1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 #ifndef __LINUX_REGMAP_H 3 #define __LINUX_REGMAP_H 4 5 /* 6 * Register map access API 7 * 8 * Copyright 2011 Wolfson Microelectronics plc 9 * 10 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com> 11 */ 12 13 #include <linux/list.h> 14 #include <linux/rbtree.h> 15 #include <linux/ktime.h> 16 #include <linux/delay.h> 17 #include <linux/err.h> 18 #include <linux/bug.h> 19 #include <linux/lockdep.h> 20 #include <linux/iopoll.h> 21 #include <linux/fwnode.h> 22 23 struct module; 24 struct clk; 25 struct device; 26 struct device_node; 27 struct fsi_device; 28 struct i2c_client; 29 struct i3c_device; 30 struct irq_domain; 31 struct mdio_device; 32 struct slim_device; 33 struct spi_device; 34 struct spmi_device; 35 struct regmap; 36 struct regmap_range_cfg; 37 struct regmap_field; 38 struct snd_ac97; 39 struct sdw_slave; 40 41 /* 42 * regmap_mdio address encoding. IEEE 802.3ae clause 45 addresses consist of a 43 * device address and a register address. 44 */ 45 #define REGMAP_MDIO_C45_DEVAD_SHIFT 16 46 #define REGMAP_MDIO_C45_DEVAD_MASK GENMASK(20, 16) 47 #define REGMAP_MDIO_C45_REGNUM_MASK GENMASK(15, 0) 48 49 /* 50 * regmap.reg_shift indicates by how much we must shift registers prior to 51 * performing any operation. It's a signed value, positive numbers means 52 * downshifting the register's address, while negative numbers means upshifting. 53 */ 54 #define REGMAP_UPSHIFT(s) (-(s)) 55 #define REGMAP_DOWNSHIFT(s) (s) 56 57 /* 58 * The supported cache types, the default is no cache. Any new caches should 59 * usually use the maple tree cache unless they specifically require that there 60 * are never any allocations at runtime in which case they should use the sparse 61 * flat cache. The rbtree cache *may* have some performance advantage for very 62 * low end systems that make heavy use of cache syncs but is mainly legacy. 63 * These caches are sparse and entries will be initialized from hardware if no 64 * default has been provided. 65 * The non-sparse flat cache is provided for compatibility with existing users 66 * and will zero-initialize cache entries for which no defaults are provided. 67 * New users should use the sparse flat cache. 68 */ 69 enum regcache_type { 70 REGCACHE_NONE, 71 REGCACHE_RBTREE, 72 REGCACHE_FLAT, 73 REGCACHE_MAPLE, 74 REGCACHE_FLAT_S, 75 }; 76 77 /** 78 * struct reg_default - Default value for a register. 79 * 80 * @reg: Register address. 81 * @def: Register default value. 82 * 83 * We use an array of structs rather than a simple array as many modern devices 84 * have very sparse register maps. 85 */ 86 struct reg_default { 87 unsigned int reg; 88 unsigned int def; 89 }; 90 91 /** 92 * struct reg_sequence - An individual write from a sequence of writes. 93 * 94 * @reg: Register address. 95 * @def: Register value. 96 * @delay_us: Delay to be applied after the register write in microseconds 97 * 98 * Register/value pairs for sequences of writes with an optional delay in 99 * microseconds to be applied after each write. 100 */ 101 struct reg_sequence { 102 unsigned int reg; 103 unsigned int def; 104 unsigned int delay_us; 105 }; 106 107 #define REG_SEQ(_reg, _def, _delay_us) { \ 108 .reg = _reg, \ 109 .def = _def, \ 110 .delay_us = _delay_us, \ 111 } 112 #define REG_SEQ0(_reg, _def) REG_SEQ(_reg, _def, 0) 113 114 /** 115 * regmap_read_poll_timeout - Poll until a condition is met or a timeout occurs 116 * 117 * @map: Regmap to read from 118 * @addr: Address to poll 119 * @val: Unsigned integer variable to read the value into 120 * @cond: Break condition (usually involving @val) 121 * @sleep_us: Maximum time to sleep between reads in us (0 tight-loops). Please 122 * read usleep_range() function description for details and 123 * limitations. 124 * @timeout_us: Timeout in us, 0 means never timeout 125 * 126 * This is modelled after the readx_poll_timeout macros in linux/iopoll.h. 127 * 128 * Returns: 0 on success and -ETIMEDOUT upon a timeout or the regmap_read 129 * error return value in case of a error read. In the two former cases, 130 * the last read value at @addr is stored in @val. Must not be called 131 * from atomic context if sleep_us or timeout_us are used. 132 */ 133 #define regmap_read_poll_timeout(map, addr, val, cond, sleep_us, timeout_us) \ 134 ({ \ 135 int __ret, __tmp; \ 136 __tmp = read_poll_timeout(regmap_read, __ret, __ret || (cond), \ 137 sleep_us, timeout_us, false, (map), (addr), &(val)); \ 138 __ret ?: __tmp; \ 139 }) 140 141 /** 142 * regmap_read_poll_timeout_atomic - Poll until a condition is met or a timeout occurs 143 * 144 * @map: Regmap to read from 145 * @addr: Address to poll 146 * @val: Unsigned integer variable to read the value into 147 * @cond: Break condition (usually involving @val) 148 * @delay_us: Time to udelay between reads in us (0 tight-loops). Please 149 * read udelay() function description for details and 150 * limitations. 151 * @timeout_us: Timeout in us, 0 means never timeout 152 * 153 * This is modelled after the readx_poll_timeout_atomic macros in linux/iopoll.h. 154 * 155 * Note: In general regmap cannot be used in atomic context. If you want to use 156 * this macro then first setup your regmap for atomic use (flat or no cache 157 * and MMIO regmap). 158 * 159 * Returns: 0 on success and -ETIMEDOUT upon a timeout or the regmap_read 160 * error return value in case of a error read. In the two former cases, 161 * the last read value at @addr is stored in @val. 162 */ 163 #define regmap_read_poll_timeout_atomic(map, addr, val, cond, delay_us, timeout_us) \ 164 ({ \ 165 u64 __timeout_us = (timeout_us); \ 166 unsigned long __delay_us = (delay_us); \ 167 ktime_t __timeout = ktime_add_us(ktime_get(), __timeout_us); \ 168 int __ret; \ 169 for (;;) { \ 170 __ret = regmap_read((map), (addr), &(val)); \ 171 if (__ret) \ 172 break; \ 173 if (cond) \ 174 break; \ 175 if ((__timeout_us) && \ 176 ktime_compare(ktime_get(), __timeout) > 0) { \ 177 __ret = regmap_read((map), (addr), &(val)); \ 178 break; \ 179 } \ 180 if (__delay_us) \ 181 udelay(__delay_us); \ 182 } \ 183 __ret ?: ((cond) ? 0 : -ETIMEDOUT); \ 184 }) 185 186 /** 187 * regmap_field_read_poll_timeout - Poll until a condition is met or timeout 188 * 189 * @field: Regmap field to read from 190 * @val: Unsigned integer variable to read the value into 191 * @cond: Break condition (usually involving @val) 192 * @sleep_us: Maximum time to sleep between reads in us (0 tight-loops). Please 193 * read usleep_range() function description for details and 194 * limitations. 195 * @timeout_us: Timeout in us, 0 means never timeout 196 * 197 * This is modelled after the readx_poll_timeout macros in linux/iopoll.h. 198 * 199 * Returns: 0 on success and -ETIMEDOUT upon a timeout or the regmap_field_read 200 * error return value in case of a error read. In the two former cases, 201 * the last read value at @addr is stored in @val. Must not be called 202 * from atomic context if sleep_us or timeout_us are used. 203 */ 204 #define regmap_field_read_poll_timeout(field, val, cond, sleep_us, timeout_us) \ 205 ({ \ 206 int __ret, __tmp; \ 207 __tmp = read_poll_timeout(regmap_field_read, __ret, __ret || (cond), \ 208 sleep_us, timeout_us, false, (field), &(val)); \ 209 __ret ?: __tmp; \ 210 }) 211 212 #ifdef CONFIG_REGMAP 213 214 enum regmap_endian { 215 /* Unspecified -> 0 -> Backwards compatible default */ 216 REGMAP_ENDIAN_DEFAULT = 0, 217 REGMAP_ENDIAN_BIG, 218 REGMAP_ENDIAN_LITTLE, 219 REGMAP_ENDIAN_NATIVE, 220 }; 221 222 /** 223 * struct regmap_range - A register range, used for access related checks 224 * (readable/writeable/volatile/precious checks) 225 * 226 * @range_min: address of first register 227 * @range_max: address of last register 228 */ 229 struct regmap_range { 230 unsigned int range_min; 231 unsigned int range_max; 232 }; 233 234 #define regmap_reg_range(low, high) { .range_min = low, .range_max = high, } 235 236 /** 237 * struct regmap_access_table - A table of register ranges for access checks 238 * 239 * @yes_ranges : pointer to an array of regmap ranges used as "yes ranges" 240 * @n_yes_ranges: size of the above array 241 * @no_ranges: pointer to an array of regmap ranges used as "no ranges" 242 * @n_no_ranges: size of the above array 243 * 244 * A table of ranges including some yes ranges and some no ranges. 245 * If a register belongs to a no_range, the corresponding check function 246 * will return false. If a register belongs to a yes range, the corresponding 247 * check function will return true. "no_ranges" are searched first. 248 */ 249 struct regmap_access_table { 250 const struct regmap_range *yes_ranges; 251 unsigned int n_yes_ranges; 252 const struct regmap_range *no_ranges; 253 unsigned int n_no_ranges; 254 }; 255 256 typedef void (*regmap_lock)(void *); 257 typedef void (*regmap_unlock)(void *); 258 259 /** 260 * struct regmap_config - Configuration for the register map of a device. 261 * 262 * @name: Optional name of the regmap. Useful when a device has multiple 263 * register regions. 264 * 265 * @reg_bits: Number of bits in a register address, mandatory. 266 * @reg_stride: The register address stride. Valid register addresses are a 267 * multiple of this value. If set to 0, a value of 1 will be 268 * used. 269 * @reg_shift: The number of bits to shift the register before performing any 270 * operations. Any positive number will be downshifted, and negative 271 * values will be upshifted 272 * @reg_base: Value to be added to every register address before performing any 273 * operation. 274 * @pad_bits: Number of bits of padding between register and value. 275 * @val_bits: Number of bits in a register value, mandatory. 276 * 277 * @writeable_reg: Optional callback returning true if the register 278 * can be written to. If this field is NULL but wr_table 279 * (see below) is not, the check is performed on such table 280 * (a register is writeable if it belongs to one of the ranges 281 * specified by wr_table). 282 * @readable_reg: Optional callback returning true if the register 283 * can be read from. If this field is NULL but rd_table 284 * (see below) is not, the check is performed on such table 285 * (a register is readable if it belongs to one of the ranges 286 * specified by rd_table). 287 * @volatile_reg: Optional callback returning true if the register 288 * value can't be cached. If this field is NULL but 289 * volatile_table (see below) is not, the check is performed on 290 * such table (a register is volatile if it belongs to one of 291 * the ranges specified by volatile_table). 292 * @precious_reg: Optional callback returning true if the register 293 * should not be read outside of a call from the driver 294 * (e.g., a clear on read interrupt status register). If this 295 * field is NULL but precious_table (see below) is not, the 296 * check is performed on such table (a register is precious if 297 * it belongs to one of the ranges specified by precious_table). 298 * @writeable_noinc_reg: Optional callback returning true if the register 299 * supports multiple write operations without incrementing 300 * the register number. If this field is NULL but 301 * wr_noinc_table (see below) is not, the check is 302 * performed on such table (a register is no increment 303 * writeable if it belongs to one of the ranges specified 304 * by wr_noinc_table). 305 * @readable_noinc_reg: Optional callback returning true if the register 306 * supports multiple read operations without incrementing 307 * the register number. If this field is NULL but 308 * rd_noinc_table (see below) is not, the check is 309 * performed on such table (a register is no increment 310 * readable if it belongs to one of the ranges specified 311 * by rd_noinc_table). 312 * @reg_read: Optional callback that if filled will be used to perform 313 * all the reads from the registers. Should only be provided for 314 * devices whose read operation cannot be represented as a simple 315 * read operation on a bus such as SPI, I2C, etc. Most of the 316 * devices do not need this. 317 * @reg_write: Same as above for writing. 318 * @reg_update_bits: Optional callback that if filled will be used to perform 319 * all the update_bits(rmw) operation. Should only be provided 320 * if the function require special handling with lock and reg 321 * handling and the operation cannot be represented as a simple 322 * update_bits operation on a bus such as SPI, I2C, etc. 323 * @read: Optional callback that if filled will be used to perform all the 324 * bulk reads from the registers. Data is returned in the buffer used 325 * to transmit data. 326 * @write: Same as above for writing. 327 * @max_raw_read: Max raw read size that can be used on the device. 328 * @max_raw_write: Max raw write size that can be used on the device. 329 * @can_sleep: Optional, specifies whether regmap operations can sleep. 330 * @fast_io: Register IO is fast. Use a spinlock instead of a mutex 331 * to perform locking. This field is ignored if custom lock/unlock 332 * functions are used (see fields lock/unlock of struct regmap_config). 333 * This field is a duplicate of a similar file in 334 * 'struct regmap_bus' and serves exact same purpose. 335 * Use it only for "no-bus" cases. 336 * @io_port: Support IO port accessors. Makes sense only when MMIO vs. IO port 337 * access can be distinguished. 338 * @disable_locking: This regmap is either protected by external means or 339 * is guaranteed not to be accessed from multiple threads. 340 * Don't use any locking mechanisms. 341 * @lock: Optional lock callback (overrides regmap's default lock 342 * function, based on spinlock or mutex). 343 * @unlock: As above for unlocking. 344 * @lock_arg: This field is passed as the only argument of lock/unlock 345 * functions (ignored in case regular lock/unlock functions 346 * are not overridden). 347 * @max_register: Optional, specifies the maximum valid register address. 348 * @max_register_is_0: Optional, specifies that zero value in @max_register 349 * should be taken into account. This is a workaround to 350 * apply handling of @max_register for regmap that contains 351 * only one register. 352 * @wr_table: Optional, points to a struct regmap_access_table specifying 353 * valid ranges for write access. 354 * @rd_table: As above, for read access. 355 * @volatile_table: As above, for volatile registers. 356 * @precious_table: As above, for precious registers. 357 * @wr_noinc_table: As above, for no increment writeable registers. 358 * @rd_noinc_table: As above, for no increment readable registers. 359 * @reg_defaults: Power on reset values for registers (for use with 360 * register cache support). 361 * @num_reg_defaults: Number of elements in reg_defaults. 362 * @reg_default_cb: Optional callback to return default values for registers 363 * not listed in reg_defaults. This is only used for 364 * REGCACHE_FLAT population; drivers must ensure the readable_reg/ 365 * writeable_reg callbacks are defined to handle holes. 366 * 367 * @read_flag_mask: Mask to be set in the top bytes of the register when doing 368 * a read. 369 * @write_flag_mask: Mask to be set in the top bytes of the register when doing 370 * a write. If both read_flag_mask and write_flag_mask are 371 * empty and zero_flag_mask is not set the regmap_bus default 372 * masks are used. 373 * @zero_flag_mask: If set, read_flag_mask and write_flag_mask are used even 374 * if they are both empty. 375 * @use_relaxed_mmio: If set, MMIO R/W operations will not use memory barriers. 376 * This can avoid load on devices which don't require strict 377 * orderings, but drivers should carefully add any explicit 378 * memory barriers when they may require them. 379 * @use_single_read: If set, converts the bulk read operation into a series of 380 * single read operations. This is useful for a device that 381 * does not support bulk read. 382 * @use_single_write: If set, converts the bulk write operation into a series of 383 * single write operations. This is useful for a device that 384 * does not support bulk write. 385 * @can_multi_write: If set, the device supports the multi write mode of bulk 386 * write operations, if clear multi write requests will be 387 * split into individual write operations 388 * 389 * @cache_type: The actual cache type. 390 * @reg_defaults_raw: Power on reset values for registers (for use with 391 * register cache support). 392 * @num_reg_defaults_raw: Number of elements in reg_defaults_raw. 393 * @use_hwlock: Indicate if a hardware spinlock should be used. 394 * @use_raw_spinlock: Indicate if a raw spinlock should be used. 395 * @hwlock_id: Specify the hardware spinlock id. 396 * @hwlock_mode: The hardware spinlock mode, should be HWLOCK_IRQSTATE, 397 * HWLOCK_IRQ or 0. 398 * @reg_format_endian: Endianness for formatted register addresses. If this is 399 * DEFAULT, the @reg_format_endian_default value from the 400 * regmap bus is used. 401 * @val_format_endian: Endianness for formatted register values. If this is 402 * DEFAULT, the @reg_format_endian_default value from the 403 * regmap bus is used. 404 * 405 * @ranges: Array of configuration entries for virtual address ranges. 406 * @num_ranges: Number of range configuration entries. 407 */ 408 struct regmap_config { 409 const char *name; 410 411 int reg_bits; 412 int reg_stride; 413 int reg_shift; 414 unsigned int reg_base; 415 int pad_bits; 416 int val_bits; 417 418 bool (*writeable_reg)(struct device *dev, unsigned int reg); 419 bool (*readable_reg)(struct device *dev, unsigned int reg); 420 bool (*volatile_reg)(struct device *dev, unsigned int reg); 421 bool (*precious_reg)(struct device *dev, unsigned int reg); 422 bool (*writeable_noinc_reg)(struct device *dev, unsigned int reg); 423 bool (*readable_noinc_reg)(struct device *dev, unsigned int reg); 424 425 int (*reg_read)(void *context, unsigned int reg, unsigned int *val); 426 int (*reg_write)(void *context, unsigned int reg, unsigned int val); 427 int (*reg_update_bits)(void *context, unsigned int reg, 428 unsigned int mask, unsigned int val); 429 /* Bulk read/write */ 430 int (*read)(void *context, const void *reg_buf, size_t reg_size, 431 void *val_buf, size_t val_size); 432 int (*write)(void *context, const void *data, size_t count); 433 size_t max_raw_read; 434 size_t max_raw_write; 435 436 bool can_sleep; 437 438 bool fast_io; 439 bool io_port; 440 441 bool disable_locking; 442 regmap_lock lock; 443 regmap_unlock unlock; 444 void *lock_arg; 445 446 unsigned int max_register; 447 bool max_register_is_0; 448 const struct regmap_access_table *wr_table; 449 const struct regmap_access_table *rd_table; 450 const struct regmap_access_table *volatile_table; 451 const struct regmap_access_table *precious_table; 452 const struct regmap_access_table *wr_noinc_table; 453 const struct regmap_access_table *rd_noinc_table; 454 const struct reg_default *reg_defaults; 455 unsigned int num_reg_defaults; 456 int (*reg_default_cb)(struct device *dev, unsigned int reg, 457 unsigned int *def); 458 enum regcache_type cache_type; 459 const void *reg_defaults_raw; 460 unsigned int num_reg_defaults_raw; 461 462 unsigned long read_flag_mask; 463 unsigned long write_flag_mask; 464 bool zero_flag_mask; 465 466 bool use_single_read; 467 bool use_single_write; 468 bool use_relaxed_mmio; 469 bool can_multi_write; 470 471 bool use_hwlock; 472 bool use_raw_spinlock; 473 unsigned int hwlock_id; 474 unsigned int hwlock_mode; 475 476 enum regmap_endian reg_format_endian; 477 enum regmap_endian val_format_endian; 478 479 const struct regmap_range_cfg *ranges; 480 unsigned int num_ranges; 481 }; 482 483 /** 484 * struct regmap_range_cfg - Configuration for indirectly accessed or paged 485 * registers. 486 * 487 * @name: Descriptive name for diagnostics 488 * 489 * @range_min: Address of the lowest register address in virtual range. 490 * @range_max: Address of the highest register in virtual range. 491 * 492 * @selector_reg: Register with selector field. 493 * @selector_mask: Bit mask for selector value. 494 * @selector_shift: Bit shift for selector value. 495 * 496 * @window_start: Address of first (lowest) register in data window. 497 * @window_len: Number of registers in data window. 498 * 499 * Registers, mapped to this virtual range, are accessed in two steps: 500 * 1. page selector register update; 501 * 2. access through data window registers. 502 */ 503 struct regmap_range_cfg { 504 const char *name; 505 506 /* Registers of virtual address range */ 507 unsigned int range_min; 508 unsigned int range_max; 509 510 /* Page selector for indirect addressing */ 511 unsigned int selector_reg; 512 unsigned int selector_mask; 513 int selector_shift; 514 515 /* Data window (per each page) */ 516 unsigned int window_start; 517 unsigned int window_len; 518 }; 519 520 /** 521 * struct regmap_sdw_mbq_cfg - Configuration for Multi-Byte Quantities 522 * 523 * @mbq_size: Callback returning the actual size of the given register. 524 * @deferrable: Callback returning true if the hardware can defer 525 * transactions to the given register. Deferral should 526 * only be used by SDCA parts and typically which controls 527 * are deferrable will be specified in either as a hard 528 * coded list or from the DisCo tables in the platform 529 * firmware. 530 * 531 * @timeout_us: The time in microseconds after which waiting for a deferred 532 * transaction should time out. 533 * @retry_us: The time in microseconds between polls of the function busy 534 * status whilst waiting for an opportunity to retry a deferred 535 * transaction. 536 * 537 * Provides additional configuration required for SoundWire MBQ register maps. 538 */ 539 struct regmap_sdw_mbq_cfg { 540 int (*mbq_size)(struct device *dev, unsigned int reg); 541 bool (*deferrable)(struct device *dev, unsigned int reg); 542 unsigned long timeout_us; 543 unsigned long retry_us; 544 }; 545 546 struct regmap_async; 547 548 typedef int (*regmap_hw_write)(void *context, const void *data, 549 size_t count); 550 typedef int (*regmap_hw_gather_write)(void *context, 551 const void *reg, size_t reg_len, 552 const void *val, size_t val_len); 553 typedef int (*regmap_hw_async_write)(void *context, 554 const void *reg, size_t reg_len, 555 const void *val, size_t val_len, 556 struct regmap_async *async); 557 typedef int (*regmap_hw_read)(void *context, 558 const void *reg_buf, size_t reg_size, 559 void *val_buf, size_t val_size); 560 typedef int (*regmap_hw_reg_read)(void *context, unsigned int reg, 561 unsigned int *val); 562 typedef int (*regmap_hw_reg_noinc_read)(void *context, unsigned int reg, 563 void *val, size_t val_count); 564 typedef int (*regmap_hw_reg_write)(void *context, unsigned int reg, 565 unsigned int val); 566 typedef int (*regmap_hw_reg_noinc_write)(void *context, unsigned int reg, 567 const void *val, size_t val_count); 568 typedef int (*regmap_hw_reg_update_bits)(void *context, unsigned int reg, 569 unsigned int mask, unsigned int val); 570 typedef struct regmap_async *(*regmap_hw_async_alloc)(void); 571 typedef void (*regmap_hw_free_context)(void *context); 572 573 /** 574 * struct regmap_bus - Description of a hardware bus for the register map 575 * infrastructure. 576 * 577 * @fast_io: Register IO is fast. Use a spinlock instead of a mutex 578 * to perform locking. This field is ignored if custom lock/unlock 579 * functions are used (see fields lock/unlock of 580 * struct regmap_config). 581 * @free_on_exit: kfree this on exit of regmap 582 * @write: Write operation. 583 * @gather_write: Write operation with split register/value, return -ENOTSUPP 584 * if not implemented on a given device. 585 * @async_write: Write operation which completes asynchronously, optional and 586 * must serialise with respect to non-async I/O. 587 * @reg_write: Write a single register value to the given register address. This 588 * write operation has to complete when returning from the function. 589 * @reg_write_noinc: Write multiple register value to the same register. This 590 * write operation has to complete when returning from the function. 591 * @reg_update_bits: Update bits operation to be used against volatile 592 * registers, intended for devices supporting some mechanism 593 * for setting clearing bits without having to 594 * read/modify/write. 595 * @read: Read operation. Data is returned in the buffer used to transmit 596 * data. 597 * @reg_read: Read a single register value from a given register address. 598 * @free_context: Free context. 599 * @async_alloc: Allocate a regmap_async() structure. 600 * @read_flag_mask: Mask to be set in the top byte of the register when doing 601 * a read. 602 * @reg_format_endian_default: Default endianness for formatted register 603 * addresses. Used when the regmap_config specifies DEFAULT. If this is 604 * DEFAULT, BIG is assumed. 605 * @val_format_endian_default: Default endianness for formatted register 606 * values. Used when the regmap_config specifies DEFAULT. If this is 607 * DEFAULT, BIG is assumed. 608 * @max_raw_read: Max raw read size that can be used on the bus. 609 * @max_raw_write: Max raw write size that can be used on the bus. 610 */ 611 struct regmap_bus { 612 bool fast_io; 613 bool free_on_exit; 614 regmap_hw_write write; 615 regmap_hw_gather_write gather_write; 616 regmap_hw_async_write async_write; 617 regmap_hw_reg_write reg_write; 618 regmap_hw_reg_noinc_write reg_noinc_write; 619 regmap_hw_reg_update_bits reg_update_bits; 620 regmap_hw_read read; 621 regmap_hw_reg_read reg_read; 622 regmap_hw_reg_noinc_read reg_noinc_read; 623 regmap_hw_free_context free_context; 624 regmap_hw_async_alloc async_alloc; 625 u8 read_flag_mask; 626 enum regmap_endian reg_format_endian_default; 627 enum regmap_endian val_format_endian_default; 628 size_t max_raw_read; 629 size_t max_raw_write; 630 }; 631 632 /* 633 * __regmap_init functions. 634 * 635 * These functions take a lock key and name parameter, and should not be called 636 * directly. Instead, use the regmap_init macros that generate a key and name 637 * for each call. 638 */ 639 struct regmap *__regmap_init(struct device *dev, 640 const struct regmap_bus *bus, 641 void *bus_context, 642 const struct regmap_config *config, 643 struct lock_class_key *lock_key, 644 const char *lock_name); 645 struct regmap *__regmap_init_i2c(struct i2c_client *i2c, 646 const struct regmap_config *config, 647 struct lock_class_key *lock_key, 648 const char *lock_name); 649 struct regmap *__regmap_init_mdio(struct mdio_device *mdio_dev, 650 const struct regmap_config *config, 651 struct lock_class_key *lock_key, 652 const char *lock_name); 653 struct regmap *__regmap_init_sccb(struct i2c_client *i2c, 654 const struct regmap_config *config, 655 struct lock_class_key *lock_key, 656 const char *lock_name); 657 struct regmap *__regmap_init_slimbus(struct slim_device *slimbus, 658 const struct regmap_config *config, 659 struct lock_class_key *lock_key, 660 const char *lock_name); 661 struct regmap *__regmap_init_spi(struct spi_device *dev, 662 const struct regmap_config *config, 663 struct lock_class_key *lock_key, 664 const char *lock_name); 665 struct regmap *__regmap_init_spmi_base(struct spmi_device *dev, 666 const struct regmap_config *config, 667 struct lock_class_key *lock_key, 668 const char *lock_name); 669 struct regmap *__regmap_init_spmi_ext(struct spmi_device *dev, 670 const struct regmap_config *config, 671 struct lock_class_key *lock_key, 672 const char *lock_name); 673 struct regmap *__regmap_init_w1(struct device *w1_dev, 674 const struct regmap_config *config, 675 struct lock_class_key *lock_key, 676 const char *lock_name); 677 struct regmap *__regmap_init_mmio_clk(struct device *dev, const char *clk_id, 678 void __iomem *regs, 679 const struct regmap_config *config, 680 struct lock_class_key *lock_key, 681 const char *lock_name); 682 struct regmap *__regmap_init_ac97(struct snd_ac97 *ac97, 683 const struct regmap_config *config, 684 struct lock_class_key *lock_key, 685 const char *lock_name); 686 struct regmap *__regmap_init_sdw(struct sdw_slave *sdw, 687 const struct regmap_config *config, 688 struct lock_class_key *lock_key, 689 const char *lock_name); 690 struct regmap *__regmap_init_sdw_mbq(struct device *dev, struct sdw_slave *sdw, 691 const struct regmap_config *config, 692 const struct regmap_sdw_mbq_cfg *mbq_config, 693 struct lock_class_key *lock_key, 694 const char *lock_name); 695 struct regmap *__regmap_init_spi_avmm(struct spi_device *spi, 696 const struct regmap_config *config, 697 struct lock_class_key *lock_key, 698 const char *lock_name); 699 struct regmap *__regmap_init_fsi(struct fsi_device *fsi_dev, 700 const struct regmap_config *config, 701 struct lock_class_key *lock_key, 702 const char *lock_name); 703 704 struct regmap *__devm_regmap_init(struct device *dev, 705 const struct regmap_bus *bus, 706 void *bus_context, 707 const struct regmap_config *config, 708 struct lock_class_key *lock_key, 709 const char *lock_name); 710 struct regmap *__devm_regmap_init_i2c(struct i2c_client *i2c, 711 const struct regmap_config *config, 712 struct lock_class_key *lock_key, 713 const char *lock_name); 714 struct regmap *__devm_regmap_init_mdio(struct mdio_device *mdio_dev, 715 const struct regmap_config *config, 716 struct lock_class_key *lock_key, 717 const char *lock_name); 718 struct regmap *__devm_regmap_init_sccb(struct i2c_client *i2c, 719 const struct regmap_config *config, 720 struct lock_class_key *lock_key, 721 const char *lock_name); 722 struct regmap *__devm_regmap_init_spi(struct spi_device *dev, 723 const struct regmap_config *config, 724 struct lock_class_key *lock_key, 725 const char *lock_name); 726 struct regmap *__devm_regmap_init_spmi_base(struct spmi_device *dev, 727 const struct regmap_config *config, 728 struct lock_class_key *lock_key, 729 const char *lock_name); 730 struct regmap *__devm_regmap_init_spmi_ext(struct spmi_device *dev, 731 const struct regmap_config *config, 732 struct lock_class_key *lock_key, 733 const char *lock_name); 734 struct regmap *__devm_regmap_init_w1(struct device *w1_dev, 735 const struct regmap_config *config, 736 struct lock_class_key *lock_key, 737 const char *lock_name); 738 struct regmap *__devm_regmap_init_mmio_clk(struct device *dev, 739 const char *clk_id, 740 void __iomem *regs, 741 const struct regmap_config *config, 742 struct lock_class_key *lock_key, 743 const char *lock_name); 744 struct regmap *__devm_regmap_init_ac97(struct snd_ac97 *ac97, 745 const struct regmap_config *config, 746 struct lock_class_key *lock_key, 747 const char *lock_name); 748 struct regmap *__devm_regmap_init_sdw(struct sdw_slave *sdw, 749 const struct regmap_config *config, 750 struct lock_class_key *lock_key, 751 const char *lock_name); 752 struct regmap *__devm_regmap_init_sdw_mbq(struct device *dev, struct sdw_slave *sdw, 753 const struct regmap_config *config, 754 const struct regmap_sdw_mbq_cfg *mbq_config, 755 struct lock_class_key *lock_key, 756 const char *lock_name); 757 struct regmap *__devm_regmap_init_slimbus(struct slim_device *slimbus, 758 const struct regmap_config *config, 759 struct lock_class_key *lock_key, 760 const char *lock_name); 761 struct regmap *__devm_regmap_init_i3c(struct i3c_device *i3c, 762 const struct regmap_config *config, 763 struct lock_class_key *lock_key, 764 const char *lock_name); 765 struct regmap *__devm_regmap_init_spi_avmm(struct spi_device *spi, 766 const struct regmap_config *config, 767 struct lock_class_key *lock_key, 768 const char *lock_name); 769 struct regmap *__devm_regmap_init_fsi(struct fsi_device *fsi_dev, 770 const struct regmap_config *config, 771 struct lock_class_key *lock_key, 772 const char *lock_name); 773 774 /* 775 * Wrapper for regmap_init macros to include a unique lockdep key and name 776 * for each call. No-op if CONFIG_LOCKDEP is not set. 777 * 778 * @fn: Real function to call (in the form __[*_]regmap_init[_*]) 779 * @name: Config variable name (#config in the calling macro) 780 **/ 781 #ifdef CONFIG_LOCKDEP 782 #define __regmap_lockdep_wrapper(fn, name, ...) \ 783 ( \ 784 ({ \ 785 static struct lock_class_key _key; \ 786 fn(__VA_ARGS__, &_key, \ 787 KBUILD_BASENAME ":" \ 788 __stringify(__LINE__) ":" \ 789 "(" name ")->lock"); \ 790 }) \ 791 ) 792 #else 793 #define __regmap_lockdep_wrapper(fn, name, ...) fn(__VA_ARGS__, NULL, NULL) 794 #endif 795 796 /** 797 * regmap_init() - Initialise register map 798 * 799 * @dev: Device that will be interacted with 800 * @bus: Bus-specific callbacks to use with device 801 * @bus_context: Data passed to bus-specific callbacks 802 * @config: Configuration for register map 803 * 804 * The return value will be an ERR_PTR() on error or a valid pointer to 805 * a struct regmap. This function should generally not be called 806 * directly, it should be called by bus-specific init functions. 807 */ 808 #define regmap_init(dev, bus, bus_context, config) \ 809 __regmap_lockdep_wrapper(__regmap_init, #config, \ 810 dev, bus, bus_context, config) 811 int regmap_attach_dev(struct device *dev, struct regmap *map, 812 const struct regmap_config *config); 813 814 /** 815 * regmap_init_i2c() - Initialise register map 816 * 817 * @i2c: Device that will be interacted with 818 * @config: Configuration for register map 819 * 820 * The return value will be an ERR_PTR() on error or a valid pointer to 821 * a struct regmap. 822 */ 823 #define regmap_init_i2c(i2c, config) \ 824 __regmap_lockdep_wrapper(__regmap_init_i2c, #config, \ 825 i2c, config) 826 827 /** 828 * regmap_init_mdio() - Initialise register map 829 * 830 * @mdio_dev: Device that will be interacted with 831 * @config: Configuration for register map 832 * 833 * The return value will be an ERR_PTR() on error or a valid pointer to 834 * a struct regmap. 835 */ 836 #define regmap_init_mdio(mdio_dev, config) \ 837 __regmap_lockdep_wrapper(__regmap_init_mdio, #config, \ 838 mdio_dev, config) 839 840 /** 841 * regmap_init_sccb() - Initialise register map 842 * 843 * @i2c: Device that will be interacted with 844 * @config: Configuration for register map 845 * 846 * The return value will be an ERR_PTR() on error or a valid pointer to 847 * a struct regmap. 848 */ 849 #define regmap_init_sccb(i2c, config) \ 850 __regmap_lockdep_wrapper(__regmap_init_sccb, #config, \ 851 i2c, config) 852 853 /** 854 * regmap_init_slimbus() - Initialise register map 855 * 856 * @slimbus: Device that will be interacted with 857 * @config: Configuration for register map 858 * 859 * The return value will be an ERR_PTR() on error or a valid pointer to 860 * a struct regmap. 861 */ 862 #define regmap_init_slimbus(slimbus, config) \ 863 __regmap_lockdep_wrapper(__regmap_init_slimbus, #config, \ 864 slimbus, config) 865 866 /** 867 * regmap_init_spi() - Initialise register map 868 * 869 * @dev: Device that will be interacted with 870 * @config: Configuration for register map 871 * 872 * The return value will be an ERR_PTR() on error or a valid pointer to 873 * a struct regmap. 874 */ 875 #define regmap_init_spi(dev, config) \ 876 __regmap_lockdep_wrapper(__regmap_init_spi, #config, \ 877 dev, config) 878 879 /** 880 * regmap_init_spmi_base() - Create regmap for the Base register space 881 * 882 * @dev: SPMI device that will be interacted with 883 * @config: Configuration for register map 884 * 885 * The return value will be an ERR_PTR() on error or a valid pointer to 886 * a struct regmap. 887 */ 888 #define regmap_init_spmi_base(dev, config) \ 889 __regmap_lockdep_wrapper(__regmap_init_spmi_base, #config, \ 890 dev, config) 891 892 /** 893 * regmap_init_spmi_ext() - Create regmap for Ext register space 894 * 895 * @dev: Device that will be interacted with 896 * @config: Configuration for register map 897 * 898 * The return value will be an ERR_PTR() on error or a valid pointer to 899 * a struct regmap. 900 */ 901 #define regmap_init_spmi_ext(dev, config) \ 902 __regmap_lockdep_wrapper(__regmap_init_spmi_ext, #config, \ 903 dev, config) 904 905 /** 906 * regmap_init_w1() - Initialise register map 907 * 908 * @w1_dev: Device that will be interacted with 909 * @config: Configuration for register map 910 * 911 * The return value will be an ERR_PTR() on error or a valid pointer to 912 * a struct regmap. 913 */ 914 #define regmap_init_w1(w1_dev, config) \ 915 __regmap_lockdep_wrapper(__regmap_init_w1, #config, \ 916 w1_dev, config) 917 918 /** 919 * regmap_init_mmio_clk() - Initialise register map with register clock 920 * 921 * @dev: Device that will be interacted with 922 * @clk_id: register clock consumer ID 923 * @regs: Pointer to memory-mapped IO region 924 * @config: Configuration for register map 925 * 926 * The return value will be an ERR_PTR() on error or a valid pointer to 927 * a struct regmap. Implies 'fast_io'. 928 */ 929 #define regmap_init_mmio_clk(dev, clk_id, regs, config) \ 930 __regmap_lockdep_wrapper(__regmap_init_mmio_clk, #config, \ 931 dev, clk_id, regs, config) 932 933 /** 934 * regmap_init_mmio() - Initialise register map 935 * 936 * @dev: Device that will be interacted with 937 * @regs: Pointer to memory-mapped IO region 938 * @config: Configuration for register map 939 * 940 * The return value will be an ERR_PTR() on error or a valid pointer to 941 * a struct regmap. Implies 'fast_io'. 942 */ 943 #define regmap_init_mmio(dev, regs, config) \ 944 regmap_init_mmio_clk(dev, NULL, regs, config) 945 946 /** 947 * regmap_init_ac97() - Initialise AC'97 register map 948 * 949 * @ac97: Device that will be interacted with 950 * @config: Configuration for register map 951 * 952 * The return value will be an ERR_PTR() on error or a valid pointer to 953 * a struct regmap. 954 */ 955 #define regmap_init_ac97(ac97, config) \ 956 __regmap_lockdep_wrapper(__regmap_init_ac97, #config, \ 957 ac97, config) 958 bool regmap_ac97_default_volatile(struct device *dev, unsigned int reg); 959 960 /** 961 * regmap_init_sdw() - Initialise register map 962 * 963 * @sdw: Device that will be interacted with 964 * @config: Configuration for register map 965 * 966 * The return value will be an ERR_PTR() on error or a valid pointer to 967 * a struct regmap. 968 */ 969 #define regmap_init_sdw(sdw, config) \ 970 __regmap_lockdep_wrapper(__regmap_init_sdw, #config, \ 971 sdw, config) 972 973 /** 974 * regmap_init_sdw_mbq() - Initialise register map 975 * 976 * @sdw: Device that will be interacted with 977 * @config: Configuration for register map 978 * 979 * The return value will be an ERR_PTR() on error or a valid pointer to 980 * a struct regmap. 981 */ 982 #define regmap_init_sdw_mbq(sdw, config) \ 983 __regmap_lockdep_wrapper(__regmap_init_sdw_mbq, #config, \ 984 &sdw->dev, sdw, config, NULL) 985 986 /** 987 * regmap_init_sdw_mbq_cfg() - Initialise MBQ SDW register map with config 988 * 989 * @sdw: Device that will be interacted with 990 * @config: Configuration for register map 991 * @mbq_config: Properties for the MBQ registers 992 * 993 * The return value will be an ERR_PTR() on error or a valid pointer 994 * to a struct regmap. The regmap will be automatically freed by the 995 * device management code. 996 */ 997 #define regmap_init_sdw_mbq_cfg(dev, sdw, config, mbq_config) \ 998 __regmap_lockdep_wrapper(__regmap_init_sdw_mbq, #config, \ 999 dev, sdw, config, mbq_config) 1000 1001 /** 1002 * regmap_init_spi_avmm() - Initialize register map for Intel SPI Slave 1003 * to AVMM Bus Bridge 1004 * 1005 * @spi: Device that will be interacted with 1006 * @config: Configuration for register map 1007 * 1008 * The return value will be an ERR_PTR() on error or a valid pointer 1009 * to a struct regmap. 1010 */ 1011 #define regmap_init_spi_avmm(spi, config) \ 1012 __regmap_lockdep_wrapper(__regmap_init_spi_avmm, #config, \ 1013 spi, config) 1014 1015 /** 1016 * regmap_init_fsi() - Initialise register map 1017 * 1018 * @fsi_dev: Device that will be interacted with 1019 * @config: Configuration for register map 1020 * 1021 * The return value will be an ERR_PTR() on error or a valid pointer to 1022 * a struct regmap. 1023 */ 1024 #define regmap_init_fsi(fsi_dev, config) \ 1025 __regmap_lockdep_wrapper(__regmap_init_fsi, #config, fsi_dev, \ 1026 config) 1027 1028 /** 1029 * devm_regmap_init() - Initialise managed register map 1030 * 1031 * @dev: Device that will be interacted with 1032 * @bus: Bus-specific callbacks to use with device 1033 * @bus_context: Data passed to bus-specific callbacks 1034 * @config: Configuration for register map 1035 * 1036 * The return value will be an ERR_PTR() on error or a valid pointer 1037 * to a struct regmap. This function should generally not be called 1038 * directly, it should be called by bus-specific init functions. The 1039 * map will be automatically freed by the device management code. 1040 */ 1041 #define devm_regmap_init(dev, bus, bus_context, config) \ 1042 __regmap_lockdep_wrapper(__devm_regmap_init, #config, \ 1043 dev, bus, bus_context, config) 1044 1045 /** 1046 * devm_regmap_init_i2c() - Initialise managed register map 1047 * 1048 * @i2c: Device that will be interacted with 1049 * @config: Configuration for register map 1050 * 1051 * The return value will be an ERR_PTR() on error or a valid pointer 1052 * to a struct regmap. The regmap will be automatically freed by the 1053 * device management code. 1054 */ 1055 #define devm_regmap_init_i2c(i2c, config) \ 1056 __regmap_lockdep_wrapper(__devm_regmap_init_i2c, #config, \ 1057 i2c, config) 1058 1059 /** 1060 * devm_regmap_init_mdio() - Initialise managed register map 1061 * 1062 * @mdio_dev: Device that will be interacted with 1063 * @config: Configuration for register map 1064 * 1065 * The return value will be an ERR_PTR() on error or a valid pointer 1066 * to a struct regmap. The regmap will be automatically freed by the 1067 * device management code. 1068 */ 1069 #define devm_regmap_init_mdio(mdio_dev, config) \ 1070 __regmap_lockdep_wrapper(__devm_regmap_init_mdio, #config, \ 1071 mdio_dev, config) 1072 1073 /** 1074 * devm_regmap_init_sccb() - Initialise managed register map 1075 * 1076 * @i2c: Device that will be interacted with 1077 * @config: Configuration for register map 1078 * 1079 * The return value will be an ERR_PTR() on error or a valid pointer 1080 * to a struct regmap. The regmap will be automatically freed by the 1081 * device management code. 1082 */ 1083 #define devm_regmap_init_sccb(i2c, config) \ 1084 __regmap_lockdep_wrapper(__devm_regmap_init_sccb, #config, \ 1085 i2c, config) 1086 1087 /** 1088 * devm_regmap_init_spi() - Initialise register map 1089 * 1090 * @dev: Device that will be interacted with 1091 * @config: Configuration for register map 1092 * 1093 * The return value will be an ERR_PTR() on error or a valid pointer 1094 * to a struct regmap. The map will be automatically freed by the 1095 * device management code. 1096 */ 1097 #define devm_regmap_init_spi(dev, config) \ 1098 __regmap_lockdep_wrapper(__devm_regmap_init_spi, #config, \ 1099 dev, config) 1100 1101 /** 1102 * devm_regmap_init_spmi_base() - Create managed regmap for Base register space 1103 * 1104 * @dev: SPMI device that will be interacted with 1105 * @config: Configuration for register map 1106 * 1107 * The return value will be an ERR_PTR() on error or a valid pointer 1108 * to a struct regmap. The regmap will be automatically freed by the 1109 * device management code. 1110 */ 1111 #define devm_regmap_init_spmi_base(dev, config) \ 1112 __regmap_lockdep_wrapper(__devm_regmap_init_spmi_base, #config, \ 1113 dev, config) 1114 1115 /** 1116 * devm_regmap_init_spmi_ext() - Create managed regmap for Ext register space 1117 * 1118 * @dev: SPMI device that will be interacted with 1119 * @config: Configuration for register map 1120 * 1121 * The return value will be an ERR_PTR() on error or a valid pointer 1122 * to a struct regmap. The regmap will be automatically freed by the 1123 * device management code. 1124 */ 1125 #define devm_regmap_init_spmi_ext(dev, config) \ 1126 __regmap_lockdep_wrapper(__devm_regmap_init_spmi_ext, #config, \ 1127 dev, config) 1128 1129 /** 1130 * devm_regmap_init_w1() - Initialise managed register map 1131 * 1132 * @w1_dev: Device that will be interacted with 1133 * @config: Configuration for register map 1134 * 1135 * The return value will be an ERR_PTR() on error or a valid pointer 1136 * to a struct regmap. The regmap will be automatically freed by the 1137 * device management code. 1138 */ 1139 #define devm_regmap_init_w1(w1_dev, config) \ 1140 __regmap_lockdep_wrapper(__devm_regmap_init_w1, #config, \ 1141 w1_dev, config) 1142 /** 1143 * devm_regmap_init_mmio_clk() - Initialise managed register map with clock 1144 * 1145 * @dev: Device that will be interacted with 1146 * @clk_id: register clock consumer ID 1147 * @regs: Pointer to memory-mapped IO region 1148 * @config: Configuration for register map 1149 * 1150 * The return value will be an ERR_PTR() on error or a valid pointer 1151 * to a struct regmap. The regmap will be automatically freed by the 1152 * device management code. Implies 'fast_io'. 1153 */ 1154 #define devm_regmap_init_mmio_clk(dev, clk_id, regs, config) \ 1155 __regmap_lockdep_wrapper(__devm_regmap_init_mmio_clk, #config, \ 1156 dev, clk_id, regs, config) 1157 1158 /** 1159 * devm_regmap_init_mmio() - Initialise managed register map 1160 * 1161 * @dev: Device that will be interacted with 1162 * @regs: Pointer to memory-mapped IO region 1163 * @config: Configuration for register map 1164 * 1165 * The return value will be an ERR_PTR() on error or a valid pointer 1166 * to a struct regmap. The regmap will be automatically freed by the 1167 * device management code. Implies 'fast_io'. 1168 */ 1169 #define devm_regmap_init_mmio(dev, regs, config) \ 1170 devm_regmap_init_mmio_clk(dev, NULL, regs, config) 1171 1172 /** 1173 * devm_regmap_init_ac97() - Initialise AC'97 register map 1174 * 1175 * @ac97: Device that will be interacted with 1176 * @config: Configuration for register map 1177 * 1178 * The return value will be an ERR_PTR() on error or a valid pointer 1179 * to a struct regmap. The regmap will be automatically freed by the 1180 * device management code. 1181 */ 1182 #define devm_regmap_init_ac97(ac97, config) \ 1183 __regmap_lockdep_wrapper(__devm_regmap_init_ac97, #config, \ 1184 ac97, config) 1185 1186 /** 1187 * devm_regmap_init_sdw() - Initialise managed register map 1188 * 1189 * @sdw: Device that will be interacted with 1190 * @config: Configuration for register map 1191 * 1192 * The return value will be an ERR_PTR() on error or a valid pointer 1193 * to a struct regmap. The regmap will be automatically freed by the 1194 * device management code. 1195 */ 1196 #define devm_regmap_init_sdw(sdw, config) \ 1197 __regmap_lockdep_wrapper(__devm_regmap_init_sdw, #config, \ 1198 sdw, config) 1199 1200 /** 1201 * devm_regmap_init_sdw_mbq() - Initialise managed register map 1202 * 1203 * @sdw: Device that will be interacted with 1204 * @config: Configuration for register map 1205 * 1206 * The return value will be an ERR_PTR() on error or a valid pointer 1207 * to a struct regmap. The regmap will be automatically freed by the 1208 * device management code. 1209 */ 1210 #define devm_regmap_init_sdw_mbq(sdw, config) \ 1211 __regmap_lockdep_wrapper(__devm_regmap_init_sdw_mbq, #config, \ 1212 &sdw->dev, sdw, config, NULL) 1213 1214 /** 1215 * devm_regmap_init_sdw_mbq_cfg() - Initialise managed MBQ SDW register map with config 1216 * 1217 * @dev: Device that will be interacted with 1218 * @sdw: SoundWire Device that will be interacted with 1219 * @config: Configuration for register map 1220 * @mbq_config: Properties for the MBQ registers 1221 * 1222 * The return value will be an ERR_PTR() on error or a valid pointer 1223 * to a struct regmap. The regmap will be automatically freed by the 1224 * device management code. 1225 */ 1226 #define devm_regmap_init_sdw_mbq_cfg(dev, sdw, config, mbq_config) \ 1227 __regmap_lockdep_wrapper(__devm_regmap_init_sdw_mbq, \ 1228 #config, dev, sdw, config, mbq_config) 1229 1230 /** 1231 * devm_regmap_init_slimbus() - Initialise managed register map 1232 * 1233 * @slimbus: Device that will be interacted with 1234 * @config: Configuration for register map 1235 * 1236 * The return value will be an ERR_PTR() on error or a valid pointer 1237 * to a struct regmap. The regmap will be automatically freed by the 1238 * device management code. 1239 */ 1240 #define devm_regmap_init_slimbus(slimbus, config) \ 1241 __regmap_lockdep_wrapper(__devm_regmap_init_slimbus, #config, \ 1242 slimbus, config) 1243 1244 /** 1245 * devm_regmap_init_i3c() - Initialise managed register map 1246 * 1247 * @i3c: Device that will be interacted with 1248 * @config: Configuration for register map 1249 * 1250 * The return value will be an ERR_PTR() on error or a valid pointer 1251 * to a struct regmap. The regmap will be automatically freed by the 1252 * device management code. 1253 */ 1254 #define devm_regmap_init_i3c(i3c, config) \ 1255 __regmap_lockdep_wrapper(__devm_regmap_init_i3c, #config, \ 1256 i3c, config) 1257 1258 /** 1259 * devm_regmap_init_spi_avmm() - Initialize register map for Intel SPI Slave 1260 * to AVMM Bus Bridge 1261 * 1262 * @spi: Device that will be interacted with 1263 * @config: Configuration for register map 1264 * 1265 * The return value will be an ERR_PTR() on error or a valid pointer 1266 * to a struct regmap. The map will be automatically freed by the 1267 * device management code. 1268 */ 1269 #define devm_regmap_init_spi_avmm(spi, config) \ 1270 __regmap_lockdep_wrapper(__devm_regmap_init_spi_avmm, #config, \ 1271 spi, config) 1272 1273 /** 1274 * devm_regmap_init_fsi() - Initialise managed register map 1275 * 1276 * @fsi_dev: Device that will be interacted with 1277 * @config: Configuration for register map 1278 * 1279 * The return value will be an ERR_PTR() on error or a valid pointer 1280 * to a struct regmap. The regmap will be automatically freed by the 1281 * device management code. 1282 */ 1283 #define devm_regmap_init_fsi(fsi_dev, config) \ 1284 __regmap_lockdep_wrapper(__devm_regmap_init_fsi, #config, \ 1285 fsi_dev, config) 1286 1287 int regmap_mmio_attach_clk(struct regmap *map, struct clk *clk); 1288 void regmap_mmio_detach_clk(struct regmap *map); 1289 void regmap_exit(struct regmap *map); 1290 int regmap_reinit_cache(struct regmap *map, 1291 const struct regmap_config *config); 1292 struct regmap *dev_get_regmap(struct device *dev, const char *name); 1293 struct device *regmap_get_device(struct regmap *map); 1294 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val); 1295 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val); 1296 int regmap_raw_write(struct regmap *map, unsigned int reg, 1297 const void *val, size_t val_len); 1298 int regmap_noinc_write(struct regmap *map, unsigned int reg, 1299 const void *val, size_t val_len); 1300 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val, 1301 size_t val_count); 1302 int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs, 1303 int num_regs); 1304 int regmap_multi_reg_write_bypassed(struct regmap *map, 1305 const struct reg_sequence *regs, 1306 int num_regs); 1307 int regmap_raw_write_async(struct regmap *map, unsigned int reg, 1308 const void *val, size_t val_len); 1309 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val); 1310 int regmap_read_bypassed(struct regmap *map, unsigned int reg, unsigned int *val); 1311 int regmap_raw_read(struct regmap *map, unsigned int reg, 1312 void *val, size_t val_len); 1313 int regmap_noinc_read(struct regmap *map, unsigned int reg, 1314 void *val, size_t val_len); 1315 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val, 1316 size_t val_count); 1317 int regmap_multi_reg_read(struct regmap *map, const unsigned int *reg, void *val, 1318 size_t val_count); 1319 int regmap_update_bits_base(struct regmap *map, unsigned int reg, 1320 unsigned int mask, unsigned int val, 1321 bool *change, bool async, bool force); 1322 1323 static inline int regmap_update_bits(struct regmap *map, unsigned int reg, 1324 unsigned int mask, unsigned int val) 1325 { 1326 return regmap_update_bits_base(map, reg, mask, val, NULL, false, false); 1327 } 1328 1329 static inline int regmap_update_bits_async(struct regmap *map, unsigned int reg, 1330 unsigned int mask, unsigned int val) 1331 { 1332 return regmap_update_bits_base(map, reg, mask, val, NULL, true, false); 1333 } 1334 1335 static inline int regmap_update_bits_check(struct regmap *map, unsigned int reg, 1336 unsigned int mask, unsigned int val, 1337 bool *change) 1338 { 1339 return regmap_update_bits_base(map, reg, mask, val, 1340 change, false, false); 1341 } 1342 1343 static inline int 1344 regmap_update_bits_check_async(struct regmap *map, unsigned int reg, 1345 unsigned int mask, unsigned int val, 1346 bool *change) 1347 { 1348 return regmap_update_bits_base(map, reg, mask, val, 1349 change, true, false); 1350 } 1351 1352 static inline int regmap_write_bits(struct regmap *map, unsigned int reg, 1353 unsigned int mask, unsigned int val) 1354 { 1355 return regmap_update_bits_base(map, reg, mask, val, NULL, false, true); 1356 } 1357 1358 static inline int regmap_default_zero_cb(struct device *dev, 1359 unsigned int reg, 1360 unsigned int *def) 1361 { 1362 *def = 0; 1363 return 0; 1364 } 1365 1366 int regmap_get_val_bytes(struct regmap *map); 1367 int regmap_get_max_register(struct regmap *map); 1368 int regmap_get_reg_stride(struct regmap *map); 1369 bool regmap_might_sleep(struct regmap *map); 1370 int regmap_async_complete(struct regmap *map); 1371 bool regmap_can_raw_write(struct regmap *map); 1372 size_t regmap_get_raw_read_max(struct regmap *map); 1373 size_t regmap_get_raw_write_max(struct regmap *map); 1374 1375 void regcache_sort_defaults(struct reg_default *defaults, unsigned int ndefaults); 1376 int regcache_sync(struct regmap *map); 1377 int regcache_sync_region(struct regmap *map, unsigned int min, 1378 unsigned int max); 1379 int regcache_drop_region(struct regmap *map, unsigned int min, 1380 unsigned int max); 1381 void regcache_cache_only(struct regmap *map, bool enable); 1382 void regcache_cache_bypass(struct regmap *map, bool enable); 1383 void regcache_mark_dirty(struct regmap *map); 1384 bool regcache_reg_cached(struct regmap *map, unsigned int reg); 1385 1386 bool regmap_check_range_table(struct regmap *map, unsigned int reg, 1387 const struct regmap_access_table *table); 1388 1389 int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs, 1390 int num_regs); 1391 int regmap_parse_val(struct regmap *map, const void *buf, 1392 unsigned int *val); 1393 1394 static inline bool regmap_reg_in_range(unsigned int reg, 1395 const struct regmap_range *range) 1396 { 1397 return reg >= range->range_min && reg <= range->range_max; 1398 } 1399 1400 bool regmap_reg_in_ranges(unsigned int reg, 1401 const struct regmap_range *ranges, 1402 unsigned int nranges); 1403 1404 static inline int regmap_set_bits(struct regmap *map, 1405 unsigned int reg, unsigned int bits) 1406 { 1407 return regmap_update_bits_base(map, reg, bits, bits, 1408 NULL, false, false); 1409 } 1410 1411 static inline int regmap_clear_bits(struct regmap *map, 1412 unsigned int reg, unsigned int bits) 1413 { 1414 return regmap_update_bits_base(map, reg, bits, 0, NULL, false, false); 1415 } 1416 1417 static inline int regmap_assign_bits(struct regmap *map, unsigned int reg, 1418 unsigned int bits, bool value) 1419 { 1420 if (value) 1421 return regmap_set_bits(map, reg, bits); 1422 else 1423 return regmap_clear_bits(map, reg, bits); 1424 } 1425 1426 int regmap_test_bits(struct regmap *map, unsigned int reg, unsigned int bits); 1427 1428 /** 1429 * struct reg_field - Description of an register field 1430 * 1431 * @reg: Offset of the register within the regmap bank 1432 * @lsb: lsb of the register field. 1433 * @msb: msb of the register field. 1434 * @id_size: port size if it has some ports 1435 * @id_offset: address offset for each ports 1436 */ 1437 struct reg_field { 1438 unsigned int reg; 1439 unsigned int lsb; 1440 unsigned int msb; 1441 unsigned int id_size; 1442 unsigned int id_offset; 1443 }; 1444 1445 #define REG_FIELD(_reg, _lsb, _msb) { \ 1446 .reg = _reg, \ 1447 .lsb = _lsb, \ 1448 .msb = _msb, \ 1449 } 1450 1451 #define REG_FIELD_ID(_reg, _lsb, _msb, _size, _offset) { \ 1452 .reg = _reg, \ 1453 .lsb = _lsb, \ 1454 .msb = _msb, \ 1455 .id_size = _size, \ 1456 .id_offset = _offset, \ 1457 } 1458 1459 struct regmap_field *regmap_field_alloc(struct regmap *regmap, 1460 struct reg_field reg_field); 1461 void regmap_field_free(struct regmap_field *field); 1462 1463 struct regmap_field *devm_regmap_field_alloc(struct device *dev, 1464 struct regmap *regmap, struct reg_field reg_field); 1465 void devm_regmap_field_free(struct device *dev, struct regmap_field *field); 1466 1467 int regmap_field_bulk_alloc(struct regmap *regmap, 1468 struct regmap_field **rm_field, 1469 const struct reg_field *reg_field, 1470 int num_fields); 1471 void regmap_field_bulk_free(struct regmap_field *field); 1472 int devm_regmap_field_bulk_alloc(struct device *dev, struct regmap *regmap, 1473 struct regmap_field **field, 1474 const struct reg_field *reg_field, 1475 int num_fields); 1476 void devm_regmap_field_bulk_free(struct device *dev, 1477 struct regmap_field *field); 1478 1479 int regmap_field_read(struct regmap_field *field, unsigned int *val); 1480 int regmap_field_update_bits_base(struct regmap_field *field, 1481 unsigned int mask, unsigned int val, 1482 bool *change, bool async, bool force); 1483 int regmap_fields_read(struct regmap_field *field, unsigned int id, 1484 unsigned int *val); 1485 int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id, 1486 unsigned int mask, unsigned int val, 1487 bool *change, bool async, bool force); 1488 1489 static inline int regmap_field_write(struct regmap_field *field, 1490 unsigned int val) 1491 { 1492 return regmap_field_update_bits_base(field, ~0, val, 1493 NULL, false, false); 1494 } 1495 1496 static inline int regmap_field_force_write(struct regmap_field *field, 1497 unsigned int val) 1498 { 1499 return regmap_field_update_bits_base(field, ~0, val, NULL, false, true); 1500 } 1501 1502 static inline int regmap_field_update_bits(struct regmap_field *field, 1503 unsigned int mask, unsigned int val) 1504 { 1505 return regmap_field_update_bits_base(field, mask, val, 1506 NULL, false, false); 1507 } 1508 1509 static inline int regmap_field_set_bits(struct regmap_field *field, 1510 unsigned int bits) 1511 { 1512 return regmap_field_update_bits_base(field, bits, bits, NULL, false, 1513 false); 1514 } 1515 1516 static inline int regmap_field_clear_bits(struct regmap_field *field, 1517 unsigned int bits) 1518 { 1519 return regmap_field_update_bits_base(field, bits, 0, NULL, false, 1520 false); 1521 } 1522 1523 int regmap_field_test_bits(struct regmap_field *field, unsigned int bits); 1524 1525 static inline int 1526 regmap_field_force_update_bits(struct regmap_field *field, 1527 unsigned int mask, unsigned int val) 1528 { 1529 return regmap_field_update_bits_base(field, mask, val, 1530 NULL, false, true); 1531 } 1532 1533 static inline int regmap_fields_write(struct regmap_field *field, 1534 unsigned int id, unsigned int val) 1535 { 1536 return regmap_fields_update_bits_base(field, id, ~0, val, 1537 NULL, false, false); 1538 } 1539 1540 static inline int regmap_fields_force_write(struct regmap_field *field, 1541 unsigned int id, unsigned int val) 1542 { 1543 return regmap_fields_update_bits_base(field, id, ~0, val, 1544 NULL, false, true); 1545 } 1546 1547 static inline int 1548 regmap_fields_update_bits(struct regmap_field *field, unsigned int id, 1549 unsigned int mask, unsigned int val) 1550 { 1551 return regmap_fields_update_bits_base(field, id, mask, val, 1552 NULL, false, false); 1553 } 1554 1555 static inline int 1556 regmap_fields_force_update_bits(struct regmap_field *field, unsigned int id, 1557 unsigned int mask, unsigned int val) 1558 { 1559 return regmap_fields_update_bits_base(field, id, mask, val, 1560 NULL, false, true); 1561 } 1562 1563 /** 1564 * struct regmap_irq_type - IRQ type definitions. 1565 * 1566 * @type_reg_offset: Offset register for the irq type setting. 1567 * @type_rising_val: Register value to configure RISING type irq. 1568 * @type_falling_val: Register value to configure FALLING type irq. 1569 * @type_level_low_val: Register value to configure LEVEL_LOW type irq. 1570 * @type_level_high_val: Register value to configure LEVEL_HIGH type irq. 1571 * @types_supported: logical OR of IRQ_TYPE_* flags indicating supported types. 1572 */ 1573 struct regmap_irq_type { 1574 unsigned int type_reg_offset; 1575 unsigned int type_reg_mask; 1576 unsigned int type_rising_val; 1577 unsigned int type_falling_val; 1578 unsigned int type_level_low_val; 1579 unsigned int type_level_high_val; 1580 unsigned int types_supported; 1581 }; 1582 1583 /** 1584 * struct regmap_irq - Description of an IRQ for the generic regmap irq_chip. 1585 * 1586 * @reg_offset: Offset of the status/mask register within the bank 1587 * @mask: Mask used to flag/control the register. 1588 * @type: IRQ trigger type setting details if supported. 1589 */ 1590 struct regmap_irq { 1591 unsigned int reg_offset; 1592 unsigned int mask; 1593 struct regmap_irq_type type; 1594 }; 1595 1596 #define REGMAP_IRQ_REG(_irq, _off, _mask) \ 1597 [_irq] = { .reg_offset = (_off), .mask = (_mask) } 1598 1599 #define REGMAP_IRQ_REG_LINE(_id, _reg_bits) \ 1600 [_id] = { \ 1601 .mask = BIT((_id) % (_reg_bits)), \ 1602 .reg_offset = (_id) / (_reg_bits), \ 1603 } 1604 1605 #define REGMAP_IRQ_MAIN_REG_OFFSET(arr) \ 1606 { .num_regs = ARRAY_SIZE((arr)), .offset = &(arr)[0] } 1607 1608 struct regmap_irq_sub_irq_map { 1609 unsigned int num_regs; 1610 unsigned int *offset; 1611 }; 1612 1613 struct regmap_irq_chip_data; 1614 1615 /** 1616 * struct regmap_irq_chip - Description of a generic regmap irq_chip. 1617 * 1618 * @name: Descriptive name for IRQ controller. 1619 * @domain_suffix: Name suffix to be appended to end of IRQ domain name. Needed 1620 * when multiple regmap-IRQ controllers are created from same 1621 * device. 1622 * 1623 * @main_status: Base main status register address. For chips which have 1624 * interrupts arranged in separate sub-irq blocks with own IRQ 1625 * registers and which have a main IRQ registers indicating 1626 * sub-irq blocks with unhandled interrupts. For such chips fill 1627 * sub-irq register information in status_base, mask_base and 1628 * ack_base. 1629 * @num_main_status_bits: Should be given to chips where number of meaningfull 1630 * main status bits differs from num_regs. 1631 * @sub_reg_offsets: arrays of mappings from main register bits to sub irq 1632 * registers. First item in array describes the registers 1633 * for first main status bit. Second array for second bit etc. 1634 * Offset is given as sub register status offset to 1635 * status_base. Should contain num_regs arrays. 1636 * Can be provided for chips with more complex mapping than 1637 * 1.st bit to 1.st sub-reg, 2.nd bit to 2.nd sub-reg, ... 1638 * @num_main_regs: Number of 'main status' irq registers for chips which have 1639 * main_status set. 1640 * 1641 * @status_base: Base status register address. 1642 * @mask_base: Base mask register address. Mask bits are set to 1 when an 1643 * interrupt is masked, 0 when unmasked. 1644 * @unmask_base: Base unmask register address. Unmask bits are set to 1 when 1645 * an interrupt is unmasked and 0 when masked. 1646 * @ack_base: Base ack address. If zero then the chip is clear on read. 1647 * Using zero value is possible with @use_ack bit. 1648 * @wake_base: Base address for wake enables. If zero unsupported. 1649 * @config_base: Base address for IRQ type config regs. If null unsupported. 1650 * @irq_reg_stride: Stride to use for chips where registers are not contiguous. 1651 * @init_ack_masked: Ack all masked interrupts once during initalization. 1652 * @mask_unmask_non_inverted: Controls mask bit inversion for chips that set 1653 * both @mask_base and @unmask_base. If false, mask and unmask bits are 1654 * inverted (which is deprecated behavior); if true, bits will not be 1655 * inverted and the registers keep their normal behavior. Note that if 1656 * you use only one of @mask_base or @unmask_base, this flag has no 1657 * effect and is unnecessary. Any new drivers that set both @mask_base 1658 * and @unmask_base should set this to true to avoid relying on the 1659 * deprecated behavior. 1660 * @use_ack: Use @ack register even if it is zero. 1661 * @ack_invert: Inverted ack register: cleared bits for ack. 1662 * @clear_ack: Use this to set 1 and 0 or vice-versa to clear interrupts. 1663 * @status_invert: Inverted status register: cleared bits are active interrupts. 1664 * @status_is_level: Status register is actuall signal level: Xor status 1665 * register with previous value to get active interrupts. 1666 * @wake_invert: Inverted wake register: cleared bits are wake disabled. 1667 * @type_in_mask: Use the mask registers for controlling irq type. Use this if 1668 * the hardware provides separate bits for rising/falling edge 1669 * or low/high level interrupts and they should be combined into 1670 * a single logical interrupt. Use &struct regmap_irq_type data 1671 * to define the mask bit for each irq type. 1672 * @clear_on_unmask: For chips with interrupts cleared on read: read the status 1673 * registers before unmasking interrupts to clear any bits 1674 * set when they were masked. 1675 * @runtime_pm: Hold a runtime PM lock on the device when accessing it. 1676 * @no_status: No status register: all interrupts assumed generated by device. 1677 * 1678 * @num_regs: Number of registers in each control bank. 1679 * 1680 * @irqs: Descriptors for individual IRQs. Interrupt numbers are 1681 * assigned based on the index in the array of the interrupt. 1682 * @num_irqs: Number of descriptors. 1683 * @num_config_bases: Number of config base registers. 1684 * @num_config_regs: Number of config registers for each config base register. 1685 * 1686 * @handle_pre_irq: Driver specific callback to handle interrupt from device 1687 * before regmap_irq_handler process the interrupts. 1688 * @handle_post_irq: Driver specific callback to handle interrupt from device 1689 * after handling the interrupts in regmap_irq_handler(). 1690 * @handle_mask_sync: Callback used to handle IRQ mask syncs. The index will be 1691 * in the range [0, num_regs) 1692 * @set_type_config: Callback used for configuring irq types. 1693 * @get_irq_reg: Callback for mapping (base register, index) pairs to register 1694 * addresses. The base register will be one of @status_base, 1695 * @mask_base, etc., @main_status, or any of @config_base. 1696 * The index will be in the range [0, num_main_regs[ for the 1697 * main status base, [0, num_config_regs[ for any config 1698 * register base, and [0, num_regs[ for any other base. 1699 * If unspecified then regmap_irq_get_irq_reg_linear() is used. 1700 * @irq_drv_data: Driver specific IRQ data which is passed as parameter when 1701 * driver specific pre/post interrupt handler is called. 1702 * 1703 * This is not intended to handle every possible interrupt controller, but 1704 * it should handle a substantial proportion of those that are found in the 1705 * wild. 1706 */ 1707 struct regmap_irq_chip { 1708 const char *name; 1709 const char *domain_suffix; 1710 1711 unsigned int main_status; 1712 unsigned int num_main_status_bits; 1713 const struct regmap_irq_sub_irq_map *sub_reg_offsets; 1714 int num_main_regs; 1715 1716 unsigned int status_base; 1717 unsigned int mask_base; 1718 unsigned int unmask_base; 1719 unsigned int ack_base; 1720 unsigned int wake_base; 1721 const unsigned int *config_base; 1722 unsigned int irq_reg_stride; 1723 unsigned int init_ack_masked:1; 1724 unsigned int mask_unmask_non_inverted:1; 1725 unsigned int use_ack:1; 1726 unsigned int ack_invert:1; 1727 unsigned int clear_ack:1; 1728 unsigned int status_invert:1; 1729 unsigned int status_is_level:1; 1730 unsigned int wake_invert:1; 1731 unsigned int type_in_mask:1; 1732 unsigned int clear_on_unmask:1; 1733 unsigned int runtime_pm:1; 1734 unsigned int no_status:1; 1735 1736 int num_regs; 1737 1738 const struct regmap_irq *irqs; 1739 int num_irqs; 1740 1741 int num_config_bases; 1742 int num_config_regs; 1743 1744 int (*handle_pre_irq)(void *irq_drv_data); 1745 int (*handle_post_irq)(void *irq_drv_data); 1746 int (*handle_mask_sync)(int index, unsigned int mask_buf_def, 1747 unsigned int mask_buf, void *irq_drv_data); 1748 int (*set_type_config)(unsigned int **buf, unsigned int type, 1749 const struct regmap_irq *irq_data, int idx, 1750 void *irq_drv_data); 1751 unsigned int (*get_irq_reg)(struct regmap_irq_chip_data *data, 1752 unsigned int base, int index); 1753 void *irq_drv_data; 1754 }; 1755 1756 unsigned int regmap_irq_get_irq_reg_linear(struct regmap_irq_chip_data *data, 1757 unsigned int base, int index); 1758 int regmap_irq_set_type_config_simple(unsigned int **buf, unsigned int type, 1759 const struct regmap_irq *irq_data, 1760 int idx, void *irq_drv_data); 1761 1762 int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags, 1763 int irq_base, const struct regmap_irq_chip *chip, 1764 struct regmap_irq_chip_data **data); 1765 int regmap_add_irq_chip_fwnode(struct fwnode_handle *fwnode, 1766 struct regmap *map, int irq, 1767 int irq_flags, int irq_base, 1768 const struct regmap_irq_chip *chip, 1769 struct regmap_irq_chip_data **data); 1770 void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *data); 1771 1772 int devm_regmap_add_irq_chip(struct device *dev, struct regmap *map, int irq, 1773 int irq_flags, int irq_base, 1774 const struct regmap_irq_chip *chip, 1775 struct regmap_irq_chip_data **data); 1776 int devm_regmap_add_irq_chip_fwnode(struct device *dev, 1777 struct fwnode_handle *fwnode, 1778 struct regmap *map, int irq, 1779 int irq_flags, int irq_base, 1780 const struct regmap_irq_chip *chip, 1781 struct regmap_irq_chip_data **data); 1782 void devm_regmap_del_irq_chip(struct device *dev, int irq, 1783 struct regmap_irq_chip_data *data); 1784 1785 int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data); 1786 int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq); 1787 struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data); 1788 1789 #else 1790 1791 /* 1792 * These stubs should only ever be called by generic code which has 1793 * regmap based facilities, if they ever get called at runtime 1794 * something is going wrong and something probably needs to select 1795 * REGMAP. 1796 */ 1797 1798 static inline int regmap_write(struct regmap *map, unsigned int reg, 1799 unsigned int val) 1800 { 1801 WARN_ONCE(1, "regmap API is disabled"); 1802 return -EINVAL; 1803 } 1804 1805 static inline int regmap_write_async(struct regmap *map, unsigned int reg, 1806 unsigned int val) 1807 { 1808 WARN_ONCE(1, "regmap API is disabled"); 1809 return -EINVAL; 1810 } 1811 1812 static inline int regmap_raw_write(struct regmap *map, unsigned int reg, 1813 const void *val, size_t val_len) 1814 { 1815 WARN_ONCE(1, "regmap API is disabled"); 1816 return -EINVAL; 1817 } 1818 1819 static inline int regmap_raw_write_async(struct regmap *map, unsigned int reg, 1820 const void *val, size_t val_len) 1821 { 1822 WARN_ONCE(1, "regmap API is disabled"); 1823 return -EINVAL; 1824 } 1825 1826 static inline int regmap_noinc_write(struct regmap *map, unsigned int reg, 1827 const void *val, size_t val_len) 1828 { 1829 WARN_ONCE(1, "regmap API is disabled"); 1830 return -EINVAL; 1831 } 1832 1833 static inline int regmap_bulk_write(struct regmap *map, unsigned int reg, 1834 const void *val, size_t val_count) 1835 { 1836 WARN_ONCE(1, "regmap API is disabled"); 1837 return -EINVAL; 1838 } 1839 1840 static inline int regmap_read(struct regmap *map, unsigned int reg, 1841 unsigned int *val) 1842 { 1843 WARN_ONCE(1, "regmap API is disabled"); 1844 return -EINVAL; 1845 } 1846 1847 static inline int regmap_read_bypassed(struct regmap *map, unsigned int reg, 1848 unsigned int *val) 1849 { 1850 WARN_ONCE(1, "regmap API is disabled"); 1851 return -EINVAL; 1852 } 1853 1854 static inline int regmap_raw_read(struct regmap *map, unsigned int reg, 1855 void *val, size_t val_len) 1856 { 1857 WARN_ONCE(1, "regmap API is disabled"); 1858 return -EINVAL; 1859 } 1860 1861 static inline int regmap_noinc_read(struct regmap *map, unsigned int reg, 1862 void *val, size_t val_len) 1863 { 1864 WARN_ONCE(1, "regmap API is disabled"); 1865 return -EINVAL; 1866 } 1867 1868 static inline int regmap_bulk_read(struct regmap *map, unsigned int reg, 1869 void *val, size_t val_count) 1870 { 1871 WARN_ONCE(1, "regmap API is disabled"); 1872 return -EINVAL; 1873 } 1874 1875 static inline int regmap_update_bits_base(struct regmap *map, unsigned int reg, 1876 unsigned int mask, unsigned int val, 1877 bool *change, bool async, bool force) 1878 { 1879 WARN_ONCE(1, "regmap API is disabled"); 1880 return -EINVAL; 1881 } 1882 1883 static inline int regmap_set_bits(struct regmap *map, 1884 unsigned int reg, unsigned int bits) 1885 { 1886 WARN_ONCE(1, "regmap API is disabled"); 1887 return -EINVAL; 1888 } 1889 1890 static inline int regmap_clear_bits(struct regmap *map, 1891 unsigned int reg, unsigned int bits) 1892 { 1893 WARN_ONCE(1, "regmap API is disabled"); 1894 return -EINVAL; 1895 } 1896 1897 static inline int regmap_assign_bits(struct regmap *map, unsigned int reg, 1898 unsigned int bits, bool value) 1899 { 1900 WARN_ONCE(1, "regmap API is disabled"); 1901 return -EINVAL; 1902 } 1903 1904 static inline int regmap_test_bits(struct regmap *map, 1905 unsigned int reg, unsigned int bits) 1906 { 1907 WARN_ONCE(1, "regmap API is disabled"); 1908 return -EINVAL; 1909 } 1910 1911 static inline int regmap_field_update_bits_base(struct regmap_field *field, 1912 unsigned int mask, unsigned int val, 1913 bool *change, bool async, bool force) 1914 { 1915 WARN_ONCE(1, "regmap API is disabled"); 1916 return -EINVAL; 1917 } 1918 1919 static inline int regmap_fields_update_bits_base(struct regmap_field *field, 1920 unsigned int id, 1921 unsigned int mask, unsigned int val, 1922 bool *change, bool async, bool force) 1923 { 1924 WARN_ONCE(1, "regmap API is disabled"); 1925 return -EINVAL; 1926 } 1927 1928 static inline int regmap_update_bits(struct regmap *map, unsigned int reg, 1929 unsigned int mask, unsigned int val) 1930 { 1931 WARN_ONCE(1, "regmap API is disabled"); 1932 return -EINVAL; 1933 } 1934 1935 static inline int regmap_update_bits_async(struct regmap *map, unsigned int reg, 1936 unsigned int mask, unsigned int val) 1937 { 1938 WARN_ONCE(1, "regmap API is disabled"); 1939 return -EINVAL; 1940 } 1941 1942 static inline int regmap_update_bits_check(struct regmap *map, unsigned int reg, 1943 unsigned int mask, unsigned int val, 1944 bool *change) 1945 { 1946 WARN_ONCE(1, "regmap API is disabled"); 1947 return -EINVAL; 1948 } 1949 1950 static inline int 1951 regmap_update_bits_check_async(struct regmap *map, unsigned int reg, 1952 unsigned int mask, unsigned int val, 1953 bool *change) 1954 { 1955 WARN_ONCE(1, "regmap API is disabled"); 1956 return -EINVAL; 1957 } 1958 1959 static inline int regmap_write_bits(struct regmap *map, unsigned int reg, 1960 unsigned int mask, unsigned int val) 1961 { 1962 WARN_ONCE(1, "regmap API is disabled"); 1963 return -EINVAL; 1964 } 1965 1966 static inline int regmap_field_write(struct regmap_field *field, 1967 unsigned int val) 1968 { 1969 WARN_ONCE(1, "regmap API is disabled"); 1970 return -EINVAL; 1971 } 1972 1973 static inline int regmap_field_force_write(struct regmap_field *field, 1974 unsigned int val) 1975 { 1976 WARN_ONCE(1, "regmap API is disabled"); 1977 return -EINVAL; 1978 } 1979 1980 static inline int regmap_field_update_bits(struct regmap_field *field, 1981 unsigned int mask, unsigned int val) 1982 { 1983 WARN_ONCE(1, "regmap API is disabled"); 1984 return -EINVAL; 1985 } 1986 1987 static inline int 1988 regmap_field_force_update_bits(struct regmap_field *field, 1989 unsigned int mask, unsigned int val) 1990 { 1991 WARN_ONCE(1, "regmap API is disabled"); 1992 return -EINVAL; 1993 } 1994 1995 static inline int regmap_field_set_bits(struct regmap_field *field, 1996 unsigned int bits) 1997 { 1998 WARN_ONCE(1, "regmap API is disabled"); 1999 return -EINVAL; 2000 } 2001 2002 static inline int regmap_field_clear_bits(struct regmap_field *field, 2003 unsigned int bits) 2004 { 2005 WARN_ONCE(1, "regmap API is disabled"); 2006 return -EINVAL; 2007 } 2008 2009 static inline int regmap_field_test_bits(struct regmap_field *field, 2010 unsigned int bits) 2011 { 2012 WARN_ONCE(1, "regmap API is disabled"); 2013 return -EINVAL; 2014 } 2015 2016 static inline int regmap_fields_write(struct regmap_field *field, 2017 unsigned int id, unsigned int val) 2018 { 2019 WARN_ONCE(1, "regmap API is disabled"); 2020 return -EINVAL; 2021 } 2022 2023 static inline int regmap_fields_force_write(struct regmap_field *field, 2024 unsigned int id, unsigned int val) 2025 { 2026 WARN_ONCE(1, "regmap API is disabled"); 2027 return -EINVAL; 2028 } 2029 2030 static inline int 2031 regmap_fields_update_bits(struct regmap_field *field, unsigned int id, 2032 unsigned int mask, unsigned int val) 2033 { 2034 WARN_ONCE(1, "regmap API is disabled"); 2035 return -EINVAL; 2036 } 2037 2038 static inline int 2039 regmap_fields_force_update_bits(struct regmap_field *field, unsigned int id, 2040 unsigned int mask, unsigned int val) 2041 { 2042 WARN_ONCE(1, "regmap API is disabled"); 2043 return -EINVAL; 2044 } 2045 2046 static inline int regmap_get_val_bytes(struct regmap *map) 2047 { 2048 WARN_ONCE(1, "regmap API is disabled"); 2049 return -EINVAL; 2050 } 2051 2052 static inline int regmap_get_max_register(struct regmap *map) 2053 { 2054 WARN_ONCE(1, "regmap API is disabled"); 2055 return -EINVAL; 2056 } 2057 2058 static inline int regmap_get_reg_stride(struct regmap *map) 2059 { 2060 WARN_ONCE(1, "regmap API is disabled"); 2061 return -EINVAL; 2062 } 2063 2064 static inline bool regmap_might_sleep(struct regmap *map) 2065 { 2066 WARN_ONCE(1, "regmap API is disabled"); 2067 return true; 2068 } 2069 2070 static inline void regcache_sort_defaults(struct reg_default *defaults, 2071 unsigned int ndefaults) 2072 { 2073 WARN_ONCE(1, "regmap API is disabled"); 2074 } 2075 2076 static inline int regcache_sync(struct regmap *map) 2077 { 2078 WARN_ONCE(1, "regmap API is disabled"); 2079 return -EINVAL; 2080 } 2081 2082 static inline int regcache_sync_region(struct regmap *map, unsigned int min, 2083 unsigned int max) 2084 { 2085 WARN_ONCE(1, "regmap API is disabled"); 2086 return -EINVAL; 2087 } 2088 2089 static inline int regcache_drop_region(struct regmap *map, unsigned int min, 2090 unsigned int max) 2091 { 2092 WARN_ONCE(1, "regmap API is disabled"); 2093 return -EINVAL; 2094 } 2095 2096 static inline void regcache_cache_only(struct regmap *map, bool enable) 2097 { 2098 WARN_ONCE(1, "regmap API is disabled"); 2099 } 2100 2101 static inline void regcache_cache_bypass(struct regmap *map, bool enable) 2102 { 2103 WARN_ONCE(1, "regmap API is disabled"); 2104 } 2105 2106 static inline void regcache_mark_dirty(struct regmap *map) 2107 { 2108 WARN_ONCE(1, "regmap API is disabled"); 2109 } 2110 2111 static inline void regmap_async_complete(struct regmap *map) 2112 { 2113 WARN_ONCE(1, "regmap API is disabled"); 2114 } 2115 2116 static inline int regmap_register_patch(struct regmap *map, 2117 const struct reg_sequence *regs, 2118 int num_regs) 2119 { 2120 WARN_ONCE(1, "regmap API is disabled"); 2121 return -EINVAL; 2122 } 2123 2124 static inline int regmap_parse_val(struct regmap *map, const void *buf, 2125 unsigned int *val) 2126 { 2127 WARN_ONCE(1, "regmap API is disabled"); 2128 return -EINVAL; 2129 } 2130 2131 static inline struct regmap *dev_get_regmap(struct device *dev, 2132 const char *name) 2133 { 2134 return NULL; 2135 } 2136 2137 static inline struct device *regmap_get_device(struct regmap *map) 2138 { 2139 WARN_ONCE(1, "regmap API is disabled"); 2140 return NULL; 2141 } 2142 2143 #endif 2144 2145 #endif 2146