1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Kernel timekeeping code and accessor functions. Based on code from
4 * timer.c, moved in commit 8524070b7982.
5 */
6 #include <linux/timekeeper_internal.h>
7 #include <linux/module.h>
8 #include <linux/interrupt.h>
9 #include <linux/percpu.h>
10 #include <linux/init.h>
11 #include <linux/mm.h>
12 #include <linux/nmi.h>
13 #include <linux/sched.h>
14 #include <linux/sched/loadavg.h>
15 #include <linux/sched/clock.h>
16 #include <linux/syscore_ops.h>
17 #include <linux/clocksource.h>
18 #include <linux/jiffies.h>
19 #include <linux/time.h>
20 #include <linux/timex.h>
21 #include <linux/tick.h>
22 #include <linux/stop_machine.h>
23 #include <linux/pvclock_gtod.h>
24 #include <linux/compiler.h>
25 #include <linux/audit.h>
26 #include <linux/random.h>
27
28 #include "tick-internal.h"
29 #include "ntp_internal.h"
30 #include "timekeeping_internal.h"
31
32 #define TK_CLEAR_NTP (1 << 0)
33 #define TK_CLOCK_WAS_SET (1 << 1)
34
35 #define TK_UPDATE_ALL (TK_CLEAR_NTP | TK_CLOCK_WAS_SET)
36
37 enum timekeeping_adv_mode {
38 /* Update timekeeper when a tick has passed */
39 TK_ADV_TICK,
40
41 /* Update timekeeper on a direct frequency change */
42 TK_ADV_FREQ
43 };
44
45 /*
46 * The most important data for readout fits into a single 64 byte
47 * cache line.
48 */
49 struct tk_data {
50 seqcount_raw_spinlock_t seq;
51 struct timekeeper timekeeper;
52 struct timekeeper shadow_timekeeper;
53 raw_spinlock_t lock;
54 } ____cacheline_aligned;
55
56 static struct tk_data tk_core;
57
58 /* flag for if timekeeping is suspended */
59 int __read_mostly timekeeping_suspended;
60
61 /**
62 * struct tk_fast - NMI safe timekeeper
63 * @seq: Sequence counter for protecting updates. The lowest bit
64 * is the index for the tk_read_base array
65 * @base: tk_read_base array. Access is indexed by the lowest bit of
66 * @seq.
67 *
68 * See @update_fast_timekeeper() below.
69 */
70 struct tk_fast {
71 seqcount_latch_t seq;
72 struct tk_read_base base[2];
73 };
74
75 /* Suspend-time cycles value for halted fast timekeeper. */
76 static u64 cycles_at_suspend;
77
dummy_clock_read(struct clocksource * cs)78 static u64 dummy_clock_read(struct clocksource *cs)
79 {
80 if (timekeeping_suspended)
81 return cycles_at_suspend;
82 return local_clock();
83 }
84
85 static struct clocksource dummy_clock = {
86 .read = dummy_clock_read,
87 };
88
89 /*
90 * Boot time initialization which allows local_clock() to be utilized
91 * during early boot when clocksources are not available. local_clock()
92 * returns nanoseconds already so no conversion is required, hence mult=1
93 * and shift=0. When the first proper clocksource is installed then
94 * the fast time keepers are updated with the correct values.
95 */
96 #define FAST_TK_INIT \
97 { \
98 .clock = &dummy_clock, \
99 .mask = CLOCKSOURCE_MASK(64), \
100 .mult = 1, \
101 .shift = 0, \
102 }
103
104 static struct tk_fast tk_fast_mono ____cacheline_aligned = {
105 .seq = SEQCNT_LATCH_ZERO(tk_fast_mono.seq),
106 .base[0] = FAST_TK_INIT,
107 .base[1] = FAST_TK_INIT,
108 };
109
110 static struct tk_fast tk_fast_raw ____cacheline_aligned = {
111 .seq = SEQCNT_LATCH_ZERO(tk_fast_raw.seq),
112 .base[0] = FAST_TK_INIT,
113 .base[1] = FAST_TK_INIT,
114 };
115
timekeeper_lock_irqsave(void)116 unsigned long timekeeper_lock_irqsave(void)
117 {
118 unsigned long flags;
119
120 raw_spin_lock_irqsave(&tk_core.lock, flags);
121 return flags;
122 }
123
timekeeper_unlock_irqrestore(unsigned long flags)124 void timekeeper_unlock_irqrestore(unsigned long flags)
125 {
126 raw_spin_unlock_irqrestore(&tk_core.lock, flags);
127 }
128
129 /*
130 * Multigrain timestamps require tracking the latest fine-grained timestamp
131 * that has been issued, and never returning a coarse-grained timestamp that is
132 * earlier than that value.
133 *
134 * mg_floor represents the latest fine-grained time that has been handed out as
135 * a file timestamp on the system. This is tracked as a monotonic ktime_t, and
136 * converted to a realtime clock value on an as-needed basis.
137 *
138 * Maintaining mg_floor ensures the multigrain interfaces never issue a
139 * timestamp earlier than one that has been previously issued.
140 *
141 * The exception to this rule is when there is a backward realtime clock jump. If
142 * such an event occurs, a timestamp can appear to be earlier than a previous one.
143 */
144 static __cacheline_aligned_in_smp atomic64_t mg_floor;
145
tk_normalize_xtime(struct timekeeper * tk)146 static inline void tk_normalize_xtime(struct timekeeper *tk)
147 {
148 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
149 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
150 tk->xtime_sec++;
151 }
152 while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) {
153 tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
154 tk->raw_sec++;
155 }
156 }
157
tk_xtime(const struct timekeeper * tk)158 static inline struct timespec64 tk_xtime(const struct timekeeper *tk)
159 {
160 struct timespec64 ts;
161
162 ts.tv_sec = tk->xtime_sec;
163 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
164 return ts;
165 }
166
tk_set_xtime(struct timekeeper * tk,const struct timespec64 * ts)167 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
168 {
169 tk->xtime_sec = ts->tv_sec;
170 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
171 }
172
tk_xtime_add(struct timekeeper * tk,const struct timespec64 * ts)173 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
174 {
175 tk->xtime_sec += ts->tv_sec;
176 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
177 tk_normalize_xtime(tk);
178 }
179
tk_set_wall_to_mono(struct timekeeper * tk,struct timespec64 wtm)180 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
181 {
182 struct timespec64 tmp;
183
184 /*
185 * Verify consistency of: offset_real = -wall_to_monotonic
186 * before modifying anything
187 */
188 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
189 -tk->wall_to_monotonic.tv_nsec);
190 WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
191 tk->wall_to_monotonic = wtm;
192 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
193 /* Paired with READ_ONCE() in ktime_mono_to_any() */
194 WRITE_ONCE(tk->offs_real, timespec64_to_ktime(tmp));
195 WRITE_ONCE(tk->offs_tai, ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0)));
196 }
197
tk_update_sleep_time(struct timekeeper * tk,ktime_t delta)198 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
199 {
200 /* Paired with READ_ONCE() in ktime_mono_to_any() */
201 WRITE_ONCE(tk->offs_boot, ktime_add(tk->offs_boot, delta));
202 /*
203 * Timespec representation for VDSO update to avoid 64bit division
204 * on every update.
205 */
206 tk->monotonic_to_boot = ktime_to_timespec64(tk->offs_boot);
207 }
208
209 /*
210 * tk_clock_read - atomic clocksource read() helper
211 *
212 * This helper is necessary to use in the read paths because, while the
213 * seqcount ensures we don't return a bad value while structures are updated,
214 * it doesn't protect from potential crashes. There is the possibility that
215 * the tkr's clocksource may change between the read reference, and the
216 * clock reference passed to the read function. This can cause crashes if
217 * the wrong clocksource is passed to the wrong read function.
218 * This isn't necessary to use when holding the tk_core.lock or doing
219 * a read of the fast-timekeeper tkrs (which is protected by its own locking
220 * and update logic).
221 */
tk_clock_read(const struct tk_read_base * tkr)222 static inline u64 tk_clock_read(const struct tk_read_base *tkr)
223 {
224 struct clocksource *clock = READ_ONCE(tkr->clock);
225
226 return clock->read(clock);
227 }
228
229 /**
230 * tk_setup_internals - Set up internals to use clocksource clock.
231 *
232 * @tk: The target timekeeper to setup.
233 * @clock: Pointer to clocksource.
234 *
235 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
236 * pair and interval request.
237 *
238 * Unless you're the timekeeping code, you should not be using this!
239 */
tk_setup_internals(struct timekeeper * tk,struct clocksource * clock)240 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
241 {
242 u64 interval;
243 u64 tmp, ntpinterval;
244 struct clocksource *old_clock;
245
246 ++tk->cs_was_changed_seq;
247 old_clock = tk->tkr_mono.clock;
248 tk->tkr_mono.clock = clock;
249 tk->tkr_mono.mask = clock->mask;
250 tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono);
251
252 tk->tkr_raw.clock = clock;
253 tk->tkr_raw.mask = clock->mask;
254 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
255
256 /* Do the ns -> cycle conversion first, using original mult */
257 tmp = NTP_INTERVAL_LENGTH;
258 tmp <<= clock->shift;
259 ntpinterval = tmp;
260 tmp += clock->mult/2;
261 do_div(tmp, clock->mult);
262 if (tmp == 0)
263 tmp = 1;
264
265 interval = (u64) tmp;
266 tk->cycle_interval = interval;
267
268 /* Go back from cycles -> shifted ns */
269 tk->xtime_interval = interval * clock->mult;
270 tk->xtime_remainder = ntpinterval - tk->xtime_interval;
271 tk->raw_interval = interval * clock->mult;
272
273 /* if changing clocks, convert xtime_nsec shift units */
274 if (old_clock) {
275 int shift_change = clock->shift - old_clock->shift;
276 if (shift_change < 0) {
277 tk->tkr_mono.xtime_nsec >>= -shift_change;
278 tk->tkr_raw.xtime_nsec >>= -shift_change;
279 } else {
280 tk->tkr_mono.xtime_nsec <<= shift_change;
281 tk->tkr_raw.xtime_nsec <<= shift_change;
282 }
283 }
284
285 tk->tkr_mono.shift = clock->shift;
286 tk->tkr_raw.shift = clock->shift;
287
288 tk->ntp_error = 0;
289 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
290 tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
291
292 /*
293 * The timekeeper keeps its own mult values for the currently
294 * active clocksource. These value will be adjusted via NTP
295 * to counteract clock drifting.
296 */
297 tk->tkr_mono.mult = clock->mult;
298 tk->tkr_raw.mult = clock->mult;
299 tk->ntp_err_mult = 0;
300 tk->skip_second_overflow = 0;
301 }
302
303 /* Timekeeper helper functions. */
delta_to_ns_safe(const struct tk_read_base * tkr,u64 delta)304 static noinline u64 delta_to_ns_safe(const struct tk_read_base *tkr, u64 delta)
305 {
306 return mul_u64_u32_add_u64_shr(delta, tkr->mult, tkr->xtime_nsec, tkr->shift);
307 }
308
timekeeping_cycles_to_ns(const struct tk_read_base * tkr,u64 cycles)309 static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles)
310 {
311 /* Calculate the delta since the last update_wall_time() */
312 u64 mask = tkr->mask, delta = (cycles - tkr->cycle_last) & mask;
313
314 /*
315 * This detects both negative motion and the case where the delta
316 * overflows the multiplication with tkr->mult.
317 */
318 if (unlikely(delta > tkr->clock->max_cycles)) {
319 /*
320 * Handle clocksource inconsistency between CPUs to prevent
321 * time from going backwards by checking for the MSB of the
322 * mask being set in the delta.
323 */
324 if (delta & ~(mask >> 1))
325 return tkr->xtime_nsec >> tkr->shift;
326
327 return delta_to_ns_safe(tkr, delta);
328 }
329
330 return ((delta * tkr->mult) + tkr->xtime_nsec) >> tkr->shift;
331 }
332
timekeeping_get_ns(const struct tk_read_base * tkr)333 static __always_inline u64 timekeeping_get_ns(const struct tk_read_base *tkr)
334 {
335 return timekeeping_cycles_to_ns(tkr, tk_clock_read(tkr));
336 }
337
338 /**
339 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
340 * @tkr: Timekeeping readout base from which we take the update
341 * @tkf: Pointer to NMI safe timekeeper
342 *
343 * We want to use this from any context including NMI and tracing /
344 * instrumenting the timekeeping code itself.
345 *
346 * Employ the latch technique; see @write_seqcount_latch.
347 *
348 * So if a NMI hits the update of base[0] then it will use base[1]
349 * which is still consistent. In the worst case this can result is a
350 * slightly wrong timestamp (a few nanoseconds). See
351 * @ktime_get_mono_fast_ns.
352 */
update_fast_timekeeper(const struct tk_read_base * tkr,struct tk_fast * tkf)353 static void update_fast_timekeeper(const struct tk_read_base *tkr,
354 struct tk_fast *tkf)
355 {
356 struct tk_read_base *base = tkf->base;
357
358 /* Force readers off to base[1] */
359 write_seqcount_latch_begin(&tkf->seq);
360
361 /* Update base[0] */
362 memcpy(base, tkr, sizeof(*base));
363
364 /* Force readers back to base[0] */
365 write_seqcount_latch(&tkf->seq);
366
367 /* Update base[1] */
368 memcpy(base + 1, base, sizeof(*base));
369
370 write_seqcount_latch_end(&tkf->seq);
371 }
372
__ktime_get_fast_ns(struct tk_fast * tkf)373 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
374 {
375 struct tk_read_base *tkr;
376 unsigned int seq;
377 u64 now;
378
379 do {
380 seq = read_seqcount_latch(&tkf->seq);
381 tkr = tkf->base + (seq & 0x01);
382 now = ktime_to_ns(tkr->base);
383 now += timekeeping_get_ns(tkr);
384 } while (read_seqcount_latch_retry(&tkf->seq, seq));
385
386 return now;
387 }
388
389 /**
390 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
391 *
392 * This timestamp is not guaranteed to be monotonic across an update.
393 * The timestamp is calculated by:
394 *
395 * now = base_mono + clock_delta * slope
396 *
397 * So if the update lowers the slope, readers who are forced to the
398 * not yet updated second array are still using the old steeper slope.
399 *
400 * tmono
401 * ^
402 * | o n
403 * | o n
404 * | u
405 * | o
406 * |o
407 * |12345678---> reader order
408 *
409 * o = old slope
410 * u = update
411 * n = new slope
412 *
413 * So reader 6 will observe time going backwards versus reader 5.
414 *
415 * While other CPUs are likely to be able to observe that, the only way
416 * for a CPU local observation is when an NMI hits in the middle of
417 * the update. Timestamps taken from that NMI context might be ahead
418 * of the following timestamps. Callers need to be aware of that and
419 * deal with it.
420 */
ktime_get_mono_fast_ns(void)421 u64 notrace ktime_get_mono_fast_ns(void)
422 {
423 return __ktime_get_fast_ns(&tk_fast_mono);
424 }
425 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
426
427 /**
428 * ktime_get_raw_fast_ns - Fast NMI safe access to clock monotonic raw
429 *
430 * Contrary to ktime_get_mono_fast_ns() this is always correct because the
431 * conversion factor is not affected by NTP/PTP correction.
432 */
ktime_get_raw_fast_ns(void)433 u64 notrace ktime_get_raw_fast_ns(void)
434 {
435 return __ktime_get_fast_ns(&tk_fast_raw);
436 }
437 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
438
439 /**
440 * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
441 *
442 * To keep it NMI safe since we're accessing from tracing, we're not using a
443 * separate timekeeper with updates to monotonic clock and boot offset
444 * protected with seqcounts. This has the following minor side effects:
445 *
446 * (1) Its possible that a timestamp be taken after the boot offset is updated
447 * but before the timekeeper is updated. If this happens, the new boot offset
448 * is added to the old timekeeping making the clock appear to update slightly
449 * earlier:
450 * CPU 0 CPU 1
451 * timekeeping_inject_sleeptime64()
452 * __timekeeping_inject_sleeptime(tk, delta);
453 * timestamp();
454 * timekeeping_update_staged(tkd, TK_CLEAR_NTP...);
455 *
456 * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
457 * partially updated. Since the tk->offs_boot update is a rare event, this
458 * should be a rare occurrence which postprocessing should be able to handle.
459 *
460 * The caveats vs. timestamp ordering as documented for ktime_get_mono_fast_ns()
461 * apply as well.
462 */
ktime_get_boot_fast_ns(void)463 u64 notrace ktime_get_boot_fast_ns(void)
464 {
465 struct timekeeper *tk = &tk_core.timekeeper;
466
467 return (ktime_get_mono_fast_ns() + ktime_to_ns(data_race(tk->offs_boot)));
468 }
469 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);
470
471 /**
472 * ktime_get_tai_fast_ns - NMI safe and fast access to tai clock.
473 *
474 * The same limitations as described for ktime_get_boot_fast_ns() apply. The
475 * mono time and the TAI offset are not read atomically which may yield wrong
476 * readouts. However, an update of the TAI offset is an rare event e.g., caused
477 * by settime or adjtimex with an offset. The user of this function has to deal
478 * with the possibility of wrong timestamps in post processing.
479 */
ktime_get_tai_fast_ns(void)480 u64 notrace ktime_get_tai_fast_ns(void)
481 {
482 struct timekeeper *tk = &tk_core.timekeeper;
483
484 return (ktime_get_mono_fast_ns() + ktime_to_ns(data_race(tk->offs_tai)));
485 }
486 EXPORT_SYMBOL_GPL(ktime_get_tai_fast_ns);
487
488 /**
489 * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime.
490 *
491 * See ktime_get_mono_fast_ns() for documentation of the time stamp ordering.
492 */
ktime_get_real_fast_ns(void)493 u64 ktime_get_real_fast_ns(void)
494 {
495 struct tk_fast *tkf = &tk_fast_mono;
496 struct tk_read_base *tkr;
497 u64 baser, delta;
498 unsigned int seq;
499
500 do {
501 seq = raw_read_seqcount_latch(&tkf->seq);
502 tkr = tkf->base + (seq & 0x01);
503 baser = ktime_to_ns(tkr->base_real);
504 delta = timekeeping_get_ns(tkr);
505 } while (raw_read_seqcount_latch_retry(&tkf->seq, seq));
506
507 return baser + delta;
508 }
509 EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns);
510
511 /**
512 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
513 * @tk: Timekeeper to snapshot.
514 *
515 * It generally is unsafe to access the clocksource after timekeeping has been
516 * suspended, so take a snapshot of the readout base of @tk and use it as the
517 * fast timekeeper's readout base while suspended. It will return the same
518 * number of cycles every time until timekeeping is resumed at which time the
519 * proper readout base for the fast timekeeper will be restored automatically.
520 */
halt_fast_timekeeper(const struct timekeeper * tk)521 static void halt_fast_timekeeper(const struct timekeeper *tk)
522 {
523 static struct tk_read_base tkr_dummy;
524 const struct tk_read_base *tkr = &tk->tkr_mono;
525
526 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
527 cycles_at_suspend = tk_clock_read(tkr);
528 tkr_dummy.clock = &dummy_clock;
529 tkr_dummy.base_real = tkr->base + tk->offs_real;
530 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
531
532 tkr = &tk->tkr_raw;
533 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
534 tkr_dummy.clock = &dummy_clock;
535 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
536 }
537
538 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
539
update_pvclock_gtod(struct timekeeper * tk,bool was_set)540 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
541 {
542 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
543 }
544
545 /**
546 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
547 * @nb: Pointer to the notifier block to register
548 */
pvclock_gtod_register_notifier(struct notifier_block * nb)549 int pvclock_gtod_register_notifier(struct notifier_block *nb)
550 {
551 struct timekeeper *tk = &tk_core.timekeeper;
552 int ret;
553
554 guard(raw_spinlock_irqsave)(&tk_core.lock);
555 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
556 update_pvclock_gtod(tk, true);
557
558 return ret;
559 }
560 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
561
562 /**
563 * pvclock_gtod_unregister_notifier - unregister a pvclock
564 * timedata update listener
565 * @nb: Pointer to the notifier block to unregister
566 */
pvclock_gtod_unregister_notifier(struct notifier_block * nb)567 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
568 {
569 guard(raw_spinlock_irqsave)(&tk_core.lock);
570 return raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
571 }
572 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
573
574 /*
575 * tk_update_leap_state - helper to update the next_leap_ktime
576 */
tk_update_leap_state(struct timekeeper * tk)577 static inline void tk_update_leap_state(struct timekeeper *tk)
578 {
579 tk->next_leap_ktime = ntp_get_next_leap();
580 if (tk->next_leap_ktime != KTIME_MAX)
581 /* Convert to monotonic time */
582 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
583 }
584
585 /*
586 * Leap state update for both shadow and the real timekeeper
587 * Separate to spare a full memcpy() of the timekeeper.
588 */
tk_update_leap_state_all(struct tk_data * tkd)589 static void tk_update_leap_state_all(struct tk_data *tkd)
590 {
591 write_seqcount_begin(&tkd->seq);
592 tk_update_leap_state(&tkd->shadow_timekeeper);
593 tkd->timekeeper.next_leap_ktime = tkd->shadow_timekeeper.next_leap_ktime;
594 write_seqcount_end(&tkd->seq);
595 }
596
597 /*
598 * Update the ktime_t based scalar nsec members of the timekeeper
599 */
tk_update_ktime_data(struct timekeeper * tk)600 static inline void tk_update_ktime_data(struct timekeeper *tk)
601 {
602 u64 seconds;
603 u32 nsec;
604
605 /*
606 * The xtime based monotonic readout is:
607 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
608 * The ktime based monotonic readout is:
609 * nsec = base_mono + now();
610 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
611 */
612 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
613 nsec = (u32) tk->wall_to_monotonic.tv_nsec;
614 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
615
616 /*
617 * The sum of the nanoseconds portions of xtime and
618 * wall_to_monotonic can be greater/equal one second. Take
619 * this into account before updating tk->ktime_sec.
620 */
621 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
622 if (nsec >= NSEC_PER_SEC)
623 seconds++;
624 tk->ktime_sec = seconds;
625
626 /* Update the monotonic raw base */
627 tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC);
628 }
629
630 /*
631 * Restore the shadow timekeeper from the real timekeeper.
632 */
timekeeping_restore_shadow(struct tk_data * tkd)633 static void timekeeping_restore_shadow(struct tk_data *tkd)
634 {
635 lockdep_assert_held(&tkd->lock);
636 memcpy(&tkd->shadow_timekeeper, &tkd->timekeeper, sizeof(tkd->timekeeper));
637 }
638
timekeeping_update_from_shadow(struct tk_data * tkd,unsigned int action)639 static void timekeeping_update_from_shadow(struct tk_data *tkd, unsigned int action)
640 {
641 struct timekeeper *tk = &tk_core.shadow_timekeeper;
642
643 lockdep_assert_held(&tkd->lock);
644
645 /*
646 * Block out readers before running the updates below because that
647 * updates VDSO and other time related infrastructure. Not blocking
648 * the readers might let a reader see time going backwards when
649 * reading from the VDSO after the VDSO update and then reading in
650 * the kernel from the timekeeper before that got updated.
651 */
652 write_seqcount_begin(&tkd->seq);
653
654 if (action & TK_CLEAR_NTP) {
655 tk->ntp_error = 0;
656 ntp_clear();
657 }
658
659 tk_update_leap_state(tk);
660 tk_update_ktime_data(tk);
661
662 update_vsyscall(tk);
663 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
664
665 tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real;
666 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
667 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw);
668
669 if (action & TK_CLOCK_WAS_SET)
670 tk->clock_was_set_seq++;
671
672 /*
673 * Update the real timekeeper.
674 *
675 * We could avoid this memcpy() by switching pointers, but that has
676 * the downside that the reader side does not longer benefit from
677 * the cacheline optimized data layout of the timekeeper and requires
678 * another indirection.
679 */
680 memcpy(&tkd->timekeeper, tk, sizeof(*tk));
681 write_seqcount_end(&tkd->seq);
682 }
683
684 /**
685 * timekeeping_forward_now - update clock to the current time
686 * @tk: Pointer to the timekeeper to update
687 *
688 * Forward the current clock to update its state since the last call to
689 * update_wall_time(). This is useful before significant clock changes,
690 * as it avoids having to deal with this time offset explicitly.
691 */
timekeeping_forward_now(struct timekeeper * tk)692 static void timekeeping_forward_now(struct timekeeper *tk)
693 {
694 u64 cycle_now, delta;
695
696 cycle_now = tk_clock_read(&tk->tkr_mono);
697 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask,
698 tk->tkr_mono.clock->max_raw_delta);
699 tk->tkr_mono.cycle_last = cycle_now;
700 tk->tkr_raw.cycle_last = cycle_now;
701
702 while (delta > 0) {
703 u64 max = tk->tkr_mono.clock->max_cycles;
704 u64 incr = delta < max ? delta : max;
705
706 tk->tkr_mono.xtime_nsec += incr * tk->tkr_mono.mult;
707 tk->tkr_raw.xtime_nsec += incr * tk->tkr_raw.mult;
708 tk_normalize_xtime(tk);
709 delta -= incr;
710 }
711 }
712
713 /**
714 * ktime_get_real_ts64 - Returns the time of day in a timespec64.
715 * @ts: pointer to the timespec to be set
716 *
717 * Returns the time of day in a timespec64 (WARN if suspended).
718 */
ktime_get_real_ts64(struct timespec64 * ts)719 void ktime_get_real_ts64(struct timespec64 *ts)
720 {
721 struct timekeeper *tk = &tk_core.timekeeper;
722 unsigned int seq;
723 u64 nsecs;
724
725 WARN_ON(timekeeping_suspended);
726
727 do {
728 seq = read_seqcount_begin(&tk_core.seq);
729
730 ts->tv_sec = tk->xtime_sec;
731 nsecs = timekeeping_get_ns(&tk->tkr_mono);
732
733 } while (read_seqcount_retry(&tk_core.seq, seq));
734
735 ts->tv_nsec = 0;
736 timespec64_add_ns(ts, nsecs);
737 }
738 EXPORT_SYMBOL(ktime_get_real_ts64);
739
ktime_get(void)740 ktime_t ktime_get(void)
741 {
742 struct timekeeper *tk = &tk_core.timekeeper;
743 unsigned int seq;
744 ktime_t base;
745 u64 nsecs;
746
747 WARN_ON(timekeeping_suspended);
748
749 do {
750 seq = read_seqcount_begin(&tk_core.seq);
751 base = tk->tkr_mono.base;
752 nsecs = timekeeping_get_ns(&tk->tkr_mono);
753
754 } while (read_seqcount_retry(&tk_core.seq, seq));
755
756 return ktime_add_ns(base, nsecs);
757 }
758 EXPORT_SYMBOL_GPL(ktime_get);
759
ktime_get_resolution_ns(void)760 u32 ktime_get_resolution_ns(void)
761 {
762 struct timekeeper *tk = &tk_core.timekeeper;
763 unsigned int seq;
764 u32 nsecs;
765
766 WARN_ON(timekeeping_suspended);
767
768 do {
769 seq = read_seqcount_begin(&tk_core.seq);
770 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
771 } while (read_seqcount_retry(&tk_core.seq, seq));
772
773 return nsecs;
774 }
775 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
776
777 static ktime_t *offsets[TK_OFFS_MAX] = {
778 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real,
779 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot,
780 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai,
781 };
782
ktime_get_with_offset(enum tk_offsets offs)783 ktime_t ktime_get_with_offset(enum tk_offsets offs)
784 {
785 struct timekeeper *tk = &tk_core.timekeeper;
786 unsigned int seq;
787 ktime_t base, *offset = offsets[offs];
788 u64 nsecs;
789
790 WARN_ON(timekeeping_suspended);
791
792 do {
793 seq = read_seqcount_begin(&tk_core.seq);
794 base = ktime_add(tk->tkr_mono.base, *offset);
795 nsecs = timekeeping_get_ns(&tk->tkr_mono);
796
797 } while (read_seqcount_retry(&tk_core.seq, seq));
798
799 return ktime_add_ns(base, nsecs);
800
801 }
802 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
803
ktime_get_coarse_with_offset(enum tk_offsets offs)804 ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs)
805 {
806 struct timekeeper *tk = &tk_core.timekeeper;
807 unsigned int seq;
808 ktime_t base, *offset = offsets[offs];
809 u64 nsecs;
810
811 WARN_ON(timekeeping_suspended);
812
813 do {
814 seq = read_seqcount_begin(&tk_core.seq);
815 base = ktime_add(tk->tkr_mono.base, *offset);
816 nsecs = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift;
817
818 } while (read_seqcount_retry(&tk_core.seq, seq));
819
820 return ktime_add_ns(base, nsecs);
821 }
822 EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset);
823
824 /**
825 * ktime_mono_to_any() - convert monotonic time to any other time
826 * @tmono: time to convert.
827 * @offs: which offset to use
828 */
ktime_mono_to_any(ktime_t tmono,enum tk_offsets offs)829 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
830 {
831 ktime_t *offset = offsets[offs];
832 unsigned int seq;
833 ktime_t tconv;
834
835 if (IS_ENABLED(CONFIG_64BIT)) {
836 /*
837 * Paired with WRITE_ONCE()s in tk_set_wall_to_mono() and
838 * tk_update_sleep_time().
839 */
840 return ktime_add(tmono, READ_ONCE(*offset));
841 }
842
843 do {
844 seq = read_seqcount_begin(&tk_core.seq);
845 tconv = ktime_add(tmono, *offset);
846 } while (read_seqcount_retry(&tk_core.seq, seq));
847
848 return tconv;
849 }
850 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
851
852 /**
853 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
854 */
ktime_get_raw(void)855 ktime_t ktime_get_raw(void)
856 {
857 struct timekeeper *tk = &tk_core.timekeeper;
858 unsigned int seq;
859 ktime_t base;
860 u64 nsecs;
861
862 do {
863 seq = read_seqcount_begin(&tk_core.seq);
864 base = tk->tkr_raw.base;
865 nsecs = timekeeping_get_ns(&tk->tkr_raw);
866
867 } while (read_seqcount_retry(&tk_core.seq, seq));
868
869 return ktime_add_ns(base, nsecs);
870 }
871 EXPORT_SYMBOL_GPL(ktime_get_raw);
872
873 /**
874 * ktime_get_ts64 - get the monotonic clock in timespec64 format
875 * @ts: pointer to timespec variable
876 *
877 * The function calculates the monotonic clock from the realtime
878 * clock and the wall_to_monotonic offset and stores the result
879 * in normalized timespec64 format in the variable pointed to by @ts.
880 */
ktime_get_ts64(struct timespec64 * ts)881 void ktime_get_ts64(struct timespec64 *ts)
882 {
883 struct timekeeper *tk = &tk_core.timekeeper;
884 struct timespec64 tomono;
885 unsigned int seq;
886 u64 nsec;
887
888 WARN_ON(timekeeping_suspended);
889
890 do {
891 seq = read_seqcount_begin(&tk_core.seq);
892 ts->tv_sec = tk->xtime_sec;
893 nsec = timekeeping_get_ns(&tk->tkr_mono);
894 tomono = tk->wall_to_monotonic;
895
896 } while (read_seqcount_retry(&tk_core.seq, seq));
897
898 ts->tv_sec += tomono.tv_sec;
899 ts->tv_nsec = 0;
900 timespec64_add_ns(ts, nsec + tomono.tv_nsec);
901 }
902 EXPORT_SYMBOL_GPL(ktime_get_ts64);
903
904 /**
905 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
906 *
907 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
908 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
909 * works on both 32 and 64 bit systems. On 32 bit systems the readout
910 * covers ~136 years of uptime which should be enough to prevent
911 * premature wrap arounds.
912 */
ktime_get_seconds(void)913 time64_t ktime_get_seconds(void)
914 {
915 struct timekeeper *tk = &tk_core.timekeeper;
916
917 WARN_ON(timekeeping_suspended);
918 return tk->ktime_sec;
919 }
920 EXPORT_SYMBOL_GPL(ktime_get_seconds);
921
922 /**
923 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
924 *
925 * Returns the wall clock seconds since 1970.
926 *
927 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
928 * 32bit systems the access must be protected with the sequence
929 * counter to provide "atomic" access to the 64bit tk->xtime_sec
930 * value.
931 */
ktime_get_real_seconds(void)932 time64_t ktime_get_real_seconds(void)
933 {
934 struct timekeeper *tk = &tk_core.timekeeper;
935 time64_t seconds;
936 unsigned int seq;
937
938 if (IS_ENABLED(CONFIG_64BIT))
939 return tk->xtime_sec;
940
941 do {
942 seq = read_seqcount_begin(&tk_core.seq);
943 seconds = tk->xtime_sec;
944
945 } while (read_seqcount_retry(&tk_core.seq, seq));
946
947 return seconds;
948 }
949 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
950
951 /**
952 * __ktime_get_real_seconds - The same as ktime_get_real_seconds
953 * but without the sequence counter protect. This internal function
954 * is called just when timekeeping lock is already held.
955 */
__ktime_get_real_seconds(void)956 noinstr time64_t __ktime_get_real_seconds(void)
957 {
958 struct timekeeper *tk = &tk_core.timekeeper;
959
960 return tk->xtime_sec;
961 }
962
963 /**
964 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
965 * @systime_snapshot: pointer to struct receiving the system time snapshot
966 */
ktime_get_snapshot(struct system_time_snapshot * systime_snapshot)967 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
968 {
969 struct timekeeper *tk = &tk_core.timekeeper;
970 unsigned int seq;
971 ktime_t base_raw;
972 ktime_t base_real;
973 ktime_t base_boot;
974 u64 nsec_raw;
975 u64 nsec_real;
976 u64 now;
977
978 WARN_ON_ONCE(timekeeping_suspended);
979
980 do {
981 seq = read_seqcount_begin(&tk_core.seq);
982 now = tk_clock_read(&tk->tkr_mono);
983 systime_snapshot->cs_id = tk->tkr_mono.clock->id;
984 systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
985 systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
986 base_real = ktime_add(tk->tkr_mono.base,
987 tk_core.timekeeper.offs_real);
988 base_boot = ktime_add(tk->tkr_mono.base,
989 tk_core.timekeeper.offs_boot);
990 base_raw = tk->tkr_raw.base;
991 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
992 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
993 } while (read_seqcount_retry(&tk_core.seq, seq));
994
995 systime_snapshot->cycles = now;
996 systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
997 systime_snapshot->boot = ktime_add_ns(base_boot, nsec_real);
998 systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
999 }
1000 EXPORT_SYMBOL_GPL(ktime_get_snapshot);
1001
1002 /* Scale base by mult/div checking for overflow */
scale64_check_overflow(u64 mult,u64 div,u64 * base)1003 static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
1004 {
1005 u64 tmp, rem;
1006
1007 tmp = div64_u64_rem(*base, div, &rem);
1008
1009 if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
1010 ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
1011 return -EOVERFLOW;
1012 tmp *= mult;
1013
1014 rem = div64_u64(rem * mult, div);
1015 *base = tmp + rem;
1016 return 0;
1017 }
1018
1019 /**
1020 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
1021 * @history: Snapshot representing start of history
1022 * @partial_history_cycles: Cycle offset into history (fractional part)
1023 * @total_history_cycles: Total history length in cycles
1024 * @discontinuity: True indicates clock was set on history period
1025 * @ts: Cross timestamp that should be adjusted using
1026 * partial/total ratio
1027 *
1028 * Helper function used by get_device_system_crosststamp() to correct the
1029 * crosstimestamp corresponding to the start of the current interval to the
1030 * system counter value (timestamp point) provided by the driver. The
1031 * total_history_* quantities are the total history starting at the provided
1032 * reference point and ending at the start of the current interval. The cycle
1033 * count between the driver timestamp point and the start of the current
1034 * interval is partial_history_cycles.
1035 */
adjust_historical_crosststamp(struct system_time_snapshot * history,u64 partial_history_cycles,u64 total_history_cycles,bool discontinuity,struct system_device_crosststamp * ts)1036 static int adjust_historical_crosststamp(struct system_time_snapshot *history,
1037 u64 partial_history_cycles,
1038 u64 total_history_cycles,
1039 bool discontinuity,
1040 struct system_device_crosststamp *ts)
1041 {
1042 struct timekeeper *tk = &tk_core.timekeeper;
1043 u64 corr_raw, corr_real;
1044 bool interp_forward;
1045 int ret;
1046
1047 if (total_history_cycles == 0 || partial_history_cycles == 0)
1048 return 0;
1049
1050 /* Interpolate shortest distance from beginning or end of history */
1051 interp_forward = partial_history_cycles > total_history_cycles / 2;
1052 partial_history_cycles = interp_forward ?
1053 total_history_cycles - partial_history_cycles :
1054 partial_history_cycles;
1055
1056 /*
1057 * Scale the monotonic raw time delta by:
1058 * partial_history_cycles / total_history_cycles
1059 */
1060 corr_raw = (u64)ktime_to_ns(
1061 ktime_sub(ts->sys_monoraw, history->raw));
1062 ret = scale64_check_overflow(partial_history_cycles,
1063 total_history_cycles, &corr_raw);
1064 if (ret)
1065 return ret;
1066
1067 /*
1068 * If there is a discontinuity in the history, scale monotonic raw
1069 * correction by:
1070 * mult(real)/mult(raw) yielding the realtime correction
1071 * Otherwise, calculate the realtime correction similar to monotonic
1072 * raw calculation
1073 */
1074 if (discontinuity) {
1075 corr_real = mul_u64_u32_div
1076 (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
1077 } else {
1078 corr_real = (u64)ktime_to_ns(
1079 ktime_sub(ts->sys_realtime, history->real));
1080 ret = scale64_check_overflow(partial_history_cycles,
1081 total_history_cycles, &corr_real);
1082 if (ret)
1083 return ret;
1084 }
1085
1086 /* Fixup monotonic raw and real time time values */
1087 if (interp_forward) {
1088 ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
1089 ts->sys_realtime = ktime_add_ns(history->real, corr_real);
1090 } else {
1091 ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
1092 ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
1093 }
1094
1095 return 0;
1096 }
1097
1098 /*
1099 * timestamp_in_interval - true if ts is chronologically in [start, end]
1100 *
1101 * True if ts occurs chronologically at or after start, and before or at end.
1102 */
timestamp_in_interval(u64 start,u64 end,u64 ts)1103 static bool timestamp_in_interval(u64 start, u64 end, u64 ts)
1104 {
1105 if (ts >= start && ts <= end)
1106 return true;
1107 if (start > end && (ts >= start || ts <= end))
1108 return true;
1109 return false;
1110 }
1111
convert_clock(u64 * val,u32 numerator,u32 denominator)1112 static bool convert_clock(u64 *val, u32 numerator, u32 denominator)
1113 {
1114 u64 rem, res;
1115
1116 if (!numerator || !denominator)
1117 return false;
1118
1119 res = div64_u64_rem(*val, denominator, &rem) * numerator;
1120 *val = res + div_u64(rem * numerator, denominator);
1121 return true;
1122 }
1123
convert_base_to_cs(struct system_counterval_t * scv)1124 static bool convert_base_to_cs(struct system_counterval_t *scv)
1125 {
1126 struct clocksource *cs = tk_core.timekeeper.tkr_mono.clock;
1127 struct clocksource_base *base;
1128 u32 num, den;
1129
1130 /* The timestamp was taken from the time keeper clock source */
1131 if (cs->id == scv->cs_id)
1132 return true;
1133
1134 /*
1135 * Check whether cs_id matches the base clock. Prevent the compiler from
1136 * re-evaluating @base as the clocksource might change concurrently.
1137 */
1138 base = READ_ONCE(cs->base);
1139 if (!base || base->id != scv->cs_id)
1140 return false;
1141
1142 num = scv->use_nsecs ? cs->freq_khz : base->numerator;
1143 den = scv->use_nsecs ? USEC_PER_SEC : base->denominator;
1144
1145 if (!convert_clock(&scv->cycles, num, den))
1146 return false;
1147
1148 scv->cycles += base->offset;
1149 return true;
1150 }
1151
convert_cs_to_base(u64 * cycles,enum clocksource_ids base_id)1152 static bool convert_cs_to_base(u64 *cycles, enum clocksource_ids base_id)
1153 {
1154 struct clocksource *cs = tk_core.timekeeper.tkr_mono.clock;
1155 struct clocksource_base *base;
1156
1157 /*
1158 * Check whether base_id matches the base clock. Prevent the compiler from
1159 * re-evaluating @base as the clocksource might change concurrently.
1160 */
1161 base = READ_ONCE(cs->base);
1162 if (!base || base->id != base_id)
1163 return false;
1164
1165 *cycles -= base->offset;
1166 if (!convert_clock(cycles, base->denominator, base->numerator))
1167 return false;
1168 return true;
1169 }
1170
convert_ns_to_cs(u64 * delta)1171 static bool convert_ns_to_cs(u64 *delta)
1172 {
1173 struct tk_read_base *tkr = &tk_core.timekeeper.tkr_mono;
1174
1175 if (BITS_TO_BYTES(fls64(*delta) + tkr->shift) >= sizeof(*delta))
1176 return false;
1177
1178 *delta = div_u64((*delta << tkr->shift) - tkr->xtime_nsec, tkr->mult);
1179 return true;
1180 }
1181
1182 /**
1183 * ktime_real_to_base_clock() - Convert CLOCK_REALTIME timestamp to a base clock timestamp
1184 * @treal: CLOCK_REALTIME timestamp to convert
1185 * @base_id: base clocksource id
1186 * @cycles: pointer to store the converted base clock timestamp
1187 *
1188 * Converts a supplied, future realtime clock value to the corresponding base clock value.
1189 *
1190 * Return: true if the conversion is successful, false otherwise.
1191 */
ktime_real_to_base_clock(ktime_t treal,enum clocksource_ids base_id,u64 * cycles)1192 bool ktime_real_to_base_clock(ktime_t treal, enum clocksource_ids base_id, u64 *cycles)
1193 {
1194 struct timekeeper *tk = &tk_core.timekeeper;
1195 unsigned int seq;
1196 u64 delta;
1197
1198 do {
1199 seq = read_seqcount_begin(&tk_core.seq);
1200 if ((u64)treal < tk->tkr_mono.base_real)
1201 return false;
1202 delta = (u64)treal - tk->tkr_mono.base_real;
1203 if (!convert_ns_to_cs(&delta))
1204 return false;
1205 *cycles = tk->tkr_mono.cycle_last + delta;
1206 if (!convert_cs_to_base(cycles, base_id))
1207 return false;
1208 } while (read_seqcount_retry(&tk_core.seq, seq));
1209
1210 return true;
1211 }
1212 EXPORT_SYMBOL_GPL(ktime_real_to_base_clock);
1213
1214 /**
1215 * get_device_system_crosststamp - Synchronously capture system/device timestamp
1216 * @get_time_fn: Callback to get simultaneous device time and
1217 * system counter from the device driver
1218 * @ctx: Context passed to get_time_fn()
1219 * @history_begin: Historical reference point used to interpolate system
1220 * time when counter provided by the driver is before the current interval
1221 * @xtstamp: Receives simultaneously captured system and device time
1222 *
1223 * Reads a timestamp from a device and correlates it to system time
1224 */
get_device_system_crosststamp(int (* get_time_fn)(ktime_t * device_time,struct system_counterval_t * sys_counterval,void * ctx),void * ctx,struct system_time_snapshot * history_begin,struct system_device_crosststamp * xtstamp)1225 int get_device_system_crosststamp(int (*get_time_fn)
1226 (ktime_t *device_time,
1227 struct system_counterval_t *sys_counterval,
1228 void *ctx),
1229 void *ctx,
1230 struct system_time_snapshot *history_begin,
1231 struct system_device_crosststamp *xtstamp)
1232 {
1233 struct system_counterval_t system_counterval;
1234 struct timekeeper *tk = &tk_core.timekeeper;
1235 u64 cycles, now, interval_start;
1236 unsigned int clock_was_set_seq = 0;
1237 ktime_t base_real, base_raw;
1238 u64 nsec_real, nsec_raw;
1239 u8 cs_was_changed_seq;
1240 unsigned int seq;
1241 bool do_interp;
1242 int ret;
1243
1244 do {
1245 seq = read_seqcount_begin(&tk_core.seq);
1246 /*
1247 * Try to synchronously capture device time and a system
1248 * counter value calling back into the device driver
1249 */
1250 ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
1251 if (ret)
1252 return ret;
1253
1254 /*
1255 * Verify that the clocksource ID associated with the captured
1256 * system counter value is the same as for the currently
1257 * installed timekeeper clocksource
1258 */
1259 if (system_counterval.cs_id == CSID_GENERIC ||
1260 !convert_base_to_cs(&system_counterval))
1261 return -ENODEV;
1262 cycles = system_counterval.cycles;
1263
1264 /*
1265 * Check whether the system counter value provided by the
1266 * device driver is on the current timekeeping interval.
1267 */
1268 now = tk_clock_read(&tk->tkr_mono);
1269 interval_start = tk->tkr_mono.cycle_last;
1270 if (!timestamp_in_interval(interval_start, now, cycles)) {
1271 clock_was_set_seq = tk->clock_was_set_seq;
1272 cs_was_changed_seq = tk->cs_was_changed_seq;
1273 cycles = interval_start;
1274 do_interp = true;
1275 } else {
1276 do_interp = false;
1277 }
1278
1279 base_real = ktime_add(tk->tkr_mono.base,
1280 tk_core.timekeeper.offs_real);
1281 base_raw = tk->tkr_raw.base;
1282
1283 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, cycles);
1284 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, cycles);
1285 } while (read_seqcount_retry(&tk_core.seq, seq));
1286
1287 xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
1288 xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1289
1290 /*
1291 * Interpolate if necessary, adjusting back from the start of the
1292 * current interval
1293 */
1294 if (do_interp) {
1295 u64 partial_history_cycles, total_history_cycles;
1296 bool discontinuity;
1297
1298 /*
1299 * Check that the counter value is not before the provided
1300 * history reference and that the history doesn't cross a
1301 * clocksource change
1302 */
1303 if (!history_begin ||
1304 !timestamp_in_interval(history_begin->cycles,
1305 cycles, system_counterval.cycles) ||
1306 history_begin->cs_was_changed_seq != cs_was_changed_seq)
1307 return -EINVAL;
1308 partial_history_cycles = cycles - system_counterval.cycles;
1309 total_history_cycles = cycles - history_begin->cycles;
1310 discontinuity =
1311 history_begin->clock_was_set_seq != clock_was_set_seq;
1312
1313 ret = adjust_historical_crosststamp(history_begin,
1314 partial_history_cycles,
1315 total_history_cycles,
1316 discontinuity, xtstamp);
1317 if (ret)
1318 return ret;
1319 }
1320
1321 return 0;
1322 }
1323 EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
1324
1325 /**
1326 * timekeeping_clocksource_has_base - Check whether the current clocksource
1327 * is based on given a base clock
1328 * @id: base clocksource ID
1329 *
1330 * Note: The return value is a snapshot which can become invalid right
1331 * after the function returns.
1332 *
1333 * Return: true if the timekeeper clocksource has a base clock with @id,
1334 * false otherwise
1335 */
timekeeping_clocksource_has_base(enum clocksource_ids id)1336 bool timekeeping_clocksource_has_base(enum clocksource_ids id)
1337 {
1338 /*
1339 * This is a snapshot, so no point in using the sequence
1340 * count. Just prevent the compiler from re-evaluating @base as the
1341 * clocksource might change concurrently.
1342 */
1343 struct clocksource_base *base = READ_ONCE(tk_core.timekeeper.tkr_mono.clock->base);
1344
1345 return base ? base->id == id : false;
1346 }
1347 EXPORT_SYMBOL_GPL(timekeeping_clocksource_has_base);
1348
1349 /**
1350 * do_settimeofday64 - Sets the time of day.
1351 * @ts: pointer to the timespec64 variable containing the new time
1352 *
1353 * Sets the time of day to the new time and update NTP and notify hrtimers
1354 */
do_settimeofday64(const struct timespec64 * ts)1355 int do_settimeofday64(const struct timespec64 *ts)
1356 {
1357 struct timespec64 ts_delta, xt;
1358
1359 if (!timespec64_valid_settod(ts))
1360 return -EINVAL;
1361
1362 scoped_guard (raw_spinlock_irqsave, &tk_core.lock) {
1363 struct timekeeper *tks = &tk_core.shadow_timekeeper;
1364
1365 timekeeping_forward_now(tks);
1366
1367 xt = tk_xtime(tks);
1368 ts_delta = timespec64_sub(*ts, xt);
1369
1370 if (timespec64_compare(&tks->wall_to_monotonic, &ts_delta) > 0) {
1371 timekeeping_restore_shadow(&tk_core);
1372 return -EINVAL;
1373 }
1374
1375 tk_set_wall_to_mono(tks, timespec64_sub(tks->wall_to_monotonic, ts_delta));
1376 tk_set_xtime(tks, ts);
1377 timekeeping_update_from_shadow(&tk_core, TK_UPDATE_ALL);
1378 }
1379
1380 /* Signal hrtimers about time change */
1381 clock_was_set(CLOCK_SET_WALL);
1382
1383 audit_tk_injoffset(ts_delta);
1384 add_device_randomness(ts, sizeof(*ts));
1385 return 0;
1386 }
1387 EXPORT_SYMBOL(do_settimeofday64);
1388
1389 /**
1390 * timekeeping_inject_offset - Adds or subtracts from the current time.
1391 * @ts: Pointer to the timespec variable containing the offset
1392 *
1393 * Adds or subtracts an offset value from the current time.
1394 */
timekeeping_inject_offset(const struct timespec64 * ts)1395 static int timekeeping_inject_offset(const struct timespec64 *ts)
1396 {
1397 if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC)
1398 return -EINVAL;
1399
1400 scoped_guard (raw_spinlock_irqsave, &tk_core.lock) {
1401 struct timekeeper *tks = &tk_core.shadow_timekeeper;
1402 struct timespec64 tmp;
1403
1404 timekeeping_forward_now(tks);
1405
1406 /* Make sure the proposed value is valid */
1407 tmp = timespec64_add(tk_xtime(tks), *ts);
1408 if (timespec64_compare(&tks->wall_to_monotonic, ts) > 0 ||
1409 !timespec64_valid_settod(&tmp)) {
1410 timekeeping_restore_shadow(&tk_core);
1411 return -EINVAL;
1412 }
1413
1414 tk_xtime_add(tks, ts);
1415 tk_set_wall_to_mono(tks, timespec64_sub(tks->wall_to_monotonic, *ts));
1416 timekeeping_update_from_shadow(&tk_core, TK_UPDATE_ALL);
1417 }
1418
1419 /* Signal hrtimers about time change */
1420 clock_was_set(CLOCK_SET_WALL);
1421 return 0;
1422 }
1423
1424 /*
1425 * Indicates if there is an offset between the system clock and the hardware
1426 * clock/persistent clock/rtc.
1427 */
1428 int persistent_clock_is_local;
1429
1430 /*
1431 * Adjust the time obtained from the CMOS to be UTC time instead of
1432 * local time.
1433 *
1434 * This is ugly, but preferable to the alternatives. Otherwise we
1435 * would either need to write a program to do it in /etc/rc (and risk
1436 * confusion if the program gets run more than once; it would also be
1437 * hard to make the program warp the clock precisely n hours) or
1438 * compile in the timezone information into the kernel. Bad, bad....
1439 *
1440 * - TYT, 1992-01-01
1441 *
1442 * The best thing to do is to keep the CMOS clock in universal time (UTC)
1443 * as real UNIX machines always do it. This avoids all headaches about
1444 * daylight saving times and warping kernel clocks.
1445 */
timekeeping_warp_clock(void)1446 void timekeeping_warp_clock(void)
1447 {
1448 if (sys_tz.tz_minuteswest != 0) {
1449 struct timespec64 adjust;
1450
1451 persistent_clock_is_local = 1;
1452 adjust.tv_sec = sys_tz.tz_minuteswest * 60;
1453 adjust.tv_nsec = 0;
1454 timekeeping_inject_offset(&adjust);
1455 }
1456 }
1457
1458 /*
1459 * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic
1460 */
__timekeeping_set_tai_offset(struct timekeeper * tk,s32 tai_offset)1461 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1462 {
1463 tk->tai_offset = tai_offset;
1464 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1465 }
1466
1467 /*
1468 * change_clocksource - Swaps clocksources if a new one is available
1469 *
1470 * Accumulates current time interval and initializes new clocksource
1471 */
change_clocksource(void * data)1472 static int change_clocksource(void *data)
1473 {
1474 struct clocksource *new = data, *old = NULL;
1475
1476 /*
1477 * If the clocksource is in a module, get a module reference.
1478 * Succeeds for built-in code (owner == NULL) as well. Abort if the
1479 * reference can't be acquired.
1480 */
1481 if (!try_module_get(new->owner))
1482 return 0;
1483
1484 /* Abort if the device can't be enabled */
1485 if (new->enable && new->enable(new) != 0) {
1486 module_put(new->owner);
1487 return 0;
1488 }
1489
1490 scoped_guard (raw_spinlock_irqsave, &tk_core.lock) {
1491 struct timekeeper *tks = &tk_core.shadow_timekeeper;
1492
1493 timekeeping_forward_now(tks);
1494 old = tks->tkr_mono.clock;
1495 tk_setup_internals(tks, new);
1496 timekeeping_update_from_shadow(&tk_core, TK_UPDATE_ALL);
1497 }
1498
1499 if (old) {
1500 if (old->disable)
1501 old->disable(old);
1502 module_put(old->owner);
1503 }
1504
1505 return 0;
1506 }
1507
1508 /**
1509 * timekeeping_notify - Install a new clock source
1510 * @clock: pointer to the clock source
1511 *
1512 * This function is called from clocksource.c after a new, better clock
1513 * source has been registered. The caller holds the clocksource_mutex.
1514 */
timekeeping_notify(struct clocksource * clock)1515 int timekeeping_notify(struct clocksource *clock)
1516 {
1517 struct timekeeper *tk = &tk_core.timekeeper;
1518
1519 if (tk->tkr_mono.clock == clock)
1520 return 0;
1521 stop_machine(change_clocksource, clock, NULL);
1522 tick_clock_notify();
1523 return tk->tkr_mono.clock == clock ? 0 : -1;
1524 }
1525
1526 /**
1527 * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec
1528 * @ts: pointer to the timespec64 to be set
1529 *
1530 * Returns the raw monotonic time (completely un-modified by ntp)
1531 */
ktime_get_raw_ts64(struct timespec64 * ts)1532 void ktime_get_raw_ts64(struct timespec64 *ts)
1533 {
1534 struct timekeeper *tk = &tk_core.timekeeper;
1535 unsigned int seq;
1536 u64 nsecs;
1537
1538 do {
1539 seq = read_seqcount_begin(&tk_core.seq);
1540 ts->tv_sec = tk->raw_sec;
1541 nsecs = timekeeping_get_ns(&tk->tkr_raw);
1542
1543 } while (read_seqcount_retry(&tk_core.seq, seq));
1544
1545 ts->tv_nsec = 0;
1546 timespec64_add_ns(ts, nsecs);
1547 }
1548 EXPORT_SYMBOL(ktime_get_raw_ts64);
1549
1550
1551 /**
1552 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1553 */
timekeeping_valid_for_hres(void)1554 int timekeeping_valid_for_hres(void)
1555 {
1556 struct timekeeper *tk = &tk_core.timekeeper;
1557 unsigned int seq;
1558 int ret;
1559
1560 do {
1561 seq = read_seqcount_begin(&tk_core.seq);
1562
1563 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1564
1565 } while (read_seqcount_retry(&tk_core.seq, seq));
1566
1567 return ret;
1568 }
1569
1570 /**
1571 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1572 */
timekeeping_max_deferment(void)1573 u64 timekeeping_max_deferment(void)
1574 {
1575 struct timekeeper *tk = &tk_core.timekeeper;
1576 unsigned int seq;
1577 u64 ret;
1578
1579 do {
1580 seq = read_seqcount_begin(&tk_core.seq);
1581
1582 ret = tk->tkr_mono.clock->max_idle_ns;
1583
1584 } while (read_seqcount_retry(&tk_core.seq, seq));
1585
1586 return ret;
1587 }
1588
1589 /**
1590 * read_persistent_clock64 - Return time from the persistent clock.
1591 * @ts: Pointer to the storage for the readout value
1592 *
1593 * Weak dummy function for arches that do not yet support it.
1594 * Reads the time from the battery backed persistent clock.
1595 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1596 *
1597 * XXX - Do be sure to remove it once all arches implement it.
1598 */
read_persistent_clock64(struct timespec64 * ts)1599 void __weak read_persistent_clock64(struct timespec64 *ts)
1600 {
1601 ts->tv_sec = 0;
1602 ts->tv_nsec = 0;
1603 }
1604
1605 /**
1606 * read_persistent_wall_and_boot_offset - Read persistent clock, and also offset
1607 * from the boot.
1608 * @wall_time: current time as returned by persistent clock
1609 * @boot_offset: offset that is defined as wall_time - boot_time
1610 *
1611 * Weak dummy function for arches that do not yet support it.
1612 *
1613 * The default function calculates offset based on the current value of
1614 * local_clock(). This way architectures that support sched_clock() but don't
1615 * support dedicated boot time clock will provide the best estimate of the
1616 * boot time.
1617 */
1618 void __weak __init
read_persistent_wall_and_boot_offset(struct timespec64 * wall_time,struct timespec64 * boot_offset)1619 read_persistent_wall_and_boot_offset(struct timespec64 *wall_time,
1620 struct timespec64 *boot_offset)
1621 {
1622 read_persistent_clock64(wall_time);
1623 *boot_offset = ns_to_timespec64(local_clock());
1624 }
1625
tkd_basic_setup(struct tk_data * tkd)1626 static __init void tkd_basic_setup(struct tk_data *tkd)
1627 {
1628 raw_spin_lock_init(&tkd->lock);
1629 seqcount_raw_spinlock_init(&tkd->seq, &tkd->lock);
1630 }
1631
1632 /*
1633 * Flag reflecting whether timekeeping_resume() has injected sleeptime.
1634 *
1635 * The flag starts of false and is only set when a suspend reaches
1636 * timekeeping_suspend(), timekeeping_resume() sets it to false when the
1637 * timekeeper clocksource is not stopping across suspend and has been
1638 * used to update sleep time. If the timekeeper clocksource has stopped
1639 * then the flag stays true and is used by the RTC resume code to decide
1640 * whether sleeptime must be injected and if so the flag gets false then.
1641 *
1642 * If a suspend fails before reaching timekeeping_resume() then the flag
1643 * stays false and prevents erroneous sleeptime injection.
1644 */
1645 static bool suspend_timing_needed;
1646
1647 /* Flag for if there is a persistent clock on this platform */
1648 static bool persistent_clock_exists;
1649
1650 /*
1651 * timekeeping_init - Initializes the clocksource and common timekeeping values
1652 */
timekeeping_init(void)1653 void __init timekeeping_init(void)
1654 {
1655 struct timespec64 wall_time, boot_offset, wall_to_mono;
1656 struct timekeeper *tks = &tk_core.shadow_timekeeper;
1657 struct clocksource *clock;
1658
1659 tkd_basic_setup(&tk_core);
1660
1661 read_persistent_wall_and_boot_offset(&wall_time, &boot_offset);
1662 if (timespec64_valid_settod(&wall_time) &&
1663 timespec64_to_ns(&wall_time) > 0) {
1664 persistent_clock_exists = true;
1665 } else if (timespec64_to_ns(&wall_time) != 0) {
1666 pr_warn("Persistent clock returned invalid value");
1667 wall_time = (struct timespec64){0};
1668 }
1669
1670 if (timespec64_compare(&wall_time, &boot_offset) < 0)
1671 boot_offset = (struct timespec64){0};
1672
1673 /*
1674 * We want set wall_to_mono, so the following is true:
1675 * wall time + wall_to_mono = boot time
1676 */
1677 wall_to_mono = timespec64_sub(boot_offset, wall_time);
1678
1679 guard(raw_spinlock_irqsave)(&tk_core.lock);
1680
1681 ntp_init();
1682
1683 clock = clocksource_default_clock();
1684 if (clock->enable)
1685 clock->enable(clock);
1686 tk_setup_internals(tks, clock);
1687
1688 tk_set_xtime(tks, &wall_time);
1689 tks->raw_sec = 0;
1690
1691 tk_set_wall_to_mono(tks, wall_to_mono);
1692
1693 timekeeping_update_from_shadow(&tk_core, TK_CLOCK_WAS_SET);
1694 }
1695
1696 /* time in seconds when suspend began for persistent clock */
1697 static struct timespec64 timekeeping_suspend_time;
1698
1699 /**
1700 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1701 * @tk: Pointer to the timekeeper to be updated
1702 * @delta: Pointer to the delta value in timespec64 format
1703 *
1704 * Takes a timespec offset measuring a suspend interval and properly
1705 * adds the sleep offset to the timekeeping variables.
1706 */
__timekeeping_inject_sleeptime(struct timekeeper * tk,const struct timespec64 * delta)1707 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1708 const struct timespec64 *delta)
1709 {
1710 if (!timespec64_valid_strict(delta)) {
1711 printk_deferred(KERN_WARNING
1712 "__timekeeping_inject_sleeptime: Invalid "
1713 "sleep delta value!\n");
1714 return;
1715 }
1716 tk_xtime_add(tk, delta);
1717 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1718 tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1719 tk_debug_account_sleep_time(delta);
1720 }
1721
1722 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1723 /*
1724 * We have three kinds of time sources to use for sleep time
1725 * injection, the preference order is:
1726 * 1) non-stop clocksource
1727 * 2) persistent clock (ie: RTC accessible when irqs are off)
1728 * 3) RTC
1729 *
1730 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1731 * If system has neither 1) nor 2), 3) will be used finally.
1732 *
1733 *
1734 * If timekeeping has injected sleeptime via either 1) or 2),
1735 * 3) becomes needless, so in this case we don't need to call
1736 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1737 * means.
1738 */
timekeeping_rtc_skipresume(void)1739 bool timekeeping_rtc_skipresume(void)
1740 {
1741 return !suspend_timing_needed;
1742 }
1743
1744 /*
1745 * 1) can be determined whether to use or not only when doing
1746 * timekeeping_resume() which is invoked after rtc_suspend(),
1747 * so we can't skip rtc_suspend() surely if system has 1).
1748 *
1749 * But if system has 2), 2) will definitely be used, so in this
1750 * case we don't need to call rtc_suspend(), and this is what
1751 * timekeeping_rtc_skipsuspend() means.
1752 */
timekeeping_rtc_skipsuspend(void)1753 bool timekeeping_rtc_skipsuspend(void)
1754 {
1755 return persistent_clock_exists;
1756 }
1757
1758 /**
1759 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1760 * @delta: pointer to a timespec64 delta value
1761 *
1762 * This hook is for architectures that cannot support read_persistent_clock64
1763 * because their RTC/persistent clock is only accessible when irqs are enabled.
1764 * and also don't have an effective nonstop clocksource.
1765 *
1766 * This function should only be called by rtc_resume(), and allows
1767 * a suspend offset to be injected into the timekeeping values.
1768 */
timekeeping_inject_sleeptime64(const struct timespec64 * delta)1769 void timekeeping_inject_sleeptime64(const struct timespec64 *delta)
1770 {
1771 scoped_guard(raw_spinlock_irqsave, &tk_core.lock) {
1772 struct timekeeper *tks = &tk_core.shadow_timekeeper;
1773
1774 suspend_timing_needed = false;
1775 timekeeping_forward_now(tks);
1776 __timekeeping_inject_sleeptime(tks, delta);
1777 timekeeping_update_from_shadow(&tk_core, TK_UPDATE_ALL);
1778 }
1779
1780 /* Signal hrtimers about time change */
1781 clock_was_set(CLOCK_SET_WALL | CLOCK_SET_BOOT);
1782 }
1783 #endif
1784
1785 /**
1786 * timekeeping_resume - Resumes the generic timekeeping subsystem.
1787 */
timekeeping_resume(void)1788 void timekeeping_resume(void)
1789 {
1790 struct timekeeper *tks = &tk_core.shadow_timekeeper;
1791 struct clocksource *clock = tks->tkr_mono.clock;
1792 struct timespec64 ts_new, ts_delta;
1793 bool inject_sleeptime = false;
1794 u64 cycle_now, nsec;
1795 unsigned long flags;
1796
1797 read_persistent_clock64(&ts_new);
1798
1799 clockevents_resume();
1800 clocksource_resume();
1801
1802 raw_spin_lock_irqsave(&tk_core.lock, flags);
1803
1804 /*
1805 * After system resumes, we need to calculate the suspended time and
1806 * compensate it for the OS time. There are 3 sources that could be
1807 * used: Nonstop clocksource during suspend, persistent clock and rtc
1808 * device.
1809 *
1810 * One specific platform may have 1 or 2 or all of them, and the
1811 * preference will be:
1812 * suspend-nonstop clocksource -> persistent clock -> rtc
1813 * The less preferred source will only be tried if there is no better
1814 * usable source. The rtc part is handled separately in rtc core code.
1815 */
1816 cycle_now = tk_clock_read(&tks->tkr_mono);
1817 nsec = clocksource_stop_suspend_timing(clock, cycle_now);
1818 if (nsec > 0) {
1819 ts_delta = ns_to_timespec64(nsec);
1820 inject_sleeptime = true;
1821 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1822 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1823 inject_sleeptime = true;
1824 }
1825
1826 if (inject_sleeptime) {
1827 suspend_timing_needed = false;
1828 __timekeeping_inject_sleeptime(tks, &ts_delta);
1829 }
1830
1831 /* Re-base the last cycle value */
1832 tks->tkr_mono.cycle_last = cycle_now;
1833 tks->tkr_raw.cycle_last = cycle_now;
1834
1835 tks->ntp_error = 0;
1836 timekeeping_suspended = 0;
1837 timekeeping_update_from_shadow(&tk_core, TK_CLOCK_WAS_SET);
1838 raw_spin_unlock_irqrestore(&tk_core.lock, flags);
1839
1840 touch_softlockup_watchdog();
1841
1842 /* Resume the clockevent device(s) and hrtimers */
1843 tick_resume();
1844 /* Notify timerfd as resume is equivalent to clock_was_set() */
1845 timerfd_resume();
1846 }
1847
timekeeping_suspend(void)1848 int timekeeping_suspend(void)
1849 {
1850 struct timekeeper *tks = &tk_core.shadow_timekeeper;
1851 struct timespec64 delta, delta_delta;
1852 static struct timespec64 old_delta;
1853 struct clocksource *curr_clock;
1854 unsigned long flags;
1855 u64 cycle_now;
1856
1857 read_persistent_clock64(&timekeeping_suspend_time);
1858
1859 /*
1860 * On some systems the persistent_clock can not be detected at
1861 * timekeeping_init by its return value, so if we see a valid
1862 * value returned, update the persistent_clock_exists flag.
1863 */
1864 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1865 persistent_clock_exists = true;
1866
1867 suspend_timing_needed = true;
1868
1869 raw_spin_lock_irqsave(&tk_core.lock, flags);
1870 timekeeping_forward_now(tks);
1871 timekeeping_suspended = 1;
1872
1873 /*
1874 * Since we've called forward_now, cycle_last stores the value
1875 * just read from the current clocksource. Save this to potentially
1876 * use in suspend timing.
1877 */
1878 curr_clock = tks->tkr_mono.clock;
1879 cycle_now = tks->tkr_mono.cycle_last;
1880 clocksource_start_suspend_timing(curr_clock, cycle_now);
1881
1882 if (persistent_clock_exists) {
1883 /*
1884 * To avoid drift caused by repeated suspend/resumes,
1885 * which each can add ~1 second drift error,
1886 * try to compensate so the difference in system time
1887 * and persistent_clock time stays close to constant.
1888 */
1889 delta = timespec64_sub(tk_xtime(tks), timekeeping_suspend_time);
1890 delta_delta = timespec64_sub(delta, old_delta);
1891 if (abs(delta_delta.tv_sec) >= 2) {
1892 /*
1893 * if delta_delta is too large, assume time correction
1894 * has occurred and set old_delta to the current delta.
1895 */
1896 old_delta = delta;
1897 } else {
1898 /* Otherwise try to adjust old_system to compensate */
1899 timekeeping_suspend_time =
1900 timespec64_add(timekeeping_suspend_time, delta_delta);
1901 }
1902 }
1903
1904 timekeeping_update_from_shadow(&tk_core, 0);
1905 halt_fast_timekeeper(tks);
1906 raw_spin_unlock_irqrestore(&tk_core.lock, flags);
1907
1908 tick_suspend();
1909 clocksource_suspend();
1910 clockevents_suspend();
1911
1912 return 0;
1913 }
1914
1915 /* sysfs resume/suspend bits for timekeeping */
1916 static struct syscore_ops timekeeping_syscore_ops = {
1917 .resume = timekeeping_resume,
1918 .suspend = timekeeping_suspend,
1919 };
1920
timekeeping_init_ops(void)1921 static int __init timekeeping_init_ops(void)
1922 {
1923 register_syscore_ops(&timekeeping_syscore_ops);
1924 return 0;
1925 }
1926 device_initcall(timekeeping_init_ops);
1927
1928 /*
1929 * Apply a multiplier adjustment to the timekeeper
1930 */
timekeeping_apply_adjustment(struct timekeeper * tk,s64 offset,s32 mult_adj)1931 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1932 s64 offset,
1933 s32 mult_adj)
1934 {
1935 s64 interval = tk->cycle_interval;
1936
1937 if (mult_adj == 0) {
1938 return;
1939 } else if (mult_adj == -1) {
1940 interval = -interval;
1941 offset = -offset;
1942 } else if (mult_adj != 1) {
1943 interval *= mult_adj;
1944 offset *= mult_adj;
1945 }
1946
1947 /*
1948 * So the following can be confusing.
1949 *
1950 * To keep things simple, lets assume mult_adj == 1 for now.
1951 *
1952 * When mult_adj != 1, remember that the interval and offset values
1953 * have been appropriately scaled so the math is the same.
1954 *
1955 * The basic idea here is that we're increasing the multiplier
1956 * by one, this causes the xtime_interval to be incremented by
1957 * one cycle_interval. This is because:
1958 * xtime_interval = cycle_interval * mult
1959 * So if mult is being incremented by one:
1960 * xtime_interval = cycle_interval * (mult + 1)
1961 * Its the same as:
1962 * xtime_interval = (cycle_interval * mult) + cycle_interval
1963 * Which can be shortened to:
1964 * xtime_interval += cycle_interval
1965 *
1966 * So offset stores the non-accumulated cycles. Thus the current
1967 * time (in shifted nanoseconds) is:
1968 * now = (offset * adj) + xtime_nsec
1969 * Now, even though we're adjusting the clock frequency, we have
1970 * to keep time consistent. In other words, we can't jump back
1971 * in time, and we also want to avoid jumping forward in time.
1972 *
1973 * So given the same offset value, we need the time to be the same
1974 * both before and after the freq adjustment.
1975 * now = (offset * adj_1) + xtime_nsec_1
1976 * now = (offset * adj_2) + xtime_nsec_2
1977 * So:
1978 * (offset * adj_1) + xtime_nsec_1 =
1979 * (offset * adj_2) + xtime_nsec_2
1980 * And we know:
1981 * adj_2 = adj_1 + 1
1982 * So:
1983 * (offset * adj_1) + xtime_nsec_1 =
1984 * (offset * (adj_1+1)) + xtime_nsec_2
1985 * (offset * adj_1) + xtime_nsec_1 =
1986 * (offset * adj_1) + offset + xtime_nsec_2
1987 * Canceling the sides:
1988 * xtime_nsec_1 = offset + xtime_nsec_2
1989 * Which gives us:
1990 * xtime_nsec_2 = xtime_nsec_1 - offset
1991 * Which simplifies to:
1992 * xtime_nsec -= offset
1993 */
1994 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1995 /* NTP adjustment caused clocksource mult overflow */
1996 WARN_ON_ONCE(1);
1997 return;
1998 }
1999
2000 tk->tkr_mono.mult += mult_adj;
2001 tk->xtime_interval += interval;
2002 tk->tkr_mono.xtime_nsec -= offset;
2003 }
2004
2005 /*
2006 * Adjust the timekeeper's multiplier to the correct frequency
2007 * and also to reduce the accumulated error value.
2008 */
timekeeping_adjust(struct timekeeper * tk,s64 offset)2009 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
2010 {
2011 u64 ntp_tl = ntp_tick_length();
2012 u32 mult;
2013
2014 /*
2015 * Determine the multiplier from the current NTP tick length.
2016 * Avoid expensive division when the tick length doesn't change.
2017 */
2018 if (likely(tk->ntp_tick == ntp_tl)) {
2019 mult = tk->tkr_mono.mult - tk->ntp_err_mult;
2020 } else {
2021 tk->ntp_tick = ntp_tl;
2022 mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) -
2023 tk->xtime_remainder, tk->cycle_interval);
2024 }
2025
2026 /*
2027 * If the clock is behind the NTP time, increase the multiplier by 1
2028 * to catch up with it. If it's ahead and there was a remainder in the
2029 * tick division, the clock will slow down. Otherwise it will stay
2030 * ahead until the tick length changes to a non-divisible value.
2031 */
2032 tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0;
2033 mult += tk->ntp_err_mult;
2034
2035 timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult);
2036
2037 if (unlikely(tk->tkr_mono.clock->maxadj &&
2038 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
2039 > tk->tkr_mono.clock->maxadj))) {
2040 printk_once(KERN_WARNING
2041 "Adjusting %s more than 11%% (%ld vs %ld)\n",
2042 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
2043 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
2044 }
2045
2046 /*
2047 * It may be possible that when we entered this function, xtime_nsec
2048 * was very small. Further, if we're slightly speeding the clocksource
2049 * in the code above, its possible the required corrective factor to
2050 * xtime_nsec could cause it to underflow.
2051 *
2052 * Now, since we have already accumulated the second and the NTP
2053 * subsystem has been notified via second_overflow(), we need to skip
2054 * the next update.
2055 */
2056 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
2057 tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC <<
2058 tk->tkr_mono.shift;
2059 tk->xtime_sec--;
2060 tk->skip_second_overflow = 1;
2061 }
2062 }
2063
2064 /*
2065 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
2066 *
2067 * Helper function that accumulates the nsecs greater than a second
2068 * from the xtime_nsec field to the xtime_secs field.
2069 * It also calls into the NTP code to handle leapsecond processing.
2070 */
accumulate_nsecs_to_secs(struct timekeeper * tk)2071 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
2072 {
2073 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
2074 unsigned int clock_set = 0;
2075
2076 while (tk->tkr_mono.xtime_nsec >= nsecps) {
2077 int leap;
2078
2079 tk->tkr_mono.xtime_nsec -= nsecps;
2080 tk->xtime_sec++;
2081
2082 /*
2083 * Skip NTP update if this second was accumulated before,
2084 * i.e. xtime_nsec underflowed in timekeeping_adjust()
2085 */
2086 if (unlikely(tk->skip_second_overflow)) {
2087 tk->skip_second_overflow = 0;
2088 continue;
2089 }
2090
2091 /* Figure out if its a leap sec and apply if needed */
2092 leap = second_overflow(tk->xtime_sec);
2093 if (unlikely(leap)) {
2094 struct timespec64 ts;
2095
2096 tk->xtime_sec += leap;
2097
2098 ts.tv_sec = leap;
2099 ts.tv_nsec = 0;
2100 tk_set_wall_to_mono(tk,
2101 timespec64_sub(tk->wall_to_monotonic, ts));
2102
2103 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
2104
2105 clock_set = TK_CLOCK_WAS_SET;
2106 }
2107 }
2108 return clock_set;
2109 }
2110
2111 /*
2112 * logarithmic_accumulation - shifted accumulation of cycles
2113 *
2114 * This functions accumulates a shifted interval of cycles into
2115 * a shifted interval nanoseconds. Allows for O(log) accumulation
2116 * loop.
2117 *
2118 * Returns the unconsumed cycles.
2119 */
logarithmic_accumulation(struct timekeeper * tk,u64 offset,u32 shift,unsigned int * clock_set)2120 static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
2121 u32 shift, unsigned int *clock_set)
2122 {
2123 u64 interval = tk->cycle_interval << shift;
2124 u64 snsec_per_sec;
2125
2126 /* If the offset is smaller than a shifted interval, do nothing */
2127 if (offset < interval)
2128 return offset;
2129
2130 /* Accumulate one shifted interval */
2131 offset -= interval;
2132 tk->tkr_mono.cycle_last += interval;
2133 tk->tkr_raw.cycle_last += interval;
2134
2135 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2136 *clock_set |= accumulate_nsecs_to_secs(tk);
2137
2138 /* Accumulate raw time */
2139 tk->tkr_raw.xtime_nsec += tk->raw_interval << shift;
2140 snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
2141 while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) {
2142 tk->tkr_raw.xtime_nsec -= snsec_per_sec;
2143 tk->raw_sec++;
2144 }
2145
2146 /* Accumulate error between NTP and clock interval */
2147 tk->ntp_error += tk->ntp_tick << shift;
2148 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
2149 (tk->ntp_error_shift + shift);
2150
2151 return offset;
2152 }
2153
2154 /*
2155 * timekeeping_advance - Updates the timekeeper to the current time and
2156 * current NTP tick length
2157 */
timekeeping_advance(enum timekeeping_adv_mode mode)2158 static bool timekeeping_advance(enum timekeeping_adv_mode mode)
2159 {
2160 struct timekeeper *tk = &tk_core.shadow_timekeeper;
2161 struct timekeeper *real_tk = &tk_core.timekeeper;
2162 unsigned int clock_set = 0;
2163 int shift = 0, maxshift;
2164 u64 offset;
2165
2166 guard(raw_spinlock_irqsave)(&tk_core.lock);
2167
2168 /* Make sure we're fully resumed: */
2169 if (unlikely(timekeeping_suspended))
2170 return false;
2171
2172 offset = clocksource_delta(tk_clock_read(&tk->tkr_mono),
2173 tk->tkr_mono.cycle_last, tk->tkr_mono.mask,
2174 tk->tkr_mono.clock->max_raw_delta);
2175
2176 /* Check if there's really nothing to do */
2177 if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK)
2178 return false;
2179
2180 /*
2181 * With NO_HZ we may have to accumulate many cycle_intervals
2182 * (think "ticks") worth of time at once. To do this efficiently,
2183 * we calculate the largest doubling multiple of cycle_intervals
2184 * that is smaller than the offset. We then accumulate that
2185 * chunk in one go, and then try to consume the next smaller
2186 * doubled multiple.
2187 */
2188 shift = ilog2(offset) - ilog2(tk->cycle_interval);
2189 shift = max(0, shift);
2190 /* Bound shift to one less than what overflows tick_length */
2191 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2192 shift = min(shift, maxshift);
2193 while (offset >= tk->cycle_interval) {
2194 offset = logarithmic_accumulation(tk, offset, shift, &clock_set);
2195 if (offset < tk->cycle_interval<<shift)
2196 shift--;
2197 }
2198
2199 /* Adjust the multiplier to correct NTP error */
2200 timekeeping_adjust(tk, offset);
2201
2202 /*
2203 * Finally, make sure that after the rounding
2204 * xtime_nsec isn't larger than NSEC_PER_SEC
2205 */
2206 clock_set |= accumulate_nsecs_to_secs(tk);
2207
2208 timekeeping_update_from_shadow(&tk_core, clock_set);
2209
2210 return !!clock_set;
2211 }
2212
2213 /**
2214 * update_wall_time - Uses the current clocksource to increment the wall time
2215 *
2216 */
update_wall_time(void)2217 void update_wall_time(void)
2218 {
2219 if (timekeeping_advance(TK_ADV_TICK))
2220 clock_was_set_delayed();
2221 }
2222
2223 /**
2224 * getboottime64 - Return the real time of system boot.
2225 * @ts: pointer to the timespec64 to be set
2226 *
2227 * Returns the wall-time of boot in a timespec64.
2228 *
2229 * This is based on the wall_to_monotonic offset and the total suspend
2230 * time. Calls to settimeofday will affect the value returned (which
2231 * basically means that however wrong your real time clock is at boot time,
2232 * you get the right time here).
2233 */
getboottime64(struct timespec64 * ts)2234 void getboottime64(struct timespec64 *ts)
2235 {
2236 struct timekeeper *tk = &tk_core.timekeeper;
2237 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
2238
2239 *ts = ktime_to_timespec64(t);
2240 }
2241 EXPORT_SYMBOL_GPL(getboottime64);
2242
ktime_get_coarse_real_ts64(struct timespec64 * ts)2243 void ktime_get_coarse_real_ts64(struct timespec64 *ts)
2244 {
2245 struct timekeeper *tk = &tk_core.timekeeper;
2246 unsigned int seq;
2247
2248 do {
2249 seq = read_seqcount_begin(&tk_core.seq);
2250
2251 *ts = tk_xtime(tk);
2252 } while (read_seqcount_retry(&tk_core.seq, seq));
2253 }
2254 EXPORT_SYMBOL(ktime_get_coarse_real_ts64);
2255
2256 /**
2257 * ktime_get_coarse_real_ts64_mg - return latter of coarse grained time or floor
2258 * @ts: timespec64 to be filled
2259 *
2260 * Fetch the global mg_floor value, convert it to realtime and compare it
2261 * to the current coarse-grained time. Fill @ts with whichever is
2262 * latest. Note that this is a filesystem-specific interface and should be
2263 * avoided outside of that context.
2264 */
ktime_get_coarse_real_ts64_mg(struct timespec64 * ts)2265 void ktime_get_coarse_real_ts64_mg(struct timespec64 *ts)
2266 {
2267 struct timekeeper *tk = &tk_core.timekeeper;
2268 u64 floor = atomic64_read(&mg_floor);
2269 ktime_t f_real, offset, coarse;
2270 unsigned int seq;
2271
2272 do {
2273 seq = read_seqcount_begin(&tk_core.seq);
2274 *ts = tk_xtime(tk);
2275 offset = tk_core.timekeeper.offs_real;
2276 } while (read_seqcount_retry(&tk_core.seq, seq));
2277
2278 coarse = timespec64_to_ktime(*ts);
2279 f_real = ktime_add(floor, offset);
2280 if (ktime_after(f_real, coarse))
2281 *ts = ktime_to_timespec64(f_real);
2282 }
2283
2284 /**
2285 * ktime_get_real_ts64_mg - attempt to update floor value and return result
2286 * @ts: pointer to the timespec to be set
2287 *
2288 * Get a monotonic fine-grained time value and attempt to swap it into
2289 * mg_floor. If that succeeds then accept the new floor value. If it fails
2290 * then another task raced in during the interim time and updated the
2291 * floor. Since any update to the floor must be later than the previous
2292 * floor, either outcome is acceptable.
2293 *
2294 * Typically this will be called after calling ktime_get_coarse_real_ts64_mg(),
2295 * and determining that the resulting coarse-grained timestamp did not effect
2296 * a change in ctime. Any more recent floor value would effect a change to
2297 * ctime, so there is no need to retry the atomic64_try_cmpxchg() on failure.
2298 *
2299 * @ts will be filled with the latest floor value, regardless of the outcome of
2300 * the cmpxchg. Note that this is a filesystem specific interface and should be
2301 * avoided outside of that context.
2302 */
ktime_get_real_ts64_mg(struct timespec64 * ts)2303 void ktime_get_real_ts64_mg(struct timespec64 *ts)
2304 {
2305 struct timekeeper *tk = &tk_core.timekeeper;
2306 ktime_t old = atomic64_read(&mg_floor);
2307 ktime_t offset, mono;
2308 unsigned int seq;
2309 u64 nsecs;
2310
2311 do {
2312 seq = read_seqcount_begin(&tk_core.seq);
2313
2314 ts->tv_sec = tk->xtime_sec;
2315 mono = tk->tkr_mono.base;
2316 nsecs = timekeeping_get_ns(&tk->tkr_mono);
2317 offset = tk_core.timekeeper.offs_real;
2318 } while (read_seqcount_retry(&tk_core.seq, seq));
2319
2320 mono = ktime_add_ns(mono, nsecs);
2321
2322 /*
2323 * Attempt to update the floor with the new time value. As any
2324 * update must be later then the existing floor, and would effect
2325 * a change to ctime from the perspective of the current task,
2326 * accept the resulting floor value regardless of the outcome of
2327 * the swap.
2328 */
2329 if (atomic64_try_cmpxchg(&mg_floor, &old, mono)) {
2330 ts->tv_nsec = 0;
2331 timespec64_add_ns(ts, nsecs);
2332 timekeeping_inc_mg_floor_swaps();
2333 } else {
2334 /*
2335 * Another task changed mg_floor since "old" was fetched.
2336 * "old" has been updated with the latest value of "mg_floor".
2337 * That value is newer than the previous floor value, which
2338 * is enough to effect a change to ctime. Accept it.
2339 */
2340 *ts = ktime_to_timespec64(ktime_add(old, offset));
2341 }
2342 }
2343
ktime_get_coarse_ts64(struct timespec64 * ts)2344 void ktime_get_coarse_ts64(struct timespec64 *ts)
2345 {
2346 struct timekeeper *tk = &tk_core.timekeeper;
2347 struct timespec64 now, mono;
2348 unsigned int seq;
2349
2350 do {
2351 seq = read_seqcount_begin(&tk_core.seq);
2352
2353 now = tk_xtime(tk);
2354 mono = tk->wall_to_monotonic;
2355 } while (read_seqcount_retry(&tk_core.seq, seq));
2356
2357 set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec,
2358 now.tv_nsec + mono.tv_nsec);
2359 }
2360 EXPORT_SYMBOL(ktime_get_coarse_ts64);
2361
2362 /*
2363 * Must hold jiffies_lock
2364 */
do_timer(unsigned long ticks)2365 void do_timer(unsigned long ticks)
2366 {
2367 jiffies_64 += ticks;
2368 calc_global_load();
2369 }
2370
2371 /**
2372 * ktime_get_update_offsets_now - hrtimer helper
2373 * @cwsseq: pointer to check and store the clock was set sequence number
2374 * @offs_real: pointer to storage for monotonic -> realtime offset
2375 * @offs_boot: pointer to storage for monotonic -> boottime offset
2376 * @offs_tai: pointer to storage for monotonic -> clock tai offset
2377 *
2378 * Returns current monotonic time and updates the offsets if the
2379 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2380 * different.
2381 *
2382 * Called from hrtimer_interrupt() or retrigger_next_event()
2383 */
ktime_get_update_offsets_now(unsigned int * cwsseq,ktime_t * offs_real,ktime_t * offs_boot,ktime_t * offs_tai)2384 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2385 ktime_t *offs_boot, ktime_t *offs_tai)
2386 {
2387 struct timekeeper *tk = &tk_core.timekeeper;
2388 unsigned int seq;
2389 ktime_t base;
2390 u64 nsecs;
2391
2392 do {
2393 seq = read_seqcount_begin(&tk_core.seq);
2394
2395 base = tk->tkr_mono.base;
2396 nsecs = timekeeping_get_ns(&tk->tkr_mono);
2397 base = ktime_add_ns(base, nsecs);
2398
2399 if (*cwsseq != tk->clock_was_set_seq) {
2400 *cwsseq = tk->clock_was_set_seq;
2401 *offs_real = tk->offs_real;
2402 *offs_boot = tk->offs_boot;
2403 *offs_tai = tk->offs_tai;
2404 }
2405
2406 /* Handle leapsecond insertion adjustments */
2407 if (unlikely(base >= tk->next_leap_ktime))
2408 *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2409
2410 } while (read_seqcount_retry(&tk_core.seq, seq));
2411
2412 return base;
2413 }
2414
2415 /*
2416 * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex
2417 */
timekeeping_validate_timex(const struct __kernel_timex * txc)2418 static int timekeeping_validate_timex(const struct __kernel_timex *txc)
2419 {
2420 if (txc->modes & ADJ_ADJTIME) {
2421 /* singleshot must not be used with any other mode bits */
2422 if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
2423 return -EINVAL;
2424 if (!(txc->modes & ADJ_OFFSET_READONLY) &&
2425 !capable(CAP_SYS_TIME))
2426 return -EPERM;
2427 } else {
2428 /* In order to modify anything, you gotta be super-user! */
2429 if (txc->modes && !capable(CAP_SYS_TIME))
2430 return -EPERM;
2431 /*
2432 * if the quartz is off by more than 10% then
2433 * something is VERY wrong!
2434 */
2435 if (txc->modes & ADJ_TICK &&
2436 (txc->tick < 900000/USER_HZ ||
2437 txc->tick > 1100000/USER_HZ))
2438 return -EINVAL;
2439 }
2440
2441 if (txc->modes & ADJ_SETOFFSET) {
2442 /* In order to inject time, you gotta be super-user! */
2443 if (!capable(CAP_SYS_TIME))
2444 return -EPERM;
2445
2446 /*
2447 * Validate if a timespec/timeval used to inject a time
2448 * offset is valid. Offsets can be positive or negative, so
2449 * we don't check tv_sec. The value of the timeval/timespec
2450 * is the sum of its fields,but *NOTE*:
2451 * The field tv_usec/tv_nsec must always be non-negative and
2452 * we can't have more nanoseconds/microseconds than a second.
2453 */
2454 if (txc->time.tv_usec < 0)
2455 return -EINVAL;
2456
2457 if (txc->modes & ADJ_NANO) {
2458 if (txc->time.tv_usec >= NSEC_PER_SEC)
2459 return -EINVAL;
2460 } else {
2461 if (txc->time.tv_usec >= USEC_PER_SEC)
2462 return -EINVAL;
2463 }
2464 }
2465
2466 /*
2467 * Check for potential multiplication overflows that can
2468 * only happen on 64-bit systems:
2469 */
2470 if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
2471 if (LLONG_MIN / PPM_SCALE > txc->freq)
2472 return -EINVAL;
2473 if (LLONG_MAX / PPM_SCALE < txc->freq)
2474 return -EINVAL;
2475 }
2476
2477 return 0;
2478 }
2479
2480 /**
2481 * random_get_entropy_fallback - Returns the raw clock source value,
2482 * used by random.c for platforms with no valid random_get_entropy().
2483 */
random_get_entropy_fallback(void)2484 unsigned long random_get_entropy_fallback(void)
2485 {
2486 struct tk_read_base *tkr = &tk_core.timekeeper.tkr_mono;
2487 struct clocksource *clock = READ_ONCE(tkr->clock);
2488
2489 if (unlikely(timekeeping_suspended || !clock))
2490 return 0;
2491 return clock->read(clock);
2492 }
2493 EXPORT_SYMBOL_GPL(random_get_entropy_fallback);
2494
2495 /**
2496 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2497 * @txc: Pointer to kernel_timex structure containing NTP parameters
2498 */
do_adjtimex(struct __kernel_timex * txc)2499 int do_adjtimex(struct __kernel_timex *txc)
2500 {
2501 struct audit_ntp_data ad;
2502 bool offset_set = false;
2503 bool clock_set = false;
2504 struct timespec64 ts;
2505 int ret;
2506
2507 /* Validate the data before disabling interrupts */
2508 ret = timekeeping_validate_timex(txc);
2509 if (ret)
2510 return ret;
2511 add_device_randomness(txc, sizeof(*txc));
2512
2513 if (txc->modes & ADJ_SETOFFSET) {
2514 struct timespec64 delta;
2515
2516 delta.tv_sec = txc->time.tv_sec;
2517 delta.tv_nsec = txc->time.tv_usec;
2518 if (!(txc->modes & ADJ_NANO))
2519 delta.tv_nsec *= 1000;
2520 ret = timekeeping_inject_offset(&delta);
2521 if (ret)
2522 return ret;
2523
2524 offset_set = delta.tv_sec != 0;
2525 audit_tk_injoffset(delta);
2526 }
2527
2528 audit_ntp_init(&ad);
2529
2530 ktime_get_real_ts64(&ts);
2531 add_device_randomness(&ts, sizeof(ts));
2532
2533 scoped_guard (raw_spinlock_irqsave, &tk_core.lock) {
2534 struct timekeeper *tks = &tk_core.shadow_timekeeper;
2535 s32 orig_tai, tai;
2536
2537 orig_tai = tai = tks->tai_offset;
2538 ret = __do_adjtimex(txc, &ts, &tai, &ad);
2539
2540 if (tai != orig_tai) {
2541 __timekeeping_set_tai_offset(tks, tai);
2542 timekeeping_update_from_shadow(&tk_core, TK_CLOCK_WAS_SET);
2543 clock_set = true;
2544 } else {
2545 tk_update_leap_state_all(&tk_core);
2546 }
2547 }
2548
2549 audit_ntp_log(&ad);
2550
2551 /* Update the multiplier immediately if frequency was set directly */
2552 if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK))
2553 clock_set |= timekeeping_advance(TK_ADV_FREQ);
2554
2555 if (clock_set)
2556 clock_was_set(CLOCK_SET_WALL);
2557
2558 ntp_notify_cmos_timer(offset_set);
2559
2560 return ret;
2561 }
2562
2563 #ifdef CONFIG_NTP_PPS
2564 /**
2565 * hardpps() - Accessor function to NTP __hardpps function
2566 * @phase_ts: Pointer to timespec64 structure representing phase timestamp
2567 * @raw_ts: Pointer to timespec64 structure representing raw timestamp
2568 */
hardpps(const struct timespec64 * phase_ts,const struct timespec64 * raw_ts)2569 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2570 {
2571 guard(raw_spinlock_irqsave)(&tk_core.lock);
2572 __hardpps(phase_ts, raw_ts);
2573 }
2574 EXPORT_SYMBOL(hardpps);
2575 #endif /* CONFIG_NTP_PPS */
2576