct dpu_encoder_phys * phys_enc,unsigned int irq_idx,void (* func)(void * arg),struct dpu_encoder_wait_info * wait_info)461 int dpu_encoder_helper_wait_for_irq(struct dpu_encoder_phys *phys_enc,
462 unsigned int irq_idx,
463 void (*func)(void *arg),
464 struct dpu_encoder_wait_info *wait_info)
465 {
466 u32 irq_status;
467 int ret;
468
469 if (!wait_info) {
470 DPU_ERROR("invalid params\n");
471 return -EINVAL;
472 }
473 /* note: do master / slave checking outside */
474
475 /* return EWOULDBLOCK since we know the wait isn't necessary */
476 if (phys_enc->enable_state == DPU_ENC_DISABLED) {
477 DRM_ERROR("encoder is disabled id=%u, callback=%ps, IRQ=[%d, %d]\n",
478 DRMID(phys_enc->parent), func,
479 DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx));
480 return -EWOULDBLOCK;
481 }
482
483 if (irq_idx == 0) {
484 DRM_DEBUG_KMS("skip irq wait id=%u, callback=%ps\n",
485 DRMID(phys_enc->parent), func);
486 return 0;
487 }
488
489 DRM_DEBUG_KMS("id=%u, callback=%ps, IRQ=[%d, %d], pp=%d, pending_cnt=%d\n",
490 DRMID(phys_enc->parent), func,
491 DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx), phys_enc->hw_pp->idx - PINGPONG_0,
492 atomic_read(wait_info->atomic_cnt));
493
494 ret = dpu_encoder_helper_wait_event_timeout(
495 DRMID(phys_enc->parent),
496 irq_idx,
497 wait_info);
498
499 if (ret <= 0) {
500 irq_status = dpu_core_irq_read(phys_enc->dpu_kms, irq_idx);
501 if (irq_status) {
502 unsigned long flags;
503
504 DRM_DEBUG_KMS("IRQ=[%d, %d] not triggered id=%u, callback=%ps, pp=%d, atomic_cnt=%d\n",
505 DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx),
506 DRMID(phys_enc->parent), func,
507 phys_enc->hw_pp->idx - PINGPONG_0,
508 atomic_read(wait_info->atomic_cnt));
509 local_irq_save(flags);
510 func(phys_enc);
511 local_irq_restore(flags);
512 ret = 0;
513 } else {
514 ret = -ETIMEDOUT;
515 DRM_DEBUG_KMS("IRQ=[%d, %d] timeout id=%u, callback=%ps, pp=%d, atomic_cnt=%d\n",
516 DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx),
517 DRMID(phys_enc->parent), func,
518 phys_enc->hw_pp->idx - PINGPONG_0,
519 atomic_read(wait_info->atomic_cnt));
520 }
521 } else {
522 ret = 0;
523 trace_dpu_enc_irq_wait_success(DRMID(phys_enc->parent),
524 func, DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx),
525 phys_enc->hw_pp->idx - PINGPONG_0,
526 atomic_read(wait_info->atomic_cnt));
527 }
528
529 return ret;
530 }
531
532 /**
533 * dpu_encoder_get_vsync_count - get vsync count for the encoder.
534 * @drm_enc: Pointer to previously created drm encoder structure
535 */
dpu_encoder_get_vsync_count(struct drm_encoder * drm_enc)536 int dpu_encoder_get_vsync_count(struct drm_encoder *drm_enc)
537 {
538 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
539 struct dpu_encoder_phys *phys = dpu_enc ? dpu_enc->cur_master : NULL;
540 return phys ? atomic_read(&phys->vsync_cnt) : 0;
541 }
542
543 /**
544 * dpu_encoder_get_linecount - get interface line count for the encoder.
545 * @drm_enc: Pointer to previously created drm encoder structure
546 */
dpu_encoder_get_linecount(struct drm_encoder * drm_enc)547 int dpu_encoder_get_linecount(struct drm_encoder *drm_enc)
548 {
549 struct dpu_encoder_virt *dpu_enc;
550 struct dpu_encoder_phys *phys;
551 int linecount = 0;
552
553 dpu_enc = to_dpu_encoder_virt(drm_enc);
554 phys = dpu_enc ? dpu_enc->cur_master : NULL;
555
556 if (phys && phys->ops.get_line_count)
557 linecount = phys->ops.get_line_count(phys);
558
559 return linecount;
560 }
561
562 /**
563 * dpu_encoder_helper_split_config - split display configuration helper function
564 * This helper function may be used by physical encoders to configure
565 * the split display related registers.
566 * @phys_enc: Pointer to physical encoder structure
567 * @interface: enum dpu_intf setting
568 */
dpu_encoder_helper_split_config(struct dpu_encoder_phys * phys_enc,enum dpu_intf interface)569 void dpu_encoder_helper_split_config(
570 struct dpu_encoder_phys *phys_enc,
571 enum dpu_intf interface)
572 {
573 struct dpu_encoder_virt *dpu_enc;
574 struct split_pipe_cfg cfg = { 0 };
575 struct dpu_hw_mdp *hw_mdptop;
576 struct msm_display_info *disp_info;
577
578 if (!phys_enc->hw_mdptop || !phys_enc->parent) {
579 DPU_ERROR("invalid arg(s), encoder %d\n", phys_enc != NULL);
580 return;
581 }
582
583 dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
584 hw_mdptop = phys_enc->hw_mdptop;
585 disp_info = &dpu_enc->disp_info;
586
587 if (disp_info->intf_type != INTF_DSI)
588 return;
589
590 /**
591 * disable split modes since encoder will be operating in as the only
592 * encoder, either for the entire use case in the case of, for example,
593 * single DSI, or for this frame in the case of left/right only partial
594 * update.
595 */
596 if (phys_enc->split_role == ENC_ROLE_SOLO) {
597 if (hw_mdptop->ops.setup_split_pipe)
598 hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
599 return;
600 }
601
602 cfg.en = true;
603 cfg.mode = phys_enc->intf_mode;
604 cfg.intf = interface;
605
606 if (cfg.en && phys_enc->ops.needs_single_flush &&
607 phys_enc->ops.needs_single_flush(phys_enc))
608 cfg.split_flush_en = true;
609
610 if (phys_enc->split_role == ENC_ROLE_MASTER) {
611 DPU_DEBUG_ENC(dpu_enc, "enable %d\n", cfg.en);
612
613 if (hw_mdptop->ops.setup_split_pipe)
614 hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
615 }
616 }
617
618 /**
619 * dpu_encoder_use_dsc_merge - returns true if the encoder uses DSC merge topology.
620 * @drm_enc: Pointer to previously created drm encoder structure
621 */
dpu_encoder_use_dsc_merge(struct drm_encoder * drm_enc)622 bool dpu_encoder_use_dsc_merge(struct drm_encoder *drm_enc)
623 {
624 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
625 int i, intf_count = 0, num_dsc = 0;
626
627 for (i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++)
628 if (dpu_enc->phys_encs[i])
629 intf_count++;
630
631 for (i = 0; i < MAX_CHANNELS_PER_ENC; i++)
632 if (dpu_enc->hw_dsc[i])
633 num_dsc++;
634
635 return (num_dsc > 0) && (num_dsc > intf_count);
636 }
637
638 /**
639 * dpu_encoder_get_dsc_config - get DSC config for the DPU encoder
640 * This helper function is used by physical encoder to get DSC config
641 * used for this encoder.
642 * @drm_enc: Pointer to encoder structure
643 */
dpu_encoder_get_dsc_config(struct drm_encoder * drm_enc)644 struct drm_dsc_config *dpu_encoder_get_dsc_config(struct drm_encoder *drm_enc)
645 {
646 struct msm_drm_private *priv = drm_enc->dev->dev_private;
647 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
648 int index = dpu_enc->disp_info.h_tile_instance[0];
649
650 if (dpu_enc->disp_info.intf_type == INTF_DSI)
651 return msm_dsi_get_dsc_config(priv->kms->dsi[index]);
652
653 return NULL;
654 }
655
dpu_encoder_update_topology(struct drm_encoder * drm_enc,struct msm_display_topology * topology,struct drm_atomic_state * state,const struct drm_display_mode * adj_mode)656 void dpu_encoder_update_topology(struct drm_encoder *drm_enc,
657 struct msm_display_topology *topology,
658 struct drm_atomic_state *state,
659 const struct drm_display_mode *adj_mode)
660 {
661 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
662 struct msm_drm_private *priv = dpu_enc->base.dev->dev_private;
663 struct msm_display_info *disp_info = &dpu_enc->disp_info;
664 struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms);
665 struct drm_connector *connector;
666 struct drm_connector_state *conn_state;
667 struct drm_framebuffer *fb;
668 struct drm_dsc_config *dsc;
669
670 int i;
671
672 for (i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++)
673 if (dpu_enc->phys_encs[i])
674 topology->num_intf++;
675
676 dsc = dpu_encoder_get_dsc_config(drm_enc);
677
678 /* We only support 2 DSC mode (with 2 LM and 1 INTF) */
679 if (dsc) {
680 /*
681 * Use 2 DSC encoders, 2 layer mixers and 1 or 2 interfaces
682 * when Display Stream Compression (DSC) is enabled,
683 * and when enough DSC blocks are available.
684 * This is power-optimal and can drive up to (including) 4k
685 * screens.
686 */
687 WARN(topology->num_intf > 2,
688 "DSC topology cannot support more than 2 interfaces\n");
689 if (topology->num_intf >= 2 || dpu_kms->catalog->dsc_count >= 2)
690 topology->num_dsc = 2;
691 else
692 topology->num_dsc = 1;
693 }
694
695 connector = drm_atomic_get_new_connector_for_encoder(state, drm_enc);
696 if (!connector)
697 return;
698 conn_state = drm_atomic_get_new_connector_state(state, connector);
699 if (!conn_state)
700 return;
701
702 /*
703 * Use CDM only for writeback or DP at the moment as other interfaces cannot handle it.
704 * If writeback itself cannot handle cdm for some reason it will fail in its atomic_check()
705 * earlier.
706 */
707 if (disp_info->intf_type == INTF_WB && conn_state->writeback_job) {
708 fb = conn_state->writeback_job->fb;
709
710 if (fb && MSM_FORMAT_IS_YUV(msm_framebuffer_format(fb)))
711 topology->num_cdm++;
712 } else if (disp_info->intf_type == INTF_DP) {
713 if (msm_dp_is_yuv_420_enabled(priv->kms->dp[disp_info->h_tile_instance[0]],
714 adj_mode))
715 topology->num_cdm++;
716 }
717 }
718
dpu_encoder_needs_modeset(struct drm_encoder * drm_enc,struct drm_atomic_state * state)719 bool dpu_encoder_needs_modeset(struct drm_encoder *drm_enc, struct drm_atomic_state *state)
720 {
721 struct drm_connector *connector;
722 struct drm_connector_state *conn_state;
723 struct drm_framebuffer *fb;
724 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
725
726 if (!drm_enc || !state)
727 return false;
728
729 connector = drm_atomic_get_new_connector_for_encoder(state, drm_enc);
730 if (!connector)
731 return false;
732
733 conn_state = drm_atomic_get_new_connector_state(state, connector);
734 if (!conn_state)
735 return false;
736
737 /**
738 * These checks are duplicated from dpu_encoder_update_topology() since
739 * CRTC and encoder don't hold topology information
740 */
741 if (dpu_enc->disp_info.intf_type == INTF_WB && conn_state->writeback_job) {
742 fb = conn_state->writeback_job->fb;
743 if (fb && MSM_FORMAT_IS_YUV(msm_framebuffer_format(fb))) {
744 if (!dpu_enc->cur_master->hw_cdm)
745 return true;
746 } else {
747 if (dpu_enc->cur_master->hw_cdm)
748 return true;
749 }
750 }
751
752 return false;
753 }
754
_dpu_encoder_update_vsync_source(struct dpu_encoder_virt * dpu_enc,struct msm_display_info * disp_info)755 static void _dpu_encoder_update_vsync_source(struct dpu_encoder_virt *dpu_enc,
756 struct msm_display_info *disp_info)
757 {
758 struct dpu_vsync_source_cfg vsync_cfg = { 0 };
759 struct msm_drm_private *priv;
760 struct dpu_kms *dpu_kms;
761 struct dpu_hw_mdp *hw_mdptop;
762 struct drm_encoder *drm_enc;
763 struct dpu_encoder_phys *phys_enc;
764 int i;
765
766 if (!dpu_enc || !disp_info) {
767 DPU_ERROR("invalid param dpu_enc:%d or disp_info:%d\n",
768 dpu_enc != NULL, disp_info != NULL);
769 return;
770 } else if (dpu_enc->num_phys_encs > ARRAY_SIZE(dpu_enc->hw_pp)) {
771 DPU_ERROR("invalid num phys enc %d/%d\n",
772 dpu_enc->num_phys_encs,
773 (int) ARRAY_SIZE(dpu_enc->hw_pp));
774 return;
775 }
776
777 drm_enc = &dpu_enc->base;
778 /* this pointers are checked in virt_enable_helper */
779 priv = drm_enc->dev->dev_private;
780
781 dpu_kms = to_dpu_kms(priv->kms);
782 hw_mdptop = dpu_kms->hw_mdp;
783 if (!hw_mdptop) {
784 DPU_ERROR("invalid mdptop\n");
785 return;
786 }
787
788 if (hw_mdptop->ops.setup_vsync_source) {
789 for (i = 0; i < dpu_enc->num_phys_encs; i++)
790 vsync_cfg.ppnumber[i] = dpu_enc->hw_pp[i]->idx;
791
792 vsync_cfg.pp_count = dpu_enc->num_phys_encs;
793 vsync_cfg.frame_rate = drm_mode_vrefresh(&dpu_enc->base.crtc->state->adjusted_mode);
794
795 vsync_cfg.vsync_source = disp_info->vsync_source;
796
797 hw_mdptop->ops.setup_vsync_source(hw_mdptop, &vsync_cfg);
798
799 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
800 phys_enc = dpu_enc->phys_encs[i];
801
802 if (phys_enc->has_intf_te && phys_enc->hw_intf->ops.vsync_sel)
803 phys_enc->hw_intf->ops.vsync_sel(phys_enc->hw_intf,
804 vsync_cfg.vsync_source);
805 }
806 }
807 }
808
_dpu_encoder_irq_enable(struct drm_encoder * drm_enc)809 static void _dpu_encoder_irq_enable(struct drm_encoder *drm_enc)
810 {
811 struct dpu_encoder_virt *dpu_enc;
812 int i;
813
814 if (!drm_enc) {
815 DPU_ERROR("invalid encoder\n");
816 return;
817 }
818
819 dpu_enc = to_dpu_encoder_virt(drm_enc);
820
821 DPU_DEBUG_ENC(dpu_enc, "\n");
822 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
823 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
824
825 phys->ops.irq_enable(phys);
826 }
827 }
828
_dpu_encoder_irq_disable(struct drm_encoder * drm_enc)829 static void _dpu_encoder_irq_disable(struct drm_encoder *drm_enc)
830 {
831 struct dpu_encoder_virt *dpu_enc;
832 int i;
833
834 if (!drm_enc) {
835 DPU_ERROR("invalid encoder\n");
836 return;
837 }
838
839 dpu_enc = to_dpu_encoder_virt(drm_enc);
840
841 DPU_DEBUG_ENC(dpu_enc, "\n");
842 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
843 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
844
845 phys->ops.irq_disable(phys);
846 }
847 }
848
_dpu_encoder_resource_enable(struct drm_encoder * drm_enc)849 static void _dpu_encoder_resource_enable(struct drm_encoder *drm_enc)
850 {
851 struct msm_drm_private *priv;
852 struct dpu_kms *dpu_kms;
853 struct dpu_encoder_virt *dpu_enc;
854
855 dpu_enc = to_dpu_encoder_virt(drm_enc);
856 priv = drm_enc->dev->dev_private;
857 dpu_kms = to_dpu_kms(priv->kms);
858
859 trace_dpu_enc_rc_enable(DRMID(drm_enc));
860
861 if (!dpu_enc->cur_master) {
862 DPU_ERROR("encoder master not set\n");
863 return;
864 }
865
866 /* enable DPU core clks */
867 pm_runtime_get_sync(&dpu_kms->pdev->dev);
868
869 /* enable all the irq */
870 _dpu_encoder_irq_enable(drm_enc);
871 }
872
_dpu_encoder_resource_disable(struct drm_encoder * drm_enc)873 static void _dpu_encoder_resource_disable(struct drm_encoder *drm_enc)
874 {
875 struct msm_drm_private *priv;
876 struct dpu_kms *dpu_kms;
877 struct dpu_encoder_virt *dpu_enc;
878
879 dpu_enc = to_dpu_encoder_virt(drm_enc);
880 priv = drm_enc->dev->dev_private;
881 dpu_kms = to_dpu_kms(priv->kms);
882
883 trace_dpu_enc_rc_disable(DRMID(drm_enc));
884
885 if (!dpu_enc->cur_master) {
886 DPU_ERROR("encoder master not set\n");
887 return;
888 }
889
890 /* disable all the irq */
891 _dpu_encoder_irq_disable(drm_enc);
892
893 /* disable DPU core clks */
894 pm_runtime_put_sync(&dpu_kms->pdev->dev);
895 }
896
dpu_encoder_resource_control(struct drm_encoder * drm_enc,u32 sw_event)897 static int dpu_encoder_resource_control(struct drm_encoder *drm_enc,
898 u32 sw_event)
899 {
900 struct dpu_encoder_virt *dpu_enc;
901 struct msm_drm_private *priv;
902 bool is_vid_mode = false;
903
904 if (!drm_enc || !drm_enc->dev || !drm_enc->crtc) {
905 DPU_ERROR("invalid parameters\n");
906 return -EINVAL;
907 }
908 dpu_enc = to_dpu_encoder_virt(drm_enc);
909 priv = drm_enc->dev->dev_private;
910 is_vid_mode = !dpu_enc->disp_info.is_cmd_mode;
911
912 /*
913 * when idle_pc is not supported, process only KICKOFF, STOP and MODESET
914 * events and return early for other events (ie wb display).
915 */
916 if (!dpu_enc->idle_pc_supported &&
917 (sw_event != DPU_ENC_RC_EVENT_KICKOFF &&
918 sw_event != DPU_ENC_RC_EVENT_STOP &&
919 sw_event != DPU_ENC_RC_EVENT_PRE_STOP))
920 return 0;
921
922 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, dpu_enc->idle_pc_supported,
923 dpu_enc->rc_state, "begin");
924
925 switch (sw_event) {
926 case DPU_ENC_RC_EVENT_KICKOFF:
927 /* cancel delayed off work, if any */
928 if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work))
929 DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n",
930 sw_event);
931
932 mutex_lock(&dpu_enc->rc_lock);
933
934 /* return if the resource control is already in ON state */
935 if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) {
936 DRM_DEBUG_ATOMIC("id;%u, sw_event:%d, rc in ON state\n",
937 DRMID(drm_enc), sw_event);
938 mutex_unlock(&dpu_enc->rc_lock);
939 return 0;
940 } else if (dpu_enc->rc_state != DPU_ENC_RC_STATE_OFF &&
941 dpu_enc->rc_state != DPU_ENC_RC_STATE_IDLE) {
942 DRM_DEBUG_ATOMIC("id;%u, sw_event:%d, rc in state %d\n",
943 DRMID(drm_enc), sw_event,
944 dpu_enc->rc_state);
945 mutex_unlock(&dpu_enc->rc_lock);
946 return -EINVAL;
947 }
948
949 if (is_vid_mode && dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE)
950 _dpu_encoder_irq_enable(drm_enc);
951 else
952 _dpu_encoder_resource_enable(drm_enc);
953
954 dpu_enc->rc_state = DPU_ENC_RC_STATE_ON;
955
956 trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
957 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
958 "kickoff");
959
960 mutex_unlock(&dpu_enc->rc_lock);
961 break;
962
963 case DPU_ENC_RC_EVENT_FRAME_DONE:
964 /*
965 * mutex lock is not used as this event happens at interrupt
966 * context. And locking is not required as, the other events
967 * like KICKOFF and STOP does a wait-for-idle before executing
968 * the resource_control
969 */
970 if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) {
971 DRM_DEBUG_KMS("id:%d, sw_event:%d,rc:%d-unexpected\n",
972 DRMID(drm_enc), sw_event,
973 dpu_enc->rc_state);
974 return -EINVAL;
975 }
976
977 /*
978 * schedule off work item only when there are no
979 * frames pending
980 */
981 if (dpu_crtc_frame_pending(drm_enc->crtc) > 1) {
982 DRM_DEBUG_KMS("id:%d skip schedule work\n",
983 DRMID(drm_enc));
984 return 0;
985 }
986
987 queue_delayed_work(priv->kms->wq, &dpu_enc->delayed_off_work,
988 msecs_to_jiffies(dpu_enc->idle_timeout));
989
990 trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
991 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
992 "frame done");
993 break;
994
995 case DPU_ENC_RC_EVENT_PRE_STOP:
996 /* cancel delayed off work, if any */
997 if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work))
998 DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n",
999 sw_event);
1000
1001 mutex_lock(&dpu_enc->rc_lock);
1002
1003 if (is_vid_mode &&
1004 dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) {
1005 _dpu_encoder_irq_enable(drm_enc);
1006 }
1007 /* skip if is already OFF or IDLE, resources are off already */
1008 else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF ||
1009 dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) {
1010 DRM_DEBUG_KMS("id:%u, sw_event:%d, rc in %d state\n",
1011 DRMID(drm_enc), sw_event,
1012 dpu_enc->rc_state);
1013 mutex_unlock(&dpu_enc->rc_lock);
1014 return 0;
1015 }
1016
1017 dpu_enc->rc_state = DPU_ENC_RC_STATE_PRE_OFF;
1018
1019 trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
1020 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
1021 "pre stop");
1022
1023 mutex_unlock(&dpu_enc->rc_lock);
1024 break;
1025
1026 case DPU_ENC_RC_EVENT_STOP:
1027 mutex_lock(&dpu_enc->rc_lock);
1028
1029 /* return if the resource control is already in OFF state */
1030 if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF) {
1031 DRM_DEBUG_KMS("id: %u, sw_event:%d, rc in OFF state\n",
1032 DRMID(drm_enc), sw_event);
1033 mutex_unlock(&dpu_enc->rc_lock);
1034 return 0;
1035 } else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) {
1036 DRM_ERROR("id: %u, sw_event:%d, rc in state %d\n",
1037 DRMID(drm_enc), sw_event, dpu_enc->rc_state);
1038 mutex_unlock(&dpu_enc->rc_lock);
1039 return -EINVAL;
1040 }
1041
1042 /**
1043 * expect to arrive here only if in either idle state or pre-off
1044 * and in IDLE state the resources are already disabled
1045 */
1046 if (dpu_enc->rc_state == DPU_ENC_RC_STATE_PRE_OFF)
1047 _dpu_encoder_resource_disable(drm_enc);
1048
1049 dpu_enc->rc_state = DPU_ENC_RC_STATE_OFF;
1050
1051 trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
1052 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
1053 "stop");
1054
1055 mutex_unlock(&dpu_enc->rc_lock);
1056 break;
1057
1058 case DPU_ENC_RC_EVENT_ENTER_IDLE:
1059 mutex_lock(&dpu_enc->rc_lock);
1060
1061 if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) {
1062 DRM_ERROR("id: %u, sw_event:%d, rc:%d !ON state\n",
1063 DRMID(drm_enc), sw_event, dpu_enc->rc_state);
1064 mutex_unlock(&dpu_enc->rc_lock);
1065 return 0;
1066 }
1067
1068 /*
1069 * if we are in ON but a frame was just kicked off,
1070 * ignore the IDLE event, it's probably a stale timer event
1071 */
1072 if (dpu_enc->frame_busy_mask[0]) {
1073 DRM_ERROR("id:%u, sw_event:%d, rc:%d frame pending\n",
1074 DRMID(drm_enc), sw_event, dpu_enc->rc_state);
1075 mutex_unlock(&dpu_enc->rc_lock);
1076 return 0;
1077 }
1078
1079 if (is_vid_mode)
1080 _dpu_encoder_irq_disable(drm_enc);
1081 else
1082 _dpu_encoder_resource_disable(drm_enc);
1083
1084 dpu_enc->rc_state = DPU_ENC_RC_STATE_IDLE;
1085
1086 trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
1087 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
1088 "idle");
1089
1090 mutex_unlock(&dpu_enc->rc_lock);
1091 break;
1092
1093 default:
1094 DRM_ERROR("id:%u, unexpected sw_event: %d\n", DRMID(drm_enc),
1095 sw_event);
1096 trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
1097 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
1098 "error");
1099 break;
1100 }
1101
1102 trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
1103 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
1104 "end");
1105 return 0;
1106 }
1107
1108 /**
1109 * dpu_encoder_prepare_wb_job - prepare writeback job for the encoder.
1110 * @drm_enc: Pointer to previously created drm encoder structure
1111 * @job: Pointer to the current drm writeback job
1112 */
dpu_encoder_prepare_wb_job(struct drm_encoder * drm_enc,struct drm_writeback_job * job)1113 void dpu_encoder_prepare_wb_job(struct drm_encoder *drm_enc,
1114 struct drm_writeback_job *job)
1115 {
1116 struct dpu_encoder_virt *dpu_enc;
1117 int i;
1118
1119 dpu_enc = to_dpu_encoder_virt(drm_enc);
1120
1121 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1122 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1123
1124 if (phys->ops.prepare_wb_job)
1125 phys->ops.prepare_wb_job(phys, job);
1126
1127 }
1128 }
1129
1130 /**
1131 * dpu_encoder_cleanup_wb_job - cleanup writeback job for the encoder.
1132 * @drm_enc: Pointer to previously created drm encoder structure
1133 * @job: Pointer to the current drm writeback job
1134 */
dpu_encoder_cleanup_wb_job(struct drm_encoder * drm_enc,struct drm_writeback_job * job)1135 void dpu_encoder_cleanup_wb_job(struct drm_encoder *drm_enc,
1136 struct drm_writeback_job *job)
1137 {
1138 struct dpu_encoder_virt *dpu_enc;
1139 int i;
1140
1141 dpu_enc = to_dpu_encoder_virt(drm_enc);
1142
1143 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1144 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1145
1146 if (phys->ops.cleanup_wb_job)
1147 phys->ops.cleanup_wb_job(phys, job);
1148
1149 }
1150 }
1151
dpu_encoder_virt_atomic_mode_set(struct drm_encoder * drm_enc,struct drm_crtc_state * crtc_state,struct drm_connector_state * conn_state)1152 static void dpu_encoder_virt_atomic_mode_set(struct drm_encoder *drm_enc,
1153 struct drm_crtc_state *crtc_state,
1154 struct drm_connector_state *conn_state)
1155 {
1156 struct dpu_encoder_virt *dpu_enc;
1157 struct msm_drm_private *priv;
1158 struct dpu_kms *dpu_kms;
1159 struct dpu_global_state *global_state;
1160 struct dpu_hw_blk *hw_pp[MAX_CHANNELS_PER_ENC];
1161 struct dpu_hw_blk *hw_ctl[MAX_CHANNELS_PER_ENC];
1162 struct dpu_hw_blk *hw_dsc[MAX_CHANNELS_PER_ENC];
1163 struct dpu_hw_blk *hw_cwb[MAX_CHANNELS_PER_ENC];
1164 int num_ctl, num_pp, num_dsc, num_pp_per_intf;
1165 int num_cwb = 0;
1166 bool is_cwb_encoder;
1167 unsigned int dsc_mask = 0;
1168 unsigned int cwb_mask = 0;
1169 int i;
1170
1171 if (!drm_enc) {
1172 DPU_ERROR("invalid encoder\n");
1173 return;
1174 }
1175
1176 dpu_enc = to_dpu_encoder_virt(drm_enc);
1177 DPU_DEBUG_ENC(dpu_enc, "\n");
1178
1179 priv = drm_enc->dev->dev_private;
1180 dpu_kms = to_dpu_kms(priv->kms);
1181 is_cwb_encoder = drm_crtc_in_clone_mode(crtc_state) &&
1182 dpu_enc->disp_info.intf_type == INTF_WB;
1183
1184 global_state = dpu_kms_get_existing_global_state(dpu_kms);
1185 if (IS_ERR_OR_NULL(global_state)) {
1186 DPU_ERROR("Failed to get global state");
1187 return;
1188 }
1189
1190 trace_dpu_enc_mode_set(DRMID(drm_enc));
1191
1192 /* Query resource that have been reserved in atomic check step. */
1193 if (is_cwb_encoder) {
1194 num_pp = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1195 drm_enc->crtc,
1196 DPU_HW_BLK_DCWB_PINGPONG,
1197 hw_pp, ARRAY_SIZE(hw_pp));
1198 num_cwb = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1199 drm_enc->crtc,
1200 DPU_HW_BLK_CWB,
1201 hw_cwb, ARRAY_SIZE(hw_cwb));
1202 } else {
1203 num_pp = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1204 drm_enc->crtc,
1205 DPU_HW_BLK_PINGPONG, hw_pp,
1206 ARRAY_SIZE(hw_pp));
1207 }
1208
1209 for (i = 0; i < num_cwb; i++) {
1210 dpu_enc->hw_cwb[i] = to_dpu_hw_cwb(hw_cwb[i]);
1211 cwb_mask |= BIT(dpu_enc->hw_cwb[i]->idx - CWB_0);
1212 }
1213
1214 dpu_enc->cwb_mask = cwb_mask;
1215
1216 num_ctl = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1217 drm_enc->crtc, DPU_HW_BLK_CTL, hw_ctl, ARRAY_SIZE(hw_ctl));
1218
1219 for (i = 0; i < MAX_CHANNELS_PER_ENC; i++)
1220 dpu_enc->hw_pp[i] = i < num_pp ? to_dpu_hw_pingpong(hw_pp[i])
1221 : NULL;
1222
1223 num_dsc = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1224 drm_enc->crtc, DPU_HW_BLK_DSC,
1225 hw_dsc, ARRAY_SIZE(hw_dsc));
1226 for (i = 0; i < num_dsc; i++) {
1227 dpu_enc->hw_dsc[i] = to_dpu_hw_dsc(hw_dsc[i]);
1228 dsc_mask |= BIT(dpu_enc->hw_dsc[i]->idx - DSC_0);
1229 }
1230
1231 dpu_enc->dsc_mask = dsc_mask;
1232
1233 if ((dpu_enc->disp_info.intf_type == INTF_WB && conn_state->writeback_job) ||
1234 dpu_enc->disp_info.intf_type == INTF_DP) {
1235 struct dpu_hw_blk *hw_cdm = NULL;
1236
1237 dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1238 drm_enc->crtc, DPU_HW_BLK_CDM,
1239 &hw_cdm, 1);
1240 dpu_enc->cur_master->hw_cdm = hw_cdm ? to_dpu_hw_cdm(hw_cdm) : NULL;
1241 }
1242
1243 /*
1244 * There may be 4 PP and 2 INTF for quad pipe case, so INTF is not
1245 * mapped to PP 1:1. Let's calculate the stride with pipe/INTF
1246 */
1247 num_pp_per_intf = num_pp / dpu_enc->num_phys_encs;
1248
1249 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1250 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1251
1252 phys->hw_pp = dpu_enc->hw_pp[num_pp_per_intf * i];
1253 if (!phys->hw_pp) {
1254 DPU_ERROR_ENC(dpu_enc,
1255 "no pp block assigned at idx: %d\n", i);
1256 return;
1257 }
1258
1259 /* Use first (and only) CTL if active CTLs are supported */
1260 if (num_ctl == 1)
1261 phys->hw_ctl = to_dpu_hw_ctl(hw_ctl[0]);
1262 else
1263 phys->hw_ctl = i < num_ctl ? to_dpu_hw_ctl(hw_ctl[i]) : NULL;
1264 if (!phys->hw_ctl) {
1265 DPU_ERROR_ENC(dpu_enc,
1266 "no ctl block assigned at idx: %d\n", i);
1267 return;
1268 }
1269
1270 phys->cached_mode = crtc_state->adjusted_mode;
1271 if (phys->ops.atomic_mode_set)
1272 phys->ops.atomic_mode_set(phys, crtc_state, conn_state);
1273 }
1274 }
1275
_dpu_encoder_virt_enable_helper(struct drm_encoder * drm_enc)1276 static void _dpu_encoder_virt_enable_helper(struct drm_encoder *drm_enc)
1277 {
1278 struct dpu_encoder_virt *dpu_enc = NULL;
1279 int i;
1280
1281 if (!drm_enc || !drm_enc->dev) {
1282 DPU_ERROR("invalid parameters\n");
1283 return;
1284 }
1285
1286 dpu_enc = to_dpu_encoder_virt(drm_enc);
1287 if (!dpu_enc || !dpu_enc->cur_master) {
1288 DPU_ERROR("invalid dpu encoder/master\n");
1289 return;
1290 }
1291
1292
1293 if (dpu_enc->disp_info.intf_type == INTF_DP &&
1294 dpu_enc->cur_master->hw_mdptop &&
1295 dpu_enc->cur_master->hw_mdptop->ops.intf_audio_select)
1296 dpu_enc->cur_master->hw_mdptop->ops.intf_audio_select(
1297 dpu_enc->cur_master->hw_mdptop);
1298
1299 if (dpu_enc->disp_info.is_cmd_mode)
1300 _dpu_encoder_update_vsync_source(dpu_enc, &dpu_enc->disp_info);
1301
1302 if (dpu_enc->disp_info.intf_type == INTF_DSI &&
1303 !WARN_ON(dpu_enc->num_phys_encs == 0)) {
1304 unsigned bpc = dpu_enc->connector->display_info.bpc;
1305 for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
1306 if (!dpu_enc->hw_pp[i])
1307 continue;
1308 _dpu_encoder_setup_dither(dpu_enc->hw_pp[i], bpc);
1309 }
1310 }
1311 }
1312
1313 /**
1314 * dpu_encoder_virt_runtime_resume - pm runtime resume the encoder configs
1315 * @drm_enc: encoder pointer
1316 */
dpu_encoder_virt_runtime_resume(struct drm_encoder * drm_enc)1317 void dpu_encoder_virt_runtime_resume(struct drm_encoder *drm_enc)
1318 {
1319 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1320
1321 mutex_lock(&dpu_enc->enc_lock);
1322
1323 if (!dpu_enc->enabled)
1324 goto out;
1325
1326 if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.restore)
1327 dpu_enc->cur_slave->ops.restore(dpu_enc->cur_slave);
1328 if (dpu_enc->cur_master && dpu_enc->cur_master->ops.restore)
1329 dpu_enc->cur_master->ops.restore(dpu_enc->cur_master);
1330
1331 _dpu_encoder_virt_enable_helper(drm_enc);
1332
1333 out:
1334 mutex_unlock(&dpu_enc->enc_lock);
1335 }
1336
dpu_encoder_virt_atomic_enable(struct drm_encoder * drm_enc,struct drm_atomic_state * state)1337 static void dpu_encoder_virt_atomic_enable(struct drm_encoder *drm_enc,
1338 struct drm_atomic_state *state)
1339 {
1340 struct dpu_encoder_virt *dpu_enc = NULL;
1341 int ret = 0;
1342 struct drm_display_mode *cur_mode = NULL;
1343
1344 dpu_enc = to_dpu_encoder_virt(drm_enc);
1345 dpu_enc->dsc = dpu_encoder_get_dsc_config(drm_enc);
1346
1347 atomic_set(&dpu_enc->frame_done_timeout_cnt, 0);
1348
1349 mutex_lock(&dpu_enc->enc_lock);
1350
1351 dpu_enc->commit_done_timedout = false;
1352
1353 dpu_enc->connector = drm_atomic_get_new_connector_for_encoder(state, drm_enc);
1354
1355 cur_mode = &dpu_enc->base.crtc->state->adjusted_mode;
1356
1357 dpu_enc->wide_bus_en = dpu_encoder_is_widebus_enabled(drm_enc);
1358
1359 trace_dpu_enc_enable(DRMID(drm_enc), cur_mode->hdisplay,
1360 cur_mode->vdisplay);
1361
1362 /* always enable slave encoder before master */
1363 if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.enable)
1364 dpu_enc->cur_slave->ops.enable(dpu_enc->cur_slave);
1365
1366 if (dpu_enc->cur_master && dpu_enc->cur_master->ops.enable)
1367 dpu_enc->cur_master->ops.enable(dpu_enc->cur_master);
1368
1369 ret = dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF);
1370 if (ret) {
1371 DPU_ERROR_ENC(dpu_enc, "dpu resource control failed: %d\n",
1372 ret);
1373 goto out;
1374 }
1375
1376 _dpu_encoder_virt_enable_helper(drm_enc);
1377
1378 dpu_enc->enabled = true;
1379
1380 out:
1381 mutex_unlock(&dpu_enc->enc_lock);
1382 }
1383
dpu_encoder_virt_atomic_disable(struct drm_encoder * drm_enc,struct drm_atomic_state * state)1384 static void dpu_encoder_virt_atomic_disable(struct drm_encoder *drm_enc,
1385 struct drm_atomic_state *state)
1386 {
1387 struct dpu_encoder_virt *dpu_enc = NULL;
1388 struct drm_crtc *crtc;
1389 struct drm_crtc_state *old_state = NULL;
1390 int i = 0;
1391
1392 dpu_enc = to_dpu_encoder_virt(drm_enc);
1393 DPU_DEBUG_ENC(dpu_enc, "\n");
1394
1395 crtc = drm_atomic_get_old_crtc_for_encoder(state, drm_enc);
1396 if (crtc)
1397 old_state = drm_atomic_get_old_crtc_state(state, crtc);
1398
1399 /*
1400 * The encoder is already disabled if self refresh mode was set earlier,
1401 * in the old_state for the corresponding crtc.
1402 */
1403 if (old_state && old_state->self_refresh_active)
1404 return;
1405
1406 mutex_lock(&dpu_enc->enc_lock);
1407 dpu_enc->enabled = false;
1408
1409 trace_dpu_enc_disable(DRMID(drm_enc));
1410
1411 /* wait for idle */
1412 dpu_encoder_wait_for_tx_complete(drm_enc);
1413
1414 dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_PRE_STOP);
1415
1416 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1417 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1418
1419 if (phys->ops.disable)
1420 phys->ops.disable(phys);
1421 }
1422
1423
1424 /* after phys waits for frame-done, should be no more frames pending */
1425 if (atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) {
1426 DPU_ERROR("enc%d timeout pending\n", drm_enc->base.id);
1427 timer_delete_sync(&dpu_enc->frame_done_timer);
1428 }
1429
1430 dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_STOP);
1431
1432 dpu_enc->connector = NULL;
1433
1434 DPU_DEBUG_ENC(dpu_enc, "encoder disabled\n");
1435
1436 mutex_unlock(&dpu_enc->enc_lock);
1437 }
1438
dpu_encoder_get_intf(const struct dpu_mdss_cfg * catalog,struct dpu_rm * dpu_rm,enum dpu_intf_type type,u32 controller_id)1439 static struct dpu_hw_intf *dpu_encoder_get_intf(const struct dpu_mdss_cfg *catalog,
1440 struct dpu_rm *dpu_rm,
1441 enum dpu_intf_type type, u32 controller_id)
1442 {
1443 int i = 0;
1444
1445 if (type == INTF_WB)
1446 return NULL;
1447
1448 for (i = 0; i < catalog->intf_count; i++) {
1449 if (catalog->intf[i].type == type
1450 && catalog->intf[i].controller_id == controller_id) {
1451 return dpu_rm_get_intf(dpu_rm, catalog->intf[i].id);
1452 }
1453 }
1454
1455 return NULL;
1456 }
1457
1458 /**
1459 * dpu_encoder_vblank_callback - Notify virtual encoder of vblank IRQ reception
1460 * @drm_enc: Pointer to drm encoder structure
1461 * @phy_enc: Pointer to physical encoder
1462 * Note: This is called from IRQ handler context.
1463 */
dpu_encoder_vblank_callback(struct drm_encoder * drm_enc,struct dpu_encoder_phys * phy_enc)1464 void dpu_encoder_vblank_callback(struct drm_encoder *drm_enc,
1465 struct dpu_encoder_phys *phy_enc)
1466 {
1467 struct dpu_encoder_virt *dpu_enc = NULL;
1468 unsigned long lock_flags;
1469
1470 if (!drm_enc || !phy_enc)
1471 return;
1472
1473 DPU_ATRACE_BEGIN("encoder_vblank_callback");
1474 dpu_enc = to_dpu_encoder_virt(drm_enc);
1475
1476 atomic_inc(&phy_enc->vsync_cnt);
1477
1478 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1479 if (dpu_enc->crtc)
1480 dpu_crtc_vblank_callback(dpu_enc->crtc);
1481 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1482
1483 DPU_ATRACE_END("encoder_vblank_callback");
1484 }
1485
1486 /**
1487 * dpu_encoder_underrun_callback - Notify virtual encoder of underrun IRQ reception
1488 * @drm_enc: Pointer to drm encoder structure
1489 * @phy_enc: Pointer to physical encoder
1490 * Note: This is called from IRQ handler context.
1491 */
dpu_encoder_underrun_callback(struct drm_encoder * drm_enc,struct dpu_encoder_phys * phy_enc)1492 void dpu_encoder_underrun_callback(struct drm_encoder *drm_enc,
1493 struct dpu_encoder_phys *phy_enc)
1494 {
1495 if (!phy_enc)
1496 return;
1497
1498 DPU_ATRACE_BEGIN("encoder_underrun_callback");
1499 atomic_inc(&phy_enc->underrun_cnt);
1500
1501 /* trigger dump only on the first underrun */
1502 if (atomic_read(&phy_enc->underrun_cnt) == 1)
1503 msm_disp_snapshot_state(drm_enc->dev);
1504
1505 trace_dpu_enc_underrun_cb(DRMID(drm_enc),
1506 atomic_read(&phy_enc->underrun_cnt));
1507 DPU_ATRACE_END("encoder_underrun_callback");
1508 }
1509
1510 /**
1511 * dpu_encoder_assign_crtc - Link the encoder to the crtc it's assigned to
1512 * @drm_enc: encoder pointer
1513 * @crtc: crtc pointer
1514 */
dpu_encoder_assign_crtc(struct drm_encoder * drm_enc,struct drm_crtc * crtc)1515 void dpu_encoder_assign_crtc(struct drm_encoder *drm_enc, struct drm_crtc *crtc)
1516 {
1517 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1518 unsigned long lock_flags;
1519
1520 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1521 /* crtc should always be cleared before re-assigning */
1522 WARN_ON(crtc && dpu_enc->crtc);
1523 dpu_enc->crtc = crtc;
1524 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1525 }
1526
1527 /**
1528 * dpu_encoder_toggle_vblank_for_crtc - Toggles vblank interrupts on or off if
1529 * the encoder is assigned to the given crtc
1530 * @drm_enc: encoder pointer
1531 * @crtc: crtc pointer
1532 * @enable: true if vblank should be enabled
1533 */
dpu_encoder_toggle_vblank_for_crtc(struct drm_encoder * drm_enc,struct drm_crtc * crtc,bool enable)1534 void dpu_encoder_toggle_vblank_for_crtc(struct drm_encoder *drm_enc,
1535 struct drm_crtc *crtc, bool enable)
1536 {
1537 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1538 unsigned long lock_flags;
1539 int i;
1540
1541 trace_dpu_enc_vblank_cb(DRMID(drm_enc), enable);
1542
1543 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1544 if (dpu_enc->crtc != crtc) {
1545 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1546 return;
1547 }
1548 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1549
1550 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1551 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1552
1553 if (phys->ops.control_vblank_irq)
1554 phys->ops.control_vblank_irq(phys, enable);
1555 }
1556 }
1557
1558 /**
1559 * dpu_encoder_frame_done_callback - Notify virtual encoder that this phys
1560 * encoder completes last request frame
1561 * @drm_enc: Pointer to drm encoder structure
1562 * @ready_phys: Pointer to physical encoder
1563 * @event: Event to process
1564 */
dpu_encoder_frame_done_callback(struct drm_encoder * drm_enc,struct dpu_encoder_phys * ready_phys,u32 event)1565 void dpu_encoder_frame_done_callback(
1566 struct drm_encoder *drm_enc,
1567 struct dpu_encoder_phys *ready_phys, u32 event)
1568 {
1569 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1570 unsigned int i;
1571
1572 if (event & (DPU_ENCODER_FRAME_EVENT_DONE
1573 | DPU_ENCODER_FRAME_EVENT_ERROR
1574 | DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)) {
1575
1576 if (!dpu_enc->frame_busy_mask[0]) {
1577 /**
1578 * suppress frame_done without waiter,
1579 * likely autorefresh
1580 */
1581 trace_dpu_enc_frame_done_cb_not_busy(DRMID(drm_enc), event,
1582 dpu_encoder_helper_get_intf_type(ready_phys->intf_mode),
1583 ready_phys->hw_intf ? ready_phys->hw_intf->idx : -1,
1584 ready_phys->hw_wb ? ready_phys->hw_wb->idx : -1);
1585 return;
1586 }
1587
1588 /* One of the physical encoders has become idle */
1589 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1590 if (dpu_enc->phys_encs[i] == ready_phys) {
1591 trace_dpu_enc_frame_done_cb(DRMID(drm_enc), i,
1592 dpu_enc->frame_busy_mask[0]);
1593 clear_bit(i, dpu_enc->frame_busy_mask);
1594 }
1595 }
1596
1597 if (!dpu_enc->frame_busy_mask[0]) {
1598 atomic_set(&dpu_enc->frame_done_timeout_ms, 0);
1599 timer_delete(&dpu_enc->frame_done_timer);
1600
1601 dpu_encoder_resource_control(drm_enc,
1602 DPU_ENC_RC_EVENT_FRAME_DONE);
1603
1604 if (dpu_enc->crtc)
1605 dpu_crtc_frame_event_cb(dpu_enc->crtc, event);
1606 }
1607 } else {
1608 if (dpu_enc->crtc)
1609 dpu_crtc_frame_event_cb(dpu_enc->crtc, event);
1610 }
1611 }
1612
dpu_encoder_off_work(struct work_struct * work)1613 static void dpu_encoder_off_work(struct work_struct *work)
1614 {
1615 struct dpu_encoder_virt *dpu_enc = container_of(work,
1616 struct dpu_encoder_virt, delayed_off_work.work);
1617
1618 dpu_encoder_resource_control(&dpu_enc->base,
1619 DPU_ENC_RC_EVENT_ENTER_IDLE);
1620
1621 dpu_encoder_frame_done_callback(&dpu_enc->base, NULL,
1622 DPU_ENCODER_FRAME_EVENT_IDLE);
1623 }
1624
1625 /**
1626 * _dpu_encoder_trigger_flush - trigger flush for a physical encoder
1627 * @drm_enc: Pointer to drm encoder structure
1628 * @phys: Pointer to physical encoder structure
1629 * @extra_flush_bits: Additional bit mask to include in flush trigger
1630 */
_dpu_encoder_trigger_flush(struct drm_encoder * drm_enc,struct dpu_encoder_phys * phys,uint32_t extra_flush_bits)1631 static void _dpu_encoder_trigger_flush(struct drm_encoder *drm_enc,
1632 struct dpu_encoder_phys *phys, uint32_t extra_flush_bits)
1633 {
1634 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1635 struct dpu_hw_ctl *ctl;
1636 int pending_kickoff_cnt;
1637 u32 ret = UINT_MAX;
1638
1639 if (!phys->hw_pp) {
1640 DPU_ERROR("invalid pingpong hw\n");
1641 return;
1642 }
1643
1644 ctl = phys->hw_ctl;
1645 if (!ctl->ops.trigger_flush) {
1646 DPU_ERROR("missing trigger cb\n");
1647 return;
1648 }
1649
1650 pending_kickoff_cnt = dpu_encoder_phys_inc_pending(phys);
1651
1652 /* Return early if encoder is writeback and in clone mode */
1653 if (drm_enc->encoder_type == DRM_MODE_ENCODER_VIRTUAL &&
1654 dpu_enc->cwb_mask) {
1655 DPU_DEBUG("encoder %d skip flush for concurrent writeback encoder\n",
1656 DRMID(drm_enc));
1657 return;
1658 }
1659
1660
1661 if (extra_flush_bits && ctl->ops.update_pending_flush)
1662 ctl->ops.update_pending_flush(ctl, extra_flush_bits);
1663
1664 ctl->ops.trigger_flush(ctl);
1665
1666 if (ctl->ops.get_pending_flush)
1667 ret = ctl->ops.get_pending_flush(ctl);
1668
1669 trace_dpu_enc_trigger_flush(DRMID(drm_enc),
1670 dpu_encoder_helper_get_intf_type(phys->intf_mode),
1671 phys->hw_intf ? phys->hw_intf->idx : -1,
1672 phys->hw_wb ? phys->hw_wb->idx : -1,
1673 pending_kickoff_cnt, ctl->idx,
1674 extra_flush_bits, ret);
1675 }
1676
1677 /**
1678 * _dpu_encoder_trigger_start - trigger start for a physical encoder
1679 * @phys: Pointer to physical encoder structure
1680 */
_dpu_encoder_trigger_start(struct dpu_encoder_phys * phys)1681 static void _dpu_encoder_trigger_start(struct dpu_encoder_phys *phys)
1682 {
1683 struct dpu_encoder_virt *dpu_enc;
1684
1685 if (!phys) {
1686 DPU_ERROR("invalid argument(s)\n");
1687 return;
1688 }
1689
1690 if (!phys->hw_pp) {
1691 DPU_ERROR("invalid pingpong hw\n");
1692 return;
1693 }
1694
1695 dpu_enc = to_dpu_encoder_virt(phys->parent);
1696
1697 if (phys->parent->encoder_type == DRM_MODE_ENCODER_VIRTUAL &&
1698 dpu_enc->cwb_mask) {
1699 DPU_DEBUG("encoder %d CWB enabled, skipping\n", DRMID(phys->parent));
1700 return;
1701 }
1702
1703 if (phys->ops.trigger_start && phys->enable_state != DPU_ENC_DISABLED)
1704 phys->ops.trigger_start(phys);
1705 }
1706
1707 /**
1708 * dpu_encoder_helper_trigger_start - control start helper function
1709 * This helper function may be optionally specified by physical
1710 * encoders if they require ctl_start triggering.
1711 * @phys_enc: Pointer to physical encoder structure
1712 */
dpu_encoder_helper_trigger_start(struct dpu_encoder_phys * phys_enc)1713 void dpu_encoder_helper_trigger_start(struct dpu_encoder_phys *phys_enc)
1714 {
1715 struct dpu_hw_ctl *ctl;
1716
1717 ctl = phys_enc->hw_ctl;
1718 if (ctl->ops.trigger_start) {
1719 ctl->ops.trigger_start(ctl);
1720 trace_dpu_enc_trigger_start(DRMID(phys_enc->parent), ctl->idx);
1721 }
1722 }
1723
dpu_encoder_helper_wait_event_timeout(int32_t drm_id,unsigned int irq_idx,struct dpu_encoder_wait_info * info)1724 static int dpu_encoder_helper_wait_event_timeout(
1725 int32_t drm_id,
1726 unsigned int irq_idx,
1727 struct dpu_encoder_wait_info *info)
1728 {
1729 int rc = 0;
1730 s64 expected_time = ktime_to_ms(ktime_get()) + info->timeout_ms;
1731 s64 jiffies = msecs_to_jiffies(info->timeout_ms);
1732 s64 time;
1733
1734 do {
1735 rc = wait_event_timeout(*(info->wq),
1736 atomic_read(info->atomic_cnt) == 0, jiffies);
1737 time = ktime_to_ms(ktime_get());
1738
1739 trace_dpu_enc_wait_event_timeout(drm_id,
1740 DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx),
1741 rc, time,
1742 expected_time,
1743 atomic_read(info->atomic_cnt));
1744 /* If we timed out, counter is valid and time is less, wait again */
1745 } while (atomic_read(info->atomic_cnt) && (rc == 0) &&
1746 (time < expected_time));
1747
1748 return rc;
1749 }
1750
dpu_encoder_helper_hw_reset(struct dpu_encoder_phys * phys_enc)1751 static void dpu_encoder_helper_hw_reset(struct dpu_encoder_phys *phys_enc)
1752 {
1753 struct dpu_encoder_virt *dpu_enc;
1754 struct dpu_hw_ctl *ctl;
1755 int rc;
1756 struct drm_encoder *drm_enc;
1757
1758 dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
1759 ctl = phys_enc->hw_ctl;
1760 drm_enc = phys_enc->parent;
1761
1762 if (!ctl->ops.reset)
1763 return;
1764
1765 DRM_DEBUG_KMS("id:%u ctl %d reset\n", DRMID(drm_enc),
1766 ctl->idx);
1767
1768 rc = ctl->ops.reset(ctl);
1769 if (rc) {
1770 DPU_ERROR_ENC(dpu_enc, "ctl %d reset failure\n", ctl->idx);
1771 msm_disp_snapshot_state(drm_enc->dev);
1772 }
1773
1774 phys_enc->enable_state = DPU_ENC_ENABLED;
1775 }
1776
1777 /**
1778 * _dpu_encoder_kickoff_phys - handle physical encoder kickoff
1779 * Iterate through the physical encoders and perform consolidated flush
1780 * and/or control start triggering as needed. This is done in the virtual
1781 * encoder rather than the individual physical ones in order to handle
1782 * use cases that require visibility into multiple physical encoders at
1783 * a time.
1784 * @dpu_enc: Pointer to virtual encoder structure
1785 */
_dpu_encoder_kickoff_phys(struct dpu_encoder_virt * dpu_enc)1786 static void _dpu_encoder_kickoff_phys(struct dpu_encoder_virt *dpu_enc)
1787 {
1788 struct dpu_hw_ctl *ctl;
1789 uint32_t i, pending_flush;
1790 unsigned long lock_flags;
1791
1792 pending_flush = 0x0;
1793
1794 /* update pending counts and trigger kickoff ctl flush atomically */
1795 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1796
1797 /* don't perform flush/start operations for slave encoders */
1798 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1799 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1800
1801 if (phys->enable_state == DPU_ENC_DISABLED)
1802 continue;
1803
1804 ctl = phys->hw_ctl;
1805
1806 /*
1807 * This is cleared in frame_done worker, which isn't invoked
1808 * for async commits. So don't set this for async, since it'll
1809 * roll over to the next commit.
1810 */
1811 if (phys->split_role != ENC_ROLE_SLAVE)
1812 set_bit(i, dpu_enc->frame_busy_mask);
1813
1814 if (!phys->ops.needs_single_flush ||
1815 !phys->ops.needs_single_flush(phys))
1816 _dpu_encoder_trigger_flush(&dpu_enc->base, phys, 0x0);
1817 else if (ctl->ops.get_pending_flush)
1818 pending_flush |= ctl->ops.get_pending_flush(ctl);
1819 }
1820
1821 /* for split flush, combine pending flush masks and send to master */
1822 if (pending_flush && dpu_enc->cur_master) {
1823 _dpu_encoder_trigger_flush(
1824 &dpu_enc->base,
1825 dpu_enc->cur_master,
1826 pending_flush);
1827 }
1828
1829 _dpu_encoder_trigger_start(dpu_enc->cur_master);
1830
1831 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1832 }
1833
1834 /**
1835 * dpu_encoder_trigger_kickoff_pending - Clear the flush bits from previous
1836 * kickoff and trigger the ctl prepare progress for command mode display.
1837 * @drm_enc: encoder pointer
1838 */
dpu_encoder_trigger_kickoff_pending(struct drm_encoder * drm_enc)1839 void dpu_encoder_trigger_kickoff_pending(struct drm_encoder *drm_enc)
1840 {
1841 struct dpu_encoder_virt *dpu_enc;
1842 struct dpu_encoder_phys *phys;
1843 unsigned int i;
1844 struct dpu_hw_ctl *ctl;
1845 struct msm_display_info *disp_info;
1846
1847 if (!drm_enc) {
1848 DPU_ERROR("invalid encoder\n");
1849 return;
1850 }
1851 dpu_enc = to_dpu_encoder_virt(drm_enc);
1852 disp_info = &dpu_enc->disp_info;
1853
1854 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1855 phys = dpu_enc->phys_encs[i];
1856
1857 ctl = phys->hw_ctl;
1858 ctl->ops.clear_pending_flush(ctl);
1859
1860 /* update only for command mode primary ctl */
1861 if ((phys == dpu_enc->cur_master) &&
1862 disp_info->is_cmd_mode
1863 && ctl->ops.trigger_pending)
1864 ctl->ops.trigger_pending(ctl);
1865 }
1866 }
1867
_dpu_encoder_calculate_linetime(struct dpu_encoder_virt * dpu_enc,struct drm_display_mode * mode)1868 static u32 _dpu_encoder_calculate_linetime(struct dpu_encoder_virt *dpu_enc,
1869 struct drm_display_mode *mode)
1870 {
1871 u64 pclk_rate;
1872 u32 pclk_period;
1873 u32 line_time;
1874
1875 /*
1876 * For linetime calculation, only operate on master encoder.
1877 */
1878 if (!dpu_enc->cur_master)
1879 return 0;
1880
1881 if (!dpu_enc->cur_master->ops.get_line_count) {
1882 DPU_ERROR("get_line_count function not defined\n");
1883 return 0;
1884 }
1885
1886 pclk_rate = mode->clock; /* pixel clock in kHz */
1887 if (pclk_rate == 0) {
1888 DPU_ERROR("pclk is 0, cannot calculate line time\n");
1889 return 0;
1890 }
1891
1892 pclk_period = DIV_ROUND_UP_ULL(1000000000ull, pclk_rate);
1893 if (pclk_period == 0) {
1894 DPU_ERROR("pclk period is 0\n");
1895 return 0;
1896 }
1897
1898 /*
1899 * Line time calculation based on Pixel clock and HTOTAL.
1900 * Final unit is in ns.
1901 */
1902 line_time = (pclk_period * mode->htotal) / 1000;
1903 if (line_time == 0) {
1904 DPU_ERROR("line time calculation is 0\n");
1905 return 0;
1906 }
1907
1908 DPU_DEBUG_ENC(dpu_enc,
1909 "clk_rate=%lldkHz, clk_period=%d, linetime=%dns\n",
1910 pclk_rate, pclk_period, line_time);
1911
1912 return line_time;
1913 }
1914
1915 /**
1916 * dpu_encoder_vsync_time - get the time of the next vsync
1917 * @drm_enc: encoder pointer
1918 * @wakeup_time: pointer to ktime_t to write the vsync time to
1919 */
dpu_encoder_vsync_time(struct drm_encoder * drm_enc,ktime_t * wakeup_time)1920 int dpu_encoder_vsync_time(struct drm_encoder *drm_enc, ktime_t *wakeup_time)
1921 {
1922 struct drm_display_mode *mode;
1923 struct dpu_encoder_virt *dpu_enc;
1924 u32 cur_line;
1925 u32 line_time;
1926 u32 vtotal, time_to_vsync;
1927 ktime_t cur_time;
1928
1929 dpu_enc = to_dpu_encoder_virt(drm_enc);
1930
1931 if (!drm_enc->crtc || !drm_enc->crtc->state) {
1932 DPU_ERROR("crtc/crtc state object is NULL\n");
1933 return -EINVAL;
1934 }
1935 mode = &drm_enc->crtc->state->adjusted_mode;
1936
1937 line_time = _dpu_encoder_calculate_linetime(dpu_enc, mode);
1938 if (!line_time)
1939 return -EINVAL;
1940
1941 cur_line = dpu_enc->cur_master->ops.get_line_count(dpu_enc->cur_master);
1942
1943 vtotal = mode->vtotal;
1944 if (cur_line >= vtotal)
1945 time_to_vsync = line_time * vtotal;
1946 else
1947 time_to_vsync = line_time * (vtotal - cur_line);
1948
1949 if (time_to_vsync == 0) {
1950 DPU_ERROR("time to vsync should not be zero, vtotal=%d\n",
1951 vtotal);
1952 return -EINVAL;
1953 }
1954
1955 cur_time = ktime_get();
1956 *wakeup_time = ktime_add_ns(cur_time, time_to_vsync);
1957
1958 DPU_DEBUG_ENC(dpu_enc,
1959 "cur_line=%u vtotal=%u time_to_vsync=%u, cur_time=%lld, wakeup_time=%lld\n",
1960 cur_line, vtotal, time_to_vsync,
1961 ktime_to_ms(cur_time),
1962 ktime_to_ms(*wakeup_time));
1963 return 0;
1964 }
1965
1966 static u32
dpu_encoder_dsc_initial_line_calc(struct drm_dsc_config * dsc,u32 enc_ip_width)1967 dpu_encoder_dsc_initial_line_calc(struct drm_dsc_config *dsc,
1968 u32 enc_ip_width)
1969 {
1970 int ssm_delay, total_pixels, soft_slice_per_enc;
1971
1972 soft_slice_per_enc = enc_ip_width / dsc->slice_width;
1973
1974 /*
1975 * minimum number of initial line pixels is a sum of:
1976 * 1. sub-stream multiplexer delay (83 groups for 8bpc,
1977 * 91 for 10 bpc) * 3
1978 * 2. for two soft slice cases, add extra sub-stream multiplexer * 3
1979 * 3. the initial xmit delay
1980 * 4. total pipeline delay through the "lock step" of encoder (47)
1981 * 5. 6 additional pixels as the output of the rate buffer is
1982 * 48 bits wide
1983 */
1984 ssm_delay = ((dsc->bits_per_component < 10) ? 84 : 92);
1985 total_pixels = ssm_delay * 3 + dsc->initial_xmit_delay + 47;
1986 if (soft_slice_per_enc > 1)
1987 total_pixels += (ssm_delay * 3);
1988 return DIV_ROUND_UP(total_pixels, dsc->slice_width);
1989 }
1990
dpu_encoder_dsc_pipe_cfg(struct dpu_hw_ctl * ctl,struct dpu_hw_dsc * hw_dsc,struct dpu_hw_pingpong * hw_pp,struct drm_dsc_config * dsc,u32 common_mode,u32 initial_lines)1991 static void dpu_encoder_dsc_pipe_cfg(struct dpu_hw_ctl *ctl,
1992 struct dpu_hw_dsc *hw_dsc,
1993 struct dpu_hw_pingpong *hw_pp,
1994 struct drm_dsc_config *dsc,
1995 u32 common_mode,
1996 u32 initial_lines)
1997 {
1998 if (hw_dsc->ops.dsc_config)
1999 hw_dsc->ops.dsc_config(hw_dsc, dsc, common_mode, initial_lines);
2000
2001 if (hw_dsc->ops.dsc_config_thresh)
2002 hw_dsc->ops.dsc_config_thresh(hw_dsc, dsc);
2003
2004 if (hw_pp->ops.setup_dsc)
2005 hw_pp->ops.setup_dsc(hw_pp);
2006
2007 if (hw_dsc->ops.dsc_bind_pingpong_blk)
2008 hw_dsc->ops.dsc_bind_pingpong_blk(hw_dsc, hw_pp->idx);
2009
2010 if (hw_pp->ops.enable_dsc)
2011 hw_pp->ops.enable_dsc(hw_pp);
2012
2013 if (ctl->ops.update_pending_flush_dsc)
2014 ctl->ops.update_pending_flush_dsc(ctl, hw_dsc->idx);
2015 }
2016
dpu_encoder_prep_dsc(struct dpu_encoder_virt * dpu_enc,struct drm_dsc_config * dsc)2017 static void dpu_encoder_prep_dsc(struct dpu_encoder_virt *dpu_enc,
2018 struct drm_dsc_config *dsc)
2019 {
2020 struct dpu_encoder_phys *enc_master = dpu_enc->cur_master;
2021 struct dpu_hw_ctl *ctl = enc_master->hw_ctl;
2022 struct dpu_hw_dsc *hw_dsc[MAX_CHANNELS_PER_ENC];
2023 struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC];
2024 int this_frame_slices;
2025 int intf_ip_w, enc_ip_w;
2026 int dsc_common_mode;
2027 int pic_width;
2028 u32 initial_lines;
2029 int num_dsc = 0;
2030 int i;
2031
2032 for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
2033 hw_pp[i] = dpu_enc->hw_pp[i];
2034 hw_dsc[i] = dpu_enc->hw_dsc[i];
2035
2036 if (!hw_pp[i] || !hw_dsc[i])
2037 break;
2038
2039 num_dsc++;
2040 }
2041
2042 pic_width = dsc->pic_width;
2043
2044 dsc_common_mode = 0;
2045 if (num_dsc > 1)
2046 dsc_common_mode |= DSC_MODE_SPLIT_PANEL;
2047 if (dpu_encoder_use_dsc_merge(enc_master->parent))
2048 dsc_common_mode |= DSC_MODE_MULTIPLEX;
2049 if (enc_master->intf_mode == INTF_MODE_VIDEO)
2050 dsc_common_mode |= DSC_MODE_VIDEO;
2051
2052 this_frame_slices = pic_width / dsc->slice_width;
2053 intf_ip_w = this_frame_slices * dsc->slice_width;
2054
2055 enc_ip_w = intf_ip_w / num_dsc;
2056 initial_lines = dpu_encoder_dsc_initial_line_calc(dsc, enc_ip_w);
2057
2058 for (i = 0; i < num_dsc; i++)
2059 dpu_encoder_dsc_pipe_cfg(ctl, hw_dsc[i], hw_pp[i],
2060 dsc, dsc_common_mode, initial_lines);
2061 }
2062
2063 /**
2064 * dpu_encoder_prepare_for_kickoff - schedule double buffer flip of the ctl
2065 * path (i.e. ctl flush and start) at next appropriate time.
2066 * Immediately: if no previous commit is outstanding.
2067 * Delayed: Block until next trigger can be issued.
2068 * @drm_enc: encoder pointer
2069 */
dpu_encoder_prepare_for_kickoff(struct drm_encoder * drm_enc)2070 void dpu_encoder_prepare_for_kickoff(struct drm_encoder *drm_enc)
2071 {
2072 struct dpu_encoder_virt *dpu_enc;
2073 struct dpu_encoder_phys *phys;
2074 bool needs_hw_reset = false;
2075 unsigned int i;
2076
2077 dpu_enc = to_dpu_encoder_virt(drm_enc);
2078
2079 trace_dpu_enc_prepare_kickoff(DRMID(drm_enc));
2080
2081 /* prepare for next kickoff, may include waiting on previous kickoff */
2082 DPU_ATRACE_BEGIN("enc_prepare_for_kickoff");
2083 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2084 phys = dpu_enc->phys_encs[i];
2085 if (phys->ops.prepare_for_kickoff)
2086 phys->ops.prepare_for_kickoff(phys);
2087 if (phys->enable_state == DPU_ENC_ERR_NEEDS_HW_RESET)
2088 needs_hw_reset = true;
2089 }
2090 DPU_ATRACE_END("enc_prepare_for_kickoff");
2091
2092 dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF);
2093
2094 /* if any phys needs reset, reset all phys, in-order */
2095 if (needs_hw_reset) {
2096 trace_dpu_enc_prepare_kickoff_reset(DRMID(drm_enc));
2097 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2098 dpu_encoder_helper_hw_reset(dpu_enc->phys_encs[i]);
2099 }
2100 }
2101
2102 if (dpu_enc->dsc)
2103 dpu_encoder_prep_dsc(dpu_enc, dpu_enc->dsc);
2104 }
2105
2106 /**
2107 * dpu_encoder_is_valid_for_commit - check if encode has valid parameters for commit.
2108 * @drm_enc: Pointer to drm encoder structure
2109 */
dpu_encoder_is_valid_for_commit(struct drm_encoder * drm_enc)2110 bool dpu_encoder_is_valid_for_commit(struct drm_encoder *drm_enc)
2111 {
2112 struct dpu_encoder_virt *dpu_enc;
2113 unsigned int i;
2114 struct dpu_encoder_phys *phys;
2115
2116 dpu_enc = to_dpu_encoder_virt(drm_enc);
2117
2118 if (drm_enc->encoder_type == DRM_MODE_ENCODER_VIRTUAL) {
2119 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2120 phys = dpu_enc->phys_encs[i];
2121 if (phys->ops.is_valid_for_commit && !phys->ops.is_valid_for_commit(phys)) {
2122 DPU_DEBUG("invalid FB not kicking off\n");
2123 return false;
2124 }
2125 }
2126 }
2127
2128 return true;
2129 }
2130
2131 /**
2132 * dpu_encoder_start_frame_done_timer - Start the encoder frame done timer
2133 * @drm_enc: Pointer to drm encoder structure
2134 */
dpu_encoder_start_frame_done_timer(struct drm_encoder * drm_enc)2135 void dpu_encoder_start_frame_done_timer(struct drm_encoder *drm_enc)
2136 {
2137 struct dpu_encoder_virt *dpu_enc;
2138 unsigned long timeout_ms;
2139
2140 dpu_enc = to_dpu_encoder_virt(drm_enc);
2141 timeout_ms = DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES * 1000 /
2142 drm_mode_vrefresh(&drm_enc->crtc->state->adjusted_mode);
2143
2144 atomic_set(&dpu_enc->frame_done_timeout_ms, timeout_ms);
2145 mod_timer(&dpu_enc->frame_done_timer,
2146 jiffies + msecs_to_jiffies(timeout_ms));
2147
2148 }
2149
2150 /**
2151 * dpu_encoder_kickoff - trigger a double buffer flip of the ctl path
2152 * (i.e. ctl flush and start) immediately.
2153 * @drm_enc: encoder pointer
2154 */
dpu_encoder_kickoff(struct drm_encoder * drm_enc)2155 void dpu_encoder_kickoff(struct drm_encoder *drm_enc)
2156 {
2157 struct dpu_encoder_virt *dpu_enc;
2158 struct dpu_encoder_phys *phys;
2159 unsigned int i;
2160
2161 DPU_ATRACE_BEGIN("encoder_kickoff");
2162 dpu_enc = to_dpu_encoder_virt(drm_enc);
2163
2164 trace_dpu_enc_kickoff(DRMID(drm_enc));
2165
2166 /* All phys encs are ready to go, trigger the kickoff */
2167 _dpu_encoder_kickoff_phys(dpu_enc);
2168
2169 /* allow phys encs to handle any post-kickoff business */
2170 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2171 phys = dpu_enc->phys_encs[i];
2172 if (phys->ops.handle_post_kickoff)
2173 phys->ops.handle_post_kickoff(phys);
2174 }
2175
2176 DPU_ATRACE_END("encoder_kickoff");
2177 }
2178
dpu_encoder_helper_reset_mixers(struct dpu_encoder_phys * phys_enc)2179 static void dpu_encoder_helper_reset_mixers(struct dpu_encoder_phys *phys_enc)
2180 {
2181 int i, num_lm;
2182 struct dpu_global_state *global_state;
2183 struct dpu_hw_blk *hw_lm[2];
2184 struct dpu_hw_mixer *hw_mixer[2];
2185 struct dpu_hw_ctl *ctl = phys_enc->hw_ctl;
2186
2187 /* reset all mixers for this encoder */
2188 if (ctl->ops.clear_all_blendstages)
2189 ctl->ops.clear_all_blendstages(ctl);
2190
2191 global_state = dpu_kms_get_existing_global_state(phys_enc->dpu_kms);
2192
2193 num_lm = dpu_rm_get_assigned_resources(&phys_enc->dpu_kms->rm, global_state,
2194 phys_enc->parent->crtc, DPU_HW_BLK_LM, hw_lm, ARRAY_SIZE(hw_lm));
2195
2196 for (i = 0; i < num_lm; i++) {
2197 hw_mixer[i] = to_dpu_hw_mixer(hw_lm[i]);
2198 if (ctl->ops.update_pending_flush_mixer)
2199 ctl->ops.update_pending_flush_mixer(ctl, hw_mixer[i]->idx);
2200
2201 /* clear all blendstages */
2202 if (ctl->ops.setup_blendstage)
2203 ctl->ops.setup_blendstage(ctl, hw_mixer[i]->idx, NULL);
2204
2205 if (hw_mixer[i]->ops.clear_all_blendstages)
2206 hw_mixer[i]->ops.clear_all_blendstages(hw_mixer[i]);
2207
2208 if (ctl->ops.set_active_lms)
2209 ctl->ops.set_active_lms(ctl, NULL);
2210
2211 if (ctl->ops.set_active_fetch_pipes)
2212 ctl->ops.set_active_fetch_pipes(ctl, NULL);
2213
2214 if (ctl->ops.set_active_pipes)
2215 ctl->ops.set_active_pipes(ctl, NULL);
2216 }
2217 }
2218
dpu_encoder_dsc_pipe_clr(struct dpu_hw_ctl * ctl,struct dpu_hw_dsc * hw_dsc,struct dpu_hw_pingpong * hw_pp)2219 static void dpu_encoder_dsc_pipe_clr(struct dpu_hw_ctl *ctl,
2220 struct dpu_hw_dsc *hw_dsc,
2221 struct dpu_hw_pingpong *hw_pp)
2222 {
2223 if (hw_dsc->ops.dsc_disable)
2224 hw_dsc->ops.dsc_disable(hw_dsc);
2225
2226 if (hw_pp->ops.disable_dsc)
2227 hw_pp->ops.disable_dsc(hw_pp);
2228
2229 if (hw_dsc->ops.dsc_bind_pingpong_blk)
2230 hw_dsc->ops.dsc_bind_pingpong_blk(hw_dsc, PINGPONG_NONE);
2231
2232 if (ctl->ops.update_pending_flush_dsc)
2233 ctl->ops.update_pending_flush_dsc(ctl, hw_dsc->idx);
2234 }
2235
dpu_encoder_unprep_dsc(struct dpu_encoder_virt * dpu_enc)2236 static void dpu_encoder_unprep_dsc(struct dpu_encoder_virt *dpu_enc)
2237 {
2238 /* coding only for 2LM, 2enc, 1 dsc config */
2239 struct dpu_encoder_phys *enc_master = dpu_enc->cur_master;
2240 struct dpu_hw_ctl *ctl = enc_master->hw_ctl;
2241 struct dpu_hw_dsc *hw_dsc[MAX_CHANNELS_PER_ENC];
2242 struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC];
2243 int i;
2244
2245 for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
2246 hw_pp[i] = dpu_enc->hw_pp[i];
2247 hw_dsc[i] = dpu_enc->hw_dsc[i];
2248
2249 if (hw_pp[i] && hw_dsc[i])
2250 dpu_encoder_dsc_pipe_clr(ctl, hw_dsc[i], hw_pp[i]);
2251 }
2252 }
2253
2254 /**
2255 * dpu_encoder_helper_phys_cleanup - helper to cleanup dpu pipeline
2256 * @phys_enc: Pointer to physical encoder structure
2257 */
dpu_encoder_helper_phys_cleanup(struct dpu_encoder_phys * phys_enc)2258 void dpu_encoder_helper_phys_cleanup(struct dpu_encoder_phys *phys_enc)
2259 {
2260 struct dpu_hw_ctl *ctl = phys_enc->hw_ctl;
2261 struct dpu_hw_intf_cfg intf_cfg = { 0 };
2262 int i;
2263 struct dpu_encoder_virt *dpu_enc;
2264
2265 dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
2266
2267 ctl->ops.reset(ctl);
2268
2269 dpu_encoder_helper_reset_mixers(phys_enc);
2270
2271 /*
2272 * TODO: move the once-only operation like CTL flush/trigger
2273 * into dpu_encoder_virt_disable() and all operations which need
2274 * to be done per phys encoder into the phys_disable() op.
2275 */
2276 if (phys_enc->hw_wb) {
2277 /* disable the PP block */
2278 if (phys_enc->hw_wb->ops.bind_pingpong_blk)
2279 phys_enc->hw_wb->ops.bind_pingpong_blk(phys_enc->hw_wb, PINGPONG_NONE);
2280
2281 /* mark WB flush as pending */
2282 if (ctl->ops.update_pending_flush_wb)
2283 ctl->ops.update_pending_flush_wb(ctl, phys_enc->hw_wb->idx);
2284 } else {
2285 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2286 if (dpu_enc->phys_encs[i] && phys_enc->hw_intf->ops.bind_pingpong_blk)
2287 phys_enc->hw_intf->ops.bind_pingpong_blk(
2288 dpu_enc->phys_encs[i]->hw_intf,
2289 PINGPONG_NONE);
2290
2291 /* mark INTF flush as pending */
2292 if (ctl->ops.update_pending_flush_intf)
2293 ctl->ops.update_pending_flush_intf(ctl,
2294 dpu_enc->phys_encs[i]->hw_intf->idx);
2295 }
2296 }
2297
2298 if (phys_enc->hw_pp && phys_enc->hw_pp->ops.setup_dither)
2299 phys_enc->hw_pp->ops.setup_dither(phys_enc->hw_pp, NULL);
2300
2301 if (dpu_enc->cwb_mask)
2302 dpu_encoder_helper_phys_setup_cwb(phys_enc, false);
2303
2304 /* reset the merge 3D HW block */
2305 if (phys_enc->hw_pp && phys_enc->hw_pp->merge_3d) {
2306 phys_enc->hw_pp->merge_3d->ops.setup_3d_mode(phys_enc->hw_pp->merge_3d,
2307 BLEND_3D_NONE);
2308 if (ctl->ops.update_pending_flush_merge_3d)
2309 ctl->ops.update_pending_flush_merge_3d(ctl,
2310 phys_enc->hw_pp->merge_3d->idx);
2311 }
2312
2313 if (phys_enc->hw_cdm) {
2314 if (phys_enc->hw_cdm->ops.bind_pingpong_blk && phys_enc->hw_pp)
2315 phys_enc->hw_cdm->ops.bind_pingpong_blk(phys_enc->hw_cdm,
2316 PINGPONG_NONE);
2317 if (ctl->ops.update_pending_flush_cdm)
2318 ctl->ops.update_pending_flush_cdm(ctl,
2319 phys_enc->hw_cdm->idx);
2320 }
2321
2322 if (dpu_enc->dsc) {
2323 dpu_encoder_unprep_dsc(dpu_enc);
2324 dpu_enc->dsc = NULL;
2325 }
2326
2327 intf_cfg.stream_sel = 0; /* Don't care value for video mode */
2328 intf_cfg.mode_3d = dpu_encoder_helper_get_3d_blend_mode(phys_enc);
2329 intf_cfg.dsc = dpu_encoder_helper_get_dsc(phys_enc);
2330 intf_cfg.cwb = dpu_enc->cwb_mask;
2331
2332 if (phys_enc->hw_intf)
2333 intf_cfg.intf = phys_enc->hw_intf->idx;
2334 if (phys_enc->hw_wb)
2335 intf_cfg.wb = phys_enc->hw_wb->idx;
2336
2337 if (phys_enc->hw_pp && phys_enc->hw_pp->merge_3d)
2338 intf_cfg.merge_3d = phys_enc->hw_pp->merge_3d->idx;
2339
2340 if (ctl->ops.reset_intf_cfg)
2341 ctl->ops.reset_intf_cfg(ctl, &intf_cfg);
2342
2343 ctl->ops.trigger_flush(ctl);
2344 ctl->ops.trigger_start(ctl);
2345 ctl->ops.clear_pending_flush(ctl);
2346 }
2347
dpu_encoder_helper_phys_setup_cwb(struct dpu_encoder_phys * phys_enc,bool enable)2348 void dpu_encoder_helper_phys_setup_cwb(struct dpu_encoder_phys *phys_enc,
2349 bool enable)
2350 {
2351 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
2352 struct dpu_hw_cwb *hw_cwb;
2353 struct dpu_hw_ctl *hw_ctl;
2354 struct dpu_hw_cwb_setup_cfg cwb_cfg;
2355
2356 struct dpu_kms *dpu_kms;
2357 struct dpu_global_state *global_state;
2358 struct dpu_hw_blk *rt_pp_list[MAX_CHANNELS_PER_ENC];
2359 int num_pp;
2360
2361 if (!phys_enc->hw_wb)
2362 return;
2363
2364 hw_ctl = phys_enc->hw_ctl;
2365
2366 if (!phys_enc->hw_ctl) {
2367 DPU_DEBUG("[wb:%d] no ctl assigned\n",
2368 phys_enc->hw_wb->idx - WB_0);
2369 return;
2370 }
2371
2372 dpu_kms = phys_enc->dpu_kms;
2373 global_state = dpu_kms_get_existing_global_state(dpu_kms);
2374 num_pp = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
2375 phys_enc->parent->crtc,
2376 DPU_HW_BLK_PINGPONG, rt_pp_list,
2377 ARRAY_SIZE(rt_pp_list));
2378
2379 if (num_pp == 0 || num_pp > MAX_CHANNELS_PER_ENC) {
2380 DPU_DEBUG_ENC(dpu_enc, "invalid num_pp %d\n", num_pp);
2381 return;
2382 }
2383
2384 /*
2385 * The CWB mux supports using LM or DSPP as tap points. For now,
2386 * always use LM tap point
2387 */
2388 cwb_cfg.input = INPUT_MODE_LM_OUT;
2389
2390 for (int i = 0; i < MAX_CWB_PER_ENC; i++) {
2391 hw_cwb = dpu_enc->hw_cwb[i];
2392 if (!hw_cwb)
2393 continue;
2394
2395 if (enable) {
2396 struct dpu_hw_pingpong *hw_pp =
2397 to_dpu_hw_pingpong(rt_pp_list[i]);
2398 cwb_cfg.pp_idx = hw_pp->idx;
2399 } else {
2400 cwb_cfg.pp_idx = PINGPONG_NONE;
2401 }
2402
2403 hw_cwb->ops.config_cwb(hw_cwb, &cwb_cfg);
2404
2405 if (hw_ctl->ops.update_pending_flush_cwb)
2406 hw_ctl->ops.update_pending_flush_cwb(hw_ctl, hw_cwb->idx);
2407 }
2408 }
2409
2410 /**
2411 * dpu_encoder_helper_phys_setup_cdm - setup chroma down sampling block
2412 * @phys_enc: Pointer to physical encoder
2413 * @dpu_fmt: Pinter to the format description
2414 * @output_type: HDMI/WB
2415 */
dpu_encoder_helper_phys_setup_cdm(struct dpu_encoder_phys * phys_enc,const struct msm_format * dpu_fmt,u32 output_type)2416 void dpu_encoder_helper_phys_setup_cdm(struct dpu_encoder_phys *phys_enc,
2417 const struct msm_format *dpu_fmt,
2418 u32 output_type)
2419 {
2420 struct dpu_hw_cdm *hw_cdm;
2421 struct dpu_hw_cdm_cfg *cdm_cfg;
2422 struct dpu_hw_pingpong *hw_pp;
2423 int ret;
2424
2425 if (!phys_enc)
2426 return;
2427
2428 cdm_cfg = &phys_enc->cdm_cfg;
2429 hw_pp = phys_enc->hw_pp;
2430 hw_cdm = phys_enc->hw_cdm;
2431
2432 if (!hw_cdm)
2433 return;
2434
2435 if (!MSM_FORMAT_IS_YUV(dpu_fmt)) {
2436 DPU_DEBUG("[enc:%d] cdm_disable fmt:%p4cc\n", DRMID(phys_enc->parent),
2437 &dpu_fmt->pixel_format);
2438 if (hw_cdm->ops.bind_pingpong_blk)
2439 hw_cdm->ops.bind_pingpong_blk(hw_cdm, PINGPONG_NONE);
2440
2441 return;
2442 }
2443
2444 memset(cdm_cfg, 0, sizeof(struct dpu_hw_cdm_cfg));
2445
2446 cdm_cfg->output_width = phys_enc->cached_mode.hdisplay;
2447 cdm_cfg->output_height = phys_enc->cached_mode.vdisplay;
2448 cdm_cfg->output_fmt = dpu_fmt;
2449 cdm_cfg->output_type = output_type;
2450 cdm_cfg->output_bit_depth = MSM_FORMAT_IS_DX(dpu_fmt) ?
2451 CDM_CDWN_OUTPUT_10BIT : CDM_CDWN_OUTPUT_8BIT;
2452 cdm_cfg->csc_cfg = &dpu_csc10_rgb2yuv_601l;
2453
2454 /* enable 10 bit logic */
2455 switch (cdm_cfg->output_fmt->chroma_sample) {
2456 case CHROMA_FULL:
2457 cdm_cfg->h_cdwn_type = CDM_CDWN_DISABLE;
2458 cdm_cfg->v_cdwn_type = CDM_CDWN_DISABLE;
2459 break;
2460 case CHROMA_H2V1:
2461 cdm_cfg->h_cdwn_type = CDM_CDWN_COSITE;
2462 cdm_cfg->v_cdwn_type = CDM_CDWN_DISABLE;
2463 break;
2464 case CHROMA_420:
2465 cdm_cfg->h_cdwn_type = CDM_CDWN_COSITE;
2466 cdm_cfg->v_cdwn_type = CDM_CDWN_OFFSITE;
2467 break;
2468 case CHROMA_H1V2:
2469 default:
2470 DPU_ERROR("[enc:%d] unsupported chroma sampling type\n",
2471 DRMID(phys_enc->parent));
2472 cdm_cfg->h_cdwn_type = CDM_CDWN_DISABLE;
2473 cdm_cfg->v_cdwn_type = CDM_CDWN_DISABLE;
2474 break;
2475 }
2476
2477 DPU_DEBUG("[enc:%d] cdm_enable:%d,%d,%p4cc,%d,%d,%d,%d]\n",
2478 DRMID(phys_enc->parent), cdm_cfg->output_width,
2479 cdm_cfg->output_height, &cdm_cfg->output_fmt->pixel_format,
2480 cdm_cfg->output_type, cdm_cfg->output_bit_depth,
2481 cdm_cfg->h_cdwn_type, cdm_cfg->v_cdwn_type);
2482
2483 if (hw_cdm->ops.enable) {
2484 cdm_cfg->pp_id = hw_pp->idx;
2485 ret = hw_cdm->ops.enable(hw_cdm, cdm_cfg);
2486 if (ret < 0) {
2487 DPU_ERROR("[enc:%d] failed to enable CDM; ret:%d\n",
2488 DRMID(phys_enc->parent), ret);
2489 return;
2490 }
2491 }
2492 }
2493
2494 #ifdef CONFIG_DEBUG_FS
_dpu_encoder_status_show(struct seq_file * s,void * data)2495 static int _dpu_encoder_status_show(struct seq_file *s, void *data)
2496 {
2497 struct drm_encoder *drm_enc = s->private;
2498 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
2499 int i;
2500
2501 mutex_lock(&dpu_enc->enc_lock);
2502 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2503 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2504
2505 seq_printf(s, "intf:%d wb:%d vsync:%8d underrun:%8d frame_done_cnt:%d",
2506 phys->hw_intf ? phys->hw_intf->idx - INTF_0 : -1,
2507 phys->hw_wb ? phys->hw_wb->idx - WB_0 : -1,
2508 atomic_read(&phys->vsync_cnt),
2509 atomic_read(&phys->underrun_cnt),
2510 atomic_read(&dpu_enc->frame_done_timeout_cnt));
2511
2512 seq_printf(s, "mode: %s\n", dpu_encoder_helper_get_intf_type(phys->intf_mode));
2513 }
2514 mutex_unlock(&dpu_enc->enc_lock);
2515
2516 return 0;
2517 }
2518
2519 DEFINE_SHOW_ATTRIBUTE(_dpu_encoder_status);
2520
dpu_encoder_debugfs_init(struct drm_encoder * drm_enc,struct dentry * root)2521 static void dpu_encoder_debugfs_init(struct drm_encoder *drm_enc, struct dentry *root)
2522 {
2523 /* don't error check these */
2524 debugfs_create_file("status", 0600,
2525 root, drm_enc, &_dpu_encoder_status_fops);
2526 }
2527 #else
2528 #define dpu_encoder_debugfs_init NULL
2529 #endif
2530
dpu_encoder_virt_add_phys_encs(struct drm_device * dev,struct msm_display_info * disp_info,struct dpu_encoder_virt * dpu_enc,struct dpu_enc_phys_init_params * params)2531 static int dpu_encoder_virt_add_phys_encs(
2532 struct drm_device *dev,
2533 struct msm_display_info *disp_info,
2534 struct dpu_encoder_virt *dpu_enc,
2535 struct dpu_enc_phys_init_params *params)
2536 {
2537 struct dpu_encoder_phys *enc = NULL;
2538
2539 DPU_DEBUG_ENC(dpu_enc, "\n");
2540
2541 /*
2542 * We may create up to NUM_PHYS_ENCODER_TYPES physical encoder types
2543 * in this function, check up-front.
2544 */
2545 if (dpu_enc->num_phys_encs + NUM_PHYS_ENCODER_TYPES >=
2546 ARRAY_SIZE(dpu_enc->phys_encs)) {
2547 DPU_ERROR_ENC(dpu_enc, "too many physical encoders %d\n",
2548 dpu_enc->num_phys_encs);
2549 return -EINVAL;
2550 }
2551
2552
2553 if (disp_info->intf_type == INTF_WB) {
2554 enc = dpu_encoder_phys_wb_init(dev, params);
2555
2556 if (IS_ERR(enc)) {
2557 DPU_ERROR_ENC(dpu_enc, "failed to init wb enc: %ld\n",
2558 PTR_ERR(enc));
2559 return PTR_ERR(enc);
2560 }
2561
2562 dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
2563 ++dpu_enc->num_phys_encs;
2564 } else if (disp_info->is_cmd_mode) {
2565 enc = dpu_encoder_phys_cmd_init(dev, params);
2566
2567 if (IS_ERR(enc)) {
2568 DPU_ERROR_ENC(dpu_enc, "failed to init cmd enc: %ld\n",
2569 PTR_ERR(enc));
2570 return PTR_ERR(enc);
2571 }
2572
2573 dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
2574 ++dpu_enc->num_phys_encs;
2575 } else {
2576 enc = dpu_encoder_phys_vid_init(dev, params);
2577
2578 if (IS_ERR(enc)) {
2579 DPU_ERROR_ENC(dpu_enc, "failed to init vid enc: %ld\n",
2580 PTR_ERR(enc));
2581 return PTR_ERR(enc);
2582 }
2583
2584 dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
2585 ++dpu_enc->num_phys_encs;
2586 }
2587
2588 if (params->split_role == ENC_ROLE_SLAVE)
2589 dpu_enc->cur_slave = enc;
2590 else
2591 dpu_enc->cur_master = enc;
2592
2593 return 0;
2594 }
2595
2596 /**
2597 * dpu_encoder_get_clones - Calculate the possible_clones for DPU encoder
2598 * @drm_enc: DRM encoder pointer
2599 * Returns: possible_clones mask
2600 */
dpu_encoder_get_clones(struct drm_encoder * drm_enc)2601 uint32_t dpu_encoder_get_clones(struct drm_encoder *drm_enc)
2602 {
2603 struct drm_encoder *curr;
2604 int type = drm_enc->encoder_type;
2605 uint32_t clone_mask = drm_encoder_mask(drm_enc);
2606
2607 /*
2608 * Set writeback as possible clones of real-time DSI encoders and vice
2609 * versa
2610 *
2611 * Writeback encoders can't be clones of each other and DSI
2612 * encoders can't be clones of each other.
2613 *
2614 * TODO: Add DP encoders as valid possible clones for writeback encoders
2615 * (and vice versa) once concurrent writeback has been validated for DP
2616 */
2617 drm_for_each_encoder(curr, drm_enc->dev) {
2618 if ((type == DRM_MODE_ENCODER_VIRTUAL &&
2619 curr->encoder_type == DRM_MODE_ENCODER_DSI) ||
2620 (type == DRM_MODE_ENCODER_DSI &&
2621 curr->encoder_type == DRM_MODE_ENCODER_VIRTUAL))
2622 clone_mask |= drm_encoder_mask(curr);
2623 }
2624
2625 return clone_mask;
2626 }
2627
dpu_encoder_setup_display(struct dpu_encoder_virt * dpu_enc,struct dpu_kms * dpu_kms,struct msm_display_info * disp_info)2628 static int dpu_encoder_setup_display(struct dpu_encoder_virt *dpu_enc,
2629 struct dpu_kms *dpu_kms,
2630 struct msm_display_info *disp_info)
2631 {
2632 int ret = 0;
2633 int i = 0;
2634 struct dpu_enc_phys_init_params phys_params;
2635
2636 if (!dpu_enc) {
2637 DPU_ERROR("invalid arg(s), enc %d\n", dpu_enc != NULL);
2638 return -EINVAL;
2639 }
2640
2641 dpu_enc->cur_master = NULL;
2642
2643 memset(&phys_params, 0, sizeof(phys_params));
2644 phys_params.dpu_kms = dpu_kms;
2645 phys_params.parent = &dpu_enc->base;
2646 phys_params.enc_spinlock = &dpu_enc->enc_spinlock;
2647
2648 WARN_ON(disp_info->num_of_h_tiles < 1);
2649
2650 DPU_DEBUG("dsi_info->num_of_h_tiles %d\n", disp_info->num_of_h_tiles);
2651
2652 if (disp_info->intf_type != INTF_WB)
2653 dpu_enc->idle_pc_supported =
2654 dpu_kms->catalog->caps->has_idle_pc;
2655
2656 mutex_lock(&dpu_enc->enc_lock);
2657 for (i = 0; i < disp_info->num_of_h_tiles && !ret; i++) {
2658 /*
2659 * Left-most tile is at index 0, content is controller id
2660 * h_tile_instance_ids[2] = {0, 1}; DSI0 = left, DSI1 = right
2661 * h_tile_instance_ids[2] = {1, 0}; DSI1 = left, DSI0 = right
2662 */
2663 u32 controller_id = disp_info->h_tile_instance[i];
2664
2665 if (disp_info->num_of_h_tiles > 1) {
2666 if (i == 0)
2667 phys_params.split_role = ENC_ROLE_MASTER;
2668 else
2669 phys_params.split_role = ENC_ROLE_SLAVE;
2670 } else {
2671 phys_params.split_role = ENC_ROLE_SOLO;
2672 }
2673
2674 DPU_DEBUG("h_tile_instance %d = %d, split_role %d\n",
2675 i, controller_id, phys_params.split_role);
2676
2677 phys_params.hw_intf = dpu_encoder_get_intf(dpu_kms->catalog, &dpu_kms->rm,
2678 disp_info->intf_type,
2679 controller_id);
2680
2681 if (disp_info->intf_type == INTF_WB && controller_id < WB_MAX)
2682 phys_params.hw_wb = dpu_rm_get_wb(&dpu_kms->rm, controller_id);
2683
2684 if (!phys_params.hw_intf && !phys_params.hw_wb) {
2685 DPU_ERROR_ENC(dpu_enc, "no intf or wb block assigned at idx: %d\n", i);
2686 ret = -EINVAL;
2687 break;
2688 }
2689
2690 if (phys_params.hw_intf && phys_params.hw_wb) {
2691 DPU_ERROR_ENC(dpu_enc,
2692 "invalid phys both intf and wb block at idx: %d\n", i);
2693 ret = -EINVAL;
2694 break;
2695 }
2696
2697 ret = dpu_encoder_virt_add_phys_encs(dpu_kms->dev, disp_info,
2698 dpu_enc, &phys_params);
2699 if (ret) {
2700 DPU_ERROR_ENC(dpu_enc, "failed to add phys encs\n");
2701 break;
2702 }
2703 }
2704
2705 mutex_unlock(&dpu_enc->enc_lock);
2706
2707 return ret;
2708 }
2709
dpu_encoder_frame_done_timeout(struct timer_list * t)2710 static void dpu_encoder_frame_done_timeout(struct timer_list *t)
2711 {
2712 struct dpu_encoder_virt *dpu_enc = timer_container_of(dpu_enc, t,
2713 frame_done_timer);
2714 struct drm_encoder *drm_enc = &dpu_enc->base;
2715 u32 event;
2716
2717 if (!drm_enc->dev) {
2718 DPU_ERROR("invalid parameters\n");
2719 return;
2720 }
2721
2722 if (!dpu_enc->frame_busy_mask[0] || !dpu_enc->crtc) {
2723 DRM_DEBUG_KMS("id:%u invalid timeout frame_busy_mask=%lu\n",
2724 DRMID(drm_enc), dpu_enc->frame_busy_mask[0]);
2725 return;
2726 } else if (!atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) {
2727 DRM_DEBUG_KMS("id:%u invalid timeout\n", DRMID(drm_enc));
2728 return;
2729 }
2730
2731 DPU_ERROR_ENC_RATELIMITED(dpu_enc, "frame done timeout\n");
2732
2733 if (atomic_inc_return(&dpu_enc->frame_done_timeout_cnt) == 1)
2734 msm_disp_snapshot_state(drm_enc->dev);
2735
2736 event = DPU_ENCODER_FRAME_EVENT_ERROR;
2737 trace_dpu_enc_frame_done_timeout(DRMID(drm_enc), event);
2738 dpu_crtc_frame_event_cb(dpu_enc->crtc, event);
2739 }
2740
2741 static const struct drm_encoder_helper_funcs dpu_encoder_helper_funcs = {
2742 .atomic_mode_set = dpu_encoder_virt_atomic_mode_set,
2743 .atomic_disable = dpu_encoder_virt_atomic_disable,
2744 .atomic_enable = dpu_encoder_virt_atomic_enable,
2745 };
2746
2747 static const struct drm_encoder_funcs dpu_encoder_funcs = {
2748 .debugfs_init = dpu_encoder_debugfs_init,
2749 };
2750
2751 /**
2752 * dpu_encoder_init - initialize virtual encoder object
2753 * @dev: Pointer to drm device structure
2754 * @drm_enc_mode: corresponding DRM_MODE_ENCODER_* constant
2755 * @disp_info: Pointer to display information structure
2756 * Returns: Pointer to newly created drm encoder
2757 */
dpu_encoder_init(struct drm_device * dev,int drm_enc_mode,struct msm_display_info * disp_info)2758 struct drm_encoder *dpu_encoder_init(struct drm_device *dev,
2759 int drm_enc_mode,
2760 struct msm_display_info *disp_info)
2761 {
2762 struct msm_drm_private *priv = dev->dev_private;
2763 struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms);
2764 struct dpu_encoder_virt *dpu_enc;
2765 int ret;
2766
2767 dpu_enc = drmm_encoder_alloc(dev, struct dpu_encoder_virt, base,
2768 &dpu_encoder_funcs, drm_enc_mode, NULL);
2769 if (IS_ERR(dpu_enc))
2770 return ERR_CAST(dpu_enc);
2771
2772 drm_encoder_helper_add(&dpu_enc->base, &dpu_encoder_helper_funcs);
2773
2774 spin_lock_init(&dpu_enc->enc_spinlock);
2775 dpu_enc->enabled = false;
2776 mutex_init(&dpu_enc->enc_lock);
2777 mutex_init(&dpu_enc->rc_lock);
2778
2779 ret = dpu_encoder_setup_display(dpu_enc, dpu_kms, disp_info);
2780 if (ret) {
2781 DPU_ERROR("failed to setup encoder\n");
2782 return ERR_PTR(-ENOMEM);
2783 }
2784
2785 atomic_set(&dpu_enc->frame_done_timeout_ms, 0);
2786 atomic_set(&dpu_enc->frame_done_timeout_cnt, 0);
2787 timer_setup(&dpu_enc->frame_done_timer,
2788 dpu_encoder_frame_done_timeout, 0);
2789
2790 INIT_DELAYED_WORK(&dpu_enc->delayed_off_work,
2791 dpu_encoder_off_work);
2792 dpu_enc->idle_timeout = IDLE_TIMEOUT;
2793
2794 memcpy(&dpu_enc->disp_info, disp_info, sizeof(*disp_info));
2795
2796 DPU_DEBUG_ENC(dpu_enc, "created\n");
2797
2798 return &dpu_enc->base;
2799 }
2800
2801 /**
2802 * dpu_encoder_wait_for_commit_done() - Wait for encoder to flush pending state
2803 * @drm_enc: encoder pointer
2804 *
2805 * Wait for hardware to have flushed the current pending changes to hardware at
2806 * a vblank or CTL_START. Physical encoders will map this differently depending
2807 * on the type: vid mode -> vsync_irq, cmd mode -> CTL_START.
2808 *
2809 * Return: 0 on success, -EWOULDBLOCK if already signaled, error otherwise
2810 */
dpu_encoder_wait_for_commit_done(struct drm_encoder * drm_enc)2811 int dpu_encoder_wait_for_commit_done(struct drm_encoder *drm_enc)
2812 {
2813 struct dpu_encoder_virt *dpu_enc = NULL;
2814 int i, ret = 0;
2815
2816 if (!drm_enc) {
2817 DPU_ERROR("invalid encoder\n");
2818 return -EINVAL;
2819 }
2820 dpu_enc = to_dpu_encoder_virt(drm_enc);
2821 DPU_DEBUG_ENC(dpu_enc, "\n");
2822
2823 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2824 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2825
2826 if (phys->ops.wait_for_commit_done) {
2827 DPU_ATRACE_BEGIN("wait_for_commit_done");
2828 ret = phys->ops.wait_for_commit_done(phys);
2829 DPU_ATRACE_END("wait_for_commit_done");
2830 if (ret == -ETIMEDOUT && !dpu_enc->commit_done_timedout) {
2831 dpu_enc->commit_done_timedout = true;
2832 msm_disp_snapshot_state(drm_enc->dev);
2833 }
2834 if (ret)
2835 return ret;
2836 }
2837 }
2838
2839 return ret;
2840 }
2841
2842 /**
2843 * dpu_encoder_wait_for_tx_complete() - Wait for encoder to transfer pixels to panel
2844 * @drm_enc: encoder pointer
2845 *
2846 * Wait for the hardware to transfer all the pixels to the panel. Physical
2847 * encoders will map this differently depending on the type: vid mode -> vsync_irq,
2848 * cmd mode -> pp_done.
2849 *
2850 * Return: 0 on success, -EWOULDBLOCK if already signaled, error otherwise
2851 */
dpu_encoder_wait_for_tx_complete(struct drm_encoder * drm_enc)2852 int dpu_encoder_wait_for_tx_complete(struct drm_encoder *drm_enc)
2853 {
2854 struct dpu_encoder_virt *dpu_enc = NULL;
2855 int i, ret = 0;
2856
2857 if (!drm_enc) {
2858 DPU_ERROR("invalid encoder\n");
2859 return -EINVAL;
2860 }
2861 dpu_enc = to_dpu_encoder_virt(drm_enc);
2862 DPU_DEBUG_ENC(dpu_enc, "\n");
2863
2864 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2865 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2866
2867 if (phys->ops.wait_for_tx_complete) {
2868 DPU_ATRACE_BEGIN("wait_for_tx_complete");
2869 ret = phys->ops.wait_for_tx_complete(phys);
2870 DPU_ATRACE_END("wait_for_tx_complete");
2871 if (ret)
2872 return ret;
2873 }
2874 }
2875
2876 return ret;
2877 }
2878
2879 /**
2880 * dpu_encoder_get_intf_mode - get interface mode of the given encoder
2881 * @encoder: Pointer to drm encoder object
2882 */
dpu_encoder_get_intf_mode(struct drm_encoder * encoder)2883 enum dpu_intf_mode dpu_encoder_get_intf_mode(struct drm_encoder *encoder)
2884 {
2885 struct dpu_encoder_virt *dpu_enc = NULL;
2886
2887 if (!encoder) {
2888 DPU_ERROR("invalid encoder\n");
2889 return INTF_MODE_NONE;
2890 }
2891 dpu_enc = to_dpu_encoder_virt(encoder);
2892
2893 if (dpu_enc->cur_master)
2894 return dpu_enc->cur_master->intf_mode;
2895
2896 if (dpu_enc->num_phys_encs)
2897 return dpu_enc->phys_encs[0]->intf_mode;
2898
2899 return INTF_MODE_NONE;
2900 }
2901
2902 /**
2903 * dpu_encoder_helper_get_cwb_mask - get CWB blocks mask for the DPU encoder
2904 * @phys_enc: Pointer to physical encoder structure
2905 */
dpu_encoder_helper_get_cwb_mask(struct dpu_encoder_phys * phys_enc)2906 unsigned int dpu_encoder_helper_get_cwb_mask(struct dpu_encoder_phys *phys_enc)
2907 {
2908 struct drm_encoder *encoder = phys_enc->parent;
2909 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(encoder);
2910
2911 return dpu_enc->cwb_mask;
2912 }
2913
2914 /**
2915 * dpu_encoder_helper_get_dsc - get DSC blocks mask for the DPU encoder
2916 * This helper function is used by physical encoder to get DSC blocks mask
2917 * used for this encoder.
2918 * @phys_enc: Pointer to physical encoder structure
2919 */
dpu_encoder_helper_get_dsc(struct dpu_encoder_phys * phys_enc)2920 unsigned int dpu_encoder_helper_get_dsc(struct dpu_encoder_phys *phys_enc)
2921 {
2922 struct drm_encoder *encoder = phys_enc->parent;
2923 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(encoder);
2924
2925 return dpu_enc->dsc_mask;
2926 }
2927
dpu_encoder_phys_init(struct dpu_encoder_phys * phys_enc,struct dpu_enc_phys_init_params * p)2928 void dpu_encoder_phys_init(struct dpu_encoder_phys *phys_enc,
2929 struct dpu_enc_phys_init_params *p)
2930 {
2931 phys_enc->hw_mdptop = p->dpu_kms->hw_mdp;
2932 phys_enc->hw_intf = p->hw_intf;
2933 phys_enc->hw_wb = p->hw_wb;
2934 phys_enc->parent = p->parent;
2935 phys_enc->dpu_kms = p->dpu_kms;
2936 phys_enc->split_role = p->split_role;
2937 phys_enc->enc_spinlock = p->enc_spinlock;
2938 phys_enc->enable_state = DPU_ENC_DISABLED;
2939
2940 atomic_set(&phys_enc->pending_kickoff_cnt, 0);
2941 atomic_set(&phys_enc->pending_ctlstart_cnt, 0);
2942
2943 atomic_set(&phys_enc->vsync_cnt, 0);
2944 atomic_set(&phys_enc->underrun_cnt, 0);
2945
2946 init_waitqueue_head(&phys_enc->pending_kickoff_wq);
2947 }
2948