1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Add configfs and memory store: Kyungchan Koh <kkc6196@fb.com> and 4 * Shaohua Li <shli@fb.com> 5 */ 6 #include <linux/module.h> 7 8 #include <linux/moduleparam.h> 9 #include <linux/sched.h> 10 #include <linux/fs.h> 11 #include <linux/init.h> 12 #include "null_blk.h" 13 14 #undef pr_fmt 15 #define pr_fmt(fmt) "null_blk: " fmt 16 17 #define FREE_BATCH 16 18 19 #define TICKS_PER_SEC 50ULL 20 #define TIMER_INTERVAL (NSEC_PER_SEC / TICKS_PER_SEC) 21 22 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION 23 static DECLARE_FAULT_ATTR(null_timeout_attr); 24 static DECLARE_FAULT_ATTR(null_requeue_attr); 25 static DECLARE_FAULT_ATTR(null_init_hctx_attr); 26 #endif 27 28 static inline u64 mb_per_tick(int mbps) 29 { 30 return (1 << 20) / TICKS_PER_SEC * ((u64) mbps); 31 } 32 33 /* 34 * Status flags for nullb_device. 35 * 36 * CONFIGURED: Device has been configured and turned on. Cannot reconfigure. 37 * UP: Device is currently on and visible in userspace. 38 * THROTTLED: Device is being throttled. 39 * CACHE: Device is using a write-back cache. 40 */ 41 enum nullb_device_flags { 42 NULLB_DEV_FL_CONFIGURED = 0, 43 NULLB_DEV_FL_UP = 1, 44 NULLB_DEV_FL_THROTTLED = 2, 45 NULLB_DEV_FL_CACHE = 3, 46 }; 47 48 #define MAP_SZ ((PAGE_SIZE >> SECTOR_SHIFT) + 2) 49 /* 50 * nullb_page is a page in memory for nullb devices. 51 * 52 * @page: The page holding the data. 53 * @bitmap: The bitmap represents which sector in the page has data. 54 * Each bit represents one block size. For example, sector 8 55 * will use the 7th bit 56 * The highest 2 bits of bitmap are for special purpose. LOCK means the cache 57 * page is being flushing to storage. FREE means the cache page is freed and 58 * should be skipped from flushing to storage. Please see 59 * null_make_cache_space 60 */ 61 struct nullb_page { 62 struct page *page; 63 DECLARE_BITMAP(bitmap, MAP_SZ); 64 }; 65 #define NULLB_PAGE_LOCK (MAP_SZ - 1) 66 #define NULLB_PAGE_FREE (MAP_SZ - 2) 67 68 static LIST_HEAD(nullb_list); 69 static struct mutex lock; 70 static int null_major; 71 static DEFINE_IDA(nullb_indexes); 72 static struct blk_mq_tag_set tag_set; 73 74 enum { 75 NULL_IRQ_NONE = 0, 76 NULL_IRQ_SOFTIRQ = 1, 77 NULL_IRQ_TIMER = 2, 78 }; 79 80 static bool g_virt_boundary; 81 module_param_named(virt_boundary, g_virt_boundary, bool, 0444); 82 MODULE_PARM_DESC(virt_boundary, "Require a virtual boundary for the device. Default: False"); 83 84 static int g_no_sched; 85 module_param_named(no_sched, g_no_sched, int, 0444); 86 MODULE_PARM_DESC(no_sched, "No io scheduler"); 87 88 static int g_submit_queues = 1; 89 module_param_named(submit_queues, g_submit_queues, int, 0444); 90 MODULE_PARM_DESC(submit_queues, "Number of submission queues"); 91 92 static int g_poll_queues = 1; 93 module_param_named(poll_queues, g_poll_queues, int, 0444); 94 MODULE_PARM_DESC(poll_queues, "Number of IOPOLL submission queues"); 95 96 static int g_home_node = NUMA_NO_NODE; 97 module_param_named(home_node, g_home_node, int, 0444); 98 MODULE_PARM_DESC(home_node, "Home node for the device"); 99 100 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION 101 /* 102 * For more details about fault injection, please refer to 103 * Documentation/fault-injection/fault-injection.rst. 104 */ 105 static char g_timeout_str[80]; 106 module_param_string(timeout, g_timeout_str, sizeof(g_timeout_str), 0444); 107 MODULE_PARM_DESC(timeout, "Fault injection. timeout=<interval>,<probability>,<space>,<times>"); 108 109 static char g_requeue_str[80]; 110 module_param_string(requeue, g_requeue_str, sizeof(g_requeue_str), 0444); 111 MODULE_PARM_DESC(requeue, "Fault injection. requeue=<interval>,<probability>,<space>,<times>"); 112 113 static char g_init_hctx_str[80]; 114 module_param_string(init_hctx, g_init_hctx_str, sizeof(g_init_hctx_str), 0444); 115 MODULE_PARM_DESC(init_hctx, "Fault injection to fail hctx init. init_hctx=<interval>,<probability>,<space>,<times>"); 116 #endif 117 118 /* 119 * Historic queue modes. 120 * 121 * These days nothing but NULL_Q_MQ is actually supported, but we keep it the 122 * enum for error reporting. 123 */ 124 enum { 125 NULL_Q_BIO = 0, 126 NULL_Q_RQ = 1, 127 NULL_Q_MQ = 2, 128 }; 129 130 static int g_queue_mode = NULL_Q_MQ; 131 132 static int null_param_store_val(const char *str, int *val, int min, int max) 133 { 134 int ret, new_val; 135 136 ret = kstrtoint(str, 10, &new_val); 137 if (ret) 138 return -EINVAL; 139 140 if (new_val < min || new_val > max) 141 return -EINVAL; 142 143 *val = new_val; 144 return 0; 145 } 146 147 static int null_set_queue_mode(const char *str, const struct kernel_param *kp) 148 { 149 return null_param_store_val(str, &g_queue_mode, NULL_Q_BIO, NULL_Q_MQ); 150 } 151 152 static const struct kernel_param_ops null_queue_mode_param_ops = { 153 .set = null_set_queue_mode, 154 .get = param_get_int, 155 }; 156 157 device_param_cb(queue_mode, &null_queue_mode_param_ops, &g_queue_mode, 0444); 158 MODULE_PARM_DESC(queue_mode, "Block interface to use (0=bio,1=rq,2=multiqueue)"); 159 160 static int g_gb = 250; 161 module_param_named(gb, g_gb, int, 0444); 162 MODULE_PARM_DESC(gb, "Size in GB"); 163 164 static int g_bs = 512; 165 module_param_named(bs, g_bs, int, 0444); 166 MODULE_PARM_DESC(bs, "Block size (in bytes)"); 167 168 static int g_max_sectors; 169 module_param_named(max_sectors, g_max_sectors, int, 0444); 170 MODULE_PARM_DESC(max_sectors, "Maximum size of a command (in 512B sectors)"); 171 172 static unsigned int nr_devices = 1; 173 module_param(nr_devices, uint, 0444); 174 MODULE_PARM_DESC(nr_devices, "Number of devices to register"); 175 176 static bool g_blocking; 177 module_param_named(blocking, g_blocking, bool, 0444); 178 MODULE_PARM_DESC(blocking, "Register as a blocking blk-mq driver device"); 179 180 static bool g_shared_tags; 181 module_param_named(shared_tags, g_shared_tags, bool, 0444); 182 MODULE_PARM_DESC(shared_tags, "Share tag set between devices for blk-mq"); 183 184 static bool g_shared_tag_bitmap; 185 module_param_named(shared_tag_bitmap, g_shared_tag_bitmap, bool, 0444); 186 MODULE_PARM_DESC(shared_tag_bitmap, "Use shared tag bitmap for all submission queues for blk-mq"); 187 188 static int g_irqmode = NULL_IRQ_SOFTIRQ; 189 190 static int null_set_irqmode(const char *str, const struct kernel_param *kp) 191 { 192 return null_param_store_val(str, &g_irqmode, NULL_IRQ_NONE, 193 NULL_IRQ_TIMER); 194 } 195 196 static const struct kernel_param_ops null_irqmode_param_ops = { 197 .set = null_set_irqmode, 198 .get = param_get_int, 199 }; 200 201 device_param_cb(irqmode, &null_irqmode_param_ops, &g_irqmode, 0444); 202 MODULE_PARM_DESC(irqmode, "IRQ completion handler. 0-none, 1-softirq, 2-timer"); 203 204 static unsigned long g_completion_nsec = 10000; 205 module_param_named(completion_nsec, g_completion_nsec, ulong, 0444); 206 MODULE_PARM_DESC(completion_nsec, "Time in ns to complete a request in hardware. Default: 10,000ns"); 207 208 static int g_hw_queue_depth = 64; 209 module_param_named(hw_queue_depth, g_hw_queue_depth, int, 0444); 210 MODULE_PARM_DESC(hw_queue_depth, "Queue depth for each hardware queue. Default: 64"); 211 212 static bool g_use_per_node_hctx; 213 module_param_named(use_per_node_hctx, g_use_per_node_hctx, bool, 0444); 214 MODULE_PARM_DESC(use_per_node_hctx, "Use per-node allocation for hardware context queues. Default: false"); 215 216 static bool g_memory_backed; 217 module_param_named(memory_backed, g_memory_backed, bool, 0444); 218 MODULE_PARM_DESC(memory_backed, "Create a memory-backed block device. Default: false"); 219 220 static bool g_discard; 221 module_param_named(discard, g_discard, bool, 0444); 222 MODULE_PARM_DESC(discard, "Support discard operations (requires memory-backed null_blk device). Default: false"); 223 224 static unsigned long g_cache_size; 225 module_param_named(cache_size, g_cache_size, ulong, 0444); 226 MODULE_PARM_DESC(cache_size, "Cache size in MiB for memory-backed device. Default: 0 (none)"); 227 228 static bool g_fua = true; 229 module_param_named(fua, g_fua, bool, 0444); 230 MODULE_PARM_DESC(fua, "Enable/disable FUA support when cache_size is used. Default: true"); 231 232 static unsigned int g_mbps; 233 module_param_named(mbps, g_mbps, uint, 0444); 234 MODULE_PARM_DESC(mbps, "Limit maximum bandwidth (in MiB/s). Default: 0 (no limit)"); 235 236 static bool g_zoned; 237 module_param_named(zoned, g_zoned, bool, S_IRUGO); 238 MODULE_PARM_DESC(zoned, "Make device as a host-managed zoned block device. Default: false"); 239 240 static unsigned long g_zone_size = 256; 241 module_param_named(zone_size, g_zone_size, ulong, S_IRUGO); 242 MODULE_PARM_DESC(zone_size, "Zone size in MB when block device is zoned. Must be power-of-two: Default: 256"); 243 244 static unsigned long g_zone_capacity; 245 module_param_named(zone_capacity, g_zone_capacity, ulong, 0444); 246 MODULE_PARM_DESC(zone_capacity, "Zone capacity in MB when block device is zoned. Can be less than or equal to zone size. Default: Zone size"); 247 248 static unsigned int g_zone_nr_conv; 249 module_param_named(zone_nr_conv, g_zone_nr_conv, uint, 0444); 250 MODULE_PARM_DESC(zone_nr_conv, "Number of conventional zones when block device is zoned. Default: 0"); 251 252 static unsigned int g_zone_max_open; 253 module_param_named(zone_max_open, g_zone_max_open, uint, 0444); 254 MODULE_PARM_DESC(zone_max_open, "Maximum number of open zones when block device is zoned. Default: 0 (no limit)"); 255 256 static unsigned int g_zone_max_active; 257 module_param_named(zone_max_active, g_zone_max_active, uint, 0444); 258 MODULE_PARM_DESC(zone_max_active, "Maximum number of active zones when block device is zoned. Default: 0 (no limit)"); 259 260 static int g_zone_append_max_sectors = INT_MAX; 261 module_param_named(zone_append_max_sectors, g_zone_append_max_sectors, int, 0444); 262 MODULE_PARM_DESC(zone_append_max_sectors, 263 "Maximum size of a zone append command (in 512B sectors). Specify 0 for zone append emulation"); 264 265 static bool g_zone_full; 266 module_param_named(zone_full, g_zone_full, bool, S_IRUGO); 267 MODULE_PARM_DESC(zone_full, "Initialize the sequential write required zones of a zoned device to be full. Default: false"); 268 269 static bool g_rotational; 270 module_param_named(rotational, g_rotational, bool, S_IRUGO); 271 MODULE_PARM_DESC(rotational, "Set the rotational feature for the device. Default: false"); 272 273 static struct nullb_device *null_alloc_dev(void); 274 static void null_free_dev(struct nullb_device *dev); 275 static void null_del_dev(struct nullb *nullb); 276 static int null_add_dev(struct nullb_device *dev); 277 static struct nullb *null_find_dev_by_name(const char *name); 278 static void null_free_device_storage(struct nullb_device *dev, bool is_cache); 279 280 static inline struct nullb_device *to_nullb_device(struct config_item *item) 281 { 282 return item ? container_of(to_config_group(item), struct nullb_device, group) : NULL; 283 } 284 285 static inline ssize_t nullb_device_uint_attr_show(unsigned int val, char *page) 286 { 287 return snprintf(page, PAGE_SIZE, "%u\n", val); 288 } 289 290 static inline ssize_t nullb_device_ulong_attr_show(unsigned long val, 291 char *page) 292 { 293 return snprintf(page, PAGE_SIZE, "%lu\n", val); 294 } 295 296 static inline ssize_t nullb_device_bool_attr_show(bool val, char *page) 297 { 298 return snprintf(page, PAGE_SIZE, "%u\n", val); 299 } 300 301 static ssize_t nullb_device_uint_attr_store(unsigned int *val, 302 const char *page, size_t count) 303 { 304 unsigned int tmp; 305 int result; 306 307 result = kstrtouint(page, 0, &tmp); 308 if (result < 0) 309 return result; 310 311 *val = tmp; 312 return count; 313 } 314 315 static ssize_t nullb_device_ulong_attr_store(unsigned long *val, 316 const char *page, size_t count) 317 { 318 int result; 319 unsigned long tmp; 320 321 result = kstrtoul(page, 0, &tmp); 322 if (result < 0) 323 return result; 324 325 *val = tmp; 326 return count; 327 } 328 329 static ssize_t nullb_device_bool_attr_store(bool *val, const char *page, 330 size_t count) 331 { 332 bool tmp; 333 int result; 334 335 result = kstrtobool(page, &tmp); 336 if (result < 0) 337 return result; 338 339 *val = tmp; 340 return count; 341 } 342 343 /* The following macro should only be used with TYPE = {uint, ulong, bool}. */ 344 #define NULLB_DEVICE_ATTR(NAME, TYPE, APPLY) \ 345 static ssize_t \ 346 nullb_device_##NAME##_show(struct config_item *item, char *page) \ 347 { \ 348 return nullb_device_##TYPE##_attr_show( \ 349 to_nullb_device(item)->NAME, page); \ 350 } \ 351 static ssize_t \ 352 nullb_device_##NAME##_store(struct config_item *item, const char *page, \ 353 size_t count) \ 354 { \ 355 int (*apply_fn)(struct nullb_device *dev, TYPE new_value) = APPLY;\ 356 struct nullb_device *dev = to_nullb_device(item); \ 357 TYPE new_value = 0; \ 358 int ret; \ 359 \ 360 ret = nullb_device_##TYPE##_attr_store(&new_value, page, count);\ 361 if (ret < 0) \ 362 return ret; \ 363 if (apply_fn) \ 364 ret = apply_fn(dev, new_value); \ 365 else if (test_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags)) \ 366 ret = -EBUSY; \ 367 if (ret < 0) \ 368 return ret; \ 369 dev->NAME = new_value; \ 370 return count; \ 371 } \ 372 CONFIGFS_ATTR(nullb_device_, NAME); 373 374 static int nullb_update_nr_hw_queues(struct nullb_device *dev, 375 unsigned int submit_queues, 376 unsigned int poll_queues) 377 378 { 379 struct blk_mq_tag_set *set; 380 int ret, nr_hw_queues; 381 382 if (!dev->nullb) 383 return 0; 384 385 /* 386 * Make sure at least one submit queue exists. 387 */ 388 if (!submit_queues) 389 return -EINVAL; 390 391 /* 392 * Make sure that null_init_hctx() does not access nullb->queues[] past 393 * the end of that array. 394 */ 395 if (submit_queues > nr_cpu_ids || poll_queues > g_poll_queues) 396 return -EINVAL; 397 398 /* 399 * Keep previous and new queue numbers in nullb_device for reference in 400 * the call back function null_map_queues(). 401 */ 402 dev->prev_submit_queues = dev->submit_queues; 403 dev->prev_poll_queues = dev->poll_queues; 404 dev->submit_queues = submit_queues; 405 dev->poll_queues = poll_queues; 406 407 set = dev->nullb->tag_set; 408 nr_hw_queues = submit_queues + poll_queues; 409 blk_mq_update_nr_hw_queues(set, nr_hw_queues); 410 ret = set->nr_hw_queues == nr_hw_queues ? 0 : -ENOMEM; 411 412 if (ret) { 413 /* on error, revert the queue numbers */ 414 dev->submit_queues = dev->prev_submit_queues; 415 dev->poll_queues = dev->prev_poll_queues; 416 } 417 418 return ret; 419 } 420 421 static int nullb_apply_submit_queues(struct nullb_device *dev, 422 unsigned int submit_queues) 423 { 424 int ret; 425 426 mutex_lock(&lock); 427 ret = nullb_update_nr_hw_queues(dev, submit_queues, dev->poll_queues); 428 mutex_unlock(&lock); 429 430 return ret; 431 } 432 433 static int nullb_apply_poll_queues(struct nullb_device *dev, 434 unsigned int poll_queues) 435 { 436 int ret; 437 438 mutex_lock(&lock); 439 ret = nullb_update_nr_hw_queues(dev, dev->submit_queues, poll_queues); 440 mutex_unlock(&lock); 441 442 return ret; 443 } 444 445 NULLB_DEVICE_ATTR(size, ulong, NULL); 446 NULLB_DEVICE_ATTR(completion_nsec, ulong, NULL); 447 NULLB_DEVICE_ATTR(submit_queues, uint, nullb_apply_submit_queues); 448 NULLB_DEVICE_ATTR(poll_queues, uint, nullb_apply_poll_queues); 449 NULLB_DEVICE_ATTR(home_node, uint, NULL); 450 NULLB_DEVICE_ATTR(queue_mode, uint, NULL); 451 NULLB_DEVICE_ATTR(blocksize, uint, NULL); 452 NULLB_DEVICE_ATTR(max_sectors, uint, NULL); 453 NULLB_DEVICE_ATTR(irqmode, uint, NULL); 454 NULLB_DEVICE_ATTR(hw_queue_depth, uint, NULL); 455 NULLB_DEVICE_ATTR(index, uint, NULL); 456 NULLB_DEVICE_ATTR(blocking, bool, NULL); 457 NULLB_DEVICE_ATTR(use_per_node_hctx, bool, NULL); 458 NULLB_DEVICE_ATTR(memory_backed, bool, NULL); 459 NULLB_DEVICE_ATTR(discard, bool, NULL); 460 NULLB_DEVICE_ATTR(mbps, uint, NULL); 461 NULLB_DEVICE_ATTR(cache_size, ulong, NULL); 462 NULLB_DEVICE_ATTR(zoned, bool, NULL); 463 NULLB_DEVICE_ATTR(zone_size, ulong, NULL); 464 NULLB_DEVICE_ATTR(zone_capacity, ulong, NULL); 465 NULLB_DEVICE_ATTR(zone_nr_conv, uint, NULL); 466 NULLB_DEVICE_ATTR(zone_max_open, uint, NULL); 467 NULLB_DEVICE_ATTR(zone_max_active, uint, NULL); 468 NULLB_DEVICE_ATTR(zone_append_max_sectors, uint, NULL); 469 NULLB_DEVICE_ATTR(zone_full, bool, NULL); 470 NULLB_DEVICE_ATTR(virt_boundary, bool, NULL); 471 NULLB_DEVICE_ATTR(no_sched, bool, NULL); 472 NULLB_DEVICE_ATTR(shared_tags, bool, NULL); 473 NULLB_DEVICE_ATTR(shared_tag_bitmap, bool, NULL); 474 NULLB_DEVICE_ATTR(fua, bool, NULL); 475 NULLB_DEVICE_ATTR(rotational, bool, NULL); 476 NULLB_DEVICE_ATTR(badblocks_once, bool, NULL); 477 NULLB_DEVICE_ATTR(badblocks_partial_io, bool, NULL); 478 479 static ssize_t nullb_device_power_show(struct config_item *item, char *page) 480 { 481 return nullb_device_bool_attr_show(to_nullb_device(item)->power, page); 482 } 483 484 static ssize_t nullb_device_power_store(struct config_item *item, 485 const char *page, size_t count) 486 { 487 struct nullb_device *dev = to_nullb_device(item); 488 bool newp = false; 489 ssize_t ret; 490 491 ret = nullb_device_bool_attr_store(&newp, page, count); 492 if (ret < 0) 493 return ret; 494 495 ret = count; 496 mutex_lock(&lock); 497 if (!dev->power && newp) { 498 if (test_and_set_bit(NULLB_DEV_FL_UP, &dev->flags)) 499 goto out; 500 501 ret = null_add_dev(dev); 502 if (ret) { 503 clear_bit(NULLB_DEV_FL_UP, &dev->flags); 504 goto out; 505 } 506 507 set_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags); 508 dev->power = newp; 509 ret = count; 510 } else if (dev->power && !newp) { 511 if (test_and_clear_bit(NULLB_DEV_FL_UP, &dev->flags)) { 512 dev->power = newp; 513 null_del_dev(dev->nullb); 514 } 515 clear_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags); 516 } 517 518 out: 519 mutex_unlock(&lock); 520 return ret; 521 } 522 523 CONFIGFS_ATTR(nullb_device_, power); 524 525 static ssize_t nullb_device_badblocks_show(struct config_item *item, char *page) 526 { 527 struct nullb_device *t_dev = to_nullb_device(item); 528 529 return badblocks_show(&t_dev->badblocks, page, 0); 530 } 531 532 static ssize_t nullb_device_badblocks_store(struct config_item *item, 533 const char *page, size_t count) 534 { 535 struct nullb_device *t_dev = to_nullb_device(item); 536 char *orig, *buf, *tmp; 537 u64 start, end; 538 int ret; 539 540 orig = kstrndup(page, count, GFP_KERNEL); 541 if (!orig) 542 return -ENOMEM; 543 544 buf = strstrip(orig); 545 546 ret = -EINVAL; 547 if (buf[0] != '+' && buf[0] != '-') 548 goto out; 549 tmp = strchr(&buf[1], '-'); 550 if (!tmp) 551 goto out; 552 *tmp = '\0'; 553 ret = kstrtoull(buf + 1, 0, &start); 554 if (ret) 555 goto out; 556 ret = kstrtoull(tmp + 1, 0, &end); 557 if (ret) 558 goto out; 559 ret = -EINVAL; 560 if (start > end) 561 goto out; 562 /* enable badblocks */ 563 cmpxchg(&t_dev->badblocks.shift, -1, 0); 564 if (buf[0] == '+') { 565 if (badblocks_set(&t_dev->badblocks, start, 566 end - start + 1, 1)) 567 ret = count; 568 } else if (badblocks_clear(&t_dev->badblocks, start, 569 end - start + 1)) { 570 ret = count; 571 } 572 out: 573 kfree(orig); 574 return ret; 575 } 576 CONFIGFS_ATTR(nullb_device_, badblocks); 577 578 static ssize_t nullb_device_zone_readonly_store(struct config_item *item, 579 const char *page, size_t count) 580 { 581 struct nullb_device *dev = to_nullb_device(item); 582 583 return zone_cond_store(dev, page, count, BLK_ZONE_COND_READONLY); 584 } 585 CONFIGFS_ATTR_WO(nullb_device_, zone_readonly); 586 587 static ssize_t nullb_device_zone_offline_store(struct config_item *item, 588 const char *page, size_t count) 589 { 590 struct nullb_device *dev = to_nullb_device(item); 591 592 return zone_cond_store(dev, page, count, BLK_ZONE_COND_OFFLINE); 593 } 594 CONFIGFS_ATTR_WO(nullb_device_, zone_offline); 595 596 static struct configfs_attribute *nullb_device_attrs[] = { 597 &nullb_device_attr_badblocks, 598 &nullb_device_attr_badblocks_once, 599 &nullb_device_attr_badblocks_partial_io, 600 &nullb_device_attr_blocking, 601 &nullb_device_attr_blocksize, 602 &nullb_device_attr_cache_size, 603 &nullb_device_attr_completion_nsec, 604 &nullb_device_attr_discard, 605 &nullb_device_attr_fua, 606 &nullb_device_attr_home_node, 607 &nullb_device_attr_hw_queue_depth, 608 &nullb_device_attr_index, 609 &nullb_device_attr_irqmode, 610 &nullb_device_attr_max_sectors, 611 &nullb_device_attr_mbps, 612 &nullb_device_attr_memory_backed, 613 &nullb_device_attr_no_sched, 614 &nullb_device_attr_poll_queues, 615 &nullb_device_attr_power, 616 &nullb_device_attr_queue_mode, 617 &nullb_device_attr_rotational, 618 &nullb_device_attr_shared_tag_bitmap, 619 &nullb_device_attr_shared_tags, 620 &nullb_device_attr_size, 621 &nullb_device_attr_submit_queues, 622 &nullb_device_attr_use_per_node_hctx, 623 &nullb_device_attr_virt_boundary, 624 &nullb_device_attr_zone_append_max_sectors, 625 &nullb_device_attr_zone_capacity, 626 &nullb_device_attr_zone_full, 627 &nullb_device_attr_zone_max_active, 628 &nullb_device_attr_zone_max_open, 629 &nullb_device_attr_zone_nr_conv, 630 &nullb_device_attr_zone_offline, 631 &nullb_device_attr_zone_readonly, 632 &nullb_device_attr_zone_size, 633 &nullb_device_attr_zoned, 634 NULL, 635 }; 636 637 static void nullb_device_release(struct config_item *item) 638 { 639 struct nullb_device *dev = to_nullb_device(item); 640 641 null_free_device_storage(dev, false); 642 null_free_dev(dev); 643 } 644 645 static struct configfs_item_operations nullb_device_ops = { 646 .release = nullb_device_release, 647 }; 648 649 static const struct config_item_type nullb_device_type = { 650 .ct_item_ops = &nullb_device_ops, 651 .ct_attrs = nullb_device_attrs, 652 .ct_owner = THIS_MODULE, 653 }; 654 655 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION 656 657 static void nullb_add_fault_config(struct nullb_device *dev) 658 { 659 fault_config_init(&dev->timeout_config, "timeout_inject"); 660 fault_config_init(&dev->requeue_config, "requeue_inject"); 661 fault_config_init(&dev->init_hctx_fault_config, "init_hctx_fault_inject"); 662 663 configfs_add_default_group(&dev->timeout_config.group, &dev->group); 664 configfs_add_default_group(&dev->requeue_config.group, &dev->group); 665 configfs_add_default_group(&dev->init_hctx_fault_config.group, &dev->group); 666 } 667 668 static void nullb_del_fault_config(struct nullb_device *dev) 669 { 670 config_item_put(&dev->init_hctx_fault_config.group.cg_item); 671 config_item_put(&dev->requeue_config.group.cg_item); 672 config_item_put(&dev->timeout_config.group.cg_item); 673 } 674 675 #else 676 677 static void nullb_add_fault_config(struct nullb_device *dev) 678 { 679 } 680 681 static void nullb_del_fault_config(struct nullb_device *dev) 682 { 683 } 684 #endif 685 686 static struct 687 config_group *nullb_group_make_group(struct config_group *group, const char *name) 688 { 689 struct nullb_device *dev; 690 691 if (null_find_dev_by_name(name)) 692 return ERR_PTR(-EEXIST); 693 694 dev = null_alloc_dev(); 695 if (!dev) 696 return ERR_PTR(-ENOMEM); 697 698 config_group_init_type_name(&dev->group, name, &nullb_device_type); 699 nullb_add_fault_config(dev); 700 701 return &dev->group; 702 } 703 704 static void 705 nullb_group_drop_item(struct config_group *group, struct config_item *item) 706 { 707 struct nullb_device *dev = to_nullb_device(item); 708 709 if (test_and_clear_bit(NULLB_DEV_FL_UP, &dev->flags)) { 710 mutex_lock(&lock); 711 dev->power = false; 712 null_del_dev(dev->nullb); 713 mutex_unlock(&lock); 714 } 715 nullb_del_fault_config(dev); 716 config_item_put(item); 717 } 718 719 static ssize_t memb_group_features_show(struct config_item *item, char *page) 720 { 721 722 struct configfs_attribute **entry; 723 char delimiter = ','; 724 size_t left = PAGE_SIZE; 725 size_t written = 0; 726 int ret; 727 728 for (entry = &nullb_device_attrs[0]; *entry && left > 0; entry++) { 729 if (!*(entry + 1)) 730 delimiter = '\n'; 731 ret = snprintf(page + written, left, "%s%c", (*entry)->ca_name, 732 delimiter); 733 if (ret >= left) { 734 WARN_ONCE(1, "Too many null_blk features to print\n"); 735 memzero_explicit(page, PAGE_SIZE); 736 return -ENOBUFS; 737 } 738 left -= ret; 739 written += ret; 740 } 741 742 return written; 743 } 744 745 CONFIGFS_ATTR_RO(memb_group_, features); 746 747 static struct configfs_attribute *nullb_group_attrs[] = { 748 &memb_group_attr_features, 749 NULL, 750 }; 751 752 static struct configfs_group_operations nullb_group_ops = { 753 .make_group = nullb_group_make_group, 754 .drop_item = nullb_group_drop_item, 755 }; 756 757 static const struct config_item_type nullb_group_type = { 758 .ct_group_ops = &nullb_group_ops, 759 .ct_attrs = nullb_group_attrs, 760 .ct_owner = THIS_MODULE, 761 }; 762 763 static struct configfs_subsystem nullb_subsys = { 764 .su_group = { 765 .cg_item = { 766 .ci_namebuf = "nullb", 767 .ci_type = &nullb_group_type, 768 }, 769 }, 770 }; 771 772 static inline int null_cache_active(struct nullb *nullb) 773 { 774 return test_bit(NULLB_DEV_FL_CACHE, &nullb->dev->flags); 775 } 776 777 static struct nullb_device *null_alloc_dev(void) 778 { 779 struct nullb_device *dev; 780 781 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 782 if (!dev) 783 return NULL; 784 785 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION 786 dev->timeout_config.attr = null_timeout_attr; 787 dev->requeue_config.attr = null_requeue_attr; 788 dev->init_hctx_fault_config.attr = null_init_hctx_attr; 789 #endif 790 791 INIT_RADIX_TREE(&dev->data, GFP_ATOMIC); 792 INIT_RADIX_TREE(&dev->cache, GFP_ATOMIC); 793 if (badblocks_init(&dev->badblocks, 0)) { 794 kfree(dev); 795 return NULL; 796 } 797 798 dev->size = g_gb * 1024; 799 dev->completion_nsec = g_completion_nsec; 800 dev->submit_queues = g_submit_queues; 801 dev->prev_submit_queues = g_submit_queues; 802 dev->poll_queues = g_poll_queues; 803 dev->prev_poll_queues = g_poll_queues; 804 dev->home_node = g_home_node; 805 dev->queue_mode = g_queue_mode; 806 dev->blocksize = g_bs; 807 dev->max_sectors = g_max_sectors; 808 dev->irqmode = g_irqmode; 809 dev->hw_queue_depth = g_hw_queue_depth; 810 dev->blocking = g_blocking; 811 dev->memory_backed = g_memory_backed; 812 dev->discard = g_discard; 813 dev->cache_size = g_cache_size; 814 dev->mbps = g_mbps; 815 dev->use_per_node_hctx = g_use_per_node_hctx; 816 dev->zoned = g_zoned; 817 dev->zone_size = g_zone_size; 818 dev->zone_capacity = g_zone_capacity; 819 dev->zone_nr_conv = g_zone_nr_conv; 820 dev->zone_max_open = g_zone_max_open; 821 dev->zone_max_active = g_zone_max_active; 822 dev->zone_append_max_sectors = g_zone_append_max_sectors; 823 dev->zone_full = g_zone_full; 824 dev->virt_boundary = g_virt_boundary; 825 dev->no_sched = g_no_sched; 826 dev->shared_tags = g_shared_tags; 827 dev->shared_tag_bitmap = g_shared_tag_bitmap; 828 dev->fua = g_fua; 829 dev->rotational = g_rotational; 830 831 return dev; 832 } 833 834 static void null_free_dev(struct nullb_device *dev) 835 { 836 if (!dev) 837 return; 838 839 null_free_zoned_dev(dev); 840 badblocks_exit(&dev->badblocks); 841 kfree(dev); 842 } 843 844 static enum hrtimer_restart null_cmd_timer_expired(struct hrtimer *timer) 845 { 846 struct nullb_cmd *cmd = container_of(timer, struct nullb_cmd, timer); 847 848 blk_mq_end_request(blk_mq_rq_from_pdu(cmd), cmd->error); 849 return HRTIMER_NORESTART; 850 } 851 852 static void null_cmd_end_timer(struct nullb_cmd *cmd) 853 { 854 ktime_t kt = cmd->nq->dev->completion_nsec; 855 856 hrtimer_start(&cmd->timer, kt, HRTIMER_MODE_REL); 857 } 858 859 static void null_complete_rq(struct request *rq) 860 { 861 struct nullb_cmd *cmd = blk_mq_rq_to_pdu(rq); 862 863 blk_mq_end_request(rq, cmd->error); 864 } 865 866 static struct nullb_page *null_alloc_page(void) 867 { 868 struct nullb_page *t_page; 869 870 t_page = kmalloc(sizeof(struct nullb_page), GFP_NOIO); 871 if (!t_page) 872 return NULL; 873 874 t_page->page = alloc_pages(GFP_NOIO, 0); 875 if (!t_page->page) { 876 kfree(t_page); 877 return NULL; 878 } 879 880 memset(t_page->bitmap, 0, sizeof(t_page->bitmap)); 881 return t_page; 882 } 883 884 static void null_free_page(struct nullb_page *t_page) 885 { 886 __set_bit(NULLB_PAGE_FREE, t_page->bitmap); 887 if (test_bit(NULLB_PAGE_LOCK, t_page->bitmap)) 888 return; 889 __free_page(t_page->page); 890 kfree(t_page); 891 } 892 893 static bool null_page_empty(struct nullb_page *page) 894 { 895 int size = MAP_SZ - 2; 896 897 return find_first_bit(page->bitmap, size) == size; 898 } 899 900 static void null_free_sector(struct nullb *nullb, sector_t sector, 901 bool is_cache) 902 { 903 unsigned int sector_bit; 904 u64 idx; 905 struct nullb_page *t_page, *ret; 906 struct radix_tree_root *root; 907 908 root = is_cache ? &nullb->dev->cache : &nullb->dev->data; 909 idx = sector >> PAGE_SECTORS_SHIFT; 910 sector_bit = (sector & SECTOR_MASK); 911 912 t_page = radix_tree_lookup(root, idx); 913 if (t_page) { 914 __clear_bit(sector_bit, t_page->bitmap); 915 916 if (null_page_empty(t_page)) { 917 ret = radix_tree_delete_item(root, idx, t_page); 918 WARN_ON(ret != t_page); 919 null_free_page(ret); 920 if (is_cache) 921 nullb->dev->curr_cache -= PAGE_SIZE; 922 } 923 } 924 } 925 926 static struct nullb_page *null_radix_tree_insert(struct nullb *nullb, u64 idx, 927 struct nullb_page *t_page, bool is_cache) 928 { 929 struct radix_tree_root *root; 930 931 root = is_cache ? &nullb->dev->cache : &nullb->dev->data; 932 933 if (radix_tree_insert(root, idx, t_page)) { 934 null_free_page(t_page); 935 t_page = radix_tree_lookup(root, idx); 936 WARN_ON(!t_page || t_page->page->private != idx); 937 } else if (is_cache) 938 nullb->dev->curr_cache += PAGE_SIZE; 939 940 return t_page; 941 } 942 943 static void null_free_device_storage(struct nullb_device *dev, bool is_cache) 944 { 945 unsigned long pos = 0; 946 int nr_pages; 947 struct nullb_page *ret, *t_pages[FREE_BATCH]; 948 struct radix_tree_root *root; 949 950 root = is_cache ? &dev->cache : &dev->data; 951 952 do { 953 int i; 954 955 nr_pages = radix_tree_gang_lookup(root, 956 (void **)t_pages, pos, FREE_BATCH); 957 958 for (i = 0; i < nr_pages; i++) { 959 pos = t_pages[i]->page->private; 960 ret = radix_tree_delete_item(root, pos, t_pages[i]); 961 WARN_ON(ret != t_pages[i]); 962 null_free_page(ret); 963 } 964 965 pos++; 966 } while (nr_pages == FREE_BATCH); 967 968 if (is_cache) 969 dev->curr_cache = 0; 970 } 971 972 static struct nullb_page *__null_lookup_page(struct nullb *nullb, 973 sector_t sector, bool for_write, bool is_cache) 974 { 975 unsigned int sector_bit; 976 u64 idx; 977 struct nullb_page *t_page; 978 struct radix_tree_root *root; 979 980 idx = sector >> PAGE_SECTORS_SHIFT; 981 sector_bit = (sector & SECTOR_MASK); 982 983 root = is_cache ? &nullb->dev->cache : &nullb->dev->data; 984 t_page = radix_tree_lookup(root, idx); 985 WARN_ON(t_page && t_page->page->private != idx); 986 987 if (t_page && (for_write || test_bit(sector_bit, t_page->bitmap))) 988 return t_page; 989 990 return NULL; 991 } 992 993 static struct nullb_page *null_lookup_page(struct nullb *nullb, 994 sector_t sector, bool for_write, bool ignore_cache) 995 { 996 struct nullb_page *page = NULL; 997 998 if (!ignore_cache) 999 page = __null_lookup_page(nullb, sector, for_write, true); 1000 if (page) 1001 return page; 1002 return __null_lookup_page(nullb, sector, for_write, false); 1003 } 1004 1005 static struct nullb_page *null_insert_page(struct nullb *nullb, 1006 sector_t sector, bool ignore_cache) 1007 __releases(&nullb->lock) 1008 __acquires(&nullb->lock) 1009 { 1010 u64 idx; 1011 struct nullb_page *t_page; 1012 1013 t_page = null_lookup_page(nullb, sector, true, ignore_cache); 1014 if (t_page) 1015 return t_page; 1016 1017 spin_unlock_irq(&nullb->lock); 1018 1019 t_page = null_alloc_page(); 1020 if (!t_page) 1021 goto out_lock; 1022 1023 if (radix_tree_preload(GFP_NOIO)) 1024 goto out_freepage; 1025 1026 spin_lock_irq(&nullb->lock); 1027 idx = sector >> PAGE_SECTORS_SHIFT; 1028 t_page->page->private = idx; 1029 t_page = null_radix_tree_insert(nullb, idx, t_page, !ignore_cache); 1030 radix_tree_preload_end(); 1031 1032 return t_page; 1033 out_freepage: 1034 null_free_page(t_page); 1035 out_lock: 1036 spin_lock_irq(&nullb->lock); 1037 return null_lookup_page(nullb, sector, true, ignore_cache); 1038 } 1039 1040 static int null_flush_cache_page(struct nullb *nullb, struct nullb_page *c_page) 1041 { 1042 int i; 1043 unsigned int offset; 1044 u64 idx; 1045 struct nullb_page *t_page, *ret; 1046 void *dst, *src; 1047 1048 idx = c_page->page->private; 1049 1050 t_page = null_insert_page(nullb, idx << PAGE_SECTORS_SHIFT, true); 1051 1052 __clear_bit(NULLB_PAGE_LOCK, c_page->bitmap); 1053 if (test_bit(NULLB_PAGE_FREE, c_page->bitmap)) { 1054 null_free_page(c_page); 1055 if (t_page && null_page_empty(t_page)) { 1056 ret = radix_tree_delete_item(&nullb->dev->data, 1057 idx, t_page); 1058 null_free_page(t_page); 1059 } 1060 return 0; 1061 } 1062 1063 if (!t_page) 1064 return -ENOMEM; 1065 1066 src = kmap_local_page(c_page->page); 1067 dst = kmap_local_page(t_page->page); 1068 1069 for (i = 0; i < PAGE_SECTORS; 1070 i += (nullb->dev->blocksize >> SECTOR_SHIFT)) { 1071 if (test_bit(i, c_page->bitmap)) { 1072 offset = (i << SECTOR_SHIFT); 1073 memcpy(dst + offset, src + offset, 1074 nullb->dev->blocksize); 1075 __set_bit(i, t_page->bitmap); 1076 } 1077 } 1078 1079 kunmap_local(dst); 1080 kunmap_local(src); 1081 1082 ret = radix_tree_delete_item(&nullb->dev->cache, idx, c_page); 1083 null_free_page(ret); 1084 nullb->dev->curr_cache -= PAGE_SIZE; 1085 1086 return 0; 1087 } 1088 1089 static int null_make_cache_space(struct nullb *nullb, unsigned long n) 1090 { 1091 int i, err, nr_pages; 1092 struct nullb_page *c_pages[FREE_BATCH]; 1093 unsigned long flushed = 0, one_round; 1094 1095 again: 1096 if ((nullb->dev->cache_size * 1024 * 1024) > 1097 nullb->dev->curr_cache + n || nullb->dev->curr_cache == 0) 1098 return 0; 1099 1100 nr_pages = radix_tree_gang_lookup(&nullb->dev->cache, 1101 (void **)c_pages, nullb->cache_flush_pos, FREE_BATCH); 1102 /* 1103 * nullb_flush_cache_page could unlock before using the c_pages. To 1104 * avoid race, we don't allow page free 1105 */ 1106 for (i = 0; i < nr_pages; i++) { 1107 nullb->cache_flush_pos = c_pages[i]->page->private; 1108 /* 1109 * We found the page which is being flushed to disk by other 1110 * threads 1111 */ 1112 if (test_bit(NULLB_PAGE_LOCK, c_pages[i]->bitmap)) 1113 c_pages[i] = NULL; 1114 else 1115 __set_bit(NULLB_PAGE_LOCK, c_pages[i]->bitmap); 1116 } 1117 1118 one_round = 0; 1119 for (i = 0; i < nr_pages; i++) { 1120 if (c_pages[i] == NULL) 1121 continue; 1122 err = null_flush_cache_page(nullb, c_pages[i]); 1123 if (err) 1124 return err; 1125 one_round++; 1126 } 1127 flushed += one_round << PAGE_SHIFT; 1128 1129 if (n > flushed) { 1130 if (nr_pages == 0) 1131 nullb->cache_flush_pos = 0; 1132 if (one_round == 0) { 1133 /* give other threads a chance */ 1134 spin_unlock_irq(&nullb->lock); 1135 spin_lock_irq(&nullb->lock); 1136 } 1137 goto again; 1138 } 1139 return 0; 1140 } 1141 1142 static blk_status_t copy_to_nullb(struct nullb *nullb, void *source, 1143 loff_t pos, size_t n, bool is_fua) 1144 { 1145 size_t temp, count = 0; 1146 struct nullb_page *t_page; 1147 sector_t sector; 1148 1149 while (count < n) { 1150 temp = min3(nullb->dev->blocksize, n - count, 1151 PAGE_SIZE - offset_in_page(pos)); 1152 sector = pos >> SECTOR_SHIFT; 1153 1154 if (null_cache_active(nullb) && !is_fua) 1155 null_make_cache_space(nullb, PAGE_SIZE); 1156 1157 t_page = null_insert_page(nullb, sector, 1158 !null_cache_active(nullb) || is_fua); 1159 if (!t_page) 1160 return BLK_STS_NOSPC; 1161 1162 memcpy_to_page(t_page->page, offset_in_page(pos), 1163 source + count, temp); 1164 1165 __set_bit(sector & SECTOR_MASK, t_page->bitmap); 1166 1167 if (is_fua) 1168 null_free_sector(nullb, sector, true); 1169 1170 count += temp; 1171 pos += temp; 1172 } 1173 return BLK_STS_OK; 1174 } 1175 1176 static void copy_from_nullb(struct nullb *nullb, void *dest, loff_t pos, 1177 size_t n) 1178 { 1179 size_t temp, count = 0; 1180 struct nullb_page *t_page; 1181 sector_t sector; 1182 1183 while (count < n) { 1184 temp = min3(nullb->dev->blocksize, n - count, 1185 PAGE_SIZE - offset_in_page(pos)); 1186 sector = pos >> SECTOR_SHIFT; 1187 1188 t_page = null_lookup_page(nullb, sector, false, 1189 !null_cache_active(nullb)); 1190 if (t_page) 1191 memcpy_from_page(dest + count, t_page->page, 1192 offset_in_page(pos), temp); 1193 else 1194 memset(dest + count, 0, temp); 1195 1196 count += temp; 1197 pos += temp; 1198 } 1199 } 1200 1201 blk_status_t null_handle_discard(struct nullb_device *dev, 1202 sector_t sector, sector_t nr_sectors) 1203 { 1204 struct nullb *nullb = dev->nullb; 1205 size_t n = nr_sectors << SECTOR_SHIFT; 1206 size_t temp; 1207 1208 spin_lock_irq(&nullb->lock); 1209 while (n > 0) { 1210 temp = min_t(size_t, n, dev->blocksize); 1211 null_free_sector(nullb, sector, false); 1212 if (null_cache_active(nullb)) 1213 null_free_sector(nullb, sector, true); 1214 sector += temp >> SECTOR_SHIFT; 1215 n -= temp; 1216 } 1217 spin_unlock_irq(&nullb->lock); 1218 1219 return BLK_STS_OK; 1220 } 1221 1222 static blk_status_t null_handle_flush(struct nullb *nullb) 1223 { 1224 int err; 1225 1226 if (!null_cache_active(nullb)) 1227 return 0; 1228 1229 spin_lock_irq(&nullb->lock); 1230 while (true) { 1231 err = null_make_cache_space(nullb, 1232 nullb->dev->cache_size * 1024 * 1024); 1233 if (err || nullb->dev->curr_cache == 0) 1234 break; 1235 } 1236 1237 WARN_ON(!radix_tree_empty(&nullb->dev->cache)); 1238 spin_unlock_irq(&nullb->lock); 1239 return errno_to_blk_status(err); 1240 } 1241 1242 static blk_status_t null_transfer(struct nullb *nullb, struct page *page, 1243 unsigned int len, unsigned int off, bool is_write, loff_t pos, 1244 bool is_fua) 1245 { 1246 struct nullb_device *dev = nullb->dev; 1247 blk_status_t err = BLK_STS_OK; 1248 unsigned int valid_len = len; 1249 void *p; 1250 1251 p = kmap_local_page(page) + off; 1252 if (!is_write) { 1253 if (dev->zoned) { 1254 valid_len = null_zone_valid_read_len(nullb, 1255 pos >> SECTOR_SHIFT, len); 1256 if (valid_len && valid_len != len) 1257 valid_len -= pos & (SECTOR_SIZE - 1); 1258 } 1259 1260 if (valid_len) { 1261 copy_from_nullb(nullb, p, pos, valid_len); 1262 off += valid_len; 1263 len -= valid_len; 1264 } 1265 1266 if (len) 1267 memset(p + valid_len, 0xff, len); 1268 flush_dcache_page(page); 1269 } else { 1270 flush_dcache_page(page); 1271 err = copy_to_nullb(nullb, p, pos, len, is_fua); 1272 } 1273 1274 kunmap_local(p); 1275 return err; 1276 } 1277 1278 /* 1279 * Transfer data for the given request. The transfer size is capped with the 1280 * nr_sectors argument. 1281 */ 1282 static blk_status_t null_handle_data_transfer(struct nullb_cmd *cmd, 1283 sector_t nr_sectors) 1284 { 1285 struct request *rq = blk_mq_rq_from_pdu(cmd); 1286 struct nullb *nullb = cmd->nq->dev->nullb; 1287 blk_status_t err = BLK_STS_OK; 1288 unsigned int len; 1289 loff_t pos = blk_rq_pos(rq) << SECTOR_SHIFT; 1290 unsigned int max_bytes = nr_sectors << SECTOR_SHIFT; 1291 unsigned int transferred_bytes = 0; 1292 struct req_iterator iter; 1293 struct bio_vec bvec; 1294 1295 spin_lock_irq(&nullb->lock); 1296 rq_for_each_segment(bvec, rq, iter) { 1297 len = bvec.bv_len; 1298 if (transferred_bytes + len > max_bytes) 1299 len = max_bytes - transferred_bytes; 1300 err = null_transfer(nullb, bvec.bv_page, len, bvec.bv_offset, 1301 op_is_write(req_op(rq)), pos, 1302 rq->cmd_flags & REQ_FUA); 1303 if (err) 1304 break; 1305 pos += len; 1306 transferred_bytes += len; 1307 if (transferred_bytes >= max_bytes) 1308 break; 1309 } 1310 spin_unlock_irq(&nullb->lock); 1311 1312 return err; 1313 } 1314 1315 static inline blk_status_t null_handle_throttled(struct nullb_cmd *cmd) 1316 { 1317 struct nullb_device *dev = cmd->nq->dev; 1318 struct nullb *nullb = dev->nullb; 1319 blk_status_t sts = BLK_STS_OK; 1320 struct request *rq = blk_mq_rq_from_pdu(cmd); 1321 1322 if (!hrtimer_active(&nullb->bw_timer)) 1323 hrtimer_restart(&nullb->bw_timer); 1324 1325 if (atomic_long_sub_return(blk_rq_bytes(rq), &nullb->cur_bytes) < 0) { 1326 blk_mq_stop_hw_queues(nullb->q); 1327 /* race with timer */ 1328 if (atomic_long_read(&nullb->cur_bytes) > 0) 1329 blk_mq_start_stopped_hw_queues(nullb->q, true); 1330 /* requeue request */ 1331 sts = BLK_STS_DEV_RESOURCE; 1332 } 1333 return sts; 1334 } 1335 1336 /* 1337 * Check if the command should fail for the badblocks. If so, return 1338 * BLK_STS_IOERR and return number of partial I/O sectors to be written or read, 1339 * which may be less than the requested number of sectors. 1340 * 1341 * @cmd: The command to handle. 1342 * @sector: The start sector for I/O. 1343 * @nr_sectors: Specifies number of sectors to write or read, and returns the 1344 * number of sectors to be written or read. 1345 */ 1346 blk_status_t null_handle_badblocks(struct nullb_cmd *cmd, sector_t sector, 1347 unsigned int *nr_sectors) 1348 { 1349 struct badblocks *bb = &cmd->nq->dev->badblocks; 1350 struct nullb_device *dev = cmd->nq->dev; 1351 unsigned int block_sectors = dev->blocksize >> SECTOR_SHIFT; 1352 sector_t first_bad, bad_sectors; 1353 unsigned int partial_io_sectors = 0; 1354 1355 if (!badblocks_check(bb, sector, *nr_sectors, &first_bad, &bad_sectors)) 1356 return BLK_STS_OK; 1357 1358 if (cmd->nq->dev->badblocks_once) 1359 badblocks_clear(bb, first_bad, bad_sectors); 1360 1361 if (cmd->nq->dev->badblocks_partial_io) { 1362 if (!IS_ALIGNED(first_bad, block_sectors)) 1363 first_bad = ALIGN_DOWN(first_bad, block_sectors); 1364 if (sector < first_bad) 1365 partial_io_sectors = first_bad - sector; 1366 } 1367 *nr_sectors = partial_io_sectors; 1368 1369 return BLK_STS_IOERR; 1370 } 1371 1372 blk_status_t null_handle_memory_backed(struct nullb_cmd *cmd, enum req_op op, 1373 sector_t sector, sector_t nr_sectors) 1374 { 1375 struct nullb_device *dev = cmd->nq->dev; 1376 1377 if (op == REQ_OP_DISCARD) 1378 return null_handle_discard(dev, sector, nr_sectors); 1379 1380 return null_handle_data_transfer(cmd, nr_sectors); 1381 } 1382 1383 static void nullb_zero_read_cmd_buffer(struct nullb_cmd *cmd) 1384 { 1385 struct request *rq = blk_mq_rq_from_pdu(cmd); 1386 struct nullb_device *dev = cmd->nq->dev; 1387 struct bio *bio; 1388 1389 if (!dev->memory_backed && req_op(rq) == REQ_OP_READ) { 1390 __rq_for_each_bio(bio, rq) 1391 zero_fill_bio(bio); 1392 } 1393 } 1394 1395 static inline void nullb_complete_cmd(struct nullb_cmd *cmd) 1396 { 1397 struct request *rq = blk_mq_rq_from_pdu(cmd); 1398 1399 /* 1400 * Since root privileges are required to configure the null_blk 1401 * driver, it is fine that this driver does not initialize the 1402 * data buffers of read commands. Zero-initialize these buffers 1403 * anyway if KMSAN is enabled to prevent that KMSAN complains 1404 * about null_blk not initializing read data buffers. 1405 */ 1406 if (IS_ENABLED(CONFIG_KMSAN)) 1407 nullb_zero_read_cmd_buffer(cmd); 1408 1409 /* Complete IO by inline, softirq or timer */ 1410 switch (cmd->nq->dev->irqmode) { 1411 case NULL_IRQ_SOFTIRQ: 1412 blk_mq_complete_request(rq); 1413 break; 1414 case NULL_IRQ_NONE: 1415 blk_mq_end_request(rq, cmd->error); 1416 break; 1417 case NULL_IRQ_TIMER: 1418 null_cmd_end_timer(cmd); 1419 break; 1420 } 1421 } 1422 1423 blk_status_t null_process_cmd(struct nullb_cmd *cmd, enum req_op op, 1424 sector_t sector, unsigned int nr_sectors) 1425 { 1426 struct nullb_device *dev = cmd->nq->dev; 1427 blk_status_t badblocks_ret = BLK_STS_OK; 1428 blk_status_t ret; 1429 1430 if (dev->badblocks.shift != -1) 1431 badblocks_ret = null_handle_badblocks(cmd, sector, &nr_sectors); 1432 1433 if (dev->memory_backed && nr_sectors) { 1434 ret = null_handle_memory_backed(cmd, op, sector, nr_sectors); 1435 if (ret != BLK_STS_OK) 1436 return ret; 1437 } 1438 1439 return badblocks_ret; 1440 } 1441 1442 static void null_handle_cmd(struct nullb_cmd *cmd, sector_t sector, 1443 sector_t nr_sectors, enum req_op op) 1444 { 1445 struct nullb_device *dev = cmd->nq->dev; 1446 struct nullb *nullb = dev->nullb; 1447 blk_status_t sts; 1448 1449 if (op == REQ_OP_FLUSH) { 1450 cmd->error = null_handle_flush(nullb); 1451 goto out; 1452 } 1453 1454 if (dev->zoned) 1455 sts = null_process_zoned_cmd(cmd, op, sector, nr_sectors); 1456 else 1457 sts = null_process_cmd(cmd, op, sector, nr_sectors); 1458 1459 /* Do not overwrite errors (e.g. timeout errors) */ 1460 if (cmd->error == BLK_STS_OK) 1461 cmd->error = sts; 1462 1463 out: 1464 nullb_complete_cmd(cmd); 1465 } 1466 1467 static enum hrtimer_restart nullb_bwtimer_fn(struct hrtimer *timer) 1468 { 1469 struct nullb *nullb = container_of(timer, struct nullb, bw_timer); 1470 ktime_t timer_interval = ktime_set(0, TIMER_INTERVAL); 1471 unsigned int mbps = nullb->dev->mbps; 1472 1473 if (atomic_long_read(&nullb->cur_bytes) == mb_per_tick(mbps)) 1474 return HRTIMER_NORESTART; 1475 1476 atomic_long_set(&nullb->cur_bytes, mb_per_tick(mbps)); 1477 blk_mq_start_stopped_hw_queues(nullb->q, true); 1478 1479 hrtimer_forward_now(&nullb->bw_timer, timer_interval); 1480 1481 return HRTIMER_RESTART; 1482 } 1483 1484 static void nullb_setup_bwtimer(struct nullb *nullb) 1485 { 1486 ktime_t timer_interval = ktime_set(0, TIMER_INTERVAL); 1487 1488 hrtimer_setup(&nullb->bw_timer, nullb_bwtimer_fn, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1489 atomic_long_set(&nullb->cur_bytes, mb_per_tick(nullb->dev->mbps)); 1490 hrtimer_start(&nullb->bw_timer, timer_interval, HRTIMER_MODE_REL); 1491 } 1492 1493 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION 1494 1495 static bool should_timeout_request(struct request *rq) 1496 { 1497 struct nullb_cmd *cmd = blk_mq_rq_to_pdu(rq); 1498 struct nullb_device *dev = cmd->nq->dev; 1499 1500 return should_fail(&dev->timeout_config.attr, 1); 1501 } 1502 1503 static bool should_requeue_request(struct request *rq) 1504 { 1505 struct nullb_cmd *cmd = blk_mq_rq_to_pdu(rq); 1506 struct nullb_device *dev = cmd->nq->dev; 1507 1508 return should_fail(&dev->requeue_config.attr, 1); 1509 } 1510 1511 static bool should_init_hctx_fail(struct nullb_device *dev) 1512 { 1513 return should_fail(&dev->init_hctx_fault_config.attr, 1); 1514 } 1515 1516 #else 1517 1518 static bool should_timeout_request(struct request *rq) 1519 { 1520 return false; 1521 } 1522 1523 static bool should_requeue_request(struct request *rq) 1524 { 1525 return false; 1526 } 1527 1528 static bool should_init_hctx_fail(struct nullb_device *dev) 1529 { 1530 return false; 1531 } 1532 1533 #endif 1534 1535 static void null_map_queues(struct blk_mq_tag_set *set) 1536 { 1537 struct nullb *nullb = set->driver_data; 1538 int i, qoff; 1539 unsigned int submit_queues = g_submit_queues; 1540 unsigned int poll_queues = g_poll_queues; 1541 1542 if (nullb) { 1543 struct nullb_device *dev = nullb->dev; 1544 1545 /* 1546 * Refer nr_hw_queues of the tag set to check if the expected 1547 * number of hardware queues are prepared. If block layer failed 1548 * to prepare them, use previous numbers of submit queues and 1549 * poll queues to map queues. 1550 */ 1551 if (set->nr_hw_queues == 1552 dev->submit_queues + dev->poll_queues) { 1553 submit_queues = dev->submit_queues; 1554 poll_queues = dev->poll_queues; 1555 } else if (set->nr_hw_queues == 1556 dev->prev_submit_queues + dev->prev_poll_queues) { 1557 submit_queues = dev->prev_submit_queues; 1558 poll_queues = dev->prev_poll_queues; 1559 } else { 1560 pr_warn("tag set has unexpected nr_hw_queues: %d\n", 1561 set->nr_hw_queues); 1562 WARN_ON_ONCE(true); 1563 submit_queues = 1; 1564 poll_queues = 0; 1565 } 1566 } 1567 1568 for (i = 0, qoff = 0; i < set->nr_maps; i++) { 1569 struct blk_mq_queue_map *map = &set->map[i]; 1570 1571 switch (i) { 1572 case HCTX_TYPE_DEFAULT: 1573 map->nr_queues = submit_queues; 1574 break; 1575 case HCTX_TYPE_READ: 1576 map->nr_queues = 0; 1577 continue; 1578 case HCTX_TYPE_POLL: 1579 map->nr_queues = poll_queues; 1580 break; 1581 } 1582 map->queue_offset = qoff; 1583 qoff += map->nr_queues; 1584 blk_mq_map_queues(map); 1585 } 1586 } 1587 1588 static int null_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob) 1589 { 1590 struct nullb_queue *nq = hctx->driver_data; 1591 LIST_HEAD(list); 1592 int nr = 0; 1593 struct request *rq; 1594 1595 spin_lock(&nq->poll_lock); 1596 list_splice_init(&nq->poll_list, &list); 1597 list_for_each_entry(rq, &list, queuelist) 1598 blk_mq_set_request_complete(rq); 1599 spin_unlock(&nq->poll_lock); 1600 1601 while (!list_empty(&list)) { 1602 struct nullb_cmd *cmd; 1603 struct request *req; 1604 1605 req = list_first_entry(&list, struct request, queuelist); 1606 list_del_init(&req->queuelist); 1607 cmd = blk_mq_rq_to_pdu(req); 1608 cmd->error = null_process_cmd(cmd, req_op(req), blk_rq_pos(req), 1609 blk_rq_sectors(req)); 1610 if (!blk_mq_add_to_batch(req, iob, cmd->error != BLK_STS_OK, 1611 blk_mq_end_request_batch)) 1612 blk_mq_end_request(req, cmd->error); 1613 nr++; 1614 } 1615 1616 return nr; 1617 } 1618 1619 static enum blk_eh_timer_return null_timeout_rq(struct request *rq) 1620 { 1621 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1622 struct nullb_cmd *cmd = blk_mq_rq_to_pdu(rq); 1623 1624 if (hctx->type == HCTX_TYPE_POLL) { 1625 struct nullb_queue *nq = hctx->driver_data; 1626 1627 spin_lock(&nq->poll_lock); 1628 /* The request may have completed meanwhile. */ 1629 if (blk_mq_request_completed(rq)) { 1630 spin_unlock(&nq->poll_lock); 1631 return BLK_EH_DONE; 1632 } 1633 list_del_init(&rq->queuelist); 1634 spin_unlock(&nq->poll_lock); 1635 } 1636 1637 pr_info("rq %p timed out\n", rq); 1638 1639 /* 1640 * If the device is marked as blocking (i.e. memory backed or zoned 1641 * device), the submission path may be blocked waiting for resources 1642 * and cause real timeouts. For these real timeouts, the submission 1643 * path will complete the request using blk_mq_complete_request(). 1644 * Only fake timeouts need to execute blk_mq_complete_request() here. 1645 */ 1646 cmd->error = BLK_STS_TIMEOUT; 1647 if (cmd->fake_timeout || hctx->type == HCTX_TYPE_POLL) 1648 blk_mq_complete_request(rq); 1649 return BLK_EH_DONE; 1650 } 1651 1652 static blk_status_t null_queue_rq(struct blk_mq_hw_ctx *hctx, 1653 const struct blk_mq_queue_data *bd) 1654 { 1655 struct request *rq = bd->rq; 1656 struct nullb_cmd *cmd = blk_mq_rq_to_pdu(rq); 1657 struct nullb_queue *nq = hctx->driver_data; 1658 sector_t nr_sectors = blk_rq_sectors(rq); 1659 sector_t sector = blk_rq_pos(rq); 1660 const bool is_poll = hctx->type == HCTX_TYPE_POLL; 1661 1662 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING); 1663 1664 if (!is_poll && nq->dev->irqmode == NULL_IRQ_TIMER) { 1665 hrtimer_setup(&cmd->timer, null_cmd_timer_expired, CLOCK_MONOTONIC, 1666 HRTIMER_MODE_REL); 1667 } 1668 cmd->error = BLK_STS_OK; 1669 cmd->nq = nq; 1670 cmd->fake_timeout = should_timeout_request(rq) || 1671 blk_should_fake_timeout(rq->q); 1672 1673 if (should_requeue_request(rq)) { 1674 /* 1675 * Alternate between hitting the core BUSY path, and the 1676 * driver driven requeue path 1677 */ 1678 nq->requeue_selection++; 1679 if (nq->requeue_selection & 1) 1680 return BLK_STS_RESOURCE; 1681 blk_mq_requeue_request(rq, true); 1682 return BLK_STS_OK; 1683 } 1684 1685 if (test_bit(NULLB_DEV_FL_THROTTLED, &nq->dev->flags)) { 1686 blk_status_t sts = null_handle_throttled(cmd); 1687 1688 if (sts != BLK_STS_OK) 1689 return sts; 1690 } 1691 1692 blk_mq_start_request(rq); 1693 1694 if (is_poll) { 1695 spin_lock(&nq->poll_lock); 1696 list_add_tail(&rq->queuelist, &nq->poll_list); 1697 spin_unlock(&nq->poll_lock); 1698 return BLK_STS_OK; 1699 } 1700 if (cmd->fake_timeout) 1701 return BLK_STS_OK; 1702 1703 null_handle_cmd(cmd, sector, nr_sectors, req_op(rq)); 1704 return BLK_STS_OK; 1705 } 1706 1707 static void null_queue_rqs(struct rq_list *rqlist) 1708 { 1709 struct rq_list requeue_list = {}; 1710 struct blk_mq_queue_data bd = { }; 1711 blk_status_t ret; 1712 1713 do { 1714 struct request *rq = rq_list_pop(rqlist); 1715 1716 bd.rq = rq; 1717 ret = null_queue_rq(rq->mq_hctx, &bd); 1718 if (ret != BLK_STS_OK) 1719 rq_list_add_tail(&requeue_list, rq); 1720 } while (!rq_list_empty(rqlist)); 1721 1722 *rqlist = requeue_list; 1723 } 1724 1725 static void null_init_queue(struct nullb *nullb, struct nullb_queue *nq) 1726 { 1727 nq->dev = nullb->dev; 1728 INIT_LIST_HEAD(&nq->poll_list); 1729 spin_lock_init(&nq->poll_lock); 1730 } 1731 1732 static int null_init_hctx(struct blk_mq_hw_ctx *hctx, void *driver_data, 1733 unsigned int hctx_idx) 1734 { 1735 struct nullb *nullb = hctx->queue->queuedata; 1736 struct nullb_queue *nq; 1737 1738 if (should_init_hctx_fail(nullb->dev)) 1739 return -EFAULT; 1740 1741 nq = &nullb->queues[hctx_idx]; 1742 hctx->driver_data = nq; 1743 null_init_queue(nullb, nq); 1744 1745 return 0; 1746 } 1747 1748 static const struct blk_mq_ops null_mq_ops = { 1749 .queue_rq = null_queue_rq, 1750 .queue_rqs = null_queue_rqs, 1751 .complete = null_complete_rq, 1752 .timeout = null_timeout_rq, 1753 .poll = null_poll, 1754 .map_queues = null_map_queues, 1755 .init_hctx = null_init_hctx, 1756 }; 1757 1758 static void null_del_dev(struct nullb *nullb) 1759 { 1760 struct nullb_device *dev; 1761 1762 if (!nullb) 1763 return; 1764 1765 dev = nullb->dev; 1766 1767 ida_free(&nullb_indexes, nullb->index); 1768 1769 list_del_init(&nullb->list); 1770 1771 del_gendisk(nullb->disk); 1772 1773 if (test_bit(NULLB_DEV_FL_THROTTLED, &nullb->dev->flags)) { 1774 hrtimer_cancel(&nullb->bw_timer); 1775 atomic_long_set(&nullb->cur_bytes, LONG_MAX); 1776 blk_mq_start_stopped_hw_queues(nullb->q, true); 1777 } 1778 1779 put_disk(nullb->disk); 1780 if (nullb->tag_set == &nullb->__tag_set) 1781 blk_mq_free_tag_set(nullb->tag_set); 1782 kfree(nullb->queues); 1783 if (null_cache_active(nullb)) 1784 null_free_device_storage(nullb->dev, true); 1785 kfree(nullb); 1786 dev->nullb = NULL; 1787 } 1788 1789 static void null_config_discard(struct nullb *nullb, struct queue_limits *lim) 1790 { 1791 if (nullb->dev->discard == false) 1792 return; 1793 1794 if (!nullb->dev->memory_backed) { 1795 nullb->dev->discard = false; 1796 pr_info("discard option is ignored without memory backing\n"); 1797 return; 1798 } 1799 1800 if (nullb->dev->zoned) { 1801 nullb->dev->discard = false; 1802 pr_info("discard option is ignored in zoned mode\n"); 1803 return; 1804 } 1805 1806 lim->max_hw_discard_sectors = UINT_MAX >> 9; 1807 } 1808 1809 static const struct block_device_operations null_ops = { 1810 .owner = THIS_MODULE, 1811 .report_zones = null_report_zones, 1812 }; 1813 1814 static int setup_queues(struct nullb *nullb) 1815 { 1816 int nqueues = nr_cpu_ids; 1817 1818 if (g_poll_queues) 1819 nqueues += g_poll_queues; 1820 1821 nullb->queues = kcalloc(nqueues, sizeof(struct nullb_queue), 1822 GFP_KERNEL); 1823 if (!nullb->queues) 1824 return -ENOMEM; 1825 1826 return 0; 1827 } 1828 1829 static int null_init_tag_set(struct blk_mq_tag_set *set, int poll_queues) 1830 { 1831 set->ops = &null_mq_ops; 1832 set->cmd_size = sizeof(struct nullb_cmd); 1833 set->timeout = 5 * HZ; 1834 set->nr_maps = 1; 1835 if (poll_queues) { 1836 set->nr_hw_queues += poll_queues; 1837 set->nr_maps += 2; 1838 } 1839 return blk_mq_alloc_tag_set(set); 1840 } 1841 1842 static int null_init_global_tag_set(void) 1843 { 1844 int error; 1845 1846 if (tag_set.ops) 1847 return 0; 1848 1849 tag_set.nr_hw_queues = g_submit_queues; 1850 tag_set.queue_depth = g_hw_queue_depth; 1851 tag_set.numa_node = g_home_node; 1852 if (g_no_sched) 1853 tag_set.flags |= BLK_MQ_F_NO_SCHED_BY_DEFAULT; 1854 if (g_shared_tag_bitmap) 1855 tag_set.flags |= BLK_MQ_F_TAG_HCTX_SHARED; 1856 if (g_blocking) 1857 tag_set.flags |= BLK_MQ_F_BLOCKING; 1858 1859 error = null_init_tag_set(&tag_set, g_poll_queues); 1860 if (error) 1861 tag_set.ops = NULL; 1862 return error; 1863 } 1864 1865 static int null_setup_tagset(struct nullb *nullb) 1866 { 1867 if (nullb->dev->shared_tags) { 1868 nullb->tag_set = &tag_set; 1869 return null_init_global_tag_set(); 1870 } 1871 1872 nullb->tag_set = &nullb->__tag_set; 1873 nullb->tag_set->driver_data = nullb; 1874 nullb->tag_set->nr_hw_queues = nullb->dev->submit_queues; 1875 nullb->tag_set->queue_depth = nullb->dev->hw_queue_depth; 1876 nullb->tag_set->numa_node = nullb->dev->home_node; 1877 if (nullb->dev->no_sched) 1878 nullb->tag_set->flags |= BLK_MQ_F_NO_SCHED_BY_DEFAULT; 1879 if (nullb->dev->shared_tag_bitmap) 1880 nullb->tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED; 1881 if (nullb->dev->blocking) 1882 nullb->tag_set->flags |= BLK_MQ_F_BLOCKING; 1883 return null_init_tag_set(nullb->tag_set, nullb->dev->poll_queues); 1884 } 1885 1886 static int null_validate_conf(struct nullb_device *dev) 1887 { 1888 if (dev->queue_mode == NULL_Q_RQ) { 1889 pr_err("legacy IO path is no longer available\n"); 1890 return -EINVAL; 1891 } 1892 if (dev->queue_mode == NULL_Q_BIO) { 1893 pr_err("BIO-based IO path is no longer available, using blk-mq instead.\n"); 1894 dev->queue_mode = NULL_Q_MQ; 1895 } 1896 1897 if (dev->use_per_node_hctx) { 1898 if (dev->submit_queues != nr_online_nodes) 1899 dev->submit_queues = nr_online_nodes; 1900 } else if (dev->submit_queues > nr_cpu_ids) 1901 dev->submit_queues = nr_cpu_ids; 1902 else if (dev->submit_queues == 0) 1903 dev->submit_queues = 1; 1904 dev->prev_submit_queues = dev->submit_queues; 1905 1906 if (dev->poll_queues > g_poll_queues) 1907 dev->poll_queues = g_poll_queues; 1908 dev->prev_poll_queues = dev->poll_queues; 1909 dev->irqmode = min_t(unsigned int, dev->irqmode, NULL_IRQ_TIMER); 1910 1911 /* Do memory allocation, so set blocking */ 1912 if (dev->memory_backed) 1913 dev->blocking = true; 1914 else /* cache is meaningless */ 1915 dev->cache_size = 0; 1916 dev->cache_size = min_t(unsigned long, ULONG_MAX / 1024 / 1024, 1917 dev->cache_size); 1918 dev->mbps = min_t(unsigned int, 1024 * 40, dev->mbps); 1919 1920 if (dev->zoned && 1921 (!dev->zone_size || !is_power_of_2(dev->zone_size))) { 1922 pr_err("zone_size must be power-of-two\n"); 1923 return -EINVAL; 1924 } 1925 1926 return 0; 1927 } 1928 1929 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION 1930 static bool __null_setup_fault(struct fault_attr *attr, char *str) 1931 { 1932 if (!str[0]) 1933 return true; 1934 1935 if (!setup_fault_attr(attr, str)) 1936 return false; 1937 1938 attr->verbose = 0; 1939 return true; 1940 } 1941 #endif 1942 1943 static bool null_setup_fault(void) 1944 { 1945 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION 1946 if (!__null_setup_fault(&null_timeout_attr, g_timeout_str)) 1947 return false; 1948 if (!__null_setup_fault(&null_requeue_attr, g_requeue_str)) 1949 return false; 1950 if (!__null_setup_fault(&null_init_hctx_attr, g_init_hctx_str)) 1951 return false; 1952 #endif 1953 return true; 1954 } 1955 1956 static int null_add_dev(struct nullb_device *dev) 1957 { 1958 struct queue_limits lim = { 1959 .logical_block_size = dev->blocksize, 1960 .physical_block_size = dev->blocksize, 1961 .max_hw_sectors = dev->max_sectors, 1962 .dma_alignment = 1, 1963 }; 1964 1965 struct nullb *nullb; 1966 int rv; 1967 1968 rv = null_validate_conf(dev); 1969 if (rv) 1970 return rv; 1971 1972 nullb = kzalloc_node(sizeof(*nullb), GFP_KERNEL, dev->home_node); 1973 if (!nullb) { 1974 rv = -ENOMEM; 1975 goto out; 1976 } 1977 nullb->dev = dev; 1978 dev->nullb = nullb; 1979 1980 spin_lock_init(&nullb->lock); 1981 1982 rv = setup_queues(nullb); 1983 if (rv) 1984 goto out_free_nullb; 1985 1986 rv = null_setup_tagset(nullb); 1987 if (rv) 1988 goto out_cleanup_queues; 1989 1990 if (dev->virt_boundary) 1991 lim.virt_boundary_mask = PAGE_SIZE - 1; 1992 null_config_discard(nullb, &lim); 1993 if (dev->zoned) { 1994 rv = null_init_zoned_dev(dev, &lim); 1995 if (rv) 1996 goto out_cleanup_tags; 1997 } 1998 1999 if (dev->cache_size > 0) { 2000 set_bit(NULLB_DEV_FL_CACHE, &nullb->dev->flags); 2001 lim.features |= BLK_FEAT_WRITE_CACHE; 2002 if (dev->fua) 2003 lim.features |= BLK_FEAT_FUA; 2004 } 2005 2006 if (dev->rotational) 2007 lim.features |= BLK_FEAT_ROTATIONAL; 2008 2009 nullb->disk = blk_mq_alloc_disk(nullb->tag_set, &lim, nullb); 2010 if (IS_ERR(nullb->disk)) { 2011 rv = PTR_ERR(nullb->disk); 2012 goto out_cleanup_zone; 2013 } 2014 nullb->q = nullb->disk->queue; 2015 2016 if (dev->mbps) { 2017 set_bit(NULLB_DEV_FL_THROTTLED, &dev->flags); 2018 nullb_setup_bwtimer(nullb); 2019 } 2020 2021 nullb->q->queuedata = nullb; 2022 2023 rv = ida_alloc(&nullb_indexes, GFP_KERNEL); 2024 if (rv < 0) 2025 goto out_cleanup_disk; 2026 2027 nullb->index = rv; 2028 dev->index = rv; 2029 2030 if (config_item_name(&dev->group.cg_item)) { 2031 /* Use configfs dir name as the device name */ 2032 snprintf(nullb->disk_name, sizeof(nullb->disk_name), 2033 "%s", config_item_name(&dev->group.cg_item)); 2034 } else { 2035 sprintf(nullb->disk_name, "nullb%d", nullb->index); 2036 } 2037 2038 set_capacity(nullb->disk, 2039 ((sector_t)nullb->dev->size * SZ_1M) >> SECTOR_SHIFT); 2040 nullb->disk->major = null_major; 2041 nullb->disk->first_minor = nullb->index; 2042 nullb->disk->minors = 1; 2043 nullb->disk->fops = &null_ops; 2044 nullb->disk->private_data = nullb; 2045 strscpy(nullb->disk->disk_name, nullb->disk_name); 2046 2047 if (nullb->dev->zoned) { 2048 rv = null_register_zoned_dev(nullb); 2049 if (rv) 2050 goto out_ida_free; 2051 } 2052 2053 rv = add_disk(nullb->disk); 2054 if (rv) 2055 goto out_ida_free; 2056 2057 list_add_tail(&nullb->list, &nullb_list); 2058 2059 pr_info("disk %s created\n", nullb->disk_name); 2060 2061 return 0; 2062 2063 out_ida_free: 2064 ida_free(&nullb_indexes, nullb->index); 2065 out_cleanup_disk: 2066 put_disk(nullb->disk); 2067 out_cleanup_zone: 2068 null_free_zoned_dev(dev); 2069 out_cleanup_tags: 2070 if (nullb->tag_set == &nullb->__tag_set) 2071 blk_mq_free_tag_set(nullb->tag_set); 2072 out_cleanup_queues: 2073 kfree(nullb->queues); 2074 out_free_nullb: 2075 kfree(nullb); 2076 dev->nullb = NULL; 2077 out: 2078 return rv; 2079 } 2080 2081 static struct nullb *null_find_dev_by_name(const char *name) 2082 { 2083 struct nullb *nullb = NULL, *nb; 2084 2085 mutex_lock(&lock); 2086 list_for_each_entry(nb, &nullb_list, list) { 2087 if (strcmp(nb->disk_name, name) == 0) { 2088 nullb = nb; 2089 break; 2090 } 2091 } 2092 mutex_unlock(&lock); 2093 2094 return nullb; 2095 } 2096 2097 static int null_create_dev(void) 2098 { 2099 struct nullb_device *dev; 2100 int ret; 2101 2102 dev = null_alloc_dev(); 2103 if (!dev) 2104 return -ENOMEM; 2105 2106 mutex_lock(&lock); 2107 ret = null_add_dev(dev); 2108 mutex_unlock(&lock); 2109 if (ret) { 2110 null_free_dev(dev); 2111 return ret; 2112 } 2113 2114 return 0; 2115 } 2116 2117 static void null_destroy_dev(struct nullb *nullb) 2118 { 2119 struct nullb_device *dev = nullb->dev; 2120 2121 null_del_dev(nullb); 2122 null_free_device_storage(dev, false); 2123 null_free_dev(dev); 2124 } 2125 2126 static int __init null_init(void) 2127 { 2128 int ret = 0; 2129 unsigned int i; 2130 struct nullb *nullb; 2131 2132 if (g_bs > PAGE_SIZE) { 2133 pr_warn("invalid block size\n"); 2134 pr_warn("defaults block size to %lu\n", PAGE_SIZE); 2135 g_bs = PAGE_SIZE; 2136 } 2137 2138 if (g_home_node != NUMA_NO_NODE && g_home_node >= nr_online_nodes) { 2139 pr_err("invalid home_node value\n"); 2140 g_home_node = NUMA_NO_NODE; 2141 } 2142 2143 if (!null_setup_fault()) 2144 return -EINVAL; 2145 2146 if (g_queue_mode == NULL_Q_RQ) { 2147 pr_err("legacy IO path is no longer available\n"); 2148 return -EINVAL; 2149 } 2150 2151 if (g_use_per_node_hctx) { 2152 if (g_submit_queues != nr_online_nodes) { 2153 pr_warn("submit_queues param is set to %u.\n", 2154 nr_online_nodes); 2155 g_submit_queues = nr_online_nodes; 2156 } 2157 } else if (g_submit_queues > nr_cpu_ids) { 2158 g_submit_queues = nr_cpu_ids; 2159 } else if (g_submit_queues <= 0) { 2160 g_submit_queues = 1; 2161 } 2162 2163 config_group_init(&nullb_subsys.su_group); 2164 mutex_init(&nullb_subsys.su_mutex); 2165 2166 ret = configfs_register_subsystem(&nullb_subsys); 2167 if (ret) 2168 return ret; 2169 2170 mutex_init(&lock); 2171 2172 null_major = register_blkdev(0, "nullb"); 2173 if (null_major < 0) { 2174 ret = null_major; 2175 goto err_conf; 2176 } 2177 2178 for (i = 0; i < nr_devices; i++) { 2179 ret = null_create_dev(); 2180 if (ret) 2181 goto err_dev; 2182 } 2183 2184 pr_info("module loaded\n"); 2185 return 0; 2186 2187 err_dev: 2188 while (!list_empty(&nullb_list)) { 2189 nullb = list_entry(nullb_list.next, struct nullb, list); 2190 null_destroy_dev(nullb); 2191 } 2192 unregister_blkdev(null_major, "nullb"); 2193 err_conf: 2194 configfs_unregister_subsystem(&nullb_subsys); 2195 return ret; 2196 } 2197 2198 static void __exit null_exit(void) 2199 { 2200 struct nullb *nullb; 2201 2202 configfs_unregister_subsystem(&nullb_subsys); 2203 2204 unregister_blkdev(null_major, "nullb"); 2205 2206 mutex_lock(&lock); 2207 while (!list_empty(&nullb_list)) { 2208 nullb = list_entry(nullb_list.next, struct nullb, list); 2209 null_destroy_dev(nullb); 2210 } 2211 mutex_unlock(&lock); 2212 2213 if (tag_set.ops) 2214 blk_mq_free_tag_set(&tag_set); 2215 2216 mutex_destroy(&lock); 2217 } 2218 2219 module_init(null_init); 2220 module_exit(null_exit); 2221 2222 MODULE_AUTHOR("Jens Axboe <axboe@kernel.dk>"); 2223 MODULE_DESCRIPTION("multi queue aware block test driver"); 2224 MODULE_LICENSE("GPL"); 2225