xref: /linux/drivers/block/null_blk/main.c (revision 40b94ec7edbbb867c4e26a1a43d2b898f04b93c5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Add configfs and memory store: Kyungchan Koh <kkc6196@fb.com> and
4  * Shaohua Li <shli@fb.com>
5  */
6 #include <linux/module.h>
7 
8 #include <linux/moduleparam.h>
9 #include <linux/sched.h>
10 #include <linux/fs.h>
11 #include <linux/init.h>
12 #include "null_blk.h"
13 
14 #undef pr_fmt
15 #define pr_fmt(fmt)	"null_blk: " fmt
16 
17 #define FREE_BATCH		16
18 
19 #define TICKS_PER_SEC		50ULL
20 #define TIMER_INTERVAL		(NSEC_PER_SEC / TICKS_PER_SEC)
21 
22 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
23 static DECLARE_FAULT_ATTR(null_timeout_attr);
24 static DECLARE_FAULT_ATTR(null_requeue_attr);
25 static DECLARE_FAULT_ATTR(null_init_hctx_attr);
26 #endif
27 
28 static inline u64 mb_per_tick(int mbps)
29 {
30 	return (1 << 20) / TICKS_PER_SEC * ((u64) mbps);
31 }
32 
33 /*
34  * Status flags for nullb_device.
35  *
36  * CONFIGURED:	Device has been configured and turned on. Cannot reconfigure.
37  * UP:		Device is currently on and visible in userspace.
38  * THROTTLED:	Device is being throttled.
39  * CACHE:	Device is using a write-back cache.
40  */
41 enum nullb_device_flags {
42 	NULLB_DEV_FL_CONFIGURED	= 0,
43 	NULLB_DEV_FL_UP		= 1,
44 	NULLB_DEV_FL_THROTTLED	= 2,
45 	NULLB_DEV_FL_CACHE	= 3,
46 };
47 
48 #define MAP_SZ		((PAGE_SIZE >> SECTOR_SHIFT) + 2)
49 /*
50  * nullb_page is a page in memory for nullb devices.
51  *
52  * @page:	The page holding the data.
53  * @bitmap:	The bitmap represents which sector in the page has data.
54  *		Each bit represents one block size. For example, sector 8
55  *		will use the 7th bit
56  * The highest 2 bits of bitmap are for special purpose. LOCK means the cache
57  * page is being flushing to storage. FREE means the cache page is freed and
58  * should be skipped from flushing to storage. Please see
59  * null_make_cache_space
60  */
61 struct nullb_page {
62 	struct page *page;
63 	DECLARE_BITMAP(bitmap, MAP_SZ);
64 };
65 #define NULLB_PAGE_LOCK (MAP_SZ - 1)
66 #define NULLB_PAGE_FREE (MAP_SZ - 2)
67 
68 static LIST_HEAD(nullb_list);
69 static struct mutex lock;
70 static int null_major;
71 static DEFINE_IDA(nullb_indexes);
72 static struct blk_mq_tag_set tag_set;
73 
74 enum {
75 	NULL_IRQ_NONE		= 0,
76 	NULL_IRQ_SOFTIRQ	= 1,
77 	NULL_IRQ_TIMER		= 2,
78 };
79 
80 static bool g_virt_boundary;
81 module_param_named(virt_boundary, g_virt_boundary, bool, 0444);
82 MODULE_PARM_DESC(virt_boundary, "Require a virtual boundary for the device. Default: False");
83 
84 static int g_no_sched;
85 module_param_named(no_sched, g_no_sched, int, 0444);
86 MODULE_PARM_DESC(no_sched, "No io scheduler");
87 
88 static int g_submit_queues = 1;
89 module_param_named(submit_queues, g_submit_queues, int, 0444);
90 MODULE_PARM_DESC(submit_queues, "Number of submission queues");
91 
92 static int g_poll_queues = 1;
93 module_param_named(poll_queues, g_poll_queues, int, 0444);
94 MODULE_PARM_DESC(poll_queues, "Number of IOPOLL submission queues");
95 
96 static int g_home_node = NUMA_NO_NODE;
97 module_param_named(home_node, g_home_node, int, 0444);
98 MODULE_PARM_DESC(home_node, "Home node for the device");
99 
100 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
101 /*
102  * For more details about fault injection, please refer to
103  * Documentation/fault-injection/fault-injection.rst.
104  */
105 static char g_timeout_str[80];
106 module_param_string(timeout, g_timeout_str, sizeof(g_timeout_str), 0444);
107 MODULE_PARM_DESC(timeout, "Fault injection. timeout=<interval>,<probability>,<space>,<times>");
108 
109 static char g_requeue_str[80];
110 module_param_string(requeue, g_requeue_str, sizeof(g_requeue_str), 0444);
111 MODULE_PARM_DESC(requeue, "Fault injection. requeue=<interval>,<probability>,<space>,<times>");
112 
113 static char g_init_hctx_str[80];
114 module_param_string(init_hctx, g_init_hctx_str, sizeof(g_init_hctx_str), 0444);
115 MODULE_PARM_DESC(init_hctx, "Fault injection to fail hctx init. init_hctx=<interval>,<probability>,<space>,<times>");
116 #endif
117 
118 /*
119  * Historic queue modes.
120  *
121  * These days nothing but NULL_Q_MQ is actually supported, but we keep it the
122  * enum for error reporting.
123  */
124 enum {
125 	NULL_Q_BIO	= 0,
126 	NULL_Q_RQ	= 1,
127 	NULL_Q_MQ	= 2,
128 };
129 
130 static int g_queue_mode = NULL_Q_MQ;
131 
132 static int null_param_store_val(const char *str, int *val, int min, int max)
133 {
134 	int ret, new_val;
135 
136 	ret = kstrtoint(str, 10, &new_val);
137 	if (ret)
138 		return -EINVAL;
139 
140 	if (new_val < min || new_val > max)
141 		return -EINVAL;
142 
143 	*val = new_val;
144 	return 0;
145 }
146 
147 static int null_set_queue_mode(const char *str, const struct kernel_param *kp)
148 {
149 	return null_param_store_val(str, &g_queue_mode, NULL_Q_BIO, NULL_Q_MQ);
150 }
151 
152 static const struct kernel_param_ops null_queue_mode_param_ops = {
153 	.set	= null_set_queue_mode,
154 	.get	= param_get_int,
155 };
156 
157 device_param_cb(queue_mode, &null_queue_mode_param_ops, &g_queue_mode, 0444);
158 MODULE_PARM_DESC(queue_mode, "Block interface to use (0=bio,1=rq,2=multiqueue)");
159 
160 static int g_gb = 250;
161 module_param_named(gb, g_gb, int, 0444);
162 MODULE_PARM_DESC(gb, "Size in GB");
163 
164 static int g_bs = 512;
165 module_param_named(bs, g_bs, int, 0444);
166 MODULE_PARM_DESC(bs, "Block size (in bytes)");
167 
168 static int g_max_sectors;
169 module_param_named(max_sectors, g_max_sectors, int, 0444);
170 MODULE_PARM_DESC(max_sectors, "Maximum size of a command (in 512B sectors)");
171 
172 static unsigned int nr_devices = 1;
173 module_param(nr_devices, uint, 0444);
174 MODULE_PARM_DESC(nr_devices, "Number of devices to register");
175 
176 static bool g_blocking;
177 module_param_named(blocking, g_blocking, bool, 0444);
178 MODULE_PARM_DESC(blocking, "Register as a blocking blk-mq driver device");
179 
180 static bool g_shared_tags;
181 module_param_named(shared_tags, g_shared_tags, bool, 0444);
182 MODULE_PARM_DESC(shared_tags, "Share tag set between devices for blk-mq");
183 
184 static bool g_shared_tag_bitmap;
185 module_param_named(shared_tag_bitmap, g_shared_tag_bitmap, bool, 0444);
186 MODULE_PARM_DESC(shared_tag_bitmap, "Use shared tag bitmap for all submission queues for blk-mq");
187 
188 static int g_irqmode = NULL_IRQ_SOFTIRQ;
189 
190 static int null_set_irqmode(const char *str, const struct kernel_param *kp)
191 {
192 	return null_param_store_val(str, &g_irqmode, NULL_IRQ_NONE,
193 					NULL_IRQ_TIMER);
194 }
195 
196 static const struct kernel_param_ops null_irqmode_param_ops = {
197 	.set	= null_set_irqmode,
198 	.get	= param_get_int,
199 };
200 
201 device_param_cb(irqmode, &null_irqmode_param_ops, &g_irqmode, 0444);
202 MODULE_PARM_DESC(irqmode, "IRQ completion handler. 0-none, 1-softirq, 2-timer");
203 
204 static unsigned long g_completion_nsec = 10000;
205 module_param_named(completion_nsec, g_completion_nsec, ulong, 0444);
206 MODULE_PARM_DESC(completion_nsec, "Time in ns to complete a request in hardware. Default: 10,000ns");
207 
208 static int g_hw_queue_depth = 64;
209 module_param_named(hw_queue_depth, g_hw_queue_depth, int, 0444);
210 MODULE_PARM_DESC(hw_queue_depth, "Queue depth for each hardware queue. Default: 64");
211 
212 static bool g_use_per_node_hctx;
213 module_param_named(use_per_node_hctx, g_use_per_node_hctx, bool, 0444);
214 MODULE_PARM_DESC(use_per_node_hctx, "Use per-node allocation for hardware context queues. Default: false");
215 
216 static bool g_memory_backed;
217 module_param_named(memory_backed, g_memory_backed, bool, 0444);
218 MODULE_PARM_DESC(memory_backed, "Create a memory-backed block device. Default: false");
219 
220 static bool g_discard;
221 module_param_named(discard, g_discard, bool, 0444);
222 MODULE_PARM_DESC(discard, "Support discard operations (requires memory-backed null_blk device). Default: false");
223 
224 static unsigned long g_cache_size;
225 module_param_named(cache_size, g_cache_size, ulong, 0444);
226 MODULE_PARM_DESC(cache_size, "Cache size in MiB for memory-backed device. Default: 0 (none)");
227 
228 static bool g_fua = true;
229 module_param_named(fua, g_fua, bool, 0444);
230 MODULE_PARM_DESC(fua, "Enable/disable FUA support when cache_size is used. Default: true");
231 
232 static unsigned int g_mbps;
233 module_param_named(mbps, g_mbps, uint, 0444);
234 MODULE_PARM_DESC(mbps, "Limit maximum bandwidth (in MiB/s). Default: 0 (no limit)");
235 
236 static bool g_zoned;
237 module_param_named(zoned, g_zoned, bool, S_IRUGO);
238 MODULE_PARM_DESC(zoned, "Make device as a host-managed zoned block device. Default: false");
239 
240 static unsigned long g_zone_size = 256;
241 module_param_named(zone_size, g_zone_size, ulong, S_IRUGO);
242 MODULE_PARM_DESC(zone_size, "Zone size in MB when block device is zoned. Must be power-of-two: Default: 256");
243 
244 static unsigned long g_zone_capacity;
245 module_param_named(zone_capacity, g_zone_capacity, ulong, 0444);
246 MODULE_PARM_DESC(zone_capacity, "Zone capacity in MB when block device is zoned. Can be less than or equal to zone size. Default: Zone size");
247 
248 static unsigned int g_zone_nr_conv;
249 module_param_named(zone_nr_conv, g_zone_nr_conv, uint, 0444);
250 MODULE_PARM_DESC(zone_nr_conv, "Number of conventional zones when block device is zoned. Default: 0");
251 
252 static unsigned int g_zone_max_open;
253 module_param_named(zone_max_open, g_zone_max_open, uint, 0444);
254 MODULE_PARM_DESC(zone_max_open, "Maximum number of open zones when block device is zoned. Default: 0 (no limit)");
255 
256 static unsigned int g_zone_max_active;
257 module_param_named(zone_max_active, g_zone_max_active, uint, 0444);
258 MODULE_PARM_DESC(zone_max_active, "Maximum number of active zones when block device is zoned. Default: 0 (no limit)");
259 
260 static int g_zone_append_max_sectors = INT_MAX;
261 module_param_named(zone_append_max_sectors, g_zone_append_max_sectors, int, 0444);
262 MODULE_PARM_DESC(zone_append_max_sectors,
263 		 "Maximum size of a zone append command (in 512B sectors). Specify 0 for zone append emulation");
264 
265 static bool g_zone_full;
266 module_param_named(zone_full, g_zone_full, bool, S_IRUGO);
267 MODULE_PARM_DESC(zone_full, "Initialize the sequential write required zones of a zoned device to be full. Default: false");
268 
269 static bool g_rotational;
270 module_param_named(rotational, g_rotational, bool, S_IRUGO);
271 MODULE_PARM_DESC(rotational, "Set the rotational feature for the device. Default: false");
272 
273 static struct nullb_device *null_alloc_dev(void);
274 static void null_free_dev(struct nullb_device *dev);
275 static void null_del_dev(struct nullb *nullb);
276 static int null_add_dev(struct nullb_device *dev);
277 static struct nullb *null_find_dev_by_name(const char *name);
278 static void null_free_device_storage(struct nullb_device *dev, bool is_cache);
279 
280 static inline struct nullb_device *to_nullb_device(struct config_item *item)
281 {
282 	return item ? container_of(to_config_group(item), struct nullb_device, group) : NULL;
283 }
284 
285 static inline ssize_t nullb_device_uint_attr_show(unsigned int val, char *page)
286 {
287 	return snprintf(page, PAGE_SIZE, "%u\n", val);
288 }
289 
290 static inline ssize_t nullb_device_ulong_attr_show(unsigned long val,
291 	char *page)
292 {
293 	return snprintf(page, PAGE_SIZE, "%lu\n", val);
294 }
295 
296 static inline ssize_t nullb_device_bool_attr_show(bool val, char *page)
297 {
298 	return snprintf(page, PAGE_SIZE, "%u\n", val);
299 }
300 
301 static ssize_t nullb_device_uint_attr_store(unsigned int *val,
302 	const char *page, size_t count)
303 {
304 	unsigned int tmp;
305 	int result;
306 
307 	result = kstrtouint(page, 0, &tmp);
308 	if (result < 0)
309 		return result;
310 
311 	*val = tmp;
312 	return count;
313 }
314 
315 static ssize_t nullb_device_ulong_attr_store(unsigned long *val,
316 	const char *page, size_t count)
317 {
318 	int result;
319 	unsigned long tmp;
320 
321 	result = kstrtoul(page, 0, &tmp);
322 	if (result < 0)
323 		return result;
324 
325 	*val = tmp;
326 	return count;
327 }
328 
329 static ssize_t nullb_device_bool_attr_store(bool *val, const char *page,
330 	size_t count)
331 {
332 	bool tmp;
333 	int result;
334 
335 	result = kstrtobool(page,  &tmp);
336 	if (result < 0)
337 		return result;
338 
339 	*val = tmp;
340 	return count;
341 }
342 
343 /* The following macro should only be used with TYPE = {uint, ulong, bool}. */
344 #define NULLB_DEVICE_ATTR(NAME, TYPE, APPLY)				\
345 static ssize_t								\
346 nullb_device_##NAME##_show(struct config_item *item, char *page)	\
347 {									\
348 	return nullb_device_##TYPE##_attr_show(				\
349 				to_nullb_device(item)->NAME, page);	\
350 }									\
351 static ssize_t								\
352 nullb_device_##NAME##_store(struct config_item *item, const char *page,	\
353 			    size_t count)				\
354 {									\
355 	int (*apply_fn)(struct nullb_device *dev, TYPE new_value) = APPLY;\
356 	struct nullb_device *dev = to_nullb_device(item);		\
357 	TYPE new_value = 0;						\
358 	int ret;							\
359 									\
360 	ret = nullb_device_##TYPE##_attr_store(&new_value, page, count);\
361 	if (ret < 0)							\
362 		return ret;						\
363 	if (apply_fn)							\
364 		ret = apply_fn(dev, new_value);				\
365 	else if (test_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags)) 	\
366 		ret = -EBUSY;						\
367 	if (ret < 0)							\
368 		return ret;						\
369 	dev->NAME = new_value;						\
370 	return count;							\
371 }									\
372 CONFIGFS_ATTR(nullb_device_, NAME);
373 
374 static int nullb_update_nr_hw_queues(struct nullb_device *dev,
375 				     unsigned int submit_queues,
376 				     unsigned int poll_queues)
377 
378 {
379 	struct blk_mq_tag_set *set;
380 	int ret, nr_hw_queues;
381 
382 	if (!dev->nullb)
383 		return 0;
384 
385 	/*
386 	 * Make sure at least one submit queue exists.
387 	 */
388 	if (!submit_queues)
389 		return -EINVAL;
390 
391 	/*
392 	 * Make sure that null_init_hctx() does not access nullb->queues[] past
393 	 * the end of that array.
394 	 */
395 	if (submit_queues > nr_cpu_ids || poll_queues > g_poll_queues)
396 		return -EINVAL;
397 
398 	/*
399 	 * Keep previous and new queue numbers in nullb_device for reference in
400 	 * the call back function null_map_queues().
401 	 */
402 	dev->prev_submit_queues = dev->submit_queues;
403 	dev->prev_poll_queues = dev->poll_queues;
404 	dev->submit_queues = submit_queues;
405 	dev->poll_queues = poll_queues;
406 
407 	set = dev->nullb->tag_set;
408 	nr_hw_queues = submit_queues + poll_queues;
409 	blk_mq_update_nr_hw_queues(set, nr_hw_queues);
410 	ret = set->nr_hw_queues == nr_hw_queues ? 0 : -ENOMEM;
411 
412 	if (ret) {
413 		/* on error, revert the queue numbers */
414 		dev->submit_queues = dev->prev_submit_queues;
415 		dev->poll_queues = dev->prev_poll_queues;
416 	}
417 
418 	return ret;
419 }
420 
421 static int nullb_apply_submit_queues(struct nullb_device *dev,
422 				     unsigned int submit_queues)
423 {
424 	int ret;
425 
426 	mutex_lock(&lock);
427 	ret = nullb_update_nr_hw_queues(dev, submit_queues, dev->poll_queues);
428 	mutex_unlock(&lock);
429 
430 	return ret;
431 }
432 
433 static int nullb_apply_poll_queues(struct nullb_device *dev,
434 				   unsigned int poll_queues)
435 {
436 	int ret;
437 
438 	mutex_lock(&lock);
439 	ret = nullb_update_nr_hw_queues(dev, dev->submit_queues, poll_queues);
440 	mutex_unlock(&lock);
441 
442 	return ret;
443 }
444 
445 NULLB_DEVICE_ATTR(size, ulong, NULL);
446 NULLB_DEVICE_ATTR(completion_nsec, ulong, NULL);
447 NULLB_DEVICE_ATTR(submit_queues, uint, nullb_apply_submit_queues);
448 NULLB_DEVICE_ATTR(poll_queues, uint, nullb_apply_poll_queues);
449 NULLB_DEVICE_ATTR(home_node, uint, NULL);
450 NULLB_DEVICE_ATTR(queue_mode, uint, NULL);
451 NULLB_DEVICE_ATTR(blocksize, uint, NULL);
452 NULLB_DEVICE_ATTR(max_sectors, uint, NULL);
453 NULLB_DEVICE_ATTR(irqmode, uint, NULL);
454 NULLB_DEVICE_ATTR(hw_queue_depth, uint, NULL);
455 NULLB_DEVICE_ATTR(index, uint, NULL);
456 NULLB_DEVICE_ATTR(blocking, bool, NULL);
457 NULLB_DEVICE_ATTR(use_per_node_hctx, bool, NULL);
458 NULLB_DEVICE_ATTR(memory_backed, bool, NULL);
459 NULLB_DEVICE_ATTR(discard, bool, NULL);
460 NULLB_DEVICE_ATTR(mbps, uint, NULL);
461 NULLB_DEVICE_ATTR(cache_size, ulong, NULL);
462 NULLB_DEVICE_ATTR(zoned, bool, NULL);
463 NULLB_DEVICE_ATTR(zone_size, ulong, NULL);
464 NULLB_DEVICE_ATTR(zone_capacity, ulong, NULL);
465 NULLB_DEVICE_ATTR(zone_nr_conv, uint, NULL);
466 NULLB_DEVICE_ATTR(zone_max_open, uint, NULL);
467 NULLB_DEVICE_ATTR(zone_max_active, uint, NULL);
468 NULLB_DEVICE_ATTR(zone_append_max_sectors, uint, NULL);
469 NULLB_DEVICE_ATTR(zone_full, bool, NULL);
470 NULLB_DEVICE_ATTR(virt_boundary, bool, NULL);
471 NULLB_DEVICE_ATTR(no_sched, bool, NULL);
472 NULLB_DEVICE_ATTR(shared_tags, bool, NULL);
473 NULLB_DEVICE_ATTR(shared_tag_bitmap, bool, NULL);
474 NULLB_DEVICE_ATTR(fua, bool, NULL);
475 NULLB_DEVICE_ATTR(rotational, bool, NULL);
476 NULLB_DEVICE_ATTR(badblocks_once, bool, NULL);
477 NULLB_DEVICE_ATTR(badblocks_partial_io, bool, NULL);
478 
479 static ssize_t nullb_device_power_show(struct config_item *item, char *page)
480 {
481 	return nullb_device_bool_attr_show(to_nullb_device(item)->power, page);
482 }
483 
484 static ssize_t nullb_device_power_store(struct config_item *item,
485 				     const char *page, size_t count)
486 {
487 	struct nullb_device *dev = to_nullb_device(item);
488 	bool newp = false;
489 	ssize_t ret;
490 
491 	ret = nullb_device_bool_attr_store(&newp, page, count);
492 	if (ret < 0)
493 		return ret;
494 
495 	ret = count;
496 	mutex_lock(&lock);
497 	if (!dev->power && newp) {
498 		if (test_and_set_bit(NULLB_DEV_FL_UP, &dev->flags))
499 			goto out;
500 
501 		ret = null_add_dev(dev);
502 		if (ret) {
503 			clear_bit(NULLB_DEV_FL_UP, &dev->flags);
504 			goto out;
505 		}
506 
507 		set_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags);
508 		dev->power = newp;
509 		ret = count;
510 	} else if (dev->power && !newp) {
511 		if (test_and_clear_bit(NULLB_DEV_FL_UP, &dev->flags)) {
512 			dev->power = newp;
513 			null_del_dev(dev->nullb);
514 		}
515 		clear_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags);
516 	}
517 
518 out:
519 	mutex_unlock(&lock);
520 	return ret;
521 }
522 
523 CONFIGFS_ATTR(nullb_device_, power);
524 
525 static ssize_t nullb_device_badblocks_show(struct config_item *item, char *page)
526 {
527 	struct nullb_device *t_dev = to_nullb_device(item);
528 
529 	return badblocks_show(&t_dev->badblocks, page, 0);
530 }
531 
532 static ssize_t nullb_device_badblocks_store(struct config_item *item,
533 				     const char *page, size_t count)
534 {
535 	struct nullb_device *t_dev = to_nullb_device(item);
536 	char *orig, *buf, *tmp;
537 	u64 start, end;
538 	int ret;
539 
540 	orig = kstrndup(page, count, GFP_KERNEL);
541 	if (!orig)
542 		return -ENOMEM;
543 
544 	buf = strstrip(orig);
545 
546 	ret = -EINVAL;
547 	if (buf[0] != '+' && buf[0] != '-')
548 		goto out;
549 	tmp = strchr(&buf[1], '-');
550 	if (!tmp)
551 		goto out;
552 	*tmp = '\0';
553 	ret = kstrtoull(buf + 1, 0, &start);
554 	if (ret)
555 		goto out;
556 	ret = kstrtoull(tmp + 1, 0, &end);
557 	if (ret)
558 		goto out;
559 	ret = -EINVAL;
560 	if (start > end)
561 		goto out;
562 	/* enable badblocks */
563 	cmpxchg(&t_dev->badblocks.shift, -1, 0);
564 	if (buf[0] == '+') {
565 		if (badblocks_set(&t_dev->badblocks, start,
566 				  end - start + 1, 1))
567 			ret = count;
568 	} else if (badblocks_clear(&t_dev->badblocks, start,
569 				   end - start + 1)) {
570 		ret = count;
571 	}
572 out:
573 	kfree(orig);
574 	return ret;
575 }
576 CONFIGFS_ATTR(nullb_device_, badblocks);
577 
578 static ssize_t nullb_device_zone_readonly_store(struct config_item *item,
579 						const char *page, size_t count)
580 {
581 	struct nullb_device *dev = to_nullb_device(item);
582 
583 	return zone_cond_store(dev, page, count, BLK_ZONE_COND_READONLY);
584 }
585 CONFIGFS_ATTR_WO(nullb_device_, zone_readonly);
586 
587 static ssize_t nullb_device_zone_offline_store(struct config_item *item,
588 					       const char *page, size_t count)
589 {
590 	struct nullb_device *dev = to_nullb_device(item);
591 
592 	return zone_cond_store(dev, page, count, BLK_ZONE_COND_OFFLINE);
593 }
594 CONFIGFS_ATTR_WO(nullb_device_, zone_offline);
595 
596 static struct configfs_attribute *nullb_device_attrs[] = {
597 	&nullb_device_attr_badblocks,
598 	&nullb_device_attr_badblocks_once,
599 	&nullb_device_attr_badblocks_partial_io,
600 	&nullb_device_attr_blocking,
601 	&nullb_device_attr_blocksize,
602 	&nullb_device_attr_cache_size,
603 	&nullb_device_attr_completion_nsec,
604 	&nullb_device_attr_discard,
605 	&nullb_device_attr_fua,
606 	&nullb_device_attr_home_node,
607 	&nullb_device_attr_hw_queue_depth,
608 	&nullb_device_attr_index,
609 	&nullb_device_attr_irqmode,
610 	&nullb_device_attr_max_sectors,
611 	&nullb_device_attr_mbps,
612 	&nullb_device_attr_memory_backed,
613 	&nullb_device_attr_no_sched,
614 	&nullb_device_attr_poll_queues,
615 	&nullb_device_attr_power,
616 	&nullb_device_attr_queue_mode,
617 	&nullb_device_attr_rotational,
618 	&nullb_device_attr_shared_tag_bitmap,
619 	&nullb_device_attr_shared_tags,
620 	&nullb_device_attr_size,
621 	&nullb_device_attr_submit_queues,
622 	&nullb_device_attr_use_per_node_hctx,
623 	&nullb_device_attr_virt_boundary,
624 	&nullb_device_attr_zone_append_max_sectors,
625 	&nullb_device_attr_zone_capacity,
626 	&nullb_device_attr_zone_full,
627 	&nullb_device_attr_zone_max_active,
628 	&nullb_device_attr_zone_max_open,
629 	&nullb_device_attr_zone_nr_conv,
630 	&nullb_device_attr_zone_offline,
631 	&nullb_device_attr_zone_readonly,
632 	&nullb_device_attr_zone_size,
633 	&nullb_device_attr_zoned,
634 	NULL,
635 };
636 
637 static void nullb_device_release(struct config_item *item)
638 {
639 	struct nullb_device *dev = to_nullb_device(item);
640 
641 	null_free_device_storage(dev, false);
642 	null_free_dev(dev);
643 }
644 
645 static struct configfs_item_operations nullb_device_ops = {
646 	.release	= nullb_device_release,
647 };
648 
649 static const struct config_item_type nullb_device_type = {
650 	.ct_item_ops	= &nullb_device_ops,
651 	.ct_attrs	= nullb_device_attrs,
652 	.ct_owner	= THIS_MODULE,
653 };
654 
655 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
656 
657 static void nullb_add_fault_config(struct nullb_device *dev)
658 {
659 	fault_config_init(&dev->timeout_config, "timeout_inject");
660 	fault_config_init(&dev->requeue_config, "requeue_inject");
661 	fault_config_init(&dev->init_hctx_fault_config, "init_hctx_fault_inject");
662 
663 	configfs_add_default_group(&dev->timeout_config.group, &dev->group);
664 	configfs_add_default_group(&dev->requeue_config.group, &dev->group);
665 	configfs_add_default_group(&dev->init_hctx_fault_config.group, &dev->group);
666 }
667 
668 static void nullb_del_fault_config(struct nullb_device *dev)
669 {
670 	config_item_put(&dev->init_hctx_fault_config.group.cg_item);
671 	config_item_put(&dev->requeue_config.group.cg_item);
672 	config_item_put(&dev->timeout_config.group.cg_item);
673 }
674 
675 #else
676 
677 static void nullb_add_fault_config(struct nullb_device *dev)
678 {
679 }
680 
681 static void nullb_del_fault_config(struct nullb_device *dev)
682 {
683 }
684 #endif
685 
686 static struct
687 config_group *nullb_group_make_group(struct config_group *group, const char *name)
688 {
689 	struct nullb_device *dev;
690 
691 	if (null_find_dev_by_name(name))
692 		return ERR_PTR(-EEXIST);
693 
694 	dev = null_alloc_dev();
695 	if (!dev)
696 		return ERR_PTR(-ENOMEM);
697 
698 	config_group_init_type_name(&dev->group, name, &nullb_device_type);
699 	nullb_add_fault_config(dev);
700 
701 	return &dev->group;
702 }
703 
704 static void
705 nullb_group_drop_item(struct config_group *group, struct config_item *item)
706 {
707 	struct nullb_device *dev = to_nullb_device(item);
708 
709 	if (test_and_clear_bit(NULLB_DEV_FL_UP, &dev->flags)) {
710 		mutex_lock(&lock);
711 		dev->power = false;
712 		null_del_dev(dev->nullb);
713 		mutex_unlock(&lock);
714 	}
715 	nullb_del_fault_config(dev);
716 	config_item_put(item);
717 }
718 
719 static ssize_t memb_group_features_show(struct config_item *item, char *page)
720 {
721 
722 	struct configfs_attribute **entry;
723 	char delimiter = ',';
724 	size_t left = PAGE_SIZE;
725 	size_t written = 0;
726 	int ret;
727 
728 	for (entry = &nullb_device_attrs[0]; *entry && left > 0; entry++) {
729 		if (!*(entry + 1))
730 			delimiter = '\n';
731 		ret = snprintf(page + written, left, "%s%c", (*entry)->ca_name,
732 			       delimiter);
733 		if (ret >= left) {
734 			WARN_ONCE(1, "Too many null_blk features to print\n");
735 			memzero_explicit(page, PAGE_SIZE);
736 			return -ENOBUFS;
737 		}
738 		left -= ret;
739 		written += ret;
740 	}
741 
742 	return written;
743 }
744 
745 CONFIGFS_ATTR_RO(memb_group_, features);
746 
747 static struct configfs_attribute *nullb_group_attrs[] = {
748 	&memb_group_attr_features,
749 	NULL,
750 };
751 
752 static struct configfs_group_operations nullb_group_ops = {
753 	.make_group	= nullb_group_make_group,
754 	.drop_item	= nullb_group_drop_item,
755 };
756 
757 static const struct config_item_type nullb_group_type = {
758 	.ct_group_ops	= &nullb_group_ops,
759 	.ct_attrs	= nullb_group_attrs,
760 	.ct_owner	= THIS_MODULE,
761 };
762 
763 static struct configfs_subsystem nullb_subsys = {
764 	.su_group = {
765 		.cg_item = {
766 			.ci_namebuf = "nullb",
767 			.ci_type = &nullb_group_type,
768 		},
769 	},
770 };
771 
772 static inline int null_cache_active(struct nullb *nullb)
773 {
774 	return test_bit(NULLB_DEV_FL_CACHE, &nullb->dev->flags);
775 }
776 
777 static struct nullb_device *null_alloc_dev(void)
778 {
779 	struct nullb_device *dev;
780 
781 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
782 	if (!dev)
783 		return NULL;
784 
785 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
786 	dev->timeout_config.attr = null_timeout_attr;
787 	dev->requeue_config.attr = null_requeue_attr;
788 	dev->init_hctx_fault_config.attr = null_init_hctx_attr;
789 #endif
790 
791 	INIT_RADIX_TREE(&dev->data, GFP_ATOMIC);
792 	INIT_RADIX_TREE(&dev->cache, GFP_ATOMIC);
793 	if (badblocks_init(&dev->badblocks, 0)) {
794 		kfree(dev);
795 		return NULL;
796 	}
797 
798 	dev->size = g_gb * 1024;
799 	dev->completion_nsec = g_completion_nsec;
800 	dev->submit_queues = g_submit_queues;
801 	dev->prev_submit_queues = g_submit_queues;
802 	dev->poll_queues = g_poll_queues;
803 	dev->prev_poll_queues = g_poll_queues;
804 	dev->home_node = g_home_node;
805 	dev->queue_mode = g_queue_mode;
806 	dev->blocksize = g_bs;
807 	dev->max_sectors = g_max_sectors;
808 	dev->irqmode = g_irqmode;
809 	dev->hw_queue_depth = g_hw_queue_depth;
810 	dev->blocking = g_blocking;
811 	dev->memory_backed = g_memory_backed;
812 	dev->discard = g_discard;
813 	dev->cache_size = g_cache_size;
814 	dev->mbps = g_mbps;
815 	dev->use_per_node_hctx = g_use_per_node_hctx;
816 	dev->zoned = g_zoned;
817 	dev->zone_size = g_zone_size;
818 	dev->zone_capacity = g_zone_capacity;
819 	dev->zone_nr_conv = g_zone_nr_conv;
820 	dev->zone_max_open = g_zone_max_open;
821 	dev->zone_max_active = g_zone_max_active;
822 	dev->zone_append_max_sectors = g_zone_append_max_sectors;
823 	dev->zone_full = g_zone_full;
824 	dev->virt_boundary = g_virt_boundary;
825 	dev->no_sched = g_no_sched;
826 	dev->shared_tags = g_shared_tags;
827 	dev->shared_tag_bitmap = g_shared_tag_bitmap;
828 	dev->fua = g_fua;
829 	dev->rotational = g_rotational;
830 
831 	return dev;
832 }
833 
834 static void null_free_dev(struct nullb_device *dev)
835 {
836 	if (!dev)
837 		return;
838 
839 	null_free_zoned_dev(dev);
840 	badblocks_exit(&dev->badblocks);
841 	kfree(dev);
842 }
843 
844 static enum hrtimer_restart null_cmd_timer_expired(struct hrtimer *timer)
845 {
846 	struct nullb_cmd *cmd = container_of(timer, struct nullb_cmd, timer);
847 
848 	blk_mq_end_request(blk_mq_rq_from_pdu(cmd), cmd->error);
849 	return HRTIMER_NORESTART;
850 }
851 
852 static void null_cmd_end_timer(struct nullb_cmd *cmd)
853 {
854 	ktime_t kt = cmd->nq->dev->completion_nsec;
855 
856 	hrtimer_start(&cmd->timer, kt, HRTIMER_MODE_REL);
857 }
858 
859 static void null_complete_rq(struct request *rq)
860 {
861 	struct nullb_cmd *cmd = blk_mq_rq_to_pdu(rq);
862 
863 	blk_mq_end_request(rq, cmd->error);
864 }
865 
866 static struct nullb_page *null_alloc_page(void)
867 {
868 	struct nullb_page *t_page;
869 
870 	t_page = kmalloc(sizeof(struct nullb_page), GFP_NOIO);
871 	if (!t_page)
872 		return NULL;
873 
874 	t_page->page = alloc_pages(GFP_NOIO, 0);
875 	if (!t_page->page) {
876 		kfree(t_page);
877 		return NULL;
878 	}
879 
880 	memset(t_page->bitmap, 0, sizeof(t_page->bitmap));
881 	return t_page;
882 }
883 
884 static void null_free_page(struct nullb_page *t_page)
885 {
886 	__set_bit(NULLB_PAGE_FREE, t_page->bitmap);
887 	if (test_bit(NULLB_PAGE_LOCK, t_page->bitmap))
888 		return;
889 	__free_page(t_page->page);
890 	kfree(t_page);
891 }
892 
893 static bool null_page_empty(struct nullb_page *page)
894 {
895 	int size = MAP_SZ - 2;
896 
897 	return find_first_bit(page->bitmap, size) == size;
898 }
899 
900 static void null_free_sector(struct nullb *nullb, sector_t sector,
901 	bool is_cache)
902 {
903 	unsigned int sector_bit;
904 	u64 idx;
905 	struct nullb_page *t_page, *ret;
906 	struct radix_tree_root *root;
907 
908 	root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
909 	idx = sector >> PAGE_SECTORS_SHIFT;
910 	sector_bit = (sector & SECTOR_MASK);
911 
912 	t_page = radix_tree_lookup(root, idx);
913 	if (t_page) {
914 		__clear_bit(sector_bit, t_page->bitmap);
915 
916 		if (null_page_empty(t_page)) {
917 			ret = radix_tree_delete_item(root, idx, t_page);
918 			WARN_ON(ret != t_page);
919 			null_free_page(ret);
920 			if (is_cache)
921 				nullb->dev->curr_cache -= PAGE_SIZE;
922 		}
923 	}
924 }
925 
926 static struct nullb_page *null_radix_tree_insert(struct nullb *nullb, u64 idx,
927 	struct nullb_page *t_page, bool is_cache)
928 {
929 	struct radix_tree_root *root;
930 
931 	root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
932 
933 	if (radix_tree_insert(root, idx, t_page)) {
934 		null_free_page(t_page);
935 		t_page = radix_tree_lookup(root, idx);
936 		WARN_ON(!t_page || t_page->page->private != idx);
937 	} else if (is_cache)
938 		nullb->dev->curr_cache += PAGE_SIZE;
939 
940 	return t_page;
941 }
942 
943 static void null_free_device_storage(struct nullb_device *dev, bool is_cache)
944 {
945 	unsigned long pos = 0;
946 	int nr_pages;
947 	struct nullb_page *ret, *t_pages[FREE_BATCH];
948 	struct radix_tree_root *root;
949 
950 	root = is_cache ? &dev->cache : &dev->data;
951 
952 	do {
953 		int i;
954 
955 		nr_pages = radix_tree_gang_lookup(root,
956 				(void **)t_pages, pos, FREE_BATCH);
957 
958 		for (i = 0; i < nr_pages; i++) {
959 			pos = t_pages[i]->page->private;
960 			ret = radix_tree_delete_item(root, pos, t_pages[i]);
961 			WARN_ON(ret != t_pages[i]);
962 			null_free_page(ret);
963 		}
964 
965 		pos++;
966 	} while (nr_pages == FREE_BATCH);
967 
968 	if (is_cache)
969 		dev->curr_cache = 0;
970 }
971 
972 static struct nullb_page *__null_lookup_page(struct nullb *nullb,
973 	sector_t sector, bool for_write, bool is_cache)
974 {
975 	unsigned int sector_bit;
976 	u64 idx;
977 	struct nullb_page *t_page;
978 	struct radix_tree_root *root;
979 
980 	idx = sector >> PAGE_SECTORS_SHIFT;
981 	sector_bit = (sector & SECTOR_MASK);
982 
983 	root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
984 	t_page = radix_tree_lookup(root, idx);
985 	WARN_ON(t_page && t_page->page->private != idx);
986 
987 	if (t_page && (for_write || test_bit(sector_bit, t_page->bitmap)))
988 		return t_page;
989 
990 	return NULL;
991 }
992 
993 static struct nullb_page *null_lookup_page(struct nullb *nullb,
994 	sector_t sector, bool for_write, bool ignore_cache)
995 {
996 	struct nullb_page *page = NULL;
997 
998 	if (!ignore_cache)
999 		page = __null_lookup_page(nullb, sector, for_write, true);
1000 	if (page)
1001 		return page;
1002 	return __null_lookup_page(nullb, sector, for_write, false);
1003 }
1004 
1005 static struct nullb_page *null_insert_page(struct nullb *nullb,
1006 					   sector_t sector, bool ignore_cache)
1007 	__releases(&nullb->lock)
1008 	__acquires(&nullb->lock)
1009 {
1010 	u64 idx;
1011 	struct nullb_page *t_page;
1012 
1013 	t_page = null_lookup_page(nullb, sector, true, ignore_cache);
1014 	if (t_page)
1015 		return t_page;
1016 
1017 	spin_unlock_irq(&nullb->lock);
1018 
1019 	t_page = null_alloc_page();
1020 	if (!t_page)
1021 		goto out_lock;
1022 
1023 	if (radix_tree_preload(GFP_NOIO))
1024 		goto out_freepage;
1025 
1026 	spin_lock_irq(&nullb->lock);
1027 	idx = sector >> PAGE_SECTORS_SHIFT;
1028 	t_page->page->private = idx;
1029 	t_page = null_radix_tree_insert(nullb, idx, t_page, !ignore_cache);
1030 	radix_tree_preload_end();
1031 
1032 	return t_page;
1033 out_freepage:
1034 	null_free_page(t_page);
1035 out_lock:
1036 	spin_lock_irq(&nullb->lock);
1037 	return null_lookup_page(nullb, sector, true, ignore_cache);
1038 }
1039 
1040 static int null_flush_cache_page(struct nullb *nullb, struct nullb_page *c_page)
1041 {
1042 	int i;
1043 	unsigned int offset;
1044 	u64 idx;
1045 	struct nullb_page *t_page, *ret;
1046 	void *dst, *src;
1047 
1048 	idx = c_page->page->private;
1049 
1050 	t_page = null_insert_page(nullb, idx << PAGE_SECTORS_SHIFT, true);
1051 
1052 	__clear_bit(NULLB_PAGE_LOCK, c_page->bitmap);
1053 	if (test_bit(NULLB_PAGE_FREE, c_page->bitmap)) {
1054 		null_free_page(c_page);
1055 		if (t_page && null_page_empty(t_page)) {
1056 			ret = radix_tree_delete_item(&nullb->dev->data,
1057 				idx, t_page);
1058 			null_free_page(t_page);
1059 		}
1060 		return 0;
1061 	}
1062 
1063 	if (!t_page)
1064 		return -ENOMEM;
1065 
1066 	src = kmap_local_page(c_page->page);
1067 	dst = kmap_local_page(t_page->page);
1068 
1069 	for (i = 0; i < PAGE_SECTORS;
1070 			i += (nullb->dev->blocksize >> SECTOR_SHIFT)) {
1071 		if (test_bit(i, c_page->bitmap)) {
1072 			offset = (i << SECTOR_SHIFT);
1073 			memcpy(dst + offset, src + offset,
1074 				nullb->dev->blocksize);
1075 			__set_bit(i, t_page->bitmap);
1076 		}
1077 	}
1078 
1079 	kunmap_local(dst);
1080 	kunmap_local(src);
1081 
1082 	ret = radix_tree_delete_item(&nullb->dev->cache, idx, c_page);
1083 	null_free_page(ret);
1084 	nullb->dev->curr_cache -= PAGE_SIZE;
1085 
1086 	return 0;
1087 }
1088 
1089 static int null_make_cache_space(struct nullb *nullb, unsigned long n)
1090 {
1091 	int i, err, nr_pages;
1092 	struct nullb_page *c_pages[FREE_BATCH];
1093 	unsigned long flushed = 0, one_round;
1094 
1095 again:
1096 	if ((nullb->dev->cache_size * 1024 * 1024) >
1097 	     nullb->dev->curr_cache + n || nullb->dev->curr_cache == 0)
1098 		return 0;
1099 
1100 	nr_pages = radix_tree_gang_lookup(&nullb->dev->cache,
1101 			(void **)c_pages, nullb->cache_flush_pos, FREE_BATCH);
1102 	/*
1103 	 * nullb_flush_cache_page could unlock before using the c_pages. To
1104 	 * avoid race, we don't allow page free
1105 	 */
1106 	for (i = 0; i < nr_pages; i++) {
1107 		nullb->cache_flush_pos = c_pages[i]->page->private;
1108 		/*
1109 		 * We found the page which is being flushed to disk by other
1110 		 * threads
1111 		 */
1112 		if (test_bit(NULLB_PAGE_LOCK, c_pages[i]->bitmap))
1113 			c_pages[i] = NULL;
1114 		else
1115 			__set_bit(NULLB_PAGE_LOCK, c_pages[i]->bitmap);
1116 	}
1117 
1118 	one_round = 0;
1119 	for (i = 0; i < nr_pages; i++) {
1120 		if (c_pages[i] == NULL)
1121 			continue;
1122 		err = null_flush_cache_page(nullb, c_pages[i]);
1123 		if (err)
1124 			return err;
1125 		one_round++;
1126 	}
1127 	flushed += one_round << PAGE_SHIFT;
1128 
1129 	if (n > flushed) {
1130 		if (nr_pages == 0)
1131 			nullb->cache_flush_pos = 0;
1132 		if (one_round == 0) {
1133 			/* give other threads a chance */
1134 			spin_unlock_irq(&nullb->lock);
1135 			spin_lock_irq(&nullb->lock);
1136 		}
1137 		goto again;
1138 	}
1139 	return 0;
1140 }
1141 
1142 static blk_status_t copy_to_nullb(struct nullb *nullb, void *source,
1143 				  loff_t pos, size_t n, bool is_fua)
1144 {
1145 	size_t temp, count = 0;
1146 	struct nullb_page *t_page;
1147 	sector_t sector;
1148 
1149 	while (count < n) {
1150 		temp = min3(nullb->dev->blocksize, n - count,
1151 			    PAGE_SIZE - offset_in_page(pos));
1152 		sector = pos >> SECTOR_SHIFT;
1153 
1154 		if (null_cache_active(nullb) && !is_fua)
1155 			null_make_cache_space(nullb, PAGE_SIZE);
1156 
1157 		t_page = null_insert_page(nullb, sector,
1158 			!null_cache_active(nullb) || is_fua);
1159 		if (!t_page)
1160 			return BLK_STS_NOSPC;
1161 
1162 		memcpy_to_page(t_page->page, offset_in_page(pos),
1163 			       source + count, temp);
1164 
1165 		__set_bit(sector & SECTOR_MASK, t_page->bitmap);
1166 
1167 		if (is_fua)
1168 			null_free_sector(nullb, sector, true);
1169 
1170 		count += temp;
1171 		pos += temp;
1172 	}
1173 	return BLK_STS_OK;
1174 }
1175 
1176 static void copy_from_nullb(struct nullb *nullb, void *dest, loff_t pos,
1177 			    size_t n)
1178 {
1179 	size_t temp, count = 0;
1180 	struct nullb_page *t_page;
1181 	sector_t sector;
1182 
1183 	while (count < n) {
1184 		temp = min3(nullb->dev->blocksize, n - count,
1185 			    PAGE_SIZE - offset_in_page(pos));
1186 		sector = pos >> SECTOR_SHIFT;
1187 
1188 		t_page = null_lookup_page(nullb, sector, false,
1189 			!null_cache_active(nullb));
1190 		if (t_page)
1191 			memcpy_from_page(dest + count, t_page->page,
1192 					 offset_in_page(pos), temp);
1193 		else
1194 			memset(dest + count, 0, temp);
1195 
1196 		count += temp;
1197 		pos += temp;
1198 	}
1199 }
1200 
1201 blk_status_t null_handle_discard(struct nullb_device *dev,
1202 				 sector_t sector, sector_t nr_sectors)
1203 {
1204 	struct nullb *nullb = dev->nullb;
1205 	size_t n = nr_sectors << SECTOR_SHIFT;
1206 	size_t temp;
1207 
1208 	spin_lock_irq(&nullb->lock);
1209 	while (n > 0) {
1210 		temp = min_t(size_t, n, dev->blocksize);
1211 		null_free_sector(nullb, sector, false);
1212 		if (null_cache_active(nullb))
1213 			null_free_sector(nullb, sector, true);
1214 		sector += temp >> SECTOR_SHIFT;
1215 		n -= temp;
1216 	}
1217 	spin_unlock_irq(&nullb->lock);
1218 
1219 	return BLK_STS_OK;
1220 }
1221 
1222 static blk_status_t null_handle_flush(struct nullb *nullb)
1223 {
1224 	int err;
1225 
1226 	if (!null_cache_active(nullb))
1227 		return 0;
1228 
1229 	spin_lock_irq(&nullb->lock);
1230 	while (true) {
1231 		err = null_make_cache_space(nullb,
1232 			nullb->dev->cache_size * 1024 * 1024);
1233 		if (err || nullb->dev->curr_cache == 0)
1234 			break;
1235 	}
1236 
1237 	WARN_ON(!radix_tree_empty(&nullb->dev->cache));
1238 	spin_unlock_irq(&nullb->lock);
1239 	return errno_to_blk_status(err);
1240 }
1241 
1242 static blk_status_t null_transfer(struct nullb *nullb, struct page *page,
1243 	unsigned int len, unsigned int off, bool is_write, loff_t pos,
1244 	bool is_fua)
1245 {
1246 	struct nullb_device *dev = nullb->dev;
1247 	blk_status_t err = BLK_STS_OK;
1248 	unsigned int valid_len = len;
1249 	void *p;
1250 
1251 	p = kmap_local_page(page) + off;
1252 	if (!is_write) {
1253 		if (dev->zoned) {
1254 			valid_len = null_zone_valid_read_len(nullb,
1255 				pos >> SECTOR_SHIFT, len);
1256 			if (valid_len && valid_len != len)
1257 				valid_len -= pos & (SECTOR_SIZE - 1);
1258 		}
1259 
1260 		if (valid_len) {
1261 			copy_from_nullb(nullb, p, pos, valid_len);
1262 			off += valid_len;
1263 			len -= valid_len;
1264 		}
1265 
1266 		if (len)
1267 			memset(p + valid_len, 0xff, len);
1268 		flush_dcache_page(page);
1269 	} else {
1270 		flush_dcache_page(page);
1271 		err = copy_to_nullb(nullb, p, pos, len, is_fua);
1272 	}
1273 
1274 	kunmap_local(p);
1275 	return err;
1276 }
1277 
1278 /*
1279  * Transfer data for the given request. The transfer size is capped with the
1280  * nr_sectors argument.
1281  */
1282 static blk_status_t null_handle_data_transfer(struct nullb_cmd *cmd,
1283 					      sector_t nr_sectors)
1284 {
1285 	struct request *rq = blk_mq_rq_from_pdu(cmd);
1286 	struct nullb *nullb = cmd->nq->dev->nullb;
1287 	blk_status_t err = BLK_STS_OK;
1288 	unsigned int len;
1289 	loff_t pos = blk_rq_pos(rq) << SECTOR_SHIFT;
1290 	unsigned int max_bytes = nr_sectors << SECTOR_SHIFT;
1291 	unsigned int transferred_bytes = 0;
1292 	struct req_iterator iter;
1293 	struct bio_vec bvec;
1294 
1295 	spin_lock_irq(&nullb->lock);
1296 	rq_for_each_segment(bvec, rq, iter) {
1297 		len = bvec.bv_len;
1298 		if (transferred_bytes + len > max_bytes)
1299 			len = max_bytes - transferred_bytes;
1300 		err = null_transfer(nullb, bvec.bv_page, len, bvec.bv_offset,
1301 				     op_is_write(req_op(rq)), pos,
1302 				     rq->cmd_flags & REQ_FUA);
1303 		if (err)
1304 			break;
1305 		pos += len;
1306 		transferred_bytes += len;
1307 		if (transferred_bytes >= max_bytes)
1308 			break;
1309 	}
1310 	spin_unlock_irq(&nullb->lock);
1311 
1312 	return err;
1313 }
1314 
1315 static inline blk_status_t null_handle_throttled(struct nullb_cmd *cmd)
1316 {
1317 	struct nullb_device *dev = cmd->nq->dev;
1318 	struct nullb *nullb = dev->nullb;
1319 	blk_status_t sts = BLK_STS_OK;
1320 	struct request *rq = blk_mq_rq_from_pdu(cmd);
1321 
1322 	if (!hrtimer_active(&nullb->bw_timer))
1323 		hrtimer_restart(&nullb->bw_timer);
1324 
1325 	if (atomic_long_sub_return(blk_rq_bytes(rq), &nullb->cur_bytes) < 0) {
1326 		blk_mq_stop_hw_queues(nullb->q);
1327 		/* race with timer */
1328 		if (atomic_long_read(&nullb->cur_bytes) > 0)
1329 			blk_mq_start_stopped_hw_queues(nullb->q, true);
1330 		/* requeue request */
1331 		sts = BLK_STS_DEV_RESOURCE;
1332 	}
1333 	return sts;
1334 }
1335 
1336 /*
1337  * Check if the command should fail for the badblocks. If so, return
1338  * BLK_STS_IOERR and return number of partial I/O sectors to be written or read,
1339  * which may be less than the requested number of sectors.
1340  *
1341  * @cmd:        The command to handle.
1342  * @sector:     The start sector for I/O.
1343  * @nr_sectors: Specifies number of sectors to write or read, and returns the
1344  *              number of sectors to be written or read.
1345  */
1346 blk_status_t null_handle_badblocks(struct nullb_cmd *cmd, sector_t sector,
1347 				   unsigned int *nr_sectors)
1348 {
1349 	struct badblocks *bb = &cmd->nq->dev->badblocks;
1350 	struct nullb_device *dev = cmd->nq->dev;
1351 	unsigned int block_sectors = dev->blocksize >> SECTOR_SHIFT;
1352 	sector_t first_bad, bad_sectors;
1353 	unsigned int partial_io_sectors = 0;
1354 
1355 	if (!badblocks_check(bb, sector, *nr_sectors, &first_bad, &bad_sectors))
1356 		return BLK_STS_OK;
1357 
1358 	if (cmd->nq->dev->badblocks_once)
1359 		badblocks_clear(bb, first_bad, bad_sectors);
1360 
1361 	if (cmd->nq->dev->badblocks_partial_io) {
1362 		if (!IS_ALIGNED(first_bad, block_sectors))
1363 			first_bad = ALIGN_DOWN(first_bad, block_sectors);
1364 		if (sector < first_bad)
1365 			partial_io_sectors = first_bad - sector;
1366 	}
1367 	*nr_sectors = partial_io_sectors;
1368 
1369 	return BLK_STS_IOERR;
1370 }
1371 
1372 blk_status_t null_handle_memory_backed(struct nullb_cmd *cmd, enum req_op op,
1373 				       sector_t sector, sector_t nr_sectors)
1374 {
1375 	struct nullb_device *dev = cmd->nq->dev;
1376 
1377 	if (op == REQ_OP_DISCARD)
1378 		return null_handle_discard(dev, sector, nr_sectors);
1379 
1380 	return null_handle_data_transfer(cmd, nr_sectors);
1381 }
1382 
1383 static void nullb_zero_read_cmd_buffer(struct nullb_cmd *cmd)
1384 {
1385 	struct request *rq = blk_mq_rq_from_pdu(cmd);
1386 	struct nullb_device *dev = cmd->nq->dev;
1387 	struct bio *bio;
1388 
1389 	if (!dev->memory_backed && req_op(rq) == REQ_OP_READ) {
1390 		__rq_for_each_bio(bio, rq)
1391 			zero_fill_bio(bio);
1392 	}
1393 }
1394 
1395 static inline void nullb_complete_cmd(struct nullb_cmd *cmd)
1396 {
1397 	struct request *rq = blk_mq_rq_from_pdu(cmd);
1398 
1399 	/*
1400 	 * Since root privileges are required to configure the null_blk
1401 	 * driver, it is fine that this driver does not initialize the
1402 	 * data buffers of read commands. Zero-initialize these buffers
1403 	 * anyway if KMSAN is enabled to prevent that KMSAN complains
1404 	 * about null_blk not initializing read data buffers.
1405 	 */
1406 	if (IS_ENABLED(CONFIG_KMSAN))
1407 		nullb_zero_read_cmd_buffer(cmd);
1408 
1409 	/* Complete IO by inline, softirq or timer */
1410 	switch (cmd->nq->dev->irqmode) {
1411 	case NULL_IRQ_SOFTIRQ:
1412 		blk_mq_complete_request(rq);
1413 		break;
1414 	case NULL_IRQ_NONE:
1415 		blk_mq_end_request(rq, cmd->error);
1416 		break;
1417 	case NULL_IRQ_TIMER:
1418 		null_cmd_end_timer(cmd);
1419 		break;
1420 	}
1421 }
1422 
1423 blk_status_t null_process_cmd(struct nullb_cmd *cmd, enum req_op op,
1424 			      sector_t sector, unsigned int nr_sectors)
1425 {
1426 	struct nullb_device *dev = cmd->nq->dev;
1427 	blk_status_t badblocks_ret = BLK_STS_OK;
1428 	blk_status_t ret;
1429 
1430 	if (dev->badblocks.shift != -1)
1431 		badblocks_ret = null_handle_badblocks(cmd, sector, &nr_sectors);
1432 
1433 	if (dev->memory_backed && nr_sectors) {
1434 		ret = null_handle_memory_backed(cmd, op, sector, nr_sectors);
1435 		if (ret != BLK_STS_OK)
1436 			return ret;
1437 	}
1438 
1439 	return badblocks_ret;
1440 }
1441 
1442 static void null_handle_cmd(struct nullb_cmd *cmd, sector_t sector,
1443 			    sector_t nr_sectors, enum req_op op)
1444 {
1445 	struct nullb_device *dev = cmd->nq->dev;
1446 	struct nullb *nullb = dev->nullb;
1447 	blk_status_t sts;
1448 
1449 	if (op == REQ_OP_FLUSH) {
1450 		cmd->error = null_handle_flush(nullb);
1451 		goto out;
1452 	}
1453 
1454 	if (dev->zoned)
1455 		sts = null_process_zoned_cmd(cmd, op, sector, nr_sectors);
1456 	else
1457 		sts = null_process_cmd(cmd, op, sector, nr_sectors);
1458 
1459 	/* Do not overwrite errors (e.g. timeout errors) */
1460 	if (cmd->error == BLK_STS_OK)
1461 		cmd->error = sts;
1462 
1463 out:
1464 	nullb_complete_cmd(cmd);
1465 }
1466 
1467 static enum hrtimer_restart nullb_bwtimer_fn(struct hrtimer *timer)
1468 {
1469 	struct nullb *nullb = container_of(timer, struct nullb, bw_timer);
1470 	ktime_t timer_interval = ktime_set(0, TIMER_INTERVAL);
1471 	unsigned int mbps = nullb->dev->mbps;
1472 
1473 	if (atomic_long_read(&nullb->cur_bytes) == mb_per_tick(mbps))
1474 		return HRTIMER_NORESTART;
1475 
1476 	atomic_long_set(&nullb->cur_bytes, mb_per_tick(mbps));
1477 	blk_mq_start_stopped_hw_queues(nullb->q, true);
1478 
1479 	hrtimer_forward_now(&nullb->bw_timer, timer_interval);
1480 
1481 	return HRTIMER_RESTART;
1482 }
1483 
1484 static void nullb_setup_bwtimer(struct nullb *nullb)
1485 {
1486 	ktime_t timer_interval = ktime_set(0, TIMER_INTERVAL);
1487 
1488 	hrtimer_setup(&nullb->bw_timer, nullb_bwtimer_fn, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1489 	atomic_long_set(&nullb->cur_bytes, mb_per_tick(nullb->dev->mbps));
1490 	hrtimer_start(&nullb->bw_timer, timer_interval, HRTIMER_MODE_REL);
1491 }
1492 
1493 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1494 
1495 static bool should_timeout_request(struct request *rq)
1496 {
1497 	struct nullb_cmd *cmd = blk_mq_rq_to_pdu(rq);
1498 	struct nullb_device *dev = cmd->nq->dev;
1499 
1500 	return should_fail(&dev->timeout_config.attr, 1);
1501 }
1502 
1503 static bool should_requeue_request(struct request *rq)
1504 {
1505 	struct nullb_cmd *cmd = blk_mq_rq_to_pdu(rq);
1506 	struct nullb_device *dev = cmd->nq->dev;
1507 
1508 	return should_fail(&dev->requeue_config.attr, 1);
1509 }
1510 
1511 static bool should_init_hctx_fail(struct nullb_device *dev)
1512 {
1513 	return should_fail(&dev->init_hctx_fault_config.attr, 1);
1514 }
1515 
1516 #else
1517 
1518 static bool should_timeout_request(struct request *rq)
1519 {
1520 	return false;
1521 }
1522 
1523 static bool should_requeue_request(struct request *rq)
1524 {
1525 	return false;
1526 }
1527 
1528 static bool should_init_hctx_fail(struct nullb_device *dev)
1529 {
1530 	return false;
1531 }
1532 
1533 #endif
1534 
1535 static void null_map_queues(struct blk_mq_tag_set *set)
1536 {
1537 	struct nullb *nullb = set->driver_data;
1538 	int i, qoff;
1539 	unsigned int submit_queues = g_submit_queues;
1540 	unsigned int poll_queues = g_poll_queues;
1541 
1542 	if (nullb) {
1543 		struct nullb_device *dev = nullb->dev;
1544 
1545 		/*
1546 		 * Refer nr_hw_queues of the tag set to check if the expected
1547 		 * number of hardware queues are prepared. If block layer failed
1548 		 * to prepare them, use previous numbers of submit queues and
1549 		 * poll queues to map queues.
1550 		 */
1551 		if (set->nr_hw_queues ==
1552 		    dev->submit_queues + dev->poll_queues) {
1553 			submit_queues = dev->submit_queues;
1554 			poll_queues = dev->poll_queues;
1555 		} else if (set->nr_hw_queues ==
1556 			   dev->prev_submit_queues + dev->prev_poll_queues) {
1557 			submit_queues = dev->prev_submit_queues;
1558 			poll_queues = dev->prev_poll_queues;
1559 		} else {
1560 			pr_warn("tag set has unexpected nr_hw_queues: %d\n",
1561 				set->nr_hw_queues);
1562 			WARN_ON_ONCE(true);
1563 			submit_queues = 1;
1564 			poll_queues = 0;
1565 		}
1566 	}
1567 
1568 	for (i = 0, qoff = 0; i < set->nr_maps; i++) {
1569 		struct blk_mq_queue_map *map = &set->map[i];
1570 
1571 		switch (i) {
1572 		case HCTX_TYPE_DEFAULT:
1573 			map->nr_queues = submit_queues;
1574 			break;
1575 		case HCTX_TYPE_READ:
1576 			map->nr_queues = 0;
1577 			continue;
1578 		case HCTX_TYPE_POLL:
1579 			map->nr_queues = poll_queues;
1580 			break;
1581 		}
1582 		map->queue_offset = qoff;
1583 		qoff += map->nr_queues;
1584 		blk_mq_map_queues(map);
1585 	}
1586 }
1587 
1588 static int null_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1589 {
1590 	struct nullb_queue *nq = hctx->driver_data;
1591 	LIST_HEAD(list);
1592 	int nr = 0;
1593 	struct request *rq;
1594 
1595 	spin_lock(&nq->poll_lock);
1596 	list_splice_init(&nq->poll_list, &list);
1597 	list_for_each_entry(rq, &list, queuelist)
1598 		blk_mq_set_request_complete(rq);
1599 	spin_unlock(&nq->poll_lock);
1600 
1601 	while (!list_empty(&list)) {
1602 		struct nullb_cmd *cmd;
1603 		struct request *req;
1604 
1605 		req = list_first_entry(&list, struct request, queuelist);
1606 		list_del_init(&req->queuelist);
1607 		cmd = blk_mq_rq_to_pdu(req);
1608 		cmd->error = null_process_cmd(cmd, req_op(req), blk_rq_pos(req),
1609 						blk_rq_sectors(req));
1610 		if (!blk_mq_add_to_batch(req, iob, cmd->error != BLK_STS_OK,
1611 					 blk_mq_end_request_batch))
1612 			blk_mq_end_request(req, cmd->error);
1613 		nr++;
1614 	}
1615 
1616 	return nr;
1617 }
1618 
1619 static enum blk_eh_timer_return null_timeout_rq(struct request *rq)
1620 {
1621 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1622 	struct nullb_cmd *cmd = blk_mq_rq_to_pdu(rq);
1623 
1624 	if (hctx->type == HCTX_TYPE_POLL) {
1625 		struct nullb_queue *nq = hctx->driver_data;
1626 
1627 		spin_lock(&nq->poll_lock);
1628 		/* The request may have completed meanwhile. */
1629 		if (blk_mq_request_completed(rq)) {
1630 			spin_unlock(&nq->poll_lock);
1631 			return BLK_EH_DONE;
1632 		}
1633 		list_del_init(&rq->queuelist);
1634 		spin_unlock(&nq->poll_lock);
1635 	}
1636 
1637 	pr_info("rq %p timed out\n", rq);
1638 
1639 	/*
1640 	 * If the device is marked as blocking (i.e. memory backed or zoned
1641 	 * device), the submission path may be blocked waiting for resources
1642 	 * and cause real timeouts. For these real timeouts, the submission
1643 	 * path will complete the request using blk_mq_complete_request().
1644 	 * Only fake timeouts need to execute blk_mq_complete_request() here.
1645 	 */
1646 	cmd->error = BLK_STS_TIMEOUT;
1647 	if (cmd->fake_timeout || hctx->type == HCTX_TYPE_POLL)
1648 		blk_mq_complete_request(rq);
1649 	return BLK_EH_DONE;
1650 }
1651 
1652 static blk_status_t null_queue_rq(struct blk_mq_hw_ctx *hctx,
1653 				  const struct blk_mq_queue_data *bd)
1654 {
1655 	struct request *rq = bd->rq;
1656 	struct nullb_cmd *cmd = blk_mq_rq_to_pdu(rq);
1657 	struct nullb_queue *nq = hctx->driver_data;
1658 	sector_t nr_sectors = blk_rq_sectors(rq);
1659 	sector_t sector = blk_rq_pos(rq);
1660 	const bool is_poll = hctx->type == HCTX_TYPE_POLL;
1661 
1662 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1663 
1664 	if (!is_poll && nq->dev->irqmode == NULL_IRQ_TIMER) {
1665 		hrtimer_setup(&cmd->timer, null_cmd_timer_expired, CLOCK_MONOTONIC,
1666 			      HRTIMER_MODE_REL);
1667 	}
1668 	cmd->error = BLK_STS_OK;
1669 	cmd->nq = nq;
1670 	cmd->fake_timeout = should_timeout_request(rq) ||
1671 		blk_should_fake_timeout(rq->q);
1672 
1673 	if (should_requeue_request(rq)) {
1674 		/*
1675 		 * Alternate between hitting the core BUSY path, and the
1676 		 * driver driven requeue path
1677 		 */
1678 		nq->requeue_selection++;
1679 		if (nq->requeue_selection & 1)
1680 			return BLK_STS_RESOURCE;
1681 		blk_mq_requeue_request(rq, true);
1682 		return BLK_STS_OK;
1683 	}
1684 
1685 	if (test_bit(NULLB_DEV_FL_THROTTLED, &nq->dev->flags)) {
1686 		blk_status_t sts = null_handle_throttled(cmd);
1687 
1688 		if (sts != BLK_STS_OK)
1689 			return sts;
1690 	}
1691 
1692 	blk_mq_start_request(rq);
1693 
1694 	if (is_poll) {
1695 		spin_lock(&nq->poll_lock);
1696 		list_add_tail(&rq->queuelist, &nq->poll_list);
1697 		spin_unlock(&nq->poll_lock);
1698 		return BLK_STS_OK;
1699 	}
1700 	if (cmd->fake_timeout)
1701 		return BLK_STS_OK;
1702 
1703 	null_handle_cmd(cmd, sector, nr_sectors, req_op(rq));
1704 	return BLK_STS_OK;
1705 }
1706 
1707 static void null_queue_rqs(struct rq_list *rqlist)
1708 {
1709 	struct rq_list requeue_list = {};
1710 	struct blk_mq_queue_data bd = { };
1711 	blk_status_t ret;
1712 
1713 	do {
1714 		struct request *rq = rq_list_pop(rqlist);
1715 
1716 		bd.rq = rq;
1717 		ret = null_queue_rq(rq->mq_hctx, &bd);
1718 		if (ret != BLK_STS_OK)
1719 			rq_list_add_tail(&requeue_list, rq);
1720 	} while (!rq_list_empty(rqlist));
1721 
1722 	*rqlist = requeue_list;
1723 }
1724 
1725 static void null_init_queue(struct nullb *nullb, struct nullb_queue *nq)
1726 {
1727 	nq->dev = nullb->dev;
1728 	INIT_LIST_HEAD(&nq->poll_list);
1729 	spin_lock_init(&nq->poll_lock);
1730 }
1731 
1732 static int null_init_hctx(struct blk_mq_hw_ctx *hctx, void *driver_data,
1733 			  unsigned int hctx_idx)
1734 {
1735 	struct nullb *nullb = hctx->queue->queuedata;
1736 	struct nullb_queue *nq;
1737 
1738 	if (should_init_hctx_fail(nullb->dev))
1739 		return -EFAULT;
1740 
1741 	nq = &nullb->queues[hctx_idx];
1742 	hctx->driver_data = nq;
1743 	null_init_queue(nullb, nq);
1744 
1745 	return 0;
1746 }
1747 
1748 static const struct blk_mq_ops null_mq_ops = {
1749 	.queue_rq       = null_queue_rq,
1750 	.queue_rqs	= null_queue_rqs,
1751 	.complete	= null_complete_rq,
1752 	.timeout	= null_timeout_rq,
1753 	.poll		= null_poll,
1754 	.map_queues	= null_map_queues,
1755 	.init_hctx	= null_init_hctx,
1756 };
1757 
1758 static void null_del_dev(struct nullb *nullb)
1759 {
1760 	struct nullb_device *dev;
1761 
1762 	if (!nullb)
1763 		return;
1764 
1765 	dev = nullb->dev;
1766 
1767 	ida_free(&nullb_indexes, nullb->index);
1768 
1769 	list_del_init(&nullb->list);
1770 
1771 	del_gendisk(nullb->disk);
1772 
1773 	if (test_bit(NULLB_DEV_FL_THROTTLED, &nullb->dev->flags)) {
1774 		hrtimer_cancel(&nullb->bw_timer);
1775 		atomic_long_set(&nullb->cur_bytes, LONG_MAX);
1776 		blk_mq_start_stopped_hw_queues(nullb->q, true);
1777 	}
1778 
1779 	put_disk(nullb->disk);
1780 	if (nullb->tag_set == &nullb->__tag_set)
1781 		blk_mq_free_tag_set(nullb->tag_set);
1782 	kfree(nullb->queues);
1783 	if (null_cache_active(nullb))
1784 		null_free_device_storage(nullb->dev, true);
1785 	kfree(nullb);
1786 	dev->nullb = NULL;
1787 }
1788 
1789 static void null_config_discard(struct nullb *nullb, struct queue_limits *lim)
1790 {
1791 	if (nullb->dev->discard == false)
1792 		return;
1793 
1794 	if (!nullb->dev->memory_backed) {
1795 		nullb->dev->discard = false;
1796 		pr_info("discard option is ignored without memory backing\n");
1797 		return;
1798 	}
1799 
1800 	if (nullb->dev->zoned) {
1801 		nullb->dev->discard = false;
1802 		pr_info("discard option is ignored in zoned mode\n");
1803 		return;
1804 	}
1805 
1806 	lim->max_hw_discard_sectors = UINT_MAX >> 9;
1807 }
1808 
1809 static const struct block_device_operations null_ops = {
1810 	.owner		= THIS_MODULE,
1811 	.report_zones	= null_report_zones,
1812 };
1813 
1814 static int setup_queues(struct nullb *nullb)
1815 {
1816 	int nqueues = nr_cpu_ids;
1817 
1818 	if (g_poll_queues)
1819 		nqueues += g_poll_queues;
1820 
1821 	nullb->queues = kcalloc(nqueues, sizeof(struct nullb_queue),
1822 				GFP_KERNEL);
1823 	if (!nullb->queues)
1824 		return -ENOMEM;
1825 
1826 	return 0;
1827 }
1828 
1829 static int null_init_tag_set(struct blk_mq_tag_set *set, int poll_queues)
1830 {
1831 	set->ops = &null_mq_ops;
1832 	set->cmd_size = sizeof(struct nullb_cmd);
1833 	set->timeout = 5 * HZ;
1834 	set->nr_maps = 1;
1835 	if (poll_queues) {
1836 		set->nr_hw_queues += poll_queues;
1837 		set->nr_maps += 2;
1838 	}
1839 	return blk_mq_alloc_tag_set(set);
1840 }
1841 
1842 static int null_init_global_tag_set(void)
1843 {
1844 	int error;
1845 
1846 	if (tag_set.ops)
1847 		return 0;
1848 
1849 	tag_set.nr_hw_queues = g_submit_queues;
1850 	tag_set.queue_depth = g_hw_queue_depth;
1851 	tag_set.numa_node = g_home_node;
1852 	if (g_no_sched)
1853 		tag_set.flags |= BLK_MQ_F_NO_SCHED_BY_DEFAULT;
1854 	if (g_shared_tag_bitmap)
1855 		tag_set.flags |= BLK_MQ_F_TAG_HCTX_SHARED;
1856 	if (g_blocking)
1857 		tag_set.flags |= BLK_MQ_F_BLOCKING;
1858 
1859 	error = null_init_tag_set(&tag_set, g_poll_queues);
1860 	if (error)
1861 		tag_set.ops = NULL;
1862 	return error;
1863 }
1864 
1865 static int null_setup_tagset(struct nullb *nullb)
1866 {
1867 	if (nullb->dev->shared_tags) {
1868 		nullb->tag_set = &tag_set;
1869 		return null_init_global_tag_set();
1870 	}
1871 
1872 	nullb->tag_set = &nullb->__tag_set;
1873 	nullb->tag_set->driver_data = nullb;
1874 	nullb->tag_set->nr_hw_queues = nullb->dev->submit_queues;
1875 	nullb->tag_set->queue_depth = nullb->dev->hw_queue_depth;
1876 	nullb->tag_set->numa_node = nullb->dev->home_node;
1877 	if (nullb->dev->no_sched)
1878 		nullb->tag_set->flags |= BLK_MQ_F_NO_SCHED_BY_DEFAULT;
1879 	if (nullb->dev->shared_tag_bitmap)
1880 		nullb->tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
1881 	if (nullb->dev->blocking)
1882 		nullb->tag_set->flags |= BLK_MQ_F_BLOCKING;
1883 	return null_init_tag_set(nullb->tag_set, nullb->dev->poll_queues);
1884 }
1885 
1886 static int null_validate_conf(struct nullb_device *dev)
1887 {
1888 	if (dev->queue_mode == NULL_Q_RQ) {
1889 		pr_err("legacy IO path is no longer available\n");
1890 		return -EINVAL;
1891 	}
1892 	if (dev->queue_mode == NULL_Q_BIO) {
1893 		pr_err("BIO-based IO path is no longer available, using blk-mq instead.\n");
1894 		dev->queue_mode = NULL_Q_MQ;
1895 	}
1896 
1897 	if (dev->use_per_node_hctx) {
1898 		if (dev->submit_queues != nr_online_nodes)
1899 			dev->submit_queues = nr_online_nodes;
1900 	} else if (dev->submit_queues > nr_cpu_ids)
1901 		dev->submit_queues = nr_cpu_ids;
1902 	else if (dev->submit_queues == 0)
1903 		dev->submit_queues = 1;
1904 	dev->prev_submit_queues = dev->submit_queues;
1905 
1906 	if (dev->poll_queues > g_poll_queues)
1907 		dev->poll_queues = g_poll_queues;
1908 	dev->prev_poll_queues = dev->poll_queues;
1909 	dev->irqmode = min_t(unsigned int, dev->irqmode, NULL_IRQ_TIMER);
1910 
1911 	/* Do memory allocation, so set blocking */
1912 	if (dev->memory_backed)
1913 		dev->blocking = true;
1914 	else /* cache is meaningless */
1915 		dev->cache_size = 0;
1916 	dev->cache_size = min_t(unsigned long, ULONG_MAX / 1024 / 1024,
1917 						dev->cache_size);
1918 	dev->mbps = min_t(unsigned int, 1024 * 40, dev->mbps);
1919 
1920 	if (dev->zoned &&
1921 	    (!dev->zone_size || !is_power_of_2(dev->zone_size))) {
1922 		pr_err("zone_size must be power-of-two\n");
1923 		return -EINVAL;
1924 	}
1925 
1926 	return 0;
1927 }
1928 
1929 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1930 static bool __null_setup_fault(struct fault_attr *attr, char *str)
1931 {
1932 	if (!str[0])
1933 		return true;
1934 
1935 	if (!setup_fault_attr(attr, str))
1936 		return false;
1937 
1938 	attr->verbose = 0;
1939 	return true;
1940 }
1941 #endif
1942 
1943 static bool null_setup_fault(void)
1944 {
1945 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1946 	if (!__null_setup_fault(&null_timeout_attr, g_timeout_str))
1947 		return false;
1948 	if (!__null_setup_fault(&null_requeue_attr, g_requeue_str))
1949 		return false;
1950 	if (!__null_setup_fault(&null_init_hctx_attr, g_init_hctx_str))
1951 		return false;
1952 #endif
1953 	return true;
1954 }
1955 
1956 static int null_add_dev(struct nullb_device *dev)
1957 {
1958 	struct queue_limits lim = {
1959 		.logical_block_size	= dev->blocksize,
1960 		.physical_block_size	= dev->blocksize,
1961 		.max_hw_sectors		= dev->max_sectors,
1962 		.dma_alignment		= 1,
1963 	};
1964 
1965 	struct nullb *nullb;
1966 	int rv;
1967 
1968 	rv = null_validate_conf(dev);
1969 	if (rv)
1970 		return rv;
1971 
1972 	nullb = kzalloc_node(sizeof(*nullb), GFP_KERNEL, dev->home_node);
1973 	if (!nullb) {
1974 		rv = -ENOMEM;
1975 		goto out;
1976 	}
1977 	nullb->dev = dev;
1978 	dev->nullb = nullb;
1979 
1980 	spin_lock_init(&nullb->lock);
1981 
1982 	rv = setup_queues(nullb);
1983 	if (rv)
1984 		goto out_free_nullb;
1985 
1986 	rv = null_setup_tagset(nullb);
1987 	if (rv)
1988 		goto out_cleanup_queues;
1989 
1990 	if (dev->virt_boundary)
1991 		lim.virt_boundary_mask = PAGE_SIZE - 1;
1992 	null_config_discard(nullb, &lim);
1993 	if (dev->zoned) {
1994 		rv = null_init_zoned_dev(dev, &lim);
1995 		if (rv)
1996 			goto out_cleanup_tags;
1997 	}
1998 
1999 	if (dev->cache_size > 0) {
2000 		set_bit(NULLB_DEV_FL_CACHE, &nullb->dev->flags);
2001 		lim.features |= BLK_FEAT_WRITE_CACHE;
2002 		if (dev->fua)
2003 			lim.features |= BLK_FEAT_FUA;
2004 	}
2005 
2006 	if (dev->rotational)
2007 		lim.features |= BLK_FEAT_ROTATIONAL;
2008 
2009 	nullb->disk = blk_mq_alloc_disk(nullb->tag_set, &lim, nullb);
2010 	if (IS_ERR(nullb->disk)) {
2011 		rv = PTR_ERR(nullb->disk);
2012 		goto out_cleanup_zone;
2013 	}
2014 	nullb->q = nullb->disk->queue;
2015 
2016 	if (dev->mbps) {
2017 		set_bit(NULLB_DEV_FL_THROTTLED, &dev->flags);
2018 		nullb_setup_bwtimer(nullb);
2019 	}
2020 
2021 	nullb->q->queuedata = nullb;
2022 
2023 	rv = ida_alloc(&nullb_indexes, GFP_KERNEL);
2024 	if (rv < 0)
2025 		goto out_cleanup_disk;
2026 
2027 	nullb->index = rv;
2028 	dev->index = rv;
2029 
2030 	if (config_item_name(&dev->group.cg_item)) {
2031 		/* Use configfs dir name as the device name */
2032 		snprintf(nullb->disk_name, sizeof(nullb->disk_name),
2033 			 "%s", config_item_name(&dev->group.cg_item));
2034 	} else {
2035 		sprintf(nullb->disk_name, "nullb%d", nullb->index);
2036 	}
2037 
2038 	set_capacity(nullb->disk,
2039 		((sector_t)nullb->dev->size * SZ_1M) >> SECTOR_SHIFT);
2040 	nullb->disk->major = null_major;
2041 	nullb->disk->first_minor = nullb->index;
2042 	nullb->disk->minors = 1;
2043 	nullb->disk->fops = &null_ops;
2044 	nullb->disk->private_data = nullb;
2045 	strscpy(nullb->disk->disk_name, nullb->disk_name);
2046 
2047 	if (nullb->dev->zoned) {
2048 		rv = null_register_zoned_dev(nullb);
2049 		if (rv)
2050 			goto out_ida_free;
2051 	}
2052 
2053 	rv = add_disk(nullb->disk);
2054 	if (rv)
2055 		goto out_ida_free;
2056 
2057 	list_add_tail(&nullb->list, &nullb_list);
2058 
2059 	pr_info("disk %s created\n", nullb->disk_name);
2060 
2061 	return 0;
2062 
2063 out_ida_free:
2064 	ida_free(&nullb_indexes, nullb->index);
2065 out_cleanup_disk:
2066 	put_disk(nullb->disk);
2067 out_cleanup_zone:
2068 	null_free_zoned_dev(dev);
2069 out_cleanup_tags:
2070 	if (nullb->tag_set == &nullb->__tag_set)
2071 		blk_mq_free_tag_set(nullb->tag_set);
2072 out_cleanup_queues:
2073 	kfree(nullb->queues);
2074 out_free_nullb:
2075 	kfree(nullb);
2076 	dev->nullb = NULL;
2077 out:
2078 	return rv;
2079 }
2080 
2081 static struct nullb *null_find_dev_by_name(const char *name)
2082 {
2083 	struct nullb *nullb = NULL, *nb;
2084 
2085 	mutex_lock(&lock);
2086 	list_for_each_entry(nb, &nullb_list, list) {
2087 		if (strcmp(nb->disk_name, name) == 0) {
2088 			nullb = nb;
2089 			break;
2090 		}
2091 	}
2092 	mutex_unlock(&lock);
2093 
2094 	return nullb;
2095 }
2096 
2097 static int null_create_dev(void)
2098 {
2099 	struct nullb_device *dev;
2100 	int ret;
2101 
2102 	dev = null_alloc_dev();
2103 	if (!dev)
2104 		return -ENOMEM;
2105 
2106 	mutex_lock(&lock);
2107 	ret = null_add_dev(dev);
2108 	mutex_unlock(&lock);
2109 	if (ret) {
2110 		null_free_dev(dev);
2111 		return ret;
2112 	}
2113 
2114 	return 0;
2115 }
2116 
2117 static void null_destroy_dev(struct nullb *nullb)
2118 {
2119 	struct nullb_device *dev = nullb->dev;
2120 
2121 	null_del_dev(nullb);
2122 	null_free_device_storage(dev, false);
2123 	null_free_dev(dev);
2124 }
2125 
2126 static int __init null_init(void)
2127 {
2128 	int ret = 0;
2129 	unsigned int i;
2130 	struct nullb *nullb;
2131 
2132 	if (g_bs > PAGE_SIZE) {
2133 		pr_warn("invalid block size\n");
2134 		pr_warn("defaults block size to %lu\n", PAGE_SIZE);
2135 		g_bs = PAGE_SIZE;
2136 	}
2137 
2138 	if (g_home_node != NUMA_NO_NODE && g_home_node >= nr_online_nodes) {
2139 		pr_err("invalid home_node value\n");
2140 		g_home_node = NUMA_NO_NODE;
2141 	}
2142 
2143 	if (!null_setup_fault())
2144 		return -EINVAL;
2145 
2146 	if (g_queue_mode == NULL_Q_RQ) {
2147 		pr_err("legacy IO path is no longer available\n");
2148 		return -EINVAL;
2149 	}
2150 
2151 	if (g_use_per_node_hctx) {
2152 		if (g_submit_queues != nr_online_nodes) {
2153 			pr_warn("submit_queues param is set to %u.\n",
2154 				nr_online_nodes);
2155 			g_submit_queues = nr_online_nodes;
2156 		}
2157 	} else if (g_submit_queues > nr_cpu_ids) {
2158 		g_submit_queues = nr_cpu_ids;
2159 	} else if (g_submit_queues <= 0) {
2160 		g_submit_queues = 1;
2161 	}
2162 
2163 	config_group_init(&nullb_subsys.su_group);
2164 	mutex_init(&nullb_subsys.su_mutex);
2165 
2166 	ret = configfs_register_subsystem(&nullb_subsys);
2167 	if (ret)
2168 		return ret;
2169 
2170 	mutex_init(&lock);
2171 
2172 	null_major = register_blkdev(0, "nullb");
2173 	if (null_major < 0) {
2174 		ret = null_major;
2175 		goto err_conf;
2176 	}
2177 
2178 	for (i = 0; i < nr_devices; i++) {
2179 		ret = null_create_dev();
2180 		if (ret)
2181 			goto err_dev;
2182 	}
2183 
2184 	pr_info("module loaded\n");
2185 	return 0;
2186 
2187 err_dev:
2188 	while (!list_empty(&nullb_list)) {
2189 		nullb = list_entry(nullb_list.next, struct nullb, list);
2190 		null_destroy_dev(nullb);
2191 	}
2192 	unregister_blkdev(null_major, "nullb");
2193 err_conf:
2194 	configfs_unregister_subsystem(&nullb_subsys);
2195 	return ret;
2196 }
2197 
2198 static void __exit null_exit(void)
2199 {
2200 	struct nullb *nullb;
2201 
2202 	configfs_unregister_subsystem(&nullb_subsys);
2203 
2204 	unregister_blkdev(null_major, "nullb");
2205 
2206 	mutex_lock(&lock);
2207 	while (!list_empty(&nullb_list)) {
2208 		nullb = list_entry(nullb_list.next, struct nullb, list);
2209 		null_destroy_dev(nullb);
2210 	}
2211 	mutex_unlock(&lock);
2212 
2213 	if (tag_set.ops)
2214 		blk_mq_free_tag_set(&tag_set);
2215 
2216 	mutex_destroy(&lock);
2217 }
2218 
2219 module_init(null_init);
2220 module_exit(null_exit);
2221 
2222 MODULE_AUTHOR("Jens Axboe <axboe@kernel.dk>");
2223 MODULE_DESCRIPTION("multi queue aware block test driver");
2224 MODULE_LICENSE("GPL");
2225