1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Add configfs and memory store: Kyungchan Koh <kkc6196@fb.com> and
4 * Shaohua Li <shli@fb.com>
5 */
6 #include <linux/module.h>
7
8 #include <linux/moduleparam.h>
9 #include <linux/sched.h>
10 #include <linux/fs.h>
11 #include <linux/init.h>
12 #include "null_blk.h"
13
14 #undef pr_fmt
15 #define pr_fmt(fmt) "null_blk: " fmt
16
17 #define FREE_BATCH 16
18
19 #define TICKS_PER_SEC 50ULL
20 #define TIMER_INTERVAL (NSEC_PER_SEC / TICKS_PER_SEC)
21
22 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
23 static DECLARE_FAULT_ATTR(null_timeout_attr);
24 static DECLARE_FAULT_ATTR(null_requeue_attr);
25 static DECLARE_FAULT_ATTR(null_init_hctx_attr);
26 #endif
27
mb_per_tick(int mbps)28 static inline u64 mb_per_tick(int mbps)
29 {
30 return (1 << 20) / TICKS_PER_SEC * ((u64) mbps);
31 }
32
33 /*
34 * Status flags for nullb_device.
35 *
36 * CONFIGURED: Device has been configured and turned on. Cannot reconfigure.
37 * UP: Device is currently on and visible in userspace.
38 * THROTTLED: Device is being throttled.
39 * CACHE: Device is using a write-back cache.
40 */
41 enum nullb_device_flags {
42 NULLB_DEV_FL_CONFIGURED = 0,
43 NULLB_DEV_FL_UP = 1,
44 NULLB_DEV_FL_THROTTLED = 2,
45 NULLB_DEV_FL_CACHE = 3,
46 };
47
48 #define MAP_SZ ((PAGE_SIZE >> SECTOR_SHIFT) + 2)
49 /*
50 * nullb_page is a page in memory for nullb devices.
51 *
52 * @page: The page holding the data.
53 * @bitmap: The bitmap represents which sector in the page has data.
54 * Each bit represents one block size. For example, sector 8
55 * will use the 7th bit
56 * The highest 2 bits of bitmap are for special purpose. LOCK means the cache
57 * page is being flushing to storage. FREE means the cache page is freed and
58 * should be skipped from flushing to storage. Please see
59 * null_make_cache_space
60 */
61 struct nullb_page {
62 struct page *page;
63 DECLARE_BITMAP(bitmap, MAP_SZ);
64 };
65 #define NULLB_PAGE_LOCK (MAP_SZ - 1)
66 #define NULLB_PAGE_FREE (MAP_SZ - 2)
67
68 static LIST_HEAD(nullb_list);
69 static struct mutex lock;
70 static int null_major;
71 static DEFINE_IDA(nullb_indexes);
72 static struct blk_mq_tag_set tag_set;
73
74 enum {
75 NULL_IRQ_NONE = 0,
76 NULL_IRQ_SOFTIRQ = 1,
77 NULL_IRQ_TIMER = 2,
78 };
79
80 static bool g_virt_boundary;
81 module_param_named(virt_boundary, g_virt_boundary, bool, 0444);
82 MODULE_PARM_DESC(virt_boundary, "Require a virtual boundary for the device. Default: False");
83
84 static int g_no_sched;
85 module_param_named(no_sched, g_no_sched, int, 0444);
86 MODULE_PARM_DESC(no_sched, "No io scheduler");
87
88 static int g_submit_queues = 1;
89 module_param_named(submit_queues, g_submit_queues, int, 0444);
90 MODULE_PARM_DESC(submit_queues, "Number of submission queues");
91
92 static int g_poll_queues = 1;
93 module_param_named(poll_queues, g_poll_queues, int, 0444);
94 MODULE_PARM_DESC(poll_queues, "Number of IOPOLL submission queues");
95
96 static int g_home_node = NUMA_NO_NODE;
97 module_param_named(home_node, g_home_node, int, 0444);
98 MODULE_PARM_DESC(home_node, "Home node for the device");
99
100 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
101 /*
102 * For more details about fault injection, please refer to
103 * Documentation/fault-injection/fault-injection.rst.
104 */
105 static char g_timeout_str[80];
106 module_param_string(timeout, g_timeout_str, sizeof(g_timeout_str), 0444);
107 MODULE_PARM_DESC(timeout, "Fault injection. timeout=<interval>,<probability>,<space>,<times>");
108
109 static char g_requeue_str[80];
110 module_param_string(requeue, g_requeue_str, sizeof(g_requeue_str), 0444);
111 MODULE_PARM_DESC(requeue, "Fault injection. requeue=<interval>,<probability>,<space>,<times>");
112
113 static char g_init_hctx_str[80];
114 module_param_string(init_hctx, g_init_hctx_str, sizeof(g_init_hctx_str), 0444);
115 MODULE_PARM_DESC(init_hctx, "Fault injection to fail hctx init. init_hctx=<interval>,<probability>,<space>,<times>");
116 #endif
117
118 /*
119 * Historic queue modes.
120 *
121 * These days nothing but NULL_Q_MQ is actually supported, but we keep it the
122 * enum for error reporting.
123 */
124 enum {
125 NULL_Q_BIO = 0,
126 NULL_Q_RQ = 1,
127 NULL_Q_MQ = 2,
128 };
129
130 static int g_queue_mode = NULL_Q_MQ;
131
null_param_store_val(const char * str,int * val,int min,int max)132 static int null_param_store_val(const char *str, int *val, int min, int max)
133 {
134 int ret, new_val;
135
136 ret = kstrtoint(str, 10, &new_val);
137 if (ret)
138 return -EINVAL;
139
140 if (new_val < min || new_val > max)
141 return -EINVAL;
142
143 *val = new_val;
144 return 0;
145 }
146
null_set_queue_mode(const char * str,const struct kernel_param * kp)147 static int null_set_queue_mode(const char *str, const struct kernel_param *kp)
148 {
149 return null_param_store_val(str, &g_queue_mode, NULL_Q_BIO, NULL_Q_MQ);
150 }
151
152 static const struct kernel_param_ops null_queue_mode_param_ops = {
153 .set = null_set_queue_mode,
154 .get = param_get_int,
155 };
156
157 device_param_cb(queue_mode, &null_queue_mode_param_ops, &g_queue_mode, 0444);
158 MODULE_PARM_DESC(queue_mode, "Block interface to use (0=bio,1=rq,2=multiqueue)");
159
160 static int g_gb = 250;
161 module_param_named(gb, g_gb, int, 0444);
162 MODULE_PARM_DESC(gb, "Size in GB");
163
164 static int g_bs = 512;
165 module_param_named(bs, g_bs, int, 0444);
166 MODULE_PARM_DESC(bs, "Block size (in bytes)");
167
168 static int g_max_sectors;
169 module_param_named(max_sectors, g_max_sectors, int, 0444);
170 MODULE_PARM_DESC(max_sectors, "Maximum size of a command (in 512B sectors)");
171
172 static unsigned int nr_devices = 1;
173 module_param(nr_devices, uint, 0444);
174 MODULE_PARM_DESC(nr_devices, "Number of devices to register");
175
176 static bool g_blocking;
177 module_param_named(blocking, g_blocking, bool, 0444);
178 MODULE_PARM_DESC(blocking, "Register as a blocking blk-mq driver device");
179
180 static bool g_shared_tags;
181 module_param_named(shared_tags, g_shared_tags, bool, 0444);
182 MODULE_PARM_DESC(shared_tags, "Share tag set between devices for blk-mq");
183
184 static bool g_shared_tag_bitmap;
185 module_param_named(shared_tag_bitmap, g_shared_tag_bitmap, bool, 0444);
186 MODULE_PARM_DESC(shared_tag_bitmap, "Use shared tag bitmap for all submission queues for blk-mq");
187
188 static int g_irqmode = NULL_IRQ_SOFTIRQ;
189
null_set_irqmode(const char * str,const struct kernel_param * kp)190 static int null_set_irqmode(const char *str, const struct kernel_param *kp)
191 {
192 return null_param_store_val(str, &g_irqmode, NULL_IRQ_NONE,
193 NULL_IRQ_TIMER);
194 }
195
196 static const struct kernel_param_ops null_irqmode_param_ops = {
197 .set = null_set_irqmode,
198 .get = param_get_int,
199 };
200
201 device_param_cb(irqmode, &null_irqmode_param_ops, &g_irqmode, 0444);
202 MODULE_PARM_DESC(irqmode, "IRQ completion handler. 0-none, 1-softirq, 2-timer");
203
204 static unsigned long g_completion_nsec = 10000;
205 module_param_named(completion_nsec, g_completion_nsec, ulong, 0444);
206 MODULE_PARM_DESC(completion_nsec, "Time in ns to complete a request in hardware. Default: 10,000ns");
207
208 static int g_hw_queue_depth = 64;
209 module_param_named(hw_queue_depth, g_hw_queue_depth, int, 0444);
210 MODULE_PARM_DESC(hw_queue_depth, "Queue depth for each hardware queue. Default: 64");
211
212 static bool g_use_per_node_hctx;
213 module_param_named(use_per_node_hctx, g_use_per_node_hctx, bool, 0444);
214 MODULE_PARM_DESC(use_per_node_hctx, "Use per-node allocation for hardware context queues. Default: false");
215
216 static bool g_memory_backed;
217 module_param_named(memory_backed, g_memory_backed, bool, 0444);
218 MODULE_PARM_DESC(memory_backed, "Create a memory-backed block device. Default: false");
219
220 static bool g_discard;
221 module_param_named(discard, g_discard, bool, 0444);
222 MODULE_PARM_DESC(discard, "Support discard operations (requires memory-backed null_blk device). Default: false");
223
224 static unsigned long g_cache_size;
225 module_param_named(cache_size, g_cache_size, ulong, 0444);
226 MODULE_PARM_DESC(cache_size, "Cache size in MiB for memory-backed device. Default: 0 (none)");
227
228 static bool g_fua = true;
229 module_param_named(fua, g_fua, bool, 0444);
230 MODULE_PARM_DESC(fua, "Enable/disable FUA support when cache_size is used. Default: true");
231
232 static unsigned int g_mbps;
233 module_param_named(mbps, g_mbps, uint, 0444);
234 MODULE_PARM_DESC(mbps, "Limit maximum bandwidth (in MiB/s). Default: 0 (no limit)");
235
236 static bool g_zoned;
237 module_param_named(zoned, g_zoned, bool, S_IRUGO);
238 MODULE_PARM_DESC(zoned, "Make device as a host-managed zoned block device. Default: false");
239
240 static unsigned long g_zone_size = 256;
241 module_param_named(zone_size, g_zone_size, ulong, S_IRUGO);
242 MODULE_PARM_DESC(zone_size, "Zone size in MB when block device is zoned. Must be power-of-two: Default: 256");
243
244 static unsigned long g_zone_capacity;
245 module_param_named(zone_capacity, g_zone_capacity, ulong, 0444);
246 MODULE_PARM_DESC(zone_capacity, "Zone capacity in MB when block device is zoned. Can be less than or equal to zone size. Default: Zone size");
247
248 static unsigned int g_zone_nr_conv;
249 module_param_named(zone_nr_conv, g_zone_nr_conv, uint, 0444);
250 MODULE_PARM_DESC(zone_nr_conv, "Number of conventional zones when block device is zoned. Default: 0");
251
252 static unsigned int g_zone_max_open;
253 module_param_named(zone_max_open, g_zone_max_open, uint, 0444);
254 MODULE_PARM_DESC(zone_max_open, "Maximum number of open zones when block device is zoned. Default: 0 (no limit)");
255
256 static unsigned int g_zone_max_active;
257 module_param_named(zone_max_active, g_zone_max_active, uint, 0444);
258 MODULE_PARM_DESC(zone_max_active, "Maximum number of active zones when block device is zoned. Default: 0 (no limit)");
259
260 static int g_zone_append_max_sectors = INT_MAX;
261 module_param_named(zone_append_max_sectors, g_zone_append_max_sectors, int, 0444);
262 MODULE_PARM_DESC(zone_append_max_sectors,
263 "Maximum size of a zone append command (in 512B sectors). Specify 0 for zone append emulation");
264
265 static bool g_zone_full;
266 module_param_named(zone_full, g_zone_full, bool, S_IRUGO);
267 MODULE_PARM_DESC(zone_full, "Initialize the sequential write required zones of a zoned device to be full. Default: false");
268
269 static bool g_rotational;
270 module_param_named(rotational, g_rotational, bool, S_IRUGO);
271 MODULE_PARM_DESC(rotational, "Set the rotational feature for the device. Default: false");
272
273 static struct nullb_device *null_alloc_dev(void);
274 static void null_free_dev(struct nullb_device *dev);
275 static void null_del_dev(struct nullb *nullb);
276 static int null_add_dev(struct nullb_device *dev);
277 static struct nullb *null_find_dev_by_name(const char *name);
278 static void null_free_device_storage(struct nullb_device *dev, bool is_cache);
279
to_nullb_device(struct config_item * item)280 static inline struct nullb_device *to_nullb_device(struct config_item *item)
281 {
282 return item ? container_of(to_config_group(item), struct nullb_device, group) : NULL;
283 }
284
nullb_device_uint_attr_show(unsigned int val,char * page)285 static inline ssize_t nullb_device_uint_attr_show(unsigned int val, char *page)
286 {
287 return snprintf(page, PAGE_SIZE, "%u\n", val);
288 }
289
nullb_device_ulong_attr_show(unsigned long val,char * page)290 static inline ssize_t nullb_device_ulong_attr_show(unsigned long val,
291 char *page)
292 {
293 return snprintf(page, PAGE_SIZE, "%lu\n", val);
294 }
295
nullb_device_bool_attr_show(bool val,char * page)296 static inline ssize_t nullb_device_bool_attr_show(bool val, char *page)
297 {
298 return snprintf(page, PAGE_SIZE, "%u\n", val);
299 }
300
nullb_device_uint_attr_store(unsigned int * val,const char * page,size_t count)301 static ssize_t nullb_device_uint_attr_store(unsigned int *val,
302 const char *page, size_t count)
303 {
304 unsigned int tmp;
305 int result;
306
307 result = kstrtouint(page, 0, &tmp);
308 if (result < 0)
309 return result;
310
311 *val = tmp;
312 return count;
313 }
314
nullb_device_ulong_attr_store(unsigned long * val,const char * page,size_t count)315 static ssize_t nullb_device_ulong_attr_store(unsigned long *val,
316 const char *page, size_t count)
317 {
318 int result;
319 unsigned long tmp;
320
321 result = kstrtoul(page, 0, &tmp);
322 if (result < 0)
323 return result;
324
325 *val = tmp;
326 return count;
327 }
328
nullb_device_bool_attr_store(bool * val,const char * page,size_t count)329 static ssize_t nullb_device_bool_attr_store(bool *val, const char *page,
330 size_t count)
331 {
332 bool tmp;
333 int result;
334
335 result = kstrtobool(page, &tmp);
336 if (result < 0)
337 return result;
338
339 *val = tmp;
340 return count;
341 }
342
343 /* The following macro should only be used with TYPE = {uint, ulong, bool}. */
344 #define NULLB_DEVICE_ATTR(NAME, TYPE, APPLY) \
345 static ssize_t \
346 nullb_device_##NAME##_show(struct config_item *item, char *page) \
347 { \
348 return nullb_device_##TYPE##_attr_show( \
349 to_nullb_device(item)->NAME, page); \
350 } \
351 static ssize_t \
352 nullb_device_##NAME##_store(struct config_item *item, const char *page, \
353 size_t count) \
354 { \
355 int (*apply_fn)(struct nullb_device *dev, TYPE new_value) = APPLY;\
356 struct nullb_device *dev = to_nullb_device(item); \
357 TYPE new_value = 0; \
358 int ret; \
359 \
360 ret = nullb_device_##TYPE##_attr_store(&new_value, page, count);\
361 if (ret < 0) \
362 return ret; \
363 if (apply_fn) \
364 ret = apply_fn(dev, new_value); \
365 else if (test_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags)) \
366 ret = -EBUSY; \
367 if (ret < 0) \
368 return ret; \
369 dev->NAME = new_value; \
370 return count; \
371 } \
372 CONFIGFS_ATTR(nullb_device_, NAME);
373
nullb_update_nr_hw_queues(struct nullb_device * dev,unsigned int submit_queues,unsigned int poll_queues)374 static int nullb_update_nr_hw_queues(struct nullb_device *dev,
375 unsigned int submit_queues,
376 unsigned int poll_queues)
377
378 {
379 struct blk_mq_tag_set *set;
380 int ret, nr_hw_queues;
381
382 if (!dev->nullb)
383 return 0;
384
385 /*
386 * Make sure at least one submit queue exists.
387 */
388 if (!submit_queues)
389 return -EINVAL;
390
391 /*
392 * Make sure that null_init_hctx() does not access nullb->queues[] past
393 * the end of that array.
394 */
395 if (submit_queues > nr_cpu_ids || poll_queues > g_poll_queues)
396 return -EINVAL;
397
398 /*
399 * Keep previous and new queue numbers in nullb_device for reference in
400 * the call back function null_map_queues().
401 */
402 dev->prev_submit_queues = dev->submit_queues;
403 dev->prev_poll_queues = dev->poll_queues;
404 dev->submit_queues = submit_queues;
405 dev->poll_queues = poll_queues;
406
407 set = dev->nullb->tag_set;
408 nr_hw_queues = submit_queues + poll_queues;
409 blk_mq_update_nr_hw_queues(set, nr_hw_queues);
410 ret = set->nr_hw_queues == nr_hw_queues ? 0 : -ENOMEM;
411
412 if (ret) {
413 /* on error, revert the queue numbers */
414 dev->submit_queues = dev->prev_submit_queues;
415 dev->poll_queues = dev->prev_poll_queues;
416 }
417
418 return ret;
419 }
420
nullb_apply_submit_queues(struct nullb_device * dev,unsigned int submit_queues)421 static int nullb_apply_submit_queues(struct nullb_device *dev,
422 unsigned int submit_queues)
423 {
424 int ret;
425
426 mutex_lock(&lock);
427 ret = nullb_update_nr_hw_queues(dev, submit_queues, dev->poll_queues);
428 mutex_unlock(&lock);
429
430 return ret;
431 }
432
nullb_apply_poll_queues(struct nullb_device * dev,unsigned int poll_queues)433 static int nullb_apply_poll_queues(struct nullb_device *dev,
434 unsigned int poll_queues)
435 {
436 int ret;
437
438 mutex_lock(&lock);
439 ret = nullb_update_nr_hw_queues(dev, dev->submit_queues, poll_queues);
440 mutex_unlock(&lock);
441
442 return ret;
443 }
444
445 NULLB_DEVICE_ATTR(size, ulong, NULL);
446 NULLB_DEVICE_ATTR(completion_nsec, ulong, NULL);
447 NULLB_DEVICE_ATTR(submit_queues, uint, nullb_apply_submit_queues);
448 NULLB_DEVICE_ATTR(poll_queues, uint, nullb_apply_poll_queues);
449 NULLB_DEVICE_ATTR(home_node, uint, NULL);
450 NULLB_DEVICE_ATTR(queue_mode, uint, NULL);
451 NULLB_DEVICE_ATTR(blocksize, uint, NULL);
452 NULLB_DEVICE_ATTR(max_sectors, uint, NULL);
453 NULLB_DEVICE_ATTR(irqmode, uint, NULL);
454 NULLB_DEVICE_ATTR(hw_queue_depth, uint, NULL);
455 NULLB_DEVICE_ATTR(index, uint, NULL);
456 NULLB_DEVICE_ATTR(blocking, bool, NULL);
457 NULLB_DEVICE_ATTR(use_per_node_hctx, bool, NULL);
458 NULLB_DEVICE_ATTR(memory_backed, bool, NULL);
459 NULLB_DEVICE_ATTR(discard, bool, NULL);
460 NULLB_DEVICE_ATTR(mbps, uint, NULL);
461 NULLB_DEVICE_ATTR(cache_size, ulong, NULL);
462 NULLB_DEVICE_ATTR(zoned, bool, NULL);
463 NULLB_DEVICE_ATTR(zone_size, ulong, NULL);
464 NULLB_DEVICE_ATTR(zone_capacity, ulong, NULL);
465 NULLB_DEVICE_ATTR(zone_nr_conv, uint, NULL);
466 NULLB_DEVICE_ATTR(zone_max_open, uint, NULL);
467 NULLB_DEVICE_ATTR(zone_max_active, uint, NULL);
468 NULLB_DEVICE_ATTR(zone_append_max_sectors, uint, NULL);
469 NULLB_DEVICE_ATTR(zone_full, bool, NULL);
470 NULLB_DEVICE_ATTR(virt_boundary, bool, NULL);
471 NULLB_DEVICE_ATTR(no_sched, bool, NULL);
472 NULLB_DEVICE_ATTR(shared_tags, bool, NULL);
473 NULLB_DEVICE_ATTR(shared_tag_bitmap, bool, NULL);
474 NULLB_DEVICE_ATTR(fua, bool, NULL);
475 NULLB_DEVICE_ATTR(rotational, bool, NULL);
476 NULLB_DEVICE_ATTR(badblocks_once, bool, NULL);
477 NULLB_DEVICE_ATTR(badblocks_partial_io, bool, NULL);
478
nullb_device_power_show(struct config_item * item,char * page)479 static ssize_t nullb_device_power_show(struct config_item *item, char *page)
480 {
481 return nullb_device_bool_attr_show(to_nullb_device(item)->power, page);
482 }
483
nullb_device_power_store(struct config_item * item,const char * page,size_t count)484 static ssize_t nullb_device_power_store(struct config_item *item,
485 const char *page, size_t count)
486 {
487 struct nullb_device *dev = to_nullb_device(item);
488 bool newp = false;
489 ssize_t ret;
490
491 ret = nullb_device_bool_attr_store(&newp, page, count);
492 if (ret < 0)
493 return ret;
494
495 ret = count;
496 mutex_lock(&lock);
497 if (!dev->power && newp) {
498 if (test_and_set_bit(NULLB_DEV_FL_UP, &dev->flags))
499 goto out;
500
501 ret = null_add_dev(dev);
502 if (ret) {
503 clear_bit(NULLB_DEV_FL_UP, &dev->flags);
504 goto out;
505 }
506
507 set_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags);
508 dev->power = newp;
509 ret = count;
510 } else if (dev->power && !newp) {
511 if (test_and_clear_bit(NULLB_DEV_FL_UP, &dev->flags)) {
512 dev->power = newp;
513 null_del_dev(dev->nullb);
514 }
515 clear_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags);
516 }
517
518 out:
519 mutex_unlock(&lock);
520 return ret;
521 }
522
523 CONFIGFS_ATTR(nullb_device_, power);
524
nullb_device_badblocks_show(struct config_item * item,char * page)525 static ssize_t nullb_device_badblocks_show(struct config_item *item, char *page)
526 {
527 struct nullb_device *t_dev = to_nullb_device(item);
528
529 return badblocks_show(&t_dev->badblocks, page, 0);
530 }
531
nullb_device_badblocks_store(struct config_item * item,const char * page,size_t count)532 static ssize_t nullb_device_badblocks_store(struct config_item *item,
533 const char *page, size_t count)
534 {
535 struct nullb_device *t_dev = to_nullb_device(item);
536 char *orig, *buf, *tmp;
537 u64 start, end;
538 int ret;
539
540 orig = kstrndup(page, count, GFP_KERNEL);
541 if (!orig)
542 return -ENOMEM;
543
544 buf = strstrip(orig);
545
546 ret = -EINVAL;
547 if (buf[0] != '+' && buf[0] != '-')
548 goto out;
549 tmp = strchr(&buf[1], '-');
550 if (!tmp)
551 goto out;
552 *tmp = '\0';
553 ret = kstrtoull(buf + 1, 0, &start);
554 if (ret)
555 goto out;
556 ret = kstrtoull(tmp + 1, 0, &end);
557 if (ret)
558 goto out;
559 ret = -EINVAL;
560 if (start > end)
561 goto out;
562 /* enable badblocks */
563 cmpxchg(&t_dev->badblocks.shift, -1, 0);
564 if (buf[0] == '+') {
565 if (badblocks_set(&t_dev->badblocks, start,
566 end - start + 1, 1))
567 ret = count;
568 } else if (badblocks_clear(&t_dev->badblocks, start,
569 end - start + 1)) {
570 ret = count;
571 }
572 out:
573 kfree(orig);
574 return ret;
575 }
576 CONFIGFS_ATTR(nullb_device_, badblocks);
577
nullb_device_zone_readonly_store(struct config_item * item,const char * page,size_t count)578 static ssize_t nullb_device_zone_readonly_store(struct config_item *item,
579 const char *page, size_t count)
580 {
581 struct nullb_device *dev = to_nullb_device(item);
582
583 return zone_cond_store(dev, page, count, BLK_ZONE_COND_READONLY);
584 }
585 CONFIGFS_ATTR_WO(nullb_device_, zone_readonly);
586
nullb_device_zone_offline_store(struct config_item * item,const char * page,size_t count)587 static ssize_t nullb_device_zone_offline_store(struct config_item *item,
588 const char *page, size_t count)
589 {
590 struct nullb_device *dev = to_nullb_device(item);
591
592 return zone_cond_store(dev, page, count, BLK_ZONE_COND_OFFLINE);
593 }
594 CONFIGFS_ATTR_WO(nullb_device_, zone_offline);
595
596 static struct configfs_attribute *nullb_device_attrs[] = {
597 &nullb_device_attr_badblocks,
598 &nullb_device_attr_badblocks_once,
599 &nullb_device_attr_badblocks_partial_io,
600 &nullb_device_attr_blocking,
601 &nullb_device_attr_blocksize,
602 &nullb_device_attr_cache_size,
603 &nullb_device_attr_completion_nsec,
604 &nullb_device_attr_discard,
605 &nullb_device_attr_fua,
606 &nullb_device_attr_home_node,
607 &nullb_device_attr_hw_queue_depth,
608 &nullb_device_attr_index,
609 &nullb_device_attr_irqmode,
610 &nullb_device_attr_max_sectors,
611 &nullb_device_attr_mbps,
612 &nullb_device_attr_memory_backed,
613 &nullb_device_attr_no_sched,
614 &nullb_device_attr_poll_queues,
615 &nullb_device_attr_power,
616 &nullb_device_attr_queue_mode,
617 &nullb_device_attr_rotational,
618 &nullb_device_attr_shared_tag_bitmap,
619 &nullb_device_attr_shared_tags,
620 &nullb_device_attr_size,
621 &nullb_device_attr_submit_queues,
622 &nullb_device_attr_use_per_node_hctx,
623 &nullb_device_attr_virt_boundary,
624 &nullb_device_attr_zone_append_max_sectors,
625 &nullb_device_attr_zone_capacity,
626 &nullb_device_attr_zone_full,
627 &nullb_device_attr_zone_max_active,
628 &nullb_device_attr_zone_max_open,
629 &nullb_device_attr_zone_nr_conv,
630 &nullb_device_attr_zone_offline,
631 &nullb_device_attr_zone_readonly,
632 &nullb_device_attr_zone_size,
633 &nullb_device_attr_zoned,
634 NULL,
635 };
636
nullb_device_release(struct config_item * item)637 static void nullb_device_release(struct config_item *item)
638 {
639 struct nullb_device *dev = to_nullb_device(item);
640
641 null_free_device_storage(dev, false);
642 null_free_dev(dev);
643 }
644
645 static struct configfs_item_operations nullb_device_ops = {
646 .release = nullb_device_release,
647 };
648
649 static const struct config_item_type nullb_device_type = {
650 .ct_item_ops = &nullb_device_ops,
651 .ct_attrs = nullb_device_attrs,
652 .ct_owner = THIS_MODULE,
653 };
654
655 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
656
nullb_add_fault_config(struct nullb_device * dev)657 static void nullb_add_fault_config(struct nullb_device *dev)
658 {
659 fault_config_init(&dev->timeout_config, "timeout_inject");
660 fault_config_init(&dev->requeue_config, "requeue_inject");
661 fault_config_init(&dev->init_hctx_fault_config, "init_hctx_fault_inject");
662
663 configfs_add_default_group(&dev->timeout_config.group, &dev->group);
664 configfs_add_default_group(&dev->requeue_config.group, &dev->group);
665 configfs_add_default_group(&dev->init_hctx_fault_config.group, &dev->group);
666 }
667
nullb_del_fault_config(struct nullb_device * dev)668 static void nullb_del_fault_config(struct nullb_device *dev)
669 {
670 config_item_put(&dev->init_hctx_fault_config.group.cg_item);
671 config_item_put(&dev->requeue_config.group.cg_item);
672 config_item_put(&dev->timeout_config.group.cg_item);
673 }
674
675 #else
676
nullb_add_fault_config(struct nullb_device * dev)677 static void nullb_add_fault_config(struct nullb_device *dev)
678 {
679 }
680
nullb_del_fault_config(struct nullb_device * dev)681 static void nullb_del_fault_config(struct nullb_device *dev)
682 {
683 }
684 #endif
685
686 static struct
nullb_group_make_group(struct config_group * group,const char * name)687 config_group *nullb_group_make_group(struct config_group *group, const char *name)
688 {
689 struct nullb_device *dev;
690
691 if (null_find_dev_by_name(name))
692 return ERR_PTR(-EEXIST);
693
694 dev = null_alloc_dev();
695 if (!dev)
696 return ERR_PTR(-ENOMEM);
697
698 config_group_init_type_name(&dev->group, name, &nullb_device_type);
699 nullb_add_fault_config(dev);
700
701 return &dev->group;
702 }
703
704 static void
nullb_group_drop_item(struct config_group * group,struct config_item * item)705 nullb_group_drop_item(struct config_group *group, struct config_item *item)
706 {
707 struct nullb_device *dev = to_nullb_device(item);
708
709 if (test_and_clear_bit(NULLB_DEV_FL_UP, &dev->flags)) {
710 mutex_lock(&lock);
711 dev->power = false;
712 null_del_dev(dev->nullb);
713 mutex_unlock(&lock);
714 }
715 nullb_del_fault_config(dev);
716 config_item_put(item);
717 }
718
memb_group_features_show(struct config_item * item,char * page)719 static ssize_t memb_group_features_show(struct config_item *item, char *page)
720 {
721
722 struct configfs_attribute **entry;
723 char delimiter = ',';
724 size_t left = PAGE_SIZE;
725 size_t written = 0;
726 int ret;
727
728 for (entry = &nullb_device_attrs[0]; *entry && left > 0; entry++) {
729 if (!*(entry + 1))
730 delimiter = '\n';
731 ret = snprintf(page + written, left, "%s%c", (*entry)->ca_name,
732 delimiter);
733 if (ret >= left) {
734 WARN_ONCE(1, "Too many null_blk features to print\n");
735 memzero_explicit(page, PAGE_SIZE);
736 return -ENOBUFS;
737 }
738 left -= ret;
739 written += ret;
740 }
741
742 return written;
743 }
744
745 CONFIGFS_ATTR_RO(memb_group_, features);
746
747 static struct configfs_attribute *nullb_group_attrs[] = {
748 &memb_group_attr_features,
749 NULL,
750 };
751
752 static struct configfs_group_operations nullb_group_ops = {
753 .make_group = nullb_group_make_group,
754 .drop_item = nullb_group_drop_item,
755 };
756
757 static const struct config_item_type nullb_group_type = {
758 .ct_group_ops = &nullb_group_ops,
759 .ct_attrs = nullb_group_attrs,
760 .ct_owner = THIS_MODULE,
761 };
762
763 static struct configfs_subsystem nullb_subsys = {
764 .su_group = {
765 .cg_item = {
766 .ci_namebuf = "nullb",
767 .ci_type = &nullb_group_type,
768 },
769 },
770 };
771
null_cache_active(struct nullb * nullb)772 static inline int null_cache_active(struct nullb *nullb)
773 {
774 return test_bit(NULLB_DEV_FL_CACHE, &nullb->dev->flags);
775 }
776
null_alloc_dev(void)777 static struct nullb_device *null_alloc_dev(void)
778 {
779 struct nullb_device *dev;
780
781 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
782 if (!dev)
783 return NULL;
784
785 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
786 dev->timeout_config.attr = null_timeout_attr;
787 dev->requeue_config.attr = null_requeue_attr;
788 dev->init_hctx_fault_config.attr = null_init_hctx_attr;
789 #endif
790
791 INIT_RADIX_TREE(&dev->data, GFP_ATOMIC);
792 INIT_RADIX_TREE(&dev->cache, GFP_ATOMIC);
793 if (badblocks_init(&dev->badblocks, 0)) {
794 kfree(dev);
795 return NULL;
796 }
797
798 dev->size = g_gb * 1024;
799 dev->completion_nsec = g_completion_nsec;
800 dev->submit_queues = g_submit_queues;
801 dev->prev_submit_queues = g_submit_queues;
802 dev->poll_queues = g_poll_queues;
803 dev->prev_poll_queues = g_poll_queues;
804 dev->home_node = g_home_node;
805 dev->queue_mode = g_queue_mode;
806 dev->blocksize = g_bs;
807 dev->max_sectors = g_max_sectors;
808 dev->irqmode = g_irqmode;
809 dev->hw_queue_depth = g_hw_queue_depth;
810 dev->blocking = g_blocking;
811 dev->memory_backed = g_memory_backed;
812 dev->discard = g_discard;
813 dev->cache_size = g_cache_size;
814 dev->mbps = g_mbps;
815 dev->use_per_node_hctx = g_use_per_node_hctx;
816 dev->zoned = g_zoned;
817 dev->zone_size = g_zone_size;
818 dev->zone_capacity = g_zone_capacity;
819 dev->zone_nr_conv = g_zone_nr_conv;
820 dev->zone_max_open = g_zone_max_open;
821 dev->zone_max_active = g_zone_max_active;
822 dev->zone_append_max_sectors = g_zone_append_max_sectors;
823 dev->zone_full = g_zone_full;
824 dev->virt_boundary = g_virt_boundary;
825 dev->no_sched = g_no_sched;
826 dev->shared_tags = g_shared_tags;
827 dev->shared_tag_bitmap = g_shared_tag_bitmap;
828 dev->fua = g_fua;
829 dev->rotational = g_rotational;
830
831 return dev;
832 }
833
null_free_dev(struct nullb_device * dev)834 static void null_free_dev(struct nullb_device *dev)
835 {
836 if (!dev)
837 return;
838
839 null_free_zoned_dev(dev);
840 badblocks_exit(&dev->badblocks);
841 kfree(dev);
842 }
843
null_cmd_timer_expired(struct hrtimer * timer)844 static enum hrtimer_restart null_cmd_timer_expired(struct hrtimer *timer)
845 {
846 struct nullb_cmd *cmd = container_of(timer, struct nullb_cmd, timer);
847
848 blk_mq_end_request(blk_mq_rq_from_pdu(cmd), cmd->error);
849 return HRTIMER_NORESTART;
850 }
851
null_cmd_end_timer(struct nullb_cmd * cmd)852 static void null_cmd_end_timer(struct nullb_cmd *cmd)
853 {
854 ktime_t kt = cmd->nq->dev->completion_nsec;
855
856 hrtimer_start(&cmd->timer, kt, HRTIMER_MODE_REL);
857 }
858
null_complete_rq(struct request * rq)859 static void null_complete_rq(struct request *rq)
860 {
861 struct nullb_cmd *cmd = blk_mq_rq_to_pdu(rq);
862
863 blk_mq_end_request(rq, cmd->error);
864 }
865
null_alloc_page(void)866 static struct nullb_page *null_alloc_page(void)
867 {
868 struct nullb_page *t_page;
869
870 t_page = kmalloc(sizeof(struct nullb_page), GFP_NOIO);
871 if (!t_page)
872 return NULL;
873
874 t_page->page = alloc_pages(GFP_NOIO, 0);
875 if (!t_page->page) {
876 kfree(t_page);
877 return NULL;
878 }
879
880 memset(t_page->bitmap, 0, sizeof(t_page->bitmap));
881 return t_page;
882 }
883
null_free_page(struct nullb_page * t_page)884 static void null_free_page(struct nullb_page *t_page)
885 {
886 __set_bit(NULLB_PAGE_FREE, t_page->bitmap);
887 if (test_bit(NULLB_PAGE_LOCK, t_page->bitmap))
888 return;
889 __free_page(t_page->page);
890 kfree(t_page);
891 }
892
null_page_empty(struct nullb_page * page)893 static bool null_page_empty(struct nullb_page *page)
894 {
895 int size = MAP_SZ - 2;
896
897 return find_first_bit(page->bitmap, size) == size;
898 }
899
null_free_sector(struct nullb * nullb,sector_t sector,bool is_cache)900 static void null_free_sector(struct nullb *nullb, sector_t sector,
901 bool is_cache)
902 {
903 unsigned int sector_bit;
904 u64 idx;
905 struct nullb_page *t_page, *ret;
906 struct radix_tree_root *root;
907
908 root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
909 idx = sector >> PAGE_SECTORS_SHIFT;
910 sector_bit = (sector & SECTOR_MASK);
911
912 t_page = radix_tree_lookup(root, idx);
913 if (t_page) {
914 __clear_bit(sector_bit, t_page->bitmap);
915
916 if (null_page_empty(t_page)) {
917 ret = radix_tree_delete_item(root, idx, t_page);
918 WARN_ON(ret != t_page);
919 null_free_page(ret);
920 if (is_cache)
921 nullb->dev->curr_cache -= PAGE_SIZE;
922 }
923 }
924 }
925
null_radix_tree_insert(struct nullb * nullb,u64 idx,struct nullb_page * t_page,bool is_cache)926 static struct nullb_page *null_radix_tree_insert(struct nullb *nullb, u64 idx,
927 struct nullb_page *t_page, bool is_cache)
928 {
929 struct radix_tree_root *root;
930
931 root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
932
933 if (radix_tree_insert(root, idx, t_page)) {
934 null_free_page(t_page);
935 t_page = radix_tree_lookup(root, idx);
936 WARN_ON(!t_page || t_page->page->private != idx);
937 } else if (is_cache)
938 nullb->dev->curr_cache += PAGE_SIZE;
939
940 return t_page;
941 }
942
null_free_device_storage(struct nullb_device * dev,bool is_cache)943 static void null_free_device_storage(struct nullb_device *dev, bool is_cache)
944 {
945 unsigned long pos = 0;
946 int nr_pages;
947 struct nullb_page *ret, *t_pages[FREE_BATCH];
948 struct radix_tree_root *root;
949
950 root = is_cache ? &dev->cache : &dev->data;
951
952 do {
953 int i;
954
955 nr_pages = radix_tree_gang_lookup(root,
956 (void **)t_pages, pos, FREE_BATCH);
957
958 for (i = 0; i < nr_pages; i++) {
959 pos = t_pages[i]->page->private;
960 ret = radix_tree_delete_item(root, pos, t_pages[i]);
961 WARN_ON(ret != t_pages[i]);
962 null_free_page(ret);
963 }
964
965 pos++;
966 } while (nr_pages == FREE_BATCH);
967
968 if (is_cache)
969 dev->curr_cache = 0;
970 }
971
__null_lookup_page(struct nullb * nullb,sector_t sector,bool for_write,bool is_cache)972 static struct nullb_page *__null_lookup_page(struct nullb *nullb,
973 sector_t sector, bool for_write, bool is_cache)
974 {
975 unsigned int sector_bit;
976 u64 idx;
977 struct nullb_page *t_page;
978 struct radix_tree_root *root;
979
980 idx = sector >> PAGE_SECTORS_SHIFT;
981 sector_bit = (sector & SECTOR_MASK);
982
983 root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
984 t_page = radix_tree_lookup(root, idx);
985 WARN_ON(t_page && t_page->page->private != idx);
986
987 if (t_page && (for_write || test_bit(sector_bit, t_page->bitmap)))
988 return t_page;
989
990 return NULL;
991 }
992
null_lookup_page(struct nullb * nullb,sector_t sector,bool for_write,bool ignore_cache)993 static struct nullb_page *null_lookup_page(struct nullb *nullb,
994 sector_t sector, bool for_write, bool ignore_cache)
995 {
996 struct nullb_page *page = NULL;
997
998 if (!ignore_cache)
999 page = __null_lookup_page(nullb, sector, for_write, true);
1000 if (page)
1001 return page;
1002 return __null_lookup_page(nullb, sector, for_write, false);
1003 }
1004
null_insert_page(struct nullb * nullb,sector_t sector,bool ignore_cache)1005 static struct nullb_page *null_insert_page(struct nullb *nullb,
1006 sector_t sector, bool ignore_cache)
1007 __releases(&nullb->lock)
1008 __acquires(&nullb->lock)
1009 {
1010 u64 idx;
1011 struct nullb_page *t_page;
1012
1013 t_page = null_lookup_page(nullb, sector, true, ignore_cache);
1014 if (t_page)
1015 return t_page;
1016
1017 spin_unlock_irq(&nullb->lock);
1018
1019 t_page = null_alloc_page();
1020 if (!t_page)
1021 goto out_lock;
1022
1023 if (radix_tree_preload(GFP_NOIO))
1024 goto out_freepage;
1025
1026 spin_lock_irq(&nullb->lock);
1027 idx = sector >> PAGE_SECTORS_SHIFT;
1028 t_page->page->private = idx;
1029 t_page = null_radix_tree_insert(nullb, idx, t_page, !ignore_cache);
1030 radix_tree_preload_end();
1031
1032 return t_page;
1033 out_freepage:
1034 null_free_page(t_page);
1035 out_lock:
1036 spin_lock_irq(&nullb->lock);
1037 return null_lookup_page(nullb, sector, true, ignore_cache);
1038 }
1039
null_flush_cache_page(struct nullb * nullb,struct nullb_page * c_page)1040 static int null_flush_cache_page(struct nullb *nullb, struct nullb_page *c_page)
1041 {
1042 int i;
1043 unsigned int offset;
1044 u64 idx;
1045 struct nullb_page *t_page, *ret;
1046 void *dst, *src;
1047
1048 idx = c_page->page->private;
1049
1050 t_page = null_insert_page(nullb, idx << PAGE_SECTORS_SHIFT, true);
1051
1052 __clear_bit(NULLB_PAGE_LOCK, c_page->bitmap);
1053 if (test_bit(NULLB_PAGE_FREE, c_page->bitmap)) {
1054 null_free_page(c_page);
1055 if (t_page && null_page_empty(t_page)) {
1056 ret = radix_tree_delete_item(&nullb->dev->data,
1057 idx, t_page);
1058 null_free_page(t_page);
1059 }
1060 return 0;
1061 }
1062
1063 if (!t_page)
1064 return -ENOMEM;
1065
1066 src = kmap_local_page(c_page->page);
1067 dst = kmap_local_page(t_page->page);
1068
1069 for (i = 0; i < PAGE_SECTORS;
1070 i += (nullb->dev->blocksize >> SECTOR_SHIFT)) {
1071 if (test_bit(i, c_page->bitmap)) {
1072 offset = (i << SECTOR_SHIFT);
1073 memcpy(dst + offset, src + offset,
1074 nullb->dev->blocksize);
1075 __set_bit(i, t_page->bitmap);
1076 }
1077 }
1078
1079 kunmap_local(dst);
1080 kunmap_local(src);
1081
1082 ret = radix_tree_delete_item(&nullb->dev->cache, idx, c_page);
1083 null_free_page(ret);
1084 nullb->dev->curr_cache -= PAGE_SIZE;
1085
1086 return 0;
1087 }
1088
null_make_cache_space(struct nullb * nullb,unsigned long n)1089 static int null_make_cache_space(struct nullb *nullb, unsigned long n)
1090 {
1091 int i, err, nr_pages;
1092 struct nullb_page *c_pages[FREE_BATCH];
1093 unsigned long flushed = 0, one_round;
1094
1095 again:
1096 if ((nullb->dev->cache_size * 1024 * 1024) >
1097 nullb->dev->curr_cache + n || nullb->dev->curr_cache == 0)
1098 return 0;
1099
1100 nr_pages = radix_tree_gang_lookup(&nullb->dev->cache,
1101 (void **)c_pages, nullb->cache_flush_pos, FREE_BATCH);
1102 /*
1103 * nullb_flush_cache_page could unlock before using the c_pages. To
1104 * avoid race, we don't allow page free
1105 */
1106 for (i = 0; i < nr_pages; i++) {
1107 nullb->cache_flush_pos = c_pages[i]->page->private;
1108 /*
1109 * We found the page which is being flushed to disk by other
1110 * threads
1111 */
1112 if (test_bit(NULLB_PAGE_LOCK, c_pages[i]->bitmap))
1113 c_pages[i] = NULL;
1114 else
1115 __set_bit(NULLB_PAGE_LOCK, c_pages[i]->bitmap);
1116 }
1117
1118 one_round = 0;
1119 for (i = 0; i < nr_pages; i++) {
1120 if (c_pages[i] == NULL)
1121 continue;
1122 err = null_flush_cache_page(nullb, c_pages[i]);
1123 if (err)
1124 return err;
1125 one_round++;
1126 }
1127 flushed += one_round << PAGE_SHIFT;
1128
1129 if (n > flushed) {
1130 if (nr_pages == 0)
1131 nullb->cache_flush_pos = 0;
1132 if (one_round == 0) {
1133 /* give other threads a chance */
1134 spin_unlock_irq(&nullb->lock);
1135 spin_lock_irq(&nullb->lock);
1136 }
1137 goto again;
1138 }
1139 return 0;
1140 }
1141
copy_to_nullb(struct nullb * nullb,void * source,loff_t pos,size_t n,bool is_fua)1142 static blk_status_t copy_to_nullb(struct nullb *nullb, void *source,
1143 loff_t pos, size_t n, bool is_fua)
1144 {
1145 size_t temp, count = 0;
1146 struct nullb_page *t_page;
1147 sector_t sector;
1148
1149 while (count < n) {
1150 temp = min3(nullb->dev->blocksize, n - count,
1151 PAGE_SIZE - offset_in_page(pos));
1152 sector = pos >> SECTOR_SHIFT;
1153
1154 if (null_cache_active(nullb) && !is_fua)
1155 null_make_cache_space(nullb, PAGE_SIZE);
1156
1157 t_page = null_insert_page(nullb, sector,
1158 !null_cache_active(nullb) || is_fua);
1159 if (!t_page)
1160 return BLK_STS_NOSPC;
1161
1162 memcpy_to_page(t_page->page, offset_in_page(pos),
1163 source + count, temp);
1164
1165 __set_bit(sector & SECTOR_MASK, t_page->bitmap);
1166
1167 if (is_fua)
1168 null_free_sector(nullb, sector, true);
1169
1170 count += temp;
1171 pos += temp;
1172 }
1173 return BLK_STS_OK;
1174 }
1175
copy_from_nullb(struct nullb * nullb,void * dest,loff_t pos,size_t n)1176 static void copy_from_nullb(struct nullb *nullb, void *dest, loff_t pos,
1177 size_t n)
1178 {
1179 size_t temp, count = 0;
1180 struct nullb_page *t_page;
1181 sector_t sector;
1182
1183 while (count < n) {
1184 temp = min3(nullb->dev->blocksize, n - count,
1185 PAGE_SIZE - offset_in_page(pos));
1186 sector = pos >> SECTOR_SHIFT;
1187
1188 t_page = null_lookup_page(nullb, sector, false,
1189 !null_cache_active(nullb));
1190 if (t_page)
1191 memcpy_from_page(dest + count, t_page->page,
1192 offset_in_page(pos), temp);
1193 else
1194 memset(dest + count, 0, temp);
1195
1196 count += temp;
1197 pos += temp;
1198 }
1199 }
1200
null_handle_discard(struct nullb_device * dev,sector_t sector,sector_t nr_sectors)1201 blk_status_t null_handle_discard(struct nullb_device *dev,
1202 sector_t sector, sector_t nr_sectors)
1203 {
1204 struct nullb *nullb = dev->nullb;
1205 size_t n = nr_sectors << SECTOR_SHIFT;
1206 size_t temp;
1207
1208 spin_lock_irq(&nullb->lock);
1209 while (n > 0) {
1210 temp = min_t(size_t, n, dev->blocksize);
1211 null_free_sector(nullb, sector, false);
1212 if (null_cache_active(nullb))
1213 null_free_sector(nullb, sector, true);
1214 sector += temp >> SECTOR_SHIFT;
1215 n -= temp;
1216 }
1217 spin_unlock_irq(&nullb->lock);
1218
1219 return BLK_STS_OK;
1220 }
1221
null_handle_flush(struct nullb * nullb)1222 static blk_status_t null_handle_flush(struct nullb *nullb)
1223 {
1224 int err;
1225
1226 if (!null_cache_active(nullb))
1227 return 0;
1228
1229 spin_lock_irq(&nullb->lock);
1230 while (true) {
1231 err = null_make_cache_space(nullb,
1232 nullb->dev->cache_size * 1024 * 1024);
1233 if (err || nullb->dev->curr_cache == 0)
1234 break;
1235 }
1236
1237 WARN_ON(!radix_tree_empty(&nullb->dev->cache));
1238 spin_unlock_irq(&nullb->lock);
1239 return errno_to_blk_status(err);
1240 }
1241
null_transfer(struct nullb * nullb,struct page * page,unsigned int len,unsigned int off,bool is_write,loff_t pos,bool is_fua)1242 static blk_status_t null_transfer(struct nullb *nullb, struct page *page,
1243 unsigned int len, unsigned int off, bool is_write, loff_t pos,
1244 bool is_fua)
1245 {
1246 struct nullb_device *dev = nullb->dev;
1247 blk_status_t err = BLK_STS_OK;
1248 unsigned int valid_len = len;
1249 void *p;
1250
1251 p = kmap_local_page(page) + off;
1252 if (!is_write) {
1253 if (dev->zoned) {
1254 valid_len = null_zone_valid_read_len(nullb,
1255 pos >> SECTOR_SHIFT, len);
1256 if (valid_len && valid_len != len)
1257 valid_len -= pos & (SECTOR_SIZE - 1);
1258 }
1259
1260 if (valid_len) {
1261 copy_from_nullb(nullb, p, pos, valid_len);
1262 off += valid_len;
1263 len -= valid_len;
1264 }
1265
1266 if (len)
1267 memset(p + valid_len, 0xff, len);
1268 flush_dcache_page(page);
1269 } else {
1270 flush_dcache_page(page);
1271 err = copy_to_nullb(nullb, p, pos, len, is_fua);
1272 }
1273
1274 kunmap_local(p);
1275 return err;
1276 }
1277
1278 /*
1279 * Transfer data for the given request. The transfer size is capped with the
1280 * nr_sectors argument.
1281 */
null_handle_data_transfer(struct nullb_cmd * cmd,sector_t nr_sectors)1282 static blk_status_t null_handle_data_transfer(struct nullb_cmd *cmd,
1283 sector_t nr_sectors)
1284 {
1285 struct request *rq = blk_mq_rq_from_pdu(cmd);
1286 struct nullb *nullb = cmd->nq->dev->nullb;
1287 blk_status_t err = BLK_STS_OK;
1288 unsigned int len;
1289 loff_t pos = blk_rq_pos(rq) << SECTOR_SHIFT;
1290 unsigned int max_bytes = nr_sectors << SECTOR_SHIFT;
1291 unsigned int transferred_bytes = 0;
1292 struct req_iterator iter;
1293 struct bio_vec bvec;
1294
1295 spin_lock_irq(&nullb->lock);
1296 rq_for_each_segment(bvec, rq, iter) {
1297 len = bvec.bv_len;
1298 if (transferred_bytes + len > max_bytes)
1299 len = max_bytes - transferred_bytes;
1300 err = null_transfer(nullb, bvec.bv_page, len, bvec.bv_offset,
1301 op_is_write(req_op(rq)), pos,
1302 rq->cmd_flags & REQ_FUA);
1303 if (err)
1304 break;
1305 pos += len;
1306 transferred_bytes += len;
1307 if (transferred_bytes >= max_bytes)
1308 break;
1309 }
1310 spin_unlock_irq(&nullb->lock);
1311
1312 return err;
1313 }
1314
null_handle_throttled(struct nullb_cmd * cmd)1315 static inline blk_status_t null_handle_throttled(struct nullb_cmd *cmd)
1316 {
1317 struct nullb_device *dev = cmd->nq->dev;
1318 struct nullb *nullb = dev->nullb;
1319 blk_status_t sts = BLK_STS_OK;
1320 struct request *rq = blk_mq_rq_from_pdu(cmd);
1321
1322 if (!hrtimer_active(&nullb->bw_timer))
1323 hrtimer_restart(&nullb->bw_timer);
1324
1325 if (atomic_long_sub_return(blk_rq_bytes(rq), &nullb->cur_bytes) < 0) {
1326 blk_mq_stop_hw_queues(nullb->q);
1327 /* race with timer */
1328 if (atomic_long_read(&nullb->cur_bytes) > 0)
1329 blk_mq_start_stopped_hw_queues(nullb->q, true);
1330 /* requeue request */
1331 sts = BLK_STS_DEV_RESOURCE;
1332 }
1333 return sts;
1334 }
1335
1336 /*
1337 * Check if the command should fail for the badblocks. If so, return
1338 * BLK_STS_IOERR and return number of partial I/O sectors to be written or read,
1339 * which may be less than the requested number of sectors.
1340 *
1341 * @cmd: The command to handle.
1342 * @sector: The start sector for I/O.
1343 * @nr_sectors: Specifies number of sectors to write or read, and returns the
1344 * number of sectors to be written or read.
1345 */
null_handle_badblocks(struct nullb_cmd * cmd,sector_t sector,unsigned int * nr_sectors)1346 blk_status_t null_handle_badblocks(struct nullb_cmd *cmd, sector_t sector,
1347 unsigned int *nr_sectors)
1348 {
1349 struct badblocks *bb = &cmd->nq->dev->badblocks;
1350 struct nullb_device *dev = cmd->nq->dev;
1351 unsigned int block_sectors = dev->blocksize >> SECTOR_SHIFT;
1352 sector_t first_bad, bad_sectors;
1353 unsigned int partial_io_sectors = 0;
1354
1355 if (!badblocks_check(bb, sector, *nr_sectors, &first_bad, &bad_sectors))
1356 return BLK_STS_OK;
1357
1358 if (cmd->nq->dev->badblocks_once)
1359 badblocks_clear(bb, first_bad, bad_sectors);
1360
1361 if (cmd->nq->dev->badblocks_partial_io) {
1362 if (!IS_ALIGNED(first_bad, block_sectors))
1363 first_bad = ALIGN_DOWN(first_bad, block_sectors);
1364 if (sector < first_bad)
1365 partial_io_sectors = first_bad - sector;
1366 }
1367 *nr_sectors = partial_io_sectors;
1368
1369 return BLK_STS_IOERR;
1370 }
1371
null_handle_memory_backed(struct nullb_cmd * cmd,enum req_op op,sector_t sector,sector_t nr_sectors)1372 blk_status_t null_handle_memory_backed(struct nullb_cmd *cmd, enum req_op op,
1373 sector_t sector, sector_t nr_sectors)
1374 {
1375 struct nullb_device *dev = cmd->nq->dev;
1376
1377 if (op == REQ_OP_DISCARD)
1378 return null_handle_discard(dev, sector, nr_sectors);
1379
1380 return null_handle_data_transfer(cmd, nr_sectors);
1381 }
1382
nullb_zero_read_cmd_buffer(struct nullb_cmd * cmd)1383 static void nullb_zero_read_cmd_buffer(struct nullb_cmd *cmd)
1384 {
1385 struct request *rq = blk_mq_rq_from_pdu(cmd);
1386 struct nullb_device *dev = cmd->nq->dev;
1387 struct bio *bio;
1388
1389 if (!dev->memory_backed && req_op(rq) == REQ_OP_READ) {
1390 __rq_for_each_bio(bio, rq)
1391 zero_fill_bio(bio);
1392 }
1393 }
1394
nullb_complete_cmd(struct nullb_cmd * cmd)1395 static inline void nullb_complete_cmd(struct nullb_cmd *cmd)
1396 {
1397 struct request *rq = blk_mq_rq_from_pdu(cmd);
1398
1399 /*
1400 * Since root privileges are required to configure the null_blk
1401 * driver, it is fine that this driver does not initialize the
1402 * data buffers of read commands. Zero-initialize these buffers
1403 * anyway if KMSAN is enabled to prevent that KMSAN complains
1404 * about null_blk not initializing read data buffers.
1405 */
1406 if (IS_ENABLED(CONFIG_KMSAN))
1407 nullb_zero_read_cmd_buffer(cmd);
1408
1409 /* Complete IO by inline, softirq or timer */
1410 switch (cmd->nq->dev->irqmode) {
1411 case NULL_IRQ_SOFTIRQ:
1412 blk_mq_complete_request(rq);
1413 break;
1414 case NULL_IRQ_NONE:
1415 blk_mq_end_request(rq, cmd->error);
1416 break;
1417 case NULL_IRQ_TIMER:
1418 null_cmd_end_timer(cmd);
1419 break;
1420 }
1421 }
1422
null_process_cmd(struct nullb_cmd * cmd,enum req_op op,sector_t sector,unsigned int nr_sectors)1423 blk_status_t null_process_cmd(struct nullb_cmd *cmd, enum req_op op,
1424 sector_t sector, unsigned int nr_sectors)
1425 {
1426 struct nullb_device *dev = cmd->nq->dev;
1427 blk_status_t badblocks_ret = BLK_STS_OK;
1428 blk_status_t ret;
1429
1430 if (dev->badblocks.shift != -1)
1431 badblocks_ret = null_handle_badblocks(cmd, sector, &nr_sectors);
1432
1433 if (dev->memory_backed && nr_sectors) {
1434 ret = null_handle_memory_backed(cmd, op, sector, nr_sectors);
1435 if (ret != BLK_STS_OK)
1436 return ret;
1437 }
1438
1439 return badblocks_ret;
1440 }
1441
null_handle_cmd(struct nullb_cmd * cmd,sector_t sector,sector_t nr_sectors,enum req_op op)1442 static void null_handle_cmd(struct nullb_cmd *cmd, sector_t sector,
1443 sector_t nr_sectors, enum req_op op)
1444 {
1445 struct nullb_device *dev = cmd->nq->dev;
1446 struct nullb *nullb = dev->nullb;
1447 blk_status_t sts;
1448
1449 if (op == REQ_OP_FLUSH) {
1450 cmd->error = null_handle_flush(nullb);
1451 goto out;
1452 }
1453
1454 if (dev->zoned)
1455 sts = null_process_zoned_cmd(cmd, op, sector, nr_sectors);
1456 else
1457 sts = null_process_cmd(cmd, op, sector, nr_sectors);
1458
1459 /* Do not overwrite errors (e.g. timeout errors) */
1460 if (cmd->error == BLK_STS_OK)
1461 cmd->error = sts;
1462
1463 out:
1464 nullb_complete_cmd(cmd);
1465 }
1466
nullb_bwtimer_fn(struct hrtimer * timer)1467 static enum hrtimer_restart nullb_bwtimer_fn(struct hrtimer *timer)
1468 {
1469 struct nullb *nullb = container_of(timer, struct nullb, bw_timer);
1470 ktime_t timer_interval = ktime_set(0, TIMER_INTERVAL);
1471 unsigned int mbps = nullb->dev->mbps;
1472
1473 if (atomic_long_read(&nullb->cur_bytes) == mb_per_tick(mbps))
1474 return HRTIMER_NORESTART;
1475
1476 atomic_long_set(&nullb->cur_bytes, mb_per_tick(mbps));
1477 blk_mq_start_stopped_hw_queues(nullb->q, true);
1478
1479 hrtimer_forward_now(&nullb->bw_timer, timer_interval);
1480
1481 return HRTIMER_RESTART;
1482 }
1483
nullb_setup_bwtimer(struct nullb * nullb)1484 static void nullb_setup_bwtimer(struct nullb *nullb)
1485 {
1486 ktime_t timer_interval = ktime_set(0, TIMER_INTERVAL);
1487
1488 hrtimer_setup(&nullb->bw_timer, nullb_bwtimer_fn, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1489 atomic_long_set(&nullb->cur_bytes, mb_per_tick(nullb->dev->mbps));
1490 hrtimer_start(&nullb->bw_timer, timer_interval, HRTIMER_MODE_REL);
1491 }
1492
1493 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1494
should_timeout_request(struct request * rq)1495 static bool should_timeout_request(struct request *rq)
1496 {
1497 struct nullb_cmd *cmd = blk_mq_rq_to_pdu(rq);
1498 struct nullb_device *dev = cmd->nq->dev;
1499
1500 return should_fail(&dev->timeout_config.attr, 1);
1501 }
1502
should_requeue_request(struct request * rq)1503 static bool should_requeue_request(struct request *rq)
1504 {
1505 struct nullb_cmd *cmd = blk_mq_rq_to_pdu(rq);
1506 struct nullb_device *dev = cmd->nq->dev;
1507
1508 return should_fail(&dev->requeue_config.attr, 1);
1509 }
1510
should_init_hctx_fail(struct nullb_device * dev)1511 static bool should_init_hctx_fail(struct nullb_device *dev)
1512 {
1513 return should_fail(&dev->init_hctx_fault_config.attr, 1);
1514 }
1515
1516 #else
1517
should_timeout_request(struct request * rq)1518 static bool should_timeout_request(struct request *rq)
1519 {
1520 return false;
1521 }
1522
should_requeue_request(struct request * rq)1523 static bool should_requeue_request(struct request *rq)
1524 {
1525 return false;
1526 }
1527
should_init_hctx_fail(struct nullb_device * dev)1528 static bool should_init_hctx_fail(struct nullb_device *dev)
1529 {
1530 return false;
1531 }
1532
1533 #endif
1534
null_map_queues(struct blk_mq_tag_set * set)1535 static void null_map_queues(struct blk_mq_tag_set *set)
1536 {
1537 struct nullb *nullb = set->driver_data;
1538 int i, qoff;
1539 unsigned int submit_queues = g_submit_queues;
1540 unsigned int poll_queues = g_poll_queues;
1541
1542 if (nullb) {
1543 struct nullb_device *dev = nullb->dev;
1544
1545 /*
1546 * Refer nr_hw_queues of the tag set to check if the expected
1547 * number of hardware queues are prepared. If block layer failed
1548 * to prepare them, use previous numbers of submit queues and
1549 * poll queues to map queues.
1550 */
1551 if (set->nr_hw_queues ==
1552 dev->submit_queues + dev->poll_queues) {
1553 submit_queues = dev->submit_queues;
1554 poll_queues = dev->poll_queues;
1555 } else if (set->nr_hw_queues ==
1556 dev->prev_submit_queues + dev->prev_poll_queues) {
1557 submit_queues = dev->prev_submit_queues;
1558 poll_queues = dev->prev_poll_queues;
1559 } else {
1560 pr_warn("tag set has unexpected nr_hw_queues: %d\n",
1561 set->nr_hw_queues);
1562 WARN_ON_ONCE(true);
1563 submit_queues = 1;
1564 poll_queues = 0;
1565 }
1566 }
1567
1568 for (i = 0, qoff = 0; i < set->nr_maps; i++) {
1569 struct blk_mq_queue_map *map = &set->map[i];
1570
1571 switch (i) {
1572 case HCTX_TYPE_DEFAULT:
1573 map->nr_queues = submit_queues;
1574 break;
1575 case HCTX_TYPE_READ:
1576 map->nr_queues = 0;
1577 continue;
1578 case HCTX_TYPE_POLL:
1579 map->nr_queues = poll_queues;
1580 break;
1581 }
1582 map->queue_offset = qoff;
1583 qoff += map->nr_queues;
1584 blk_mq_map_queues(map);
1585 }
1586 }
1587
null_poll(struct blk_mq_hw_ctx * hctx,struct io_comp_batch * iob)1588 static int null_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1589 {
1590 struct nullb_queue *nq = hctx->driver_data;
1591 LIST_HEAD(list);
1592 int nr = 0;
1593 struct request *rq;
1594
1595 spin_lock(&nq->poll_lock);
1596 list_splice_init(&nq->poll_list, &list);
1597 list_for_each_entry(rq, &list, queuelist)
1598 blk_mq_set_request_complete(rq);
1599 spin_unlock(&nq->poll_lock);
1600
1601 while (!list_empty(&list)) {
1602 struct nullb_cmd *cmd;
1603 struct request *req;
1604
1605 req = list_first_entry(&list, struct request, queuelist);
1606 list_del_init(&req->queuelist);
1607 cmd = blk_mq_rq_to_pdu(req);
1608 cmd->error = null_process_cmd(cmd, req_op(req), blk_rq_pos(req),
1609 blk_rq_sectors(req));
1610 if (!blk_mq_add_to_batch(req, iob, cmd->error != BLK_STS_OK,
1611 blk_mq_end_request_batch))
1612 blk_mq_end_request(req, cmd->error);
1613 nr++;
1614 }
1615
1616 return nr;
1617 }
1618
null_timeout_rq(struct request * rq)1619 static enum blk_eh_timer_return null_timeout_rq(struct request *rq)
1620 {
1621 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1622 struct nullb_cmd *cmd = blk_mq_rq_to_pdu(rq);
1623
1624 if (hctx->type == HCTX_TYPE_POLL) {
1625 struct nullb_queue *nq = hctx->driver_data;
1626
1627 spin_lock(&nq->poll_lock);
1628 /* The request may have completed meanwhile. */
1629 if (blk_mq_request_completed(rq)) {
1630 spin_unlock(&nq->poll_lock);
1631 return BLK_EH_DONE;
1632 }
1633 list_del_init(&rq->queuelist);
1634 spin_unlock(&nq->poll_lock);
1635 }
1636
1637 pr_info("rq %p timed out\n", rq);
1638
1639 /*
1640 * If the device is marked as blocking (i.e. memory backed or zoned
1641 * device), the submission path may be blocked waiting for resources
1642 * and cause real timeouts. For these real timeouts, the submission
1643 * path will complete the request using blk_mq_complete_request().
1644 * Only fake timeouts need to execute blk_mq_complete_request() here.
1645 */
1646 cmd->error = BLK_STS_TIMEOUT;
1647 if (cmd->fake_timeout || hctx->type == HCTX_TYPE_POLL)
1648 blk_mq_complete_request(rq);
1649 return BLK_EH_DONE;
1650 }
1651
null_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)1652 static blk_status_t null_queue_rq(struct blk_mq_hw_ctx *hctx,
1653 const struct blk_mq_queue_data *bd)
1654 {
1655 struct request *rq = bd->rq;
1656 struct nullb_cmd *cmd = blk_mq_rq_to_pdu(rq);
1657 struct nullb_queue *nq = hctx->driver_data;
1658 sector_t nr_sectors = blk_rq_sectors(rq);
1659 sector_t sector = blk_rq_pos(rq);
1660 const bool is_poll = hctx->type == HCTX_TYPE_POLL;
1661
1662 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1663
1664 if (!is_poll && nq->dev->irqmode == NULL_IRQ_TIMER) {
1665 hrtimer_setup(&cmd->timer, null_cmd_timer_expired, CLOCK_MONOTONIC,
1666 HRTIMER_MODE_REL);
1667 }
1668 cmd->error = BLK_STS_OK;
1669 cmd->nq = nq;
1670 cmd->fake_timeout = should_timeout_request(rq) ||
1671 blk_should_fake_timeout(rq->q);
1672
1673 if (should_requeue_request(rq)) {
1674 /*
1675 * Alternate between hitting the core BUSY path, and the
1676 * driver driven requeue path
1677 */
1678 nq->requeue_selection++;
1679 if (nq->requeue_selection & 1)
1680 return BLK_STS_RESOURCE;
1681 blk_mq_requeue_request(rq, true);
1682 return BLK_STS_OK;
1683 }
1684
1685 if (test_bit(NULLB_DEV_FL_THROTTLED, &nq->dev->flags)) {
1686 blk_status_t sts = null_handle_throttled(cmd);
1687
1688 if (sts != BLK_STS_OK)
1689 return sts;
1690 }
1691
1692 blk_mq_start_request(rq);
1693
1694 if (is_poll) {
1695 spin_lock(&nq->poll_lock);
1696 list_add_tail(&rq->queuelist, &nq->poll_list);
1697 spin_unlock(&nq->poll_lock);
1698 return BLK_STS_OK;
1699 }
1700 if (cmd->fake_timeout)
1701 return BLK_STS_OK;
1702
1703 null_handle_cmd(cmd, sector, nr_sectors, req_op(rq));
1704 return BLK_STS_OK;
1705 }
1706
null_queue_rqs(struct rq_list * rqlist)1707 static void null_queue_rqs(struct rq_list *rqlist)
1708 {
1709 struct rq_list requeue_list = {};
1710 struct blk_mq_queue_data bd = { };
1711 blk_status_t ret;
1712
1713 do {
1714 struct request *rq = rq_list_pop(rqlist);
1715
1716 bd.rq = rq;
1717 ret = null_queue_rq(rq->mq_hctx, &bd);
1718 if (ret != BLK_STS_OK)
1719 rq_list_add_tail(&requeue_list, rq);
1720 } while (!rq_list_empty(rqlist));
1721
1722 *rqlist = requeue_list;
1723 }
1724
null_init_queue(struct nullb * nullb,struct nullb_queue * nq)1725 static void null_init_queue(struct nullb *nullb, struct nullb_queue *nq)
1726 {
1727 nq->dev = nullb->dev;
1728 INIT_LIST_HEAD(&nq->poll_list);
1729 spin_lock_init(&nq->poll_lock);
1730 }
1731
null_init_hctx(struct blk_mq_hw_ctx * hctx,void * driver_data,unsigned int hctx_idx)1732 static int null_init_hctx(struct blk_mq_hw_ctx *hctx, void *driver_data,
1733 unsigned int hctx_idx)
1734 {
1735 struct nullb *nullb = hctx->queue->queuedata;
1736 struct nullb_queue *nq;
1737
1738 if (should_init_hctx_fail(nullb->dev))
1739 return -EFAULT;
1740
1741 nq = &nullb->queues[hctx_idx];
1742 hctx->driver_data = nq;
1743 null_init_queue(nullb, nq);
1744
1745 return 0;
1746 }
1747
1748 static const struct blk_mq_ops null_mq_ops = {
1749 .queue_rq = null_queue_rq,
1750 .queue_rqs = null_queue_rqs,
1751 .complete = null_complete_rq,
1752 .timeout = null_timeout_rq,
1753 .poll = null_poll,
1754 .map_queues = null_map_queues,
1755 .init_hctx = null_init_hctx,
1756 };
1757
null_del_dev(struct nullb * nullb)1758 static void null_del_dev(struct nullb *nullb)
1759 {
1760 struct nullb_device *dev;
1761
1762 if (!nullb)
1763 return;
1764
1765 dev = nullb->dev;
1766
1767 ida_free(&nullb_indexes, nullb->index);
1768
1769 list_del_init(&nullb->list);
1770
1771 del_gendisk(nullb->disk);
1772
1773 if (test_bit(NULLB_DEV_FL_THROTTLED, &nullb->dev->flags)) {
1774 hrtimer_cancel(&nullb->bw_timer);
1775 atomic_long_set(&nullb->cur_bytes, LONG_MAX);
1776 blk_mq_start_stopped_hw_queues(nullb->q, true);
1777 }
1778
1779 put_disk(nullb->disk);
1780 if (nullb->tag_set == &nullb->__tag_set)
1781 blk_mq_free_tag_set(nullb->tag_set);
1782 kfree(nullb->queues);
1783 if (null_cache_active(nullb))
1784 null_free_device_storage(nullb->dev, true);
1785 kfree(nullb);
1786 dev->nullb = NULL;
1787 }
1788
null_config_discard(struct nullb * nullb,struct queue_limits * lim)1789 static void null_config_discard(struct nullb *nullb, struct queue_limits *lim)
1790 {
1791 if (nullb->dev->discard == false)
1792 return;
1793
1794 if (!nullb->dev->memory_backed) {
1795 nullb->dev->discard = false;
1796 pr_info("discard option is ignored without memory backing\n");
1797 return;
1798 }
1799
1800 if (nullb->dev->zoned) {
1801 nullb->dev->discard = false;
1802 pr_info("discard option is ignored in zoned mode\n");
1803 return;
1804 }
1805
1806 lim->max_hw_discard_sectors = UINT_MAX >> 9;
1807 }
1808
1809 static const struct block_device_operations null_ops = {
1810 .owner = THIS_MODULE,
1811 .report_zones = null_report_zones,
1812 };
1813
setup_queues(struct nullb * nullb)1814 static int setup_queues(struct nullb *nullb)
1815 {
1816 int nqueues = nr_cpu_ids;
1817
1818 if (g_poll_queues)
1819 nqueues += g_poll_queues;
1820
1821 nullb->queues = kcalloc(nqueues, sizeof(struct nullb_queue),
1822 GFP_KERNEL);
1823 if (!nullb->queues)
1824 return -ENOMEM;
1825
1826 return 0;
1827 }
1828
null_init_tag_set(struct blk_mq_tag_set * set,int poll_queues)1829 static int null_init_tag_set(struct blk_mq_tag_set *set, int poll_queues)
1830 {
1831 set->ops = &null_mq_ops;
1832 set->cmd_size = sizeof(struct nullb_cmd);
1833 set->timeout = 5 * HZ;
1834 set->nr_maps = 1;
1835 if (poll_queues) {
1836 set->nr_hw_queues += poll_queues;
1837 set->nr_maps += 2;
1838 }
1839 return blk_mq_alloc_tag_set(set);
1840 }
1841
null_init_global_tag_set(void)1842 static int null_init_global_tag_set(void)
1843 {
1844 int error;
1845
1846 if (tag_set.ops)
1847 return 0;
1848
1849 tag_set.nr_hw_queues = g_submit_queues;
1850 tag_set.queue_depth = g_hw_queue_depth;
1851 tag_set.numa_node = g_home_node;
1852 if (g_no_sched)
1853 tag_set.flags |= BLK_MQ_F_NO_SCHED_BY_DEFAULT;
1854 if (g_shared_tag_bitmap)
1855 tag_set.flags |= BLK_MQ_F_TAG_HCTX_SHARED;
1856 if (g_blocking)
1857 tag_set.flags |= BLK_MQ_F_BLOCKING;
1858
1859 error = null_init_tag_set(&tag_set, g_poll_queues);
1860 if (error)
1861 tag_set.ops = NULL;
1862 return error;
1863 }
1864
null_setup_tagset(struct nullb * nullb)1865 static int null_setup_tagset(struct nullb *nullb)
1866 {
1867 if (nullb->dev->shared_tags) {
1868 nullb->tag_set = &tag_set;
1869 return null_init_global_tag_set();
1870 }
1871
1872 nullb->tag_set = &nullb->__tag_set;
1873 nullb->tag_set->driver_data = nullb;
1874 nullb->tag_set->nr_hw_queues = nullb->dev->submit_queues;
1875 nullb->tag_set->queue_depth = nullb->dev->hw_queue_depth;
1876 nullb->tag_set->numa_node = nullb->dev->home_node;
1877 if (nullb->dev->no_sched)
1878 nullb->tag_set->flags |= BLK_MQ_F_NO_SCHED_BY_DEFAULT;
1879 if (nullb->dev->shared_tag_bitmap)
1880 nullb->tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
1881 if (nullb->dev->blocking)
1882 nullb->tag_set->flags |= BLK_MQ_F_BLOCKING;
1883 return null_init_tag_set(nullb->tag_set, nullb->dev->poll_queues);
1884 }
1885
null_validate_conf(struct nullb_device * dev)1886 static int null_validate_conf(struct nullb_device *dev)
1887 {
1888 if (dev->queue_mode == NULL_Q_RQ) {
1889 pr_err("legacy IO path is no longer available\n");
1890 return -EINVAL;
1891 }
1892 if (dev->queue_mode == NULL_Q_BIO) {
1893 pr_err("BIO-based IO path is no longer available, using blk-mq instead.\n");
1894 dev->queue_mode = NULL_Q_MQ;
1895 }
1896
1897 if (dev->use_per_node_hctx) {
1898 if (dev->submit_queues != nr_online_nodes)
1899 dev->submit_queues = nr_online_nodes;
1900 } else if (dev->submit_queues > nr_cpu_ids)
1901 dev->submit_queues = nr_cpu_ids;
1902 else if (dev->submit_queues == 0)
1903 dev->submit_queues = 1;
1904 dev->prev_submit_queues = dev->submit_queues;
1905
1906 if (dev->poll_queues > g_poll_queues)
1907 dev->poll_queues = g_poll_queues;
1908 dev->prev_poll_queues = dev->poll_queues;
1909 dev->irqmode = min_t(unsigned int, dev->irqmode, NULL_IRQ_TIMER);
1910
1911 /* Do memory allocation, so set blocking */
1912 if (dev->memory_backed)
1913 dev->blocking = true;
1914 else /* cache is meaningless */
1915 dev->cache_size = 0;
1916 dev->cache_size = min_t(unsigned long, ULONG_MAX / 1024 / 1024,
1917 dev->cache_size);
1918 dev->mbps = min_t(unsigned int, 1024 * 40, dev->mbps);
1919
1920 if (dev->zoned &&
1921 (!dev->zone_size || !is_power_of_2(dev->zone_size))) {
1922 pr_err("zone_size must be power-of-two\n");
1923 return -EINVAL;
1924 }
1925
1926 return 0;
1927 }
1928
1929 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
__null_setup_fault(struct fault_attr * attr,char * str)1930 static bool __null_setup_fault(struct fault_attr *attr, char *str)
1931 {
1932 if (!str[0])
1933 return true;
1934
1935 if (!setup_fault_attr(attr, str))
1936 return false;
1937
1938 attr->verbose = 0;
1939 return true;
1940 }
1941 #endif
1942
null_setup_fault(void)1943 static bool null_setup_fault(void)
1944 {
1945 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1946 if (!__null_setup_fault(&null_timeout_attr, g_timeout_str))
1947 return false;
1948 if (!__null_setup_fault(&null_requeue_attr, g_requeue_str))
1949 return false;
1950 if (!__null_setup_fault(&null_init_hctx_attr, g_init_hctx_str))
1951 return false;
1952 #endif
1953 return true;
1954 }
1955
null_add_dev(struct nullb_device * dev)1956 static int null_add_dev(struct nullb_device *dev)
1957 {
1958 struct queue_limits lim = {
1959 .logical_block_size = dev->blocksize,
1960 .physical_block_size = dev->blocksize,
1961 .max_hw_sectors = dev->max_sectors,
1962 .dma_alignment = 1,
1963 };
1964
1965 struct nullb *nullb;
1966 int rv;
1967
1968 rv = null_validate_conf(dev);
1969 if (rv)
1970 return rv;
1971
1972 nullb = kzalloc_node(sizeof(*nullb), GFP_KERNEL, dev->home_node);
1973 if (!nullb) {
1974 rv = -ENOMEM;
1975 goto out;
1976 }
1977 nullb->dev = dev;
1978 dev->nullb = nullb;
1979
1980 spin_lock_init(&nullb->lock);
1981
1982 rv = setup_queues(nullb);
1983 if (rv)
1984 goto out_free_nullb;
1985
1986 rv = null_setup_tagset(nullb);
1987 if (rv)
1988 goto out_cleanup_queues;
1989
1990 if (dev->virt_boundary)
1991 lim.virt_boundary_mask = PAGE_SIZE - 1;
1992 null_config_discard(nullb, &lim);
1993 if (dev->zoned) {
1994 rv = null_init_zoned_dev(dev, &lim);
1995 if (rv)
1996 goto out_cleanup_tags;
1997 }
1998
1999 if (dev->cache_size > 0) {
2000 set_bit(NULLB_DEV_FL_CACHE, &nullb->dev->flags);
2001 lim.features |= BLK_FEAT_WRITE_CACHE;
2002 if (dev->fua)
2003 lim.features |= BLK_FEAT_FUA;
2004 }
2005
2006 if (dev->rotational)
2007 lim.features |= BLK_FEAT_ROTATIONAL;
2008
2009 nullb->disk = blk_mq_alloc_disk(nullb->tag_set, &lim, nullb);
2010 if (IS_ERR(nullb->disk)) {
2011 rv = PTR_ERR(nullb->disk);
2012 goto out_cleanup_zone;
2013 }
2014 nullb->q = nullb->disk->queue;
2015
2016 if (dev->mbps) {
2017 set_bit(NULLB_DEV_FL_THROTTLED, &dev->flags);
2018 nullb_setup_bwtimer(nullb);
2019 }
2020
2021 nullb->q->queuedata = nullb;
2022
2023 rv = ida_alloc(&nullb_indexes, GFP_KERNEL);
2024 if (rv < 0)
2025 goto out_cleanup_disk;
2026
2027 nullb->index = rv;
2028 dev->index = rv;
2029
2030 if (config_item_name(&dev->group.cg_item)) {
2031 /* Use configfs dir name as the device name */
2032 snprintf(nullb->disk_name, sizeof(nullb->disk_name),
2033 "%s", config_item_name(&dev->group.cg_item));
2034 } else {
2035 sprintf(nullb->disk_name, "nullb%d", nullb->index);
2036 }
2037
2038 set_capacity(nullb->disk,
2039 ((sector_t)nullb->dev->size * SZ_1M) >> SECTOR_SHIFT);
2040 nullb->disk->major = null_major;
2041 nullb->disk->first_minor = nullb->index;
2042 nullb->disk->minors = 1;
2043 nullb->disk->fops = &null_ops;
2044 nullb->disk->private_data = nullb;
2045 strscpy(nullb->disk->disk_name, nullb->disk_name);
2046
2047 if (nullb->dev->zoned) {
2048 rv = null_register_zoned_dev(nullb);
2049 if (rv)
2050 goto out_ida_free;
2051 }
2052
2053 rv = add_disk(nullb->disk);
2054 if (rv)
2055 goto out_ida_free;
2056
2057 list_add_tail(&nullb->list, &nullb_list);
2058
2059 pr_info("disk %s created\n", nullb->disk_name);
2060
2061 return 0;
2062
2063 out_ida_free:
2064 ida_free(&nullb_indexes, nullb->index);
2065 out_cleanup_disk:
2066 put_disk(nullb->disk);
2067 out_cleanup_zone:
2068 null_free_zoned_dev(dev);
2069 out_cleanup_tags:
2070 if (nullb->tag_set == &nullb->__tag_set)
2071 blk_mq_free_tag_set(nullb->tag_set);
2072 out_cleanup_queues:
2073 kfree(nullb->queues);
2074 out_free_nullb:
2075 kfree(nullb);
2076 dev->nullb = NULL;
2077 out:
2078 return rv;
2079 }
2080
null_find_dev_by_name(const char * name)2081 static struct nullb *null_find_dev_by_name(const char *name)
2082 {
2083 struct nullb *nullb = NULL, *nb;
2084
2085 mutex_lock(&lock);
2086 list_for_each_entry(nb, &nullb_list, list) {
2087 if (strcmp(nb->disk_name, name) == 0) {
2088 nullb = nb;
2089 break;
2090 }
2091 }
2092 mutex_unlock(&lock);
2093
2094 return nullb;
2095 }
2096
null_create_dev(void)2097 static int null_create_dev(void)
2098 {
2099 struct nullb_device *dev;
2100 int ret;
2101
2102 dev = null_alloc_dev();
2103 if (!dev)
2104 return -ENOMEM;
2105
2106 mutex_lock(&lock);
2107 ret = null_add_dev(dev);
2108 mutex_unlock(&lock);
2109 if (ret) {
2110 null_free_dev(dev);
2111 return ret;
2112 }
2113
2114 return 0;
2115 }
2116
null_destroy_dev(struct nullb * nullb)2117 static void null_destroy_dev(struct nullb *nullb)
2118 {
2119 struct nullb_device *dev = nullb->dev;
2120
2121 null_del_dev(nullb);
2122 null_free_device_storage(dev, false);
2123 null_free_dev(dev);
2124 }
2125
null_init(void)2126 static int __init null_init(void)
2127 {
2128 int ret = 0;
2129 unsigned int i;
2130 struct nullb *nullb;
2131
2132 if (g_bs > PAGE_SIZE) {
2133 pr_warn("invalid block size\n");
2134 pr_warn("defaults block size to %lu\n", PAGE_SIZE);
2135 g_bs = PAGE_SIZE;
2136 }
2137
2138 if (g_home_node != NUMA_NO_NODE && g_home_node >= nr_online_nodes) {
2139 pr_err("invalid home_node value\n");
2140 g_home_node = NUMA_NO_NODE;
2141 }
2142
2143 if (!null_setup_fault())
2144 return -EINVAL;
2145
2146 if (g_queue_mode == NULL_Q_RQ) {
2147 pr_err("legacy IO path is no longer available\n");
2148 return -EINVAL;
2149 }
2150
2151 if (g_use_per_node_hctx) {
2152 if (g_submit_queues != nr_online_nodes) {
2153 pr_warn("submit_queues param is set to %u.\n",
2154 nr_online_nodes);
2155 g_submit_queues = nr_online_nodes;
2156 }
2157 } else if (g_submit_queues > nr_cpu_ids) {
2158 g_submit_queues = nr_cpu_ids;
2159 } else if (g_submit_queues <= 0) {
2160 g_submit_queues = 1;
2161 }
2162
2163 config_group_init(&nullb_subsys.su_group);
2164 mutex_init(&nullb_subsys.su_mutex);
2165
2166 ret = configfs_register_subsystem(&nullb_subsys);
2167 if (ret)
2168 return ret;
2169
2170 mutex_init(&lock);
2171
2172 null_major = register_blkdev(0, "nullb");
2173 if (null_major < 0) {
2174 ret = null_major;
2175 goto err_conf;
2176 }
2177
2178 for (i = 0; i < nr_devices; i++) {
2179 ret = null_create_dev();
2180 if (ret)
2181 goto err_dev;
2182 }
2183
2184 pr_info("module loaded\n");
2185 return 0;
2186
2187 err_dev:
2188 while (!list_empty(&nullb_list)) {
2189 nullb = list_entry(nullb_list.next, struct nullb, list);
2190 null_destroy_dev(nullb);
2191 }
2192 unregister_blkdev(null_major, "nullb");
2193 err_conf:
2194 configfs_unregister_subsystem(&nullb_subsys);
2195 return ret;
2196 }
2197
null_exit(void)2198 static void __exit null_exit(void)
2199 {
2200 struct nullb *nullb;
2201
2202 configfs_unregister_subsystem(&nullb_subsys);
2203
2204 unregister_blkdev(null_major, "nullb");
2205
2206 mutex_lock(&lock);
2207 while (!list_empty(&nullb_list)) {
2208 nullb = list_entry(nullb_list.next, struct nullb, list);
2209 null_destroy_dev(nullb);
2210 }
2211 mutex_unlock(&lock);
2212
2213 if (tag_set.ops)
2214 blk_mq_free_tag_set(&tag_set);
2215
2216 mutex_destroy(&lock);
2217 }
2218
2219 module_init(null_init);
2220 module_exit(null_exit);
2221
2222 MODULE_AUTHOR("Jens Axboe <axboe@kernel.dk>");
2223 MODULE_DESCRIPTION("multi queue aware block test driver");
2224 MODULE_LICENSE("GPL");
2225