xref: /linux/drivers/nvme/host/pci.c (revision 381af8d9f484c06d93e4a0b8459526e779b35a65)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/acpi.h>
8 #include <linux/async.h>
9 #include <linux/blkdev.h>
10 #include <linux/blk-mq.h>
11 #include <linux/blk-integrity.h>
12 #include <linux/dmi.h>
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/kstrtox.h>
17 #include <linux/memremap.h>
18 #include <linux/mm.h>
19 #include <linux/module.h>
20 #include <linux/mutex.h>
21 #include <linux/once.h>
22 #include <linux/pci.h>
23 #include <linux/suspend.h>
24 #include <linux/t10-pi.h>
25 #include <linux/types.h>
26 #include <linux/io-64-nonatomic-lo-hi.h>
27 #include <linux/io-64-nonatomic-hi-lo.h>
28 #include <linux/sed-opal.h>
29 #include <linux/pci-p2pdma.h>
30 
31 #include "trace.h"
32 #include "nvme.h"
33 
34 #define SQ_SIZE(q)	((q)->q_depth << (q)->sqes)
35 #define CQ_SIZE(q)	((q)->q_depth * sizeof(struct nvme_completion))
36 
37 #define SGES_PER_PAGE	(NVME_CTRL_PAGE_SIZE / sizeof(struct nvme_sgl_desc))
38 
39 /*
40  * These can be higher, but we need to ensure that any command doesn't
41  * require an sg allocation that needs more than a page of data.
42  */
43 #define NVME_MAX_KB_SZ	8192
44 #define NVME_MAX_SEGS	128
45 #define NVME_MAX_META_SEGS 15
46 #define NVME_MAX_NR_ALLOCATIONS	5
47 
48 static int use_threaded_interrupts;
49 module_param(use_threaded_interrupts, int, 0444);
50 
51 static bool use_cmb_sqes = true;
52 module_param(use_cmb_sqes, bool, 0444);
53 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
54 
55 static unsigned int max_host_mem_size_mb = 128;
56 module_param(max_host_mem_size_mb, uint, 0444);
57 MODULE_PARM_DESC(max_host_mem_size_mb,
58 	"Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
59 
60 static unsigned int sgl_threshold = SZ_32K;
61 module_param(sgl_threshold, uint, 0644);
62 MODULE_PARM_DESC(sgl_threshold,
63 		"Use SGLs when average request segment size is larger or equal to "
64 		"this size. Use 0 to disable SGLs.");
65 
66 #define NVME_PCI_MIN_QUEUE_SIZE 2
67 #define NVME_PCI_MAX_QUEUE_SIZE 4095
68 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
69 static const struct kernel_param_ops io_queue_depth_ops = {
70 	.set = io_queue_depth_set,
71 	.get = param_get_uint,
72 };
73 
74 static unsigned int io_queue_depth = 1024;
75 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
76 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2 and < 4096");
77 
io_queue_count_set(const char * val,const struct kernel_param * kp)78 static int io_queue_count_set(const char *val, const struct kernel_param *kp)
79 {
80 	unsigned int n;
81 	int ret;
82 
83 	ret = kstrtouint(val, 10, &n);
84 	if (ret != 0 || n > num_possible_cpus())
85 		return -EINVAL;
86 	return param_set_uint(val, kp);
87 }
88 
89 static const struct kernel_param_ops io_queue_count_ops = {
90 	.set = io_queue_count_set,
91 	.get = param_get_uint,
92 };
93 
94 static unsigned int write_queues;
95 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644);
96 MODULE_PARM_DESC(write_queues,
97 	"Number of queues to use for writes. If not set, reads and writes "
98 	"will share a queue set.");
99 
100 static unsigned int poll_queues;
101 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644);
102 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
103 
104 static bool noacpi;
105 module_param(noacpi, bool, 0444);
106 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks");
107 
108 struct nvme_dev;
109 struct nvme_queue;
110 
111 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
112 static void nvme_delete_io_queues(struct nvme_dev *dev);
113 static void nvme_update_attrs(struct nvme_dev *dev);
114 
115 /*
116  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
117  */
118 struct nvme_dev {
119 	struct nvme_queue *queues;
120 	struct blk_mq_tag_set tagset;
121 	struct blk_mq_tag_set admin_tagset;
122 	u32 __iomem *dbs;
123 	struct device *dev;
124 	struct dma_pool *prp_page_pool;
125 	struct dma_pool *prp_small_pool;
126 	unsigned online_queues;
127 	unsigned max_qid;
128 	unsigned io_queues[HCTX_MAX_TYPES];
129 	unsigned int num_vecs;
130 	u32 q_depth;
131 	int io_sqes;
132 	u32 db_stride;
133 	void __iomem *bar;
134 	unsigned long bar_mapped_size;
135 	struct mutex shutdown_lock;
136 	bool subsystem;
137 	u64 cmb_size;
138 	bool cmb_use_sqes;
139 	u32 cmbsz;
140 	u32 cmbloc;
141 	struct nvme_ctrl ctrl;
142 	u32 last_ps;
143 	bool hmb;
144 	struct sg_table *hmb_sgt;
145 
146 	mempool_t *iod_mempool;
147 	mempool_t *iod_meta_mempool;
148 
149 	/* shadow doorbell buffer support: */
150 	__le32 *dbbuf_dbs;
151 	dma_addr_t dbbuf_dbs_dma_addr;
152 	__le32 *dbbuf_eis;
153 	dma_addr_t dbbuf_eis_dma_addr;
154 
155 	/* host memory buffer support: */
156 	u64 host_mem_size;
157 	u32 nr_host_mem_descs;
158 	u32 host_mem_descs_size;
159 	dma_addr_t host_mem_descs_dma;
160 	struct nvme_host_mem_buf_desc *host_mem_descs;
161 	void **host_mem_desc_bufs;
162 	unsigned int nr_allocated_queues;
163 	unsigned int nr_write_queues;
164 	unsigned int nr_poll_queues;
165 };
166 
io_queue_depth_set(const char * val,const struct kernel_param * kp)167 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
168 {
169 	return param_set_uint_minmax(val, kp, NVME_PCI_MIN_QUEUE_SIZE,
170 			NVME_PCI_MAX_QUEUE_SIZE);
171 }
172 
sq_idx(unsigned int qid,u32 stride)173 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
174 {
175 	return qid * 2 * stride;
176 }
177 
cq_idx(unsigned int qid,u32 stride)178 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
179 {
180 	return (qid * 2 + 1) * stride;
181 }
182 
to_nvme_dev(struct nvme_ctrl * ctrl)183 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
184 {
185 	return container_of(ctrl, struct nvme_dev, ctrl);
186 }
187 
188 /*
189  * An NVM Express queue.  Each device has at least two (one for admin
190  * commands and one for I/O commands).
191  */
192 struct nvme_queue {
193 	struct nvme_dev *dev;
194 	spinlock_t sq_lock;
195 	void *sq_cmds;
196 	 /* only used for poll queues: */
197 	spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
198 	struct nvme_completion *cqes;
199 	dma_addr_t sq_dma_addr;
200 	dma_addr_t cq_dma_addr;
201 	u32 __iomem *q_db;
202 	u32 q_depth;
203 	u16 cq_vector;
204 	u16 sq_tail;
205 	u16 last_sq_tail;
206 	u16 cq_head;
207 	u16 qid;
208 	u8 cq_phase;
209 	u8 sqes;
210 	unsigned long flags;
211 #define NVMEQ_ENABLED		0
212 #define NVMEQ_SQ_CMB		1
213 #define NVMEQ_DELETE_ERROR	2
214 #define NVMEQ_POLLED		3
215 	__le32 *dbbuf_sq_db;
216 	__le32 *dbbuf_cq_db;
217 	__le32 *dbbuf_sq_ei;
218 	__le32 *dbbuf_cq_ei;
219 	struct completion delete_done;
220 };
221 
222 union nvme_descriptor {
223 	struct nvme_sgl_desc	*sg_list;
224 	__le64			*prp_list;
225 };
226 
227 /*
228  * The nvme_iod describes the data in an I/O.
229  *
230  * The sg pointer contains the list of PRP/SGL chunk allocations in addition
231  * to the actual struct scatterlist.
232  */
233 struct nvme_iod {
234 	struct nvme_request req;
235 	struct nvme_command cmd;
236 	bool aborted;
237 	s8 nr_allocations;	/* PRP list pool allocations. 0 means small
238 				   pool in use */
239 	unsigned int dma_len;	/* length of single DMA segment mapping */
240 	dma_addr_t first_dma;
241 	dma_addr_t meta_dma;
242 	struct sg_table sgt;
243 	struct sg_table meta_sgt;
244 	union nvme_descriptor meta_list;
245 	union nvme_descriptor list[NVME_MAX_NR_ALLOCATIONS];
246 };
247 
nvme_dbbuf_size(struct nvme_dev * dev)248 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
249 {
250 	return dev->nr_allocated_queues * 8 * dev->db_stride;
251 }
252 
nvme_dbbuf_dma_alloc(struct nvme_dev * dev)253 static void nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
254 {
255 	unsigned int mem_size = nvme_dbbuf_size(dev);
256 
257 	if (!(dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP))
258 		return;
259 
260 	if (dev->dbbuf_dbs) {
261 		/*
262 		 * Clear the dbbuf memory so the driver doesn't observe stale
263 		 * values from the previous instantiation.
264 		 */
265 		memset(dev->dbbuf_dbs, 0, mem_size);
266 		memset(dev->dbbuf_eis, 0, mem_size);
267 		return;
268 	}
269 
270 	dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
271 					    &dev->dbbuf_dbs_dma_addr,
272 					    GFP_KERNEL);
273 	if (!dev->dbbuf_dbs)
274 		goto fail;
275 	dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
276 					    &dev->dbbuf_eis_dma_addr,
277 					    GFP_KERNEL);
278 	if (!dev->dbbuf_eis)
279 		goto fail_free_dbbuf_dbs;
280 	return;
281 
282 fail_free_dbbuf_dbs:
283 	dma_free_coherent(dev->dev, mem_size, dev->dbbuf_dbs,
284 			  dev->dbbuf_dbs_dma_addr);
285 	dev->dbbuf_dbs = NULL;
286 fail:
287 	dev_warn(dev->dev, "unable to allocate dma for dbbuf\n");
288 }
289 
nvme_dbbuf_dma_free(struct nvme_dev * dev)290 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
291 {
292 	unsigned int mem_size = nvme_dbbuf_size(dev);
293 
294 	if (dev->dbbuf_dbs) {
295 		dma_free_coherent(dev->dev, mem_size,
296 				  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
297 		dev->dbbuf_dbs = NULL;
298 	}
299 	if (dev->dbbuf_eis) {
300 		dma_free_coherent(dev->dev, mem_size,
301 				  dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
302 		dev->dbbuf_eis = NULL;
303 	}
304 }
305 
nvme_dbbuf_init(struct nvme_dev * dev,struct nvme_queue * nvmeq,int qid)306 static void nvme_dbbuf_init(struct nvme_dev *dev,
307 			    struct nvme_queue *nvmeq, int qid)
308 {
309 	if (!dev->dbbuf_dbs || !qid)
310 		return;
311 
312 	nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
313 	nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
314 	nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
315 	nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
316 }
317 
nvme_dbbuf_free(struct nvme_queue * nvmeq)318 static void nvme_dbbuf_free(struct nvme_queue *nvmeq)
319 {
320 	if (!nvmeq->qid)
321 		return;
322 
323 	nvmeq->dbbuf_sq_db = NULL;
324 	nvmeq->dbbuf_cq_db = NULL;
325 	nvmeq->dbbuf_sq_ei = NULL;
326 	nvmeq->dbbuf_cq_ei = NULL;
327 }
328 
nvme_dbbuf_set(struct nvme_dev * dev)329 static void nvme_dbbuf_set(struct nvme_dev *dev)
330 {
331 	struct nvme_command c = { };
332 	unsigned int i;
333 
334 	if (!dev->dbbuf_dbs)
335 		return;
336 
337 	c.dbbuf.opcode = nvme_admin_dbbuf;
338 	c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
339 	c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
340 
341 	if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
342 		dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
343 		/* Free memory and continue on */
344 		nvme_dbbuf_dma_free(dev);
345 
346 		for (i = 1; i <= dev->online_queues; i++)
347 			nvme_dbbuf_free(&dev->queues[i]);
348 	}
349 }
350 
nvme_dbbuf_need_event(u16 event_idx,u16 new_idx,u16 old)351 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
352 {
353 	return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
354 }
355 
356 /* Update dbbuf and return true if an MMIO is required */
nvme_dbbuf_update_and_check_event(u16 value,__le32 * dbbuf_db,volatile __le32 * dbbuf_ei)357 static bool nvme_dbbuf_update_and_check_event(u16 value, __le32 *dbbuf_db,
358 					      volatile __le32 *dbbuf_ei)
359 {
360 	if (dbbuf_db) {
361 		u16 old_value, event_idx;
362 
363 		/*
364 		 * Ensure that the queue is written before updating
365 		 * the doorbell in memory
366 		 */
367 		wmb();
368 
369 		old_value = le32_to_cpu(*dbbuf_db);
370 		*dbbuf_db = cpu_to_le32(value);
371 
372 		/*
373 		 * Ensure that the doorbell is updated before reading the event
374 		 * index from memory.  The controller needs to provide similar
375 		 * ordering to ensure the event index is updated before reading
376 		 * the doorbell.
377 		 */
378 		mb();
379 
380 		event_idx = le32_to_cpu(*dbbuf_ei);
381 		if (!nvme_dbbuf_need_event(event_idx, value, old_value))
382 			return false;
383 	}
384 
385 	return true;
386 }
387 
388 /*
389  * Will slightly overestimate the number of pages needed.  This is OK
390  * as it only leads to a small amount of wasted memory for the lifetime of
391  * the I/O.
392  */
nvme_pci_npages_prp(void)393 static int nvme_pci_npages_prp(void)
394 {
395 	unsigned max_bytes = (NVME_MAX_KB_SZ * 1024) + NVME_CTRL_PAGE_SIZE;
396 	unsigned nprps = DIV_ROUND_UP(max_bytes, NVME_CTRL_PAGE_SIZE);
397 	return DIV_ROUND_UP(8 * nprps, NVME_CTRL_PAGE_SIZE - 8);
398 }
399 
nvme_admin_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)400 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
401 				unsigned int hctx_idx)
402 {
403 	struct nvme_dev *dev = to_nvme_dev(data);
404 	struct nvme_queue *nvmeq = &dev->queues[0];
405 
406 	WARN_ON(hctx_idx != 0);
407 	WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
408 
409 	hctx->driver_data = nvmeq;
410 	return 0;
411 }
412 
nvme_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)413 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
414 			  unsigned int hctx_idx)
415 {
416 	struct nvme_dev *dev = to_nvme_dev(data);
417 	struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
418 
419 	WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
420 	hctx->driver_data = nvmeq;
421 	return 0;
422 }
423 
nvme_pci_init_request(struct blk_mq_tag_set * set,struct request * req,unsigned int hctx_idx,unsigned int numa_node)424 static int nvme_pci_init_request(struct blk_mq_tag_set *set,
425 		struct request *req, unsigned int hctx_idx,
426 		unsigned int numa_node)
427 {
428 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
429 
430 	nvme_req(req)->ctrl = set->driver_data;
431 	nvme_req(req)->cmd = &iod->cmd;
432 	return 0;
433 }
434 
queue_irq_offset(struct nvme_dev * dev)435 static int queue_irq_offset(struct nvme_dev *dev)
436 {
437 	/* if we have more than 1 vec, admin queue offsets us by 1 */
438 	if (dev->num_vecs > 1)
439 		return 1;
440 
441 	return 0;
442 }
443 
nvme_pci_map_queues(struct blk_mq_tag_set * set)444 static void nvme_pci_map_queues(struct blk_mq_tag_set *set)
445 {
446 	struct nvme_dev *dev = to_nvme_dev(set->driver_data);
447 	int i, qoff, offset;
448 
449 	offset = queue_irq_offset(dev);
450 	for (i = 0, qoff = 0; i < set->nr_maps; i++) {
451 		struct blk_mq_queue_map *map = &set->map[i];
452 
453 		map->nr_queues = dev->io_queues[i];
454 		if (!map->nr_queues) {
455 			BUG_ON(i == HCTX_TYPE_DEFAULT);
456 			continue;
457 		}
458 
459 		/*
460 		 * The poll queue(s) doesn't have an IRQ (and hence IRQ
461 		 * affinity), so use the regular blk-mq cpu mapping
462 		 */
463 		map->queue_offset = qoff;
464 		if (i != HCTX_TYPE_POLL && offset)
465 			blk_mq_map_hw_queues(map, dev->dev, offset);
466 		else
467 			blk_mq_map_queues(map);
468 		qoff += map->nr_queues;
469 		offset += map->nr_queues;
470 	}
471 }
472 
473 /*
474  * Write sq tail if we are asked to, or if the next command would wrap.
475  */
nvme_write_sq_db(struct nvme_queue * nvmeq,bool write_sq)476 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
477 {
478 	if (!write_sq) {
479 		u16 next_tail = nvmeq->sq_tail + 1;
480 
481 		if (next_tail == nvmeq->q_depth)
482 			next_tail = 0;
483 		if (next_tail != nvmeq->last_sq_tail)
484 			return;
485 	}
486 
487 	if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
488 			nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
489 		writel(nvmeq->sq_tail, nvmeq->q_db);
490 	nvmeq->last_sq_tail = nvmeq->sq_tail;
491 }
492 
nvme_sq_copy_cmd(struct nvme_queue * nvmeq,struct nvme_command * cmd)493 static inline void nvme_sq_copy_cmd(struct nvme_queue *nvmeq,
494 				    struct nvme_command *cmd)
495 {
496 	memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
497 		absolute_pointer(cmd), sizeof(*cmd));
498 	if (++nvmeq->sq_tail == nvmeq->q_depth)
499 		nvmeq->sq_tail = 0;
500 }
501 
nvme_commit_rqs(struct blk_mq_hw_ctx * hctx)502 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
503 {
504 	struct nvme_queue *nvmeq = hctx->driver_data;
505 
506 	spin_lock(&nvmeq->sq_lock);
507 	if (nvmeq->sq_tail != nvmeq->last_sq_tail)
508 		nvme_write_sq_db(nvmeq, true);
509 	spin_unlock(&nvmeq->sq_lock);
510 }
511 
nvme_pci_metadata_use_sgls(struct nvme_dev * dev,struct request * req)512 static inline bool nvme_pci_metadata_use_sgls(struct nvme_dev *dev,
513 					      struct request *req)
514 {
515 	if (!nvme_ctrl_meta_sgl_supported(&dev->ctrl))
516 		return false;
517 	return req->nr_integrity_segments > 1 ||
518 		nvme_req(req)->flags & NVME_REQ_USERCMD;
519 }
520 
nvme_pci_use_sgls(struct nvme_dev * dev,struct request * req,int nseg)521 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req,
522 				     int nseg)
523 {
524 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
525 	unsigned int avg_seg_size;
526 
527 	avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
528 
529 	if (!nvme_ctrl_sgl_supported(&dev->ctrl))
530 		return false;
531 	if (!nvmeq->qid)
532 		return false;
533 	if (nvme_pci_metadata_use_sgls(dev, req))
534 		return true;
535 	if (!sgl_threshold || avg_seg_size < sgl_threshold)
536 		return nvme_req(req)->flags & NVME_REQ_USERCMD;
537 	return true;
538 }
539 
nvme_free_prps(struct nvme_dev * dev,struct request * req)540 static void nvme_free_prps(struct nvme_dev *dev, struct request *req)
541 {
542 	const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1;
543 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
544 	dma_addr_t dma_addr = iod->first_dma;
545 	int i;
546 
547 	for (i = 0; i < iod->nr_allocations; i++) {
548 		__le64 *prp_list = iod->list[i].prp_list;
549 		dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]);
550 
551 		dma_pool_free(dev->prp_page_pool, prp_list, dma_addr);
552 		dma_addr = next_dma_addr;
553 	}
554 }
555 
nvme_unmap_data(struct nvme_dev * dev,struct request * req)556 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
557 {
558 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
559 
560 	if (iod->dma_len) {
561 		dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len,
562 			       rq_dma_dir(req));
563 		return;
564 	}
565 
566 	WARN_ON_ONCE(!iod->sgt.nents);
567 
568 	dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0);
569 
570 	if (iod->nr_allocations == 0)
571 		dma_pool_free(dev->prp_small_pool, iod->list[0].sg_list,
572 			      iod->first_dma);
573 	else if (iod->nr_allocations == 1)
574 		dma_pool_free(dev->prp_page_pool, iod->list[0].sg_list,
575 			      iod->first_dma);
576 	else
577 		nvme_free_prps(dev, req);
578 	mempool_free(iod->sgt.sgl, dev->iod_mempool);
579 }
580 
nvme_print_sgl(struct scatterlist * sgl,int nents)581 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
582 {
583 	int i;
584 	struct scatterlist *sg;
585 
586 	for_each_sg(sgl, sg, nents, i) {
587 		dma_addr_t phys = sg_phys(sg);
588 		pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
589 			"dma_address:%pad dma_length:%d\n",
590 			i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
591 			sg_dma_len(sg));
592 	}
593 }
594 
nvme_pci_setup_prps(struct nvme_dev * dev,struct request * req,struct nvme_rw_command * cmnd)595 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
596 		struct request *req, struct nvme_rw_command *cmnd)
597 {
598 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
599 	struct dma_pool *pool;
600 	int length = blk_rq_payload_bytes(req);
601 	struct scatterlist *sg = iod->sgt.sgl;
602 	int dma_len = sg_dma_len(sg);
603 	u64 dma_addr = sg_dma_address(sg);
604 	int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1);
605 	__le64 *prp_list;
606 	dma_addr_t prp_dma;
607 	int nprps, i;
608 
609 	length -= (NVME_CTRL_PAGE_SIZE - offset);
610 	if (length <= 0) {
611 		iod->first_dma = 0;
612 		goto done;
613 	}
614 
615 	dma_len -= (NVME_CTRL_PAGE_SIZE - offset);
616 	if (dma_len) {
617 		dma_addr += (NVME_CTRL_PAGE_SIZE - offset);
618 	} else {
619 		sg = sg_next(sg);
620 		dma_addr = sg_dma_address(sg);
621 		dma_len = sg_dma_len(sg);
622 	}
623 
624 	if (length <= NVME_CTRL_PAGE_SIZE) {
625 		iod->first_dma = dma_addr;
626 		goto done;
627 	}
628 
629 	nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE);
630 	if (nprps <= (256 / 8)) {
631 		pool = dev->prp_small_pool;
632 		iod->nr_allocations = 0;
633 	} else {
634 		pool = dev->prp_page_pool;
635 		iod->nr_allocations = 1;
636 	}
637 
638 	prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
639 	if (!prp_list) {
640 		iod->nr_allocations = -1;
641 		return BLK_STS_RESOURCE;
642 	}
643 	iod->list[0].prp_list = prp_list;
644 	iod->first_dma = prp_dma;
645 	i = 0;
646 	for (;;) {
647 		if (i == NVME_CTRL_PAGE_SIZE >> 3) {
648 			__le64 *old_prp_list = prp_list;
649 			prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
650 			if (!prp_list)
651 				goto free_prps;
652 			iod->list[iod->nr_allocations++].prp_list = prp_list;
653 			prp_list[0] = old_prp_list[i - 1];
654 			old_prp_list[i - 1] = cpu_to_le64(prp_dma);
655 			i = 1;
656 		}
657 		prp_list[i++] = cpu_to_le64(dma_addr);
658 		dma_len -= NVME_CTRL_PAGE_SIZE;
659 		dma_addr += NVME_CTRL_PAGE_SIZE;
660 		length -= NVME_CTRL_PAGE_SIZE;
661 		if (length <= 0)
662 			break;
663 		if (dma_len > 0)
664 			continue;
665 		if (unlikely(dma_len < 0))
666 			goto bad_sgl;
667 		sg = sg_next(sg);
668 		dma_addr = sg_dma_address(sg);
669 		dma_len = sg_dma_len(sg);
670 	}
671 done:
672 	cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sgt.sgl));
673 	cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
674 	return BLK_STS_OK;
675 free_prps:
676 	nvme_free_prps(dev, req);
677 	return BLK_STS_RESOURCE;
678 bad_sgl:
679 	WARN(DO_ONCE(nvme_print_sgl, iod->sgt.sgl, iod->sgt.nents),
680 			"Invalid SGL for payload:%d nents:%d\n",
681 			blk_rq_payload_bytes(req), iod->sgt.nents);
682 	return BLK_STS_IOERR;
683 }
684 
nvme_pci_sgl_set_data(struct nvme_sgl_desc * sge,struct scatterlist * sg)685 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
686 		struct scatterlist *sg)
687 {
688 	sge->addr = cpu_to_le64(sg_dma_address(sg));
689 	sge->length = cpu_to_le32(sg_dma_len(sg));
690 	sge->type = NVME_SGL_FMT_DATA_DESC << 4;
691 }
692 
nvme_pci_sgl_set_seg(struct nvme_sgl_desc * sge,dma_addr_t dma_addr,int entries)693 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
694 		dma_addr_t dma_addr, int entries)
695 {
696 	sge->addr = cpu_to_le64(dma_addr);
697 	sge->length = cpu_to_le32(entries * sizeof(*sge));
698 	sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
699 }
700 
nvme_pci_setup_sgls(struct nvme_dev * dev,struct request * req,struct nvme_rw_command * cmd)701 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
702 		struct request *req, struct nvme_rw_command *cmd)
703 {
704 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
705 	struct dma_pool *pool;
706 	struct nvme_sgl_desc *sg_list;
707 	struct scatterlist *sg = iod->sgt.sgl;
708 	unsigned int entries = iod->sgt.nents;
709 	dma_addr_t sgl_dma;
710 	int i = 0;
711 
712 	/* setting the transfer type as SGL */
713 	cmd->flags = NVME_CMD_SGL_METABUF;
714 
715 	if (entries == 1) {
716 		nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
717 		return BLK_STS_OK;
718 	}
719 
720 	if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
721 		pool = dev->prp_small_pool;
722 		iod->nr_allocations = 0;
723 	} else {
724 		pool = dev->prp_page_pool;
725 		iod->nr_allocations = 1;
726 	}
727 
728 	sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
729 	if (!sg_list) {
730 		iod->nr_allocations = -1;
731 		return BLK_STS_RESOURCE;
732 	}
733 
734 	iod->list[0].sg_list = sg_list;
735 	iod->first_dma = sgl_dma;
736 
737 	nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
738 	do {
739 		nvme_pci_sgl_set_data(&sg_list[i++], sg);
740 		sg = sg_next(sg);
741 	} while (--entries > 0);
742 
743 	return BLK_STS_OK;
744 }
745 
nvme_setup_prp_simple(struct nvme_dev * dev,struct request * req,struct nvme_rw_command * cmnd,struct bio_vec * bv)746 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
747 		struct request *req, struct nvme_rw_command *cmnd,
748 		struct bio_vec *bv)
749 {
750 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
751 	unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1);
752 	unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset;
753 
754 	iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
755 	if (dma_mapping_error(dev->dev, iod->first_dma))
756 		return BLK_STS_RESOURCE;
757 	iod->dma_len = bv->bv_len;
758 
759 	cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
760 	if (bv->bv_len > first_prp_len)
761 		cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
762 	else
763 		cmnd->dptr.prp2 = 0;
764 	return BLK_STS_OK;
765 }
766 
nvme_setup_sgl_simple(struct nvme_dev * dev,struct request * req,struct nvme_rw_command * cmnd,struct bio_vec * bv)767 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
768 		struct request *req, struct nvme_rw_command *cmnd,
769 		struct bio_vec *bv)
770 {
771 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
772 
773 	iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
774 	if (dma_mapping_error(dev->dev, iod->first_dma))
775 		return BLK_STS_RESOURCE;
776 	iod->dma_len = bv->bv_len;
777 
778 	cmnd->flags = NVME_CMD_SGL_METABUF;
779 	cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
780 	cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
781 	cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
782 	return BLK_STS_OK;
783 }
784 
nvme_map_data(struct nvme_dev * dev,struct request * req,struct nvme_command * cmnd)785 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
786 		struct nvme_command *cmnd)
787 {
788 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
789 	blk_status_t ret = BLK_STS_RESOURCE;
790 	int rc;
791 
792 	if (blk_rq_nr_phys_segments(req) == 1) {
793 		struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
794 		struct bio_vec bv = req_bvec(req);
795 
796 		if (!is_pci_p2pdma_page(bv.bv_page)) {
797 			if (!nvme_pci_metadata_use_sgls(dev, req) &&
798 			    (bv.bv_offset & (NVME_CTRL_PAGE_SIZE - 1)) +
799 			     bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2)
800 				return nvme_setup_prp_simple(dev, req,
801 							     &cmnd->rw, &bv);
802 
803 			if (nvmeq->qid && sgl_threshold &&
804 			    nvme_ctrl_sgl_supported(&dev->ctrl))
805 				return nvme_setup_sgl_simple(dev, req,
806 							     &cmnd->rw, &bv);
807 		}
808 	}
809 
810 	iod->dma_len = 0;
811 	iod->sgt.sgl = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
812 	if (!iod->sgt.sgl)
813 		return BLK_STS_RESOURCE;
814 	sg_init_table(iod->sgt.sgl, blk_rq_nr_phys_segments(req));
815 	iod->sgt.orig_nents = blk_rq_map_sg(req->q, req, iod->sgt.sgl);
816 	if (!iod->sgt.orig_nents)
817 		goto out_free_sg;
818 
819 	rc = dma_map_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req),
820 			     DMA_ATTR_NO_WARN);
821 	if (rc) {
822 		if (rc == -EREMOTEIO)
823 			ret = BLK_STS_TARGET;
824 		goto out_free_sg;
825 	}
826 
827 	if (nvme_pci_use_sgls(dev, req, iod->sgt.nents))
828 		ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw);
829 	else
830 		ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
831 	if (ret != BLK_STS_OK)
832 		goto out_unmap_sg;
833 	return BLK_STS_OK;
834 
835 out_unmap_sg:
836 	dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0);
837 out_free_sg:
838 	mempool_free(iod->sgt.sgl, dev->iod_mempool);
839 	return ret;
840 }
841 
nvme_pci_setup_meta_sgls(struct nvme_dev * dev,struct request * req)842 static blk_status_t nvme_pci_setup_meta_sgls(struct nvme_dev *dev,
843 					     struct request *req)
844 {
845 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
846 	struct nvme_rw_command *cmnd = &iod->cmd.rw;
847 	struct nvme_sgl_desc *sg_list;
848 	struct scatterlist *sgl, *sg;
849 	unsigned int entries;
850 	dma_addr_t sgl_dma;
851 	int rc, i;
852 
853 	iod->meta_sgt.sgl = mempool_alloc(dev->iod_meta_mempool, GFP_ATOMIC);
854 	if (!iod->meta_sgt.sgl)
855 		return BLK_STS_RESOURCE;
856 
857 	sg_init_table(iod->meta_sgt.sgl, req->nr_integrity_segments);
858 	iod->meta_sgt.orig_nents = blk_rq_map_integrity_sg(req,
859 							   iod->meta_sgt.sgl);
860 	if (!iod->meta_sgt.orig_nents)
861 		goto out_free_sg;
862 
863 	rc = dma_map_sgtable(dev->dev, &iod->meta_sgt, rq_dma_dir(req),
864 			     DMA_ATTR_NO_WARN);
865 	if (rc)
866 		goto out_free_sg;
867 
868 	sg_list = dma_pool_alloc(dev->prp_small_pool, GFP_ATOMIC, &sgl_dma);
869 	if (!sg_list)
870 		goto out_unmap_sg;
871 
872 	entries = iod->meta_sgt.nents;
873 	iod->meta_list.sg_list = sg_list;
874 	iod->meta_dma = sgl_dma;
875 
876 	cmnd->flags = NVME_CMD_SGL_METASEG;
877 	cmnd->metadata = cpu_to_le64(sgl_dma);
878 
879 	sgl = iod->meta_sgt.sgl;
880 	if (entries == 1) {
881 		nvme_pci_sgl_set_data(sg_list, sgl);
882 		return BLK_STS_OK;
883 	}
884 
885 	sgl_dma += sizeof(*sg_list);
886 	nvme_pci_sgl_set_seg(sg_list, sgl_dma, entries);
887 	for_each_sg(sgl, sg, entries, i)
888 		nvme_pci_sgl_set_data(&sg_list[i + 1], sg);
889 
890 	return BLK_STS_OK;
891 
892 out_unmap_sg:
893 	dma_unmap_sgtable(dev->dev, &iod->meta_sgt, rq_dma_dir(req), 0);
894 out_free_sg:
895 	mempool_free(iod->meta_sgt.sgl, dev->iod_meta_mempool);
896 	return BLK_STS_RESOURCE;
897 }
898 
nvme_pci_setup_meta_mptr(struct nvme_dev * dev,struct request * req)899 static blk_status_t nvme_pci_setup_meta_mptr(struct nvme_dev *dev,
900 					     struct request *req)
901 {
902 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
903 	struct bio_vec bv = rq_integrity_vec(req);
904 	struct nvme_command *cmnd = &iod->cmd;
905 
906 	iod->meta_dma = dma_map_bvec(dev->dev, &bv, rq_dma_dir(req), 0);
907 	if (dma_mapping_error(dev->dev, iod->meta_dma))
908 		return BLK_STS_IOERR;
909 	cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
910 	return BLK_STS_OK;
911 }
912 
nvme_map_metadata(struct nvme_dev * dev,struct request * req)913 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req)
914 {
915 	if (nvme_pci_metadata_use_sgls(dev, req))
916 		return nvme_pci_setup_meta_sgls(dev, req);
917 	return nvme_pci_setup_meta_mptr(dev, req);
918 }
919 
nvme_prep_rq(struct nvme_dev * dev,struct request * req)920 static blk_status_t nvme_prep_rq(struct nvme_dev *dev, struct request *req)
921 {
922 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
923 	blk_status_t ret;
924 
925 	iod->aborted = false;
926 	iod->nr_allocations = -1;
927 	iod->sgt.nents = 0;
928 	iod->meta_sgt.nents = 0;
929 
930 	ret = nvme_setup_cmd(req->q->queuedata, req);
931 	if (ret)
932 		return ret;
933 
934 	if (blk_rq_nr_phys_segments(req)) {
935 		ret = nvme_map_data(dev, req, &iod->cmd);
936 		if (ret)
937 			goto out_free_cmd;
938 	}
939 
940 	if (blk_integrity_rq(req)) {
941 		ret = nvme_map_metadata(dev, req);
942 		if (ret)
943 			goto out_unmap_data;
944 	}
945 
946 	nvme_start_request(req);
947 	return BLK_STS_OK;
948 out_unmap_data:
949 	if (blk_rq_nr_phys_segments(req))
950 		nvme_unmap_data(dev, req);
951 out_free_cmd:
952 	nvme_cleanup_cmd(req);
953 	return ret;
954 }
955 
956 /*
957  * NOTE: ns is NULL when called on the admin queue.
958  */
nvme_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)959 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
960 			 const struct blk_mq_queue_data *bd)
961 {
962 	struct nvme_queue *nvmeq = hctx->driver_data;
963 	struct nvme_dev *dev = nvmeq->dev;
964 	struct request *req = bd->rq;
965 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
966 	blk_status_t ret;
967 
968 	/*
969 	 * We should not need to do this, but we're still using this to
970 	 * ensure we can drain requests on a dying queue.
971 	 */
972 	if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
973 		return BLK_STS_IOERR;
974 
975 	if (unlikely(!nvme_check_ready(&dev->ctrl, req, true)))
976 		return nvme_fail_nonready_command(&dev->ctrl, req);
977 
978 	ret = nvme_prep_rq(dev, req);
979 	if (unlikely(ret))
980 		return ret;
981 	spin_lock(&nvmeq->sq_lock);
982 	nvme_sq_copy_cmd(nvmeq, &iod->cmd);
983 	nvme_write_sq_db(nvmeq, bd->last);
984 	spin_unlock(&nvmeq->sq_lock);
985 	return BLK_STS_OK;
986 }
987 
nvme_submit_cmds(struct nvme_queue * nvmeq,struct rq_list * rqlist)988 static void nvme_submit_cmds(struct nvme_queue *nvmeq, struct rq_list *rqlist)
989 {
990 	struct request *req;
991 
992 	spin_lock(&nvmeq->sq_lock);
993 	while ((req = rq_list_pop(rqlist))) {
994 		struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
995 
996 		nvme_sq_copy_cmd(nvmeq, &iod->cmd);
997 	}
998 	nvme_write_sq_db(nvmeq, true);
999 	spin_unlock(&nvmeq->sq_lock);
1000 }
1001 
nvme_prep_rq_batch(struct nvme_queue * nvmeq,struct request * req)1002 static bool nvme_prep_rq_batch(struct nvme_queue *nvmeq, struct request *req)
1003 {
1004 	/*
1005 	 * We should not need to do this, but we're still using this to
1006 	 * ensure we can drain requests on a dying queue.
1007 	 */
1008 	if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
1009 		return false;
1010 	if (unlikely(!nvme_check_ready(&nvmeq->dev->ctrl, req, true)))
1011 		return false;
1012 
1013 	return nvme_prep_rq(nvmeq->dev, req) == BLK_STS_OK;
1014 }
1015 
nvme_queue_rqs(struct rq_list * rqlist)1016 static void nvme_queue_rqs(struct rq_list *rqlist)
1017 {
1018 	struct rq_list submit_list = { };
1019 	struct rq_list requeue_list = { };
1020 	struct nvme_queue *nvmeq = NULL;
1021 	struct request *req;
1022 
1023 	while ((req = rq_list_pop(rqlist))) {
1024 		if (nvmeq && nvmeq != req->mq_hctx->driver_data)
1025 			nvme_submit_cmds(nvmeq, &submit_list);
1026 		nvmeq = req->mq_hctx->driver_data;
1027 
1028 		if (nvme_prep_rq_batch(nvmeq, req))
1029 			rq_list_add_tail(&submit_list, req);
1030 		else
1031 			rq_list_add_tail(&requeue_list, req);
1032 	}
1033 
1034 	if (nvmeq)
1035 		nvme_submit_cmds(nvmeq, &submit_list);
1036 	*rqlist = requeue_list;
1037 }
1038 
nvme_unmap_metadata(struct nvme_dev * dev,struct request * req)1039 static __always_inline void nvme_unmap_metadata(struct nvme_dev *dev,
1040 						struct request *req)
1041 {
1042 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1043 
1044 	if (!iod->meta_sgt.nents) {
1045 		dma_unmap_page(dev->dev, iod->meta_dma,
1046 			       rq_integrity_vec(req).bv_len,
1047 			       rq_dma_dir(req));
1048 		return;
1049 	}
1050 
1051 	dma_pool_free(dev->prp_small_pool, iod->meta_list.sg_list,
1052 		      iod->meta_dma);
1053 	dma_unmap_sgtable(dev->dev, &iod->meta_sgt, rq_dma_dir(req), 0);
1054 	mempool_free(iod->meta_sgt.sgl, dev->iod_meta_mempool);
1055 }
1056 
nvme_pci_unmap_rq(struct request * req)1057 static __always_inline void nvme_pci_unmap_rq(struct request *req)
1058 {
1059 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1060 	struct nvme_dev *dev = nvmeq->dev;
1061 
1062 	if (blk_integrity_rq(req))
1063 		nvme_unmap_metadata(dev, req);
1064 
1065 	if (blk_rq_nr_phys_segments(req))
1066 		nvme_unmap_data(dev, req);
1067 }
1068 
nvme_pci_complete_rq(struct request * req)1069 static void nvme_pci_complete_rq(struct request *req)
1070 {
1071 	nvme_pci_unmap_rq(req);
1072 	nvme_complete_rq(req);
1073 }
1074 
nvme_pci_complete_batch(struct io_comp_batch * iob)1075 static void nvme_pci_complete_batch(struct io_comp_batch *iob)
1076 {
1077 	nvme_complete_batch(iob, nvme_pci_unmap_rq);
1078 }
1079 
1080 /* We read the CQE phase first to check if the rest of the entry is valid */
nvme_cqe_pending(struct nvme_queue * nvmeq)1081 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
1082 {
1083 	struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head];
1084 
1085 	return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase;
1086 }
1087 
nvme_ring_cq_doorbell(struct nvme_queue * nvmeq)1088 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
1089 {
1090 	u16 head = nvmeq->cq_head;
1091 
1092 	if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
1093 					      nvmeq->dbbuf_cq_ei))
1094 		writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
1095 }
1096 
nvme_queue_tagset(struct nvme_queue * nvmeq)1097 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
1098 {
1099 	if (!nvmeq->qid)
1100 		return nvmeq->dev->admin_tagset.tags[0];
1101 	return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
1102 }
1103 
nvme_handle_cqe(struct nvme_queue * nvmeq,struct io_comp_batch * iob,u16 idx)1104 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
1105 				   struct io_comp_batch *iob, u16 idx)
1106 {
1107 	struct nvme_completion *cqe = &nvmeq->cqes[idx];
1108 	__u16 command_id = READ_ONCE(cqe->command_id);
1109 	struct request *req;
1110 
1111 	/*
1112 	 * AEN requests are special as they don't time out and can
1113 	 * survive any kind of queue freeze and often don't respond to
1114 	 * aborts.  We don't even bother to allocate a struct request
1115 	 * for them but rather special case them here.
1116 	 */
1117 	if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) {
1118 		nvme_complete_async_event(&nvmeq->dev->ctrl,
1119 				cqe->status, &cqe->result);
1120 		return;
1121 	}
1122 
1123 	req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id);
1124 	if (unlikely(!req)) {
1125 		dev_warn(nvmeq->dev->ctrl.device,
1126 			"invalid id %d completed on queue %d\n",
1127 			command_id, le16_to_cpu(cqe->sq_id));
1128 		return;
1129 	}
1130 
1131 	trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
1132 	if (!nvme_try_complete_req(req, cqe->status, cqe->result) &&
1133 	    !blk_mq_add_to_batch(req, iob, nvme_req(req)->status,
1134 					nvme_pci_complete_batch))
1135 		nvme_pci_complete_rq(req);
1136 }
1137 
nvme_update_cq_head(struct nvme_queue * nvmeq)1138 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1139 {
1140 	u32 tmp = nvmeq->cq_head + 1;
1141 
1142 	if (tmp == nvmeq->q_depth) {
1143 		nvmeq->cq_head = 0;
1144 		nvmeq->cq_phase ^= 1;
1145 	} else {
1146 		nvmeq->cq_head = tmp;
1147 	}
1148 }
1149 
nvme_poll_cq(struct nvme_queue * nvmeq,struct io_comp_batch * iob)1150 static inline bool nvme_poll_cq(struct nvme_queue *nvmeq,
1151 			        struct io_comp_batch *iob)
1152 {
1153 	bool found = false;
1154 
1155 	while (nvme_cqe_pending(nvmeq)) {
1156 		found = true;
1157 		/*
1158 		 * load-load control dependency between phase and the rest of
1159 		 * the cqe requires a full read memory barrier
1160 		 */
1161 		dma_rmb();
1162 		nvme_handle_cqe(nvmeq, iob, nvmeq->cq_head);
1163 		nvme_update_cq_head(nvmeq);
1164 	}
1165 
1166 	if (found)
1167 		nvme_ring_cq_doorbell(nvmeq);
1168 	return found;
1169 }
1170 
nvme_irq(int irq,void * data)1171 static irqreturn_t nvme_irq(int irq, void *data)
1172 {
1173 	struct nvme_queue *nvmeq = data;
1174 	DEFINE_IO_COMP_BATCH(iob);
1175 
1176 	if (nvme_poll_cq(nvmeq, &iob)) {
1177 		if (!rq_list_empty(&iob.req_list))
1178 			nvme_pci_complete_batch(&iob);
1179 		return IRQ_HANDLED;
1180 	}
1181 	return IRQ_NONE;
1182 }
1183 
nvme_irq_check(int irq,void * data)1184 static irqreturn_t nvme_irq_check(int irq, void *data)
1185 {
1186 	struct nvme_queue *nvmeq = data;
1187 
1188 	if (nvme_cqe_pending(nvmeq))
1189 		return IRQ_WAKE_THREAD;
1190 	return IRQ_NONE;
1191 }
1192 
1193 /*
1194  * Poll for completions for any interrupt driven queue
1195  * Can be called from any context.
1196  */
nvme_poll_irqdisable(struct nvme_queue * nvmeq)1197 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
1198 {
1199 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1200 
1201 	WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
1202 
1203 	disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1204 	nvme_poll_cq(nvmeq, NULL);
1205 	enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1206 }
1207 
nvme_poll(struct blk_mq_hw_ctx * hctx,struct io_comp_batch * iob)1208 static int nvme_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1209 {
1210 	struct nvme_queue *nvmeq = hctx->driver_data;
1211 	bool found;
1212 
1213 	if (!nvme_cqe_pending(nvmeq))
1214 		return 0;
1215 
1216 	spin_lock(&nvmeq->cq_poll_lock);
1217 	found = nvme_poll_cq(nvmeq, iob);
1218 	spin_unlock(&nvmeq->cq_poll_lock);
1219 
1220 	return found;
1221 }
1222 
nvme_pci_submit_async_event(struct nvme_ctrl * ctrl)1223 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1224 {
1225 	struct nvme_dev *dev = to_nvme_dev(ctrl);
1226 	struct nvme_queue *nvmeq = &dev->queues[0];
1227 	struct nvme_command c = { };
1228 
1229 	c.common.opcode = nvme_admin_async_event;
1230 	c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1231 
1232 	spin_lock(&nvmeq->sq_lock);
1233 	nvme_sq_copy_cmd(nvmeq, &c);
1234 	nvme_write_sq_db(nvmeq, true);
1235 	spin_unlock(&nvmeq->sq_lock);
1236 }
1237 
nvme_pci_subsystem_reset(struct nvme_ctrl * ctrl)1238 static int nvme_pci_subsystem_reset(struct nvme_ctrl *ctrl)
1239 {
1240 	struct nvme_dev *dev = to_nvme_dev(ctrl);
1241 	int ret = 0;
1242 
1243 	/*
1244 	 * Taking the shutdown_lock ensures the BAR mapping is not being
1245 	 * altered by reset_work. Holding this lock before the RESETTING state
1246 	 * change, if successful, also ensures nvme_remove won't be able to
1247 	 * proceed to iounmap until we're done.
1248 	 */
1249 	mutex_lock(&dev->shutdown_lock);
1250 	if (!dev->bar_mapped_size) {
1251 		ret = -ENODEV;
1252 		goto unlock;
1253 	}
1254 
1255 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) {
1256 		ret = -EBUSY;
1257 		goto unlock;
1258 	}
1259 
1260 	writel(NVME_SUBSYS_RESET, dev->bar + NVME_REG_NSSR);
1261 	nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE);
1262 
1263 	/*
1264 	 * Read controller status to flush the previous write and trigger a
1265 	 * pcie read error.
1266 	 */
1267 	readl(dev->bar + NVME_REG_CSTS);
1268 unlock:
1269 	mutex_unlock(&dev->shutdown_lock);
1270 	return ret;
1271 }
1272 
adapter_delete_queue(struct nvme_dev * dev,u8 opcode,u16 id)1273 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1274 {
1275 	struct nvme_command c = { };
1276 
1277 	c.delete_queue.opcode = opcode;
1278 	c.delete_queue.qid = cpu_to_le16(id);
1279 
1280 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1281 }
1282 
adapter_alloc_cq(struct nvme_dev * dev,u16 qid,struct nvme_queue * nvmeq,s16 vector)1283 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1284 		struct nvme_queue *nvmeq, s16 vector)
1285 {
1286 	struct nvme_command c = { };
1287 	int flags = NVME_QUEUE_PHYS_CONTIG;
1288 
1289 	if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1290 		flags |= NVME_CQ_IRQ_ENABLED;
1291 
1292 	/*
1293 	 * Note: we (ab)use the fact that the prp fields survive if no data
1294 	 * is attached to the request.
1295 	 */
1296 	c.create_cq.opcode = nvme_admin_create_cq;
1297 	c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1298 	c.create_cq.cqid = cpu_to_le16(qid);
1299 	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1300 	c.create_cq.cq_flags = cpu_to_le16(flags);
1301 	c.create_cq.irq_vector = cpu_to_le16(vector);
1302 
1303 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1304 }
1305 
adapter_alloc_sq(struct nvme_dev * dev,u16 qid,struct nvme_queue * nvmeq)1306 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1307 						struct nvme_queue *nvmeq)
1308 {
1309 	struct nvme_ctrl *ctrl = &dev->ctrl;
1310 	struct nvme_command c = { };
1311 	int flags = NVME_QUEUE_PHYS_CONTIG;
1312 
1313 	/*
1314 	 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1315 	 * set. Since URGENT priority is zeroes, it makes all queues
1316 	 * URGENT.
1317 	 */
1318 	if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1319 		flags |= NVME_SQ_PRIO_MEDIUM;
1320 
1321 	/*
1322 	 * Note: we (ab)use the fact that the prp fields survive if no data
1323 	 * is attached to the request.
1324 	 */
1325 	c.create_sq.opcode = nvme_admin_create_sq;
1326 	c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1327 	c.create_sq.sqid = cpu_to_le16(qid);
1328 	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1329 	c.create_sq.sq_flags = cpu_to_le16(flags);
1330 	c.create_sq.cqid = cpu_to_le16(qid);
1331 
1332 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1333 }
1334 
adapter_delete_cq(struct nvme_dev * dev,u16 cqid)1335 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1336 {
1337 	return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1338 }
1339 
adapter_delete_sq(struct nvme_dev * dev,u16 sqid)1340 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1341 {
1342 	return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1343 }
1344 
abort_endio(struct request * req,blk_status_t error)1345 static enum rq_end_io_ret abort_endio(struct request *req, blk_status_t error)
1346 {
1347 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1348 
1349 	dev_warn(nvmeq->dev->ctrl.device,
1350 		 "Abort status: 0x%x", nvme_req(req)->status);
1351 	atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1352 	blk_mq_free_request(req);
1353 	return RQ_END_IO_NONE;
1354 }
1355 
nvme_should_reset(struct nvme_dev * dev,u32 csts)1356 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1357 {
1358 	/* If true, indicates loss of adapter communication, possibly by a
1359 	 * NVMe Subsystem reset.
1360 	 */
1361 	bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1362 
1363 	/* If there is a reset/reinit ongoing, we shouldn't reset again. */
1364 	switch (nvme_ctrl_state(&dev->ctrl)) {
1365 	case NVME_CTRL_RESETTING:
1366 	case NVME_CTRL_CONNECTING:
1367 		return false;
1368 	default:
1369 		break;
1370 	}
1371 
1372 	/* We shouldn't reset unless the controller is on fatal error state
1373 	 * _or_ if we lost the communication with it.
1374 	 */
1375 	if (!(csts & NVME_CSTS_CFS) && !nssro)
1376 		return false;
1377 
1378 	return true;
1379 }
1380 
nvme_warn_reset(struct nvme_dev * dev,u32 csts)1381 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1382 {
1383 	/* Read a config register to help see what died. */
1384 	u16 pci_status;
1385 	int result;
1386 
1387 	result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1388 				      &pci_status);
1389 	if (result == PCIBIOS_SUCCESSFUL)
1390 		dev_warn(dev->ctrl.device,
1391 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1392 			 csts, pci_status);
1393 	else
1394 		dev_warn(dev->ctrl.device,
1395 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1396 			 csts, result);
1397 
1398 	if (csts != ~0)
1399 		return;
1400 
1401 	dev_warn(dev->ctrl.device,
1402 		 "Does your device have a faulty power saving mode enabled?\n");
1403 	dev_warn(dev->ctrl.device,
1404 		 "Try \"nvme_core.default_ps_max_latency_us=0 pcie_aspm=off pcie_port_pm=off\" and report a bug\n");
1405 }
1406 
nvme_timeout(struct request * req)1407 static enum blk_eh_timer_return nvme_timeout(struct request *req)
1408 {
1409 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1410 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1411 	struct nvme_dev *dev = nvmeq->dev;
1412 	struct request *abort_req;
1413 	struct nvme_command cmd = { };
1414 	u32 csts = readl(dev->bar + NVME_REG_CSTS);
1415 	u8 opcode;
1416 
1417 	if (nvme_state_terminal(&dev->ctrl))
1418 		goto disable;
1419 
1420 	/* If PCI error recovery process is happening, we cannot reset or
1421 	 * the recovery mechanism will surely fail.
1422 	 */
1423 	mb();
1424 	if (pci_channel_offline(to_pci_dev(dev->dev)))
1425 		return BLK_EH_RESET_TIMER;
1426 
1427 	/*
1428 	 * Reset immediately if the controller is failed
1429 	 */
1430 	if (nvme_should_reset(dev, csts)) {
1431 		nvme_warn_reset(dev, csts);
1432 		goto disable;
1433 	}
1434 
1435 	/*
1436 	 * Did we miss an interrupt?
1437 	 */
1438 	if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
1439 		nvme_poll(req->mq_hctx, NULL);
1440 	else
1441 		nvme_poll_irqdisable(nvmeq);
1442 
1443 	if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT) {
1444 		dev_warn(dev->ctrl.device,
1445 			 "I/O tag %d (%04x) QID %d timeout, completion polled\n",
1446 			 req->tag, nvme_cid(req), nvmeq->qid);
1447 		return BLK_EH_DONE;
1448 	}
1449 
1450 	/*
1451 	 * Shutdown immediately if controller times out while starting. The
1452 	 * reset work will see the pci device disabled when it gets the forced
1453 	 * cancellation error. All outstanding requests are completed on
1454 	 * shutdown, so we return BLK_EH_DONE.
1455 	 */
1456 	switch (nvme_ctrl_state(&dev->ctrl)) {
1457 	case NVME_CTRL_CONNECTING:
1458 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1459 		fallthrough;
1460 	case NVME_CTRL_DELETING:
1461 		dev_warn_ratelimited(dev->ctrl.device,
1462 			 "I/O tag %d (%04x) QID %d timeout, disable controller\n",
1463 			 req->tag, nvme_cid(req), nvmeq->qid);
1464 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1465 		nvme_dev_disable(dev, true);
1466 		return BLK_EH_DONE;
1467 	case NVME_CTRL_RESETTING:
1468 		return BLK_EH_RESET_TIMER;
1469 	default:
1470 		break;
1471 	}
1472 
1473 	/*
1474 	 * Shutdown the controller immediately and schedule a reset if the
1475 	 * command was already aborted once before and still hasn't been
1476 	 * returned to the driver, or if this is the admin queue.
1477 	 */
1478 	opcode = nvme_req(req)->cmd->common.opcode;
1479 	if (!nvmeq->qid || iod->aborted) {
1480 		dev_warn(dev->ctrl.device,
1481 			 "I/O tag %d (%04x) opcode %#x (%s) QID %d timeout, reset controller\n",
1482 			 req->tag, nvme_cid(req), opcode,
1483 			 nvme_opcode_str(nvmeq->qid, opcode), nvmeq->qid);
1484 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1485 		goto disable;
1486 	}
1487 
1488 	if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1489 		atomic_inc(&dev->ctrl.abort_limit);
1490 		return BLK_EH_RESET_TIMER;
1491 	}
1492 	iod->aborted = true;
1493 
1494 	cmd.abort.opcode = nvme_admin_abort_cmd;
1495 	cmd.abort.cid = nvme_cid(req);
1496 	cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1497 
1498 	dev_warn(nvmeq->dev->ctrl.device,
1499 		 "I/O tag %d (%04x) opcode %#x (%s) QID %d timeout, aborting req_op:%s(%u) size:%u\n",
1500 		 req->tag, nvme_cid(req), opcode, nvme_get_opcode_str(opcode),
1501 		 nvmeq->qid, blk_op_str(req_op(req)), req_op(req),
1502 		 blk_rq_bytes(req));
1503 
1504 	abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, nvme_req_op(&cmd),
1505 					 BLK_MQ_REQ_NOWAIT);
1506 	if (IS_ERR(abort_req)) {
1507 		atomic_inc(&dev->ctrl.abort_limit);
1508 		return BLK_EH_RESET_TIMER;
1509 	}
1510 	nvme_init_request(abort_req, &cmd);
1511 
1512 	abort_req->end_io = abort_endio;
1513 	abort_req->end_io_data = NULL;
1514 	blk_execute_rq_nowait(abort_req, false);
1515 
1516 	/*
1517 	 * The aborted req will be completed on receiving the abort req.
1518 	 * We enable the timer again. If hit twice, it'll cause a device reset,
1519 	 * as the device then is in a faulty state.
1520 	 */
1521 	return BLK_EH_RESET_TIMER;
1522 
1523 disable:
1524 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) {
1525 		if (nvme_state_terminal(&dev->ctrl))
1526 			nvme_dev_disable(dev, true);
1527 		return BLK_EH_DONE;
1528 	}
1529 
1530 	nvme_dev_disable(dev, false);
1531 	if (nvme_try_sched_reset(&dev->ctrl))
1532 		nvme_unquiesce_io_queues(&dev->ctrl);
1533 	return BLK_EH_DONE;
1534 }
1535 
nvme_free_queue(struct nvme_queue * nvmeq)1536 static void nvme_free_queue(struct nvme_queue *nvmeq)
1537 {
1538 	dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
1539 				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1540 	if (!nvmeq->sq_cmds)
1541 		return;
1542 
1543 	if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1544 		pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1545 				nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1546 	} else {
1547 		dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
1548 				nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1549 	}
1550 }
1551 
nvme_free_queues(struct nvme_dev * dev,int lowest)1552 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1553 {
1554 	int i;
1555 
1556 	for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1557 		dev->ctrl.queue_count--;
1558 		nvme_free_queue(&dev->queues[i]);
1559 	}
1560 }
1561 
nvme_suspend_queue(struct nvme_dev * dev,unsigned int qid)1562 static void nvme_suspend_queue(struct nvme_dev *dev, unsigned int qid)
1563 {
1564 	struct nvme_queue *nvmeq = &dev->queues[qid];
1565 
1566 	if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1567 		return;
1568 
1569 	/* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1570 	mb();
1571 
1572 	nvmeq->dev->online_queues--;
1573 	if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1574 		nvme_quiesce_admin_queue(&nvmeq->dev->ctrl);
1575 	if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1576 		pci_free_irq(to_pci_dev(dev->dev), nvmeq->cq_vector, nvmeq);
1577 }
1578 
nvme_suspend_io_queues(struct nvme_dev * dev)1579 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1580 {
1581 	int i;
1582 
1583 	for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1584 		nvme_suspend_queue(dev, i);
1585 }
1586 
1587 /*
1588  * Called only on a device that has been disabled and after all other threads
1589  * that can check this device's completion queues have synced, except
1590  * nvme_poll(). This is the last chance for the driver to see a natural
1591  * completion before nvme_cancel_request() terminates all incomplete requests.
1592  */
nvme_reap_pending_cqes(struct nvme_dev * dev)1593 static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1594 {
1595 	int i;
1596 
1597 	for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
1598 		spin_lock(&dev->queues[i].cq_poll_lock);
1599 		nvme_poll_cq(&dev->queues[i], NULL);
1600 		spin_unlock(&dev->queues[i].cq_poll_lock);
1601 	}
1602 }
1603 
nvme_cmb_qdepth(struct nvme_dev * dev,int nr_io_queues,int entry_size)1604 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1605 				int entry_size)
1606 {
1607 	int q_depth = dev->q_depth;
1608 	unsigned q_size_aligned = roundup(q_depth * entry_size,
1609 					  NVME_CTRL_PAGE_SIZE);
1610 
1611 	if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1612 		u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1613 
1614 		mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE);
1615 		q_depth = div_u64(mem_per_q, entry_size);
1616 
1617 		/*
1618 		 * Ensure the reduced q_depth is above some threshold where it
1619 		 * would be better to map queues in system memory with the
1620 		 * original depth
1621 		 */
1622 		if (q_depth < 64)
1623 			return -ENOMEM;
1624 	}
1625 
1626 	return q_depth;
1627 }
1628 
nvme_alloc_sq_cmds(struct nvme_dev * dev,struct nvme_queue * nvmeq,int qid)1629 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1630 				int qid)
1631 {
1632 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1633 
1634 	if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1635 		nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1636 		if (nvmeq->sq_cmds) {
1637 			nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1638 							nvmeq->sq_cmds);
1639 			if (nvmeq->sq_dma_addr) {
1640 				set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1641 				return 0;
1642 			}
1643 
1644 			pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1645 		}
1646 	}
1647 
1648 	nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
1649 				&nvmeq->sq_dma_addr, GFP_KERNEL);
1650 	if (!nvmeq->sq_cmds)
1651 		return -ENOMEM;
1652 	return 0;
1653 }
1654 
nvme_alloc_queue(struct nvme_dev * dev,int qid,int depth)1655 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1656 {
1657 	struct nvme_queue *nvmeq = &dev->queues[qid];
1658 
1659 	if (dev->ctrl.queue_count > qid)
1660 		return 0;
1661 
1662 	nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1663 	nvmeq->q_depth = depth;
1664 	nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
1665 					 &nvmeq->cq_dma_addr, GFP_KERNEL);
1666 	if (!nvmeq->cqes)
1667 		goto free_nvmeq;
1668 
1669 	if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1670 		goto free_cqdma;
1671 
1672 	nvmeq->dev = dev;
1673 	spin_lock_init(&nvmeq->sq_lock);
1674 	spin_lock_init(&nvmeq->cq_poll_lock);
1675 	nvmeq->cq_head = 0;
1676 	nvmeq->cq_phase = 1;
1677 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1678 	nvmeq->qid = qid;
1679 	dev->ctrl.queue_count++;
1680 
1681 	return 0;
1682 
1683  free_cqdma:
1684 	dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1685 			  nvmeq->cq_dma_addr);
1686  free_nvmeq:
1687 	return -ENOMEM;
1688 }
1689 
queue_request_irq(struct nvme_queue * nvmeq)1690 static int queue_request_irq(struct nvme_queue *nvmeq)
1691 {
1692 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1693 	int nr = nvmeq->dev->ctrl.instance;
1694 
1695 	if (use_threaded_interrupts) {
1696 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1697 				nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1698 	} else {
1699 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1700 				NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1701 	}
1702 }
1703 
nvme_init_queue(struct nvme_queue * nvmeq,u16 qid)1704 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1705 {
1706 	struct nvme_dev *dev = nvmeq->dev;
1707 
1708 	nvmeq->sq_tail = 0;
1709 	nvmeq->last_sq_tail = 0;
1710 	nvmeq->cq_head = 0;
1711 	nvmeq->cq_phase = 1;
1712 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1713 	memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
1714 	nvme_dbbuf_init(dev, nvmeq, qid);
1715 	dev->online_queues++;
1716 	wmb(); /* ensure the first interrupt sees the initialization */
1717 }
1718 
1719 /*
1720  * Try getting shutdown_lock while setting up IO queues.
1721  */
nvme_setup_io_queues_trylock(struct nvme_dev * dev)1722 static int nvme_setup_io_queues_trylock(struct nvme_dev *dev)
1723 {
1724 	/*
1725 	 * Give up if the lock is being held by nvme_dev_disable.
1726 	 */
1727 	if (!mutex_trylock(&dev->shutdown_lock))
1728 		return -ENODEV;
1729 
1730 	/*
1731 	 * Controller is in wrong state, fail early.
1732 	 */
1733 	if (nvme_ctrl_state(&dev->ctrl) != NVME_CTRL_CONNECTING) {
1734 		mutex_unlock(&dev->shutdown_lock);
1735 		return -ENODEV;
1736 	}
1737 
1738 	return 0;
1739 }
1740 
nvme_create_queue(struct nvme_queue * nvmeq,int qid,bool polled)1741 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1742 {
1743 	struct nvme_dev *dev = nvmeq->dev;
1744 	int result;
1745 	u16 vector = 0;
1746 
1747 	clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1748 
1749 	/*
1750 	 * A queue's vector matches the queue identifier unless the controller
1751 	 * has only one vector available.
1752 	 */
1753 	if (!polled)
1754 		vector = dev->num_vecs == 1 ? 0 : qid;
1755 	else
1756 		set_bit(NVMEQ_POLLED, &nvmeq->flags);
1757 
1758 	result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1759 	if (result)
1760 		return result;
1761 
1762 	result = adapter_alloc_sq(dev, qid, nvmeq);
1763 	if (result < 0)
1764 		return result;
1765 	if (result)
1766 		goto release_cq;
1767 
1768 	nvmeq->cq_vector = vector;
1769 
1770 	result = nvme_setup_io_queues_trylock(dev);
1771 	if (result)
1772 		return result;
1773 	nvme_init_queue(nvmeq, qid);
1774 	if (!polled) {
1775 		result = queue_request_irq(nvmeq);
1776 		if (result < 0)
1777 			goto release_sq;
1778 	}
1779 
1780 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1781 	mutex_unlock(&dev->shutdown_lock);
1782 	return result;
1783 
1784 release_sq:
1785 	dev->online_queues--;
1786 	mutex_unlock(&dev->shutdown_lock);
1787 	adapter_delete_sq(dev, qid);
1788 release_cq:
1789 	adapter_delete_cq(dev, qid);
1790 	return result;
1791 }
1792 
1793 static const struct blk_mq_ops nvme_mq_admin_ops = {
1794 	.queue_rq	= nvme_queue_rq,
1795 	.complete	= nvme_pci_complete_rq,
1796 	.init_hctx	= nvme_admin_init_hctx,
1797 	.init_request	= nvme_pci_init_request,
1798 	.timeout	= nvme_timeout,
1799 };
1800 
1801 static const struct blk_mq_ops nvme_mq_ops = {
1802 	.queue_rq	= nvme_queue_rq,
1803 	.queue_rqs	= nvme_queue_rqs,
1804 	.complete	= nvme_pci_complete_rq,
1805 	.commit_rqs	= nvme_commit_rqs,
1806 	.init_hctx	= nvme_init_hctx,
1807 	.init_request	= nvme_pci_init_request,
1808 	.map_queues	= nvme_pci_map_queues,
1809 	.timeout	= nvme_timeout,
1810 	.poll		= nvme_poll,
1811 };
1812 
nvme_dev_remove_admin(struct nvme_dev * dev)1813 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1814 {
1815 	if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1816 		/*
1817 		 * If the controller was reset during removal, it's possible
1818 		 * user requests may be waiting on a stopped queue. Start the
1819 		 * queue to flush these to completion.
1820 		 */
1821 		nvme_unquiesce_admin_queue(&dev->ctrl);
1822 		nvme_remove_admin_tag_set(&dev->ctrl);
1823 	}
1824 }
1825 
db_bar_size(struct nvme_dev * dev,unsigned nr_io_queues)1826 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1827 {
1828 	return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1829 }
1830 
nvme_remap_bar(struct nvme_dev * dev,unsigned long size)1831 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1832 {
1833 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1834 
1835 	if (size <= dev->bar_mapped_size)
1836 		return 0;
1837 	if (size > pci_resource_len(pdev, 0))
1838 		return -ENOMEM;
1839 	if (dev->bar)
1840 		iounmap(dev->bar);
1841 	dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1842 	if (!dev->bar) {
1843 		dev->bar_mapped_size = 0;
1844 		return -ENOMEM;
1845 	}
1846 	dev->bar_mapped_size = size;
1847 	dev->dbs = dev->bar + NVME_REG_DBS;
1848 
1849 	return 0;
1850 }
1851 
nvme_pci_configure_admin_queue(struct nvme_dev * dev)1852 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1853 {
1854 	int result;
1855 	u32 aqa;
1856 	struct nvme_queue *nvmeq;
1857 
1858 	result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1859 	if (result < 0)
1860 		return result;
1861 
1862 	dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1863 				NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1864 
1865 	if (dev->subsystem &&
1866 	    (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1867 		writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1868 
1869 	/*
1870 	 * If the device has been passed off to us in an enabled state, just
1871 	 * clear the enabled bit.  The spec says we should set the 'shutdown
1872 	 * notification bits', but doing so may cause the device to complete
1873 	 * commands to the admin queue ... and we don't know what memory that
1874 	 * might be pointing at!
1875 	 */
1876 	result = nvme_disable_ctrl(&dev->ctrl, false);
1877 	if (result < 0)
1878 		return result;
1879 
1880 	result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1881 	if (result)
1882 		return result;
1883 
1884 	dev->ctrl.numa_node = dev_to_node(dev->dev);
1885 
1886 	nvmeq = &dev->queues[0];
1887 	aqa = nvmeq->q_depth - 1;
1888 	aqa |= aqa << 16;
1889 
1890 	writel(aqa, dev->bar + NVME_REG_AQA);
1891 	lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1892 	lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1893 
1894 	result = nvme_enable_ctrl(&dev->ctrl);
1895 	if (result)
1896 		return result;
1897 
1898 	nvmeq->cq_vector = 0;
1899 	nvme_init_queue(nvmeq, 0);
1900 	result = queue_request_irq(nvmeq);
1901 	if (result) {
1902 		dev->online_queues--;
1903 		return result;
1904 	}
1905 
1906 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1907 	return result;
1908 }
1909 
nvme_create_io_queues(struct nvme_dev * dev)1910 static int nvme_create_io_queues(struct nvme_dev *dev)
1911 {
1912 	unsigned i, max, rw_queues;
1913 	int ret = 0;
1914 
1915 	for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1916 		if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1917 			ret = -ENOMEM;
1918 			break;
1919 		}
1920 	}
1921 
1922 	max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1923 	if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1924 		rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1925 				dev->io_queues[HCTX_TYPE_READ];
1926 	} else {
1927 		rw_queues = max;
1928 	}
1929 
1930 	for (i = dev->online_queues; i <= max; i++) {
1931 		bool polled = i > rw_queues;
1932 
1933 		ret = nvme_create_queue(&dev->queues[i], i, polled);
1934 		if (ret)
1935 			break;
1936 	}
1937 
1938 	/*
1939 	 * Ignore failing Create SQ/CQ commands, we can continue with less
1940 	 * than the desired amount of queues, and even a controller without
1941 	 * I/O queues can still be used to issue admin commands.  This might
1942 	 * be useful to upgrade a buggy firmware for example.
1943 	 */
1944 	return ret >= 0 ? 0 : ret;
1945 }
1946 
nvme_cmb_size_unit(struct nvme_dev * dev)1947 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1948 {
1949 	u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1950 
1951 	return 1ULL << (12 + 4 * szu);
1952 }
1953 
nvme_cmb_size(struct nvme_dev * dev)1954 static u32 nvme_cmb_size(struct nvme_dev *dev)
1955 {
1956 	return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1957 }
1958 
nvme_map_cmb(struct nvme_dev * dev)1959 static void nvme_map_cmb(struct nvme_dev *dev)
1960 {
1961 	u64 size, offset;
1962 	resource_size_t bar_size;
1963 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1964 	int bar;
1965 
1966 	if (dev->cmb_size)
1967 		return;
1968 
1969 	if (NVME_CAP_CMBS(dev->ctrl.cap))
1970 		writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC);
1971 
1972 	dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1973 	if (!dev->cmbsz)
1974 		return;
1975 	dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1976 
1977 	size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1978 	offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1979 	bar = NVME_CMB_BIR(dev->cmbloc);
1980 	bar_size = pci_resource_len(pdev, bar);
1981 
1982 	if (offset > bar_size)
1983 		return;
1984 
1985 	/*
1986 	 * Controllers may support a CMB size larger than their BAR, for
1987 	 * example, due to being behind a bridge. Reduce the CMB to the
1988 	 * reported size of the BAR
1989 	 */
1990 	size = min(size, bar_size - offset);
1991 
1992 	if (!IS_ALIGNED(size, memremap_compat_align()) ||
1993 	    !IS_ALIGNED(pci_resource_start(pdev, bar),
1994 			memremap_compat_align()))
1995 		return;
1996 
1997 	/*
1998 	 * Tell the controller about the host side address mapping the CMB,
1999 	 * and enable CMB decoding for the NVMe 1.4+ scheme:
2000 	 */
2001 	if (NVME_CAP_CMBS(dev->ctrl.cap)) {
2002 		hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE |
2003 			     (pci_bus_address(pdev, bar) + offset),
2004 			     dev->bar + NVME_REG_CMBMSC);
2005 	}
2006 
2007 	if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
2008 		dev_warn(dev->ctrl.device,
2009 			 "failed to register the CMB\n");
2010 		hi_lo_writeq(0, dev->bar + NVME_REG_CMBMSC);
2011 		return;
2012 	}
2013 
2014 	dev->cmb_size = size;
2015 	dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
2016 
2017 	if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
2018 			(NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
2019 		pci_p2pmem_publish(pdev, true);
2020 
2021 	nvme_update_attrs(dev);
2022 }
2023 
nvme_set_host_mem(struct nvme_dev * dev,u32 bits)2024 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
2025 {
2026 	u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT;
2027 	u64 dma_addr = dev->host_mem_descs_dma;
2028 	struct nvme_command c = { };
2029 	int ret;
2030 
2031 	c.features.opcode	= nvme_admin_set_features;
2032 	c.features.fid		= cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
2033 	c.features.dword11	= cpu_to_le32(bits);
2034 	c.features.dword12	= cpu_to_le32(host_mem_size);
2035 	c.features.dword13	= cpu_to_le32(lower_32_bits(dma_addr));
2036 	c.features.dword14	= cpu_to_le32(upper_32_bits(dma_addr));
2037 	c.features.dword15	= cpu_to_le32(dev->nr_host_mem_descs);
2038 
2039 	ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
2040 	if (ret) {
2041 		dev_warn(dev->ctrl.device,
2042 			 "failed to set host mem (err %d, flags %#x).\n",
2043 			 ret, bits);
2044 	} else
2045 		dev->hmb = bits & NVME_HOST_MEM_ENABLE;
2046 
2047 	return ret;
2048 }
2049 
nvme_free_host_mem_multi(struct nvme_dev * dev)2050 static void nvme_free_host_mem_multi(struct nvme_dev *dev)
2051 {
2052 	int i;
2053 
2054 	for (i = 0; i < dev->nr_host_mem_descs; i++) {
2055 		struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
2056 		size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE;
2057 
2058 		dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
2059 			       le64_to_cpu(desc->addr),
2060 			       DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2061 	}
2062 
2063 	kfree(dev->host_mem_desc_bufs);
2064 	dev->host_mem_desc_bufs = NULL;
2065 }
2066 
nvme_free_host_mem(struct nvme_dev * dev)2067 static void nvme_free_host_mem(struct nvme_dev *dev)
2068 {
2069 	if (dev->hmb_sgt)
2070 		dma_free_noncontiguous(dev->dev, dev->host_mem_size,
2071 				dev->hmb_sgt, DMA_BIDIRECTIONAL);
2072 	else
2073 		nvme_free_host_mem_multi(dev);
2074 
2075 	dma_free_coherent(dev->dev, dev->host_mem_descs_size,
2076 			dev->host_mem_descs, dev->host_mem_descs_dma);
2077 	dev->host_mem_descs = NULL;
2078 	dev->host_mem_descs_size = 0;
2079 	dev->nr_host_mem_descs = 0;
2080 }
2081 
nvme_alloc_host_mem_single(struct nvme_dev * dev,u64 size)2082 static int nvme_alloc_host_mem_single(struct nvme_dev *dev, u64 size)
2083 {
2084 	dev->hmb_sgt = dma_alloc_noncontiguous(dev->dev, size,
2085 				DMA_BIDIRECTIONAL, GFP_KERNEL, 0);
2086 	if (!dev->hmb_sgt)
2087 		return -ENOMEM;
2088 
2089 	dev->host_mem_descs = dma_alloc_coherent(dev->dev,
2090 			sizeof(*dev->host_mem_descs), &dev->host_mem_descs_dma,
2091 			GFP_KERNEL);
2092 	if (!dev->host_mem_descs) {
2093 		dma_free_noncontiguous(dev->dev, size, dev->hmb_sgt,
2094 				DMA_BIDIRECTIONAL);
2095 		dev->hmb_sgt = NULL;
2096 		return -ENOMEM;
2097 	}
2098 	dev->host_mem_size = size;
2099 	dev->host_mem_descs_size = sizeof(*dev->host_mem_descs);
2100 	dev->nr_host_mem_descs = 1;
2101 
2102 	dev->host_mem_descs[0].addr =
2103 		cpu_to_le64(dev->hmb_sgt->sgl->dma_address);
2104 	dev->host_mem_descs[0].size = cpu_to_le32(size / NVME_CTRL_PAGE_SIZE);
2105 	return 0;
2106 }
2107 
nvme_alloc_host_mem_multi(struct nvme_dev * dev,u64 preferred,u32 chunk_size)2108 static int nvme_alloc_host_mem_multi(struct nvme_dev *dev, u64 preferred,
2109 		u32 chunk_size)
2110 {
2111 	struct nvme_host_mem_buf_desc *descs;
2112 	u32 max_entries, len, descs_size;
2113 	dma_addr_t descs_dma;
2114 	int i = 0;
2115 	void **bufs;
2116 	u64 size, tmp;
2117 
2118 	tmp = (preferred + chunk_size - 1);
2119 	do_div(tmp, chunk_size);
2120 	max_entries = tmp;
2121 
2122 	if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
2123 		max_entries = dev->ctrl.hmmaxd;
2124 
2125 	descs_size = max_entries * sizeof(*descs);
2126 	descs = dma_alloc_coherent(dev->dev, descs_size, &descs_dma,
2127 			GFP_KERNEL);
2128 	if (!descs)
2129 		goto out;
2130 
2131 	bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
2132 	if (!bufs)
2133 		goto out_free_descs;
2134 
2135 	for (size = 0; size < preferred && i < max_entries; size += len) {
2136 		dma_addr_t dma_addr;
2137 
2138 		len = min_t(u64, chunk_size, preferred - size);
2139 		bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
2140 				DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2141 		if (!bufs[i])
2142 			break;
2143 
2144 		descs[i].addr = cpu_to_le64(dma_addr);
2145 		descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE);
2146 		i++;
2147 	}
2148 
2149 	if (!size)
2150 		goto out_free_bufs;
2151 
2152 	dev->nr_host_mem_descs = i;
2153 	dev->host_mem_size = size;
2154 	dev->host_mem_descs = descs;
2155 	dev->host_mem_descs_dma = descs_dma;
2156 	dev->host_mem_descs_size = descs_size;
2157 	dev->host_mem_desc_bufs = bufs;
2158 	return 0;
2159 
2160 out_free_bufs:
2161 	kfree(bufs);
2162 out_free_descs:
2163 	dma_free_coherent(dev->dev, descs_size, descs, descs_dma);
2164 out:
2165 	dev->host_mem_descs = NULL;
2166 	return -ENOMEM;
2167 }
2168 
nvme_alloc_host_mem(struct nvme_dev * dev,u64 min,u64 preferred)2169 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
2170 {
2171 	unsigned long dma_merge_boundary = dma_get_merge_boundary(dev->dev);
2172 	u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
2173 	u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
2174 	u64 chunk_size;
2175 
2176 	/*
2177 	 * If there is an IOMMU that can merge pages, try a virtually
2178 	 * non-contiguous allocation for a single segment first.
2179 	 */
2180 	if (dma_merge_boundary && (PAGE_SIZE & dma_merge_boundary) == 0) {
2181 		if (!nvme_alloc_host_mem_single(dev, preferred))
2182 			return 0;
2183 	}
2184 
2185 	/* start big and work our way down */
2186 	for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) {
2187 		if (!nvme_alloc_host_mem_multi(dev, preferred, chunk_size)) {
2188 			if (!min || dev->host_mem_size >= min)
2189 				return 0;
2190 			nvme_free_host_mem(dev);
2191 		}
2192 	}
2193 
2194 	return -ENOMEM;
2195 }
2196 
nvme_setup_host_mem(struct nvme_dev * dev)2197 static int nvme_setup_host_mem(struct nvme_dev *dev)
2198 {
2199 	u64 max = (u64)max_host_mem_size_mb * SZ_1M;
2200 	u64 preferred = (u64)dev->ctrl.hmpre * 4096;
2201 	u64 min = (u64)dev->ctrl.hmmin * 4096;
2202 	u32 enable_bits = NVME_HOST_MEM_ENABLE;
2203 	int ret;
2204 
2205 	if (!dev->ctrl.hmpre)
2206 		return 0;
2207 
2208 	preferred = min(preferred, max);
2209 	if (min > max) {
2210 		dev_warn(dev->ctrl.device,
2211 			"min host memory (%lld MiB) above limit (%d MiB).\n",
2212 			min >> ilog2(SZ_1M), max_host_mem_size_mb);
2213 		nvme_free_host_mem(dev);
2214 		return 0;
2215 	}
2216 
2217 	/*
2218 	 * If we already have a buffer allocated check if we can reuse it.
2219 	 */
2220 	if (dev->host_mem_descs) {
2221 		if (dev->host_mem_size >= min)
2222 			enable_bits |= NVME_HOST_MEM_RETURN;
2223 		else
2224 			nvme_free_host_mem(dev);
2225 	}
2226 
2227 	if (!dev->host_mem_descs) {
2228 		if (nvme_alloc_host_mem(dev, min, preferred)) {
2229 			dev_warn(dev->ctrl.device,
2230 				"failed to allocate host memory buffer.\n");
2231 			return 0; /* controller must work without HMB */
2232 		}
2233 
2234 		dev_info(dev->ctrl.device,
2235 			"allocated %lld MiB host memory buffer (%u segment%s).\n",
2236 			dev->host_mem_size >> ilog2(SZ_1M),
2237 			dev->nr_host_mem_descs,
2238 			str_plural(dev->nr_host_mem_descs));
2239 	}
2240 
2241 	ret = nvme_set_host_mem(dev, enable_bits);
2242 	if (ret)
2243 		nvme_free_host_mem(dev);
2244 	return ret;
2245 }
2246 
cmb_show(struct device * dev,struct device_attribute * attr,char * buf)2247 static ssize_t cmb_show(struct device *dev, struct device_attribute *attr,
2248 		char *buf)
2249 {
2250 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2251 
2252 	return sysfs_emit(buf, "cmbloc : x%08x\ncmbsz  : x%08x\n",
2253 		       ndev->cmbloc, ndev->cmbsz);
2254 }
2255 static DEVICE_ATTR_RO(cmb);
2256 
cmbloc_show(struct device * dev,struct device_attribute * attr,char * buf)2257 static ssize_t cmbloc_show(struct device *dev, struct device_attribute *attr,
2258 		char *buf)
2259 {
2260 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2261 
2262 	return sysfs_emit(buf, "%u\n", ndev->cmbloc);
2263 }
2264 static DEVICE_ATTR_RO(cmbloc);
2265 
cmbsz_show(struct device * dev,struct device_attribute * attr,char * buf)2266 static ssize_t cmbsz_show(struct device *dev, struct device_attribute *attr,
2267 		char *buf)
2268 {
2269 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2270 
2271 	return sysfs_emit(buf, "%u\n", ndev->cmbsz);
2272 }
2273 static DEVICE_ATTR_RO(cmbsz);
2274 
hmb_show(struct device * dev,struct device_attribute * attr,char * buf)2275 static ssize_t hmb_show(struct device *dev, struct device_attribute *attr,
2276 			char *buf)
2277 {
2278 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2279 
2280 	return sysfs_emit(buf, "%d\n", ndev->hmb);
2281 }
2282 
hmb_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2283 static ssize_t hmb_store(struct device *dev, struct device_attribute *attr,
2284 			 const char *buf, size_t count)
2285 {
2286 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2287 	bool new;
2288 	int ret;
2289 
2290 	if (kstrtobool(buf, &new) < 0)
2291 		return -EINVAL;
2292 
2293 	if (new == ndev->hmb)
2294 		return count;
2295 
2296 	if (new) {
2297 		ret = nvme_setup_host_mem(ndev);
2298 	} else {
2299 		ret = nvme_set_host_mem(ndev, 0);
2300 		if (!ret)
2301 			nvme_free_host_mem(ndev);
2302 	}
2303 
2304 	if (ret < 0)
2305 		return ret;
2306 
2307 	return count;
2308 }
2309 static DEVICE_ATTR_RW(hmb);
2310 
nvme_pci_attrs_are_visible(struct kobject * kobj,struct attribute * a,int n)2311 static umode_t nvme_pci_attrs_are_visible(struct kobject *kobj,
2312 		struct attribute *a, int n)
2313 {
2314 	struct nvme_ctrl *ctrl =
2315 		dev_get_drvdata(container_of(kobj, struct device, kobj));
2316 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2317 
2318 	if (a == &dev_attr_cmb.attr ||
2319 	    a == &dev_attr_cmbloc.attr ||
2320 	    a == &dev_attr_cmbsz.attr) {
2321 	    	if (!dev->cmbsz)
2322 			return 0;
2323 	}
2324 	if (a == &dev_attr_hmb.attr && !ctrl->hmpre)
2325 		return 0;
2326 
2327 	return a->mode;
2328 }
2329 
2330 static struct attribute *nvme_pci_attrs[] = {
2331 	&dev_attr_cmb.attr,
2332 	&dev_attr_cmbloc.attr,
2333 	&dev_attr_cmbsz.attr,
2334 	&dev_attr_hmb.attr,
2335 	NULL,
2336 };
2337 
2338 static const struct attribute_group nvme_pci_dev_attrs_group = {
2339 	.attrs		= nvme_pci_attrs,
2340 	.is_visible	= nvme_pci_attrs_are_visible,
2341 };
2342 
2343 static const struct attribute_group *nvme_pci_dev_attr_groups[] = {
2344 	&nvme_dev_attrs_group,
2345 	&nvme_pci_dev_attrs_group,
2346 	NULL,
2347 };
2348 
nvme_update_attrs(struct nvme_dev * dev)2349 static void nvme_update_attrs(struct nvme_dev *dev)
2350 {
2351 	sysfs_update_group(&dev->ctrl.device->kobj, &nvme_pci_dev_attrs_group);
2352 }
2353 
2354 /*
2355  * nirqs is the number of interrupts available for write and read
2356  * queues. The core already reserved an interrupt for the admin queue.
2357  */
nvme_calc_irq_sets(struct irq_affinity * affd,unsigned int nrirqs)2358 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2359 {
2360 	struct nvme_dev *dev = affd->priv;
2361 	unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
2362 
2363 	/*
2364 	 * If there is no interrupt available for queues, ensure that
2365 	 * the default queue is set to 1. The affinity set size is
2366 	 * also set to one, but the irq core ignores it for this case.
2367 	 *
2368 	 * If only one interrupt is available or 'write_queue' == 0, combine
2369 	 * write and read queues.
2370 	 *
2371 	 * If 'write_queues' > 0, ensure it leaves room for at least one read
2372 	 * queue.
2373 	 */
2374 	if (!nrirqs) {
2375 		nrirqs = 1;
2376 		nr_read_queues = 0;
2377 	} else if (nrirqs == 1 || !nr_write_queues) {
2378 		nr_read_queues = 0;
2379 	} else if (nr_write_queues >= nrirqs) {
2380 		nr_read_queues = 1;
2381 	} else {
2382 		nr_read_queues = nrirqs - nr_write_queues;
2383 	}
2384 
2385 	dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2386 	affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2387 	dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2388 	affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2389 	affd->nr_sets = nr_read_queues ? 2 : 1;
2390 }
2391 
nvme_setup_irqs(struct nvme_dev * dev,unsigned int nr_io_queues)2392 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2393 {
2394 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2395 	struct irq_affinity affd = {
2396 		.pre_vectors	= 1,
2397 		.calc_sets	= nvme_calc_irq_sets,
2398 		.priv		= dev,
2399 	};
2400 	unsigned int irq_queues, poll_queues;
2401 	unsigned int flags = PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY;
2402 
2403 	/*
2404 	 * Poll queues don't need interrupts, but we need at least one I/O queue
2405 	 * left over for non-polled I/O.
2406 	 */
2407 	poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1);
2408 	dev->io_queues[HCTX_TYPE_POLL] = poll_queues;
2409 
2410 	/*
2411 	 * Initialize for the single interrupt case, will be updated in
2412 	 * nvme_calc_irq_sets().
2413 	 */
2414 	dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2415 	dev->io_queues[HCTX_TYPE_READ] = 0;
2416 
2417 	/*
2418 	 * We need interrupts for the admin queue and each non-polled I/O queue,
2419 	 * but some Apple controllers require all queues to use the first
2420 	 * vector.
2421 	 */
2422 	irq_queues = 1;
2423 	if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR))
2424 		irq_queues += (nr_io_queues - poll_queues);
2425 	if (dev->ctrl.quirks & NVME_QUIRK_BROKEN_MSI)
2426 		flags &= ~PCI_IRQ_MSI;
2427 	return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues, flags,
2428 					      &affd);
2429 }
2430 
nvme_max_io_queues(struct nvme_dev * dev)2431 static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
2432 {
2433 	/*
2434 	 * If tags are shared with admin queue (Apple bug), then
2435 	 * make sure we only use one IO queue.
2436 	 */
2437 	if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2438 		return 1;
2439 	return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues;
2440 }
2441 
nvme_setup_io_queues(struct nvme_dev * dev)2442 static int nvme_setup_io_queues(struct nvme_dev *dev)
2443 {
2444 	struct nvme_queue *adminq = &dev->queues[0];
2445 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2446 	unsigned int nr_io_queues;
2447 	unsigned long size;
2448 	int result;
2449 
2450 	/*
2451 	 * Sample the module parameters once at reset time so that we have
2452 	 * stable values to work with.
2453 	 */
2454 	dev->nr_write_queues = write_queues;
2455 	dev->nr_poll_queues = poll_queues;
2456 
2457 	nr_io_queues = dev->nr_allocated_queues - 1;
2458 	result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2459 	if (result < 0)
2460 		return result;
2461 
2462 	if (nr_io_queues == 0)
2463 		return 0;
2464 
2465 	/*
2466 	 * Free IRQ resources as soon as NVMEQ_ENABLED bit transitions
2467 	 * from set to unset. If there is a window to it is truely freed,
2468 	 * pci_free_irq_vectors() jumping into this window will crash.
2469 	 * And take lock to avoid racing with pci_free_irq_vectors() in
2470 	 * nvme_dev_disable() path.
2471 	 */
2472 	result = nvme_setup_io_queues_trylock(dev);
2473 	if (result)
2474 		return result;
2475 	if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2476 		pci_free_irq(pdev, 0, adminq);
2477 
2478 	if (dev->cmb_use_sqes) {
2479 		result = nvme_cmb_qdepth(dev, nr_io_queues,
2480 				sizeof(struct nvme_command));
2481 		if (result > 0) {
2482 			dev->q_depth = result;
2483 			dev->ctrl.sqsize = result - 1;
2484 		} else {
2485 			dev->cmb_use_sqes = false;
2486 		}
2487 	}
2488 
2489 	do {
2490 		size = db_bar_size(dev, nr_io_queues);
2491 		result = nvme_remap_bar(dev, size);
2492 		if (!result)
2493 			break;
2494 		if (!--nr_io_queues) {
2495 			result = -ENOMEM;
2496 			goto out_unlock;
2497 		}
2498 	} while (1);
2499 	adminq->q_db = dev->dbs;
2500 
2501  retry:
2502 	/* Deregister the admin queue's interrupt */
2503 	if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2504 		pci_free_irq(pdev, 0, adminq);
2505 
2506 	/*
2507 	 * If we enable msix early due to not intx, disable it again before
2508 	 * setting up the full range we need.
2509 	 */
2510 	pci_free_irq_vectors(pdev);
2511 
2512 	result = nvme_setup_irqs(dev, nr_io_queues);
2513 	if (result <= 0) {
2514 		result = -EIO;
2515 		goto out_unlock;
2516 	}
2517 
2518 	dev->num_vecs = result;
2519 	result = max(result - 1, 1);
2520 	dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2521 
2522 	/*
2523 	 * Should investigate if there's a performance win from allocating
2524 	 * more queues than interrupt vectors; it might allow the submission
2525 	 * path to scale better, even if the receive path is limited by the
2526 	 * number of interrupts.
2527 	 */
2528 	result = queue_request_irq(adminq);
2529 	if (result)
2530 		goto out_unlock;
2531 	set_bit(NVMEQ_ENABLED, &adminq->flags);
2532 	mutex_unlock(&dev->shutdown_lock);
2533 
2534 	result = nvme_create_io_queues(dev);
2535 	if (result || dev->online_queues < 2)
2536 		return result;
2537 
2538 	if (dev->online_queues - 1 < dev->max_qid) {
2539 		nr_io_queues = dev->online_queues - 1;
2540 		nvme_delete_io_queues(dev);
2541 		result = nvme_setup_io_queues_trylock(dev);
2542 		if (result)
2543 			return result;
2544 		nvme_suspend_io_queues(dev);
2545 		goto retry;
2546 	}
2547 	dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2548 					dev->io_queues[HCTX_TYPE_DEFAULT],
2549 					dev->io_queues[HCTX_TYPE_READ],
2550 					dev->io_queues[HCTX_TYPE_POLL]);
2551 	return 0;
2552 out_unlock:
2553 	mutex_unlock(&dev->shutdown_lock);
2554 	return result;
2555 }
2556 
nvme_del_queue_end(struct request * req,blk_status_t error)2557 static enum rq_end_io_ret nvme_del_queue_end(struct request *req,
2558 					     blk_status_t error)
2559 {
2560 	struct nvme_queue *nvmeq = req->end_io_data;
2561 
2562 	blk_mq_free_request(req);
2563 	complete(&nvmeq->delete_done);
2564 	return RQ_END_IO_NONE;
2565 }
2566 
nvme_del_cq_end(struct request * req,blk_status_t error)2567 static enum rq_end_io_ret nvme_del_cq_end(struct request *req,
2568 					  blk_status_t error)
2569 {
2570 	struct nvme_queue *nvmeq = req->end_io_data;
2571 
2572 	if (error)
2573 		set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2574 
2575 	return nvme_del_queue_end(req, error);
2576 }
2577 
nvme_delete_queue(struct nvme_queue * nvmeq,u8 opcode)2578 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2579 {
2580 	struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2581 	struct request *req;
2582 	struct nvme_command cmd = { };
2583 
2584 	cmd.delete_queue.opcode = opcode;
2585 	cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2586 
2587 	req = blk_mq_alloc_request(q, nvme_req_op(&cmd), BLK_MQ_REQ_NOWAIT);
2588 	if (IS_ERR(req))
2589 		return PTR_ERR(req);
2590 	nvme_init_request(req, &cmd);
2591 
2592 	if (opcode == nvme_admin_delete_cq)
2593 		req->end_io = nvme_del_cq_end;
2594 	else
2595 		req->end_io = nvme_del_queue_end;
2596 	req->end_io_data = nvmeq;
2597 
2598 	init_completion(&nvmeq->delete_done);
2599 	blk_execute_rq_nowait(req, false);
2600 	return 0;
2601 }
2602 
__nvme_delete_io_queues(struct nvme_dev * dev,u8 opcode)2603 static bool __nvme_delete_io_queues(struct nvme_dev *dev, u8 opcode)
2604 {
2605 	int nr_queues = dev->online_queues - 1, sent = 0;
2606 	unsigned long timeout;
2607 
2608  retry:
2609 	timeout = NVME_ADMIN_TIMEOUT;
2610 	while (nr_queues > 0) {
2611 		if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2612 			break;
2613 		nr_queues--;
2614 		sent++;
2615 	}
2616 	while (sent) {
2617 		struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2618 
2619 		timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2620 				timeout);
2621 		if (timeout == 0)
2622 			return false;
2623 
2624 		sent--;
2625 		if (nr_queues)
2626 			goto retry;
2627 	}
2628 	return true;
2629 }
2630 
nvme_delete_io_queues(struct nvme_dev * dev)2631 static void nvme_delete_io_queues(struct nvme_dev *dev)
2632 {
2633 	if (__nvme_delete_io_queues(dev, nvme_admin_delete_sq))
2634 		__nvme_delete_io_queues(dev, nvme_admin_delete_cq);
2635 }
2636 
nvme_pci_nr_maps(struct nvme_dev * dev)2637 static unsigned int nvme_pci_nr_maps(struct nvme_dev *dev)
2638 {
2639 	if (dev->io_queues[HCTX_TYPE_POLL])
2640 		return 3;
2641 	if (dev->io_queues[HCTX_TYPE_READ])
2642 		return 2;
2643 	return 1;
2644 }
2645 
nvme_pci_update_nr_queues(struct nvme_dev * dev)2646 static bool nvme_pci_update_nr_queues(struct nvme_dev *dev)
2647 {
2648 	if (!dev->ctrl.tagset) {
2649 		nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops,
2650 				nvme_pci_nr_maps(dev), sizeof(struct nvme_iod));
2651 		return true;
2652 	}
2653 
2654 	/* Give up if we are racing with nvme_dev_disable() */
2655 	if (!mutex_trylock(&dev->shutdown_lock))
2656 		return false;
2657 
2658 	/* Check if nvme_dev_disable() has been executed already */
2659 	if (!dev->online_queues) {
2660 		mutex_unlock(&dev->shutdown_lock);
2661 		return false;
2662 	}
2663 
2664 	blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2665 	/* free previously allocated queues that are no longer usable */
2666 	nvme_free_queues(dev, dev->online_queues);
2667 	mutex_unlock(&dev->shutdown_lock);
2668 	return true;
2669 }
2670 
nvme_pci_enable(struct nvme_dev * dev)2671 static int nvme_pci_enable(struct nvme_dev *dev)
2672 {
2673 	int result = -ENOMEM;
2674 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2675 	unsigned int flags = PCI_IRQ_ALL_TYPES;
2676 
2677 	if (pci_enable_device_mem(pdev))
2678 		return result;
2679 
2680 	pci_set_master(pdev);
2681 
2682 	if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2683 		result = -ENODEV;
2684 		goto disable;
2685 	}
2686 
2687 	/*
2688 	 * Some devices and/or platforms don't advertise or work with INTx
2689 	 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2690 	 * adjust this later.
2691 	 */
2692 	if (dev->ctrl.quirks & NVME_QUIRK_BROKEN_MSI)
2693 		flags &= ~PCI_IRQ_MSI;
2694 	result = pci_alloc_irq_vectors(pdev, 1, 1, flags);
2695 	if (result < 0)
2696 		goto disable;
2697 
2698 	dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2699 
2700 	dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2701 				io_queue_depth);
2702 	dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2703 	dev->dbs = dev->bar + 4096;
2704 
2705 	/*
2706 	 * Some Apple controllers require a non-standard SQE size.
2707 	 * Interestingly they also seem to ignore the CC:IOSQES register
2708 	 * so we don't bother updating it here.
2709 	 */
2710 	if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2711 		dev->io_sqes = 7;
2712 	else
2713 		dev->io_sqes = NVME_NVM_IOSQES;
2714 
2715 	if (dev->ctrl.quirks & NVME_QUIRK_QDEPTH_ONE) {
2716 		dev->q_depth = 2;
2717 	} else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2718 		   (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2719 		   NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2720 		dev->q_depth = 64;
2721 		dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2722                         "set queue depth=%u\n", dev->q_depth);
2723 	}
2724 
2725 	/*
2726 	 * Controllers with the shared tags quirk need the IO queue to be
2727 	 * big enough so that we get 32 tags for the admin queue
2728 	 */
2729 	if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2730 	    (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2731 		dev->q_depth = NVME_AQ_DEPTH + 2;
2732 		dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2733 			 dev->q_depth);
2734 	}
2735 	dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
2736 
2737 	nvme_map_cmb(dev);
2738 
2739 	pci_save_state(pdev);
2740 
2741 	result = nvme_pci_configure_admin_queue(dev);
2742 	if (result)
2743 		goto free_irq;
2744 	return result;
2745 
2746  free_irq:
2747 	pci_free_irq_vectors(pdev);
2748  disable:
2749 	pci_disable_device(pdev);
2750 	return result;
2751 }
2752 
nvme_dev_unmap(struct nvme_dev * dev)2753 static void nvme_dev_unmap(struct nvme_dev *dev)
2754 {
2755 	if (dev->bar)
2756 		iounmap(dev->bar);
2757 	pci_release_mem_regions(to_pci_dev(dev->dev));
2758 }
2759 
nvme_pci_ctrl_is_dead(struct nvme_dev * dev)2760 static bool nvme_pci_ctrl_is_dead(struct nvme_dev *dev)
2761 {
2762 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2763 	u32 csts;
2764 
2765 	if (!pci_is_enabled(pdev) || !pci_device_is_present(pdev))
2766 		return true;
2767 	if (pdev->error_state != pci_channel_io_normal)
2768 		return true;
2769 
2770 	csts = readl(dev->bar + NVME_REG_CSTS);
2771 	return (csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY);
2772 }
2773 
nvme_dev_disable(struct nvme_dev * dev,bool shutdown)2774 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2775 {
2776 	enum nvme_ctrl_state state = nvme_ctrl_state(&dev->ctrl);
2777 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2778 	bool dead;
2779 
2780 	mutex_lock(&dev->shutdown_lock);
2781 	dead = nvme_pci_ctrl_is_dead(dev);
2782 	if (state == NVME_CTRL_LIVE || state == NVME_CTRL_RESETTING) {
2783 		if (pci_is_enabled(pdev))
2784 			nvme_start_freeze(&dev->ctrl);
2785 		/*
2786 		 * Give the controller a chance to complete all entered requests
2787 		 * if doing a safe shutdown.
2788 		 */
2789 		if (!dead && shutdown)
2790 			nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2791 	}
2792 
2793 	nvme_quiesce_io_queues(&dev->ctrl);
2794 
2795 	if (!dead && dev->ctrl.queue_count > 0) {
2796 		nvme_delete_io_queues(dev);
2797 		nvme_disable_ctrl(&dev->ctrl, shutdown);
2798 		nvme_poll_irqdisable(&dev->queues[0]);
2799 	}
2800 	nvme_suspend_io_queues(dev);
2801 	nvme_suspend_queue(dev, 0);
2802 	pci_free_irq_vectors(pdev);
2803 	if (pci_is_enabled(pdev))
2804 		pci_disable_device(pdev);
2805 	nvme_reap_pending_cqes(dev);
2806 
2807 	nvme_cancel_tagset(&dev->ctrl);
2808 	nvme_cancel_admin_tagset(&dev->ctrl);
2809 
2810 	/*
2811 	 * The driver will not be starting up queues again if shutting down so
2812 	 * must flush all entered requests to their failed completion to avoid
2813 	 * deadlocking blk-mq hot-cpu notifier.
2814 	 */
2815 	if (shutdown) {
2816 		nvme_unquiesce_io_queues(&dev->ctrl);
2817 		if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
2818 			nvme_unquiesce_admin_queue(&dev->ctrl);
2819 	}
2820 	mutex_unlock(&dev->shutdown_lock);
2821 }
2822 
nvme_disable_prepare_reset(struct nvme_dev * dev,bool shutdown)2823 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
2824 {
2825 	if (!nvme_wait_reset(&dev->ctrl))
2826 		return -EBUSY;
2827 	nvme_dev_disable(dev, shutdown);
2828 	return 0;
2829 }
2830 
nvme_setup_prp_pools(struct nvme_dev * dev)2831 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2832 {
2833 	size_t small_align = 256;
2834 
2835 	dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2836 						NVME_CTRL_PAGE_SIZE,
2837 						NVME_CTRL_PAGE_SIZE, 0);
2838 	if (!dev->prp_page_pool)
2839 		return -ENOMEM;
2840 
2841 	if (dev->ctrl.quirks & NVME_QUIRK_DMAPOOL_ALIGN_512)
2842 		small_align = 512;
2843 
2844 	/* Optimisation for I/Os between 4k and 128k */
2845 	dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2846 						256, small_align, 0);
2847 	if (!dev->prp_small_pool) {
2848 		dma_pool_destroy(dev->prp_page_pool);
2849 		return -ENOMEM;
2850 	}
2851 	return 0;
2852 }
2853 
nvme_release_prp_pools(struct nvme_dev * dev)2854 static void nvme_release_prp_pools(struct nvme_dev *dev)
2855 {
2856 	dma_pool_destroy(dev->prp_page_pool);
2857 	dma_pool_destroy(dev->prp_small_pool);
2858 }
2859 
nvme_pci_alloc_iod_mempool(struct nvme_dev * dev)2860 static int nvme_pci_alloc_iod_mempool(struct nvme_dev *dev)
2861 {
2862 	size_t meta_size = sizeof(struct scatterlist) * (NVME_MAX_META_SEGS + 1);
2863 	size_t alloc_size = sizeof(struct scatterlist) * NVME_MAX_SEGS;
2864 
2865 	dev->iod_mempool = mempool_create_node(1,
2866 			mempool_kmalloc, mempool_kfree,
2867 			(void *)alloc_size, GFP_KERNEL,
2868 			dev_to_node(dev->dev));
2869 	if (!dev->iod_mempool)
2870 		return -ENOMEM;
2871 
2872 	dev->iod_meta_mempool = mempool_create_node(1,
2873 			mempool_kmalloc, mempool_kfree,
2874 			(void *)meta_size, GFP_KERNEL,
2875 			dev_to_node(dev->dev));
2876 	if (!dev->iod_meta_mempool)
2877 		goto free;
2878 
2879 	return 0;
2880 free:
2881 	mempool_destroy(dev->iod_mempool);
2882 	return -ENOMEM;
2883 }
2884 
nvme_free_tagset(struct nvme_dev * dev)2885 static void nvme_free_tagset(struct nvme_dev *dev)
2886 {
2887 	if (dev->tagset.tags)
2888 		nvme_remove_io_tag_set(&dev->ctrl);
2889 	dev->ctrl.tagset = NULL;
2890 }
2891 
2892 /* pairs with nvme_pci_alloc_dev */
nvme_pci_free_ctrl(struct nvme_ctrl * ctrl)2893 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2894 {
2895 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2896 
2897 	nvme_free_tagset(dev);
2898 	put_device(dev->dev);
2899 	kfree(dev->queues);
2900 	kfree(dev);
2901 }
2902 
nvme_reset_work(struct work_struct * work)2903 static void nvme_reset_work(struct work_struct *work)
2904 {
2905 	struct nvme_dev *dev =
2906 		container_of(work, struct nvme_dev, ctrl.reset_work);
2907 	bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2908 	int result;
2909 
2910 	if (nvme_ctrl_state(&dev->ctrl) != NVME_CTRL_RESETTING) {
2911 		dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n",
2912 			 dev->ctrl.state);
2913 		result = -ENODEV;
2914 		goto out;
2915 	}
2916 
2917 	/*
2918 	 * If we're called to reset a live controller first shut it down before
2919 	 * moving on.
2920 	 */
2921 	if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2922 		nvme_dev_disable(dev, false);
2923 	nvme_sync_queues(&dev->ctrl);
2924 
2925 	mutex_lock(&dev->shutdown_lock);
2926 	result = nvme_pci_enable(dev);
2927 	if (result)
2928 		goto out_unlock;
2929 	nvme_unquiesce_admin_queue(&dev->ctrl);
2930 	mutex_unlock(&dev->shutdown_lock);
2931 
2932 	/*
2933 	 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2934 	 * initializing procedure here.
2935 	 */
2936 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2937 		dev_warn(dev->ctrl.device,
2938 			"failed to mark controller CONNECTING\n");
2939 		result = -EBUSY;
2940 		goto out;
2941 	}
2942 
2943 	result = nvme_init_ctrl_finish(&dev->ctrl, was_suspend);
2944 	if (result)
2945 		goto out;
2946 
2947 	if (nvme_ctrl_meta_sgl_supported(&dev->ctrl))
2948 		dev->ctrl.max_integrity_segments = NVME_MAX_META_SEGS;
2949 	else
2950 		dev->ctrl.max_integrity_segments = 1;
2951 
2952 	nvme_dbbuf_dma_alloc(dev);
2953 
2954 	result = nvme_setup_host_mem(dev);
2955 	if (result < 0)
2956 		goto out;
2957 
2958 	result = nvme_setup_io_queues(dev);
2959 	if (result)
2960 		goto out;
2961 
2962 	/*
2963 	 * Freeze and update the number of I/O queues as thos might have
2964 	 * changed.  If there are no I/O queues left after this reset, keep the
2965 	 * controller around but remove all namespaces.
2966 	 */
2967 	if (dev->online_queues > 1) {
2968 		nvme_dbbuf_set(dev);
2969 		nvme_unquiesce_io_queues(&dev->ctrl);
2970 		nvme_wait_freeze(&dev->ctrl);
2971 		if (!nvme_pci_update_nr_queues(dev))
2972 			goto out;
2973 		nvme_unfreeze(&dev->ctrl);
2974 	} else {
2975 		dev_warn(dev->ctrl.device, "IO queues lost\n");
2976 		nvme_mark_namespaces_dead(&dev->ctrl);
2977 		nvme_unquiesce_io_queues(&dev->ctrl);
2978 		nvme_remove_namespaces(&dev->ctrl);
2979 		nvme_free_tagset(dev);
2980 	}
2981 
2982 	/*
2983 	 * If only admin queue live, keep it to do further investigation or
2984 	 * recovery.
2985 	 */
2986 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2987 		dev_warn(dev->ctrl.device,
2988 			"failed to mark controller live state\n");
2989 		result = -ENODEV;
2990 		goto out;
2991 	}
2992 
2993 	nvme_start_ctrl(&dev->ctrl);
2994 	return;
2995 
2996  out_unlock:
2997 	mutex_unlock(&dev->shutdown_lock);
2998  out:
2999 	/*
3000 	 * Set state to deleting now to avoid blocking nvme_wait_reset(), which
3001 	 * may be holding this pci_dev's device lock.
3002 	 */
3003 	dev_warn(dev->ctrl.device, "Disabling device after reset failure: %d\n",
3004 		 result);
3005 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3006 	nvme_dev_disable(dev, true);
3007 	nvme_sync_queues(&dev->ctrl);
3008 	nvme_mark_namespaces_dead(&dev->ctrl);
3009 	nvme_unquiesce_io_queues(&dev->ctrl);
3010 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
3011 }
3012 
nvme_pci_reg_read32(struct nvme_ctrl * ctrl,u32 off,u32 * val)3013 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
3014 {
3015 	*val = readl(to_nvme_dev(ctrl)->bar + off);
3016 	return 0;
3017 }
3018 
nvme_pci_reg_write32(struct nvme_ctrl * ctrl,u32 off,u32 val)3019 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
3020 {
3021 	writel(val, to_nvme_dev(ctrl)->bar + off);
3022 	return 0;
3023 }
3024 
nvme_pci_reg_read64(struct nvme_ctrl * ctrl,u32 off,u64 * val)3025 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
3026 {
3027 	*val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
3028 	return 0;
3029 }
3030 
nvme_pci_get_address(struct nvme_ctrl * ctrl,char * buf,int size)3031 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
3032 {
3033 	struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
3034 
3035 	return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
3036 }
3037 
nvme_pci_print_device_info(struct nvme_ctrl * ctrl)3038 static void nvme_pci_print_device_info(struct nvme_ctrl *ctrl)
3039 {
3040 	struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
3041 	struct nvme_subsystem *subsys = ctrl->subsys;
3042 
3043 	dev_err(ctrl->device,
3044 		"VID:DID %04x:%04x model:%.*s firmware:%.*s\n",
3045 		pdev->vendor, pdev->device,
3046 		nvme_strlen(subsys->model, sizeof(subsys->model)),
3047 		subsys->model, nvme_strlen(subsys->firmware_rev,
3048 					   sizeof(subsys->firmware_rev)),
3049 		subsys->firmware_rev);
3050 }
3051 
nvme_pci_supports_pci_p2pdma(struct nvme_ctrl * ctrl)3052 static bool nvme_pci_supports_pci_p2pdma(struct nvme_ctrl *ctrl)
3053 {
3054 	struct nvme_dev *dev = to_nvme_dev(ctrl);
3055 
3056 	return dma_pci_p2pdma_supported(dev->dev);
3057 }
3058 
3059 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
3060 	.name			= "pcie",
3061 	.module			= THIS_MODULE,
3062 	.flags			= NVME_F_METADATA_SUPPORTED,
3063 	.dev_attr_groups	= nvme_pci_dev_attr_groups,
3064 	.reg_read32		= nvme_pci_reg_read32,
3065 	.reg_write32		= nvme_pci_reg_write32,
3066 	.reg_read64		= nvme_pci_reg_read64,
3067 	.free_ctrl		= nvme_pci_free_ctrl,
3068 	.submit_async_event	= nvme_pci_submit_async_event,
3069 	.subsystem_reset	= nvme_pci_subsystem_reset,
3070 	.get_address		= nvme_pci_get_address,
3071 	.print_device_info	= nvme_pci_print_device_info,
3072 	.supports_pci_p2pdma	= nvme_pci_supports_pci_p2pdma,
3073 };
3074 
nvme_dev_map(struct nvme_dev * dev)3075 static int nvme_dev_map(struct nvme_dev *dev)
3076 {
3077 	struct pci_dev *pdev = to_pci_dev(dev->dev);
3078 
3079 	if (pci_request_mem_regions(pdev, "nvme"))
3080 		return -ENODEV;
3081 
3082 	if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
3083 		goto release;
3084 
3085 	return 0;
3086   release:
3087 	pci_release_mem_regions(pdev);
3088 	return -ENODEV;
3089 }
3090 
check_vendor_combination_bug(struct pci_dev * pdev)3091 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
3092 {
3093 	if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
3094 		/*
3095 		 * Several Samsung devices seem to drop off the PCIe bus
3096 		 * randomly when APST is on and uses the deepest sleep state.
3097 		 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
3098 		 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
3099 		 * 950 PRO 256GB", but it seems to be restricted to two Dell
3100 		 * laptops.
3101 		 */
3102 		if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
3103 		    (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
3104 		     dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
3105 			return NVME_QUIRK_NO_DEEPEST_PS;
3106 	} else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
3107 		/*
3108 		 * Samsung SSD 960 EVO drops off the PCIe bus after system
3109 		 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
3110 		 * within few minutes after bootup on a Coffee Lake board -
3111 		 * ASUS PRIME Z370-A
3112 		 */
3113 		if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
3114 		    (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
3115 		     dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
3116 			return NVME_QUIRK_NO_APST;
3117 	} else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
3118 		    pdev->device == 0xa808 || pdev->device == 0xa809)) ||
3119 		   (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
3120 		/*
3121 		 * Forcing to use host managed nvme power settings for
3122 		 * lowest idle power with quick resume latency on
3123 		 * Samsung and Toshiba SSDs based on suspend behavior
3124 		 * on Coffee Lake board for LENOVO C640
3125 		 */
3126 		if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
3127 		     dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
3128 			return NVME_QUIRK_SIMPLE_SUSPEND;
3129 	} else if (pdev->vendor == 0x2646 && (pdev->device == 0x2263 ||
3130 		   pdev->device == 0x500f)) {
3131 		/*
3132 		 * Exclude some Kingston NV1 and A2000 devices from
3133 		 * NVME_QUIRK_SIMPLE_SUSPEND. Do a full suspend to save a
3134 		 * lot fo energy with s2idle sleep on some TUXEDO platforms.
3135 		 */
3136 		if (dmi_match(DMI_BOARD_NAME, "NS5X_NS7XAU") ||
3137 		    dmi_match(DMI_BOARD_NAME, "NS5x_7xAU") ||
3138 		    dmi_match(DMI_BOARD_NAME, "NS5x_7xPU") ||
3139 		    dmi_match(DMI_BOARD_NAME, "PH4PRX1_PH6PRX1"))
3140 			return NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND;
3141 	} else if (pdev->vendor == 0x144d && pdev->device == 0xa80d) {
3142 		/*
3143 		 * Exclude Samsung 990 Evo from NVME_QUIRK_SIMPLE_SUSPEND
3144 		 * because of high power consumption (> 2 Watt) in s2idle
3145 		 * sleep. Only some boards with Intel CPU are affected.
3146 		 */
3147 		if (dmi_match(DMI_BOARD_NAME, "DN50Z-140HC-YD") ||
3148 		    dmi_match(DMI_BOARD_NAME, "GMxPXxx") ||
3149 		    dmi_match(DMI_BOARD_NAME, "GXxMRXx") ||
3150 		    dmi_match(DMI_BOARD_NAME, "PH4PG31") ||
3151 		    dmi_match(DMI_BOARD_NAME, "PH4PRX1_PH6PRX1") ||
3152 		    dmi_match(DMI_BOARD_NAME, "PH6PG01_PH6PG71"))
3153 			return NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND;
3154 	}
3155 
3156 	/*
3157 	 * NVMe SSD drops off the PCIe bus after system idle
3158 	 * for 10 hours on a Lenovo N60z board.
3159 	 */
3160 	if (dmi_match(DMI_BOARD_NAME, "LXKT-ZXEG-N6"))
3161 		return NVME_QUIRK_NO_APST;
3162 
3163 	return 0;
3164 }
3165 
nvme_pci_alloc_dev(struct pci_dev * pdev,const struct pci_device_id * id)3166 static struct nvme_dev *nvme_pci_alloc_dev(struct pci_dev *pdev,
3167 		const struct pci_device_id *id)
3168 {
3169 	unsigned long quirks = id->driver_data;
3170 	int node = dev_to_node(&pdev->dev);
3171 	struct nvme_dev *dev;
3172 	int ret = -ENOMEM;
3173 
3174 	dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
3175 	if (!dev)
3176 		return ERR_PTR(-ENOMEM);
3177 	INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
3178 	mutex_init(&dev->shutdown_lock);
3179 
3180 	dev->nr_write_queues = write_queues;
3181 	dev->nr_poll_queues = poll_queues;
3182 	dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
3183 	dev->queues = kcalloc_node(dev->nr_allocated_queues,
3184 			sizeof(struct nvme_queue), GFP_KERNEL, node);
3185 	if (!dev->queues)
3186 		goto out_free_dev;
3187 
3188 	dev->dev = get_device(&pdev->dev);
3189 
3190 	quirks |= check_vendor_combination_bug(pdev);
3191 	if (!noacpi &&
3192 	    !(quirks & NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND) &&
3193 	    acpi_storage_d3(&pdev->dev)) {
3194 		/*
3195 		 * Some systems use a bios work around to ask for D3 on
3196 		 * platforms that support kernel managed suspend.
3197 		 */
3198 		dev_info(&pdev->dev,
3199 			 "platform quirk: setting simple suspend\n");
3200 		quirks |= NVME_QUIRK_SIMPLE_SUSPEND;
3201 	}
3202 	ret = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
3203 			     quirks);
3204 	if (ret)
3205 		goto out_put_device;
3206 
3207 	if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48)
3208 		dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(48));
3209 	else
3210 		dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3211 	dma_set_min_align_mask(&pdev->dev, NVME_CTRL_PAGE_SIZE - 1);
3212 	dma_set_max_seg_size(&pdev->dev, 0xffffffff);
3213 
3214 	/*
3215 	 * Limit the max command size to prevent iod->sg allocations going
3216 	 * over a single page.
3217 	 */
3218 	dev->ctrl.max_hw_sectors = min_t(u32,
3219 		NVME_MAX_KB_SZ << 1, dma_opt_mapping_size(&pdev->dev) >> 9);
3220 	dev->ctrl.max_segments = NVME_MAX_SEGS;
3221 	dev->ctrl.max_integrity_segments = 1;
3222 	return dev;
3223 
3224 out_put_device:
3225 	put_device(dev->dev);
3226 	kfree(dev->queues);
3227 out_free_dev:
3228 	kfree(dev);
3229 	return ERR_PTR(ret);
3230 }
3231 
nvme_probe(struct pci_dev * pdev,const struct pci_device_id * id)3232 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3233 {
3234 	struct nvme_dev *dev;
3235 	int result = -ENOMEM;
3236 
3237 	dev = nvme_pci_alloc_dev(pdev, id);
3238 	if (IS_ERR(dev))
3239 		return PTR_ERR(dev);
3240 
3241 	result = nvme_add_ctrl(&dev->ctrl);
3242 	if (result)
3243 		goto out_put_ctrl;
3244 
3245 	result = nvme_dev_map(dev);
3246 	if (result)
3247 		goto out_uninit_ctrl;
3248 
3249 	result = nvme_setup_prp_pools(dev);
3250 	if (result)
3251 		goto out_dev_unmap;
3252 
3253 	result = nvme_pci_alloc_iod_mempool(dev);
3254 	if (result)
3255 		goto out_release_prp_pools;
3256 
3257 	dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
3258 
3259 	result = nvme_pci_enable(dev);
3260 	if (result)
3261 		goto out_release_iod_mempool;
3262 
3263 	result = nvme_alloc_admin_tag_set(&dev->ctrl, &dev->admin_tagset,
3264 				&nvme_mq_admin_ops, sizeof(struct nvme_iod));
3265 	if (result)
3266 		goto out_disable;
3267 
3268 	/*
3269 	 * Mark the controller as connecting before sending admin commands to
3270 	 * allow the timeout handler to do the right thing.
3271 	 */
3272 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
3273 		dev_warn(dev->ctrl.device,
3274 			"failed to mark controller CONNECTING\n");
3275 		result = -EBUSY;
3276 		goto out_disable;
3277 	}
3278 
3279 	result = nvme_init_ctrl_finish(&dev->ctrl, false);
3280 	if (result)
3281 		goto out_disable;
3282 
3283 	if (nvme_ctrl_meta_sgl_supported(&dev->ctrl))
3284 		dev->ctrl.max_integrity_segments = NVME_MAX_META_SEGS;
3285 	else
3286 		dev->ctrl.max_integrity_segments = 1;
3287 
3288 	nvme_dbbuf_dma_alloc(dev);
3289 
3290 	result = nvme_setup_host_mem(dev);
3291 	if (result < 0)
3292 		goto out_disable;
3293 
3294 	result = nvme_setup_io_queues(dev);
3295 	if (result)
3296 		goto out_disable;
3297 
3298 	if (dev->online_queues > 1) {
3299 		nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops,
3300 				nvme_pci_nr_maps(dev), sizeof(struct nvme_iod));
3301 		nvme_dbbuf_set(dev);
3302 	}
3303 
3304 	if (!dev->ctrl.tagset)
3305 		dev_warn(dev->ctrl.device, "IO queues not created\n");
3306 
3307 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
3308 		dev_warn(dev->ctrl.device,
3309 			"failed to mark controller live state\n");
3310 		result = -ENODEV;
3311 		goto out_disable;
3312 	}
3313 
3314 	pci_set_drvdata(pdev, dev);
3315 
3316 	nvme_start_ctrl(&dev->ctrl);
3317 	nvme_put_ctrl(&dev->ctrl);
3318 	flush_work(&dev->ctrl.scan_work);
3319 	return 0;
3320 
3321 out_disable:
3322 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3323 	nvme_dev_disable(dev, true);
3324 	nvme_free_host_mem(dev);
3325 	nvme_dev_remove_admin(dev);
3326 	nvme_dbbuf_dma_free(dev);
3327 	nvme_free_queues(dev, 0);
3328 out_release_iod_mempool:
3329 	mempool_destroy(dev->iod_mempool);
3330 	mempool_destroy(dev->iod_meta_mempool);
3331 out_release_prp_pools:
3332 	nvme_release_prp_pools(dev);
3333 out_dev_unmap:
3334 	nvme_dev_unmap(dev);
3335 out_uninit_ctrl:
3336 	nvme_uninit_ctrl(&dev->ctrl);
3337 out_put_ctrl:
3338 	nvme_put_ctrl(&dev->ctrl);
3339 	return result;
3340 }
3341 
nvme_reset_prepare(struct pci_dev * pdev)3342 static void nvme_reset_prepare(struct pci_dev *pdev)
3343 {
3344 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3345 
3346 	/*
3347 	 * We don't need to check the return value from waiting for the reset
3348 	 * state as pci_dev device lock is held, making it impossible to race
3349 	 * with ->remove().
3350 	 */
3351 	nvme_disable_prepare_reset(dev, false);
3352 	nvme_sync_queues(&dev->ctrl);
3353 }
3354 
nvme_reset_done(struct pci_dev * pdev)3355 static void nvme_reset_done(struct pci_dev *pdev)
3356 {
3357 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3358 
3359 	if (!nvme_try_sched_reset(&dev->ctrl))
3360 		flush_work(&dev->ctrl.reset_work);
3361 }
3362 
nvme_shutdown(struct pci_dev * pdev)3363 static void nvme_shutdown(struct pci_dev *pdev)
3364 {
3365 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3366 
3367 	nvme_disable_prepare_reset(dev, true);
3368 }
3369 
3370 /*
3371  * The driver's remove may be called on a device in a partially initialized
3372  * state. This function must not have any dependencies on the device state in
3373  * order to proceed.
3374  */
nvme_remove(struct pci_dev * pdev)3375 static void nvme_remove(struct pci_dev *pdev)
3376 {
3377 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3378 
3379 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3380 	pci_set_drvdata(pdev, NULL);
3381 
3382 	if (!pci_device_is_present(pdev)) {
3383 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
3384 		nvme_dev_disable(dev, true);
3385 	}
3386 
3387 	flush_work(&dev->ctrl.reset_work);
3388 	nvme_stop_ctrl(&dev->ctrl);
3389 	nvme_remove_namespaces(&dev->ctrl);
3390 	nvme_dev_disable(dev, true);
3391 	nvme_free_host_mem(dev);
3392 	nvme_dev_remove_admin(dev);
3393 	nvme_dbbuf_dma_free(dev);
3394 	nvme_free_queues(dev, 0);
3395 	mempool_destroy(dev->iod_mempool);
3396 	mempool_destroy(dev->iod_meta_mempool);
3397 	nvme_release_prp_pools(dev);
3398 	nvme_dev_unmap(dev);
3399 	nvme_uninit_ctrl(&dev->ctrl);
3400 }
3401 
3402 #ifdef CONFIG_PM_SLEEP
nvme_get_power_state(struct nvme_ctrl * ctrl,u32 * ps)3403 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
3404 {
3405 	return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
3406 }
3407 
nvme_set_power_state(struct nvme_ctrl * ctrl,u32 ps)3408 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
3409 {
3410 	return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
3411 }
3412 
nvme_resume(struct device * dev)3413 static int nvme_resume(struct device *dev)
3414 {
3415 	struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3416 	struct nvme_ctrl *ctrl = &ndev->ctrl;
3417 
3418 	if (ndev->last_ps == U32_MAX ||
3419 	    nvme_set_power_state(ctrl, ndev->last_ps) != 0)
3420 		goto reset;
3421 	if (ctrl->hmpre && nvme_setup_host_mem(ndev))
3422 		goto reset;
3423 
3424 	return 0;
3425 reset:
3426 	return nvme_try_sched_reset(ctrl);
3427 }
3428 
nvme_suspend(struct device * dev)3429 static int nvme_suspend(struct device *dev)
3430 {
3431 	struct pci_dev *pdev = to_pci_dev(dev);
3432 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3433 	struct nvme_ctrl *ctrl = &ndev->ctrl;
3434 	int ret = -EBUSY;
3435 
3436 	ndev->last_ps = U32_MAX;
3437 
3438 	/*
3439 	 * The platform does not remove power for a kernel managed suspend so
3440 	 * use host managed nvme power settings for lowest idle power if
3441 	 * possible. This should have quicker resume latency than a full device
3442 	 * shutdown.  But if the firmware is involved after the suspend or the
3443 	 * device does not support any non-default power states, shut down the
3444 	 * device fully.
3445 	 *
3446 	 * If ASPM is not enabled for the device, shut down the device and allow
3447 	 * the PCI bus layer to put it into D3 in order to take the PCIe link
3448 	 * down, so as to allow the platform to achieve its minimum low-power
3449 	 * state (which may not be possible if the link is up).
3450 	 */
3451 	if (pm_suspend_via_firmware() || !ctrl->npss ||
3452 	    !pcie_aspm_enabled(pdev) ||
3453 	    (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
3454 		return nvme_disable_prepare_reset(ndev, true);
3455 
3456 	nvme_start_freeze(ctrl);
3457 	nvme_wait_freeze(ctrl);
3458 	nvme_sync_queues(ctrl);
3459 
3460 	if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE)
3461 		goto unfreeze;
3462 
3463 	/*
3464 	 * Host memory access may not be successful in a system suspend state,
3465 	 * but the specification allows the controller to access memory in a
3466 	 * non-operational power state.
3467 	 */
3468 	if (ndev->hmb) {
3469 		ret = nvme_set_host_mem(ndev, 0);
3470 		if (ret < 0)
3471 			goto unfreeze;
3472 	}
3473 
3474 	ret = nvme_get_power_state(ctrl, &ndev->last_ps);
3475 	if (ret < 0)
3476 		goto unfreeze;
3477 
3478 	/*
3479 	 * A saved state prevents pci pm from generically controlling the
3480 	 * device's power. If we're using protocol specific settings, we don't
3481 	 * want pci interfering.
3482 	 */
3483 	pci_save_state(pdev);
3484 
3485 	ret = nvme_set_power_state(ctrl, ctrl->npss);
3486 	if (ret < 0)
3487 		goto unfreeze;
3488 
3489 	if (ret) {
3490 		/* discard the saved state */
3491 		pci_load_saved_state(pdev, NULL);
3492 
3493 		/*
3494 		 * Clearing npss forces a controller reset on resume. The
3495 		 * correct value will be rediscovered then.
3496 		 */
3497 		ret = nvme_disable_prepare_reset(ndev, true);
3498 		ctrl->npss = 0;
3499 	}
3500 unfreeze:
3501 	nvme_unfreeze(ctrl);
3502 	return ret;
3503 }
3504 
nvme_simple_suspend(struct device * dev)3505 static int nvme_simple_suspend(struct device *dev)
3506 {
3507 	struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3508 
3509 	return nvme_disable_prepare_reset(ndev, true);
3510 }
3511 
nvme_simple_resume(struct device * dev)3512 static int nvme_simple_resume(struct device *dev)
3513 {
3514 	struct pci_dev *pdev = to_pci_dev(dev);
3515 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3516 
3517 	return nvme_try_sched_reset(&ndev->ctrl);
3518 }
3519 
3520 static const struct dev_pm_ops nvme_dev_pm_ops = {
3521 	.suspend	= nvme_suspend,
3522 	.resume		= nvme_resume,
3523 	.freeze		= nvme_simple_suspend,
3524 	.thaw		= nvme_simple_resume,
3525 	.poweroff	= nvme_simple_suspend,
3526 	.restore	= nvme_simple_resume,
3527 };
3528 #endif /* CONFIG_PM_SLEEP */
3529 
nvme_error_detected(struct pci_dev * pdev,pci_channel_state_t state)3530 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3531 						pci_channel_state_t state)
3532 {
3533 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3534 
3535 	/*
3536 	 * A frozen channel requires a reset. When detected, this method will
3537 	 * shutdown the controller to quiesce. The controller will be restarted
3538 	 * after the slot reset through driver's slot_reset callback.
3539 	 */
3540 	switch (state) {
3541 	case pci_channel_io_normal:
3542 		return PCI_ERS_RESULT_CAN_RECOVER;
3543 	case pci_channel_io_frozen:
3544 		dev_warn(dev->ctrl.device,
3545 			"frozen state error detected, reset controller\n");
3546 		if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) {
3547 			nvme_dev_disable(dev, true);
3548 			return PCI_ERS_RESULT_DISCONNECT;
3549 		}
3550 		nvme_dev_disable(dev, false);
3551 		return PCI_ERS_RESULT_NEED_RESET;
3552 	case pci_channel_io_perm_failure:
3553 		dev_warn(dev->ctrl.device,
3554 			"failure state error detected, request disconnect\n");
3555 		return PCI_ERS_RESULT_DISCONNECT;
3556 	}
3557 	return PCI_ERS_RESULT_NEED_RESET;
3558 }
3559 
nvme_slot_reset(struct pci_dev * pdev)3560 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3561 {
3562 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3563 
3564 	dev_info(dev->ctrl.device, "restart after slot reset\n");
3565 	pci_restore_state(pdev);
3566 	if (!nvme_try_sched_reset(&dev->ctrl))
3567 		nvme_unquiesce_io_queues(&dev->ctrl);
3568 	return PCI_ERS_RESULT_RECOVERED;
3569 }
3570 
nvme_error_resume(struct pci_dev * pdev)3571 static void nvme_error_resume(struct pci_dev *pdev)
3572 {
3573 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3574 
3575 	flush_work(&dev->ctrl.reset_work);
3576 }
3577 
3578 static const struct pci_error_handlers nvme_err_handler = {
3579 	.error_detected	= nvme_error_detected,
3580 	.slot_reset	= nvme_slot_reset,
3581 	.resume		= nvme_error_resume,
3582 	.reset_prepare	= nvme_reset_prepare,
3583 	.reset_done	= nvme_reset_done,
3584 };
3585 
3586 static const struct pci_device_id nvme_id_table[] = {
3587 	{ PCI_VDEVICE(INTEL, 0x0953),	/* Intel 750/P3500/P3600/P3700 */
3588 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3589 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3590 	{ PCI_VDEVICE(INTEL, 0x0a53),	/* Intel P3520 */
3591 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3592 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3593 	{ PCI_VDEVICE(INTEL, 0x0a54),	/* Intel P4500/P4600 */
3594 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3595 				NVME_QUIRK_IGNORE_DEV_SUBNQN |
3596 				NVME_QUIRK_BOGUS_NID, },
3597 	{ PCI_VDEVICE(INTEL, 0x0a55),	/* Dell Express Flash P4600 */
3598 		.driver_data = NVME_QUIRK_STRIPE_SIZE, },
3599 	{ PCI_VDEVICE(INTEL, 0xf1a5),	/* Intel 600P/P3100 */
3600 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3601 				NVME_QUIRK_MEDIUM_PRIO_SQ |
3602 				NVME_QUIRK_NO_TEMP_THRESH_CHANGE |
3603 				NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3604 	{ PCI_VDEVICE(INTEL, 0xf1a6),	/* Intel 760p/Pro 7600p */
3605 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3606 	{ PCI_VDEVICE(INTEL, 0x5845),	/* Qemu emulated controller */
3607 		.driver_data = NVME_QUIRK_IDENTIFY_CNS |
3608 				NVME_QUIRK_DISABLE_WRITE_ZEROES |
3609 				NVME_QUIRK_BOGUS_NID, },
3610 	{ PCI_VDEVICE(REDHAT, 0x0010),	/* Qemu emulated controller */
3611 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3612 	{ PCI_DEVICE(0x1217, 0x8760), /* O2 Micro 64GB Steam Deck */
3613 		.driver_data = NVME_QUIRK_DMAPOOL_ALIGN_512, },
3614 	{ PCI_DEVICE(0x126f, 0x2262),	/* Silicon Motion generic */
3615 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3616 				NVME_QUIRK_BOGUS_NID, },
3617 	{ PCI_DEVICE(0x126f, 0x2263),	/* Silicon Motion unidentified */
3618 		.driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3619 				NVME_QUIRK_BOGUS_NID, },
3620 	{ PCI_DEVICE(0x1bb1, 0x0100),   /* Seagate Nytro Flash Storage */
3621 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3622 				NVME_QUIRK_NO_NS_DESC_LIST, },
3623 	{ PCI_DEVICE(0x1c58, 0x0003),	/* HGST adapter */
3624 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3625 	{ PCI_DEVICE(0x1c58, 0x0023),	/* WDC SN200 adapter */
3626 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3627 	{ PCI_DEVICE(0x1c5f, 0x0540),	/* Memblaze Pblaze4 adapter */
3628 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3629 	{ PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
3630 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3631 	{ PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
3632 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3633 				NVME_QUIRK_DISABLE_WRITE_ZEROES|
3634 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3635 	{ PCI_DEVICE(0x15b7, 0x5008),   /* Sandisk SN530 */
3636 		.driver_data = NVME_QUIRK_BROKEN_MSI },
3637 	{ PCI_DEVICE(0x1987, 0x5012),	/* Phison E12 */
3638 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3639 	{ PCI_DEVICE(0x1987, 0x5016),	/* Phison E16 */
3640 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3641 				NVME_QUIRK_BOGUS_NID, },
3642 	{ PCI_DEVICE(0x1987, 0x5019),  /* phison E19 */
3643 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3644 	{ PCI_DEVICE(0x1987, 0x5021),   /* Phison E21 */
3645 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3646 	{ PCI_DEVICE(0x1b4b, 0x1092),	/* Lexar 256 GB SSD */
3647 		.driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3648 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3649 	{ PCI_DEVICE(0x1cc1, 0x33f8),   /* ADATA IM2P33F8ABR1 1 TB */
3650 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3651 	{ PCI_DEVICE(0x10ec, 0x5762),   /* ADATA SX6000LNP */
3652 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3653 				NVME_QUIRK_BOGUS_NID, },
3654 	{ PCI_DEVICE(0x10ec, 0x5763),  /* ADATA SX6000PNP */
3655 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3656 	{ PCI_DEVICE(0x1cc1, 0x8201),   /* ADATA SX8200PNP 512GB */
3657 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3658 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3659 	 { PCI_DEVICE(0x1344, 0x5407), /* Micron Technology Inc NVMe SSD */
3660 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN },
3661 	 { PCI_DEVICE(0x1344, 0x6001),   /* Micron Nitro NVMe */
3662 		 .driver_data = NVME_QUIRK_BOGUS_NID, },
3663 	{ PCI_DEVICE(0x1c5c, 0x1504),   /* SK Hynix PC400 */
3664 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3665 	{ PCI_DEVICE(0x1c5c, 0x174a),   /* SK Hynix P31 SSD */
3666 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3667 	{ PCI_DEVICE(0x1c5c, 0x1D59),   /* SK Hynix BC901 */
3668 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3669 	{ PCI_DEVICE(0x15b7, 0x2001),   /*  Sandisk Skyhawk */
3670 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3671 	{ PCI_DEVICE(0x1d97, 0x2263),   /* SPCC */
3672 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3673 	{ PCI_DEVICE(0x144d, 0xa80b),   /* Samsung PM9B1 256G and 512G */
3674 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES |
3675 				NVME_QUIRK_BOGUS_NID, },
3676 	{ PCI_DEVICE(0x144d, 0xa809),   /* Samsung MZALQ256HBJD 256G */
3677 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3678 	{ PCI_DEVICE(0x144d, 0xa802),   /* Samsung SM953 */
3679 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3680 	{ PCI_DEVICE(0x1cc4, 0x6303),   /* UMIS RPJTJ512MGE1QDY 512G */
3681 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3682 	{ PCI_DEVICE(0x1cc4, 0x6302),   /* UMIS RPJTJ256MGE1QDY 256G */
3683 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3684 	{ PCI_DEVICE(0x2646, 0x2262),   /* KINGSTON SKC2000 NVMe SSD */
3685 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3686 	{ PCI_DEVICE(0x2646, 0x2263),   /* KINGSTON A2000 NVMe SSD  */
3687 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3688 	{ PCI_DEVICE(0x2646, 0x5013),   /* Kingston KC3000, Kingston FURY Renegade */
3689 		.driver_data = NVME_QUIRK_NO_SECONDARY_TEMP_THRESH, },
3690 	{ PCI_DEVICE(0x2646, 0x5018),   /* KINGSTON OM8SFP4xxxxP OS21012 NVMe SSD */
3691 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3692 	{ PCI_DEVICE(0x2646, 0x5016),   /* KINGSTON OM3PGP4xxxxP OS21011 NVMe SSD */
3693 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3694 	{ PCI_DEVICE(0x2646, 0x501A),   /* KINGSTON OM8PGP4xxxxP OS21005 NVMe SSD */
3695 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3696 	{ PCI_DEVICE(0x2646, 0x501B),   /* KINGSTON OM8PGP4xxxxQ OS21005 NVMe SSD */
3697 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3698 	{ PCI_DEVICE(0x2646, 0x501E),   /* KINGSTON OM3PGP4xxxxQ OS21011 NVMe SSD */
3699 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3700 	{ PCI_DEVICE(0x1f40, 0x1202),   /* Netac Technologies Co. NV3000 NVMe SSD */
3701 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3702 	{ PCI_DEVICE(0x1f40, 0x5236),   /* Netac Technologies Co. NV7000 NVMe SSD */
3703 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3704 	{ PCI_DEVICE(0x1e4B, 0x1001),   /* MAXIO MAP1001 */
3705 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3706 	{ PCI_DEVICE(0x1e4B, 0x1002),   /* MAXIO MAP1002 */
3707 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3708 	{ PCI_DEVICE(0x1e4B, 0x1202),   /* MAXIO MAP1202 */
3709 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3710 	{ PCI_DEVICE(0x1e4B, 0x1602),   /* MAXIO MAP1602 */
3711 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3712 	{ PCI_DEVICE(0x1cc1, 0x5350),   /* ADATA XPG GAMMIX S50 */
3713 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3714 	{ PCI_DEVICE(0x1dbe, 0x5216),   /* Acer/INNOGRIT FA100/5216 NVMe SSD */
3715 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3716 	{ PCI_DEVICE(0x1dbe, 0x5236),   /* ADATA XPG GAMMIX S70 */
3717 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3718 	{ PCI_DEVICE(0x1e49, 0x0021),   /* ZHITAI TiPro5000 NVMe SSD */
3719 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3720 	{ PCI_DEVICE(0x1e49, 0x0041),   /* ZHITAI TiPro7000 NVMe SSD */
3721 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3722 	{ PCI_DEVICE(0xc0a9, 0x540a),   /* Crucial P2 */
3723 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3724 	{ PCI_DEVICE(0x1d97, 0x2263), /* Lexar NM610 */
3725 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3726 	{ PCI_DEVICE(0x1d97, 0x1d97), /* Lexar NM620 */
3727 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3728 	{ PCI_DEVICE(0x1d97, 0x2269), /* Lexar NM760 */
3729 		.driver_data = NVME_QUIRK_BOGUS_NID |
3730 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3731 	{ PCI_DEVICE(0x10ec, 0x5763), /* TEAMGROUP T-FORCE CARDEA ZERO Z330 SSD */
3732 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3733 	{ PCI_DEVICE(0x1e4b, 0x1602), /* HS-SSD-FUTURE 2048G  */
3734 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3735 	{ PCI_DEVICE(0x10ec, 0x5765), /* TEAMGROUP MP33 2TB SSD */
3736 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3737 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061),
3738 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3739 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065),
3740 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3741 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061),
3742 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3743 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00),
3744 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3745 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01),
3746 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3747 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02),
3748 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3749 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
3750 		/*
3751 		 * Fix for the Apple controller found in the MacBook8,1 and
3752 		 * some MacBook7,1 to avoid controller resets and data loss.
3753 		 */
3754 		.driver_data = NVME_QUIRK_SINGLE_VECTOR |
3755 				NVME_QUIRK_QDEPTH_ONE },
3756 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3757 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3758 		.driver_data = NVME_QUIRK_SINGLE_VECTOR |
3759 				NVME_QUIRK_128_BYTES_SQES |
3760 				NVME_QUIRK_SHARED_TAGS |
3761 				NVME_QUIRK_SKIP_CID_GEN |
3762 				NVME_QUIRK_IDENTIFY_CNS },
3763 	{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3764 	{ 0, }
3765 };
3766 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3767 
3768 static struct pci_driver nvme_driver = {
3769 	.name		= "nvme",
3770 	.id_table	= nvme_id_table,
3771 	.probe		= nvme_probe,
3772 	.remove		= nvme_remove,
3773 	.shutdown	= nvme_shutdown,
3774 	.driver		= {
3775 		.probe_type	= PROBE_PREFER_ASYNCHRONOUS,
3776 #ifdef CONFIG_PM_SLEEP
3777 		.pm		= &nvme_dev_pm_ops,
3778 #endif
3779 	},
3780 	.sriov_configure = pci_sriov_configure_simple,
3781 	.err_handler	= &nvme_err_handler,
3782 };
3783 
nvme_init(void)3784 static int __init nvme_init(void)
3785 {
3786 	BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3787 	BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3788 	BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
3789 	BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
3790 	BUILD_BUG_ON(NVME_MAX_SEGS > SGES_PER_PAGE);
3791 	BUILD_BUG_ON(sizeof(struct scatterlist) * NVME_MAX_SEGS > PAGE_SIZE);
3792 	BUILD_BUG_ON(nvme_pci_npages_prp() > NVME_MAX_NR_ALLOCATIONS);
3793 
3794 	return pci_register_driver(&nvme_driver);
3795 }
3796 
nvme_exit(void)3797 static void __exit nvme_exit(void)
3798 {
3799 	pci_unregister_driver(&nvme_driver);
3800 	flush_workqueue(nvme_wq);
3801 }
3802 
3803 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3804 MODULE_LICENSE("GPL");
3805 MODULE_VERSION("1.0");
3806 MODULE_DESCRIPTION("NVMe host PCIe transport driver");
3807 module_init(nvme_init);
3808 module_exit(nvme_exit);
3809