xref: /linux/drivers/scsi/hpsa.c (revision 88e45067a30918ebb4942120892963e2311330af)
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright (c) 2019-2020 Microchip Technology Inc. and its subsidiaries
4  *    Copyright 2016 Microsemi Corporation
5  *    Copyright 2014-2015 PMC-Sierra, Inc.
6  *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
7  *
8  *    This program is free software; you can redistribute it and/or modify
9  *    it under the terms of the GNU General Public License as published by
10  *    the Free Software Foundation; version 2 of the License.
11  *
12  *    This program is distributed in the hope that it will be useful,
13  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
15  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
16  *
17  *    Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
18  *
19  */
20 
21 #include <linux/module.h>
22 #include <linux/interrupt.h>
23 #include <linux/types.h>
24 #include <linux/pci.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/fs.h>
29 #include <linux/timer.h>
30 #include <linux/init.h>
31 #include <linux/spinlock.h>
32 #include <linux/compat.h>
33 #include <linux/blktrace_api.h>
34 #include <linux/uaccess.h>
35 #include <linux/io.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/completion.h>
38 #include <linux/moduleparam.h>
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
43 #include <scsi/scsi_tcq.h>
44 #include <scsi/scsi_eh.h>
45 #include <scsi/scsi_transport_sas.h>
46 #include <scsi/scsi_dbg.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/jiffies.h>
52 #include <linux/percpu-defs.h>
53 #include <linux/percpu.h>
54 #include <linux/unaligned.h>
55 #include <asm/div64.h>
56 #include "hpsa_cmd.h"
57 #include "hpsa.h"
58 
59 /*
60  * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
61  * with an optional trailing '-' followed by a byte value (0-255).
62  */
63 #define HPSA_DRIVER_VERSION "3.4.20-200"
64 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
65 #define HPSA "hpsa"
66 
67 /* How long to wait for CISS doorbell communication */
68 #define CLEAR_EVENT_WAIT_INTERVAL 20	/* ms for each msleep() call */
69 #define MODE_CHANGE_WAIT_INTERVAL 10	/* ms for each msleep() call */
70 #define MAX_CLEAR_EVENT_WAIT 30000	/* times 20 ms = 600 s */
71 #define MAX_MODE_CHANGE_WAIT 2000	/* times 10 ms = 20 s */
72 #define MAX_IOCTL_CONFIG_WAIT 1000
73 
74 /*define how many times we will try a command because of bus resets */
75 #define MAX_CMD_RETRIES 3
76 /* How long to wait before giving up on a command */
77 #define HPSA_EH_PTRAID_TIMEOUT (240 * HZ)
78 
79 /* Embedded module documentation macros - see modules.h */
80 MODULE_AUTHOR("Hewlett-Packard Company");
81 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
82 	HPSA_DRIVER_VERSION);
83 MODULE_VERSION(HPSA_DRIVER_VERSION);
84 MODULE_LICENSE("GPL");
85 MODULE_ALIAS("cciss");
86 
87 static int hpsa_simple_mode;
88 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
89 MODULE_PARM_DESC(hpsa_simple_mode,
90 	"Use 'simple mode' rather than 'performant mode'");
91 
92 /* define the PCI info for the cards we can control */
93 static const struct pci_device_id hpsa_pci_device_id[] = {
94 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
95 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
96 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
97 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
98 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
99 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
100 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
101 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
102 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
103 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
104 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
105 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
106 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
107 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
108 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
109 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1920},
110 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
111 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
112 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
113 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
114 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1925},
115 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
116 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
117 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
118 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
119 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
120 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
121 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
122 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
123 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
124 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
125 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
126 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
127 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
128 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
129 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
130 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
131 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
132 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
133 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
134 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
135 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
136 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
137 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
138 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
139 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
140 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
141 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
142 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
143 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
144 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
145 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
146 	{PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
147 	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
148 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
149 	{PCI_VENDOR_ID_COMPAQ,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
150 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
151 	{0,}
152 };
153 
154 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
155 
156 /*  board_id = Subsystem Device ID & Vendor ID
157  *  product = Marketing Name for the board
158  *  access = Address of the struct of function pointers
159  */
160 static struct board_type products[] = {
161 	{0x40700E11, "Smart Array 5300", &SA5A_access},
162 	{0x40800E11, "Smart Array 5i", &SA5B_access},
163 	{0x40820E11, "Smart Array 532", &SA5B_access},
164 	{0x40830E11, "Smart Array 5312", &SA5B_access},
165 	{0x409A0E11, "Smart Array 641", &SA5A_access},
166 	{0x409B0E11, "Smart Array 642", &SA5A_access},
167 	{0x409C0E11, "Smart Array 6400", &SA5A_access},
168 	{0x409D0E11, "Smart Array 6400 EM", &SA5A_access},
169 	{0x40910E11, "Smart Array 6i", &SA5A_access},
170 	{0x3225103C, "Smart Array P600", &SA5A_access},
171 	{0x3223103C, "Smart Array P800", &SA5A_access},
172 	{0x3234103C, "Smart Array P400", &SA5A_access},
173 	{0x3235103C, "Smart Array P400i", &SA5A_access},
174 	{0x3211103C, "Smart Array E200i", &SA5A_access},
175 	{0x3212103C, "Smart Array E200", &SA5A_access},
176 	{0x3213103C, "Smart Array E200i", &SA5A_access},
177 	{0x3214103C, "Smart Array E200i", &SA5A_access},
178 	{0x3215103C, "Smart Array E200i", &SA5A_access},
179 	{0x3237103C, "Smart Array E500", &SA5A_access},
180 	{0x323D103C, "Smart Array P700m", &SA5A_access},
181 	{0x3241103C, "Smart Array P212", &SA5_access},
182 	{0x3243103C, "Smart Array P410", &SA5_access},
183 	{0x3245103C, "Smart Array P410i", &SA5_access},
184 	{0x3247103C, "Smart Array P411", &SA5_access},
185 	{0x3249103C, "Smart Array P812", &SA5_access},
186 	{0x324A103C, "Smart Array P712m", &SA5_access},
187 	{0x324B103C, "Smart Array P711m", &SA5_access},
188 	{0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
189 	{0x3350103C, "Smart Array P222", &SA5_access},
190 	{0x3351103C, "Smart Array P420", &SA5_access},
191 	{0x3352103C, "Smart Array P421", &SA5_access},
192 	{0x3353103C, "Smart Array P822", &SA5_access},
193 	{0x3354103C, "Smart Array P420i", &SA5_access},
194 	{0x3355103C, "Smart Array P220i", &SA5_access},
195 	{0x3356103C, "Smart Array P721m", &SA5_access},
196 	{0x1920103C, "Smart Array P430i", &SA5_access},
197 	{0x1921103C, "Smart Array P830i", &SA5_access},
198 	{0x1922103C, "Smart Array P430", &SA5_access},
199 	{0x1923103C, "Smart Array P431", &SA5_access},
200 	{0x1924103C, "Smart Array P830", &SA5_access},
201 	{0x1925103C, "Smart Array P831", &SA5_access},
202 	{0x1926103C, "Smart Array P731m", &SA5_access},
203 	{0x1928103C, "Smart Array P230i", &SA5_access},
204 	{0x1929103C, "Smart Array P530", &SA5_access},
205 	{0x21BD103C, "Smart Array P244br", &SA5_access},
206 	{0x21BE103C, "Smart Array P741m", &SA5_access},
207 	{0x21BF103C, "Smart HBA H240ar", &SA5_access},
208 	{0x21C0103C, "Smart Array P440ar", &SA5_access},
209 	{0x21C1103C, "Smart Array P840ar", &SA5_access},
210 	{0x21C2103C, "Smart Array P440", &SA5_access},
211 	{0x21C3103C, "Smart Array P441", &SA5_access},
212 	{0x21C4103C, "Smart Array", &SA5_access},
213 	{0x21C5103C, "Smart Array P841", &SA5_access},
214 	{0x21C6103C, "Smart HBA H244br", &SA5_access},
215 	{0x21C7103C, "Smart HBA H240", &SA5_access},
216 	{0x21C8103C, "Smart HBA H241", &SA5_access},
217 	{0x21C9103C, "Smart Array", &SA5_access},
218 	{0x21CA103C, "Smart Array P246br", &SA5_access},
219 	{0x21CB103C, "Smart Array P840", &SA5_access},
220 	{0x21CC103C, "Smart Array", &SA5_access},
221 	{0x21CD103C, "Smart Array", &SA5_access},
222 	{0x21CE103C, "Smart HBA", &SA5_access},
223 	{0x05809005, "SmartHBA-SA", &SA5_access},
224 	{0x05819005, "SmartHBA-SA 8i", &SA5_access},
225 	{0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
226 	{0x05839005, "SmartHBA-SA 8e", &SA5_access},
227 	{0x05849005, "SmartHBA-SA 16i", &SA5_access},
228 	{0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
229 	{0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
230 	{0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
231 	{0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
232 	{0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
233 	{0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
234 	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
235 };
236 
237 static struct scsi_transport_template *hpsa_sas_transport_template;
238 static int hpsa_add_sas_host(struct ctlr_info *h);
239 static void hpsa_delete_sas_host(struct ctlr_info *h);
240 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
241 			struct hpsa_scsi_dev_t *device);
242 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
243 static struct hpsa_scsi_dev_t
244 	*hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
245 		struct sas_rphy *rphy);
246 
247 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
248 static const struct scsi_cmnd hpsa_cmd_busy;
249 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
250 static const struct scsi_cmnd hpsa_cmd_idle;
251 static int number_of_controllers;
252 
253 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
254 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
255 static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
256 		      void __user *arg);
257 static int hpsa_passthru_ioctl(struct ctlr_info *h,
258 			       IOCTL_Command_struct *iocommand);
259 static int hpsa_big_passthru_ioctl(struct ctlr_info *h,
260 				   BIG_IOCTL_Command_struct *ioc);
261 
262 #ifdef CONFIG_COMPAT
263 static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
264 	void __user *arg);
265 #endif
266 
267 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
268 static struct CommandList *cmd_alloc(struct ctlr_info *h);
269 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
270 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
271 					    struct scsi_cmnd *scmd);
272 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
273 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
274 	int cmd_type);
275 static void hpsa_free_cmd_pool(struct ctlr_info *h);
276 #define VPD_PAGE (1 << 8)
277 #define HPSA_SIMPLE_ERROR_BITS 0x03
278 
279 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
280 static void hpsa_scan_start(struct Scsi_Host *);
281 static int hpsa_scan_finished(struct Scsi_Host *sh,
282 	unsigned long elapsed_time);
283 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
284 
285 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
286 static int hpsa_sdev_init(struct scsi_device *sdev);
287 static int hpsa_sdev_configure(struct scsi_device *sdev,
288 			       struct queue_limits *lim);
289 static void hpsa_sdev_destroy(struct scsi_device *sdev);
290 
291 static void hpsa_update_scsi_devices(struct ctlr_info *h);
292 static int check_for_unit_attention(struct ctlr_info *h,
293 	struct CommandList *c);
294 static void check_ioctl_unit_attention(struct ctlr_info *h,
295 	struct CommandList *c);
296 /* performant mode helper functions */
297 static void calc_bucket_map(int *bucket, int num_buckets,
298 	int nsgs, int min_blocks, u32 *bucket_map);
299 static void hpsa_free_performant_mode(struct ctlr_info *h);
300 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
301 static inline u32 next_command(struct ctlr_info *h, u8 q);
302 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
303 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
304 			       u64 *cfg_offset);
305 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
306 				    unsigned long *memory_bar);
307 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
308 				bool *legacy_board);
309 static int wait_for_device_to_become_ready(struct ctlr_info *h,
310 					   unsigned char lunaddr[],
311 					   int reply_queue);
312 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
313 				     int wait_for_ready);
314 static inline void finish_cmd(struct CommandList *c);
315 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
316 #define BOARD_NOT_READY 0
317 #define BOARD_READY 1
318 static void hpsa_drain_accel_commands(struct ctlr_info *h);
319 static void hpsa_flush_cache(struct ctlr_info *h);
320 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
321 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
322 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
323 static void hpsa_command_resubmit_worker(struct work_struct *work);
324 static u32 lockup_detected(struct ctlr_info *h);
325 static int detect_controller_lockup(struct ctlr_info *h);
326 static void hpsa_disable_rld_caching(struct ctlr_info *h);
327 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
328 	struct ReportExtendedLUNdata *buf, int bufsize);
329 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
330 	unsigned char scsi3addr[], u8 page);
331 static int hpsa_luns_changed(struct ctlr_info *h);
332 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
333 			       struct hpsa_scsi_dev_t *dev,
334 			       unsigned char *scsi3addr);
335 
sdev_to_hba(struct scsi_device * sdev)336 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
337 {
338 	unsigned long *priv = shost_priv(sdev->host);
339 	return (struct ctlr_info *) *priv;
340 }
341 
shost_to_hba(struct Scsi_Host * sh)342 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
343 {
344 	unsigned long *priv = shost_priv(sh);
345 	return (struct ctlr_info *) *priv;
346 }
347 
hpsa_is_cmd_idle(struct CommandList * c)348 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
349 {
350 	return c->scsi_cmd == SCSI_CMD_IDLE;
351 }
352 
353 /* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
decode_sense_data(const u8 * sense_data,int sense_data_len,u8 * sense_key,u8 * asc,u8 * ascq)354 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
355 			u8 *sense_key, u8 *asc, u8 *ascq)
356 {
357 	struct scsi_sense_hdr sshdr;
358 	bool rc;
359 
360 	*sense_key = -1;
361 	*asc = -1;
362 	*ascq = -1;
363 
364 	if (sense_data_len < 1)
365 		return;
366 
367 	rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
368 	if (rc) {
369 		*sense_key = sshdr.sense_key;
370 		*asc = sshdr.asc;
371 		*ascq = sshdr.ascq;
372 	}
373 }
374 
check_for_unit_attention(struct ctlr_info * h,struct CommandList * c)375 static int check_for_unit_attention(struct ctlr_info *h,
376 	struct CommandList *c)
377 {
378 	u8 sense_key, asc, ascq;
379 	int sense_len;
380 
381 	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
382 		sense_len = sizeof(c->err_info->SenseInfo);
383 	else
384 		sense_len = c->err_info->SenseLen;
385 
386 	decode_sense_data(c->err_info->SenseInfo, sense_len,
387 				&sense_key, &asc, &ascq);
388 	if (sense_key != UNIT_ATTENTION || asc == 0xff)
389 		return 0;
390 
391 	switch (asc) {
392 	case STATE_CHANGED:
393 		dev_warn(&h->pdev->dev,
394 			"%s: a state change detected, command retried\n",
395 			h->devname);
396 		break;
397 	case LUN_FAILED:
398 		dev_warn(&h->pdev->dev,
399 			"%s: LUN failure detected\n", h->devname);
400 		break;
401 	case REPORT_LUNS_CHANGED:
402 		dev_warn(&h->pdev->dev,
403 			"%s: report LUN data changed\n", h->devname);
404 	/*
405 	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
406 	 * target (array) devices.
407 	 */
408 		break;
409 	case POWER_OR_RESET:
410 		dev_warn(&h->pdev->dev,
411 			"%s: a power on or device reset detected\n",
412 			h->devname);
413 		break;
414 	case UNIT_ATTENTION_CLEARED:
415 		dev_warn(&h->pdev->dev,
416 			"%s: unit attention cleared by another initiator\n",
417 			h->devname);
418 		break;
419 	default:
420 		dev_warn(&h->pdev->dev,
421 			"%s: unknown unit attention detected\n",
422 			h->devname);
423 		break;
424 	}
425 	return 1;
426 }
427 
check_for_busy(struct ctlr_info * h,struct CommandList * c)428 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
429 {
430 	if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
431 		(c->err_info->ScsiStatus != SAM_STAT_BUSY &&
432 		 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
433 		return 0;
434 	dev_warn(&h->pdev->dev, HPSA "device busy");
435 	return 1;
436 }
437 
438 static u32 lockup_detected(struct ctlr_info *h);
host_show_lockup_detected(struct device * dev,struct device_attribute * attr,char * buf)439 static ssize_t host_show_lockup_detected(struct device *dev,
440 		struct device_attribute *attr, char *buf)
441 {
442 	int ld;
443 	struct ctlr_info *h;
444 	struct Scsi_Host *shost = class_to_shost(dev);
445 
446 	h = shost_to_hba(shost);
447 	ld = lockup_detected(h);
448 
449 	return sprintf(buf, "ld=%d\n", ld);
450 }
451 
host_store_hp_ssd_smart_path_status(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)452 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
453 					 struct device_attribute *attr,
454 					 const char *buf, size_t count)
455 {
456 	int status, len;
457 	struct ctlr_info *h;
458 	struct Scsi_Host *shost = class_to_shost(dev);
459 	char tmpbuf[10];
460 
461 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
462 		return -EACCES;
463 	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
464 	strncpy(tmpbuf, buf, len);
465 	tmpbuf[len] = '\0';
466 	if (sscanf(tmpbuf, "%d", &status) != 1)
467 		return -EINVAL;
468 	h = shost_to_hba(shost);
469 	h->acciopath_status = !!status;
470 	dev_warn(&h->pdev->dev,
471 		"hpsa: HP SSD Smart Path %s via sysfs update.\n",
472 		h->acciopath_status ? "enabled" : "disabled");
473 	return count;
474 }
475 
host_store_raid_offload_debug(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)476 static ssize_t host_store_raid_offload_debug(struct device *dev,
477 					 struct device_attribute *attr,
478 					 const char *buf, size_t count)
479 {
480 	int debug_level, len;
481 	struct ctlr_info *h;
482 	struct Scsi_Host *shost = class_to_shost(dev);
483 	char tmpbuf[10];
484 
485 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
486 		return -EACCES;
487 	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
488 	strncpy(tmpbuf, buf, len);
489 	tmpbuf[len] = '\0';
490 	if (sscanf(tmpbuf, "%d", &debug_level) != 1)
491 		return -EINVAL;
492 	if (debug_level < 0)
493 		debug_level = 0;
494 	h = shost_to_hba(shost);
495 	h->raid_offload_debug = debug_level;
496 	dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
497 		h->raid_offload_debug);
498 	return count;
499 }
500 
host_store_rescan(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)501 static ssize_t host_store_rescan(struct device *dev,
502 				 struct device_attribute *attr,
503 				 const char *buf, size_t count)
504 {
505 	struct ctlr_info *h;
506 	struct Scsi_Host *shost = class_to_shost(dev);
507 	h = shost_to_hba(shost);
508 	hpsa_scan_start(h->scsi_host);
509 	return count;
510 }
511 
hpsa_turn_off_ioaccel_for_device(struct hpsa_scsi_dev_t * device)512 static void hpsa_turn_off_ioaccel_for_device(struct hpsa_scsi_dev_t *device)
513 {
514 	device->offload_enabled = 0;
515 	device->offload_to_be_enabled = 0;
516 }
517 
host_show_firmware_revision(struct device * dev,struct device_attribute * attr,char * buf)518 static ssize_t host_show_firmware_revision(struct device *dev,
519 	     struct device_attribute *attr, char *buf)
520 {
521 	struct ctlr_info *h;
522 	struct Scsi_Host *shost = class_to_shost(dev);
523 	unsigned char *fwrev;
524 
525 	h = shost_to_hba(shost);
526 	if (!h->hba_inquiry_data)
527 		return 0;
528 	fwrev = &h->hba_inquiry_data[32];
529 	return snprintf(buf, 20, "%c%c%c%c\n",
530 		fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
531 }
532 
host_show_commands_outstanding(struct device * dev,struct device_attribute * attr,char * buf)533 static ssize_t host_show_commands_outstanding(struct device *dev,
534 	     struct device_attribute *attr, char *buf)
535 {
536 	struct Scsi_Host *shost = class_to_shost(dev);
537 	struct ctlr_info *h = shost_to_hba(shost);
538 
539 	return snprintf(buf, 20, "%d\n",
540 			atomic_read(&h->commands_outstanding));
541 }
542 
host_show_transport_mode(struct device * dev,struct device_attribute * attr,char * buf)543 static ssize_t host_show_transport_mode(struct device *dev,
544 	struct device_attribute *attr, char *buf)
545 {
546 	struct ctlr_info *h;
547 	struct Scsi_Host *shost = class_to_shost(dev);
548 
549 	h = shost_to_hba(shost);
550 	return snprintf(buf, 20, "%s\n",
551 		h->transMethod & CFGTBL_Trans_Performant ?
552 			"performant" : "simple");
553 }
554 
host_show_hp_ssd_smart_path_status(struct device * dev,struct device_attribute * attr,char * buf)555 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
556 	struct device_attribute *attr, char *buf)
557 {
558 	struct ctlr_info *h;
559 	struct Scsi_Host *shost = class_to_shost(dev);
560 
561 	h = shost_to_hba(shost);
562 	return snprintf(buf, 30, "HP SSD Smart Path %s\n",
563 		(h->acciopath_status == 1) ?  "enabled" : "disabled");
564 }
565 
566 /* List of controllers which cannot be hard reset on kexec with reset_devices */
567 static u32 unresettable_controller[] = {
568 	0x324a103C, /* Smart Array P712m */
569 	0x324b103C, /* Smart Array P711m */
570 	0x3223103C, /* Smart Array P800 */
571 	0x3234103C, /* Smart Array P400 */
572 	0x3235103C, /* Smart Array P400i */
573 	0x3211103C, /* Smart Array E200i */
574 	0x3212103C, /* Smart Array E200 */
575 	0x3213103C, /* Smart Array E200i */
576 	0x3214103C, /* Smart Array E200i */
577 	0x3215103C, /* Smart Array E200i */
578 	0x3237103C, /* Smart Array E500 */
579 	0x323D103C, /* Smart Array P700m */
580 	0x40800E11, /* Smart Array 5i */
581 	0x409C0E11, /* Smart Array 6400 */
582 	0x409D0E11, /* Smart Array 6400 EM */
583 	0x40700E11, /* Smart Array 5300 */
584 	0x40820E11, /* Smart Array 532 */
585 	0x40830E11, /* Smart Array 5312 */
586 	0x409A0E11, /* Smart Array 641 */
587 	0x409B0E11, /* Smart Array 642 */
588 	0x40910E11, /* Smart Array 6i */
589 };
590 
591 /* List of controllers which cannot even be soft reset */
592 static u32 soft_unresettable_controller[] = {
593 	0x40800E11, /* Smart Array 5i */
594 	0x40700E11, /* Smart Array 5300 */
595 	0x40820E11, /* Smart Array 532 */
596 	0x40830E11, /* Smart Array 5312 */
597 	0x409A0E11, /* Smart Array 641 */
598 	0x409B0E11, /* Smart Array 642 */
599 	0x40910E11, /* Smart Array 6i */
600 	/* Exclude 640x boards.  These are two pci devices in one slot
601 	 * which share a battery backed cache module.  One controls the
602 	 * cache, the other accesses the cache through the one that controls
603 	 * it.  If we reset the one controlling the cache, the other will
604 	 * likely not be happy.  Just forbid resetting this conjoined mess.
605 	 * The 640x isn't really supported by hpsa anyway.
606 	 */
607 	0x409C0E11, /* Smart Array 6400 */
608 	0x409D0E11, /* Smart Array 6400 EM */
609 };
610 
board_id_in_array(u32 a[],int nelems,u32 board_id)611 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
612 {
613 	int i;
614 
615 	for (i = 0; i < nelems; i++)
616 		if (a[i] == board_id)
617 			return 1;
618 	return 0;
619 }
620 
ctlr_is_hard_resettable(u32 board_id)621 static int ctlr_is_hard_resettable(u32 board_id)
622 {
623 	return !board_id_in_array(unresettable_controller,
624 			ARRAY_SIZE(unresettable_controller), board_id);
625 }
626 
ctlr_is_soft_resettable(u32 board_id)627 static int ctlr_is_soft_resettable(u32 board_id)
628 {
629 	return !board_id_in_array(soft_unresettable_controller,
630 			ARRAY_SIZE(soft_unresettable_controller), board_id);
631 }
632 
ctlr_is_resettable(u32 board_id)633 static int ctlr_is_resettable(u32 board_id)
634 {
635 	return ctlr_is_hard_resettable(board_id) ||
636 		ctlr_is_soft_resettable(board_id);
637 }
638 
host_show_resettable(struct device * dev,struct device_attribute * attr,char * buf)639 static ssize_t host_show_resettable(struct device *dev,
640 	struct device_attribute *attr, char *buf)
641 {
642 	struct ctlr_info *h;
643 	struct Scsi_Host *shost = class_to_shost(dev);
644 
645 	h = shost_to_hba(shost);
646 	return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
647 }
648 
is_logical_dev_addr_mode(unsigned char scsi3addr[])649 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
650 {
651 	return (scsi3addr[3] & 0xC0) == 0x40;
652 }
653 
654 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
655 	"1(+0)ADM", "UNKNOWN", "PHYS DRV"
656 };
657 #define HPSA_RAID_0	0
658 #define HPSA_RAID_4	1
659 #define HPSA_RAID_1	2	/* also used for RAID 10 */
660 #define HPSA_RAID_5	3	/* also used for RAID 50 */
661 #define HPSA_RAID_51	4
662 #define HPSA_RAID_6	5	/* also used for RAID 60 */
663 #define HPSA_RAID_ADM	6	/* also used for RAID 1+0 ADM */
664 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
665 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
666 
is_logical_device(struct hpsa_scsi_dev_t * device)667 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
668 {
669 	return !device->physical_device;
670 }
671 
raid_level_show(struct device * dev,struct device_attribute * attr,char * buf)672 static ssize_t raid_level_show(struct device *dev,
673 	     struct device_attribute *attr, char *buf)
674 {
675 	ssize_t l = 0;
676 	unsigned char rlevel;
677 	struct ctlr_info *h;
678 	struct scsi_device *sdev;
679 	struct hpsa_scsi_dev_t *hdev;
680 	unsigned long flags;
681 
682 	sdev = to_scsi_device(dev);
683 	h = sdev_to_hba(sdev);
684 	spin_lock_irqsave(&h->lock, flags);
685 	hdev = sdev->hostdata;
686 	if (!hdev) {
687 		spin_unlock_irqrestore(&h->lock, flags);
688 		return -ENODEV;
689 	}
690 
691 	/* Is this even a logical drive? */
692 	if (!is_logical_device(hdev)) {
693 		spin_unlock_irqrestore(&h->lock, flags);
694 		l = snprintf(buf, PAGE_SIZE, "N/A\n");
695 		return l;
696 	}
697 
698 	rlevel = hdev->raid_level;
699 	spin_unlock_irqrestore(&h->lock, flags);
700 	if (rlevel > RAID_UNKNOWN)
701 		rlevel = RAID_UNKNOWN;
702 	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
703 	return l;
704 }
705 
lunid_show(struct device * dev,struct device_attribute * attr,char * buf)706 static ssize_t lunid_show(struct device *dev,
707 	     struct device_attribute *attr, char *buf)
708 {
709 	struct ctlr_info *h;
710 	struct scsi_device *sdev;
711 	struct hpsa_scsi_dev_t *hdev;
712 	unsigned long flags;
713 	unsigned char lunid[8];
714 
715 	sdev = to_scsi_device(dev);
716 	h = sdev_to_hba(sdev);
717 	spin_lock_irqsave(&h->lock, flags);
718 	hdev = sdev->hostdata;
719 	if (!hdev) {
720 		spin_unlock_irqrestore(&h->lock, flags);
721 		return -ENODEV;
722 	}
723 	memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
724 	spin_unlock_irqrestore(&h->lock, flags);
725 	return snprintf(buf, 20, "0x%8phN\n", lunid);
726 }
727 
unique_id_show(struct device * dev,struct device_attribute * attr,char * buf)728 static ssize_t unique_id_show(struct device *dev,
729 	     struct device_attribute *attr, char *buf)
730 {
731 	struct ctlr_info *h;
732 	struct scsi_device *sdev;
733 	struct hpsa_scsi_dev_t *hdev;
734 	unsigned long flags;
735 	unsigned char sn[16];
736 
737 	sdev = to_scsi_device(dev);
738 	h = sdev_to_hba(sdev);
739 	spin_lock_irqsave(&h->lock, flags);
740 	hdev = sdev->hostdata;
741 	if (!hdev) {
742 		spin_unlock_irqrestore(&h->lock, flags);
743 		return -ENODEV;
744 	}
745 	memcpy(sn, hdev->device_id, sizeof(sn));
746 	spin_unlock_irqrestore(&h->lock, flags);
747 	return snprintf(buf, 16 * 2 + 2,
748 			"%02X%02X%02X%02X%02X%02X%02X%02X"
749 			"%02X%02X%02X%02X%02X%02X%02X%02X\n",
750 			sn[0], sn[1], sn[2], sn[3],
751 			sn[4], sn[5], sn[6], sn[7],
752 			sn[8], sn[9], sn[10], sn[11],
753 			sn[12], sn[13], sn[14], sn[15]);
754 }
755 
sas_address_show(struct device * dev,struct device_attribute * attr,char * buf)756 static ssize_t sas_address_show(struct device *dev,
757 	      struct device_attribute *attr, char *buf)
758 {
759 	struct ctlr_info *h;
760 	struct scsi_device *sdev;
761 	struct hpsa_scsi_dev_t *hdev;
762 	unsigned long flags;
763 	u64 sas_address;
764 
765 	sdev = to_scsi_device(dev);
766 	h = sdev_to_hba(sdev);
767 	spin_lock_irqsave(&h->lock, flags);
768 	hdev = sdev->hostdata;
769 	if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
770 		spin_unlock_irqrestore(&h->lock, flags);
771 		return -ENODEV;
772 	}
773 	sas_address = hdev->sas_address;
774 	spin_unlock_irqrestore(&h->lock, flags);
775 
776 	return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
777 }
778 
host_show_hp_ssd_smart_path_enabled(struct device * dev,struct device_attribute * attr,char * buf)779 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
780 	     struct device_attribute *attr, char *buf)
781 {
782 	struct ctlr_info *h;
783 	struct scsi_device *sdev;
784 	struct hpsa_scsi_dev_t *hdev;
785 	unsigned long flags;
786 	int offload_enabled;
787 
788 	sdev = to_scsi_device(dev);
789 	h = sdev_to_hba(sdev);
790 	spin_lock_irqsave(&h->lock, flags);
791 	hdev = sdev->hostdata;
792 	if (!hdev) {
793 		spin_unlock_irqrestore(&h->lock, flags);
794 		return -ENODEV;
795 	}
796 	offload_enabled = hdev->offload_enabled;
797 	spin_unlock_irqrestore(&h->lock, flags);
798 
799 	if (hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC)
800 		return snprintf(buf, 20, "%d\n", offload_enabled);
801 	else
802 		return snprintf(buf, 40, "%s\n",
803 				"Not applicable for a controller");
804 }
805 
806 #define MAX_PATHS 8
path_info_show(struct device * dev,struct device_attribute * attr,char * buf)807 static ssize_t path_info_show(struct device *dev,
808 	     struct device_attribute *attr, char *buf)
809 {
810 	struct ctlr_info *h;
811 	struct scsi_device *sdev;
812 	struct hpsa_scsi_dev_t *hdev;
813 	unsigned long flags;
814 	int i;
815 	int output_len = 0;
816 	u8 box;
817 	u8 bay;
818 	u8 path_map_index = 0;
819 	char *active;
820 	unsigned char phys_connector[2];
821 
822 	sdev = to_scsi_device(dev);
823 	h = sdev_to_hba(sdev);
824 	spin_lock_irqsave(&h->devlock, flags);
825 	hdev = sdev->hostdata;
826 	if (!hdev) {
827 		spin_unlock_irqrestore(&h->devlock, flags);
828 		return -ENODEV;
829 	}
830 
831 	bay = hdev->bay;
832 	for (i = 0; i < MAX_PATHS; i++) {
833 		path_map_index = 1<<i;
834 		if (i == hdev->active_path_index)
835 			active = "Active";
836 		else if (hdev->path_map & path_map_index)
837 			active = "Inactive";
838 		else
839 			continue;
840 
841 		output_len += scnprintf(buf + output_len,
842 				PAGE_SIZE - output_len,
843 				"[%d:%d:%d:%d] %20.20s ",
844 				h->scsi_host->host_no,
845 				hdev->bus, hdev->target, hdev->lun,
846 				scsi_device_type(hdev->devtype));
847 
848 		if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
849 			output_len += scnprintf(buf + output_len,
850 						PAGE_SIZE - output_len,
851 						"%s\n", active);
852 			continue;
853 		}
854 
855 		box = hdev->box[i];
856 		memcpy(&phys_connector, &hdev->phys_connector[i],
857 			sizeof(phys_connector));
858 		if (phys_connector[0] < '0')
859 			phys_connector[0] = '0';
860 		if (phys_connector[1] < '0')
861 			phys_connector[1] = '0';
862 		output_len += scnprintf(buf + output_len,
863 				PAGE_SIZE - output_len,
864 				"PORT: %.2s ",
865 				phys_connector);
866 		if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
867 			hdev->expose_device) {
868 			if (box == 0 || box == 0xFF) {
869 				output_len += scnprintf(buf + output_len,
870 					PAGE_SIZE - output_len,
871 					"BAY: %hhu %s\n",
872 					bay, active);
873 			} else {
874 				output_len += scnprintf(buf + output_len,
875 					PAGE_SIZE - output_len,
876 					"BOX: %hhu BAY: %hhu %s\n",
877 					box, bay, active);
878 			}
879 		} else if (box != 0 && box != 0xFF) {
880 			output_len += scnprintf(buf + output_len,
881 				PAGE_SIZE - output_len, "BOX: %hhu %s\n",
882 				box, active);
883 		} else
884 			output_len += scnprintf(buf + output_len,
885 				PAGE_SIZE - output_len, "%s\n", active);
886 	}
887 
888 	spin_unlock_irqrestore(&h->devlock, flags);
889 	return output_len;
890 }
891 
host_show_ctlr_num(struct device * dev,struct device_attribute * attr,char * buf)892 static ssize_t host_show_ctlr_num(struct device *dev,
893 	struct device_attribute *attr, char *buf)
894 {
895 	struct ctlr_info *h;
896 	struct Scsi_Host *shost = class_to_shost(dev);
897 
898 	h = shost_to_hba(shost);
899 	return snprintf(buf, 20, "%d\n", h->ctlr);
900 }
901 
host_show_legacy_board(struct device * dev,struct device_attribute * attr,char * buf)902 static ssize_t host_show_legacy_board(struct device *dev,
903 	struct device_attribute *attr, char *buf)
904 {
905 	struct ctlr_info *h;
906 	struct Scsi_Host *shost = class_to_shost(dev);
907 
908 	h = shost_to_hba(shost);
909 	return snprintf(buf, 20, "%d\n", h->legacy_board ? 1 : 0);
910 }
911 
912 static DEVICE_ATTR_RO(raid_level);
913 static DEVICE_ATTR_RO(lunid);
914 static DEVICE_ATTR_RO(unique_id);
915 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
916 static DEVICE_ATTR_RO(sas_address);
917 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
918 			host_show_hp_ssd_smart_path_enabled, NULL);
919 static DEVICE_ATTR_RO(path_info);
920 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
921 		host_show_hp_ssd_smart_path_status,
922 		host_store_hp_ssd_smart_path_status);
923 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
924 			host_store_raid_offload_debug);
925 static DEVICE_ATTR(firmware_revision, S_IRUGO,
926 	host_show_firmware_revision, NULL);
927 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
928 	host_show_commands_outstanding, NULL);
929 static DEVICE_ATTR(transport_mode, S_IRUGO,
930 	host_show_transport_mode, NULL);
931 static DEVICE_ATTR(resettable, S_IRUGO,
932 	host_show_resettable, NULL);
933 static DEVICE_ATTR(lockup_detected, S_IRUGO,
934 	host_show_lockup_detected, NULL);
935 static DEVICE_ATTR(ctlr_num, S_IRUGO,
936 	host_show_ctlr_num, NULL);
937 static DEVICE_ATTR(legacy_board, S_IRUGO,
938 	host_show_legacy_board, NULL);
939 
940 static struct attribute *hpsa_sdev_attrs[] = {
941 	&dev_attr_raid_level.attr,
942 	&dev_attr_lunid.attr,
943 	&dev_attr_unique_id.attr,
944 	&dev_attr_hp_ssd_smart_path_enabled.attr,
945 	&dev_attr_path_info.attr,
946 	&dev_attr_sas_address.attr,
947 	NULL,
948 };
949 
950 ATTRIBUTE_GROUPS(hpsa_sdev);
951 
952 static struct attribute *hpsa_shost_attrs[] = {
953 	&dev_attr_rescan.attr,
954 	&dev_attr_firmware_revision.attr,
955 	&dev_attr_commands_outstanding.attr,
956 	&dev_attr_transport_mode.attr,
957 	&dev_attr_resettable.attr,
958 	&dev_attr_hp_ssd_smart_path_status.attr,
959 	&dev_attr_raid_offload_debug.attr,
960 	&dev_attr_lockup_detected.attr,
961 	&dev_attr_ctlr_num.attr,
962 	&dev_attr_legacy_board.attr,
963 	NULL,
964 };
965 
966 ATTRIBUTE_GROUPS(hpsa_shost);
967 
968 #define HPSA_NRESERVED_CMDS	(HPSA_CMDS_RESERVED_FOR_DRIVER +\
969 				 HPSA_MAX_CONCURRENT_PASSTHRUS)
970 
971 static const struct scsi_host_template hpsa_driver_template = {
972 	.module			= THIS_MODULE,
973 	.name			= HPSA,
974 	.proc_name		= HPSA,
975 	.queuecommand		= hpsa_scsi_queue_command,
976 	.scan_start		= hpsa_scan_start,
977 	.scan_finished		= hpsa_scan_finished,
978 	.change_queue_depth	= hpsa_change_queue_depth,
979 	.this_id		= -1,
980 	.eh_device_reset_handler = hpsa_eh_device_reset_handler,
981 	.ioctl			= hpsa_ioctl,
982 	.sdev_init		= hpsa_sdev_init,
983 	.sdev_configure		= hpsa_sdev_configure,
984 	.sdev_destroy		= hpsa_sdev_destroy,
985 #ifdef CONFIG_COMPAT
986 	.compat_ioctl		= hpsa_compat_ioctl,
987 #endif
988 	.sdev_groups = hpsa_sdev_groups,
989 	.shost_groups = hpsa_shost_groups,
990 	.max_sectors = 2048,
991 	.no_write_same = 1,
992 };
993 
next_command(struct ctlr_info * h,u8 q)994 static inline u32 next_command(struct ctlr_info *h, u8 q)
995 {
996 	u32 a;
997 	struct reply_queue_buffer *rq = &h->reply_queue[q];
998 
999 	if (h->transMethod & CFGTBL_Trans_io_accel1)
1000 		return h->access.command_completed(h, q);
1001 
1002 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
1003 		return h->access.command_completed(h, q);
1004 
1005 	if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
1006 		a = rq->head[rq->current_entry];
1007 		rq->current_entry++;
1008 		atomic_dec(&h->commands_outstanding);
1009 	} else {
1010 		a = FIFO_EMPTY;
1011 	}
1012 	/* Check for wraparound */
1013 	if (rq->current_entry == h->max_commands) {
1014 		rq->current_entry = 0;
1015 		rq->wraparound ^= 1;
1016 	}
1017 	return a;
1018 }
1019 
1020 /*
1021  * There are some special bits in the bus address of the
1022  * command that we have to set for the controller to know
1023  * how to process the command:
1024  *
1025  * Normal performant mode:
1026  * bit 0: 1 means performant mode, 0 means simple mode.
1027  * bits 1-3 = block fetch table entry
1028  * bits 4-6 = command type (== 0)
1029  *
1030  * ioaccel1 mode:
1031  * bit 0 = "performant mode" bit.
1032  * bits 1-3 = block fetch table entry
1033  * bits 4-6 = command type (== 110)
1034  * (command type is needed because ioaccel1 mode
1035  * commands are submitted through the same register as normal
1036  * mode commands, so this is how the controller knows whether
1037  * the command is normal mode or ioaccel1 mode.)
1038  *
1039  * ioaccel2 mode:
1040  * bit 0 = "performant mode" bit.
1041  * bits 1-4 = block fetch table entry (note extra bit)
1042  * bits 4-6 = not needed, because ioaccel2 mode has
1043  * a separate special register for submitting commands.
1044  */
1045 
1046 /*
1047  * set_performant_mode: Modify the tag for cciss performant
1048  * set bit 0 for pull model, bits 3-1 for block fetch
1049  * register number
1050  */
1051 #define DEFAULT_REPLY_QUEUE (-1)
set_performant_mode(struct ctlr_info * h,struct CommandList * c,int reply_queue)1052 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
1053 					int reply_queue)
1054 {
1055 	if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
1056 		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
1057 		if (unlikely(!h->msix_vectors))
1058 			return;
1059 		c->Header.ReplyQueue = reply_queue;
1060 	}
1061 }
1062 
set_ioaccel1_performant_mode(struct ctlr_info * h,struct CommandList * c,int reply_queue)1063 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
1064 						struct CommandList *c,
1065 						int reply_queue)
1066 {
1067 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
1068 
1069 	/*
1070 	 * Tell the controller to post the reply to the queue for this
1071 	 * processor.  This seems to give the best I/O throughput.
1072 	 */
1073 	cp->ReplyQueue = reply_queue;
1074 	/*
1075 	 * Set the bits in the address sent down to include:
1076 	 *  - performant mode bit (bit 0)
1077 	 *  - pull count (bits 1-3)
1078 	 *  - command type (bits 4-6)
1079 	 */
1080 	c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1081 					IOACCEL1_BUSADDR_CMDTYPE;
1082 }
1083 
set_ioaccel2_tmf_performant_mode(struct ctlr_info * h,struct CommandList * c,int reply_queue)1084 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1085 						struct CommandList *c,
1086 						int reply_queue)
1087 {
1088 	struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1089 		&h->ioaccel2_cmd_pool[c->cmdindex];
1090 
1091 	/* Tell the controller to post the reply to the queue for this
1092 	 * processor.  This seems to give the best I/O throughput.
1093 	 */
1094 	cp->reply_queue = reply_queue;
1095 	/* Set the bits in the address sent down to include:
1096 	 *  - performant mode bit not used in ioaccel mode 2
1097 	 *  - pull count (bits 0-3)
1098 	 *  - command type isn't needed for ioaccel2
1099 	 */
1100 	c->busaddr |= h->ioaccel2_blockFetchTable[0];
1101 }
1102 
set_ioaccel2_performant_mode(struct ctlr_info * h,struct CommandList * c,int reply_queue)1103 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1104 						struct CommandList *c,
1105 						int reply_queue)
1106 {
1107 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1108 
1109 	/*
1110 	 * Tell the controller to post the reply to the queue for this
1111 	 * processor.  This seems to give the best I/O throughput.
1112 	 */
1113 	cp->reply_queue = reply_queue;
1114 	/*
1115 	 * Set the bits in the address sent down to include:
1116 	 *  - performant mode bit not used in ioaccel mode 2
1117 	 *  - pull count (bits 0-3)
1118 	 *  - command type isn't needed for ioaccel2
1119 	 */
1120 	c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1121 }
1122 
is_firmware_flash_cmd(u8 * cdb)1123 static int is_firmware_flash_cmd(u8 *cdb)
1124 {
1125 	return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1126 }
1127 
1128 /*
1129  * During firmware flash, the heartbeat register may not update as frequently
1130  * as it should.  So we dial down lockup detection during firmware flash. and
1131  * dial it back up when firmware flash completes.
1132  */
1133 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1134 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1135 #define HPSA_EVENT_MONITOR_INTERVAL (15 * HZ)
dial_down_lockup_detection_during_fw_flash(struct ctlr_info * h,struct CommandList * c)1136 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1137 		struct CommandList *c)
1138 {
1139 	if (!is_firmware_flash_cmd(c->Request.CDB))
1140 		return;
1141 	atomic_inc(&h->firmware_flash_in_progress);
1142 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1143 }
1144 
dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info * h,struct CommandList * c)1145 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1146 		struct CommandList *c)
1147 {
1148 	if (is_firmware_flash_cmd(c->Request.CDB) &&
1149 		atomic_dec_and_test(&h->firmware_flash_in_progress))
1150 		h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1151 }
1152 
__enqueue_cmd_and_start_io(struct ctlr_info * h,struct CommandList * c,int reply_queue)1153 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1154 	struct CommandList *c, int reply_queue)
1155 {
1156 	dial_down_lockup_detection_during_fw_flash(h, c);
1157 	atomic_inc(&h->commands_outstanding);
1158 	/*
1159 	 * Check to see if the command is being retried.
1160 	 */
1161 	if (c->device && !c->retry_pending)
1162 		atomic_inc(&c->device->commands_outstanding);
1163 
1164 	reply_queue = h->reply_map[raw_smp_processor_id()];
1165 	switch (c->cmd_type) {
1166 	case CMD_IOACCEL1:
1167 		set_ioaccel1_performant_mode(h, c, reply_queue);
1168 		writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1169 		break;
1170 	case CMD_IOACCEL2:
1171 		set_ioaccel2_performant_mode(h, c, reply_queue);
1172 		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1173 		break;
1174 	case IOACCEL2_TMF:
1175 		set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1176 		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1177 		break;
1178 	default:
1179 		set_performant_mode(h, c, reply_queue);
1180 		h->access.submit_command(h, c);
1181 	}
1182 }
1183 
enqueue_cmd_and_start_io(struct ctlr_info * h,struct CommandList * c)1184 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1185 {
1186 	__enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1187 }
1188 
is_hba_lunid(unsigned char scsi3addr[])1189 static inline int is_hba_lunid(unsigned char scsi3addr[])
1190 {
1191 	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1192 }
1193 
is_scsi_rev_5(struct ctlr_info * h)1194 static inline int is_scsi_rev_5(struct ctlr_info *h)
1195 {
1196 	if (!h->hba_inquiry_data)
1197 		return 0;
1198 	if ((h->hba_inquiry_data[2] & 0x07) == 5)
1199 		return 1;
1200 	return 0;
1201 }
1202 
hpsa_find_target_lun(struct ctlr_info * h,unsigned char scsi3addr[],int bus,int * target,int * lun)1203 static int hpsa_find_target_lun(struct ctlr_info *h,
1204 	unsigned char scsi3addr[], int bus, int *target, int *lun)
1205 {
1206 	/* finds an unused bus, target, lun for a new physical device
1207 	 * assumes h->devlock is held
1208 	 */
1209 	int i, found = 0;
1210 	DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1211 
1212 	bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1213 
1214 	for (i = 0; i < h->ndevices; i++) {
1215 		if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1216 			__set_bit(h->dev[i]->target, lun_taken);
1217 	}
1218 
1219 	i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1220 	if (i < HPSA_MAX_DEVICES) {
1221 		/* *bus = 1; */
1222 		*target = i;
1223 		*lun = 0;
1224 		found = 1;
1225 	}
1226 	return !found;
1227 }
1228 
hpsa_show_dev_msg(const char * level,struct ctlr_info * h,struct hpsa_scsi_dev_t * dev,char * description)1229 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1230 	struct hpsa_scsi_dev_t *dev, char *description)
1231 {
1232 #define LABEL_SIZE 25
1233 	char label[LABEL_SIZE];
1234 
1235 	if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1236 		return;
1237 
1238 	switch (dev->devtype) {
1239 	case TYPE_RAID:
1240 		snprintf(label, LABEL_SIZE, "controller");
1241 		break;
1242 	case TYPE_ENCLOSURE:
1243 		snprintf(label, LABEL_SIZE, "enclosure");
1244 		break;
1245 	case TYPE_DISK:
1246 	case TYPE_ZBC:
1247 		if (dev->external)
1248 			snprintf(label, LABEL_SIZE, "external");
1249 		else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1250 			snprintf(label, LABEL_SIZE, "%s",
1251 				raid_label[PHYSICAL_DRIVE]);
1252 		else
1253 			snprintf(label, LABEL_SIZE, "RAID-%s",
1254 				dev->raid_level > RAID_UNKNOWN ? "?" :
1255 				raid_label[dev->raid_level]);
1256 		break;
1257 	case TYPE_ROM:
1258 		snprintf(label, LABEL_SIZE, "rom");
1259 		break;
1260 	case TYPE_TAPE:
1261 		snprintf(label, LABEL_SIZE, "tape");
1262 		break;
1263 	case TYPE_MEDIUM_CHANGER:
1264 		snprintf(label, LABEL_SIZE, "changer");
1265 		break;
1266 	default:
1267 		snprintf(label, LABEL_SIZE, "UNKNOWN");
1268 		break;
1269 	}
1270 
1271 	dev_printk(level, &h->pdev->dev,
1272 			"scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1273 			h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1274 			description,
1275 			scsi_device_type(dev->devtype),
1276 			dev->vendor,
1277 			dev->model,
1278 			label,
1279 			dev->offload_config ? '+' : '-',
1280 			dev->offload_to_be_enabled ? '+' : '-',
1281 			dev->expose_device);
1282 }
1283 
1284 /* Add an entry into h->dev[] array. */
hpsa_scsi_add_entry(struct ctlr_info * h,struct hpsa_scsi_dev_t * device,struct hpsa_scsi_dev_t * added[],int * nadded)1285 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1286 		struct hpsa_scsi_dev_t *device,
1287 		struct hpsa_scsi_dev_t *added[], int *nadded)
1288 {
1289 	/* assumes h->devlock is held */
1290 	int n = h->ndevices;
1291 	int i;
1292 	unsigned char addr1[8], addr2[8];
1293 	struct hpsa_scsi_dev_t *sd;
1294 
1295 	if (n >= HPSA_MAX_DEVICES) {
1296 		dev_err(&h->pdev->dev, "too many devices, some will be "
1297 			"inaccessible.\n");
1298 		return -1;
1299 	}
1300 
1301 	/* physical devices do not have lun or target assigned until now. */
1302 	if (device->lun != -1)
1303 		/* Logical device, lun is already assigned. */
1304 		goto lun_assigned;
1305 
1306 	/* If this device a non-zero lun of a multi-lun device
1307 	 * byte 4 of the 8-byte LUN addr will contain the logical
1308 	 * unit no, zero otherwise.
1309 	 */
1310 	if (device->scsi3addr[4] == 0) {
1311 		/* This is not a non-zero lun of a multi-lun device */
1312 		if (hpsa_find_target_lun(h, device->scsi3addr,
1313 			device->bus, &device->target, &device->lun) != 0)
1314 			return -1;
1315 		goto lun_assigned;
1316 	}
1317 
1318 	/* This is a non-zero lun of a multi-lun device.
1319 	 * Search through our list and find the device which
1320 	 * has the same 8 byte LUN address, excepting byte 4 and 5.
1321 	 * Assign the same bus and target for this new LUN.
1322 	 * Use the logical unit number from the firmware.
1323 	 */
1324 	memcpy(addr1, device->scsi3addr, 8);
1325 	addr1[4] = 0;
1326 	addr1[5] = 0;
1327 	for (i = 0; i < n; i++) {
1328 		sd = h->dev[i];
1329 		memcpy(addr2, sd->scsi3addr, 8);
1330 		addr2[4] = 0;
1331 		addr2[5] = 0;
1332 		/* differ only in byte 4 and 5? */
1333 		if (memcmp(addr1, addr2, 8) == 0) {
1334 			device->bus = sd->bus;
1335 			device->target = sd->target;
1336 			device->lun = device->scsi3addr[4];
1337 			break;
1338 		}
1339 	}
1340 	if (device->lun == -1) {
1341 		dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1342 			" suspect firmware bug or unsupported hardware "
1343 			"configuration.\n");
1344 		return -1;
1345 	}
1346 
1347 lun_assigned:
1348 
1349 	h->dev[n] = device;
1350 	h->ndevices++;
1351 	added[*nadded] = device;
1352 	(*nadded)++;
1353 	hpsa_show_dev_msg(KERN_INFO, h, device,
1354 		device->expose_device ? "added" : "masked");
1355 	return 0;
1356 }
1357 
1358 /*
1359  * Called during a scan operation.
1360  *
1361  * Update an entry in h->dev[] array.
1362  */
hpsa_scsi_update_entry(struct ctlr_info * h,int entry,struct hpsa_scsi_dev_t * new_entry)1363 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1364 	int entry, struct hpsa_scsi_dev_t *new_entry)
1365 {
1366 	/* assumes h->devlock is held */
1367 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1368 
1369 	/* Raid level changed. */
1370 	h->dev[entry]->raid_level = new_entry->raid_level;
1371 
1372 	/*
1373 	 * ioacccel_handle may have changed for a dual domain disk
1374 	 */
1375 	h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1376 
1377 	/* Raid offload parameters changed.  Careful about the ordering. */
1378 	if (new_entry->offload_config && new_entry->offload_to_be_enabled) {
1379 		/*
1380 		 * if drive is newly offload_enabled, we want to copy the
1381 		 * raid map data first.  If previously offload_enabled and
1382 		 * offload_config were set, raid map data had better be
1383 		 * the same as it was before. If raid map data has changed
1384 		 * then it had better be the case that
1385 		 * h->dev[entry]->offload_enabled is currently 0.
1386 		 */
1387 		h->dev[entry]->raid_map = new_entry->raid_map;
1388 		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1389 	}
1390 	if (new_entry->offload_to_be_enabled) {
1391 		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1392 		wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1393 	}
1394 	h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1395 	h->dev[entry]->offload_config = new_entry->offload_config;
1396 	h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1397 	h->dev[entry]->queue_depth = new_entry->queue_depth;
1398 
1399 	/*
1400 	 * We can turn off ioaccel offload now, but need to delay turning
1401 	 * ioaccel on until we can update h->dev[entry]->phys_disk[], but we
1402 	 * can't do that until all the devices are updated.
1403 	 */
1404 	h->dev[entry]->offload_to_be_enabled = new_entry->offload_to_be_enabled;
1405 
1406 	/*
1407 	 * turn ioaccel off immediately if told to do so.
1408 	 */
1409 	if (!new_entry->offload_to_be_enabled)
1410 		h->dev[entry]->offload_enabled = 0;
1411 
1412 	hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1413 }
1414 
1415 /* Replace an entry from h->dev[] array. */
hpsa_scsi_replace_entry(struct ctlr_info * h,int entry,struct hpsa_scsi_dev_t * new_entry,struct hpsa_scsi_dev_t * added[],int * nadded,struct hpsa_scsi_dev_t * removed[],int * nremoved)1416 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1417 	int entry, struct hpsa_scsi_dev_t *new_entry,
1418 	struct hpsa_scsi_dev_t *added[], int *nadded,
1419 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1420 {
1421 	/* assumes h->devlock is held */
1422 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1423 	removed[*nremoved] = h->dev[entry];
1424 	(*nremoved)++;
1425 
1426 	/*
1427 	 * New physical devices won't have target/lun assigned yet
1428 	 * so we need to preserve the values in the slot we are replacing.
1429 	 */
1430 	if (new_entry->target == -1) {
1431 		new_entry->target = h->dev[entry]->target;
1432 		new_entry->lun = h->dev[entry]->lun;
1433 	}
1434 
1435 	h->dev[entry] = new_entry;
1436 	added[*nadded] = new_entry;
1437 	(*nadded)++;
1438 
1439 	hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1440 }
1441 
1442 /* Remove an entry from h->dev[] array. */
hpsa_scsi_remove_entry(struct ctlr_info * h,int entry,struct hpsa_scsi_dev_t * removed[],int * nremoved)1443 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1444 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1445 {
1446 	/* assumes h->devlock is held */
1447 	int i;
1448 	struct hpsa_scsi_dev_t *sd;
1449 
1450 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1451 
1452 	sd = h->dev[entry];
1453 	removed[*nremoved] = h->dev[entry];
1454 	(*nremoved)++;
1455 
1456 	for (i = entry; i < h->ndevices-1; i++)
1457 		h->dev[i] = h->dev[i+1];
1458 	h->ndevices--;
1459 	hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1460 }
1461 
1462 #define SCSI3ADDR_EQ(a, b) ( \
1463 	(a)[7] == (b)[7] && \
1464 	(a)[6] == (b)[6] && \
1465 	(a)[5] == (b)[5] && \
1466 	(a)[4] == (b)[4] && \
1467 	(a)[3] == (b)[3] && \
1468 	(a)[2] == (b)[2] && \
1469 	(a)[1] == (b)[1] && \
1470 	(a)[0] == (b)[0])
1471 
fixup_botched_add(struct ctlr_info * h,struct hpsa_scsi_dev_t * added)1472 static void fixup_botched_add(struct ctlr_info *h,
1473 	struct hpsa_scsi_dev_t *added)
1474 {
1475 	/* called when scsi_add_device fails in order to re-adjust
1476 	 * h->dev[] to match the mid layer's view.
1477 	 */
1478 	unsigned long flags;
1479 	int i, j;
1480 
1481 	spin_lock_irqsave(&h->lock, flags);
1482 	for (i = 0; i < h->ndevices; i++) {
1483 		if (h->dev[i] == added) {
1484 			for (j = i; j < h->ndevices-1; j++)
1485 				h->dev[j] = h->dev[j+1];
1486 			h->ndevices--;
1487 			break;
1488 		}
1489 	}
1490 	spin_unlock_irqrestore(&h->lock, flags);
1491 	kfree(added);
1492 }
1493 
device_is_the_same(struct hpsa_scsi_dev_t * dev1,struct hpsa_scsi_dev_t * dev2)1494 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1495 	struct hpsa_scsi_dev_t *dev2)
1496 {
1497 	/* we compare everything except lun and target as these
1498 	 * are not yet assigned.  Compare parts likely
1499 	 * to differ first
1500 	 */
1501 	if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1502 		sizeof(dev1->scsi3addr)) != 0)
1503 		return 0;
1504 	if (memcmp(dev1->device_id, dev2->device_id,
1505 		sizeof(dev1->device_id)) != 0)
1506 		return 0;
1507 	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1508 		return 0;
1509 	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1510 		return 0;
1511 	if (dev1->devtype != dev2->devtype)
1512 		return 0;
1513 	if (dev1->bus != dev2->bus)
1514 		return 0;
1515 	return 1;
1516 }
1517 
device_updated(struct hpsa_scsi_dev_t * dev1,struct hpsa_scsi_dev_t * dev2)1518 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1519 	struct hpsa_scsi_dev_t *dev2)
1520 {
1521 	/* Device attributes that can change, but don't mean
1522 	 * that the device is a different device, nor that the OS
1523 	 * needs to be told anything about the change.
1524 	 */
1525 	if (dev1->raid_level != dev2->raid_level)
1526 		return 1;
1527 	if (dev1->offload_config != dev2->offload_config)
1528 		return 1;
1529 	if (dev1->offload_to_be_enabled != dev2->offload_to_be_enabled)
1530 		return 1;
1531 	if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1532 		if (dev1->queue_depth != dev2->queue_depth)
1533 			return 1;
1534 	/*
1535 	 * This can happen for dual domain devices. An active
1536 	 * path change causes the ioaccel handle to change
1537 	 *
1538 	 * for example note the handle differences between p0 and p1
1539 	 * Device                    WWN               ,WWN hash,Handle
1540 	 * D016 p0|0x3 [02]P2E:01:01,0x5000C5005FC4DACA,0x9B5616,0x01030003
1541 	 *	p1                   0x5000C5005FC4DAC9,0x6798C0,0x00040004
1542 	 */
1543 	if (dev1->ioaccel_handle != dev2->ioaccel_handle)
1544 		return 1;
1545 	return 0;
1546 }
1547 
1548 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1549  * and return needle location in *index.  If scsi3addr matches, but not
1550  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1551  * location in *index.
1552  * In the case of a minor device attribute change, such as RAID level, just
1553  * return DEVICE_UPDATED, along with the updated device's location in index.
1554  * If needle not found, return DEVICE_NOT_FOUND.
1555  */
hpsa_scsi_find_entry(struct hpsa_scsi_dev_t * needle,struct hpsa_scsi_dev_t * haystack[],int haystack_size,int * index)1556 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1557 	struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1558 	int *index)
1559 {
1560 	int i;
1561 #define DEVICE_NOT_FOUND 0
1562 #define DEVICE_CHANGED 1
1563 #define DEVICE_SAME 2
1564 #define DEVICE_UPDATED 3
1565 	if (needle == NULL)
1566 		return DEVICE_NOT_FOUND;
1567 
1568 	for (i = 0; i < haystack_size; i++) {
1569 		if (haystack[i] == NULL) /* previously removed. */
1570 			continue;
1571 		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1572 			*index = i;
1573 			if (device_is_the_same(needle, haystack[i])) {
1574 				if (device_updated(needle, haystack[i]))
1575 					return DEVICE_UPDATED;
1576 				return DEVICE_SAME;
1577 			} else {
1578 				/* Keep offline devices offline */
1579 				if (needle->volume_offline)
1580 					return DEVICE_NOT_FOUND;
1581 				return DEVICE_CHANGED;
1582 			}
1583 		}
1584 	}
1585 	*index = -1;
1586 	return DEVICE_NOT_FOUND;
1587 }
1588 
hpsa_monitor_offline_device(struct ctlr_info * h,unsigned char scsi3addr[])1589 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1590 					unsigned char scsi3addr[])
1591 {
1592 	struct offline_device_entry *device;
1593 	unsigned long flags;
1594 
1595 	/* Check to see if device is already on the list */
1596 	spin_lock_irqsave(&h->offline_device_lock, flags);
1597 	list_for_each_entry(device, &h->offline_device_list, offline_list) {
1598 		if (memcmp(device->scsi3addr, scsi3addr,
1599 			sizeof(device->scsi3addr)) == 0) {
1600 			spin_unlock_irqrestore(&h->offline_device_lock, flags);
1601 			return;
1602 		}
1603 	}
1604 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1605 
1606 	/* Device is not on the list, add it. */
1607 	device = kmalloc(sizeof(*device), GFP_KERNEL);
1608 	if (!device)
1609 		return;
1610 
1611 	memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1612 	spin_lock_irqsave(&h->offline_device_lock, flags);
1613 	list_add_tail(&device->offline_list, &h->offline_device_list);
1614 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1615 }
1616 
1617 /* Print a message explaining various offline volume states */
hpsa_show_volume_status(struct ctlr_info * h,struct hpsa_scsi_dev_t * sd)1618 static void hpsa_show_volume_status(struct ctlr_info *h,
1619 	struct hpsa_scsi_dev_t *sd)
1620 {
1621 	if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1622 		dev_info(&h->pdev->dev,
1623 			"C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1624 			h->scsi_host->host_no,
1625 			sd->bus, sd->target, sd->lun);
1626 	switch (sd->volume_offline) {
1627 	case HPSA_LV_OK:
1628 		break;
1629 	case HPSA_LV_UNDERGOING_ERASE:
1630 		dev_info(&h->pdev->dev,
1631 			"C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1632 			h->scsi_host->host_no,
1633 			sd->bus, sd->target, sd->lun);
1634 		break;
1635 	case HPSA_LV_NOT_AVAILABLE:
1636 		dev_info(&h->pdev->dev,
1637 			"C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1638 			h->scsi_host->host_no,
1639 			sd->bus, sd->target, sd->lun);
1640 		break;
1641 	case HPSA_LV_UNDERGOING_RPI:
1642 		dev_info(&h->pdev->dev,
1643 			"C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1644 			h->scsi_host->host_no,
1645 			sd->bus, sd->target, sd->lun);
1646 		break;
1647 	case HPSA_LV_PENDING_RPI:
1648 		dev_info(&h->pdev->dev,
1649 			"C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1650 			h->scsi_host->host_no,
1651 			sd->bus, sd->target, sd->lun);
1652 		break;
1653 	case HPSA_LV_ENCRYPTED_NO_KEY:
1654 		dev_info(&h->pdev->dev,
1655 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1656 			h->scsi_host->host_no,
1657 			sd->bus, sd->target, sd->lun);
1658 		break;
1659 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1660 		dev_info(&h->pdev->dev,
1661 			"C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1662 			h->scsi_host->host_no,
1663 			sd->bus, sd->target, sd->lun);
1664 		break;
1665 	case HPSA_LV_UNDERGOING_ENCRYPTION:
1666 		dev_info(&h->pdev->dev,
1667 			"C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1668 			h->scsi_host->host_no,
1669 			sd->bus, sd->target, sd->lun);
1670 		break;
1671 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1672 		dev_info(&h->pdev->dev,
1673 			"C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1674 			h->scsi_host->host_no,
1675 			sd->bus, sd->target, sd->lun);
1676 		break;
1677 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1678 		dev_info(&h->pdev->dev,
1679 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1680 			h->scsi_host->host_no,
1681 			sd->bus, sd->target, sd->lun);
1682 		break;
1683 	case HPSA_LV_PENDING_ENCRYPTION:
1684 		dev_info(&h->pdev->dev,
1685 			"C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1686 			h->scsi_host->host_no,
1687 			sd->bus, sd->target, sd->lun);
1688 		break;
1689 	case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1690 		dev_info(&h->pdev->dev,
1691 			"C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1692 			h->scsi_host->host_no,
1693 			sd->bus, sd->target, sd->lun);
1694 		break;
1695 	}
1696 }
1697 
1698 /*
1699  * Figure the list of physical drive pointers for a logical drive with
1700  * raid offload configured.
1701  */
hpsa_figure_phys_disk_ptrs(struct ctlr_info * h,struct hpsa_scsi_dev_t * dev[],int ndevices,struct hpsa_scsi_dev_t * logical_drive)1702 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1703 				struct hpsa_scsi_dev_t *dev[], int ndevices,
1704 				struct hpsa_scsi_dev_t *logical_drive)
1705 {
1706 	struct raid_map_data *map = &logical_drive->raid_map;
1707 	struct raid_map_disk_data *dd = &map->data[0];
1708 	int i, j;
1709 	int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1710 				le16_to_cpu(map->metadata_disks_per_row);
1711 	int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1712 				le16_to_cpu(map->layout_map_count) *
1713 				total_disks_per_row;
1714 	int nphys_disk = le16_to_cpu(map->layout_map_count) *
1715 				total_disks_per_row;
1716 	int qdepth;
1717 
1718 	if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1719 		nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1720 
1721 	logical_drive->nphysical_disks = nraid_map_entries;
1722 
1723 	qdepth = 0;
1724 	for (i = 0; i < nraid_map_entries; i++) {
1725 		logical_drive->phys_disk[i] = NULL;
1726 		if (!logical_drive->offload_config)
1727 			continue;
1728 		for (j = 0; j < ndevices; j++) {
1729 			if (dev[j] == NULL)
1730 				continue;
1731 			if (dev[j]->devtype != TYPE_DISK &&
1732 			    dev[j]->devtype != TYPE_ZBC)
1733 				continue;
1734 			if (is_logical_device(dev[j]))
1735 				continue;
1736 			if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1737 				continue;
1738 
1739 			logical_drive->phys_disk[i] = dev[j];
1740 			if (i < nphys_disk)
1741 				qdepth = min(h->nr_cmds, qdepth +
1742 				    logical_drive->phys_disk[i]->queue_depth);
1743 			break;
1744 		}
1745 
1746 		/*
1747 		 * This can happen if a physical drive is removed and
1748 		 * the logical drive is degraded.  In that case, the RAID
1749 		 * map data will refer to a physical disk which isn't actually
1750 		 * present.  And in that case offload_enabled should already
1751 		 * be 0, but we'll turn it off here just in case
1752 		 */
1753 		if (!logical_drive->phys_disk[i]) {
1754 			dev_warn(&h->pdev->dev,
1755 				"%s: [%d:%d:%d:%d] A phys disk component of LV is missing, turning off offload_enabled for LV.\n",
1756 				__func__,
1757 				h->scsi_host->host_no, logical_drive->bus,
1758 				logical_drive->target, logical_drive->lun);
1759 			hpsa_turn_off_ioaccel_for_device(logical_drive);
1760 			logical_drive->queue_depth = 8;
1761 		}
1762 	}
1763 	if (nraid_map_entries)
1764 		/*
1765 		 * This is correct for reads, too high for full stripe writes,
1766 		 * way too high for partial stripe writes
1767 		 */
1768 		logical_drive->queue_depth = qdepth;
1769 	else {
1770 		if (logical_drive->external)
1771 			logical_drive->queue_depth = EXTERNAL_QD;
1772 		else
1773 			logical_drive->queue_depth = h->nr_cmds;
1774 	}
1775 }
1776 
hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info * h,struct hpsa_scsi_dev_t * dev[],int ndevices)1777 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1778 				struct hpsa_scsi_dev_t *dev[], int ndevices)
1779 {
1780 	int i;
1781 
1782 	for (i = 0; i < ndevices; i++) {
1783 		if (dev[i] == NULL)
1784 			continue;
1785 		if (dev[i]->devtype != TYPE_DISK &&
1786 		    dev[i]->devtype != TYPE_ZBC)
1787 			continue;
1788 		if (!is_logical_device(dev[i]))
1789 			continue;
1790 
1791 		/*
1792 		 * If offload is currently enabled, the RAID map and
1793 		 * phys_disk[] assignment *better* not be changing
1794 		 * because we would be changing ioaccel phsy_disk[] pointers
1795 		 * on a ioaccel volume processing I/O requests.
1796 		 *
1797 		 * If an ioaccel volume status changed, initially because it was
1798 		 * re-configured and thus underwent a transformation, or
1799 		 * a drive failed, we would have received a state change
1800 		 * request and ioaccel should have been turned off. When the
1801 		 * transformation completes, we get another state change
1802 		 * request to turn ioaccel back on. In this case, we need
1803 		 * to update the ioaccel information.
1804 		 *
1805 		 * Thus: If it is not currently enabled, but will be after
1806 		 * the scan completes, make sure the ioaccel pointers
1807 		 * are up to date.
1808 		 */
1809 
1810 		if (!dev[i]->offload_enabled && dev[i]->offload_to_be_enabled)
1811 			hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1812 	}
1813 }
1814 
hpsa_add_device(struct ctlr_info * h,struct hpsa_scsi_dev_t * device)1815 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1816 {
1817 	int rc = 0;
1818 
1819 	if (!h->scsi_host)
1820 		return 1;
1821 
1822 	if (is_logical_device(device)) /* RAID */
1823 		rc = scsi_add_device(h->scsi_host, device->bus,
1824 					device->target, device->lun);
1825 	else /* HBA */
1826 		rc = hpsa_add_sas_device(h->sas_host, device);
1827 
1828 	return rc;
1829 }
1830 
hpsa_find_outstanding_commands_for_dev(struct ctlr_info * h,struct hpsa_scsi_dev_t * dev)1831 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
1832 						struct hpsa_scsi_dev_t *dev)
1833 {
1834 	int i;
1835 	int count = 0;
1836 
1837 	for (i = 0; i < h->nr_cmds; i++) {
1838 		struct CommandList *c = h->cmd_pool + i;
1839 		int refcount = atomic_inc_return(&c->refcount);
1840 
1841 		if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
1842 				dev->scsi3addr)) {
1843 			unsigned long flags;
1844 
1845 			spin_lock_irqsave(&h->lock, flags);	/* Implied MB */
1846 			if (!hpsa_is_cmd_idle(c))
1847 				++count;
1848 			spin_unlock_irqrestore(&h->lock, flags);
1849 		}
1850 
1851 		cmd_free(h, c);
1852 	}
1853 
1854 	return count;
1855 }
1856 
1857 #define NUM_WAIT 20
hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info * h,struct hpsa_scsi_dev_t * device)1858 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
1859 						struct hpsa_scsi_dev_t *device)
1860 {
1861 	int cmds = 0;
1862 	int waits = 0;
1863 	int num_wait = NUM_WAIT;
1864 
1865 	if (device->external)
1866 		num_wait = HPSA_EH_PTRAID_TIMEOUT;
1867 
1868 	while (1) {
1869 		cmds = hpsa_find_outstanding_commands_for_dev(h, device);
1870 		if (cmds == 0)
1871 			break;
1872 		if (++waits > num_wait)
1873 			break;
1874 		msleep(1000);
1875 	}
1876 
1877 	if (waits > num_wait) {
1878 		dev_warn(&h->pdev->dev,
1879 			"%s: removing device [%d:%d:%d:%d] with %d outstanding commands!\n",
1880 			__func__,
1881 			h->scsi_host->host_no,
1882 			device->bus, device->target, device->lun, cmds);
1883 	}
1884 }
1885 
hpsa_remove_device(struct ctlr_info * h,struct hpsa_scsi_dev_t * device)1886 static void hpsa_remove_device(struct ctlr_info *h,
1887 			struct hpsa_scsi_dev_t *device)
1888 {
1889 	struct scsi_device *sdev = NULL;
1890 
1891 	if (!h->scsi_host)
1892 		return;
1893 
1894 	/*
1895 	 * Allow for commands to drain
1896 	 */
1897 	device->removed = 1;
1898 	hpsa_wait_for_outstanding_commands_for_dev(h, device);
1899 
1900 	if (is_logical_device(device)) { /* RAID */
1901 		sdev = scsi_device_lookup(h->scsi_host, device->bus,
1902 						device->target, device->lun);
1903 		if (sdev) {
1904 			scsi_remove_device(sdev);
1905 			scsi_device_put(sdev);
1906 		} else {
1907 			/*
1908 			 * We don't expect to get here.  Future commands
1909 			 * to this device will get a selection timeout as
1910 			 * if the device were gone.
1911 			 */
1912 			hpsa_show_dev_msg(KERN_WARNING, h, device,
1913 					"didn't find device for removal.");
1914 		}
1915 	} else { /* HBA */
1916 
1917 		hpsa_remove_sas_device(device);
1918 	}
1919 }
1920 
adjust_hpsa_scsi_table(struct ctlr_info * h,struct hpsa_scsi_dev_t * sd[],int nsds)1921 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1922 	struct hpsa_scsi_dev_t *sd[], int nsds)
1923 {
1924 	/* sd contains scsi3 addresses and devtypes, and inquiry
1925 	 * data.  This function takes what's in sd to be the current
1926 	 * reality and updates h->dev[] to reflect that reality.
1927 	 */
1928 	int i, entry, device_change, changes = 0;
1929 	struct hpsa_scsi_dev_t *csd;
1930 	unsigned long flags;
1931 	struct hpsa_scsi_dev_t **added, **removed;
1932 	int nadded, nremoved;
1933 
1934 	/*
1935 	 * A reset can cause a device status to change
1936 	 * re-schedule the scan to see what happened.
1937 	 */
1938 	spin_lock_irqsave(&h->reset_lock, flags);
1939 	if (h->reset_in_progress) {
1940 		h->drv_req_rescan = 1;
1941 		spin_unlock_irqrestore(&h->reset_lock, flags);
1942 		return;
1943 	}
1944 	spin_unlock_irqrestore(&h->reset_lock, flags);
1945 
1946 	added = kcalloc(HPSA_MAX_DEVICES, sizeof(*added), GFP_KERNEL);
1947 	removed = kcalloc(HPSA_MAX_DEVICES, sizeof(*removed), GFP_KERNEL);
1948 
1949 	if (!added || !removed) {
1950 		dev_warn(&h->pdev->dev, "out of memory in "
1951 			"adjust_hpsa_scsi_table\n");
1952 		goto free_and_out;
1953 	}
1954 
1955 	spin_lock_irqsave(&h->devlock, flags);
1956 
1957 	/* find any devices in h->dev[] that are not in
1958 	 * sd[] and remove them from h->dev[], and for any
1959 	 * devices which have changed, remove the old device
1960 	 * info and add the new device info.
1961 	 * If minor device attributes change, just update
1962 	 * the existing device structure.
1963 	 */
1964 	i = 0;
1965 	nremoved = 0;
1966 	nadded = 0;
1967 	while (i < h->ndevices) {
1968 		csd = h->dev[i];
1969 		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1970 		if (device_change == DEVICE_NOT_FOUND) {
1971 			changes++;
1972 			hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1973 			continue; /* remove ^^^, hence i not incremented */
1974 		} else if (device_change == DEVICE_CHANGED) {
1975 			changes++;
1976 			hpsa_scsi_replace_entry(h, i, sd[entry],
1977 				added, &nadded, removed, &nremoved);
1978 			/* Set it to NULL to prevent it from being freed
1979 			 * at the bottom of hpsa_update_scsi_devices()
1980 			 */
1981 			sd[entry] = NULL;
1982 		} else if (device_change == DEVICE_UPDATED) {
1983 			hpsa_scsi_update_entry(h, i, sd[entry]);
1984 		}
1985 		i++;
1986 	}
1987 
1988 	/* Now, make sure every device listed in sd[] is also
1989 	 * listed in h->dev[], adding them if they aren't found
1990 	 */
1991 
1992 	for (i = 0; i < nsds; i++) {
1993 		if (!sd[i]) /* if already added above. */
1994 			continue;
1995 
1996 		/* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1997 		 * as the SCSI mid-layer does not handle such devices well.
1998 		 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1999 		 * at 160Hz, and prevents the system from coming up.
2000 		 */
2001 		if (sd[i]->volume_offline) {
2002 			hpsa_show_volume_status(h, sd[i]);
2003 			hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
2004 			continue;
2005 		}
2006 
2007 		device_change = hpsa_scsi_find_entry(sd[i], h->dev,
2008 					h->ndevices, &entry);
2009 		if (device_change == DEVICE_NOT_FOUND) {
2010 			changes++;
2011 			if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
2012 				break;
2013 			sd[i] = NULL; /* prevent from being freed later. */
2014 		} else if (device_change == DEVICE_CHANGED) {
2015 			/* should never happen... */
2016 			changes++;
2017 			dev_warn(&h->pdev->dev,
2018 				"device unexpectedly changed.\n");
2019 			/* but if it does happen, we just ignore that device */
2020 		}
2021 	}
2022 	hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
2023 
2024 	/*
2025 	 * Now that h->dev[]->phys_disk[] is coherent, we can enable
2026 	 * any logical drives that need it enabled.
2027 	 *
2028 	 * The raid map should be current by now.
2029 	 *
2030 	 * We are updating the device list used for I/O requests.
2031 	 */
2032 	for (i = 0; i < h->ndevices; i++) {
2033 		if (h->dev[i] == NULL)
2034 			continue;
2035 		h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
2036 	}
2037 
2038 	spin_unlock_irqrestore(&h->devlock, flags);
2039 
2040 	/* Monitor devices which are in one of several NOT READY states to be
2041 	 * brought online later. This must be done without holding h->devlock,
2042 	 * so don't touch h->dev[]
2043 	 */
2044 	for (i = 0; i < nsds; i++) {
2045 		if (!sd[i]) /* if already added above. */
2046 			continue;
2047 		if (sd[i]->volume_offline)
2048 			hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
2049 	}
2050 
2051 	/* Don't notify scsi mid layer of any changes the first time through
2052 	 * (or if there are no changes) scsi_scan_host will do it later the
2053 	 * first time through.
2054 	 */
2055 	if (!changes)
2056 		goto free_and_out;
2057 
2058 	/* Notify scsi mid layer of any removed devices */
2059 	for (i = 0; i < nremoved; i++) {
2060 		if (removed[i] == NULL)
2061 			continue;
2062 		if (removed[i]->expose_device)
2063 			hpsa_remove_device(h, removed[i]);
2064 		kfree(removed[i]);
2065 		removed[i] = NULL;
2066 	}
2067 
2068 	/* Notify scsi mid layer of any added devices */
2069 	for (i = 0; i < nadded; i++) {
2070 		int rc = 0;
2071 
2072 		if (added[i] == NULL)
2073 			continue;
2074 		if (!(added[i]->expose_device))
2075 			continue;
2076 		rc = hpsa_add_device(h, added[i]);
2077 		if (!rc)
2078 			continue;
2079 		dev_warn(&h->pdev->dev,
2080 			"addition failed %d, device not added.", rc);
2081 		/* now we have to remove it from h->dev,
2082 		 * since it didn't get added to scsi mid layer
2083 		 */
2084 		fixup_botched_add(h, added[i]);
2085 		h->drv_req_rescan = 1;
2086 	}
2087 
2088 free_and_out:
2089 	kfree(added);
2090 	kfree(removed);
2091 }
2092 
2093 /*
2094  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
2095  * Assume's h->devlock is held.
2096  */
lookup_hpsa_scsi_dev(struct ctlr_info * h,int bus,int target,int lun)2097 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
2098 	int bus, int target, int lun)
2099 {
2100 	int i;
2101 	struct hpsa_scsi_dev_t *sd;
2102 
2103 	for (i = 0; i < h->ndevices; i++) {
2104 		sd = h->dev[i];
2105 		if (sd->bus == bus && sd->target == target && sd->lun == lun)
2106 			return sd;
2107 	}
2108 	return NULL;
2109 }
2110 
hpsa_sdev_init(struct scsi_device * sdev)2111 static int hpsa_sdev_init(struct scsi_device *sdev)
2112 {
2113 	struct hpsa_scsi_dev_t *sd = NULL;
2114 	unsigned long flags;
2115 	struct ctlr_info *h;
2116 
2117 	h = sdev_to_hba(sdev);
2118 	spin_lock_irqsave(&h->devlock, flags);
2119 	if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
2120 		struct scsi_target *starget;
2121 		struct sas_rphy *rphy;
2122 
2123 		starget = scsi_target(sdev);
2124 		rphy = target_to_rphy(starget);
2125 		sd = hpsa_find_device_by_sas_rphy(h, rphy);
2126 		if (sd) {
2127 			sd->target = sdev_id(sdev);
2128 			sd->lun = sdev->lun;
2129 		}
2130 	}
2131 	if (!sd)
2132 		sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
2133 					sdev_id(sdev), sdev->lun);
2134 
2135 	if (sd && sd->expose_device) {
2136 		atomic_set(&sd->ioaccel_cmds_out, 0);
2137 		sdev->hostdata = sd;
2138 	} else
2139 		sdev->hostdata = NULL;
2140 	spin_unlock_irqrestore(&h->devlock, flags);
2141 	return 0;
2142 }
2143 
2144 /* configure scsi device based on internal per-device structure */
2145 #define CTLR_TIMEOUT (120 * HZ)
hpsa_sdev_configure(struct scsi_device * sdev,struct queue_limits * lim)2146 static int hpsa_sdev_configure(struct scsi_device *sdev,
2147 			       struct queue_limits *lim)
2148 {
2149 	struct hpsa_scsi_dev_t *sd;
2150 	int queue_depth;
2151 
2152 	sd = sdev->hostdata;
2153 	sdev->no_uld_attach = !sd || !sd->expose_device;
2154 
2155 	if (sd) {
2156 		sd->was_removed = 0;
2157 		queue_depth = sd->queue_depth != 0 ?
2158 				sd->queue_depth : sdev->host->can_queue;
2159 		if (sd->external) {
2160 			queue_depth = EXTERNAL_QD;
2161 			sdev->eh_timeout = HPSA_EH_PTRAID_TIMEOUT;
2162 			blk_queue_rq_timeout(sdev->request_queue,
2163 						HPSA_EH_PTRAID_TIMEOUT);
2164 		}
2165 		if (is_hba_lunid(sd->scsi3addr)) {
2166 			sdev->eh_timeout = CTLR_TIMEOUT;
2167 			blk_queue_rq_timeout(sdev->request_queue, CTLR_TIMEOUT);
2168 		}
2169 	} else {
2170 		queue_depth = sdev->host->can_queue;
2171 	}
2172 
2173 	scsi_change_queue_depth(sdev, queue_depth);
2174 
2175 	return 0;
2176 }
2177 
hpsa_sdev_destroy(struct scsi_device * sdev)2178 static void hpsa_sdev_destroy(struct scsi_device *sdev)
2179 {
2180 	struct hpsa_scsi_dev_t *hdev = NULL;
2181 
2182 	hdev = sdev->hostdata;
2183 
2184 	if (hdev)
2185 		hdev->was_removed = 1;
2186 }
2187 
hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info * h)2188 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2189 {
2190 	int i;
2191 
2192 	if (!h->ioaccel2_cmd_sg_list)
2193 		return;
2194 	for (i = 0; i < h->nr_cmds; i++) {
2195 		kfree(h->ioaccel2_cmd_sg_list[i]);
2196 		h->ioaccel2_cmd_sg_list[i] = NULL;
2197 	}
2198 	kfree(h->ioaccel2_cmd_sg_list);
2199 	h->ioaccel2_cmd_sg_list = NULL;
2200 }
2201 
hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info * h)2202 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2203 {
2204 	int i;
2205 
2206 	if (h->chainsize <= 0)
2207 		return 0;
2208 
2209 	h->ioaccel2_cmd_sg_list =
2210 		kcalloc(h->nr_cmds, sizeof(*h->ioaccel2_cmd_sg_list),
2211 					GFP_KERNEL);
2212 	if (!h->ioaccel2_cmd_sg_list)
2213 		return -ENOMEM;
2214 	for (i = 0; i < h->nr_cmds; i++) {
2215 		h->ioaccel2_cmd_sg_list[i] =
2216 			kmalloc_array(h->maxsgentries,
2217 				      sizeof(*h->ioaccel2_cmd_sg_list[i]),
2218 				      GFP_KERNEL);
2219 		if (!h->ioaccel2_cmd_sg_list[i])
2220 			goto clean;
2221 	}
2222 	return 0;
2223 
2224 clean:
2225 	hpsa_free_ioaccel2_sg_chain_blocks(h);
2226 	return -ENOMEM;
2227 }
2228 
hpsa_free_sg_chain_blocks(struct ctlr_info * h)2229 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2230 {
2231 	int i;
2232 
2233 	if (!h->cmd_sg_list)
2234 		return;
2235 	for (i = 0; i < h->nr_cmds; i++) {
2236 		kfree(h->cmd_sg_list[i]);
2237 		h->cmd_sg_list[i] = NULL;
2238 	}
2239 	kfree(h->cmd_sg_list);
2240 	h->cmd_sg_list = NULL;
2241 }
2242 
hpsa_alloc_sg_chain_blocks(struct ctlr_info * h)2243 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2244 {
2245 	int i;
2246 
2247 	if (h->chainsize <= 0)
2248 		return 0;
2249 
2250 	h->cmd_sg_list = kcalloc(h->nr_cmds, sizeof(*h->cmd_sg_list),
2251 				 GFP_KERNEL);
2252 	if (!h->cmd_sg_list)
2253 		return -ENOMEM;
2254 
2255 	for (i = 0; i < h->nr_cmds; i++) {
2256 		h->cmd_sg_list[i] = kmalloc_array(h->chainsize,
2257 						  sizeof(*h->cmd_sg_list[i]),
2258 						  GFP_KERNEL);
2259 		if (!h->cmd_sg_list[i])
2260 			goto clean;
2261 
2262 	}
2263 	return 0;
2264 
2265 clean:
2266 	hpsa_free_sg_chain_blocks(h);
2267 	return -ENOMEM;
2268 }
2269 
hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info * h,struct io_accel2_cmd * cp,struct CommandList * c)2270 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2271 	struct io_accel2_cmd *cp, struct CommandList *c)
2272 {
2273 	struct ioaccel2_sg_element *chain_block;
2274 	u64 temp64;
2275 	u32 chain_size;
2276 
2277 	chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2278 	chain_size = le32_to_cpu(cp->sg[0].length);
2279 	temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_size,
2280 				DMA_TO_DEVICE);
2281 	if (dma_mapping_error(&h->pdev->dev, temp64)) {
2282 		/* prevent subsequent unmapping */
2283 		cp->sg->address = 0;
2284 		return -1;
2285 	}
2286 	cp->sg->address = cpu_to_le64(temp64);
2287 	return 0;
2288 }
2289 
hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info * h,struct io_accel2_cmd * cp)2290 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2291 	struct io_accel2_cmd *cp)
2292 {
2293 	struct ioaccel2_sg_element *chain_sg;
2294 	u64 temp64;
2295 	u32 chain_size;
2296 
2297 	chain_sg = cp->sg;
2298 	temp64 = le64_to_cpu(chain_sg->address);
2299 	chain_size = le32_to_cpu(cp->sg[0].length);
2300 	dma_unmap_single(&h->pdev->dev, temp64, chain_size, DMA_TO_DEVICE);
2301 }
2302 
hpsa_map_sg_chain_block(struct ctlr_info * h,struct CommandList * c)2303 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2304 	struct CommandList *c)
2305 {
2306 	struct SGDescriptor *chain_sg, *chain_block;
2307 	u64 temp64;
2308 	u32 chain_len;
2309 
2310 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2311 	chain_block = h->cmd_sg_list[c->cmdindex];
2312 	chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2313 	chain_len = sizeof(*chain_sg) *
2314 		(le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2315 	chain_sg->Len = cpu_to_le32(chain_len);
2316 	temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_len,
2317 				DMA_TO_DEVICE);
2318 	if (dma_mapping_error(&h->pdev->dev, temp64)) {
2319 		/* prevent subsequent unmapping */
2320 		chain_sg->Addr = cpu_to_le64(0);
2321 		return -1;
2322 	}
2323 	chain_sg->Addr = cpu_to_le64(temp64);
2324 	return 0;
2325 }
2326 
hpsa_unmap_sg_chain_block(struct ctlr_info * h,struct CommandList * c)2327 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2328 	struct CommandList *c)
2329 {
2330 	struct SGDescriptor *chain_sg;
2331 
2332 	if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2333 		return;
2334 
2335 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2336 	dma_unmap_single(&h->pdev->dev, le64_to_cpu(chain_sg->Addr),
2337 			le32_to_cpu(chain_sg->Len), DMA_TO_DEVICE);
2338 }
2339 
2340 
2341 /* Decode the various types of errors on ioaccel2 path.
2342  * Return 1 for any error that should generate a RAID path retry.
2343  * Return 0 for errors that don't require a RAID path retry.
2344  */
handle_ioaccel_mode2_error(struct ctlr_info * h,struct CommandList * c,struct scsi_cmnd * cmd,struct io_accel2_cmd * c2,struct hpsa_scsi_dev_t * dev)2345 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2346 					struct CommandList *c,
2347 					struct scsi_cmnd *cmd,
2348 					struct io_accel2_cmd *c2,
2349 					struct hpsa_scsi_dev_t *dev)
2350 {
2351 	int data_len;
2352 	int retry = 0;
2353 	u32 ioaccel2_resid = 0;
2354 
2355 	switch (c2->error_data.serv_response) {
2356 	case IOACCEL2_SERV_RESPONSE_COMPLETE:
2357 		switch (c2->error_data.status) {
2358 		case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2359 			if (cmd)
2360 				cmd->result = 0;
2361 			break;
2362 		case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2363 			cmd->result |= SAM_STAT_CHECK_CONDITION;
2364 			if (c2->error_data.data_present !=
2365 					IOACCEL2_SENSE_DATA_PRESENT) {
2366 				memset(cmd->sense_buffer, 0,
2367 					SCSI_SENSE_BUFFERSIZE);
2368 				break;
2369 			}
2370 			/* copy the sense data */
2371 			data_len = c2->error_data.sense_data_len;
2372 			if (data_len > SCSI_SENSE_BUFFERSIZE)
2373 				data_len = SCSI_SENSE_BUFFERSIZE;
2374 			if (data_len > sizeof(c2->error_data.sense_data_buff))
2375 				data_len =
2376 					sizeof(c2->error_data.sense_data_buff);
2377 			memcpy(cmd->sense_buffer,
2378 				c2->error_data.sense_data_buff, data_len);
2379 			retry = 1;
2380 			break;
2381 		case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2382 			retry = 1;
2383 			break;
2384 		case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2385 			retry = 1;
2386 			break;
2387 		case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2388 			retry = 1;
2389 			break;
2390 		case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2391 			retry = 1;
2392 			break;
2393 		default:
2394 			retry = 1;
2395 			break;
2396 		}
2397 		break;
2398 	case IOACCEL2_SERV_RESPONSE_FAILURE:
2399 		switch (c2->error_data.status) {
2400 		case IOACCEL2_STATUS_SR_IO_ERROR:
2401 		case IOACCEL2_STATUS_SR_IO_ABORTED:
2402 		case IOACCEL2_STATUS_SR_OVERRUN:
2403 			retry = 1;
2404 			break;
2405 		case IOACCEL2_STATUS_SR_UNDERRUN:
2406 			cmd->result = (DID_OK << 16);		/* host byte */
2407 			ioaccel2_resid = get_unaligned_le32(
2408 						&c2->error_data.resid_cnt[0]);
2409 			scsi_set_resid(cmd, ioaccel2_resid);
2410 			break;
2411 		case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2412 		case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2413 		case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2414 			/*
2415 			 * Did an HBA disk disappear? We will eventually
2416 			 * get a state change event from the controller but
2417 			 * in the meantime, we need to tell the OS that the
2418 			 * HBA disk is no longer there and stop I/O
2419 			 * from going down. This allows the potential re-insert
2420 			 * of the disk to get the same device node.
2421 			 */
2422 			if (dev->physical_device && dev->expose_device) {
2423 				cmd->result = DID_NO_CONNECT << 16;
2424 				dev->removed = 1;
2425 				h->drv_req_rescan = 1;
2426 				dev_warn(&h->pdev->dev,
2427 					"%s: device is gone!\n", __func__);
2428 			} else
2429 				/*
2430 				 * Retry by sending down the RAID path.
2431 				 * We will get an event from ctlr to
2432 				 * trigger rescan regardless.
2433 				 */
2434 				retry = 1;
2435 			break;
2436 		default:
2437 			retry = 1;
2438 		}
2439 		break;
2440 	case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2441 		break;
2442 	case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2443 		break;
2444 	case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2445 		retry = 1;
2446 		break;
2447 	case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2448 		break;
2449 	default:
2450 		retry = 1;
2451 		break;
2452 	}
2453 
2454 	if (dev->in_reset)
2455 		retry = 0;
2456 
2457 	return retry;	/* retry on raid path? */
2458 }
2459 
hpsa_cmd_resolve_events(struct ctlr_info * h,struct CommandList * c)2460 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2461 		struct CommandList *c)
2462 {
2463 	struct hpsa_scsi_dev_t *dev = c->device;
2464 
2465 	/*
2466 	 * Reset c->scsi_cmd here so that the reset handler will know
2467 	 * this command has completed.  Then, check to see if the handler is
2468 	 * waiting for this command, and, if so, wake it.
2469 	 */
2470 	c->scsi_cmd = SCSI_CMD_IDLE;
2471 	mb();	/* Declare command idle before checking for pending events. */
2472 	if (dev) {
2473 		atomic_dec(&dev->commands_outstanding);
2474 		if (dev->in_reset &&
2475 			atomic_read(&dev->commands_outstanding) <= 0)
2476 			wake_up_all(&h->event_sync_wait_queue);
2477 	}
2478 }
2479 
hpsa_cmd_resolve_and_free(struct ctlr_info * h,struct CommandList * c)2480 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2481 				      struct CommandList *c)
2482 {
2483 	hpsa_cmd_resolve_events(h, c);
2484 	cmd_tagged_free(h, c);
2485 }
2486 
hpsa_cmd_free_and_done(struct ctlr_info * h,struct CommandList * c,struct scsi_cmnd * cmd)2487 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2488 		struct CommandList *c, struct scsi_cmnd *cmd)
2489 {
2490 	hpsa_cmd_resolve_and_free(h, c);
2491 	if (cmd)
2492 		scsi_done(cmd);
2493 }
2494 
hpsa_retry_cmd(struct ctlr_info * h,struct CommandList * c)2495 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2496 {
2497 	INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2498 	queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2499 }
2500 
process_ioaccel2_completion(struct ctlr_info * h,struct CommandList * c,struct scsi_cmnd * cmd,struct hpsa_scsi_dev_t * dev)2501 static void process_ioaccel2_completion(struct ctlr_info *h,
2502 		struct CommandList *c, struct scsi_cmnd *cmd,
2503 		struct hpsa_scsi_dev_t *dev)
2504 {
2505 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2506 
2507 	/* check for good status */
2508 	if (likely(c2->error_data.serv_response == 0 &&
2509 			c2->error_data.status == 0)) {
2510 		cmd->result = 0;
2511 		return hpsa_cmd_free_and_done(h, c, cmd);
2512 	}
2513 
2514 	/*
2515 	 * Any RAID offload error results in retry which will use
2516 	 * the normal I/O path so the controller can handle whatever is
2517 	 * wrong.
2518 	 */
2519 	if (is_logical_device(dev) &&
2520 		c2->error_data.serv_response ==
2521 			IOACCEL2_SERV_RESPONSE_FAILURE) {
2522 		if (c2->error_data.status ==
2523 			IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
2524 			hpsa_turn_off_ioaccel_for_device(dev);
2525 		}
2526 
2527 		if (dev->in_reset) {
2528 			cmd->result = DID_RESET << 16;
2529 			return hpsa_cmd_free_and_done(h, c, cmd);
2530 		}
2531 
2532 		return hpsa_retry_cmd(h, c);
2533 	}
2534 
2535 	if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
2536 		return hpsa_retry_cmd(h, c);
2537 
2538 	return hpsa_cmd_free_and_done(h, c, cmd);
2539 }
2540 
2541 /* Returns 0 on success, < 0 otherwise. */
hpsa_evaluate_tmf_status(struct ctlr_info * h,struct CommandList * cp)2542 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2543 					struct CommandList *cp)
2544 {
2545 	u8 tmf_status = cp->err_info->ScsiStatus;
2546 
2547 	switch (tmf_status) {
2548 	case CISS_TMF_COMPLETE:
2549 		/*
2550 		 * CISS_TMF_COMPLETE never happens, instead,
2551 		 * ei->CommandStatus == 0 for this case.
2552 		 */
2553 	case CISS_TMF_SUCCESS:
2554 		return 0;
2555 	case CISS_TMF_INVALID_FRAME:
2556 	case CISS_TMF_NOT_SUPPORTED:
2557 	case CISS_TMF_FAILED:
2558 	case CISS_TMF_WRONG_LUN:
2559 	case CISS_TMF_OVERLAPPED_TAG:
2560 		break;
2561 	default:
2562 		dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2563 				tmf_status);
2564 		break;
2565 	}
2566 	return -tmf_status;
2567 }
2568 
complete_scsi_command(struct CommandList * cp)2569 static void complete_scsi_command(struct CommandList *cp)
2570 {
2571 	struct scsi_cmnd *cmd;
2572 	struct ctlr_info *h;
2573 	struct ErrorInfo *ei;
2574 	struct hpsa_scsi_dev_t *dev;
2575 	struct io_accel2_cmd *c2;
2576 
2577 	u8 sense_key;
2578 	u8 asc;      /* additional sense code */
2579 	u8 ascq;     /* additional sense code qualifier */
2580 	unsigned long sense_data_size;
2581 
2582 	ei = cp->err_info;
2583 	cmd = cp->scsi_cmd;
2584 	h = cp->h;
2585 
2586 	if (!cmd->device) {
2587 		cmd->result = DID_NO_CONNECT << 16;
2588 		return hpsa_cmd_free_and_done(h, cp, cmd);
2589 	}
2590 
2591 	dev = cmd->device->hostdata;
2592 	if (!dev) {
2593 		cmd->result = DID_NO_CONNECT << 16;
2594 		return hpsa_cmd_free_and_done(h, cp, cmd);
2595 	}
2596 	c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2597 
2598 	scsi_dma_unmap(cmd); /* undo the DMA mappings */
2599 	if ((cp->cmd_type == CMD_SCSI) &&
2600 		(le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2601 		hpsa_unmap_sg_chain_block(h, cp);
2602 
2603 	if ((cp->cmd_type == CMD_IOACCEL2) &&
2604 		(c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2605 		hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2606 
2607 	cmd->result = (DID_OK << 16);		/* host byte */
2608 
2609 	/* SCSI command has already been cleaned up in SML */
2610 	if (dev->was_removed) {
2611 		hpsa_cmd_resolve_and_free(h, cp);
2612 		return;
2613 	}
2614 
2615 	if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) {
2616 		if (dev->physical_device && dev->expose_device &&
2617 			dev->removed) {
2618 			cmd->result = DID_NO_CONNECT << 16;
2619 			return hpsa_cmd_free_and_done(h, cp, cmd);
2620 		}
2621 		if (likely(cp->phys_disk != NULL))
2622 			atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2623 	}
2624 
2625 	/*
2626 	 * We check for lockup status here as it may be set for
2627 	 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2628 	 * fail_all_oustanding_cmds()
2629 	 */
2630 	if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2631 		/* DID_NO_CONNECT will prevent a retry */
2632 		cmd->result = DID_NO_CONNECT << 16;
2633 		return hpsa_cmd_free_and_done(h, cp, cmd);
2634 	}
2635 
2636 	if (cp->cmd_type == CMD_IOACCEL2)
2637 		return process_ioaccel2_completion(h, cp, cmd, dev);
2638 
2639 	scsi_set_resid(cmd, ei->ResidualCnt);
2640 	if (ei->CommandStatus == 0)
2641 		return hpsa_cmd_free_and_done(h, cp, cmd);
2642 
2643 	/* For I/O accelerator commands, copy over some fields to the normal
2644 	 * CISS header used below for error handling.
2645 	 */
2646 	if (cp->cmd_type == CMD_IOACCEL1) {
2647 		struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2648 		cp->Header.SGList = scsi_sg_count(cmd);
2649 		cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2650 		cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2651 			IOACCEL1_IOFLAGS_CDBLEN_MASK;
2652 		cp->Header.tag = c->tag;
2653 		memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2654 		memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2655 
2656 		/* Any RAID offload error results in retry which will use
2657 		 * the normal I/O path so the controller can handle whatever's
2658 		 * wrong.
2659 		 */
2660 		if (is_logical_device(dev)) {
2661 			if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2662 				dev->offload_enabled = 0;
2663 			return hpsa_retry_cmd(h, cp);
2664 		}
2665 	}
2666 
2667 	/* an error has occurred */
2668 	switch (ei->CommandStatus) {
2669 
2670 	case CMD_TARGET_STATUS:
2671 		cmd->result |= ei->ScsiStatus;
2672 		/* copy the sense data */
2673 		if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2674 			sense_data_size = SCSI_SENSE_BUFFERSIZE;
2675 		else
2676 			sense_data_size = sizeof(ei->SenseInfo);
2677 		if (ei->SenseLen < sense_data_size)
2678 			sense_data_size = ei->SenseLen;
2679 		memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2680 		if (ei->ScsiStatus)
2681 			decode_sense_data(ei->SenseInfo, sense_data_size,
2682 				&sense_key, &asc, &ascq);
2683 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2684 			switch (sense_key) {
2685 			case ABORTED_COMMAND:
2686 				cmd->result |= DID_SOFT_ERROR << 16;
2687 				break;
2688 			case UNIT_ATTENTION:
2689 				if (asc == 0x3F && ascq == 0x0E)
2690 					h->drv_req_rescan = 1;
2691 				break;
2692 			case ILLEGAL_REQUEST:
2693 				if (asc == 0x25 && ascq == 0x00) {
2694 					dev->removed = 1;
2695 					cmd->result = DID_NO_CONNECT << 16;
2696 				}
2697 				break;
2698 			}
2699 			break;
2700 		}
2701 		/* Problem was not a check condition
2702 		 * Pass it up to the upper layers...
2703 		 */
2704 		if (ei->ScsiStatus) {
2705 			dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2706 				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2707 				"Returning result: 0x%x\n",
2708 				cp, ei->ScsiStatus,
2709 				sense_key, asc, ascq,
2710 				cmd->result);
2711 		} else {  /* scsi status is zero??? How??? */
2712 			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2713 				"Returning no connection.\n", cp),
2714 
2715 			/* Ordinarily, this case should never happen,
2716 			 * but there is a bug in some released firmware
2717 			 * revisions that allows it to happen if, for
2718 			 * example, a 4100 backplane loses power and
2719 			 * the tape drive is in it.  We assume that
2720 			 * it's a fatal error of some kind because we
2721 			 * can't show that it wasn't. We will make it
2722 			 * look like selection timeout since that is
2723 			 * the most common reason for this to occur,
2724 			 * and it's severe enough.
2725 			 */
2726 
2727 			cmd->result = DID_NO_CONNECT << 16;
2728 		}
2729 		break;
2730 
2731 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2732 		break;
2733 	case CMD_DATA_OVERRUN:
2734 		dev_warn(&h->pdev->dev,
2735 			"CDB %16phN data overrun\n", cp->Request.CDB);
2736 		break;
2737 	case CMD_INVALID: {
2738 		/* print_bytes(cp, sizeof(*cp), 1, 0);
2739 		print_cmd(cp); */
2740 		/* We get CMD_INVALID if you address a non-existent device
2741 		 * instead of a selection timeout (no response).  You will
2742 		 * see this if you yank out a drive, then try to access it.
2743 		 * This is kind of a shame because it means that any other
2744 		 * CMD_INVALID (e.g. driver bug) will get interpreted as a
2745 		 * missing target. */
2746 		cmd->result = DID_NO_CONNECT << 16;
2747 	}
2748 		break;
2749 	case CMD_PROTOCOL_ERR:
2750 		cmd->result = DID_ERROR << 16;
2751 		dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2752 				cp->Request.CDB);
2753 		break;
2754 	case CMD_HARDWARE_ERR:
2755 		cmd->result = DID_ERROR << 16;
2756 		dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2757 			cp->Request.CDB);
2758 		break;
2759 	case CMD_CONNECTION_LOST:
2760 		cmd->result = DID_ERROR << 16;
2761 		dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2762 			cp->Request.CDB);
2763 		break;
2764 	case CMD_ABORTED:
2765 		cmd->result = DID_ABORT << 16;
2766 		break;
2767 	case CMD_ABORT_FAILED:
2768 		cmd->result = DID_ERROR << 16;
2769 		dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2770 			cp->Request.CDB);
2771 		break;
2772 	case CMD_UNSOLICITED_ABORT:
2773 		cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2774 		dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2775 			cp->Request.CDB);
2776 		break;
2777 	case CMD_TIMEOUT:
2778 		cmd->result = DID_TIME_OUT << 16;
2779 		dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2780 			cp->Request.CDB);
2781 		break;
2782 	case CMD_UNABORTABLE:
2783 		cmd->result = DID_ERROR << 16;
2784 		dev_warn(&h->pdev->dev, "Command unabortable\n");
2785 		break;
2786 	case CMD_TMF_STATUS:
2787 		if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2788 			cmd->result = DID_ERROR << 16;
2789 		break;
2790 	case CMD_IOACCEL_DISABLED:
2791 		/* This only handles the direct pass-through case since RAID
2792 		 * offload is handled above.  Just attempt a retry.
2793 		 */
2794 		cmd->result = DID_SOFT_ERROR << 16;
2795 		dev_warn(&h->pdev->dev,
2796 				"cp %p had HP SSD Smart Path error\n", cp);
2797 		break;
2798 	default:
2799 		cmd->result = DID_ERROR << 16;
2800 		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2801 				cp, ei->CommandStatus);
2802 	}
2803 
2804 	return hpsa_cmd_free_and_done(h, cp, cmd);
2805 }
2806 
hpsa_pci_unmap(struct pci_dev * pdev,struct CommandList * c,int sg_used,enum dma_data_direction data_direction)2807 static void hpsa_pci_unmap(struct pci_dev *pdev, struct CommandList *c,
2808 		int sg_used, enum dma_data_direction data_direction)
2809 {
2810 	int i;
2811 
2812 	for (i = 0; i < sg_used; i++)
2813 		dma_unmap_single(&pdev->dev, le64_to_cpu(c->SG[i].Addr),
2814 				le32_to_cpu(c->SG[i].Len),
2815 				data_direction);
2816 }
2817 
hpsa_map_one(struct pci_dev * pdev,struct CommandList * cp,unsigned char * buf,size_t buflen,enum dma_data_direction data_direction)2818 static int hpsa_map_one(struct pci_dev *pdev,
2819 		struct CommandList *cp,
2820 		unsigned char *buf,
2821 		size_t buflen,
2822 		enum dma_data_direction data_direction)
2823 {
2824 	u64 addr64;
2825 
2826 	if (buflen == 0 || data_direction == DMA_NONE) {
2827 		cp->Header.SGList = 0;
2828 		cp->Header.SGTotal = cpu_to_le16(0);
2829 		return 0;
2830 	}
2831 
2832 	addr64 = dma_map_single(&pdev->dev, buf, buflen, data_direction);
2833 	if (dma_mapping_error(&pdev->dev, addr64)) {
2834 		/* Prevent subsequent unmap of something never mapped */
2835 		cp->Header.SGList = 0;
2836 		cp->Header.SGTotal = cpu_to_le16(0);
2837 		return -1;
2838 	}
2839 	cp->SG[0].Addr = cpu_to_le64(addr64);
2840 	cp->SG[0].Len = cpu_to_le32(buflen);
2841 	cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2842 	cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2843 	cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2844 	return 0;
2845 }
2846 
2847 #define NO_TIMEOUT ((unsigned long) -1)
2848 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
hpsa_scsi_do_simple_cmd_core(struct ctlr_info * h,struct CommandList * c,int reply_queue,unsigned long timeout_msecs)2849 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2850 	struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2851 {
2852 	DECLARE_COMPLETION_ONSTACK(wait);
2853 
2854 	c->waiting = &wait;
2855 	__enqueue_cmd_and_start_io(h, c, reply_queue);
2856 	if (timeout_msecs == NO_TIMEOUT) {
2857 		/* TODO: get rid of this no-timeout thing */
2858 		wait_for_completion_io(&wait);
2859 		return IO_OK;
2860 	}
2861 	if (!wait_for_completion_io_timeout(&wait,
2862 					msecs_to_jiffies(timeout_msecs))) {
2863 		dev_warn(&h->pdev->dev, "Command timed out.\n");
2864 		return -ETIMEDOUT;
2865 	}
2866 	return IO_OK;
2867 }
2868 
hpsa_scsi_do_simple_cmd(struct ctlr_info * h,struct CommandList * c,int reply_queue,unsigned long timeout_msecs)2869 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2870 				   int reply_queue, unsigned long timeout_msecs)
2871 {
2872 	if (unlikely(lockup_detected(h))) {
2873 		c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2874 		return IO_OK;
2875 	}
2876 	return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2877 }
2878 
lockup_detected(struct ctlr_info * h)2879 static u32 lockup_detected(struct ctlr_info *h)
2880 {
2881 	int cpu;
2882 	u32 rc, *lockup_detected;
2883 
2884 	cpu = get_cpu();
2885 	lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2886 	rc = *lockup_detected;
2887 	put_cpu();
2888 	return rc;
2889 }
2890 
2891 #define MAX_DRIVER_CMD_RETRIES 25
hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info * h,struct CommandList * c,enum dma_data_direction data_direction,unsigned long timeout_msecs)2892 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2893 		struct CommandList *c, enum dma_data_direction data_direction,
2894 		unsigned long timeout_msecs)
2895 {
2896 	int backoff_time = 10, retry_count = 0;
2897 	int rc;
2898 
2899 	do {
2900 		memset(c->err_info, 0, sizeof(*c->err_info));
2901 		rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2902 						  timeout_msecs);
2903 		if (rc)
2904 			break;
2905 		retry_count++;
2906 		if (retry_count > 3) {
2907 			msleep(backoff_time);
2908 			if (backoff_time < 1000)
2909 				backoff_time *= 2;
2910 		}
2911 	} while ((check_for_unit_attention(h, c) ||
2912 			check_for_busy(h, c)) &&
2913 			retry_count <= MAX_DRIVER_CMD_RETRIES);
2914 	hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2915 	if (retry_count > MAX_DRIVER_CMD_RETRIES)
2916 		rc = -EIO;
2917 	return rc;
2918 }
2919 
hpsa_print_cmd(struct ctlr_info * h,char * txt,struct CommandList * c)2920 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2921 				struct CommandList *c)
2922 {
2923 	const u8 *cdb = c->Request.CDB;
2924 	const u8 *lun = c->Header.LUN.LunAddrBytes;
2925 
2926 	dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n",
2927 		 txt, lun, cdb);
2928 }
2929 
hpsa_scsi_interpret_error(struct ctlr_info * h,struct CommandList * cp)2930 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2931 			struct CommandList *cp)
2932 {
2933 	const struct ErrorInfo *ei = cp->err_info;
2934 	struct device *d = &cp->h->pdev->dev;
2935 	u8 sense_key, asc, ascq;
2936 	int sense_len;
2937 
2938 	switch (ei->CommandStatus) {
2939 	case CMD_TARGET_STATUS:
2940 		if (ei->SenseLen > sizeof(ei->SenseInfo))
2941 			sense_len = sizeof(ei->SenseInfo);
2942 		else
2943 			sense_len = ei->SenseLen;
2944 		decode_sense_data(ei->SenseInfo, sense_len,
2945 					&sense_key, &asc, &ascq);
2946 		hpsa_print_cmd(h, "SCSI status", cp);
2947 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2948 			dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2949 				sense_key, asc, ascq);
2950 		else
2951 			dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2952 		if (ei->ScsiStatus == 0)
2953 			dev_warn(d, "SCSI status is abnormally zero.  "
2954 			"(probably indicates selection timeout "
2955 			"reported incorrectly due to a known "
2956 			"firmware bug, circa July, 2001.)\n");
2957 		break;
2958 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2959 		break;
2960 	case CMD_DATA_OVERRUN:
2961 		hpsa_print_cmd(h, "overrun condition", cp);
2962 		break;
2963 	case CMD_INVALID: {
2964 		/* controller unfortunately reports SCSI passthru's
2965 		 * to non-existent targets as invalid commands.
2966 		 */
2967 		hpsa_print_cmd(h, "invalid command", cp);
2968 		dev_warn(d, "probably means device no longer present\n");
2969 		}
2970 		break;
2971 	case CMD_PROTOCOL_ERR:
2972 		hpsa_print_cmd(h, "protocol error", cp);
2973 		break;
2974 	case CMD_HARDWARE_ERR:
2975 		hpsa_print_cmd(h, "hardware error", cp);
2976 		break;
2977 	case CMD_CONNECTION_LOST:
2978 		hpsa_print_cmd(h, "connection lost", cp);
2979 		break;
2980 	case CMD_ABORTED:
2981 		hpsa_print_cmd(h, "aborted", cp);
2982 		break;
2983 	case CMD_ABORT_FAILED:
2984 		hpsa_print_cmd(h, "abort failed", cp);
2985 		break;
2986 	case CMD_UNSOLICITED_ABORT:
2987 		hpsa_print_cmd(h, "unsolicited abort", cp);
2988 		break;
2989 	case CMD_TIMEOUT:
2990 		hpsa_print_cmd(h, "timed out", cp);
2991 		break;
2992 	case CMD_UNABORTABLE:
2993 		hpsa_print_cmd(h, "unabortable", cp);
2994 		break;
2995 	case CMD_CTLR_LOCKUP:
2996 		hpsa_print_cmd(h, "controller lockup detected", cp);
2997 		break;
2998 	default:
2999 		hpsa_print_cmd(h, "unknown status", cp);
3000 		dev_warn(d, "Unknown command status %x\n",
3001 				ei->CommandStatus);
3002 	}
3003 }
3004 
hpsa_do_receive_diagnostic(struct ctlr_info * h,u8 * scsi3addr,u8 page,u8 * buf,size_t bufsize)3005 static int hpsa_do_receive_diagnostic(struct ctlr_info *h, u8 *scsi3addr,
3006 					u8 page, u8 *buf, size_t bufsize)
3007 {
3008 	int rc = IO_OK;
3009 	struct CommandList *c;
3010 	struct ErrorInfo *ei;
3011 
3012 	c = cmd_alloc(h);
3013 	if (fill_cmd(c, RECEIVE_DIAGNOSTIC, h, buf, bufsize,
3014 			page, scsi3addr, TYPE_CMD)) {
3015 		rc = -1;
3016 		goto out;
3017 	}
3018 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3019 			NO_TIMEOUT);
3020 	if (rc)
3021 		goto out;
3022 	ei = c->err_info;
3023 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3024 		hpsa_scsi_interpret_error(h, c);
3025 		rc = -1;
3026 	}
3027 out:
3028 	cmd_free(h, c);
3029 	return rc;
3030 }
3031 
hpsa_get_enclosure_logical_identifier(struct ctlr_info * h,u8 * scsi3addr)3032 static u64 hpsa_get_enclosure_logical_identifier(struct ctlr_info *h,
3033 						u8 *scsi3addr)
3034 {
3035 	u8 *buf;
3036 	u64 sa = 0;
3037 	int rc = 0;
3038 
3039 	buf = kzalloc(1024, GFP_KERNEL);
3040 	if (!buf)
3041 		return 0;
3042 
3043 	rc = hpsa_do_receive_diagnostic(h, scsi3addr, RECEIVE_DIAGNOSTIC,
3044 					buf, 1024);
3045 
3046 	if (rc)
3047 		goto out;
3048 
3049 	sa = get_unaligned_be64(buf+12);
3050 
3051 out:
3052 	kfree(buf);
3053 	return sa;
3054 }
3055 
hpsa_scsi_do_inquiry(struct ctlr_info * h,unsigned char * scsi3addr,u16 page,unsigned char * buf,unsigned char bufsize)3056 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
3057 			u16 page, unsigned char *buf,
3058 			unsigned char bufsize)
3059 {
3060 	int rc = IO_OK;
3061 	struct CommandList *c;
3062 	struct ErrorInfo *ei;
3063 
3064 	c = cmd_alloc(h);
3065 
3066 	if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
3067 			page, scsi3addr, TYPE_CMD)) {
3068 		rc = -1;
3069 		goto out;
3070 	}
3071 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3072 			NO_TIMEOUT);
3073 	if (rc)
3074 		goto out;
3075 	ei = c->err_info;
3076 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3077 		hpsa_scsi_interpret_error(h, c);
3078 		rc = -1;
3079 	}
3080 out:
3081 	cmd_free(h, c);
3082 	return rc;
3083 }
3084 
hpsa_send_reset(struct ctlr_info * h,struct hpsa_scsi_dev_t * dev,u8 reset_type,int reply_queue)3085 static int hpsa_send_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3086 	u8 reset_type, int reply_queue)
3087 {
3088 	int rc = IO_OK;
3089 	struct CommandList *c;
3090 	struct ErrorInfo *ei;
3091 
3092 	c = cmd_alloc(h);
3093 	c->device = dev;
3094 
3095 	/* fill_cmd can't fail here, no data buffer to map. */
3096 	(void) fill_cmd(c, reset_type, h, NULL, 0, 0, dev->scsi3addr, TYPE_MSG);
3097 	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
3098 	if (rc) {
3099 		dev_warn(&h->pdev->dev, "Failed to send reset command\n");
3100 		goto out;
3101 	}
3102 	/* no unmap needed here because no data xfer. */
3103 
3104 	ei = c->err_info;
3105 	if (ei->CommandStatus != 0) {
3106 		hpsa_scsi_interpret_error(h, c);
3107 		rc = -1;
3108 	}
3109 out:
3110 	cmd_free(h, c);
3111 	return rc;
3112 }
3113 
hpsa_cmd_dev_match(struct ctlr_info * h,struct CommandList * c,struct hpsa_scsi_dev_t * dev,unsigned char * scsi3addr)3114 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
3115 			       struct hpsa_scsi_dev_t *dev,
3116 			       unsigned char *scsi3addr)
3117 {
3118 	int i;
3119 	bool match = false;
3120 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
3121 	struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
3122 
3123 	if (hpsa_is_cmd_idle(c))
3124 		return false;
3125 
3126 	switch (c->cmd_type) {
3127 	case CMD_SCSI:
3128 	case CMD_IOCTL_PEND:
3129 		match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
3130 				sizeof(c->Header.LUN.LunAddrBytes));
3131 		break;
3132 
3133 	case CMD_IOACCEL1:
3134 	case CMD_IOACCEL2:
3135 		if (c->phys_disk == dev) {
3136 			/* HBA mode match */
3137 			match = true;
3138 		} else {
3139 			/* Possible RAID mode -- check each phys dev. */
3140 			/* FIXME:  Do we need to take out a lock here?  If
3141 			 * so, we could just call hpsa_get_pdisk_of_ioaccel2()
3142 			 * instead. */
3143 			for (i = 0; i < dev->nphysical_disks && !match; i++) {
3144 				/* FIXME: an alternate test might be
3145 				 *
3146 				 * match = dev->phys_disk[i]->ioaccel_handle
3147 				 *              == c2->scsi_nexus;      */
3148 				match = dev->phys_disk[i] == c->phys_disk;
3149 			}
3150 		}
3151 		break;
3152 
3153 	case IOACCEL2_TMF:
3154 		for (i = 0; i < dev->nphysical_disks && !match; i++) {
3155 			match = dev->phys_disk[i]->ioaccel_handle ==
3156 					le32_to_cpu(ac->it_nexus);
3157 		}
3158 		break;
3159 
3160 	case 0:		/* The command is in the middle of being initialized. */
3161 		match = false;
3162 		break;
3163 
3164 	default:
3165 		dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
3166 			c->cmd_type);
3167 		BUG();
3168 	}
3169 
3170 	return match;
3171 }
3172 
hpsa_do_reset(struct ctlr_info * h,struct hpsa_scsi_dev_t * dev,u8 reset_type,int reply_queue)3173 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3174 	u8 reset_type, int reply_queue)
3175 {
3176 	int rc = 0;
3177 
3178 	/* We can really only handle one reset at a time */
3179 	if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
3180 		dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
3181 		return -EINTR;
3182 	}
3183 
3184 	rc = hpsa_send_reset(h, dev, reset_type, reply_queue);
3185 	if (!rc) {
3186 		/* incremented by sending the reset request */
3187 		atomic_dec(&dev->commands_outstanding);
3188 		wait_event(h->event_sync_wait_queue,
3189 			atomic_read(&dev->commands_outstanding) <= 0 ||
3190 			lockup_detected(h));
3191 	}
3192 
3193 	if (unlikely(lockup_detected(h))) {
3194 		dev_warn(&h->pdev->dev,
3195 			 "Controller lockup detected during reset wait\n");
3196 		rc = -ENODEV;
3197 	}
3198 
3199 	if (!rc)
3200 		rc = wait_for_device_to_become_ready(h, dev->scsi3addr, 0);
3201 
3202 	mutex_unlock(&h->reset_mutex);
3203 	return rc;
3204 }
3205 
hpsa_get_raid_level(struct ctlr_info * h,unsigned char * scsi3addr,unsigned char * raid_level)3206 static void hpsa_get_raid_level(struct ctlr_info *h,
3207 	unsigned char *scsi3addr, unsigned char *raid_level)
3208 {
3209 	int rc;
3210 	unsigned char *buf;
3211 
3212 	*raid_level = RAID_UNKNOWN;
3213 	buf = kzalloc(64, GFP_KERNEL);
3214 	if (!buf)
3215 		return;
3216 
3217 	if (!hpsa_vpd_page_supported(h, scsi3addr,
3218 		HPSA_VPD_LV_DEVICE_GEOMETRY))
3219 		goto exit;
3220 
3221 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3222 		HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64);
3223 
3224 	if (rc == 0)
3225 		*raid_level = buf[8];
3226 	if (*raid_level > RAID_UNKNOWN)
3227 		*raid_level = RAID_UNKNOWN;
3228 exit:
3229 	kfree(buf);
3230 	return;
3231 }
3232 
3233 #define HPSA_MAP_DEBUG
3234 #ifdef HPSA_MAP_DEBUG
hpsa_debug_map_buff(struct ctlr_info * h,int rc,struct raid_map_data * map_buff)3235 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
3236 				struct raid_map_data *map_buff)
3237 {
3238 	struct raid_map_disk_data *dd = &map_buff->data[0];
3239 	int map, row, col;
3240 	u16 map_cnt, row_cnt, disks_per_row;
3241 
3242 	if (rc != 0)
3243 		return;
3244 
3245 	/* Show details only if debugging has been activated. */
3246 	if (h->raid_offload_debug < 2)
3247 		return;
3248 
3249 	dev_info(&h->pdev->dev, "structure_size = %u\n",
3250 				le32_to_cpu(map_buff->structure_size));
3251 	dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3252 			le32_to_cpu(map_buff->volume_blk_size));
3253 	dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3254 			le64_to_cpu(map_buff->volume_blk_cnt));
3255 	dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3256 			map_buff->phys_blk_shift);
3257 	dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3258 			map_buff->parity_rotation_shift);
3259 	dev_info(&h->pdev->dev, "strip_size = %u\n",
3260 			le16_to_cpu(map_buff->strip_size));
3261 	dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3262 			le64_to_cpu(map_buff->disk_starting_blk));
3263 	dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3264 			le64_to_cpu(map_buff->disk_blk_cnt));
3265 	dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3266 			le16_to_cpu(map_buff->data_disks_per_row));
3267 	dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3268 			le16_to_cpu(map_buff->metadata_disks_per_row));
3269 	dev_info(&h->pdev->dev, "row_cnt = %u\n",
3270 			le16_to_cpu(map_buff->row_cnt));
3271 	dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3272 			le16_to_cpu(map_buff->layout_map_count));
3273 	dev_info(&h->pdev->dev, "flags = 0x%x\n",
3274 			le16_to_cpu(map_buff->flags));
3275 	dev_info(&h->pdev->dev, "encryption = %s\n",
3276 			le16_to_cpu(map_buff->flags) &
3277 			RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
3278 	dev_info(&h->pdev->dev, "dekindex = %u\n",
3279 			le16_to_cpu(map_buff->dekindex));
3280 	map_cnt = le16_to_cpu(map_buff->layout_map_count);
3281 	for (map = 0; map < map_cnt; map++) {
3282 		dev_info(&h->pdev->dev, "Map%u:\n", map);
3283 		row_cnt = le16_to_cpu(map_buff->row_cnt);
3284 		for (row = 0; row < row_cnt; row++) {
3285 			dev_info(&h->pdev->dev, "  Row%u:\n", row);
3286 			disks_per_row =
3287 				le16_to_cpu(map_buff->data_disks_per_row);
3288 			for (col = 0; col < disks_per_row; col++, dd++)
3289 				dev_info(&h->pdev->dev,
3290 					"    D%02u: h=0x%04x xor=%u,%u\n",
3291 					col, dd->ioaccel_handle,
3292 					dd->xor_mult[0], dd->xor_mult[1]);
3293 			disks_per_row =
3294 				le16_to_cpu(map_buff->metadata_disks_per_row);
3295 			for (col = 0; col < disks_per_row; col++, dd++)
3296 				dev_info(&h->pdev->dev,
3297 					"    M%02u: h=0x%04x xor=%u,%u\n",
3298 					col, dd->ioaccel_handle,
3299 					dd->xor_mult[0], dd->xor_mult[1]);
3300 		}
3301 	}
3302 }
3303 #else
hpsa_debug_map_buff(struct ctlr_info * h,int rc,struct raid_map_data * map_buff)3304 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3305 			__attribute__((unused)) int rc,
3306 			__attribute__((unused)) struct raid_map_data *map_buff)
3307 {
3308 }
3309 #endif
3310 
hpsa_get_raid_map(struct ctlr_info * h,unsigned char * scsi3addr,struct hpsa_scsi_dev_t * this_device)3311 static int hpsa_get_raid_map(struct ctlr_info *h,
3312 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3313 {
3314 	int rc = 0;
3315 	struct CommandList *c;
3316 	struct ErrorInfo *ei;
3317 
3318 	c = cmd_alloc(h);
3319 
3320 	if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3321 			sizeof(this_device->raid_map), 0,
3322 			scsi3addr, TYPE_CMD)) {
3323 		dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3324 		cmd_free(h, c);
3325 		return -1;
3326 	}
3327 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3328 			NO_TIMEOUT);
3329 	if (rc)
3330 		goto out;
3331 	ei = c->err_info;
3332 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3333 		hpsa_scsi_interpret_error(h, c);
3334 		rc = -1;
3335 		goto out;
3336 	}
3337 	cmd_free(h, c);
3338 
3339 	/* @todo in the future, dynamically allocate RAID map memory */
3340 	if (le32_to_cpu(this_device->raid_map.structure_size) >
3341 				sizeof(this_device->raid_map)) {
3342 		dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3343 		rc = -1;
3344 	}
3345 	hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3346 	return rc;
3347 out:
3348 	cmd_free(h, c);
3349 	return rc;
3350 }
3351 
hpsa_bmic_sense_subsystem_information(struct ctlr_info * h,unsigned char scsi3addr[],u16 bmic_device_index,struct bmic_sense_subsystem_info * buf,size_t bufsize)3352 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3353 		unsigned char scsi3addr[], u16 bmic_device_index,
3354 		struct bmic_sense_subsystem_info *buf, size_t bufsize)
3355 {
3356 	int rc = IO_OK;
3357 	struct CommandList *c;
3358 	struct ErrorInfo *ei;
3359 
3360 	c = cmd_alloc(h);
3361 
3362 	rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3363 		0, RAID_CTLR_LUNID, TYPE_CMD);
3364 	if (rc)
3365 		goto out;
3366 
3367 	c->Request.CDB[2] = bmic_device_index & 0xff;
3368 	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3369 
3370 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3371 			NO_TIMEOUT);
3372 	if (rc)
3373 		goto out;
3374 	ei = c->err_info;
3375 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3376 		hpsa_scsi_interpret_error(h, c);
3377 		rc = -1;
3378 	}
3379 out:
3380 	cmd_free(h, c);
3381 	return rc;
3382 }
3383 
hpsa_bmic_id_controller(struct ctlr_info * h,struct bmic_identify_controller * buf,size_t bufsize)3384 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3385 	struct bmic_identify_controller *buf, size_t bufsize)
3386 {
3387 	int rc = IO_OK;
3388 	struct CommandList *c;
3389 	struct ErrorInfo *ei;
3390 
3391 	c = cmd_alloc(h);
3392 
3393 	rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3394 		0, RAID_CTLR_LUNID, TYPE_CMD);
3395 	if (rc)
3396 		goto out;
3397 
3398 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3399 			NO_TIMEOUT);
3400 	if (rc)
3401 		goto out;
3402 	ei = c->err_info;
3403 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3404 		hpsa_scsi_interpret_error(h, c);
3405 		rc = -1;
3406 	}
3407 out:
3408 	cmd_free(h, c);
3409 	return rc;
3410 }
3411 
hpsa_bmic_id_physical_device(struct ctlr_info * h,unsigned char scsi3addr[],u16 bmic_device_index,struct bmic_identify_physical_device * buf,size_t bufsize)3412 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3413 		unsigned char scsi3addr[], u16 bmic_device_index,
3414 		struct bmic_identify_physical_device *buf, size_t bufsize)
3415 {
3416 	int rc = IO_OK;
3417 	struct CommandList *c;
3418 	struct ErrorInfo *ei;
3419 
3420 	c = cmd_alloc(h);
3421 	rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3422 		0, RAID_CTLR_LUNID, TYPE_CMD);
3423 	if (rc)
3424 		goto out;
3425 
3426 	c->Request.CDB[2] = bmic_device_index & 0xff;
3427 	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3428 
3429 	hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3430 						NO_TIMEOUT);
3431 	ei = c->err_info;
3432 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3433 		hpsa_scsi_interpret_error(h, c);
3434 		rc = -1;
3435 	}
3436 out:
3437 	cmd_free(h, c);
3438 
3439 	return rc;
3440 }
3441 
3442 /*
3443  * get enclosure information
3444  * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3445  * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3446  * Uses id_physical_device to determine the box_index.
3447  */
hpsa_get_enclosure_info(struct ctlr_info * h,unsigned char * scsi3addr,struct ReportExtendedLUNdata * rlep,int rle_index,struct hpsa_scsi_dev_t * encl_dev)3448 static void hpsa_get_enclosure_info(struct ctlr_info *h,
3449 			unsigned char *scsi3addr,
3450 			struct ReportExtendedLUNdata *rlep, int rle_index,
3451 			struct hpsa_scsi_dev_t *encl_dev)
3452 {
3453 	int rc = -1;
3454 	struct CommandList *c = NULL;
3455 	struct ErrorInfo *ei = NULL;
3456 	struct bmic_sense_storage_box_params *bssbp = NULL;
3457 	struct bmic_identify_physical_device *id_phys = NULL;
3458 	struct ext_report_lun_entry *rle;
3459 	u16 bmic_device_index = 0;
3460 
3461 	if (rle_index < 0 || rle_index >= HPSA_MAX_PHYS_LUN)
3462 		return;
3463 
3464 	rle = &rlep->LUN[rle_index];
3465 
3466 	encl_dev->eli =
3467 		hpsa_get_enclosure_logical_identifier(h, scsi3addr);
3468 
3469 	bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3470 
3471 	if (encl_dev->target == -1 || encl_dev->lun == -1) {
3472 		rc = IO_OK;
3473 		goto out;
3474 	}
3475 
3476 	if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3477 		rc = IO_OK;
3478 		goto out;
3479 	}
3480 
3481 	bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3482 	if (!bssbp)
3483 		goto out;
3484 
3485 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3486 	if (!id_phys)
3487 		goto out;
3488 
3489 	rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3490 						id_phys, sizeof(*id_phys));
3491 	if (rc) {
3492 		dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3493 			__func__, encl_dev->external, bmic_device_index);
3494 		goto out;
3495 	}
3496 
3497 	c = cmd_alloc(h);
3498 
3499 	rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3500 			sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3501 
3502 	if (rc)
3503 		goto out;
3504 
3505 	if (id_phys->phys_connector[1] == 'E')
3506 		c->Request.CDB[5] = id_phys->box_index;
3507 	else
3508 		c->Request.CDB[5] = 0;
3509 
3510 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3511 						NO_TIMEOUT);
3512 	if (rc)
3513 		goto out;
3514 
3515 	ei = c->err_info;
3516 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3517 		rc = -1;
3518 		goto out;
3519 	}
3520 
3521 	encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3522 	memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3523 		bssbp->phys_connector, sizeof(bssbp->phys_connector));
3524 
3525 	rc = IO_OK;
3526 out:
3527 	kfree(bssbp);
3528 	kfree(id_phys);
3529 
3530 	if (c)
3531 		cmd_free(h, c);
3532 
3533 	if (rc != IO_OK)
3534 		hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3535 			"Error, could not get enclosure information");
3536 }
3537 
hpsa_get_sas_address_from_report_physical(struct ctlr_info * h,unsigned char * scsi3addr)3538 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3539 						unsigned char *scsi3addr)
3540 {
3541 	struct ReportExtendedLUNdata *physdev;
3542 	u32 nphysicals;
3543 	u64 sa = 0;
3544 	int i;
3545 
3546 	physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3547 	if (!physdev)
3548 		return 0;
3549 
3550 	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3551 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3552 		kfree(physdev);
3553 		return 0;
3554 	}
3555 	nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3556 
3557 	for (i = 0; i < nphysicals; i++)
3558 		if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3559 			sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3560 			break;
3561 		}
3562 
3563 	kfree(physdev);
3564 
3565 	return sa;
3566 }
3567 
hpsa_get_sas_address(struct ctlr_info * h,unsigned char * scsi3addr,struct hpsa_scsi_dev_t * dev)3568 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3569 					struct hpsa_scsi_dev_t *dev)
3570 {
3571 	int rc;
3572 	u64 sa = 0;
3573 
3574 	if (is_hba_lunid(scsi3addr)) {
3575 		struct bmic_sense_subsystem_info *ssi;
3576 
3577 		ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3578 		if (!ssi)
3579 			return;
3580 
3581 		rc = hpsa_bmic_sense_subsystem_information(h,
3582 					scsi3addr, 0, ssi, sizeof(*ssi));
3583 		if (rc == 0) {
3584 			sa = get_unaligned_be64(ssi->primary_world_wide_id);
3585 			h->sas_address = sa;
3586 		}
3587 
3588 		kfree(ssi);
3589 	} else
3590 		sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3591 
3592 	dev->sas_address = sa;
3593 }
3594 
hpsa_ext_ctrl_present(struct ctlr_info * h,struct ReportExtendedLUNdata * physdev)3595 static void hpsa_ext_ctrl_present(struct ctlr_info *h,
3596 	struct ReportExtendedLUNdata *physdev)
3597 {
3598 	u32 nphysicals;
3599 	int i;
3600 
3601 	if (h->discovery_polling)
3602 		return;
3603 
3604 	nphysicals = (get_unaligned_be32(physdev->LUNListLength) / 24) + 1;
3605 
3606 	for (i = 0; i < nphysicals; i++) {
3607 		if (physdev->LUN[i].device_type ==
3608 			BMIC_DEVICE_TYPE_CONTROLLER
3609 			&& !is_hba_lunid(physdev->LUN[i].lunid)) {
3610 			dev_info(&h->pdev->dev,
3611 				"External controller present, activate discovery polling and disable rld caching\n");
3612 			hpsa_disable_rld_caching(h);
3613 			h->discovery_polling = 1;
3614 			break;
3615 		}
3616 	}
3617 }
3618 
3619 /* Get a device id from inquiry page 0x83 */
hpsa_vpd_page_supported(struct ctlr_info * h,unsigned char scsi3addr[],u8 page)3620 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
3621 	unsigned char scsi3addr[], u8 page)
3622 {
3623 	int rc;
3624 	int i;
3625 	int pages;
3626 	unsigned char *buf, bufsize;
3627 
3628 	buf = kzalloc(256, GFP_KERNEL);
3629 	if (!buf)
3630 		return false;
3631 
3632 	/* Get the size of the page list first */
3633 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3634 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3635 				buf, HPSA_VPD_HEADER_SZ);
3636 	if (rc != 0)
3637 		goto exit_unsupported;
3638 	pages = buf[3];
3639 	if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3640 		bufsize = pages + HPSA_VPD_HEADER_SZ;
3641 	else
3642 		bufsize = 255;
3643 
3644 	/* Get the whole VPD page list */
3645 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3646 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3647 				buf, bufsize);
3648 	if (rc != 0)
3649 		goto exit_unsupported;
3650 
3651 	pages = buf[3];
3652 	for (i = 1; i <= pages; i++)
3653 		if (buf[3 + i] == page)
3654 			goto exit_supported;
3655 exit_unsupported:
3656 	kfree(buf);
3657 	return false;
3658 exit_supported:
3659 	kfree(buf);
3660 	return true;
3661 }
3662 
3663 /*
3664  * Called during a scan operation.
3665  * Sets ioaccel status on the new device list, not the existing device list
3666  *
3667  * The device list used during I/O will be updated later in
3668  * adjust_hpsa_scsi_table.
3669  */
hpsa_get_ioaccel_status(struct ctlr_info * h,unsigned char * scsi3addr,struct hpsa_scsi_dev_t * this_device)3670 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3671 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3672 {
3673 	int rc;
3674 	unsigned char *buf;
3675 	u8 ioaccel_status;
3676 
3677 	this_device->offload_config = 0;
3678 	this_device->offload_enabled = 0;
3679 	this_device->offload_to_be_enabled = 0;
3680 
3681 	buf = kzalloc(64, GFP_KERNEL);
3682 	if (!buf)
3683 		return;
3684 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3685 		goto out;
3686 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3687 			VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3688 	if (rc != 0)
3689 		goto out;
3690 
3691 #define IOACCEL_STATUS_BYTE 4
3692 #define OFFLOAD_CONFIGURED_BIT 0x01
3693 #define OFFLOAD_ENABLED_BIT 0x02
3694 	ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3695 	this_device->offload_config =
3696 		!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3697 	if (this_device->offload_config) {
3698 		bool offload_enabled =
3699 			!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3700 		/*
3701 		 * Check to see if offload can be enabled.
3702 		 */
3703 		if (offload_enabled) {
3704 			rc = hpsa_get_raid_map(h, scsi3addr, this_device);
3705 			if (rc) /* could not load raid_map */
3706 				goto out;
3707 			this_device->offload_to_be_enabled = 1;
3708 		}
3709 	}
3710 
3711 out:
3712 	kfree(buf);
3713 	return;
3714 }
3715 
3716 /* Get the device id from inquiry page 0x83 */
hpsa_get_device_id(struct ctlr_info * h,unsigned char * scsi3addr,unsigned char * device_id,int index,int buflen)3717 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3718 	unsigned char *device_id, int index, int buflen)
3719 {
3720 	int rc;
3721 	unsigned char *buf;
3722 
3723 	/* Does controller have VPD for device id? */
3724 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID))
3725 		return 1; /* not supported */
3726 
3727 	buf = kzalloc(64, GFP_KERNEL);
3728 	if (!buf)
3729 		return -ENOMEM;
3730 
3731 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3732 					HPSA_VPD_LV_DEVICE_ID, buf, 64);
3733 	if (rc == 0) {
3734 		if (buflen > 16)
3735 			buflen = 16;
3736 		memcpy(device_id, &buf[8], buflen);
3737 	}
3738 
3739 	kfree(buf);
3740 
3741 	return rc; /*0 - got id,  otherwise, didn't */
3742 }
3743 
hpsa_scsi_do_report_luns(struct ctlr_info * h,int logical,void * buf,int bufsize,int extended_response)3744 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3745 		void *buf, int bufsize,
3746 		int extended_response)
3747 {
3748 	int rc = IO_OK;
3749 	struct CommandList *c;
3750 	unsigned char scsi3addr[8];
3751 	struct ErrorInfo *ei;
3752 
3753 	c = cmd_alloc(h);
3754 
3755 	/* address the controller */
3756 	memset(scsi3addr, 0, sizeof(scsi3addr));
3757 	if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3758 		buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3759 		rc = -EAGAIN;
3760 		goto out;
3761 	}
3762 	if (extended_response)
3763 		c->Request.CDB[1] = extended_response;
3764 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3765 			NO_TIMEOUT);
3766 	if (rc)
3767 		goto out;
3768 	ei = c->err_info;
3769 	if (ei->CommandStatus != 0 &&
3770 	    ei->CommandStatus != CMD_DATA_UNDERRUN) {
3771 		hpsa_scsi_interpret_error(h, c);
3772 		rc = -EIO;
3773 	} else {
3774 		struct ReportLUNdata *rld = buf;
3775 
3776 		if (rld->extended_response_flag != extended_response) {
3777 			if (!h->legacy_board) {
3778 				dev_err(&h->pdev->dev,
3779 					"report luns requested format %u, got %u\n",
3780 					extended_response,
3781 					rld->extended_response_flag);
3782 				rc = -EINVAL;
3783 			} else
3784 				rc = -EOPNOTSUPP;
3785 		}
3786 	}
3787 out:
3788 	cmd_free(h, c);
3789 	return rc;
3790 }
3791 
hpsa_scsi_do_report_phys_luns(struct ctlr_info * h,struct ReportExtendedLUNdata * buf,int bufsize)3792 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3793 		struct ReportExtendedLUNdata *buf, int bufsize)
3794 {
3795 	int rc;
3796 	struct ReportLUNdata *lbuf;
3797 
3798 	rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3799 				      HPSA_REPORT_PHYS_EXTENDED);
3800 	if (!rc || rc != -EOPNOTSUPP)
3801 		return rc;
3802 
3803 	/* REPORT PHYS EXTENDED is not supported */
3804 	lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL);
3805 	if (!lbuf)
3806 		return -ENOMEM;
3807 
3808 	rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0);
3809 	if (!rc) {
3810 		int i;
3811 		u32 nphys;
3812 
3813 		/* Copy ReportLUNdata header */
3814 		memcpy(buf, lbuf, 8);
3815 		nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8;
3816 		for (i = 0; i < nphys; i++)
3817 			memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8);
3818 	}
3819 	kfree(lbuf);
3820 	return rc;
3821 }
3822 
hpsa_scsi_do_report_log_luns(struct ctlr_info * h,struct ReportLUNdata * buf,int bufsize)3823 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3824 		struct ReportLUNdata *buf, int bufsize)
3825 {
3826 	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3827 }
3828 
hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t * device,int bus,int target,int lun)3829 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3830 	int bus, int target, int lun)
3831 {
3832 	device->bus = bus;
3833 	device->target = target;
3834 	device->lun = lun;
3835 }
3836 
3837 /* Use VPD inquiry to get details of volume status */
hpsa_get_volume_status(struct ctlr_info * h,unsigned char scsi3addr[])3838 static int hpsa_get_volume_status(struct ctlr_info *h,
3839 					unsigned char scsi3addr[])
3840 {
3841 	int rc;
3842 	int status;
3843 	int size;
3844 	unsigned char *buf;
3845 
3846 	buf = kzalloc(64, GFP_KERNEL);
3847 	if (!buf)
3848 		return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3849 
3850 	/* Does controller have VPD for logical volume status? */
3851 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3852 		goto exit_failed;
3853 
3854 	/* Get the size of the VPD return buffer */
3855 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3856 					buf, HPSA_VPD_HEADER_SZ);
3857 	if (rc != 0)
3858 		goto exit_failed;
3859 	size = buf[3];
3860 
3861 	/* Now get the whole VPD buffer */
3862 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3863 					buf, size + HPSA_VPD_HEADER_SZ);
3864 	if (rc != 0)
3865 		goto exit_failed;
3866 	status = buf[4]; /* status byte */
3867 
3868 	kfree(buf);
3869 	return status;
3870 exit_failed:
3871 	kfree(buf);
3872 	return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3873 }
3874 
3875 /* Determine offline status of a volume.
3876  * Return either:
3877  *  0 (not offline)
3878  *  0xff (offline for unknown reasons)
3879  *  # (integer code indicating one of several NOT READY states
3880  *     describing why a volume is to be kept offline)
3881  */
hpsa_volume_offline(struct ctlr_info * h,unsigned char scsi3addr[])3882 static unsigned char hpsa_volume_offline(struct ctlr_info *h,
3883 					unsigned char scsi3addr[])
3884 {
3885 	struct CommandList *c;
3886 	unsigned char *sense;
3887 	u8 sense_key, asc, ascq;
3888 	int sense_len;
3889 	int rc, ldstat = 0;
3890 #define ASC_LUN_NOT_READY 0x04
3891 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3892 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3893 
3894 	c = cmd_alloc(h);
3895 
3896 	(void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3897 	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3898 					NO_TIMEOUT);
3899 	if (rc) {
3900 		cmd_free(h, c);
3901 		return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3902 	}
3903 	sense = c->err_info->SenseInfo;
3904 	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3905 		sense_len = sizeof(c->err_info->SenseInfo);
3906 	else
3907 		sense_len = c->err_info->SenseLen;
3908 	decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3909 	cmd_free(h, c);
3910 
3911 	/* Determine the reason for not ready state */
3912 	ldstat = hpsa_get_volume_status(h, scsi3addr);
3913 
3914 	/* Keep volume offline in certain cases: */
3915 	switch (ldstat) {
3916 	case HPSA_LV_FAILED:
3917 	case HPSA_LV_UNDERGOING_ERASE:
3918 	case HPSA_LV_NOT_AVAILABLE:
3919 	case HPSA_LV_UNDERGOING_RPI:
3920 	case HPSA_LV_PENDING_RPI:
3921 	case HPSA_LV_ENCRYPTED_NO_KEY:
3922 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3923 	case HPSA_LV_UNDERGOING_ENCRYPTION:
3924 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3925 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3926 		return ldstat;
3927 	case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3928 		/* If VPD status page isn't available,
3929 		 * use ASC/ASCQ to determine state
3930 		 */
3931 		if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3932 			(ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3933 			return ldstat;
3934 		break;
3935 	default:
3936 		break;
3937 	}
3938 	return HPSA_LV_OK;
3939 }
3940 
hpsa_update_device_info(struct ctlr_info * h,unsigned char scsi3addr[],struct hpsa_scsi_dev_t * this_device,unsigned char * is_OBDR_device)3941 static int hpsa_update_device_info(struct ctlr_info *h,
3942 	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3943 	unsigned char *is_OBDR_device)
3944 {
3945 
3946 #define OBDR_SIG_OFFSET 43
3947 #define OBDR_TAPE_SIG "$DR-10"
3948 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3949 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3950 
3951 	unsigned char *inq_buff;
3952 	unsigned char *obdr_sig;
3953 	int rc = 0;
3954 
3955 	inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3956 	if (!inq_buff) {
3957 		rc = -ENOMEM;
3958 		goto bail_out;
3959 	}
3960 
3961 	/* Do an inquiry to the device to see what it is. */
3962 	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3963 		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3964 		dev_err(&h->pdev->dev,
3965 			"%s: inquiry failed, device will be skipped.\n",
3966 			__func__);
3967 		rc = HPSA_INQUIRY_FAILED;
3968 		goto bail_out;
3969 	}
3970 
3971 	scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3972 	scsi_sanitize_inquiry_string(&inq_buff[16], 16);
3973 
3974 	this_device->devtype = (inq_buff[0] & 0x1f);
3975 	memcpy(this_device->scsi3addr, scsi3addr, 8);
3976 	memcpy(this_device->vendor, &inq_buff[8],
3977 		sizeof(this_device->vendor));
3978 	memcpy(this_device->model, &inq_buff[16],
3979 		sizeof(this_device->model));
3980 	this_device->rev = inq_buff[2];
3981 	memset(this_device->device_id, 0,
3982 		sizeof(this_device->device_id));
3983 	if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3984 		sizeof(this_device->device_id)) < 0) {
3985 		dev_err(&h->pdev->dev,
3986 			"hpsa%d: %s: can't get device id for [%d:%d:%d:%d]\t%s\t%.16s\n",
3987 			h->ctlr, __func__,
3988 			h->scsi_host->host_no,
3989 			this_device->bus, this_device->target,
3990 			this_device->lun,
3991 			scsi_device_type(this_device->devtype),
3992 			this_device->model);
3993 		rc = HPSA_LV_FAILED;
3994 		goto bail_out;
3995 	}
3996 
3997 	if ((this_device->devtype == TYPE_DISK ||
3998 		this_device->devtype == TYPE_ZBC) &&
3999 		is_logical_dev_addr_mode(scsi3addr)) {
4000 		unsigned char volume_offline;
4001 
4002 		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
4003 		if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
4004 			hpsa_get_ioaccel_status(h, scsi3addr, this_device);
4005 		volume_offline = hpsa_volume_offline(h, scsi3addr);
4006 		if (volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED &&
4007 		    h->legacy_board) {
4008 			/*
4009 			 * Legacy boards might not support volume status
4010 			 */
4011 			dev_info(&h->pdev->dev,
4012 				 "C0:T%d:L%d Volume status not available, assuming online.\n",
4013 				 this_device->target, this_device->lun);
4014 			volume_offline = 0;
4015 		}
4016 		this_device->volume_offline = volume_offline;
4017 		if (volume_offline == HPSA_LV_FAILED) {
4018 			rc = HPSA_LV_FAILED;
4019 			dev_err(&h->pdev->dev,
4020 				"%s: LV failed, device will be skipped.\n",
4021 				__func__);
4022 			goto bail_out;
4023 		}
4024 	} else {
4025 		this_device->raid_level = RAID_UNKNOWN;
4026 		this_device->offload_config = 0;
4027 		hpsa_turn_off_ioaccel_for_device(this_device);
4028 		this_device->hba_ioaccel_enabled = 0;
4029 		this_device->volume_offline = 0;
4030 		this_device->queue_depth = h->nr_cmds;
4031 	}
4032 
4033 	if (this_device->external)
4034 		this_device->queue_depth = EXTERNAL_QD;
4035 
4036 	if (is_OBDR_device) {
4037 		/* See if this is a One-Button-Disaster-Recovery device
4038 		 * by looking for "$DR-10" at offset 43 in inquiry data.
4039 		 */
4040 		obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
4041 		*is_OBDR_device = (this_device->devtype == TYPE_ROM &&
4042 					strncmp(obdr_sig, OBDR_TAPE_SIG,
4043 						OBDR_SIG_LEN) == 0);
4044 	}
4045 	kfree(inq_buff);
4046 	return 0;
4047 
4048 bail_out:
4049 	kfree(inq_buff);
4050 	return rc;
4051 }
4052 
4053 /*
4054  * Helper function to assign bus, target, lun mapping of devices.
4055  * Logical drive target and lun are assigned at this time, but
4056  * physical device lun and target assignment are deferred (assigned
4057  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
4058 */
figure_bus_target_lun(struct ctlr_info * h,u8 * lunaddrbytes,struct hpsa_scsi_dev_t * device)4059 static void figure_bus_target_lun(struct ctlr_info *h,
4060 	u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
4061 {
4062 	u32 lunid = get_unaligned_le32(lunaddrbytes);
4063 
4064 	if (!is_logical_dev_addr_mode(lunaddrbytes)) {
4065 		/* physical device, target and lun filled in later */
4066 		if (is_hba_lunid(lunaddrbytes)) {
4067 			int bus = HPSA_HBA_BUS;
4068 
4069 			if (!device->rev)
4070 				bus = HPSA_LEGACY_HBA_BUS;
4071 			hpsa_set_bus_target_lun(device,
4072 					bus, 0, lunid & 0x3fff);
4073 		} else
4074 			/* defer target, lun assignment for physical devices */
4075 			hpsa_set_bus_target_lun(device,
4076 					HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
4077 		return;
4078 	}
4079 	/* It's a logical device */
4080 	if (device->external) {
4081 		hpsa_set_bus_target_lun(device,
4082 			HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
4083 			lunid & 0x00ff);
4084 		return;
4085 	}
4086 	hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
4087 				0, lunid & 0x3fff);
4088 }
4089 
figure_external_status(struct ctlr_info * h,int raid_ctlr_position,int i,int nphysicals,int nlocal_logicals)4090 static int  figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
4091 	int i, int nphysicals, int nlocal_logicals)
4092 {
4093 	/* In report logicals, local logicals are listed first,
4094 	* then any externals.
4095 	*/
4096 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
4097 
4098 	if (i == raid_ctlr_position)
4099 		return 0;
4100 
4101 	if (i < logicals_start)
4102 		return 0;
4103 
4104 	/* i is in logicals range, but still within local logicals */
4105 	if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
4106 		return 0;
4107 
4108 	return 1; /* it's an external lun */
4109 }
4110 
4111 /*
4112  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
4113  * logdev.  The number of luns in physdev and logdev are returned in
4114  * *nphysicals and *nlogicals, respectively.
4115  * Returns 0 on success, -1 otherwise.
4116  */
hpsa_gather_lun_info(struct ctlr_info * h,struct ReportExtendedLUNdata * physdev,u32 * nphysicals,struct ReportLUNdata * logdev,u32 * nlogicals)4117 static int hpsa_gather_lun_info(struct ctlr_info *h,
4118 	struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
4119 	struct ReportLUNdata *logdev, u32 *nlogicals)
4120 {
4121 	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
4122 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
4123 		return -1;
4124 	}
4125 	*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
4126 	if (*nphysicals > HPSA_MAX_PHYS_LUN) {
4127 		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
4128 			HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
4129 		*nphysicals = HPSA_MAX_PHYS_LUN;
4130 	}
4131 	if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
4132 		dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
4133 		return -1;
4134 	}
4135 	*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
4136 	/* Reject Logicals in excess of our max capability. */
4137 	if (*nlogicals > HPSA_MAX_LUN) {
4138 		dev_warn(&h->pdev->dev,
4139 			"maximum logical LUNs (%d) exceeded.  "
4140 			"%d LUNs ignored.\n", HPSA_MAX_LUN,
4141 			*nlogicals - HPSA_MAX_LUN);
4142 		*nlogicals = HPSA_MAX_LUN;
4143 	}
4144 	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
4145 		dev_warn(&h->pdev->dev,
4146 			"maximum logical + physical LUNs (%d) exceeded. "
4147 			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
4148 			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
4149 		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
4150 	}
4151 	return 0;
4152 }
4153 
figure_lunaddrbytes(struct ctlr_info * h,int raid_ctlr_position,int i,int nphysicals,int nlogicals,struct ReportExtendedLUNdata * physdev_list,struct ReportLUNdata * logdev_list)4154 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
4155 	int i, int nphysicals, int nlogicals,
4156 	struct ReportExtendedLUNdata *physdev_list,
4157 	struct ReportLUNdata *logdev_list)
4158 {
4159 	/* Helper function, figure out where the LUN ID info is coming from
4160 	 * given index i, lists of physical and logical devices, where in
4161 	 * the list the raid controller is supposed to appear (first or last)
4162 	 */
4163 
4164 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
4165 	int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
4166 
4167 	if (i == raid_ctlr_position)
4168 		return RAID_CTLR_LUNID;
4169 
4170 	if (i < logicals_start)
4171 		return &physdev_list->LUN[i -
4172 				(raid_ctlr_position == 0)].lunid[0];
4173 
4174 	if (i < last_device)
4175 		return &logdev_list->LUN[i - nphysicals -
4176 			(raid_ctlr_position == 0)][0];
4177 	BUG();
4178 	return NULL;
4179 }
4180 
4181 /* get physical drive ioaccel handle and queue depth */
hpsa_get_ioaccel_drive_info(struct ctlr_info * h,struct hpsa_scsi_dev_t * dev,struct ReportExtendedLUNdata * rlep,int rle_index,struct bmic_identify_physical_device * id_phys)4182 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
4183 		struct hpsa_scsi_dev_t *dev,
4184 		struct ReportExtendedLUNdata *rlep, int rle_index,
4185 		struct bmic_identify_physical_device *id_phys)
4186 {
4187 	int rc;
4188 	struct ext_report_lun_entry *rle;
4189 
4190 	if (rle_index < 0 || rle_index >= HPSA_MAX_PHYS_LUN)
4191 		return;
4192 
4193 	rle = &rlep->LUN[rle_index];
4194 
4195 	dev->ioaccel_handle = rle->ioaccel_handle;
4196 	if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
4197 		dev->hba_ioaccel_enabled = 1;
4198 	memset(id_phys, 0, sizeof(*id_phys));
4199 	rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
4200 			GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
4201 			sizeof(*id_phys));
4202 	if (!rc)
4203 		/* Reserve space for FW operations */
4204 #define DRIVE_CMDS_RESERVED_FOR_FW 2
4205 #define DRIVE_QUEUE_DEPTH 7
4206 		dev->queue_depth =
4207 			le16_to_cpu(id_phys->current_queue_depth_limit) -
4208 				DRIVE_CMDS_RESERVED_FOR_FW;
4209 	else
4210 		dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
4211 }
4212 
hpsa_get_path_info(struct hpsa_scsi_dev_t * this_device,struct ReportExtendedLUNdata * rlep,int rle_index,struct bmic_identify_physical_device * id_phys)4213 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
4214 	struct ReportExtendedLUNdata *rlep, int rle_index,
4215 	struct bmic_identify_physical_device *id_phys)
4216 {
4217 	struct ext_report_lun_entry *rle;
4218 
4219 	if (rle_index < 0 || rle_index >= HPSA_MAX_PHYS_LUN)
4220 		return;
4221 
4222 	rle = &rlep->LUN[rle_index];
4223 
4224 	if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
4225 		this_device->hba_ioaccel_enabled = 1;
4226 
4227 	memcpy(&this_device->active_path_index,
4228 		&id_phys->active_path_number,
4229 		sizeof(this_device->active_path_index));
4230 	memcpy(&this_device->path_map,
4231 		&id_phys->redundant_path_present_map,
4232 		sizeof(this_device->path_map));
4233 	memcpy(&this_device->box,
4234 		&id_phys->alternate_paths_phys_box_on_port,
4235 		sizeof(this_device->box));
4236 	memcpy(&this_device->phys_connector,
4237 		&id_phys->alternate_paths_phys_connector,
4238 		sizeof(this_device->phys_connector));
4239 	memcpy(&this_device->bay,
4240 		&id_phys->phys_bay_in_box,
4241 		sizeof(this_device->bay));
4242 }
4243 
4244 /* get number of local logical disks. */
hpsa_set_local_logical_count(struct ctlr_info * h,struct bmic_identify_controller * id_ctlr,u32 * nlocals)4245 static int hpsa_set_local_logical_count(struct ctlr_info *h,
4246 	struct bmic_identify_controller *id_ctlr,
4247 	u32 *nlocals)
4248 {
4249 	int rc;
4250 
4251 	if (!id_ctlr) {
4252 		dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
4253 			__func__);
4254 		return -ENOMEM;
4255 	}
4256 	memset(id_ctlr, 0, sizeof(*id_ctlr));
4257 	rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
4258 	if (!rc)
4259 		if (id_ctlr->configured_logical_drive_count < 255)
4260 			*nlocals = id_ctlr->configured_logical_drive_count;
4261 		else
4262 			*nlocals = le16_to_cpu(
4263 					id_ctlr->extended_logical_unit_count);
4264 	else
4265 		*nlocals = -1;
4266 	return rc;
4267 }
4268 
hpsa_is_disk_spare(struct ctlr_info * h,u8 * lunaddrbytes)4269 static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
4270 {
4271 	struct bmic_identify_physical_device *id_phys;
4272 	bool is_spare = false;
4273 	int rc;
4274 
4275 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4276 	if (!id_phys)
4277 		return false;
4278 
4279 	rc = hpsa_bmic_id_physical_device(h,
4280 					lunaddrbytes,
4281 					GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
4282 					id_phys, sizeof(*id_phys));
4283 	if (rc == 0)
4284 		is_spare = (id_phys->more_flags >> 6) & 0x01;
4285 
4286 	kfree(id_phys);
4287 	return is_spare;
4288 }
4289 
4290 #define RPL_DEV_FLAG_NON_DISK                           0x1
4291 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED  0x2
4292 #define RPL_DEV_FLAG_UNCONFIG_DISK                      0x4
4293 
4294 #define BMIC_DEVICE_TYPE_ENCLOSURE  6
4295 
hpsa_skip_device(struct ctlr_info * h,u8 * lunaddrbytes,struct ext_report_lun_entry * rle)4296 static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
4297 				struct ext_report_lun_entry *rle)
4298 {
4299 	u8 device_flags;
4300 	u8 device_type;
4301 
4302 	if (!MASKED_DEVICE(lunaddrbytes))
4303 		return false;
4304 
4305 	device_flags = rle->device_flags;
4306 	device_type = rle->device_type;
4307 
4308 	if (device_flags & RPL_DEV_FLAG_NON_DISK) {
4309 		if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
4310 			return false;
4311 		return true;
4312 	}
4313 
4314 	if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
4315 		return false;
4316 
4317 	if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
4318 		return false;
4319 
4320 	/*
4321 	 * Spares may be spun down, we do not want to
4322 	 * do an Inquiry to a RAID set spare drive as
4323 	 * that would have them spun up, that is a
4324 	 * performance hit because I/O to the RAID device
4325 	 * stops while the spin up occurs which can take
4326 	 * over 50 seconds.
4327 	 */
4328 	if (hpsa_is_disk_spare(h, lunaddrbytes))
4329 		return true;
4330 
4331 	return false;
4332 }
4333 
hpsa_update_scsi_devices(struct ctlr_info * h)4334 static void hpsa_update_scsi_devices(struct ctlr_info *h)
4335 {
4336 	/* the idea here is we could get notified
4337 	 * that some devices have changed, so we do a report
4338 	 * physical luns and report logical luns cmd, and adjust
4339 	 * our list of devices accordingly.
4340 	 *
4341 	 * The scsi3addr's of devices won't change so long as the
4342 	 * adapter is not reset.  That means we can rescan and
4343 	 * tell which devices we already know about, vs. new
4344 	 * devices, vs.  disappearing devices.
4345 	 */
4346 	struct ReportExtendedLUNdata *physdev_list = NULL;
4347 	struct ReportLUNdata *logdev_list = NULL;
4348 	struct bmic_identify_physical_device *id_phys = NULL;
4349 	struct bmic_identify_controller *id_ctlr = NULL;
4350 	u32 nphysicals = 0;
4351 	u32 nlogicals = 0;
4352 	u32 nlocal_logicals = 0;
4353 	u32 ndev_allocated = 0;
4354 	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4355 	int ncurrent = 0;
4356 	int i, ndevs_to_allocate;
4357 	int raid_ctlr_position;
4358 	bool physical_device;
4359 
4360 	currentsd = kcalloc(HPSA_MAX_DEVICES, sizeof(*currentsd), GFP_KERNEL);
4361 	physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4362 	logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4363 	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4364 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4365 	id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4366 
4367 	if (!currentsd || !physdev_list || !logdev_list ||
4368 		!tmpdevice || !id_phys || !id_ctlr) {
4369 		dev_err(&h->pdev->dev, "out of memory\n");
4370 		goto out;
4371 	}
4372 
4373 	h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4374 
4375 	if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4376 			logdev_list, &nlogicals)) {
4377 		h->drv_req_rescan = 1;
4378 		goto out;
4379 	}
4380 
4381 	/* Set number of local logicals (non PTRAID) */
4382 	if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4383 		dev_warn(&h->pdev->dev,
4384 			"%s: Can't determine number of local logical devices.\n",
4385 			__func__);
4386 	}
4387 
4388 	/* We might see up to the maximum number of logical and physical disks
4389 	 * plus external target devices, and a device for the local RAID
4390 	 * controller.
4391 	 */
4392 	ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4393 
4394 	hpsa_ext_ctrl_present(h, physdev_list);
4395 
4396 	/* Allocate the per device structures */
4397 	for (i = 0; i < ndevs_to_allocate; i++) {
4398 		if (i >= HPSA_MAX_DEVICES) {
4399 			dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4400 				"  %d devices ignored.\n", HPSA_MAX_DEVICES,
4401 				ndevs_to_allocate - HPSA_MAX_DEVICES);
4402 			break;
4403 		}
4404 
4405 		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4406 		if (!currentsd[i]) {
4407 			h->drv_req_rescan = 1;
4408 			goto out;
4409 		}
4410 		ndev_allocated++;
4411 	}
4412 
4413 	if (is_scsi_rev_5(h))
4414 		raid_ctlr_position = 0;
4415 	else
4416 		raid_ctlr_position = nphysicals + nlogicals;
4417 
4418 	/* adjust our table of devices */
4419 	for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4420 		u8 *lunaddrbytes, is_OBDR = 0;
4421 		int rc = 0;
4422 		int phys_dev_index = i - (raid_ctlr_position == 0);
4423 		bool skip_device = false;
4424 
4425 		memset(tmpdevice, 0, sizeof(*tmpdevice));
4426 
4427 		physical_device = i < nphysicals + (raid_ctlr_position == 0);
4428 
4429 		/* Figure out where the LUN ID info is coming from */
4430 		lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4431 			i, nphysicals, nlogicals, physdev_list, logdev_list);
4432 
4433 		/* Determine if this is a lun from an external target array */
4434 		tmpdevice->external =
4435 			figure_external_status(h, raid_ctlr_position, i,
4436 						nphysicals, nlocal_logicals);
4437 
4438 		/*
4439 		 * Skip over some devices such as a spare.
4440 		 */
4441 		if (phys_dev_index >= 0 && !tmpdevice->external &&
4442 			physical_device) {
4443 			skip_device = hpsa_skip_device(h, lunaddrbytes,
4444 					&physdev_list->LUN[phys_dev_index]);
4445 			if (skip_device)
4446 				continue;
4447 		}
4448 
4449 		/* Get device type, vendor, model, device id, raid_map */
4450 		rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4451 							&is_OBDR);
4452 		if (rc == -ENOMEM) {
4453 			dev_warn(&h->pdev->dev,
4454 				"Out of memory, rescan deferred.\n");
4455 			h->drv_req_rescan = 1;
4456 			goto out;
4457 		}
4458 		if (rc) {
4459 			h->drv_req_rescan = 1;
4460 			continue;
4461 		}
4462 
4463 		figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4464 		this_device = currentsd[ncurrent];
4465 
4466 		*this_device = *tmpdevice;
4467 		this_device->physical_device = physical_device;
4468 
4469 		/*
4470 		 * Expose all devices except for physical devices that
4471 		 * are masked.
4472 		 */
4473 		if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4474 			this_device->expose_device = 0;
4475 		else
4476 			this_device->expose_device = 1;
4477 
4478 
4479 		/*
4480 		 * Get the SAS address for physical devices that are exposed.
4481 		 */
4482 		if (this_device->physical_device && this_device->expose_device)
4483 			hpsa_get_sas_address(h, lunaddrbytes, this_device);
4484 
4485 		switch (this_device->devtype) {
4486 		case TYPE_ROM:
4487 			/* We don't *really* support actual CD-ROM devices,
4488 			 * just "One Button Disaster Recovery" tape drive
4489 			 * which temporarily pretends to be a CD-ROM drive.
4490 			 * So we check that the device is really an OBDR tape
4491 			 * device by checking for "$DR-10" in bytes 43-48 of
4492 			 * the inquiry data.
4493 			 */
4494 			if (is_OBDR)
4495 				ncurrent++;
4496 			break;
4497 		case TYPE_DISK:
4498 		case TYPE_ZBC:
4499 			if (this_device->physical_device) {
4500 				/* The disk is in HBA mode. */
4501 				/* Never use RAID mapper in HBA mode. */
4502 				this_device->offload_enabled = 0;
4503 				hpsa_get_ioaccel_drive_info(h, this_device,
4504 					physdev_list, phys_dev_index, id_phys);
4505 				hpsa_get_path_info(this_device,
4506 					physdev_list, phys_dev_index, id_phys);
4507 			}
4508 			ncurrent++;
4509 			break;
4510 		case TYPE_TAPE:
4511 		case TYPE_MEDIUM_CHANGER:
4512 			ncurrent++;
4513 			break;
4514 		case TYPE_ENCLOSURE:
4515 			if (!this_device->external)
4516 				hpsa_get_enclosure_info(h, lunaddrbytes,
4517 						physdev_list, phys_dev_index,
4518 						this_device);
4519 			ncurrent++;
4520 			break;
4521 		case TYPE_RAID:
4522 			/* Only present the Smartarray HBA as a RAID controller.
4523 			 * If it's a RAID controller other than the HBA itself
4524 			 * (an external RAID controller, MSA500 or similar)
4525 			 * don't present it.
4526 			 */
4527 			if (!is_hba_lunid(lunaddrbytes))
4528 				break;
4529 			ncurrent++;
4530 			break;
4531 		default:
4532 			break;
4533 		}
4534 		if (ncurrent >= HPSA_MAX_DEVICES)
4535 			break;
4536 	}
4537 
4538 	if (h->sas_host == NULL) {
4539 		int rc = 0;
4540 
4541 		rc = hpsa_add_sas_host(h);
4542 		if (rc) {
4543 			dev_warn(&h->pdev->dev,
4544 				"Could not add sas host %d\n", rc);
4545 			goto out;
4546 		}
4547 	}
4548 
4549 	adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4550 out:
4551 	kfree(tmpdevice);
4552 	for (i = 0; i < ndev_allocated; i++)
4553 		kfree(currentsd[i]);
4554 	kfree(currentsd);
4555 	kfree(physdev_list);
4556 	kfree(logdev_list);
4557 	kfree(id_ctlr);
4558 	kfree(id_phys);
4559 }
4560 
hpsa_set_sg_descriptor(struct SGDescriptor * desc,struct scatterlist * sg)4561 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4562 				   struct scatterlist *sg)
4563 {
4564 	u64 addr64 = (u64) sg_dma_address(sg);
4565 	unsigned int len = sg_dma_len(sg);
4566 
4567 	desc->Addr = cpu_to_le64(addr64);
4568 	desc->Len = cpu_to_le32(len);
4569 	desc->Ext = 0;
4570 }
4571 
4572 /*
4573  * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4574  * dma mapping  and fills in the scatter gather entries of the
4575  * hpsa command, cp.
4576  */
hpsa_scatter_gather(struct ctlr_info * h,struct CommandList * cp,struct scsi_cmnd * cmd)4577 static int hpsa_scatter_gather(struct ctlr_info *h,
4578 		struct CommandList *cp,
4579 		struct scsi_cmnd *cmd)
4580 {
4581 	struct scatterlist *sg;
4582 	int use_sg, i, sg_limit, chained;
4583 	struct SGDescriptor *curr_sg;
4584 
4585 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4586 
4587 	use_sg = scsi_dma_map(cmd);
4588 	if (use_sg < 0)
4589 		return use_sg;
4590 
4591 	if (!use_sg)
4592 		goto sglist_finished;
4593 
4594 	/*
4595 	 * If the number of entries is greater than the max for a single list,
4596 	 * then we have a chained list; we will set up all but one entry in the
4597 	 * first list (the last entry is saved for link information);
4598 	 * otherwise, we don't have a chained list and we'll set up at each of
4599 	 * the entries in the one list.
4600 	 */
4601 	curr_sg = cp->SG;
4602 	chained = use_sg > h->max_cmd_sg_entries;
4603 	sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4604 	scsi_for_each_sg(cmd, sg, sg_limit, i) {
4605 		hpsa_set_sg_descriptor(curr_sg, sg);
4606 		curr_sg++;
4607 	}
4608 
4609 	if (chained) {
4610 		/*
4611 		 * Continue with the chained list.  Set curr_sg to the chained
4612 		 * list.  Modify the limit to the total count less the entries
4613 		 * we've already set up.  Resume the scan at the list entry
4614 		 * where the previous loop left off.
4615 		 */
4616 		curr_sg = h->cmd_sg_list[cp->cmdindex];
4617 		sg_limit = use_sg - sg_limit;
4618 		for_each_sg(sg, sg, sg_limit, i) {
4619 			hpsa_set_sg_descriptor(curr_sg, sg);
4620 			curr_sg++;
4621 		}
4622 	}
4623 
4624 	/* Back the pointer up to the last entry and mark it as "last". */
4625 	(curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4626 
4627 	if (use_sg + chained > h->maxSG)
4628 		h->maxSG = use_sg + chained;
4629 
4630 	if (chained) {
4631 		cp->Header.SGList = h->max_cmd_sg_entries;
4632 		cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4633 		if (hpsa_map_sg_chain_block(h, cp)) {
4634 			scsi_dma_unmap(cmd);
4635 			return -1;
4636 		}
4637 		return 0;
4638 	}
4639 
4640 sglist_finished:
4641 
4642 	cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
4643 	cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4644 	return 0;
4645 }
4646 
warn_zero_length_transfer(struct ctlr_info * h,u8 * cdb,int cdb_len,const char * func)4647 static inline void warn_zero_length_transfer(struct ctlr_info *h,
4648 						u8 *cdb, int cdb_len,
4649 						const char *func)
4650 {
4651 	dev_warn(&h->pdev->dev,
4652 		 "%s: Blocking zero-length request: CDB:%*phN\n",
4653 		 func, cdb_len, cdb);
4654 }
4655 
4656 #define IO_ACCEL_INELIGIBLE 1
4657 /* zero-length transfers trigger hardware errors. */
is_zero_length_transfer(u8 * cdb)4658 static bool is_zero_length_transfer(u8 *cdb)
4659 {
4660 	u32 block_cnt;
4661 
4662 	/* Block zero-length transfer sizes on certain commands. */
4663 	switch (cdb[0]) {
4664 	case READ_10:
4665 	case WRITE_10:
4666 	case VERIFY:		/* 0x2F */
4667 	case WRITE_VERIFY:	/* 0x2E */
4668 		block_cnt = get_unaligned_be16(&cdb[7]);
4669 		break;
4670 	case READ_12:
4671 	case WRITE_12:
4672 	case VERIFY_12: /* 0xAF */
4673 	case WRITE_VERIFY_12:	/* 0xAE */
4674 		block_cnt = get_unaligned_be32(&cdb[6]);
4675 		break;
4676 	case READ_16:
4677 	case WRITE_16:
4678 	case VERIFY_16:		/* 0x8F */
4679 		block_cnt = get_unaligned_be32(&cdb[10]);
4680 		break;
4681 	default:
4682 		return false;
4683 	}
4684 
4685 	return block_cnt == 0;
4686 }
4687 
fixup_ioaccel_cdb(u8 * cdb,int * cdb_len)4688 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4689 {
4690 	int is_write = 0;
4691 	u32 block;
4692 	u32 block_cnt;
4693 
4694 	/* Perform some CDB fixups if needed using 10 byte reads/writes only */
4695 	switch (cdb[0]) {
4696 	case WRITE_6:
4697 	case WRITE_12:
4698 		is_write = 1;
4699 		fallthrough;
4700 	case READ_6:
4701 	case READ_12:
4702 		if (*cdb_len == 6) {
4703 			block = (((cdb[1] & 0x1F) << 16) |
4704 				(cdb[2] << 8) |
4705 				cdb[3]);
4706 			block_cnt = cdb[4];
4707 			if (block_cnt == 0)
4708 				block_cnt = 256;
4709 		} else {
4710 			BUG_ON(*cdb_len != 12);
4711 			block = get_unaligned_be32(&cdb[2]);
4712 			block_cnt = get_unaligned_be32(&cdb[6]);
4713 		}
4714 		if (block_cnt > 0xffff)
4715 			return IO_ACCEL_INELIGIBLE;
4716 
4717 		cdb[0] = is_write ? WRITE_10 : READ_10;
4718 		cdb[1] = 0;
4719 		cdb[2] = (u8) (block >> 24);
4720 		cdb[3] = (u8) (block >> 16);
4721 		cdb[4] = (u8) (block >> 8);
4722 		cdb[5] = (u8) (block);
4723 		cdb[6] = 0;
4724 		cdb[7] = (u8) (block_cnt >> 8);
4725 		cdb[8] = (u8) (block_cnt);
4726 		cdb[9] = 0;
4727 		*cdb_len = 10;
4728 		break;
4729 	}
4730 	return 0;
4731 }
4732 
hpsa_scsi_ioaccel1_queue_command(struct ctlr_info * h,struct CommandList * c,u32 ioaccel_handle,u8 * cdb,int cdb_len,u8 * scsi3addr,struct hpsa_scsi_dev_t * phys_disk)4733 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4734 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4735 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4736 {
4737 	struct scsi_cmnd *cmd = c->scsi_cmd;
4738 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4739 	unsigned int len;
4740 	unsigned int total_len = 0;
4741 	struct scatterlist *sg;
4742 	u64 addr64;
4743 	int use_sg, i;
4744 	struct SGDescriptor *curr_sg;
4745 	u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4746 
4747 	/* TODO: implement chaining support */
4748 	if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4749 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4750 		return IO_ACCEL_INELIGIBLE;
4751 	}
4752 
4753 	BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4754 
4755 	if (is_zero_length_transfer(cdb)) {
4756 		warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4757 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4758 		return IO_ACCEL_INELIGIBLE;
4759 	}
4760 
4761 	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4762 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4763 		return IO_ACCEL_INELIGIBLE;
4764 	}
4765 
4766 	c->cmd_type = CMD_IOACCEL1;
4767 
4768 	/* Adjust the DMA address to point to the accelerated command buffer */
4769 	c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4770 				(c->cmdindex * sizeof(*cp));
4771 	BUG_ON(c->busaddr & 0x0000007F);
4772 
4773 	use_sg = scsi_dma_map(cmd);
4774 	if (use_sg < 0) {
4775 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4776 		return use_sg;
4777 	}
4778 
4779 	if (use_sg) {
4780 		curr_sg = cp->SG;
4781 		scsi_for_each_sg(cmd, sg, use_sg, i) {
4782 			addr64 = (u64) sg_dma_address(sg);
4783 			len  = sg_dma_len(sg);
4784 			total_len += len;
4785 			curr_sg->Addr = cpu_to_le64(addr64);
4786 			curr_sg->Len = cpu_to_le32(len);
4787 			curr_sg->Ext = cpu_to_le32(0);
4788 			curr_sg++;
4789 		}
4790 		(--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4791 
4792 		switch (cmd->sc_data_direction) {
4793 		case DMA_TO_DEVICE:
4794 			control |= IOACCEL1_CONTROL_DATA_OUT;
4795 			break;
4796 		case DMA_FROM_DEVICE:
4797 			control |= IOACCEL1_CONTROL_DATA_IN;
4798 			break;
4799 		case DMA_NONE:
4800 			control |= IOACCEL1_CONTROL_NODATAXFER;
4801 			break;
4802 		default:
4803 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4804 			cmd->sc_data_direction);
4805 			BUG();
4806 			break;
4807 		}
4808 	} else {
4809 		control |= IOACCEL1_CONTROL_NODATAXFER;
4810 	}
4811 
4812 	c->Header.SGList = use_sg;
4813 	/* Fill out the command structure to submit */
4814 	cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4815 	cp->transfer_len = cpu_to_le32(total_len);
4816 	cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4817 			(cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4818 	cp->control = cpu_to_le32(control);
4819 	memcpy(cp->CDB, cdb, cdb_len);
4820 	memcpy(cp->CISS_LUN, scsi3addr, 8);
4821 	/* Tag was already set at init time. */
4822 	enqueue_cmd_and_start_io(h, c);
4823 	return 0;
4824 }
4825 
4826 /*
4827  * Queue a command directly to a device behind the controller using the
4828  * I/O accelerator path.
4829  */
hpsa_scsi_ioaccel_direct_map(struct ctlr_info * h,struct CommandList * c)4830 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4831 	struct CommandList *c)
4832 {
4833 	struct scsi_cmnd *cmd = c->scsi_cmd;
4834 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4835 
4836 	if (!dev)
4837 		return -1;
4838 
4839 	c->phys_disk = dev;
4840 
4841 	if (dev->in_reset)
4842 		return -1;
4843 
4844 	return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4845 		cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4846 }
4847 
4848 /*
4849  * Set encryption parameters for the ioaccel2 request
4850  */
set_encrypt_ioaccel2(struct ctlr_info * h,struct CommandList * c,struct io_accel2_cmd * cp)4851 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4852 	struct CommandList *c, struct io_accel2_cmd *cp)
4853 {
4854 	struct scsi_cmnd *cmd = c->scsi_cmd;
4855 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4856 	struct raid_map_data *map = &dev->raid_map;
4857 	u64 first_block;
4858 
4859 	/* Are we doing encryption on this device */
4860 	if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4861 		return;
4862 	/* Set the data encryption key index. */
4863 	cp->dekindex = map->dekindex;
4864 
4865 	/* Set the encryption enable flag, encoded into direction field. */
4866 	cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4867 
4868 	/* Set encryption tweak values based on logical block address
4869 	 * If block size is 512, tweak value is LBA.
4870 	 * For other block sizes, tweak is (LBA * block size)/ 512)
4871 	 */
4872 	switch (cmd->cmnd[0]) {
4873 	/* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4874 	case READ_6:
4875 	case WRITE_6:
4876 		first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4877 				(cmd->cmnd[2] << 8) |
4878 				cmd->cmnd[3]);
4879 		break;
4880 	case WRITE_10:
4881 	case READ_10:
4882 	/* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4883 	case WRITE_12:
4884 	case READ_12:
4885 		first_block = get_unaligned_be32(&cmd->cmnd[2]);
4886 		break;
4887 	case WRITE_16:
4888 	case READ_16:
4889 		first_block = get_unaligned_be64(&cmd->cmnd[2]);
4890 		break;
4891 	default:
4892 		dev_err(&h->pdev->dev,
4893 			"ERROR: %s: size (0x%x) not supported for encryption\n",
4894 			__func__, cmd->cmnd[0]);
4895 		BUG();
4896 		break;
4897 	}
4898 
4899 	if (le32_to_cpu(map->volume_blk_size) != 512)
4900 		first_block = first_block *
4901 				le32_to_cpu(map->volume_blk_size)/512;
4902 
4903 	cp->tweak_lower = cpu_to_le32(first_block);
4904 	cp->tweak_upper = cpu_to_le32(first_block >> 32);
4905 }
4906 
hpsa_scsi_ioaccel2_queue_command(struct ctlr_info * h,struct CommandList * c,u32 ioaccel_handle,u8 * cdb,int cdb_len,u8 * scsi3addr,struct hpsa_scsi_dev_t * phys_disk)4907 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4908 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4909 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4910 {
4911 	struct scsi_cmnd *cmd = c->scsi_cmd;
4912 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4913 	struct ioaccel2_sg_element *curr_sg;
4914 	int use_sg, i;
4915 	struct scatterlist *sg;
4916 	u64 addr64;
4917 	u32 len;
4918 	u32 total_len = 0;
4919 
4920 	if (!cmd->device)
4921 		return -1;
4922 
4923 	if (!cmd->device->hostdata)
4924 		return -1;
4925 
4926 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4927 
4928 	if (is_zero_length_transfer(cdb)) {
4929 		warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4930 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4931 		return IO_ACCEL_INELIGIBLE;
4932 	}
4933 
4934 	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4935 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4936 		return IO_ACCEL_INELIGIBLE;
4937 	}
4938 
4939 	c->cmd_type = CMD_IOACCEL2;
4940 	/* Adjust the DMA address to point to the accelerated command buffer */
4941 	c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4942 				(c->cmdindex * sizeof(*cp));
4943 	BUG_ON(c->busaddr & 0x0000007F);
4944 
4945 	memset(cp, 0, sizeof(*cp));
4946 	cp->IU_type = IOACCEL2_IU_TYPE;
4947 
4948 	use_sg = scsi_dma_map(cmd);
4949 	if (use_sg < 0) {
4950 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4951 		return use_sg;
4952 	}
4953 
4954 	if (use_sg) {
4955 		curr_sg = cp->sg;
4956 		if (use_sg > h->ioaccel_maxsg) {
4957 			addr64 = le64_to_cpu(
4958 				h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4959 			curr_sg->address = cpu_to_le64(addr64);
4960 			curr_sg->length = 0;
4961 			curr_sg->reserved[0] = 0;
4962 			curr_sg->reserved[1] = 0;
4963 			curr_sg->reserved[2] = 0;
4964 			curr_sg->chain_indicator = IOACCEL2_CHAIN;
4965 
4966 			curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4967 		}
4968 		scsi_for_each_sg(cmd, sg, use_sg, i) {
4969 			addr64 = (u64) sg_dma_address(sg);
4970 			len  = sg_dma_len(sg);
4971 			total_len += len;
4972 			curr_sg->address = cpu_to_le64(addr64);
4973 			curr_sg->length = cpu_to_le32(len);
4974 			curr_sg->reserved[0] = 0;
4975 			curr_sg->reserved[1] = 0;
4976 			curr_sg->reserved[2] = 0;
4977 			curr_sg->chain_indicator = 0;
4978 			curr_sg++;
4979 		}
4980 
4981 		/*
4982 		 * Set the last s/g element bit
4983 		 */
4984 		(curr_sg - 1)->chain_indicator = IOACCEL2_LAST_SG;
4985 
4986 		switch (cmd->sc_data_direction) {
4987 		case DMA_TO_DEVICE:
4988 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4989 			cp->direction |= IOACCEL2_DIR_DATA_OUT;
4990 			break;
4991 		case DMA_FROM_DEVICE:
4992 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4993 			cp->direction |= IOACCEL2_DIR_DATA_IN;
4994 			break;
4995 		case DMA_NONE:
4996 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4997 			cp->direction |= IOACCEL2_DIR_NO_DATA;
4998 			break;
4999 		default:
5000 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5001 				cmd->sc_data_direction);
5002 			BUG();
5003 			break;
5004 		}
5005 	} else {
5006 		cp->direction &= ~IOACCEL2_DIRECTION_MASK;
5007 		cp->direction |= IOACCEL2_DIR_NO_DATA;
5008 	}
5009 
5010 	/* Set encryption parameters, if necessary */
5011 	set_encrypt_ioaccel2(h, c, cp);
5012 
5013 	cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
5014 	cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
5015 	memcpy(cp->cdb, cdb, sizeof(cp->cdb));
5016 
5017 	cp->data_len = cpu_to_le32(total_len);
5018 	cp->err_ptr = cpu_to_le64(c->busaddr +
5019 			offsetof(struct io_accel2_cmd, error_data));
5020 	cp->err_len = cpu_to_le32(sizeof(cp->error_data));
5021 
5022 	/* fill in sg elements */
5023 	if (use_sg > h->ioaccel_maxsg) {
5024 		cp->sg_count = 1;
5025 		cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
5026 		if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
5027 			atomic_dec(&phys_disk->ioaccel_cmds_out);
5028 			scsi_dma_unmap(cmd);
5029 			return -1;
5030 		}
5031 	} else
5032 		cp->sg_count = (u8) use_sg;
5033 
5034 	if (phys_disk->in_reset) {
5035 		cmd->result = DID_RESET << 16;
5036 		return -1;
5037 	}
5038 
5039 	enqueue_cmd_and_start_io(h, c);
5040 	return 0;
5041 }
5042 
5043 /*
5044  * Queue a command to the correct I/O accelerator path.
5045  */
hpsa_scsi_ioaccel_queue_command(struct ctlr_info * h,struct CommandList * c,u32 ioaccel_handle,u8 * cdb,int cdb_len,u8 * scsi3addr,struct hpsa_scsi_dev_t * phys_disk)5046 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
5047 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
5048 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
5049 {
5050 	if (!c->scsi_cmd->device)
5051 		return -1;
5052 
5053 	if (!c->scsi_cmd->device->hostdata)
5054 		return -1;
5055 
5056 	if (phys_disk->in_reset)
5057 		return -1;
5058 
5059 	/* Try to honor the device's queue depth */
5060 	if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
5061 					phys_disk->queue_depth) {
5062 		atomic_dec(&phys_disk->ioaccel_cmds_out);
5063 		return IO_ACCEL_INELIGIBLE;
5064 	}
5065 	if (h->transMethod & CFGTBL_Trans_io_accel1)
5066 		return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
5067 						cdb, cdb_len, scsi3addr,
5068 						phys_disk);
5069 	else
5070 		return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
5071 						cdb, cdb_len, scsi3addr,
5072 						phys_disk);
5073 }
5074 
raid_map_helper(struct raid_map_data * map,int offload_to_mirror,u32 * map_index,u32 * current_group)5075 static void raid_map_helper(struct raid_map_data *map,
5076 		int offload_to_mirror, u32 *map_index, u32 *current_group)
5077 {
5078 	if (offload_to_mirror == 0)  {
5079 		/* use physical disk in the first mirrored group. */
5080 		*map_index %= le16_to_cpu(map->data_disks_per_row);
5081 		return;
5082 	}
5083 	do {
5084 		/* determine mirror group that *map_index indicates */
5085 		*current_group = *map_index /
5086 			le16_to_cpu(map->data_disks_per_row);
5087 		if (offload_to_mirror == *current_group)
5088 			continue;
5089 		if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
5090 			/* select map index from next group */
5091 			*map_index += le16_to_cpu(map->data_disks_per_row);
5092 			(*current_group)++;
5093 		} else {
5094 			/* select map index from first group */
5095 			*map_index %= le16_to_cpu(map->data_disks_per_row);
5096 			*current_group = 0;
5097 		}
5098 	} while (offload_to_mirror != *current_group);
5099 }
5100 
5101 /*
5102  * Attempt to perform offload RAID mapping for a logical volume I/O.
5103  */
hpsa_scsi_ioaccel_raid_map(struct ctlr_info * h,struct CommandList * c)5104 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
5105 	struct CommandList *c)
5106 {
5107 	struct scsi_cmnd *cmd = c->scsi_cmd;
5108 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5109 	struct raid_map_data *map = &dev->raid_map;
5110 	struct raid_map_disk_data *dd = &map->data[0];
5111 	int is_write = 0;
5112 	u32 map_index;
5113 	u64 first_block, last_block;
5114 	u32 block_cnt;
5115 	u32 blocks_per_row;
5116 	u64 first_row, last_row;
5117 	u32 first_row_offset, last_row_offset;
5118 	u32 first_column, last_column;
5119 	u64 r0_first_row, r0_last_row;
5120 	u32 r5or6_blocks_per_row;
5121 	u64 r5or6_first_row, r5or6_last_row;
5122 	u32 r5or6_first_row_offset, r5or6_last_row_offset;
5123 	u32 r5or6_first_column, r5or6_last_column;
5124 	u32 total_disks_per_row;
5125 	u32 stripesize;
5126 	u32 first_group, last_group, current_group;
5127 	u32 map_row;
5128 	u32 disk_handle;
5129 	u64 disk_block;
5130 	u32 disk_block_cnt;
5131 	u8 cdb[16];
5132 	u8 cdb_len;
5133 	u16 strip_size;
5134 #if BITS_PER_LONG == 32
5135 	u64 tmpdiv;
5136 #endif
5137 	int offload_to_mirror;
5138 
5139 	if (!dev)
5140 		return -1;
5141 
5142 	if (dev->in_reset)
5143 		return -1;
5144 
5145 	/* check for valid opcode, get LBA and block count */
5146 	switch (cmd->cmnd[0]) {
5147 	case WRITE_6:
5148 		is_write = 1;
5149 		fallthrough;
5150 	case READ_6:
5151 		first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
5152 				(cmd->cmnd[2] << 8) |
5153 				cmd->cmnd[3]);
5154 		block_cnt = cmd->cmnd[4];
5155 		if (block_cnt == 0)
5156 			block_cnt = 256;
5157 		break;
5158 	case WRITE_10:
5159 		is_write = 1;
5160 		fallthrough;
5161 	case READ_10:
5162 		first_block =
5163 			(((u64) cmd->cmnd[2]) << 24) |
5164 			(((u64) cmd->cmnd[3]) << 16) |
5165 			(((u64) cmd->cmnd[4]) << 8) |
5166 			cmd->cmnd[5];
5167 		block_cnt =
5168 			(((u32) cmd->cmnd[7]) << 8) |
5169 			cmd->cmnd[8];
5170 		break;
5171 	case WRITE_12:
5172 		is_write = 1;
5173 		fallthrough;
5174 	case READ_12:
5175 		first_block =
5176 			(((u64) cmd->cmnd[2]) << 24) |
5177 			(((u64) cmd->cmnd[3]) << 16) |
5178 			(((u64) cmd->cmnd[4]) << 8) |
5179 			cmd->cmnd[5];
5180 		block_cnt =
5181 			(((u32) cmd->cmnd[6]) << 24) |
5182 			(((u32) cmd->cmnd[7]) << 16) |
5183 			(((u32) cmd->cmnd[8]) << 8) |
5184 		cmd->cmnd[9];
5185 		break;
5186 	case WRITE_16:
5187 		is_write = 1;
5188 		fallthrough;
5189 	case READ_16:
5190 		first_block =
5191 			(((u64) cmd->cmnd[2]) << 56) |
5192 			(((u64) cmd->cmnd[3]) << 48) |
5193 			(((u64) cmd->cmnd[4]) << 40) |
5194 			(((u64) cmd->cmnd[5]) << 32) |
5195 			(((u64) cmd->cmnd[6]) << 24) |
5196 			(((u64) cmd->cmnd[7]) << 16) |
5197 			(((u64) cmd->cmnd[8]) << 8) |
5198 			cmd->cmnd[9];
5199 		block_cnt =
5200 			(((u32) cmd->cmnd[10]) << 24) |
5201 			(((u32) cmd->cmnd[11]) << 16) |
5202 			(((u32) cmd->cmnd[12]) << 8) |
5203 			cmd->cmnd[13];
5204 		break;
5205 	default:
5206 		return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
5207 	}
5208 	last_block = first_block + block_cnt - 1;
5209 
5210 	/* check for write to non-RAID-0 */
5211 	if (is_write && dev->raid_level != 0)
5212 		return IO_ACCEL_INELIGIBLE;
5213 
5214 	/* check for invalid block or wraparound */
5215 	if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
5216 		last_block < first_block)
5217 		return IO_ACCEL_INELIGIBLE;
5218 
5219 	/* calculate stripe information for the request */
5220 	blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
5221 				le16_to_cpu(map->strip_size);
5222 	strip_size = le16_to_cpu(map->strip_size);
5223 #if BITS_PER_LONG == 32
5224 	tmpdiv = first_block;
5225 	(void) do_div(tmpdiv, blocks_per_row);
5226 	first_row = tmpdiv;
5227 	tmpdiv = last_block;
5228 	(void) do_div(tmpdiv, blocks_per_row);
5229 	last_row = tmpdiv;
5230 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5231 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5232 	tmpdiv = first_row_offset;
5233 	(void) do_div(tmpdiv, strip_size);
5234 	first_column = tmpdiv;
5235 	tmpdiv = last_row_offset;
5236 	(void) do_div(tmpdiv, strip_size);
5237 	last_column = tmpdiv;
5238 #else
5239 	first_row = first_block / blocks_per_row;
5240 	last_row = last_block / blocks_per_row;
5241 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5242 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5243 	first_column = first_row_offset / strip_size;
5244 	last_column = last_row_offset / strip_size;
5245 #endif
5246 
5247 	/* if this isn't a single row/column then give to the controller */
5248 	if ((first_row != last_row) || (first_column != last_column))
5249 		return IO_ACCEL_INELIGIBLE;
5250 
5251 	/* proceeding with driver mapping */
5252 	total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
5253 				le16_to_cpu(map->metadata_disks_per_row);
5254 	map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5255 				le16_to_cpu(map->row_cnt);
5256 	map_index = (map_row * total_disks_per_row) + first_column;
5257 
5258 	switch (dev->raid_level) {
5259 	case HPSA_RAID_0:
5260 		break; /* nothing special to do */
5261 	case HPSA_RAID_1:
5262 		/* Handles load balance across RAID 1 members.
5263 		 * (2-drive R1 and R10 with even # of drives.)
5264 		 * Appropriate for SSDs, not optimal for HDDs
5265 		 * Ensure we have the correct raid_map.
5266 		 */
5267 		if (le16_to_cpu(map->layout_map_count) != 2) {
5268 			hpsa_turn_off_ioaccel_for_device(dev);
5269 			return IO_ACCEL_INELIGIBLE;
5270 		}
5271 		if (dev->offload_to_mirror)
5272 			map_index += le16_to_cpu(map->data_disks_per_row);
5273 		dev->offload_to_mirror = !dev->offload_to_mirror;
5274 		break;
5275 	case HPSA_RAID_ADM:
5276 		/* Handles N-way mirrors  (R1-ADM)
5277 		 * and R10 with # of drives divisible by 3.)
5278 		 * Ensure we have the correct raid_map.
5279 		 */
5280 		if (le16_to_cpu(map->layout_map_count) != 3) {
5281 			hpsa_turn_off_ioaccel_for_device(dev);
5282 			return IO_ACCEL_INELIGIBLE;
5283 		}
5284 
5285 		offload_to_mirror = dev->offload_to_mirror;
5286 		raid_map_helper(map, offload_to_mirror,
5287 				&map_index, &current_group);
5288 		/* set mirror group to use next time */
5289 		offload_to_mirror =
5290 			(offload_to_mirror >=
5291 			le16_to_cpu(map->layout_map_count) - 1)
5292 			? 0 : offload_to_mirror + 1;
5293 		dev->offload_to_mirror = offload_to_mirror;
5294 		/* Avoid direct use of dev->offload_to_mirror within this
5295 		 * function since multiple threads might simultaneously
5296 		 * increment it beyond the range of dev->layout_map_count -1.
5297 		 */
5298 		break;
5299 	case HPSA_RAID_5:
5300 	case HPSA_RAID_6:
5301 		if (le16_to_cpu(map->layout_map_count) <= 1)
5302 			break;
5303 
5304 		/* Verify first and last block are in same RAID group */
5305 		r5or6_blocks_per_row =
5306 			le16_to_cpu(map->strip_size) *
5307 			le16_to_cpu(map->data_disks_per_row);
5308 		if (r5or6_blocks_per_row == 0) {
5309 			hpsa_turn_off_ioaccel_for_device(dev);
5310 			return IO_ACCEL_INELIGIBLE;
5311 		}
5312 		stripesize = r5or6_blocks_per_row *
5313 			le16_to_cpu(map->layout_map_count);
5314 #if BITS_PER_LONG == 32
5315 		tmpdiv = first_block;
5316 		first_group = do_div(tmpdiv, stripesize);
5317 		tmpdiv = first_group;
5318 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
5319 		first_group = tmpdiv;
5320 		tmpdiv = last_block;
5321 		last_group = do_div(tmpdiv, stripesize);
5322 		tmpdiv = last_group;
5323 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
5324 		last_group = tmpdiv;
5325 #else
5326 		first_group = (first_block % stripesize) / r5or6_blocks_per_row;
5327 		last_group = (last_block % stripesize) / r5or6_blocks_per_row;
5328 #endif
5329 		if (first_group != last_group)
5330 			return IO_ACCEL_INELIGIBLE;
5331 
5332 		/* Verify request is in a single row of RAID 5/6 */
5333 #if BITS_PER_LONG == 32
5334 		tmpdiv = first_block;
5335 		(void) do_div(tmpdiv, stripesize);
5336 		first_row = r5or6_first_row = r0_first_row = tmpdiv;
5337 		tmpdiv = last_block;
5338 		(void) do_div(tmpdiv, stripesize);
5339 		r5or6_last_row = r0_last_row = tmpdiv;
5340 #else
5341 		first_row = r5or6_first_row = r0_first_row =
5342 						first_block / stripesize;
5343 		r5or6_last_row = r0_last_row = last_block / stripesize;
5344 #endif
5345 		if (r5or6_first_row != r5or6_last_row)
5346 			return IO_ACCEL_INELIGIBLE;
5347 
5348 
5349 		/* Verify request is in a single column */
5350 #if BITS_PER_LONG == 32
5351 		tmpdiv = first_block;
5352 		first_row_offset = do_div(tmpdiv, stripesize);
5353 		tmpdiv = first_row_offset;
5354 		first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
5355 		r5or6_first_row_offset = first_row_offset;
5356 		tmpdiv = last_block;
5357 		r5or6_last_row_offset = do_div(tmpdiv, stripesize);
5358 		tmpdiv = r5or6_last_row_offset;
5359 		r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
5360 		tmpdiv = r5or6_first_row_offset;
5361 		(void) do_div(tmpdiv, map->strip_size);
5362 		first_column = r5or6_first_column = tmpdiv;
5363 		tmpdiv = r5or6_last_row_offset;
5364 		(void) do_div(tmpdiv, map->strip_size);
5365 		r5or6_last_column = tmpdiv;
5366 #else
5367 		first_row_offset = r5or6_first_row_offset =
5368 			(u32)((first_block % stripesize) %
5369 						r5or6_blocks_per_row);
5370 
5371 		r5or6_last_row_offset =
5372 			(u32)((last_block % stripesize) %
5373 						r5or6_blocks_per_row);
5374 
5375 		first_column = r5or6_first_column =
5376 			r5or6_first_row_offset / le16_to_cpu(map->strip_size);
5377 		r5or6_last_column =
5378 			r5or6_last_row_offset / le16_to_cpu(map->strip_size);
5379 #endif
5380 		if (r5or6_first_column != r5or6_last_column)
5381 			return IO_ACCEL_INELIGIBLE;
5382 
5383 		/* Request is eligible */
5384 		map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5385 			le16_to_cpu(map->row_cnt);
5386 
5387 		map_index = (first_group *
5388 			(le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
5389 			(map_row * total_disks_per_row) + first_column;
5390 		break;
5391 	default:
5392 		return IO_ACCEL_INELIGIBLE;
5393 	}
5394 
5395 	if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
5396 		return IO_ACCEL_INELIGIBLE;
5397 
5398 	c->phys_disk = dev->phys_disk[map_index];
5399 	if (!c->phys_disk)
5400 		return IO_ACCEL_INELIGIBLE;
5401 
5402 	disk_handle = dd[map_index].ioaccel_handle;
5403 	disk_block = le64_to_cpu(map->disk_starting_blk) +
5404 			first_row * le16_to_cpu(map->strip_size) +
5405 			(first_row_offset - first_column *
5406 			le16_to_cpu(map->strip_size));
5407 	disk_block_cnt = block_cnt;
5408 
5409 	/* handle differing logical/physical block sizes */
5410 	if (map->phys_blk_shift) {
5411 		disk_block <<= map->phys_blk_shift;
5412 		disk_block_cnt <<= map->phys_blk_shift;
5413 	}
5414 	BUG_ON(disk_block_cnt > 0xffff);
5415 
5416 	/* build the new CDB for the physical disk I/O */
5417 	if (disk_block > 0xffffffff) {
5418 		cdb[0] = is_write ? WRITE_16 : READ_16;
5419 		cdb[1] = 0;
5420 		cdb[2] = (u8) (disk_block >> 56);
5421 		cdb[3] = (u8) (disk_block >> 48);
5422 		cdb[4] = (u8) (disk_block >> 40);
5423 		cdb[5] = (u8) (disk_block >> 32);
5424 		cdb[6] = (u8) (disk_block >> 24);
5425 		cdb[7] = (u8) (disk_block >> 16);
5426 		cdb[8] = (u8) (disk_block >> 8);
5427 		cdb[9] = (u8) (disk_block);
5428 		cdb[10] = (u8) (disk_block_cnt >> 24);
5429 		cdb[11] = (u8) (disk_block_cnt >> 16);
5430 		cdb[12] = (u8) (disk_block_cnt >> 8);
5431 		cdb[13] = (u8) (disk_block_cnt);
5432 		cdb[14] = 0;
5433 		cdb[15] = 0;
5434 		cdb_len = 16;
5435 	} else {
5436 		cdb[0] = is_write ? WRITE_10 : READ_10;
5437 		cdb[1] = 0;
5438 		cdb[2] = (u8) (disk_block >> 24);
5439 		cdb[3] = (u8) (disk_block >> 16);
5440 		cdb[4] = (u8) (disk_block >> 8);
5441 		cdb[5] = (u8) (disk_block);
5442 		cdb[6] = 0;
5443 		cdb[7] = (u8) (disk_block_cnt >> 8);
5444 		cdb[8] = (u8) (disk_block_cnt);
5445 		cdb[9] = 0;
5446 		cdb_len = 10;
5447 	}
5448 	return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5449 						dev->scsi3addr,
5450 						dev->phys_disk[map_index]);
5451 }
5452 
5453 /*
5454  * Submit commands down the "normal" RAID stack path
5455  * All callers to hpsa_ciss_submit must check lockup_detected
5456  * beforehand, before (opt.) and after calling cmd_alloc
5457  */
hpsa_ciss_submit(struct ctlr_info * h,struct CommandList * c,struct scsi_cmnd * cmd,struct hpsa_scsi_dev_t * dev)5458 static int hpsa_ciss_submit(struct ctlr_info *h,
5459 	struct CommandList *c, struct scsi_cmnd *cmd,
5460 	struct hpsa_scsi_dev_t *dev)
5461 {
5462 	cmd->host_scribble = (unsigned char *) c;
5463 	c->cmd_type = CMD_SCSI;
5464 	c->scsi_cmd = cmd;
5465 	c->Header.ReplyQueue = 0;  /* unused in simple mode */
5466 	memcpy(&c->Header.LUN.LunAddrBytes[0], &dev->scsi3addr[0], 8);
5467 	c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5468 
5469 	/* Fill in the request block... */
5470 
5471 	c->Request.Timeout = 0;
5472 	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5473 	c->Request.CDBLen = cmd->cmd_len;
5474 	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5475 	switch (cmd->sc_data_direction) {
5476 	case DMA_TO_DEVICE:
5477 		c->Request.type_attr_dir =
5478 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5479 		break;
5480 	case DMA_FROM_DEVICE:
5481 		c->Request.type_attr_dir =
5482 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5483 		break;
5484 	case DMA_NONE:
5485 		c->Request.type_attr_dir =
5486 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5487 		break;
5488 	case DMA_BIDIRECTIONAL:
5489 		/* This can happen if a buggy application does a scsi passthru
5490 		 * and sets both inlen and outlen to non-zero. ( see
5491 		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5492 		 */
5493 
5494 		c->Request.type_attr_dir =
5495 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5496 		/* This is technically wrong, and hpsa controllers should
5497 		 * reject it with CMD_INVALID, which is the most correct
5498 		 * response, but non-fibre backends appear to let it
5499 		 * slide by, and give the same results as if this field
5500 		 * were set correctly.  Either way is acceptable for
5501 		 * our purposes here.
5502 		 */
5503 
5504 		break;
5505 
5506 	default:
5507 		dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5508 			cmd->sc_data_direction);
5509 		BUG();
5510 		break;
5511 	}
5512 
5513 	if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5514 		hpsa_cmd_resolve_and_free(h, c);
5515 		return SCSI_MLQUEUE_HOST_BUSY;
5516 	}
5517 
5518 	if (dev->in_reset) {
5519 		hpsa_cmd_resolve_and_free(h, c);
5520 		return SCSI_MLQUEUE_HOST_BUSY;
5521 	}
5522 
5523 	c->device = dev;
5524 
5525 	enqueue_cmd_and_start_io(h, c);
5526 	/* the cmd'll come back via intr handler in complete_scsi_command()  */
5527 	return 0;
5528 }
5529 
hpsa_cmd_init(struct ctlr_info * h,int index,struct CommandList * c)5530 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5531 				struct CommandList *c)
5532 {
5533 	dma_addr_t cmd_dma_handle, err_dma_handle;
5534 
5535 	/* Zero out all of commandlist except the last field, refcount */
5536 	memset(c, 0, offsetof(struct CommandList, refcount));
5537 	c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5538 	cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5539 	c->err_info = h->errinfo_pool + index;
5540 	memset(c->err_info, 0, sizeof(*c->err_info));
5541 	err_dma_handle = h->errinfo_pool_dhandle
5542 	    + index * sizeof(*c->err_info);
5543 	c->cmdindex = index;
5544 	c->busaddr = (u32) cmd_dma_handle;
5545 	c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5546 	c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5547 	c->h = h;
5548 	c->scsi_cmd = SCSI_CMD_IDLE;
5549 }
5550 
hpsa_preinitialize_commands(struct ctlr_info * h)5551 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5552 {
5553 	int i;
5554 
5555 	for (i = 0; i < h->nr_cmds; i++) {
5556 		struct CommandList *c = h->cmd_pool + i;
5557 
5558 		hpsa_cmd_init(h, i, c);
5559 		atomic_set(&c->refcount, 0);
5560 	}
5561 }
5562 
hpsa_cmd_partial_init(struct ctlr_info * h,int index,struct CommandList * c)5563 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5564 				struct CommandList *c)
5565 {
5566 	dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5567 
5568 	BUG_ON(c->cmdindex != index);
5569 
5570 	memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5571 	memset(c->err_info, 0, sizeof(*c->err_info));
5572 	c->busaddr = (u32) cmd_dma_handle;
5573 }
5574 
hpsa_ioaccel_submit(struct ctlr_info * h,struct CommandList * c,struct scsi_cmnd * cmd,bool retry)5575 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5576 		struct CommandList *c, struct scsi_cmnd *cmd,
5577 		bool retry)
5578 {
5579 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5580 	int rc = IO_ACCEL_INELIGIBLE;
5581 
5582 	if (!dev)
5583 		return SCSI_MLQUEUE_HOST_BUSY;
5584 
5585 	if (dev->in_reset)
5586 		return SCSI_MLQUEUE_HOST_BUSY;
5587 
5588 	if (hpsa_simple_mode)
5589 		return IO_ACCEL_INELIGIBLE;
5590 
5591 	cmd->host_scribble = (unsigned char *) c;
5592 
5593 	if (dev->offload_enabled) {
5594 		hpsa_cmd_init(h, c->cmdindex, c); /* Zeroes out all fields */
5595 		c->cmd_type = CMD_SCSI;
5596 		c->scsi_cmd = cmd;
5597 		c->device = dev;
5598 		if (retry) /* Resubmit but do not increment device->commands_outstanding. */
5599 			c->retry_pending = true;
5600 		rc = hpsa_scsi_ioaccel_raid_map(h, c);
5601 		if (rc < 0)     /* scsi_dma_map failed. */
5602 			rc = SCSI_MLQUEUE_HOST_BUSY;
5603 	} else if (dev->hba_ioaccel_enabled) {
5604 		hpsa_cmd_init(h, c->cmdindex, c); /* Zeroes out all fields */
5605 		c->cmd_type = CMD_SCSI;
5606 		c->scsi_cmd = cmd;
5607 		c->device = dev;
5608 		if (retry) /* Resubmit but do not increment device->commands_outstanding. */
5609 			c->retry_pending = true;
5610 		rc = hpsa_scsi_ioaccel_direct_map(h, c);
5611 		if (rc < 0)     /* scsi_dma_map failed. */
5612 			rc = SCSI_MLQUEUE_HOST_BUSY;
5613 	}
5614 	return rc;
5615 }
5616 
hpsa_command_resubmit_worker(struct work_struct * work)5617 static void hpsa_command_resubmit_worker(struct work_struct *work)
5618 {
5619 	struct scsi_cmnd *cmd;
5620 	struct hpsa_scsi_dev_t *dev;
5621 	struct CommandList *c = container_of(work, struct CommandList, work);
5622 
5623 	cmd = c->scsi_cmd;
5624 	dev = cmd->device->hostdata;
5625 	if (!dev) {
5626 		cmd->result = DID_NO_CONNECT << 16;
5627 		return hpsa_cmd_free_and_done(c->h, c, cmd);
5628 	}
5629 
5630 	if (dev->in_reset) {
5631 		cmd->result = DID_RESET << 16;
5632 		return hpsa_cmd_free_and_done(c->h, c, cmd);
5633 	}
5634 
5635 	if (c->cmd_type == CMD_IOACCEL2) {
5636 		struct ctlr_info *h = c->h;
5637 		struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5638 		int rc;
5639 
5640 		if (c2->error_data.serv_response ==
5641 				IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5642 			/* Resubmit with the retry_pending flag set. */
5643 			rc = hpsa_ioaccel_submit(h, c, cmd, true);
5644 			if (rc == 0)
5645 				return;
5646 			if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5647 				/*
5648 				 * If we get here, it means dma mapping failed.
5649 				 * Try again via scsi mid layer, which will
5650 				 * then get SCSI_MLQUEUE_HOST_BUSY.
5651 				 */
5652 				cmd->result = DID_IMM_RETRY << 16;
5653 				return hpsa_cmd_free_and_done(h, c, cmd);
5654 			}
5655 			/* else, fall thru and resubmit down CISS path */
5656 		}
5657 	}
5658 	hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5659 	/*
5660 	 * Here we have not come in though queue_command, so we
5661 	 * can set the retry_pending flag to true for a driver initiated
5662 	 * retry attempt (I.E. not a SML retry).
5663 	 * I.E. We are submitting a driver initiated retry.
5664 	 * Note: hpsa_ciss_submit does not zero out the command fields like
5665 	 *       ioaccel submit does.
5666 	 */
5667 	c->retry_pending = true;
5668 	if (hpsa_ciss_submit(c->h, c, cmd, dev)) {
5669 		/*
5670 		 * If we get here, it means dma mapping failed. Try
5671 		 * again via scsi mid layer, which will then get
5672 		 * SCSI_MLQUEUE_HOST_BUSY.
5673 		 *
5674 		 * hpsa_ciss_submit will have already freed c
5675 		 * if it encountered a dma mapping failure.
5676 		 */
5677 		cmd->result = DID_IMM_RETRY << 16;
5678 		scsi_done(cmd);
5679 	}
5680 }
5681 
5682 /* Running in struct Scsi_Host->host_lock less mode */
hpsa_scsi_queue_command(struct Scsi_Host * sh,struct scsi_cmnd * cmd)5683 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5684 {
5685 	struct ctlr_info *h;
5686 	struct hpsa_scsi_dev_t *dev;
5687 	struct CommandList *c;
5688 	int rc = 0;
5689 
5690 	/* Get the ptr to our adapter structure out of cmd->host. */
5691 	h = sdev_to_hba(cmd->device);
5692 
5693 	BUG_ON(scsi_cmd_to_rq(cmd)->tag < 0);
5694 
5695 	dev = cmd->device->hostdata;
5696 	if (!dev) {
5697 		cmd->result = DID_NO_CONNECT << 16;
5698 		scsi_done(cmd);
5699 		return 0;
5700 	}
5701 
5702 	if (dev->removed) {
5703 		cmd->result = DID_NO_CONNECT << 16;
5704 		scsi_done(cmd);
5705 		return 0;
5706 	}
5707 
5708 	if (unlikely(lockup_detected(h))) {
5709 		cmd->result = DID_NO_CONNECT << 16;
5710 		scsi_done(cmd);
5711 		return 0;
5712 	}
5713 
5714 	if (dev->in_reset)
5715 		return SCSI_MLQUEUE_DEVICE_BUSY;
5716 
5717 	c = cmd_tagged_alloc(h, cmd);
5718 	if (c == NULL)
5719 		return SCSI_MLQUEUE_DEVICE_BUSY;
5720 
5721 	/*
5722 	 * This is necessary because the SML doesn't zero out this field during
5723 	 * error recovery.
5724 	 */
5725 	cmd->result = 0;
5726 
5727 	/*
5728 	 * Call alternate submit routine for I/O accelerated commands.
5729 	 * Retries always go down the normal I/O path.
5730 	 * Note: If cmd->retries is non-zero, then this is a SML
5731 	 *       initiated retry and not a driver initiated retry.
5732 	 *       This command has been obtained from cmd_tagged_alloc
5733 	 *       and is therefore a brand-new command.
5734 	 */
5735 	if (likely(cmd->retries == 0 &&
5736 			!blk_rq_is_passthrough(scsi_cmd_to_rq(cmd)) &&
5737 			h->acciopath_status)) {
5738 		/* Submit with the retry_pending flag unset. */
5739 		rc = hpsa_ioaccel_submit(h, c, cmd, false);
5740 		if (rc == 0)
5741 			return 0;
5742 		if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5743 			hpsa_cmd_resolve_and_free(h, c);
5744 			return SCSI_MLQUEUE_HOST_BUSY;
5745 		}
5746 	}
5747 	return hpsa_ciss_submit(h, c, cmd, dev);
5748 }
5749 
hpsa_scan_complete(struct ctlr_info * h)5750 static void hpsa_scan_complete(struct ctlr_info *h)
5751 {
5752 	unsigned long flags;
5753 
5754 	spin_lock_irqsave(&h->scan_lock, flags);
5755 	h->scan_finished = 1;
5756 	wake_up(&h->scan_wait_queue);
5757 	spin_unlock_irqrestore(&h->scan_lock, flags);
5758 }
5759 
hpsa_scan_start(struct Scsi_Host * sh)5760 static void hpsa_scan_start(struct Scsi_Host *sh)
5761 {
5762 	struct ctlr_info *h = shost_to_hba(sh);
5763 	unsigned long flags;
5764 
5765 	/*
5766 	 * Don't let rescans be initiated on a controller known to be locked
5767 	 * up.  If the controller locks up *during* a rescan, that thread is
5768 	 * probably hosed, but at least we can prevent new rescan threads from
5769 	 * piling up on a locked up controller.
5770 	 */
5771 	if (unlikely(lockup_detected(h)))
5772 		return hpsa_scan_complete(h);
5773 
5774 	/*
5775 	 * If a scan is already waiting to run, no need to add another
5776 	 */
5777 	spin_lock_irqsave(&h->scan_lock, flags);
5778 	if (h->scan_waiting) {
5779 		spin_unlock_irqrestore(&h->scan_lock, flags);
5780 		return;
5781 	}
5782 
5783 	spin_unlock_irqrestore(&h->scan_lock, flags);
5784 
5785 	/* wait until any scan already in progress is finished. */
5786 	while (1) {
5787 		spin_lock_irqsave(&h->scan_lock, flags);
5788 		if (h->scan_finished)
5789 			break;
5790 		h->scan_waiting = 1;
5791 		spin_unlock_irqrestore(&h->scan_lock, flags);
5792 		wait_event(h->scan_wait_queue, h->scan_finished);
5793 		/* Note: We don't need to worry about a race between this
5794 		 * thread and driver unload because the midlayer will
5795 		 * have incremented the reference count, so unload won't
5796 		 * happen if we're in here.
5797 		 */
5798 	}
5799 	h->scan_finished = 0; /* mark scan as in progress */
5800 	h->scan_waiting = 0;
5801 	spin_unlock_irqrestore(&h->scan_lock, flags);
5802 
5803 	if (unlikely(lockup_detected(h)))
5804 		return hpsa_scan_complete(h);
5805 
5806 	/*
5807 	 * Do the scan after a reset completion
5808 	 */
5809 	spin_lock_irqsave(&h->reset_lock, flags);
5810 	if (h->reset_in_progress) {
5811 		h->drv_req_rescan = 1;
5812 		spin_unlock_irqrestore(&h->reset_lock, flags);
5813 		hpsa_scan_complete(h);
5814 		return;
5815 	}
5816 	spin_unlock_irqrestore(&h->reset_lock, flags);
5817 
5818 	hpsa_update_scsi_devices(h);
5819 
5820 	hpsa_scan_complete(h);
5821 }
5822 
hpsa_change_queue_depth(struct scsi_device * sdev,int qdepth)5823 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5824 {
5825 	struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5826 
5827 	if (!logical_drive)
5828 		return -ENODEV;
5829 
5830 	if (qdepth < 1)
5831 		qdepth = 1;
5832 	else if (qdepth > logical_drive->queue_depth)
5833 		qdepth = logical_drive->queue_depth;
5834 
5835 	return scsi_change_queue_depth(sdev, qdepth);
5836 }
5837 
hpsa_scan_finished(struct Scsi_Host * sh,unsigned long elapsed_time)5838 static int hpsa_scan_finished(struct Scsi_Host *sh,
5839 	unsigned long elapsed_time)
5840 {
5841 	struct ctlr_info *h = shost_to_hba(sh);
5842 	unsigned long flags;
5843 	int finished;
5844 
5845 	spin_lock_irqsave(&h->scan_lock, flags);
5846 	finished = h->scan_finished;
5847 	spin_unlock_irqrestore(&h->scan_lock, flags);
5848 	return finished;
5849 }
5850 
hpsa_scsi_host_alloc(struct ctlr_info * h)5851 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5852 {
5853 	struct Scsi_Host *sh;
5854 
5855 	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(struct ctlr_info *));
5856 	if (sh == NULL) {
5857 		dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5858 		return -ENOMEM;
5859 	}
5860 
5861 	sh->io_port = 0;
5862 	sh->n_io_port = 0;
5863 	sh->this_id = -1;
5864 	sh->max_channel = 3;
5865 	sh->max_cmd_len = MAX_COMMAND_SIZE;
5866 	sh->max_lun = HPSA_MAX_LUN;
5867 	sh->max_id = HPSA_MAX_LUN;
5868 	sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5869 	sh->cmd_per_lun = sh->can_queue;
5870 	sh->sg_tablesize = h->maxsgentries;
5871 	sh->transportt = hpsa_sas_transport_template;
5872 	sh->hostdata[0] = (unsigned long) h;
5873 	sh->irq = pci_irq_vector(h->pdev, 0);
5874 	sh->unique_id = sh->irq;
5875 
5876 	h->scsi_host = sh;
5877 	return 0;
5878 }
5879 
hpsa_scsi_add_host(struct ctlr_info * h)5880 static int hpsa_scsi_add_host(struct ctlr_info *h)
5881 {
5882 	int rv;
5883 
5884 	rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5885 	if (rv) {
5886 		dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5887 		return rv;
5888 	}
5889 	scsi_scan_host(h->scsi_host);
5890 	return 0;
5891 }
5892 
5893 /*
5894  * The block layer has already gone to the trouble of picking out a unique,
5895  * small-integer tag for this request.  We use an offset from that value as
5896  * an index to select our command block.  (The offset allows us to reserve the
5897  * low-numbered entries for our own uses.)
5898  */
hpsa_get_cmd_index(struct scsi_cmnd * scmd)5899 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5900 {
5901 	int idx = scsi_cmd_to_rq(scmd)->tag;
5902 
5903 	if (idx < 0)
5904 		return idx;
5905 
5906 	/* Offset to leave space for internal cmds. */
5907 	return idx += HPSA_NRESERVED_CMDS;
5908 }
5909 
5910 /*
5911  * Send a TEST_UNIT_READY command to the specified LUN using the specified
5912  * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5913  */
hpsa_send_test_unit_ready(struct ctlr_info * h,struct CommandList * c,unsigned char lunaddr[],int reply_queue)5914 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5915 				struct CommandList *c, unsigned char lunaddr[],
5916 				int reply_queue)
5917 {
5918 	int rc;
5919 
5920 	/* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5921 	(void) fill_cmd(c, TEST_UNIT_READY, h,
5922 			NULL, 0, 0, lunaddr, TYPE_CMD);
5923 	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5924 	if (rc)
5925 		return rc;
5926 	/* no unmap needed here because no data xfer. */
5927 
5928 	/* Check if the unit is already ready. */
5929 	if (c->err_info->CommandStatus == CMD_SUCCESS)
5930 		return 0;
5931 
5932 	/*
5933 	 * The first command sent after reset will receive "unit attention" to
5934 	 * indicate that the LUN has been reset...this is actually what we're
5935 	 * looking for (but, success is good too).
5936 	 */
5937 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5938 		c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5939 			(c->err_info->SenseInfo[2] == NO_SENSE ||
5940 			 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5941 		return 0;
5942 
5943 	return 1;
5944 }
5945 
5946 /*
5947  * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5948  * returns zero when the unit is ready, and non-zero when giving up.
5949  */
hpsa_wait_for_test_unit_ready(struct ctlr_info * h,struct CommandList * c,unsigned char lunaddr[],int reply_queue)5950 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5951 				struct CommandList *c,
5952 				unsigned char lunaddr[], int reply_queue)
5953 {
5954 	int rc;
5955 	int count = 0;
5956 	int waittime = 1; /* seconds */
5957 
5958 	/* Send test unit ready until device ready, or give up. */
5959 	for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5960 
5961 		/*
5962 		 * Wait for a bit.  do this first, because if we send
5963 		 * the TUR right away, the reset will just abort it.
5964 		 */
5965 		msleep(1000 * waittime);
5966 
5967 		rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5968 		if (!rc)
5969 			break;
5970 
5971 		/* Increase wait time with each try, up to a point. */
5972 		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5973 			waittime *= 2;
5974 
5975 		dev_warn(&h->pdev->dev,
5976 			 "waiting %d secs for device to become ready.\n",
5977 			 waittime);
5978 	}
5979 
5980 	return rc;
5981 }
5982 
wait_for_device_to_become_ready(struct ctlr_info * h,unsigned char lunaddr[],int reply_queue)5983 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5984 					   unsigned char lunaddr[],
5985 					   int reply_queue)
5986 {
5987 	int first_queue;
5988 	int last_queue;
5989 	int rq;
5990 	int rc = 0;
5991 	struct CommandList *c;
5992 
5993 	c = cmd_alloc(h);
5994 
5995 	/*
5996 	 * If no specific reply queue was requested, then send the TUR
5997 	 * repeatedly, requesting a reply on each reply queue; otherwise execute
5998 	 * the loop exactly once using only the specified queue.
5999 	 */
6000 	if (reply_queue == DEFAULT_REPLY_QUEUE) {
6001 		first_queue = 0;
6002 		last_queue = h->nreply_queues - 1;
6003 	} else {
6004 		first_queue = reply_queue;
6005 		last_queue = reply_queue;
6006 	}
6007 
6008 	for (rq = first_queue; rq <= last_queue; rq++) {
6009 		rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
6010 		if (rc)
6011 			break;
6012 	}
6013 
6014 	if (rc)
6015 		dev_warn(&h->pdev->dev, "giving up on device.\n");
6016 	else
6017 		dev_warn(&h->pdev->dev, "device is ready.\n");
6018 
6019 	cmd_free(h, c);
6020 	return rc;
6021 }
6022 
6023 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
6024  * complaining.  Doing a host- or bus-reset can't do anything good here.
6025  */
hpsa_eh_device_reset_handler(struct scsi_cmnd * scsicmd)6026 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
6027 {
6028 	int rc = SUCCESS;
6029 	int i;
6030 	struct ctlr_info *h;
6031 	struct hpsa_scsi_dev_t *dev = NULL;
6032 	u8 reset_type;
6033 	char msg[48];
6034 	unsigned long flags;
6035 
6036 	/* find the controller to which the command to be aborted was sent */
6037 	h = sdev_to_hba(scsicmd->device);
6038 	if (h == NULL) /* paranoia */
6039 		return FAILED;
6040 
6041 	spin_lock_irqsave(&h->reset_lock, flags);
6042 	h->reset_in_progress = 1;
6043 	spin_unlock_irqrestore(&h->reset_lock, flags);
6044 
6045 	if (lockup_detected(h)) {
6046 		rc = FAILED;
6047 		goto return_reset_status;
6048 	}
6049 
6050 	dev = scsicmd->device->hostdata;
6051 	if (!dev) {
6052 		dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
6053 		rc = FAILED;
6054 		goto return_reset_status;
6055 	}
6056 
6057 	if (dev->devtype == TYPE_ENCLOSURE) {
6058 		rc = SUCCESS;
6059 		goto return_reset_status;
6060 	}
6061 
6062 	/* if controller locked up, we can guarantee command won't complete */
6063 	if (lockup_detected(h)) {
6064 		snprintf(msg, sizeof(msg),
6065 			 "cmd %d RESET FAILED, lockup detected",
6066 			 hpsa_get_cmd_index(scsicmd));
6067 		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6068 		rc = FAILED;
6069 		goto return_reset_status;
6070 	}
6071 
6072 	/* this reset request might be the result of a lockup; check */
6073 	if (detect_controller_lockup(h)) {
6074 		snprintf(msg, sizeof(msg),
6075 			 "cmd %d RESET FAILED, new lockup detected",
6076 			 hpsa_get_cmd_index(scsicmd));
6077 		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6078 		rc = FAILED;
6079 		goto return_reset_status;
6080 	}
6081 
6082 	/* Do not attempt on controller */
6083 	if (is_hba_lunid(dev->scsi3addr)) {
6084 		rc = SUCCESS;
6085 		goto return_reset_status;
6086 	}
6087 
6088 	if (is_logical_dev_addr_mode(dev->scsi3addr))
6089 		reset_type = HPSA_DEVICE_RESET_MSG;
6090 	else
6091 		reset_type = HPSA_PHYS_TARGET_RESET;
6092 
6093 	sprintf(msg, "resetting %s",
6094 		reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
6095 	hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6096 
6097 	/*
6098 	 * wait to see if any commands will complete before sending reset
6099 	 */
6100 	dev->in_reset = true; /* block any new cmds from OS for this device */
6101 	for (i = 0; i < 10; i++) {
6102 		if (atomic_read(&dev->commands_outstanding) > 0)
6103 			msleep(1000);
6104 		else
6105 			break;
6106 	}
6107 
6108 	/* send a reset to the SCSI LUN which the command was sent to */
6109 	rc = hpsa_do_reset(h, dev, reset_type, DEFAULT_REPLY_QUEUE);
6110 	if (rc == 0)
6111 		rc = SUCCESS;
6112 	else
6113 		rc = FAILED;
6114 
6115 	sprintf(msg, "reset %s %s",
6116 		reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
6117 		rc == SUCCESS ? "completed successfully" : "failed");
6118 	hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6119 
6120 return_reset_status:
6121 	spin_lock_irqsave(&h->reset_lock, flags);
6122 	h->reset_in_progress = 0;
6123 	if (dev)
6124 		dev->in_reset = false;
6125 	spin_unlock_irqrestore(&h->reset_lock, flags);
6126 	return rc;
6127 }
6128 
6129 /*
6130  * For operations with an associated SCSI command, a command block is allocated
6131  * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6132  * block request tag as an index into a table of entries.  cmd_tagged_free() is
6133  * the complement, although cmd_free() may be called instead.
6134  * This function is only called for new requests from queue_command.
6135  */
cmd_tagged_alloc(struct ctlr_info * h,struct scsi_cmnd * scmd)6136 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
6137 					    struct scsi_cmnd *scmd)
6138 {
6139 	int idx = hpsa_get_cmd_index(scmd);
6140 	struct CommandList *c = h->cmd_pool + idx;
6141 
6142 	if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
6143 		dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
6144 			idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
6145 		/* The index value comes from the block layer, so if it's out of
6146 		 * bounds, it's probably not our bug.
6147 		 */
6148 		BUG();
6149 	}
6150 
6151 	if (unlikely(!hpsa_is_cmd_idle(c))) {
6152 		/*
6153 		 * We expect that the SCSI layer will hand us a unique tag
6154 		 * value.  Thus, there should never be a collision here between
6155 		 * two requests...because if the selected command isn't idle
6156 		 * then someone is going to be very disappointed.
6157 		 */
6158 		if (idx != h->last_collision_tag) { /* Print once per tag */
6159 			dev_warn(&h->pdev->dev,
6160 				"%s: tag collision (tag=%d)\n", __func__, idx);
6161 			if (scmd)
6162 				scsi_print_command(scmd);
6163 			h->last_collision_tag = idx;
6164 		}
6165 		return NULL;
6166 	}
6167 
6168 	atomic_inc(&c->refcount);
6169 	hpsa_cmd_partial_init(h, idx, c);
6170 
6171 	/*
6172 	 * This is a new command obtained from queue_command so
6173 	 * there have not been any driver initiated retry attempts.
6174 	 */
6175 	c->retry_pending = false;
6176 
6177 	return c;
6178 }
6179 
cmd_tagged_free(struct ctlr_info * h,struct CommandList * c)6180 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
6181 {
6182 	/*
6183 	 * Release our reference to the block.  We don't need to do anything
6184 	 * else to free it, because it is accessed by index.
6185 	 */
6186 	(void)atomic_dec(&c->refcount);
6187 }
6188 
6189 /*
6190  * For operations that cannot sleep, a command block is allocated at init,
6191  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6192  * which ones are free or in use.  Lock must be held when calling this.
6193  * cmd_free() is the complement.
6194  * This function never gives up and returns NULL.  If it hangs,
6195  * another thread must call cmd_free() to free some tags.
6196  */
6197 
cmd_alloc(struct ctlr_info * h)6198 static struct CommandList *cmd_alloc(struct ctlr_info *h)
6199 {
6200 	struct CommandList *c;
6201 	int refcount, i;
6202 	int offset = 0;
6203 
6204 	/*
6205 	 * There is some *extremely* small but non-zero chance that that
6206 	 * multiple threads could get in here, and one thread could
6207 	 * be scanning through the list of bits looking for a free
6208 	 * one, but the free ones are always behind him, and other
6209 	 * threads sneak in behind him and eat them before he can
6210 	 * get to them, so that while there is always a free one, a
6211 	 * very unlucky thread might be starved anyway, never able to
6212 	 * beat the other threads.  In reality, this happens so
6213 	 * infrequently as to be indistinguishable from never.
6214 	 *
6215 	 * Note that we start allocating commands before the SCSI host structure
6216 	 * is initialized.  Since the search starts at bit zero, this
6217 	 * all works, since we have at least one command structure available;
6218 	 * however, it means that the structures with the low indexes have to be
6219 	 * reserved for driver-initiated requests, while requests from the block
6220 	 * layer will use the higher indexes.
6221 	 */
6222 
6223 	for (;;) {
6224 		i = find_next_zero_bit(h->cmd_pool_bits,
6225 					HPSA_NRESERVED_CMDS,
6226 					offset);
6227 		if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6228 			offset = 0;
6229 			continue;
6230 		}
6231 		c = h->cmd_pool + i;
6232 		refcount = atomic_inc_return(&c->refcount);
6233 		if (unlikely(refcount > 1)) {
6234 			cmd_free(h, c); /* already in use */
6235 			offset = (i + 1) % HPSA_NRESERVED_CMDS;
6236 			continue;
6237 		}
6238 		set_bit(i, h->cmd_pool_bits);
6239 		break; /* it's ours now. */
6240 	}
6241 	hpsa_cmd_partial_init(h, i, c);
6242 	c->device = NULL;
6243 
6244 	/*
6245 	 * cmd_alloc is for "internal" commands and they are never
6246 	 * retried.
6247 	 */
6248 	c->retry_pending = false;
6249 
6250 	return c;
6251 }
6252 
6253 /*
6254  * This is the complementary operation to cmd_alloc().  Note, however, in some
6255  * corner cases it may also be used to free blocks allocated by
6256  * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6257  * the clear-bit is harmless.
6258  */
cmd_free(struct ctlr_info * h,struct CommandList * c)6259 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6260 {
6261 	if (atomic_dec_and_test(&c->refcount)) {
6262 		int i;
6263 
6264 		i = c - h->cmd_pool;
6265 		clear_bit(i, h->cmd_pool_bits);
6266 	}
6267 }
6268 
6269 #ifdef CONFIG_COMPAT
6270 
hpsa_ioctl32_passthru(struct scsi_device * dev,unsigned int cmd,void __user * arg)6271 static int hpsa_ioctl32_passthru(struct scsi_device *dev, unsigned int cmd,
6272 	void __user *arg)
6273 {
6274 	struct ctlr_info *h = sdev_to_hba(dev);
6275 	IOCTL32_Command_struct __user *arg32 = arg;
6276 	IOCTL_Command_struct arg64;
6277 	int err;
6278 	u32 cp;
6279 
6280 	if (!arg)
6281 		return -EINVAL;
6282 
6283 	memset(&arg64, 0, sizeof(arg64));
6284 	if (copy_from_user(&arg64, arg32, offsetof(IOCTL_Command_struct, buf)))
6285 		return -EFAULT;
6286 	if (get_user(cp, &arg32->buf))
6287 		return -EFAULT;
6288 	arg64.buf = compat_ptr(cp);
6289 
6290 	if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6291 		return -EAGAIN;
6292 	err = hpsa_passthru_ioctl(h, &arg64);
6293 	atomic_inc(&h->passthru_cmds_avail);
6294 	if (err)
6295 		return err;
6296 	if (copy_to_user(&arg32->error_info, &arg64.error_info,
6297 			 sizeof(arg32->error_info)))
6298 		return -EFAULT;
6299 	return 0;
6300 }
6301 
hpsa_ioctl32_big_passthru(struct scsi_device * dev,unsigned int cmd,void __user * arg)6302 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6303 	unsigned int cmd, void __user *arg)
6304 {
6305 	struct ctlr_info *h = sdev_to_hba(dev);
6306 	BIG_IOCTL32_Command_struct __user *arg32 = arg;
6307 	BIG_IOCTL_Command_struct arg64;
6308 	int err;
6309 	u32 cp;
6310 
6311 	if (!arg)
6312 		return -EINVAL;
6313 	memset(&arg64, 0, sizeof(arg64));
6314 	if (copy_from_user(&arg64, arg32,
6315 			   offsetof(BIG_IOCTL32_Command_struct, buf)))
6316 		return -EFAULT;
6317 	if (get_user(cp, &arg32->buf))
6318 		return -EFAULT;
6319 	arg64.buf = compat_ptr(cp);
6320 
6321 	if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6322 		return -EAGAIN;
6323 	err = hpsa_big_passthru_ioctl(h, &arg64);
6324 	atomic_inc(&h->passthru_cmds_avail);
6325 	if (err)
6326 		return err;
6327 	if (copy_to_user(&arg32->error_info, &arg64.error_info,
6328 			 sizeof(arg32->error_info)))
6329 		return -EFAULT;
6330 	return 0;
6331 }
6332 
hpsa_compat_ioctl(struct scsi_device * dev,unsigned int cmd,void __user * arg)6333 static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
6334 			     void __user *arg)
6335 {
6336 	switch (cmd) {
6337 	case CCISS_GETPCIINFO:
6338 	case CCISS_GETINTINFO:
6339 	case CCISS_SETINTINFO:
6340 	case CCISS_GETNODENAME:
6341 	case CCISS_SETNODENAME:
6342 	case CCISS_GETHEARTBEAT:
6343 	case CCISS_GETBUSTYPES:
6344 	case CCISS_GETFIRMVER:
6345 	case CCISS_GETDRIVVER:
6346 	case CCISS_REVALIDVOLS:
6347 	case CCISS_DEREGDISK:
6348 	case CCISS_REGNEWDISK:
6349 	case CCISS_REGNEWD:
6350 	case CCISS_RESCANDISK:
6351 	case CCISS_GETLUNINFO:
6352 		return hpsa_ioctl(dev, cmd, arg);
6353 
6354 	case CCISS_PASSTHRU32:
6355 		return hpsa_ioctl32_passthru(dev, cmd, arg);
6356 	case CCISS_BIG_PASSTHRU32:
6357 		return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6358 
6359 	default:
6360 		return -ENOIOCTLCMD;
6361 	}
6362 }
6363 #endif
6364 
hpsa_getpciinfo_ioctl(struct ctlr_info * h,void __user * argp)6365 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6366 {
6367 	struct hpsa_pci_info pciinfo;
6368 
6369 	if (!argp)
6370 		return -EINVAL;
6371 	pciinfo.domain = pci_domain_nr(h->pdev->bus);
6372 	pciinfo.bus = h->pdev->bus->number;
6373 	pciinfo.dev_fn = h->pdev->devfn;
6374 	pciinfo.board_id = h->board_id;
6375 	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6376 		return -EFAULT;
6377 	return 0;
6378 }
6379 
hpsa_getdrivver_ioctl(struct ctlr_info * h,void __user * argp)6380 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6381 {
6382 	DriverVer_type DriverVer;
6383 	unsigned char vmaj, vmin, vsubmin;
6384 	int rc;
6385 
6386 	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6387 		&vmaj, &vmin, &vsubmin);
6388 	if (rc != 3) {
6389 		dev_info(&h->pdev->dev, "driver version string '%s' "
6390 			"unrecognized.", HPSA_DRIVER_VERSION);
6391 		vmaj = 0;
6392 		vmin = 0;
6393 		vsubmin = 0;
6394 	}
6395 	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6396 	if (!argp)
6397 		return -EINVAL;
6398 	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6399 		return -EFAULT;
6400 	return 0;
6401 }
6402 
hpsa_passthru_ioctl(struct ctlr_info * h,IOCTL_Command_struct * iocommand)6403 static int hpsa_passthru_ioctl(struct ctlr_info *h,
6404 			       IOCTL_Command_struct *iocommand)
6405 {
6406 	struct CommandList *c;
6407 	char *buff = NULL;
6408 	u64 temp64;
6409 	int rc = 0;
6410 
6411 	if (!capable(CAP_SYS_RAWIO))
6412 		return -EPERM;
6413 	if ((iocommand->buf_size < 1) &&
6414 	    (iocommand->Request.Type.Direction != XFER_NONE)) {
6415 		return -EINVAL;
6416 	}
6417 	if (iocommand->buf_size > 0) {
6418 		buff = kmalloc(iocommand->buf_size, GFP_KERNEL);
6419 		if (buff == NULL)
6420 			return -ENOMEM;
6421 		if (iocommand->Request.Type.Direction & XFER_WRITE) {
6422 			/* Copy the data into the buffer we created */
6423 			if (copy_from_user(buff, iocommand->buf,
6424 				iocommand->buf_size)) {
6425 				rc = -EFAULT;
6426 				goto out_kfree;
6427 			}
6428 		} else {
6429 			memset(buff, 0, iocommand->buf_size);
6430 		}
6431 	}
6432 	c = cmd_alloc(h);
6433 
6434 	/* Fill in the command type */
6435 	c->cmd_type = CMD_IOCTL_PEND;
6436 	c->scsi_cmd = SCSI_CMD_BUSY;
6437 	/* Fill in Command Header */
6438 	c->Header.ReplyQueue = 0; /* unused in simple mode */
6439 	if (iocommand->buf_size > 0) {	/* buffer to fill */
6440 		c->Header.SGList = 1;
6441 		c->Header.SGTotal = cpu_to_le16(1);
6442 	} else	{ /* no buffers to fill */
6443 		c->Header.SGList = 0;
6444 		c->Header.SGTotal = cpu_to_le16(0);
6445 	}
6446 	memcpy(&c->Header.LUN, &iocommand->LUN_info, sizeof(c->Header.LUN));
6447 
6448 	/* Fill in Request block */
6449 	memcpy(&c->Request, &iocommand->Request,
6450 		sizeof(c->Request));
6451 
6452 	/* Fill in the scatter gather information */
6453 	if (iocommand->buf_size > 0) {
6454 		temp64 = dma_map_single(&h->pdev->dev, buff,
6455 			iocommand->buf_size, DMA_BIDIRECTIONAL);
6456 		if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6457 			c->SG[0].Addr = cpu_to_le64(0);
6458 			c->SG[0].Len = cpu_to_le32(0);
6459 			rc = -ENOMEM;
6460 			goto out;
6461 		}
6462 		c->SG[0].Addr = cpu_to_le64(temp64);
6463 		c->SG[0].Len = cpu_to_le32(iocommand->buf_size);
6464 		c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6465 	}
6466 	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6467 					NO_TIMEOUT);
6468 	if (iocommand->buf_size > 0)
6469 		hpsa_pci_unmap(h->pdev, c, 1, DMA_BIDIRECTIONAL);
6470 	check_ioctl_unit_attention(h, c);
6471 	if (rc) {
6472 		rc = -EIO;
6473 		goto out;
6474 	}
6475 
6476 	/* Copy the error information out */
6477 	memcpy(&iocommand->error_info, c->err_info,
6478 		sizeof(iocommand->error_info));
6479 	if ((iocommand->Request.Type.Direction & XFER_READ) &&
6480 		iocommand->buf_size > 0) {
6481 		/* Copy the data out of the buffer we created */
6482 		if (copy_to_user(iocommand->buf, buff, iocommand->buf_size)) {
6483 			rc = -EFAULT;
6484 			goto out;
6485 		}
6486 	}
6487 out:
6488 	cmd_free(h, c);
6489 out_kfree:
6490 	kfree(buff);
6491 	return rc;
6492 }
6493 
hpsa_big_passthru_ioctl(struct ctlr_info * h,BIG_IOCTL_Command_struct * ioc)6494 static int hpsa_big_passthru_ioctl(struct ctlr_info *h,
6495 				   BIG_IOCTL_Command_struct *ioc)
6496 {
6497 	struct CommandList *c;
6498 	unsigned char **buff = NULL;
6499 	int *buff_size = NULL;
6500 	u64 temp64;
6501 	BYTE sg_used = 0;
6502 	int status = 0;
6503 	u32 left;
6504 	u32 sz;
6505 	BYTE __user *data_ptr;
6506 
6507 	if (!capable(CAP_SYS_RAWIO))
6508 		return -EPERM;
6509 
6510 	if ((ioc->buf_size < 1) &&
6511 	    (ioc->Request.Type.Direction != XFER_NONE))
6512 		return -EINVAL;
6513 	/* Check kmalloc limits  using all SGs */
6514 	if (ioc->malloc_size > MAX_KMALLOC_SIZE)
6515 		return -EINVAL;
6516 	if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD)
6517 		return -EINVAL;
6518 	buff = kcalloc(SG_ENTRIES_IN_CMD, sizeof(char *), GFP_KERNEL);
6519 	if (!buff) {
6520 		status = -ENOMEM;
6521 		goto cleanup1;
6522 	}
6523 	buff_size = kmalloc_array(SG_ENTRIES_IN_CMD, sizeof(int), GFP_KERNEL);
6524 	if (!buff_size) {
6525 		status = -ENOMEM;
6526 		goto cleanup1;
6527 	}
6528 	left = ioc->buf_size;
6529 	data_ptr = ioc->buf;
6530 	while (left) {
6531 		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6532 		buff_size[sg_used] = sz;
6533 		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6534 		if (buff[sg_used] == NULL) {
6535 			status = -ENOMEM;
6536 			goto cleanup1;
6537 		}
6538 		if (ioc->Request.Type.Direction & XFER_WRITE) {
6539 			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6540 				status = -EFAULT;
6541 				goto cleanup1;
6542 			}
6543 		} else
6544 			memset(buff[sg_used], 0, sz);
6545 		left -= sz;
6546 		data_ptr += sz;
6547 		sg_used++;
6548 	}
6549 	c = cmd_alloc(h);
6550 
6551 	c->cmd_type = CMD_IOCTL_PEND;
6552 	c->scsi_cmd = SCSI_CMD_BUSY;
6553 	c->Header.ReplyQueue = 0;
6554 	c->Header.SGList = (u8) sg_used;
6555 	c->Header.SGTotal = cpu_to_le16(sg_used);
6556 	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6557 	memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6558 	if (ioc->buf_size > 0) {
6559 		int i;
6560 		for (i = 0; i < sg_used; i++) {
6561 			temp64 = dma_map_single(&h->pdev->dev, buff[i],
6562 				    buff_size[i], DMA_BIDIRECTIONAL);
6563 			if (dma_mapping_error(&h->pdev->dev,
6564 							(dma_addr_t) temp64)) {
6565 				c->SG[i].Addr = cpu_to_le64(0);
6566 				c->SG[i].Len = cpu_to_le32(0);
6567 				hpsa_pci_unmap(h->pdev, c, i,
6568 					DMA_BIDIRECTIONAL);
6569 				status = -ENOMEM;
6570 				goto cleanup0;
6571 			}
6572 			c->SG[i].Addr = cpu_to_le64(temp64);
6573 			c->SG[i].Len = cpu_to_le32(buff_size[i]);
6574 			c->SG[i].Ext = cpu_to_le32(0);
6575 		}
6576 		c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6577 	}
6578 	status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6579 						NO_TIMEOUT);
6580 	if (sg_used)
6581 		hpsa_pci_unmap(h->pdev, c, sg_used, DMA_BIDIRECTIONAL);
6582 	check_ioctl_unit_attention(h, c);
6583 	if (status) {
6584 		status = -EIO;
6585 		goto cleanup0;
6586 	}
6587 
6588 	/* Copy the error information out */
6589 	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6590 	if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6591 		int i;
6592 
6593 		/* Copy the data out of the buffer we created */
6594 		BYTE __user *ptr = ioc->buf;
6595 		for (i = 0; i < sg_used; i++) {
6596 			if (copy_to_user(ptr, buff[i], buff_size[i])) {
6597 				status = -EFAULT;
6598 				goto cleanup0;
6599 			}
6600 			ptr += buff_size[i];
6601 		}
6602 	}
6603 	status = 0;
6604 cleanup0:
6605 	cmd_free(h, c);
6606 cleanup1:
6607 	if (buff) {
6608 		int i;
6609 
6610 		for (i = 0; i < sg_used; i++)
6611 			kfree(buff[i]);
6612 		kfree(buff);
6613 	}
6614 	kfree(buff_size);
6615 	return status;
6616 }
6617 
check_ioctl_unit_attention(struct ctlr_info * h,struct CommandList * c)6618 static void check_ioctl_unit_attention(struct ctlr_info *h,
6619 	struct CommandList *c)
6620 {
6621 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6622 			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6623 		(void) check_for_unit_attention(h, c);
6624 }
6625 
6626 /*
6627  * ioctl
6628  */
hpsa_ioctl(struct scsi_device * dev,unsigned int cmd,void __user * argp)6629 static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
6630 		      void __user *argp)
6631 {
6632 	struct ctlr_info *h = sdev_to_hba(dev);
6633 	int rc;
6634 
6635 	switch (cmd) {
6636 	case CCISS_DEREGDISK:
6637 	case CCISS_REGNEWDISK:
6638 	case CCISS_REGNEWD:
6639 		hpsa_scan_start(h->scsi_host);
6640 		return 0;
6641 	case CCISS_GETPCIINFO:
6642 		return hpsa_getpciinfo_ioctl(h, argp);
6643 	case CCISS_GETDRIVVER:
6644 		return hpsa_getdrivver_ioctl(h, argp);
6645 	case CCISS_PASSTHRU: {
6646 		IOCTL_Command_struct iocommand;
6647 
6648 		if (!argp)
6649 			return -EINVAL;
6650 		if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6651 			return -EFAULT;
6652 		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6653 			return -EAGAIN;
6654 		rc = hpsa_passthru_ioctl(h, &iocommand);
6655 		atomic_inc(&h->passthru_cmds_avail);
6656 		if (!rc && copy_to_user(argp, &iocommand, sizeof(iocommand)))
6657 			rc = -EFAULT;
6658 		return rc;
6659 	}
6660 	case CCISS_BIG_PASSTHRU: {
6661 		BIG_IOCTL_Command_struct ioc;
6662 		if (!argp)
6663 			return -EINVAL;
6664 		if (copy_from_user(&ioc, argp, sizeof(ioc)))
6665 			return -EFAULT;
6666 		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6667 			return -EAGAIN;
6668 		rc = hpsa_big_passthru_ioctl(h, &ioc);
6669 		atomic_inc(&h->passthru_cmds_avail);
6670 		if (!rc && copy_to_user(argp, &ioc, sizeof(ioc)))
6671 			rc = -EFAULT;
6672 		return rc;
6673 	}
6674 	default:
6675 		return -ENOTTY;
6676 	}
6677 }
6678 
hpsa_send_host_reset(struct ctlr_info * h,u8 reset_type)6679 static void hpsa_send_host_reset(struct ctlr_info *h, u8 reset_type)
6680 {
6681 	struct CommandList *c;
6682 
6683 	c = cmd_alloc(h);
6684 
6685 	/* fill_cmd can't fail here, no data buffer to map */
6686 	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6687 		RAID_CTLR_LUNID, TYPE_MSG);
6688 	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6689 	c->waiting = NULL;
6690 	enqueue_cmd_and_start_io(h, c);
6691 	/* Don't wait for completion, the reset won't complete.  Don't free
6692 	 * the command either.  This is the last command we will send before
6693 	 * re-initializing everything, so it doesn't matter and won't leak.
6694 	 */
6695 	return;
6696 }
6697 
fill_cmd(struct CommandList * c,u8 cmd,struct ctlr_info * h,void * buff,size_t size,u16 page_code,unsigned char * scsi3addr,int cmd_type)6698 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6699 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6700 	int cmd_type)
6701 {
6702 	enum dma_data_direction dir = DMA_NONE;
6703 
6704 	c->cmd_type = CMD_IOCTL_PEND;
6705 	c->scsi_cmd = SCSI_CMD_BUSY;
6706 	c->Header.ReplyQueue = 0;
6707 	if (buff != NULL && size > 0) {
6708 		c->Header.SGList = 1;
6709 		c->Header.SGTotal = cpu_to_le16(1);
6710 	} else {
6711 		c->Header.SGList = 0;
6712 		c->Header.SGTotal = cpu_to_le16(0);
6713 	}
6714 	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6715 
6716 	if (cmd_type == TYPE_CMD) {
6717 		switch (cmd) {
6718 		case HPSA_INQUIRY:
6719 			/* are we trying to read a vital product page */
6720 			if (page_code & VPD_PAGE) {
6721 				c->Request.CDB[1] = 0x01;
6722 				c->Request.CDB[2] = (page_code & 0xff);
6723 			}
6724 			c->Request.CDBLen = 6;
6725 			c->Request.type_attr_dir =
6726 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6727 			c->Request.Timeout = 0;
6728 			c->Request.CDB[0] = HPSA_INQUIRY;
6729 			c->Request.CDB[4] = size & 0xFF;
6730 			break;
6731 		case RECEIVE_DIAGNOSTIC:
6732 			c->Request.CDBLen = 6;
6733 			c->Request.type_attr_dir =
6734 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6735 			c->Request.Timeout = 0;
6736 			c->Request.CDB[0] = cmd;
6737 			c->Request.CDB[1] = 1;
6738 			c->Request.CDB[2] = 1;
6739 			c->Request.CDB[3] = (size >> 8) & 0xFF;
6740 			c->Request.CDB[4] = size & 0xFF;
6741 			break;
6742 		case HPSA_REPORT_LOG:
6743 		case HPSA_REPORT_PHYS:
6744 			/* Talking to controller so It's a physical command
6745 			   mode = 00 target = 0.  Nothing to write.
6746 			 */
6747 			c->Request.CDBLen = 12;
6748 			c->Request.type_attr_dir =
6749 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6750 			c->Request.Timeout = 0;
6751 			c->Request.CDB[0] = cmd;
6752 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6753 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6754 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6755 			c->Request.CDB[9] = size & 0xFF;
6756 			break;
6757 		case BMIC_SENSE_DIAG_OPTIONS:
6758 			c->Request.CDBLen = 16;
6759 			c->Request.type_attr_dir =
6760 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6761 			c->Request.Timeout = 0;
6762 			/* Spec says this should be BMIC_WRITE */
6763 			c->Request.CDB[0] = BMIC_READ;
6764 			c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6765 			break;
6766 		case BMIC_SET_DIAG_OPTIONS:
6767 			c->Request.CDBLen = 16;
6768 			c->Request.type_attr_dir =
6769 					TYPE_ATTR_DIR(cmd_type,
6770 						ATTR_SIMPLE, XFER_WRITE);
6771 			c->Request.Timeout = 0;
6772 			c->Request.CDB[0] = BMIC_WRITE;
6773 			c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6774 			break;
6775 		case HPSA_CACHE_FLUSH:
6776 			c->Request.CDBLen = 12;
6777 			c->Request.type_attr_dir =
6778 					TYPE_ATTR_DIR(cmd_type,
6779 						ATTR_SIMPLE, XFER_WRITE);
6780 			c->Request.Timeout = 0;
6781 			c->Request.CDB[0] = BMIC_WRITE;
6782 			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6783 			c->Request.CDB[7] = (size >> 8) & 0xFF;
6784 			c->Request.CDB[8] = size & 0xFF;
6785 			break;
6786 		case TEST_UNIT_READY:
6787 			c->Request.CDBLen = 6;
6788 			c->Request.type_attr_dir =
6789 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6790 			c->Request.Timeout = 0;
6791 			break;
6792 		case HPSA_GET_RAID_MAP:
6793 			c->Request.CDBLen = 12;
6794 			c->Request.type_attr_dir =
6795 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6796 			c->Request.Timeout = 0;
6797 			c->Request.CDB[0] = HPSA_CISS_READ;
6798 			c->Request.CDB[1] = cmd;
6799 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6800 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6801 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6802 			c->Request.CDB[9] = size & 0xFF;
6803 			break;
6804 		case BMIC_SENSE_CONTROLLER_PARAMETERS:
6805 			c->Request.CDBLen = 10;
6806 			c->Request.type_attr_dir =
6807 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6808 			c->Request.Timeout = 0;
6809 			c->Request.CDB[0] = BMIC_READ;
6810 			c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6811 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6812 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6813 			break;
6814 		case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6815 			c->Request.CDBLen = 10;
6816 			c->Request.type_attr_dir =
6817 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6818 			c->Request.Timeout = 0;
6819 			c->Request.CDB[0] = BMIC_READ;
6820 			c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6821 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6822 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6823 			break;
6824 		case BMIC_SENSE_SUBSYSTEM_INFORMATION:
6825 			c->Request.CDBLen = 10;
6826 			c->Request.type_attr_dir =
6827 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6828 			c->Request.Timeout = 0;
6829 			c->Request.CDB[0] = BMIC_READ;
6830 			c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
6831 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6832 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6833 			break;
6834 		case BMIC_SENSE_STORAGE_BOX_PARAMS:
6835 			c->Request.CDBLen = 10;
6836 			c->Request.type_attr_dir =
6837 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6838 			c->Request.Timeout = 0;
6839 			c->Request.CDB[0] = BMIC_READ;
6840 			c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
6841 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6842 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6843 			break;
6844 		case BMIC_IDENTIFY_CONTROLLER:
6845 			c->Request.CDBLen = 10;
6846 			c->Request.type_attr_dir =
6847 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6848 			c->Request.Timeout = 0;
6849 			c->Request.CDB[0] = BMIC_READ;
6850 			c->Request.CDB[1] = 0;
6851 			c->Request.CDB[2] = 0;
6852 			c->Request.CDB[3] = 0;
6853 			c->Request.CDB[4] = 0;
6854 			c->Request.CDB[5] = 0;
6855 			c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
6856 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6857 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6858 			c->Request.CDB[9] = 0;
6859 			break;
6860 		default:
6861 			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6862 			BUG();
6863 		}
6864 	} else if (cmd_type == TYPE_MSG) {
6865 		switch (cmd) {
6866 
6867 		case  HPSA_PHYS_TARGET_RESET:
6868 			c->Request.CDBLen = 16;
6869 			c->Request.type_attr_dir =
6870 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6871 			c->Request.Timeout = 0; /* Don't time out */
6872 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6873 			c->Request.CDB[0] = HPSA_RESET;
6874 			c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6875 			/* Physical target reset needs no control bytes 4-7*/
6876 			c->Request.CDB[4] = 0x00;
6877 			c->Request.CDB[5] = 0x00;
6878 			c->Request.CDB[6] = 0x00;
6879 			c->Request.CDB[7] = 0x00;
6880 			break;
6881 		case  HPSA_DEVICE_RESET_MSG:
6882 			c->Request.CDBLen = 16;
6883 			c->Request.type_attr_dir =
6884 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6885 			c->Request.Timeout = 0; /* Don't time out */
6886 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6887 			c->Request.CDB[0] =  cmd;
6888 			c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6889 			/* If bytes 4-7 are zero, it means reset the */
6890 			/* LunID device */
6891 			c->Request.CDB[4] = 0x00;
6892 			c->Request.CDB[5] = 0x00;
6893 			c->Request.CDB[6] = 0x00;
6894 			c->Request.CDB[7] = 0x00;
6895 			break;
6896 		default:
6897 			dev_warn(&h->pdev->dev, "unknown message type %d\n",
6898 				cmd);
6899 			BUG();
6900 		}
6901 	} else {
6902 		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6903 		BUG();
6904 	}
6905 
6906 	switch (GET_DIR(c->Request.type_attr_dir)) {
6907 	case XFER_READ:
6908 		dir = DMA_FROM_DEVICE;
6909 		break;
6910 	case XFER_WRITE:
6911 		dir = DMA_TO_DEVICE;
6912 		break;
6913 	case XFER_NONE:
6914 		dir = DMA_NONE;
6915 		break;
6916 	default:
6917 		dir = DMA_BIDIRECTIONAL;
6918 	}
6919 	if (hpsa_map_one(h->pdev, c, buff, size, dir))
6920 		return -1;
6921 	return 0;
6922 }
6923 
6924 /*
6925  * Map (physical) PCI mem into (virtual) kernel space
6926  */
remap_pci_mem(ulong base,ulong size)6927 static void __iomem *remap_pci_mem(ulong base, ulong size)
6928 {
6929 	ulong page_base = ((ulong) base) & PAGE_MASK;
6930 	ulong page_offs = ((ulong) base) - page_base;
6931 	void __iomem *page_remapped = ioremap(page_base,
6932 		page_offs + size);
6933 
6934 	return page_remapped ? (page_remapped + page_offs) : NULL;
6935 }
6936 
get_next_completion(struct ctlr_info * h,u8 q)6937 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6938 {
6939 	return h->access.command_completed(h, q);
6940 }
6941 
interrupt_pending(struct ctlr_info * h)6942 static inline bool interrupt_pending(struct ctlr_info *h)
6943 {
6944 	return h->access.intr_pending(h);
6945 }
6946 
interrupt_not_for_us(struct ctlr_info * h)6947 static inline long interrupt_not_for_us(struct ctlr_info *h)
6948 {
6949 	return (h->access.intr_pending(h) == 0) ||
6950 		(h->interrupts_enabled == 0);
6951 }
6952 
bad_tag(struct ctlr_info * h,u32 tag_index,u32 raw_tag)6953 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6954 	u32 raw_tag)
6955 {
6956 	if (unlikely(tag_index >= h->nr_cmds)) {
6957 		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6958 		return 1;
6959 	}
6960 	return 0;
6961 }
6962 
finish_cmd(struct CommandList * c)6963 static inline void finish_cmd(struct CommandList *c)
6964 {
6965 	dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6966 	if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6967 			|| c->cmd_type == CMD_IOACCEL2))
6968 		complete_scsi_command(c);
6969 	else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6970 		complete(c->waiting);
6971 }
6972 
6973 /* process completion of an indexed ("direct lookup") command */
process_indexed_cmd(struct ctlr_info * h,u32 raw_tag)6974 static inline void process_indexed_cmd(struct ctlr_info *h,
6975 	u32 raw_tag)
6976 {
6977 	u32 tag_index;
6978 	struct CommandList *c;
6979 
6980 	tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6981 	if (!bad_tag(h, tag_index, raw_tag)) {
6982 		c = h->cmd_pool + tag_index;
6983 		finish_cmd(c);
6984 	}
6985 }
6986 
6987 /* Some controllers, like p400, will give us one interrupt
6988  * after a soft reset, even if we turned interrupts off.
6989  * Only need to check for this in the hpsa_xxx_discard_completions
6990  * functions.
6991  */
ignore_bogus_interrupt(struct ctlr_info * h)6992 static int ignore_bogus_interrupt(struct ctlr_info *h)
6993 {
6994 	if (likely(!reset_devices))
6995 		return 0;
6996 
6997 	if (likely(h->interrupts_enabled))
6998 		return 0;
6999 
7000 	dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
7001 		"(known firmware bug.)  Ignoring.\n");
7002 
7003 	return 1;
7004 }
7005 
7006 /*
7007  * Convert &h->q[x] (passed to interrupt handlers) back to h.
7008  * Relies on (h-q[x] == x) being true for x such that
7009  * 0 <= x < MAX_REPLY_QUEUES.
7010  */
queue_to_hba(u8 * queue)7011 static struct ctlr_info *queue_to_hba(u8 *queue)
7012 {
7013 	return container_of((queue - *queue), struct ctlr_info, q[0]);
7014 }
7015 
hpsa_intx_discard_completions(int irq,void * queue)7016 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
7017 {
7018 	struct ctlr_info *h = queue_to_hba(queue);
7019 	u8 q = *(u8 *) queue;
7020 	u32 raw_tag;
7021 
7022 	if (ignore_bogus_interrupt(h))
7023 		return IRQ_NONE;
7024 
7025 	if (interrupt_not_for_us(h))
7026 		return IRQ_NONE;
7027 	h->last_intr_timestamp = get_jiffies_64();
7028 	while (interrupt_pending(h)) {
7029 		raw_tag = get_next_completion(h, q);
7030 		while (raw_tag != FIFO_EMPTY)
7031 			raw_tag = next_command(h, q);
7032 	}
7033 	return IRQ_HANDLED;
7034 }
7035 
hpsa_msix_discard_completions(int irq,void * queue)7036 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
7037 {
7038 	struct ctlr_info *h = queue_to_hba(queue);
7039 	u32 raw_tag;
7040 	u8 q = *(u8 *) queue;
7041 
7042 	if (ignore_bogus_interrupt(h))
7043 		return IRQ_NONE;
7044 
7045 	h->last_intr_timestamp = get_jiffies_64();
7046 	raw_tag = get_next_completion(h, q);
7047 	while (raw_tag != FIFO_EMPTY)
7048 		raw_tag = next_command(h, q);
7049 	return IRQ_HANDLED;
7050 }
7051 
do_hpsa_intr_intx(int irq,void * queue)7052 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
7053 {
7054 	struct ctlr_info *h = queue_to_hba((u8 *) queue);
7055 	u32 raw_tag;
7056 	u8 q = *(u8 *) queue;
7057 
7058 	if (interrupt_not_for_us(h))
7059 		return IRQ_NONE;
7060 	h->last_intr_timestamp = get_jiffies_64();
7061 	while (interrupt_pending(h)) {
7062 		raw_tag = get_next_completion(h, q);
7063 		while (raw_tag != FIFO_EMPTY) {
7064 			process_indexed_cmd(h, raw_tag);
7065 			raw_tag = next_command(h, q);
7066 		}
7067 	}
7068 	return IRQ_HANDLED;
7069 }
7070 
do_hpsa_intr_msi(int irq,void * queue)7071 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
7072 {
7073 	struct ctlr_info *h = queue_to_hba(queue);
7074 	u32 raw_tag;
7075 	u8 q = *(u8 *) queue;
7076 
7077 	h->last_intr_timestamp = get_jiffies_64();
7078 	raw_tag = get_next_completion(h, q);
7079 	while (raw_tag != FIFO_EMPTY) {
7080 		process_indexed_cmd(h, raw_tag);
7081 		raw_tag = next_command(h, q);
7082 	}
7083 	return IRQ_HANDLED;
7084 }
7085 
7086 /* Send a message CDB to the firmware. Careful, this only works
7087  * in simple mode, not performant mode due to the tag lookup.
7088  * We only ever use this immediately after a controller reset.
7089  */
hpsa_message(struct pci_dev * pdev,unsigned char opcode,unsigned char type)7090 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
7091 			unsigned char type)
7092 {
7093 	struct Command {
7094 		struct CommandListHeader CommandHeader;
7095 		struct RequestBlock Request;
7096 		struct ErrDescriptor ErrorDescriptor;
7097 	};
7098 	struct Command *cmd;
7099 	static const size_t cmd_sz = sizeof(*cmd) +
7100 					sizeof(cmd->ErrorDescriptor);
7101 	dma_addr_t paddr64;
7102 	__le32 paddr32;
7103 	u32 tag;
7104 	void __iomem *vaddr;
7105 	int i, err;
7106 
7107 	vaddr = pci_ioremap_bar(pdev, 0);
7108 	if (vaddr == NULL)
7109 		return -ENOMEM;
7110 
7111 	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
7112 	 * CCISS commands, so they must be allocated from the lower 4GiB of
7113 	 * memory.
7114 	 */
7115 	err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
7116 	if (err) {
7117 		iounmap(vaddr);
7118 		return err;
7119 	}
7120 
7121 	cmd = dma_alloc_coherent(&pdev->dev, cmd_sz, &paddr64, GFP_KERNEL);
7122 	if (cmd == NULL) {
7123 		iounmap(vaddr);
7124 		return -ENOMEM;
7125 	}
7126 
7127 	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
7128 	 * although there's no guarantee, we assume that the address is at
7129 	 * least 4-byte aligned (most likely, it's page-aligned).
7130 	 */
7131 	paddr32 = cpu_to_le32(paddr64);
7132 
7133 	cmd->CommandHeader.ReplyQueue = 0;
7134 	cmd->CommandHeader.SGList = 0;
7135 	cmd->CommandHeader.SGTotal = cpu_to_le16(0);
7136 	cmd->CommandHeader.tag = cpu_to_le64(paddr64);
7137 	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
7138 
7139 	cmd->Request.CDBLen = 16;
7140 	cmd->Request.type_attr_dir =
7141 			TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
7142 	cmd->Request.Timeout = 0; /* Don't time out */
7143 	cmd->Request.CDB[0] = opcode;
7144 	cmd->Request.CDB[1] = type;
7145 	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
7146 	cmd->ErrorDescriptor.Addr =
7147 			cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
7148 	cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
7149 
7150 	writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
7151 
7152 	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
7153 		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
7154 		if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
7155 			break;
7156 		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
7157 	}
7158 
7159 	iounmap(vaddr);
7160 
7161 	/* we leak the DMA buffer here ... no choice since the controller could
7162 	 *  still complete the command.
7163 	 */
7164 	if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
7165 		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
7166 			opcode, type);
7167 		return -ETIMEDOUT;
7168 	}
7169 
7170 	dma_free_coherent(&pdev->dev, cmd_sz, cmd, paddr64);
7171 
7172 	if (tag & HPSA_ERROR_BIT) {
7173 		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
7174 			opcode, type);
7175 		return -EIO;
7176 	}
7177 
7178 	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
7179 		opcode, type);
7180 	return 0;
7181 }
7182 
7183 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7184 
hpsa_controller_hard_reset(struct pci_dev * pdev,void __iomem * vaddr,u32 use_doorbell)7185 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
7186 	void __iomem *vaddr, u32 use_doorbell)
7187 {
7188 
7189 	if (use_doorbell) {
7190 		/* For everything after the P600, the PCI power state method
7191 		 * of resetting the controller doesn't work, so we have this
7192 		 * other way using the doorbell register.
7193 		 */
7194 		dev_info(&pdev->dev, "using doorbell to reset controller\n");
7195 		writel(use_doorbell, vaddr + SA5_DOORBELL);
7196 
7197 		/* PMC hardware guys tell us we need a 10 second delay after
7198 		 * doorbell reset and before any attempt to talk to the board
7199 		 * at all to ensure that this actually works and doesn't fall
7200 		 * over in some weird corner cases.
7201 		 */
7202 		msleep(10000);
7203 	} else { /* Try to do it the PCI power state way */
7204 
7205 		/* Quoting from the Open CISS Specification: "The Power
7206 		 * Management Control/Status Register (CSR) controls the power
7207 		 * state of the device.  The normal operating state is D0,
7208 		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
7209 		 * the controller, place the interface device in D3 then to D0,
7210 		 * this causes a secondary PCI reset which will reset the
7211 		 * controller." */
7212 
7213 		int rc = 0;
7214 
7215 		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7216 
7217 		/* enter the D3hot power management state */
7218 		rc = pci_set_power_state(pdev, PCI_D3hot);
7219 		if (rc)
7220 			return rc;
7221 
7222 		msleep(500);
7223 
7224 		/* enter the D0 power management state */
7225 		rc = pci_set_power_state(pdev, PCI_D0);
7226 		if (rc)
7227 			return rc;
7228 
7229 		/*
7230 		 * The P600 requires a small delay when changing states.
7231 		 * Otherwise we may think the board did not reset and we bail.
7232 		 * This for kdump only and is particular to the P600.
7233 		 */
7234 		msleep(500);
7235 	}
7236 	return 0;
7237 }
7238 
init_driver_version(char * driver_version,int len)7239 static void init_driver_version(char *driver_version, int len)
7240 {
7241 	memset(driver_version, 0, len);
7242 	strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7243 }
7244 
write_driver_ver_to_cfgtable(struct CfgTable __iomem * cfgtable)7245 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7246 {
7247 	char *driver_version;
7248 	int i, size = sizeof(cfgtable->driver_version);
7249 
7250 	driver_version = kmalloc(size, GFP_KERNEL);
7251 	if (!driver_version)
7252 		return -ENOMEM;
7253 
7254 	init_driver_version(driver_version, size);
7255 	for (i = 0; i < size; i++)
7256 		writeb(driver_version[i], &cfgtable->driver_version[i]);
7257 	kfree(driver_version);
7258 	return 0;
7259 }
7260 
read_driver_ver_from_cfgtable(struct CfgTable __iomem * cfgtable,unsigned char * driver_ver)7261 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7262 					  unsigned char *driver_ver)
7263 {
7264 	int i;
7265 
7266 	for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7267 		driver_ver[i] = readb(&cfgtable->driver_version[i]);
7268 }
7269 
controller_reset_failed(struct CfgTable __iomem * cfgtable)7270 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7271 {
7272 
7273 	char *driver_ver, *old_driver_ver;
7274 	int rc, size = sizeof(cfgtable->driver_version);
7275 
7276 	old_driver_ver = kmalloc_array(2, size, GFP_KERNEL);
7277 	if (!old_driver_ver)
7278 		return -ENOMEM;
7279 	driver_ver = old_driver_ver + size;
7280 
7281 	/* After a reset, the 32 bytes of "driver version" in the cfgtable
7282 	 * should have been changed, otherwise we know the reset failed.
7283 	 */
7284 	init_driver_version(old_driver_ver, size);
7285 	read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7286 	rc = !memcmp(driver_ver, old_driver_ver, size);
7287 	kfree(old_driver_ver);
7288 	return rc;
7289 }
7290 /* This does a hard reset of the controller using PCI power management
7291  * states or the using the doorbell register.
7292  */
hpsa_kdump_hard_reset_controller(struct pci_dev * pdev,u32 board_id)7293 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7294 {
7295 	u64 cfg_offset;
7296 	u32 cfg_base_addr;
7297 	u64 cfg_base_addr_index;
7298 	void __iomem *vaddr;
7299 	unsigned long paddr;
7300 	u32 misc_fw_support;
7301 	int rc;
7302 	struct CfgTable __iomem *cfgtable;
7303 	u32 use_doorbell;
7304 	u16 command_register;
7305 
7306 	/* For controllers as old as the P600, this is very nearly
7307 	 * the same thing as
7308 	 *
7309 	 * pci_save_state(pci_dev);
7310 	 * pci_set_power_state(pci_dev, PCI_D3hot);
7311 	 * pci_set_power_state(pci_dev, PCI_D0);
7312 	 * pci_restore_state(pci_dev);
7313 	 *
7314 	 * For controllers newer than the P600, the pci power state
7315 	 * method of resetting doesn't work so we have another way
7316 	 * using the doorbell register.
7317 	 */
7318 
7319 	if (!ctlr_is_resettable(board_id)) {
7320 		dev_warn(&pdev->dev, "Controller not resettable\n");
7321 		return -ENODEV;
7322 	}
7323 
7324 	/* if controller is soft- but not hard resettable... */
7325 	if (!ctlr_is_hard_resettable(board_id))
7326 		return -ENOTSUPP; /* try soft reset later. */
7327 
7328 	/* Save the PCI command register */
7329 	pci_read_config_word(pdev, 4, &command_register);
7330 	pci_save_state(pdev);
7331 
7332 	/* find the first memory BAR, so we can find the cfg table */
7333 	rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7334 	if (rc)
7335 		return rc;
7336 	vaddr = remap_pci_mem(paddr, 0x250);
7337 	if (!vaddr)
7338 		return -ENOMEM;
7339 
7340 	/* find cfgtable in order to check if reset via doorbell is supported */
7341 	rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7342 					&cfg_base_addr_index, &cfg_offset);
7343 	if (rc)
7344 		goto unmap_vaddr;
7345 	cfgtable = remap_pci_mem(pci_resource_start(pdev,
7346 		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7347 	if (!cfgtable) {
7348 		rc = -ENOMEM;
7349 		goto unmap_vaddr;
7350 	}
7351 	rc = write_driver_ver_to_cfgtable(cfgtable);
7352 	if (rc)
7353 		goto unmap_cfgtable;
7354 
7355 	/* If reset via doorbell register is supported, use that.
7356 	 * There are two such methods.  Favor the newest method.
7357 	 */
7358 	misc_fw_support = readl(&cfgtable->misc_fw_support);
7359 	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7360 	if (use_doorbell) {
7361 		use_doorbell = DOORBELL_CTLR_RESET2;
7362 	} else {
7363 		use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7364 		if (use_doorbell) {
7365 			dev_warn(&pdev->dev,
7366 				"Soft reset not supported. Firmware update is required.\n");
7367 			rc = -ENOTSUPP; /* try soft reset */
7368 			goto unmap_cfgtable;
7369 		}
7370 	}
7371 
7372 	rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7373 	if (rc)
7374 		goto unmap_cfgtable;
7375 
7376 	pci_restore_state(pdev);
7377 	pci_write_config_word(pdev, 4, command_register);
7378 
7379 	/* Some devices (notably the HP Smart Array 5i Controller)
7380 	   need a little pause here */
7381 	msleep(HPSA_POST_RESET_PAUSE_MSECS);
7382 
7383 	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7384 	if (rc) {
7385 		dev_warn(&pdev->dev,
7386 			"Failed waiting for board to become ready after hard reset\n");
7387 		goto unmap_cfgtable;
7388 	}
7389 
7390 	rc = controller_reset_failed(vaddr);
7391 	if (rc < 0)
7392 		goto unmap_cfgtable;
7393 	if (rc) {
7394 		dev_warn(&pdev->dev, "Unable to successfully reset "
7395 			"controller. Will try soft reset.\n");
7396 		rc = -ENOTSUPP;
7397 	} else {
7398 		dev_info(&pdev->dev, "board ready after hard reset.\n");
7399 	}
7400 
7401 unmap_cfgtable:
7402 	iounmap(cfgtable);
7403 
7404 unmap_vaddr:
7405 	iounmap(vaddr);
7406 	return rc;
7407 }
7408 
7409 /*
7410  *  We cannot read the structure directly, for portability we must use
7411  *   the io functions.
7412  *   This is for debug only.
7413  */
print_cfg_table(struct device * dev,struct CfgTable __iomem * tb)7414 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7415 {
7416 #ifdef HPSA_DEBUG
7417 	int i;
7418 	char temp_name[17];
7419 
7420 	dev_info(dev, "Controller Configuration information\n");
7421 	dev_info(dev, "------------------------------------\n");
7422 	for (i = 0; i < 4; i++)
7423 		temp_name[i] = readb(&(tb->Signature[i]));
7424 	temp_name[4] = '\0';
7425 	dev_info(dev, "   Signature = %s\n", temp_name);
7426 	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
7427 	dev_info(dev, "   Transport methods supported = 0x%x\n",
7428 	       readl(&(tb->TransportSupport)));
7429 	dev_info(dev, "   Transport methods active = 0x%x\n",
7430 	       readl(&(tb->TransportActive)));
7431 	dev_info(dev, "   Requested transport Method = 0x%x\n",
7432 	       readl(&(tb->HostWrite.TransportRequest)));
7433 	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
7434 	       readl(&(tb->HostWrite.CoalIntDelay)));
7435 	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
7436 	       readl(&(tb->HostWrite.CoalIntCount)));
7437 	dev_info(dev, "   Max outstanding commands = %d\n",
7438 	       readl(&(tb->CmdsOutMax)));
7439 	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7440 	for (i = 0; i < 16; i++)
7441 		temp_name[i] = readb(&(tb->ServerName[i]));
7442 	temp_name[16] = '\0';
7443 	dev_info(dev, "   Server Name = %s\n", temp_name);
7444 	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
7445 		readl(&(tb->HeartBeat)));
7446 #endif				/* HPSA_DEBUG */
7447 }
7448 
find_PCI_BAR_index(struct pci_dev * pdev,unsigned long pci_bar_addr)7449 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7450 {
7451 	int i, offset, mem_type, bar_type;
7452 
7453 	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
7454 		return 0;
7455 	offset = 0;
7456 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7457 		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7458 		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7459 			offset += 4;
7460 		else {
7461 			mem_type = pci_resource_flags(pdev, i) &
7462 			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7463 			switch (mem_type) {
7464 			case PCI_BASE_ADDRESS_MEM_TYPE_32:
7465 			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7466 				offset += 4;	/* 32 bit */
7467 				break;
7468 			case PCI_BASE_ADDRESS_MEM_TYPE_64:
7469 				offset += 8;
7470 				break;
7471 			default:	/* reserved in PCI 2.2 */
7472 				dev_warn(&pdev->dev,
7473 				       "base address is invalid\n");
7474 				return -1;
7475 			}
7476 		}
7477 		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7478 			return i + 1;
7479 	}
7480 	return -1;
7481 }
7482 
hpsa_disable_interrupt_mode(struct ctlr_info * h)7483 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7484 {
7485 	pci_free_irq_vectors(h->pdev);
7486 	h->msix_vectors = 0;
7487 }
7488 
hpsa_setup_reply_map(struct ctlr_info * h)7489 static void hpsa_setup_reply_map(struct ctlr_info *h)
7490 {
7491 	const struct cpumask *mask;
7492 	unsigned int queue, cpu;
7493 
7494 	for (queue = 0; queue < h->msix_vectors; queue++) {
7495 		mask = pci_irq_get_affinity(h->pdev, queue);
7496 		if (!mask)
7497 			goto fallback;
7498 
7499 		for_each_cpu(cpu, mask)
7500 			h->reply_map[cpu] = queue;
7501 	}
7502 	return;
7503 
7504 fallback:
7505 	for_each_possible_cpu(cpu)
7506 		h->reply_map[cpu] = 0;
7507 }
7508 
7509 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7510  * controllers that are capable. If not, we use legacy INTx mode.
7511  */
hpsa_interrupt_mode(struct ctlr_info * h)7512 static int hpsa_interrupt_mode(struct ctlr_info *h)
7513 {
7514 	unsigned int flags = PCI_IRQ_INTX;
7515 	int ret;
7516 
7517 	/* Some boards advertise MSI but don't really support it */
7518 	switch (h->board_id) {
7519 	case 0x40700E11:
7520 	case 0x40800E11:
7521 	case 0x40820E11:
7522 	case 0x40830E11:
7523 		break;
7524 	default:
7525 		ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES,
7526 				PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
7527 		if (ret > 0) {
7528 			h->msix_vectors = ret;
7529 			return 0;
7530 		}
7531 
7532 		flags |= PCI_IRQ_MSI;
7533 		break;
7534 	}
7535 
7536 	ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags);
7537 	if (ret < 0)
7538 		return ret;
7539 	return 0;
7540 }
7541 
hpsa_lookup_board_id(struct pci_dev * pdev,u32 * board_id,bool * legacy_board)7542 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
7543 				bool *legacy_board)
7544 {
7545 	int i;
7546 	u32 subsystem_vendor_id, subsystem_device_id;
7547 
7548 	subsystem_vendor_id = pdev->subsystem_vendor;
7549 	subsystem_device_id = pdev->subsystem_device;
7550 	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7551 		    subsystem_vendor_id;
7552 
7553 	if (legacy_board)
7554 		*legacy_board = false;
7555 	for (i = 0; i < ARRAY_SIZE(products); i++)
7556 		if (*board_id == products[i].board_id) {
7557 			if (products[i].access != &SA5A_access &&
7558 			    products[i].access != &SA5B_access)
7559 				return i;
7560 			dev_warn(&pdev->dev,
7561 				 "legacy board ID: 0x%08x\n",
7562 				 *board_id);
7563 			if (legacy_board)
7564 			    *legacy_board = true;
7565 			return i;
7566 		}
7567 
7568 	dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x\n", *board_id);
7569 	if (legacy_board)
7570 		*legacy_board = true;
7571 	return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7572 }
7573 
hpsa_pci_find_memory_BAR(struct pci_dev * pdev,unsigned long * memory_bar)7574 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7575 				    unsigned long *memory_bar)
7576 {
7577 	int i;
7578 
7579 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7580 		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7581 			/* addressing mode bits already removed */
7582 			*memory_bar = pci_resource_start(pdev, i);
7583 			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7584 				*memory_bar);
7585 			return 0;
7586 		}
7587 	dev_warn(&pdev->dev, "no memory BAR found\n");
7588 	return -ENODEV;
7589 }
7590 
hpsa_wait_for_board_state(struct pci_dev * pdev,void __iomem * vaddr,int wait_for_ready)7591 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7592 				     int wait_for_ready)
7593 {
7594 	int i, iterations;
7595 	u32 scratchpad;
7596 	if (wait_for_ready)
7597 		iterations = HPSA_BOARD_READY_ITERATIONS;
7598 	else
7599 		iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7600 
7601 	for (i = 0; i < iterations; i++) {
7602 		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7603 		if (wait_for_ready) {
7604 			if (scratchpad == HPSA_FIRMWARE_READY)
7605 				return 0;
7606 		} else {
7607 			if (scratchpad != HPSA_FIRMWARE_READY)
7608 				return 0;
7609 		}
7610 		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7611 	}
7612 	dev_warn(&pdev->dev, "board not ready, timed out.\n");
7613 	return -ENODEV;
7614 }
7615 
hpsa_find_cfg_addrs(struct pci_dev * pdev,void __iomem * vaddr,u32 * cfg_base_addr,u64 * cfg_base_addr_index,u64 * cfg_offset)7616 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7617 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7618 			       u64 *cfg_offset)
7619 {
7620 	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7621 	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7622 	*cfg_base_addr &= (u32) 0x0000ffff;
7623 	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7624 	if (*cfg_base_addr_index == -1) {
7625 		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7626 		return -ENODEV;
7627 	}
7628 	return 0;
7629 }
7630 
hpsa_free_cfgtables(struct ctlr_info * h)7631 static void hpsa_free_cfgtables(struct ctlr_info *h)
7632 {
7633 	if (h->transtable) {
7634 		iounmap(h->transtable);
7635 		h->transtable = NULL;
7636 	}
7637 	if (h->cfgtable) {
7638 		iounmap(h->cfgtable);
7639 		h->cfgtable = NULL;
7640 	}
7641 }
7642 
7643 /* Find and map CISS config table and transfer table
7644 + * several items must be unmapped (freed) later
7645 + * */
hpsa_find_cfgtables(struct ctlr_info * h)7646 static int hpsa_find_cfgtables(struct ctlr_info *h)
7647 {
7648 	u64 cfg_offset;
7649 	u32 cfg_base_addr;
7650 	u64 cfg_base_addr_index;
7651 	u32 trans_offset;
7652 	int rc;
7653 
7654 	rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7655 		&cfg_base_addr_index, &cfg_offset);
7656 	if (rc)
7657 		return rc;
7658 	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7659 		       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7660 	if (!h->cfgtable) {
7661 		dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7662 		return -ENOMEM;
7663 	}
7664 	rc = write_driver_ver_to_cfgtable(h->cfgtable);
7665 	if (rc)
7666 		return rc;
7667 	/* Find performant mode table. */
7668 	trans_offset = readl(&h->cfgtable->TransMethodOffset);
7669 	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7670 				cfg_base_addr_index)+cfg_offset+trans_offset,
7671 				sizeof(*h->transtable));
7672 	if (!h->transtable) {
7673 		dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7674 		hpsa_free_cfgtables(h);
7675 		return -ENOMEM;
7676 	}
7677 	return 0;
7678 }
7679 
hpsa_get_max_perf_mode_cmds(struct ctlr_info * h)7680 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7681 {
7682 #define MIN_MAX_COMMANDS 16
7683 	BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7684 
7685 	h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7686 
7687 	/* Limit commands in memory limited kdump scenario. */
7688 	if (reset_devices && h->max_commands > 32)
7689 		h->max_commands = 32;
7690 
7691 	if (h->max_commands < MIN_MAX_COMMANDS) {
7692 		dev_warn(&h->pdev->dev,
7693 			"Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7694 			h->max_commands,
7695 			MIN_MAX_COMMANDS);
7696 		h->max_commands = MIN_MAX_COMMANDS;
7697 	}
7698 }
7699 
7700 /* If the controller reports that the total max sg entries is greater than 512,
7701  * then we know that chained SG blocks work.  (Original smart arrays did not
7702  * support chained SG blocks and would return zero for max sg entries.)
7703  */
hpsa_supports_chained_sg_blocks(struct ctlr_info * h)7704 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7705 {
7706 	return h->maxsgentries > 512;
7707 }
7708 
7709 /* Interrogate the hardware for some limits:
7710  * max commands, max SG elements without chaining, and with chaining,
7711  * SG chain block size, etc.
7712  */
hpsa_find_board_params(struct ctlr_info * h)7713 static void hpsa_find_board_params(struct ctlr_info *h)
7714 {
7715 	hpsa_get_max_perf_mode_cmds(h);
7716 	h->nr_cmds = h->max_commands;
7717 	h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7718 	h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7719 	if (hpsa_supports_chained_sg_blocks(h)) {
7720 		/* Limit in-command s/g elements to 32 save dma'able memory. */
7721 		h->max_cmd_sg_entries = 32;
7722 		h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7723 		h->maxsgentries--; /* save one for chain pointer */
7724 	} else {
7725 		/*
7726 		 * Original smart arrays supported at most 31 s/g entries
7727 		 * embedded inline in the command (trying to use more
7728 		 * would lock up the controller)
7729 		 */
7730 		h->max_cmd_sg_entries = 31;
7731 		h->maxsgentries = 31; /* default to traditional values */
7732 		h->chainsize = 0;
7733 	}
7734 
7735 	/* Find out what task management functions are supported and cache */
7736 	h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7737 	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7738 		dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7739 	if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7740 		dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7741 	if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7742 		dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7743 }
7744 
hpsa_CISS_signature_present(struct ctlr_info * h)7745 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7746 {
7747 	if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7748 		dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7749 		return false;
7750 	}
7751 	return true;
7752 }
7753 
hpsa_set_driver_support_bits(struct ctlr_info * h)7754 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7755 {
7756 	u32 driver_support;
7757 
7758 	driver_support = readl(&(h->cfgtable->driver_support));
7759 	/* Need to enable prefetch in the SCSI core for 6400 in x86 */
7760 #ifdef CONFIG_X86
7761 	driver_support |= ENABLE_SCSI_PREFETCH;
7762 #endif
7763 	driver_support |= ENABLE_UNIT_ATTN;
7764 	writel(driver_support, &(h->cfgtable->driver_support));
7765 }
7766 
7767 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7768  * in a prefetch beyond physical memory.
7769  */
hpsa_p600_dma_prefetch_quirk(struct ctlr_info * h)7770 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7771 {
7772 	u32 dma_prefetch;
7773 
7774 	if (h->board_id != 0x3225103C)
7775 		return;
7776 	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7777 	dma_prefetch |= 0x8000;
7778 	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7779 }
7780 
hpsa_wait_for_clear_event_notify_ack(struct ctlr_info * h)7781 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7782 {
7783 	int i;
7784 	u32 doorbell_value;
7785 	unsigned long flags;
7786 	/* wait until the clear_event_notify bit 6 is cleared by controller. */
7787 	for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7788 		spin_lock_irqsave(&h->lock, flags);
7789 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7790 		spin_unlock_irqrestore(&h->lock, flags);
7791 		if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7792 			goto done;
7793 		/* delay and try again */
7794 		msleep(CLEAR_EVENT_WAIT_INTERVAL);
7795 	}
7796 	return -ENODEV;
7797 done:
7798 	return 0;
7799 }
7800 
hpsa_wait_for_mode_change_ack(struct ctlr_info * h)7801 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7802 {
7803 	int i;
7804 	u32 doorbell_value;
7805 	unsigned long flags;
7806 
7807 	/* under certain very rare conditions, this can take awhile.
7808 	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7809 	 * as we enter this code.)
7810 	 */
7811 	for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7812 		if (h->remove_in_progress)
7813 			goto done;
7814 		spin_lock_irqsave(&h->lock, flags);
7815 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7816 		spin_unlock_irqrestore(&h->lock, flags);
7817 		if (!(doorbell_value & CFGTBL_ChangeReq))
7818 			goto done;
7819 		/* delay and try again */
7820 		msleep(MODE_CHANGE_WAIT_INTERVAL);
7821 	}
7822 	return -ENODEV;
7823 done:
7824 	return 0;
7825 }
7826 
7827 /* return -ENODEV or other reason on error, 0 on success */
hpsa_enter_simple_mode(struct ctlr_info * h)7828 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7829 {
7830 	u32 trans_support;
7831 
7832 	trans_support = readl(&(h->cfgtable->TransportSupport));
7833 	if (!(trans_support & SIMPLE_MODE))
7834 		return -ENOTSUPP;
7835 
7836 	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7837 
7838 	/* Update the field, and then ring the doorbell */
7839 	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7840 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7841 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7842 	if (hpsa_wait_for_mode_change_ack(h))
7843 		goto error;
7844 	print_cfg_table(&h->pdev->dev, h->cfgtable);
7845 	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7846 		goto error;
7847 	h->transMethod = CFGTBL_Trans_Simple;
7848 	return 0;
7849 error:
7850 	dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7851 	return -ENODEV;
7852 }
7853 
7854 /* free items allocated or mapped by hpsa_pci_init */
hpsa_free_pci_init(struct ctlr_info * h)7855 static void hpsa_free_pci_init(struct ctlr_info *h)
7856 {
7857 	hpsa_free_cfgtables(h);			/* pci_init 4 */
7858 	iounmap(h->vaddr);			/* pci_init 3 */
7859 	h->vaddr = NULL;
7860 	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
7861 	/*
7862 	 * call pci_disable_device before pci_release_regions per
7863 	 * Documentation/driver-api/pci/pci.rst
7864 	 */
7865 	pci_disable_device(h->pdev);		/* pci_init 1 */
7866 	pci_release_regions(h->pdev);		/* pci_init 2 */
7867 }
7868 
7869 /* several items must be freed later */
hpsa_pci_init(struct ctlr_info * h)7870 static int hpsa_pci_init(struct ctlr_info *h)
7871 {
7872 	int prod_index, err;
7873 	bool legacy_board;
7874 
7875 	prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id, &legacy_board);
7876 	if (prod_index < 0)
7877 		return prod_index;
7878 	h->product_name = products[prod_index].product_name;
7879 	h->access = *(products[prod_index].access);
7880 	h->legacy_board = legacy_board;
7881 	pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7882 			       PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7883 
7884 	err = pci_enable_device(h->pdev);
7885 	if (err) {
7886 		dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7887 		pci_disable_device(h->pdev);
7888 		return err;
7889 	}
7890 
7891 	err = pci_request_regions(h->pdev, HPSA);
7892 	if (err) {
7893 		dev_err(&h->pdev->dev,
7894 			"failed to obtain PCI resources\n");
7895 		pci_disable_device(h->pdev);
7896 		return err;
7897 	}
7898 
7899 	pci_set_master(h->pdev);
7900 
7901 	err = hpsa_interrupt_mode(h);
7902 	if (err)
7903 		goto clean1;
7904 
7905 	/* setup mapping between CPU and reply queue */
7906 	hpsa_setup_reply_map(h);
7907 
7908 	err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7909 	if (err)
7910 		goto clean2;	/* intmode+region, pci */
7911 	h->vaddr = remap_pci_mem(h->paddr, 0x250);
7912 	if (!h->vaddr) {
7913 		dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7914 		err = -ENOMEM;
7915 		goto clean2;	/* intmode+region, pci */
7916 	}
7917 	err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7918 	if (err)
7919 		goto clean3;	/* vaddr, intmode+region, pci */
7920 	err = hpsa_find_cfgtables(h);
7921 	if (err)
7922 		goto clean3;	/* vaddr, intmode+region, pci */
7923 	hpsa_find_board_params(h);
7924 
7925 	if (!hpsa_CISS_signature_present(h)) {
7926 		err = -ENODEV;
7927 		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
7928 	}
7929 	hpsa_set_driver_support_bits(h);
7930 	hpsa_p600_dma_prefetch_quirk(h);
7931 	err = hpsa_enter_simple_mode(h);
7932 	if (err)
7933 		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
7934 	return 0;
7935 
7936 clean4:	/* cfgtables, vaddr, intmode+region, pci */
7937 	hpsa_free_cfgtables(h);
7938 clean3:	/* vaddr, intmode+region, pci */
7939 	iounmap(h->vaddr);
7940 	h->vaddr = NULL;
7941 clean2:	/* intmode+region, pci */
7942 	hpsa_disable_interrupt_mode(h);
7943 clean1:
7944 	/*
7945 	 * call pci_disable_device before pci_release_regions per
7946 	 * Documentation/driver-api/pci/pci.rst
7947 	 */
7948 	pci_disable_device(h->pdev);
7949 	pci_release_regions(h->pdev);
7950 	return err;
7951 }
7952 
hpsa_hba_inquiry(struct ctlr_info * h)7953 static void hpsa_hba_inquiry(struct ctlr_info *h)
7954 {
7955 	int rc;
7956 
7957 #define HBA_INQUIRY_BYTE_COUNT 64
7958 	h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7959 	if (!h->hba_inquiry_data)
7960 		return;
7961 	rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7962 		h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7963 	if (rc != 0) {
7964 		kfree(h->hba_inquiry_data);
7965 		h->hba_inquiry_data = NULL;
7966 	}
7967 }
7968 
hpsa_init_reset_devices(struct pci_dev * pdev,u32 board_id)7969 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7970 {
7971 	int rc, i;
7972 	void __iomem *vaddr;
7973 
7974 	if (!reset_devices)
7975 		return 0;
7976 
7977 	/* kdump kernel is loading, we don't know in which state is
7978 	 * the pci interface. The dev->enable_cnt is equal zero
7979 	 * so we call enable+disable, wait a while and switch it on.
7980 	 */
7981 	rc = pci_enable_device(pdev);
7982 	if (rc) {
7983 		dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7984 		return -ENODEV;
7985 	}
7986 	pci_disable_device(pdev);
7987 	msleep(260);			/* a randomly chosen number */
7988 	rc = pci_enable_device(pdev);
7989 	if (rc) {
7990 		dev_warn(&pdev->dev, "failed to enable device.\n");
7991 		return -ENODEV;
7992 	}
7993 
7994 	pci_set_master(pdev);
7995 
7996 	vaddr = pci_ioremap_bar(pdev, 0);
7997 	if (vaddr == NULL) {
7998 		rc = -ENOMEM;
7999 		goto out_disable;
8000 	}
8001 	writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
8002 	iounmap(vaddr);
8003 
8004 	/* Reset the controller with a PCI power-cycle or via doorbell */
8005 	rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
8006 
8007 	/* -ENOTSUPP here means we cannot reset the controller
8008 	 * but it's already (and still) up and running in
8009 	 * "performant mode".  Or, it might be 640x, which can't reset
8010 	 * due to concerns about shared bbwc between 6402/6404 pair.
8011 	 */
8012 	if (rc)
8013 		goto out_disable;
8014 
8015 	/* Now try to get the controller to respond to a no-op */
8016 	dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
8017 	for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
8018 		if (hpsa_noop(pdev) == 0)
8019 			break;
8020 		else
8021 			dev_warn(&pdev->dev, "no-op failed%s\n",
8022 					(i < 11 ? "; re-trying" : ""));
8023 	}
8024 
8025 out_disable:
8026 
8027 	pci_disable_device(pdev);
8028 	return rc;
8029 }
8030 
hpsa_free_cmd_pool(struct ctlr_info * h)8031 static void hpsa_free_cmd_pool(struct ctlr_info *h)
8032 {
8033 	bitmap_free(h->cmd_pool_bits);
8034 	h->cmd_pool_bits = NULL;
8035 	if (h->cmd_pool) {
8036 		dma_free_coherent(&h->pdev->dev,
8037 				h->nr_cmds * sizeof(struct CommandList),
8038 				h->cmd_pool,
8039 				h->cmd_pool_dhandle);
8040 		h->cmd_pool = NULL;
8041 		h->cmd_pool_dhandle = 0;
8042 	}
8043 	if (h->errinfo_pool) {
8044 		dma_free_coherent(&h->pdev->dev,
8045 				h->nr_cmds * sizeof(struct ErrorInfo),
8046 				h->errinfo_pool,
8047 				h->errinfo_pool_dhandle);
8048 		h->errinfo_pool = NULL;
8049 		h->errinfo_pool_dhandle = 0;
8050 	}
8051 }
8052 
hpsa_alloc_cmd_pool(struct ctlr_info * h)8053 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
8054 {
8055 	h->cmd_pool_bits = bitmap_zalloc(h->nr_cmds, GFP_KERNEL);
8056 	h->cmd_pool = dma_alloc_coherent(&h->pdev->dev,
8057 		    h->nr_cmds * sizeof(*h->cmd_pool),
8058 		    &h->cmd_pool_dhandle, GFP_KERNEL);
8059 	h->errinfo_pool = dma_alloc_coherent(&h->pdev->dev,
8060 		    h->nr_cmds * sizeof(*h->errinfo_pool),
8061 		    &h->errinfo_pool_dhandle, GFP_KERNEL);
8062 	if ((h->cmd_pool_bits == NULL)
8063 	    || (h->cmd_pool == NULL)
8064 	    || (h->errinfo_pool == NULL)) {
8065 		dev_err(&h->pdev->dev, "out of memory in %s", __func__);
8066 		goto clean_up;
8067 	}
8068 	hpsa_preinitialize_commands(h);
8069 	return 0;
8070 clean_up:
8071 	hpsa_free_cmd_pool(h);
8072 	return -ENOMEM;
8073 }
8074 
8075 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
hpsa_free_irqs(struct ctlr_info * h)8076 static void hpsa_free_irqs(struct ctlr_info *h)
8077 {
8078 	int i;
8079 	int irq_vector = 0;
8080 
8081 	if (hpsa_simple_mode)
8082 		irq_vector = h->intr_mode;
8083 
8084 	if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) {
8085 		/* Single reply queue, only one irq to free */
8086 		free_irq(pci_irq_vector(h->pdev, irq_vector),
8087 				&h->q[h->intr_mode]);
8088 		h->q[h->intr_mode] = 0;
8089 		return;
8090 	}
8091 
8092 	for (i = 0; i < h->msix_vectors; i++) {
8093 		free_irq(pci_irq_vector(h->pdev, i), &h->q[i]);
8094 		h->q[i] = 0;
8095 	}
8096 	for (; i < MAX_REPLY_QUEUES; i++)
8097 		h->q[i] = 0;
8098 }
8099 
8100 /* returns 0 on success; cleans up and returns -Enn on error */
hpsa_request_irqs(struct ctlr_info * h,irqreturn_t (* msixhandler)(int,void *),irqreturn_t (* intxhandler)(int,void *))8101 static int hpsa_request_irqs(struct ctlr_info *h,
8102 	irqreturn_t (*msixhandler)(int, void *),
8103 	irqreturn_t (*intxhandler)(int, void *))
8104 {
8105 	int rc, i;
8106 	int irq_vector = 0;
8107 
8108 	if (hpsa_simple_mode)
8109 		irq_vector = h->intr_mode;
8110 
8111 	/*
8112 	 * initialize h->q[x] = x so that interrupt handlers know which
8113 	 * queue to process.
8114 	 */
8115 	for (i = 0; i < MAX_REPLY_QUEUES; i++)
8116 		h->q[i] = (u8) i;
8117 
8118 	if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) {
8119 		/* If performant mode and MSI-X, use multiple reply queues */
8120 		for (i = 0; i < h->msix_vectors; i++) {
8121 			sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
8122 			rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler,
8123 					0, h->intrname[i],
8124 					&h->q[i]);
8125 			if (rc) {
8126 				int j;
8127 
8128 				dev_err(&h->pdev->dev,
8129 					"failed to get irq %d for %s\n",
8130 				       pci_irq_vector(h->pdev, i), h->devname);
8131 				for (j = 0; j < i; j++) {
8132 					free_irq(pci_irq_vector(h->pdev, j), &h->q[j]);
8133 					h->q[j] = 0;
8134 				}
8135 				for (; j < MAX_REPLY_QUEUES; j++)
8136 					h->q[j] = 0;
8137 				return rc;
8138 			}
8139 		}
8140 	} else {
8141 		/* Use single reply pool */
8142 		if (h->msix_vectors > 0 || h->pdev->msi_enabled) {
8143 			sprintf(h->intrname[0], "%s-msi%s", h->devname,
8144 				h->msix_vectors ? "x" : "");
8145 			rc = request_irq(pci_irq_vector(h->pdev, irq_vector),
8146 				msixhandler, 0,
8147 				h->intrname[0],
8148 				&h->q[h->intr_mode]);
8149 		} else {
8150 			sprintf(h->intrname[h->intr_mode],
8151 				"%s-intx", h->devname);
8152 			rc = request_irq(pci_irq_vector(h->pdev, irq_vector),
8153 				intxhandler, IRQF_SHARED,
8154 				h->intrname[0],
8155 				&h->q[h->intr_mode]);
8156 		}
8157 	}
8158 	if (rc) {
8159 		dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
8160 		       pci_irq_vector(h->pdev, irq_vector), h->devname);
8161 		hpsa_free_irqs(h);
8162 		return -ENODEV;
8163 	}
8164 	return 0;
8165 }
8166 
hpsa_kdump_soft_reset(struct ctlr_info * h)8167 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
8168 {
8169 	int rc;
8170 	hpsa_send_host_reset(h, HPSA_RESET_TYPE_CONTROLLER);
8171 
8172 	dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
8173 	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
8174 	if (rc) {
8175 		dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
8176 		return rc;
8177 	}
8178 
8179 	dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
8180 	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8181 	if (rc) {
8182 		dev_warn(&h->pdev->dev, "Board failed to become ready "
8183 			"after soft reset.\n");
8184 		return rc;
8185 	}
8186 
8187 	return 0;
8188 }
8189 
hpsa_free_reply_queues(struct ctlr_info * h)8190 static void hpsa_free_reply_queues(struct ctlr_info *h)
8191 {
8192 	int i;
8193 
8194 	for (i = 0; i < h->nreply_queues; i++) {
8195 		if (!h->reply_queue[i].head)
8196 			continue;
8197 		dma_free_coherent(&h->pdev->dev,
8198 					h->reply_queue_size,
8199 					h->reply_queue[i].head,
8200 					h->reply_queue[i].busaddr);
8201 		h->reply_queue[i].head = NULL;
8202 		h->reply_queue[i].busaddr = 0;
8203 	}
8204 	h->reply_queue_size = 0;
8205 }
8206 
hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info * h)8207 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8208 {
8209 	hpsa_free_performant_mode(h);		/* init_one 7 */
8210 	hpsa_free_sg_chain_blocks(h);		/* init_one 6 */
8211 	hpsa_free_cmd_pool(h);			/* init_one 5 */
8212 	hpsa_free_irqs(h);			/* init_one 4 */
8213 	scsi_host_put(h->scsi_host);		/* init_one 3 */
8214 	h->scsi_host = NULL;			/* init_one 3 */
8215 	hpsa_free_pci_init(h);			/* init_one 2_5 */
8216 	free_percpu(h->lockup_detected);	/* init_one 2 */
8217 	h->lockup_detected = NULL;		/* init_one 2 */
8218 	if (h->resubmit_wq) {
8219 		destroy_workqueue(h->resubmit_wq);	/* init_one 1 */
8220 		h->resubmit_wq = NULL;
8221 	}
8222 	if (h->rescan_ctlr_wq) {
8223 		destroy_workqueue(h->rescan_ctlr_wq);
8224 		h->rescan_ctlr_wq = NULL;
8225 	}
8226 	if (h->monitor_ctlr_wq) {
8227 		destroy_workqueue(h->monitor_ctlr_wq);
8228 		h->monitor_ctlr_wq = NULL;
8229 	}
8230 
8231 	kfree(h);				/* init_one 1 */
8232 }
8233 
8234 /* Called when controller lockup detected. */
fail_all_outstanding_cmds(struct ctlr_info * h)8235 static void fail_all_outstanding_cmds(struct ctlr_info *h)
8236 {
8237 	int i, refcount;
8238 	struct CommandList *c;
8239 	int failcount = 0;
8240 
8241 	flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8242 	for (i = 0; i < h->nr_cmds; i++) {
8243 		c = h->cmd_pool + i;
8244 		refcount = atomic_inc_return(&c->refcount);
8245 		if (refcount > 1) {
8246 			c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8247 			finish_cmd(c);
8248 			atomic_dec(&h->commands_outstanding);
8249 			failcount++;
8250 		}
8251 		cmd_free(h, c);
8252 	}
8253 	dev_warn(&h->pdev->dev,
8254 		"failed %d commands in fail_all\n", failcount);
8255 }
8256 
set_lockup_detected_for_all_cpus(struct ctlr_info * h,u32 value)8257 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8258 {
8259 	int cpu;
8260 
8261 	for_each_online_cpu(cpu) {
8262 		u32 *lockup_detected;
8263 		lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8264 		*lockup_detected = value;
8265 	}
8266 	wmb(); /* be sure the per-cpu variables are out to memory */
8267 }
8268 
controller_lockup_detected(struct ctlr_info * h)8269 static void controller_lockup_detected(struct ctlr_info *h)
8270 {
8271 	unsigned long flags;
8272 	u32 lockup_detected;
8273 
8274 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8275 	spin_lock_irqsave(&h->lock, flags);
8276 	lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8277 	if (!lockup_detected) {
8278 		/* no heartbeat, but controller gave us a zero. */
8279 		dev_warn(&h->pdev->dev,
8280 			"lockup detected after %d but scratchpad register is zero\n",
8281 			h->heartbeat_sample_interval / HZ);
8282 		lockup_detected = 0xffffffff;
8283 	}
8284 	set_lockup_detected_for_all_cpus(h, lockup_detected);
8285 	spin_unlock_irqrestore(&h->lock, flags);
8286 	dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8287 			lockup_detected, h->heartbeat_sample_interval / HZ);
8288 	if (lockup_detected == 0xffff0000) {
8289 		dev_warn(&h->pdev->dev, "Telling controller to do a CHKPT\n");
8290 		writel(DOORBELL_GENERATE_CHKPT, h->vaddr + SA5_DOORBELL);
8291 	}
8292 	pci_disable_device(h->pdev);
8293 	fail_all_outstanding_cmds(h);
8294 }
8295 
detect_controller_lockup(struct ctlr_info * h)8296 static int detect_controller_lockup(struct ctlr_info *h)
8297 {
8298 	u64 now;
8299 	u32 heartbeat;
8300 	unsigned long flags;
8301 
8302 	now = get_jiffies_64();
8303 	/* If we've received an interrupt recently, we're ok. */
8304 	if (time_after64(h->last_intr_timestamp +
8305 				(h->heartbeat_sample_interval), now))
8306 		return false;
8307 
8308 	/*
8309 	 * If we've already checked the heartbeat recently, we're ok.
8310 	 * This could happen if someone sends us a signal. We
8311 	 * otherwise don't care about signals in this thread.
8312 	 */
8313 	if (time_after64(h->last_heartbeat_timestamp +
8314 				(h->heartbeat_sample_interval), now))
8315 		return false;
8316 
8317 	/* If heartbeat has not changed since we last looked, we're not ok. */
8318 	spin_lock_irqsave(&h->lock, flags);
8319 	heartbeat = readl(&h->cfgtable->HeartBeat);
8320 	spin_unlock_irqrestore(&h->lock, flags);
8321 	if (h->last_heartbeat == heartbeat) {
8322 		controller_lockup_detected(h);
8323 		return true;
8324 	}
8325 
8326 	/* We're ok. */
8327 	h->last_heartbeat = heartbeat;
8328 	h->last_heartbeat_timestamp = now;
8329 	return false;
8330 }
8331 
8332 /*
8333  * Set ioaccel status for all ioaccel volumes.
8334  *
8335  * Called from monitor controller worker (hpsa_event_monitor_worker)
8336  *
8337  * A Volume (or Volumes that comprise an Array set) may be undergoing a
8338  * transformation, so we will be turning off ioaccel for all volumes that
8339  * make up the Array.
8340  */
hpsa_set_ioaccel_status(struct ctlr_info * h)8341 static void hpsa_set_ioaccel_status(struct ctlr_info *h)
8342 {
8343 	int rc;
8344 	int i;
8345 	u8 ioaccel_status;
8346 	unsigned char *buf;
8347 	struct hpsa_scsi_dev_t *device;
8348 
8349 	if (!h)
8350 		return;
8351 
8352 	buf = kmalloc(64, GFP_KERNEL);
8353 	if (!buf)
8354 		return;
8355 
8356 	/*
8357 	 * Run through current device list used during I/O requests.
8358 	 */
8359 	for (i = 0; i < h->ndevices; i++) {
8360 		int offload_to_be_enabled = 0;
8361 		int offload_config = 0;
8362 
8363 		device = h->dev[i];
8364 
8365 		if (!device)
8366 			continue;
8367 		if (!hpsa_vpd_page_supported(h, device->scsi3addr,
8368 						HPSA_VPD_LV_IOACCEL_STATUS))
8369 			continue;
8370 
8371 		memset(buf, 0, 64);
8372 
8373 		rc = hpsa_scsi_do_inquiry(h, device->scsi3addr,
8374 					VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS,
8375 					buf, 64);
8376 		if (rc != 0)
8377 			continue;
8378 
8379 		ioaccel_status = buf[IOACCEL_STATUS_BYTE];
8380 
8381 		/*
8382 		 * Check if offload is still configured on
8383 		 */
8384 		offload_config =
8385 				!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
8386 		/*
8387 		 * If offload is configured on, check to see if ioaccel
8388 		 * needs to be enabled.
8389 		 */
8390 		if (offload_config)
8391 			offload_to_be_enabled =
8392 				!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
8393 
8394 		/*
8395 		 * If ioaccel is to be re-enabled, re-enable later during the
8396 		 * scan operation so the driver can get a fresh raidmap
8397 		 * before turning ioaccel back on.
8398 		 */
8399 		if (offload_to_be_enabled)
8400 			continue;
8401 
8402 		/*
8403 		 * Immediately turn off ioaccel for any volume the
8404 		 * controller tells us to. Some of the reasons could be:
8405 		 *    transformation - change to the LVs of an Array.
8406 		 *    degraded volume - component failure
8407 		 */
8408 		hpsa_turn_off_ioaccel_for_device(device);
8409 	}
8410 
8411 	kfree(buf);
8412 }
8413 
hpsa_ack_ctlr_events(struct ctlr_info * h)8414 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8415 {
8416 	char *event_type;
8417 
8418 	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8419 		return;
8420 
8421 	/* Ask the controller to clear the events we're handling. */
8422 	if ((h->transMethod & (CFGTBL_Trans_io_accel1
8423 			| CFGTBL_Trans_io_accel2)) &&
8424 		(h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8425 		 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8426 
8427 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8428 			event_type = "state change";
8429 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8430 			event_type = "configuration change";
8431 		/* Stop sending new RAID offload reqs via the IO accelerator */
8432 		scsi_block_requests(h->scsi_host);
8433 		hpsa_set_ioaccel_status(h);
8434 		hpsa_drain_accel_commands(h);
8435 		/* Set 'accelerator path config change' bit */
8436 		dev_warn(&h->pdev->dev,
8437 			"Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8438 			h->events, event_type);
8439 		writel(h->events, &(h->cfgtable->clear_event_notify));
8440 		/* Set the "clear event notify field update" bit 6 */
8441 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8442 		/* Wait until ctlr clears 'clear event notify field', bit 6 */
8443 		hpsa_wait_for_clear_event_notify_ack(h);
8444 		scsi_unblock_requests(h->scsi_host);
8445 	} else {
8446 		/* Acknowledge controller notification events. */
8447 		writel(h->events, &(h->cfgtable->clear_event_notify));
8448 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8449 		hpsa_wait_for_clear_event_notify_ack(h);
8450 	}
8451 	return;
8452 }
8453 
8454 /* Check a register on the controller to see if there are configuration
8455  * changes (added/changed/removed logical drives, etc.) which mean that
8456  * we should rescan the controller for devices.
8457  * Also check flag for driver-initiated rescan.
8458  */
hpsa_ctlr_needs_rescan(struct ctlr_info * h)8459 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8460 {
8461 	if (h->drv_req_rescan) {
8462 		h->drv_req_rescan = 0;
8463 		return 1;
8464 	}
8465 
8466 	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8467 		return 0;
8468 
8469 	h->events = readl(&(h->cfgtable->event_notify));
8470 	return h->events & RESCAN_REQUIRED_EVENT_BITS;
8471 }
8472 
8473 /*
8474  * Check if any of the offline devices have become ready
8475  */
hpsa_offline_devices_ready(struct ctlr_info * h)8476 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8477 {
8478 	unsigned long flags;
8479 	struct offline_device_entry *d;
8480 	struct list_head *this, *tmp;
8481 
8482 	spin_lock_irqsave(&h->offline_device_lock, flags);
8483 	list_for_each_safe(this, tmp, &h->offline_device_list) {
8484 		d = list_entry(this, struct offline_device_entry,
8485 				offline_list);
8486 		spin_unlock_irqrestore(&h->offline_device_lock, flags);
8487 		if (!hpsa_volume_offline(h, d->scsi3addr)) {
8488 			spin_lock_irqsave(&h->offline_device_lock, flags);
8489 			list_del(&d->offline_list);
8490 			spin_unlock_irqrestore(&h->offline_device_lock, flags);
8491 			return 1;
8492 		}
8493 		spin_lock_irqsave(&h->offline_device_lock, flags);
8494 	}
8495 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
8496 	return 0;
8497 }
8498 
hpsa_luns_changed(struct ctlr_info * h)8499 static int hpsa_luns_changed(struct ctlr_info *h)
8500 {
8501 	int rc = 1; /* assume there are changes */
8502 	struct ReportLUNdata *logdev = NULL;
8503 
8504 	/* if we can't find out if lun data has changed,
8505 	 * assume that it has.
8506 	 */
8507 
8508 	if (!h->lastlogicals)
8509 		return rc;
8510 
8511 	logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8512 	if (!logdev)
8513 		return rc;
8514 
8515 	if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8516 		dev_warn(&h->pdev->dev,
8517 			"report luns failed, can't track lun changes.\n");
8518 		goto out;
8519 	}
8520 	if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8521 		dev_info(&h->pdev->dev,
8522 			"Lun changes detected.\n");
8523 		memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8524 		goto out;
8525 	} else
8526 		rc = 0; /* no changes detected. */
8527 out:
8528 	kfree(logdev);
8529 	return rc;
8530 }
8531 
hpsa_perform_rescan(struct ctlr_info * h)8532 static void hpsa_perform_rescan(struct ctlr_info *h)
8533 {
8534 	struct Scsi_Host *sh = NULL;
8535 	unsigned long flags;
8536 
8537 	/*
8538 	 * Do the scan after the reset
8539 	 */
8540 	spin_lock_irqsave(&h->reset_lock, flags);
8541 	if (h->reset_in_progress) {
8542 		h->drv_req_rescan = 1;
8543 		spin_unlock_irqrestore(&h->reset_lock, flags);
8544 		return;
8545 	}
8546 	spin_unlock_irqrestore(&h->reset_lock, flags);
8547 
8548 	sh = scsi_host_get(h->scsi_host);
8549 	if (sh != NULL) {
8550 		hpsa_scan_start(sh);
8551 		scsi_host_put(sh);
8552 		h->drv_req_rescan = 0;
8553 	}
8554 }
8555 
8556 /*
8557  * watch for controller events
8558  */
hpsa_event_monitor_worker(struct work_struct * work)8559 static void hpsa_event_monitor_worker(struct work_struct *work)
8560 {
8561 	struct ctlr_info *h = container_of(to_delayed_work(work),
8562 					struct ctlr_info, event_monitor_work);
8563 	unsigned long flags;
8564 
8565 	spin_lock_irqsave(&h->lock, flags);
8566 	if (h->remove_in_progress) {
8567 		spin_unlock_irqrestore(&h->lock, flags);
8568 		return;
8569 	}
8570 	spin_unlock_irqrestore(&h->lock, flags);
8571 
8572 	if (hpsa_ctlr_needs_rescan(h)) {
8573 		hpsa_ack_ctlr_events(h);
8574 		hpsa_perform_rescan(h);
8575 	}
8576 
8577 	spin_lock_irqsave(&h->lock, flags);
8578 	if (!h->remove_in_progress)
8579 		queue_delayed_work(h->monitor_ctlr_wq, &h->event_monitor_work,
8580 				HPSA_EVENT_MONITOR_INTERVAL);
8581 	spin_unlock_irqrestore(&h->lock, flags);
8582 }
8583 
hpsa_rescan_ctlr_worker(struct work_struct * work)8584 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8585 {
8586 	unsigned long flags;
8587 	struct ctlr_info *h = container_of(to_delayed_work(work),
8588 					struct ctlr_info, rescan_ctlr_work);
8589 
8590 	spin_lock_irqsave(&h->lock, flags);
8591 	if (h->remove_in_progress) {
8592 		spin_unlock_irqrestore(&h->lock, flags);
8593 		return;
8594 	}
8595 	spin_unlock_irqrestore(&h->lock, flags);
8596 
8597 	if (h->drv_req_rescan || hpsa_offline_devices_ready(h)) {
8598 		hpsa_perform_rescan(h);
8599 	} else if (h->discovery_polling) {
8600 		if (hpsa_luns_changed(h)) {
8601 			dev_info(&h->pdev->dev,
8602 				"driver discovery polling rescan.\n");
8603 			hpsa_perform_rescan(h);
8604 		}
8605 	}
8606 	spin_lock_irqsave(&h->lock, flags);
8607 	if (!h->remove_in_progress)
8608 		queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8609 				h->heartbeat_sample_interval);
8610 	spin_unlock_irqrestore(&h->lock, flags);
8611 }
8612 
hpsa_monitor_ctlr_worker(struct work_struct * work)8613 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8614 {
8615 	unsigned long flags;
8616 	struct ctlr_info *h = container_of(to_delayed_work(work),
8617 					struct ctlr_info, monitor_ctlr_work);
8618 
8619 	detect_controller_lockup(h);
8620 	if (lockup_detected(h))
8621 		return;
8622 
8623 	spin_lock_irqsave(&h->lock, flags);
8624 	if (!h->remove_in_progress)
8625 		queue_delayed_work(h->monitor_ctlr_wq, &h->monitor_ctlr_work,
8626 				h->heartbeat_sample_interval);
8627 	spin_unlock_irqrestore(&h->lock, flags);
8628 }
8629 
hpsa_create_controller_wq(struct ctlr_info * h,char * name)8630 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8631 						char *name)
8632 {
8633 	struct workqueue_struct *wq = NULL;
8634 
8635 	wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8636 	if (!wq)
8637 		dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8638 
8639 	return wq;
8640 }
8641 
hpda_free_ctlr_info(struct ctlr_info * h)8642 static void hpda_free_ctlr_info(struct ctlr_info *h)
8643 {
8644 	kfree(h->reply_map);
8645 	kfree(h);
8646 }
8647 
hpda_alloc_ctlr_info(void)8648 static struct ctlr_info *hpda_alloc_ctlr_info(void)
8649 {
8650 	struct ctlr_info *h;
8651 
8652 	h = kzalloc(sizeof(*h), GFP_KERNEL);
8653 	if (!h)
8654 		return NULL;
8655 
8656 	h->reply_map = kcalloc(nr_cpu_ids, sizeof(*h->reply_map), GFP_KERNEL);
8657 	if (!h->reply_map) {
8658 		kfree(h);
8659 		return NULL;
8660 	}
8661 	return h;
8662 }
8663 
hpsa_init_one(struct pci_dev * pdev,const struct pci_device_id * ent)8664 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8665 {
8666 	int rc;
8667 	struct ctlr_info *h;
8668 	int try_soft_reset = 0;
8669 	unsigned long flags;
8670 	u32 board_id;
8671 
8672 	if (number_of_controllers == 0)
8673 		printk(KERN_INFO DRIVER_NAME "\n");
8674 
8675 	rc = hpsa_lookup_board_id(pdev, &board_id, NULL);
8676 	if (rc < 0) {
8677 		dev_warn(&pdev->dev, "Board ID not found\n");
8678 		return rc;
8679 	}
8680 
8681 	rc = hpsa_init_reset_devices(pdev, board_id);
8682 	if (rc) {
8683 		if (rc != -ENOTSUPP)
8684 			return rc;
8685 		/* If the reset fails in a particular way (it has no way to do
8686 		 * a proper hard reset, so returns -ENOTSUPP) we can try to do
8687 		 * a soft reset once we get the controller configured up to the
8688 		 * point that it can accept a command.
8689 		 */
8690 		try_soft_reset = 1;
8691 		rc = 0;
8692 	}
8693 
8694 reinit_after_soft_reset:
8695 
8696 	/* Command structures must be aligned on a 32-byte boundary because
8697 	 * the 5 lower bits of the address are used by the hardware. and by
8698 	 * the driver.  See comments in hpsa.h for more info.
8699 	 */
8700 	BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8701 	h = hpda_alloc_ctlr_info();
8702 	if (!h) {
8703 		dev_err(&pdev->dev, "Failed to allocate controller head\n");
8704 		return -ENOMEM;
8705 	}
8706 
8707 	h->pdev = pdev;
8708 
8709 	h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8710 	INIT_LIST_HEAD(&h->offline_device_list);
8711 	spin_lock_init(&h->lock);
8712 	spin_lock_init(&h->offline_device_lock);
8713 	spin_lock_init(&h->scan_lock);
8714 	spin_lock_init(&h->reset_lock);
8715 	atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8716 
8717 	/* Allocate and clear per-cpu variable lockup_detected */
8718 	h->lockup_detected = alloc_percpu(u32);
8719 	if (!h->lockup_detected) {
8720 		dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8721 		rc = -ENOMEM;
8722 		goto clean1;	/* aer/h */
8723 	}
8724 	set_lockup_detected_for_all_cpus(h, 0);
8725 
8726 	rc = hpsa_pci_init(h);
8727 	if (rc)
8728 		goto clean2;	/* lu, aer/h */
8729 
8730 	/* relies on h-> settings made by hpsa_pci_init, including
8731 	 * interrupt_mode h->intr */
8732 	rc = hpsa_scsi_host_alloc(h);
8733 	if (rc)
8734 		goto clean2_5;	/* pci, lu, aer/h */
8735 
8736 	sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8737 	h->ctlr = number_of_controllers;
8738 	number_of_controllers++;
8739 
8740 	/* configure PCI DMA stuff */
8741 	rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
8742 	if (rc != 0) {
8743 		rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
8744 		if (rc != 0) {
8745 			dev_err(&pdev->dev, "no suitable DMA available\n");
8746 			goto clean3;	/* shost, pci, lu, aer/h */
8747 		}
8748 	}
8749 
8750 	/* make sure the board interrupts are off */
8751 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8752 
8753 	rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8754 	if (rc)
8755 		goto clean3;	/* shost, pci, lu, aer/h */
8756 	rc = hpsa_alloc_cmd_pool(h);
8757 	if (rc)
8758 		goto clean4;	/* irq, shost, pci, lu, aer/h */
8759 	rc = hpsa_alloc_sg_chain_blocks(h);
8760 	if (rc)
8761 		goto clean5;	/* cmd, irq, shost, pci, lu, aer/h */
8762 	init_waitqueue_head(&h->scan_wait_queue);
8763 	init_waitqueue_head(&h->event_sync_wait_queue);
8764 	mutex_init(&h->reset_mutex);
8765 	h->scan_finished = 1; /* no scan currently in progress */
8766 	h->scan_waiting = 0;
8767 
8768 	pci_set_drvdata(pdev, h);
8769 	h->ndevices = 0;
8770 
8771 	spin_lock_init(&h->devlock);
8772 	rc = hpsa_put_ctlr_into_performant_mode(h);
8773 	if (rc)
8774 		goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8775 
8776 	/* create the resubmit workqueue */
8777 	h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8778 	if (!h->rescan_ctlr_wq) {
8779 		rc = -ENOMEM;
8780 		goto clean7;
8781 	}
8782 
8783 	h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8784 	if (!h->resubmit_wq) {
8785 		rc = -ENOMEM;
8786 		goto clean7;	/* aer/h */
8787 	}
8788 
8789 	h->monitor_ctlr_wq = hpsa_create_controller_wq(h, "monitor");
8790 	if (!h->monitor_ctlr_wq) {
8791 		rc = -ENOMEM;
8792 		goto clean7;
8793 	}
8794 
8795 	/*
8796 	 * At this point, the controller is ready to take commands.
8797 	 * Now, if reset_devices and the hard reset didn't work, try
8798 	 * the soft reset and see if that works.
8799 	 */
8800 	if (try_soft_reset) {
8801 
8802 		/* This is kind of gross.  We may or may not get a completion
8803 		 * from the soft reset command, and if we do, then the value
8804 		 * from the fifo may or may not be valid.  So, we wait 10 secs
8805 		 * after the reset throwing away any completions we get during
8806 		 * that time.  Unregister the interrupt handler and register
8807 		 * fake ones to scoop up any residual completions.
8808 		 */
8809 		spin_lock_irqsave(&h->lock, flags);
8810 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
8811 		spin_unlock_irqrestore(&h->lock, flags);
8812 		hpsa_free_irqs(h);
8813 		rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8814 					hpsa_intx_discard_completions);
8815 		if (rc) {
8816 			dev_warn(&h->pdev->dev,
8817 				"Failed to request_irq after soft reset.\n");
8818 			/*
8819 			 * cannot goto clean7 or free_irqs will be called
8820 			 * again. Instead, do its work
8821 			 */
8822 			hpsa_free_performant_mode(h);	/* clean7 */
8823 			hpsa_free_sg_chain_blocks(h);	/* clean6 */
8824 			hpsa_free_cmd_pool(h);		/* clean5 */
8825 			/*
8826 			 * skip hpsa_free_irqs(h) clean4 since that
8827 			 * was just called before request_irqs failed
8828 			 */
8829 			goto clean3;
8830 		}
8831 
8832 		rc = hpsa_kdump_soft_reset(h);
8833 		if (rc)
8834 			/* Neither hard nor soft reset worked, we're hosed. */
8835 			goto clean7;
8836 
8837 		dev_info(&h->pdev->dev, "Board READY.\n");
8838 		dev_info(&h->pdev->dev,
8839 			"Waiting for stale completions to drain.\n");
8840 		h->access.set_intr_mask(h, HPSA_INTR_ON);
8841 		msleep(10000);
8842 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
8843 
8844 		rc = controller_reset_failed(h->cfgtable);
8845 		if (rc)
8846 			dev_info(&h->pdev->dev,
8847 				"Soft reset appears to have failed.\n");
8848 
8849 		/* since the controller's reset, we have to go back and re-init
8850 		 * everything.  Easiest to just forget what we've done and do it
8851 		 * all over again.
8852 		 */
8853 		hpsa_undo_allocations_after_kdump_soft_reset(h);
8854 		try_soft_reset = 0;
8855 		if (rc)
8856 			/* don't goto clean, we already unallocated */
8857 			return -ENODEV;
8858 
8859 		goto reinit_after_soft_reset;
8860 	}
8861 
8862 	/* Enable Accelerated IO path at driver layer */
8863 	h->acciopath_status = 1;
8864 	/* Disable discovery polling.*/
8865 	h->discovery_polling = 0;
8866 
8867 
8868 	/* Turn the interrupts on so we can service requests */
8869 	h->access.set_intr_mask(h, HPSA_INTR_ON);
8870 
8871 	hpsa_hba_inquiry(h);
8872 
8873 	h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8874 	if (!h->lastlogicals)
8875 		dev_info(&h->pdev->dev,
8876 			"Can't track change to report lun data\n");
8877 
8878 	/* hook into SCSI subsystem */
8879 	rc = hpsa_scsi_add_host(h);
8880 	if (rc)
8881 		goto clean8; /* lastlogicals, perf, sg, cmd, irq, shost, pci, lu, aer/h */
8882 
8883 	/* Monitor the controller for firmware lockups */
8884 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8885 	INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8886 	schedule_delayed_work(&h->monitor_ctlr_work,
8887 				h->heartbeat_sample_interval);
8888 	INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8889 	queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8890 				h->heartbeat_sample_interval);
8891 	INIT_DELAYED_WORK(&h->event_monitor_work, hpsa_event_monitor_worker);
8892 	schedule_delayed_work(&h->event_monitor_work,
8893 				HPSA_EVENT_MONITOR_INTERVAL);
8894 	return 0;
8895 
8896 clean8: /* lastlogicals, perf, sg, cmd, irq, shost, pci, lu, aer/h */
8897 	kfree(h->lastlogicals);
8898 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8899 	hpsa_free_performant_mode(h);
8900 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8901 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8902 	hpsa_free_sg_chain_blocks(h);
8903 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8904 	hpsa_free_cmd_pool(h);
8905 clean4: /* irq, shost, pci, lu, aer/h */
8906 	hpsa_free_irqs(h);
8907 clean3: /* shost, pci, lu, aer/h */
8908 	scsi_host_put(h->scsi_host);
8909 	h->scsi_host = NULL;
8910 clean2_5: /* pci, lu, aer/h */
8911 	hpsa_free_pci_init(h);
8912 clean2: /* lu, aer/h */
8913 	if (h->lockup_detected) {
8914 		free_percpu(h->lockup_detected);
8915 		h->lockup_detected = NULL;
8916 	}
8917 clean1:	/* wq/aer/h */
8918 	if (h->resubmit_wq) {
8919 		destroy_workqueue(h->resubmit_wq);
8920 		h->resubmit_wq = NULL;
8921 	}
8922 	if (h->rescan_ctlr_wq) {
8923 		destroy_workqueue(h->rescan_ctlr_wq);
8924 		h->rescan_ctlr_wq = NULL;
8925 	}
8926 	if (h->monitor_ctlr_wq) {
8927 		destroy_workqueue(h->monitor_ctlr_wq);
8928 		h->monitor_ctlr_wq = NULL;
8929 	}
8930 	hpda_free_ctlr_info(h);
8931 	return rc;
8932 }
8933 
hpsa_flush_cache(struct ctlr_info * h)8934 static void hpsa_flush_cache(struct ctlr_info *h)
8935 {
8936 	char *flush_buf;
8937 	struct CommandList *c;
8938 	int rc;
8939 
8940 	if (unlikely(lockup_detected(h)))
8941 		return;
8942 	flush_buf = kzalloc(4, GFP_KERNEL);
8943 	if (!flush_buf)
8944 		return;
8945 
8946 	c = cmd_alloc(h);
8947 
8948 	if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8949 		RAID_CTLR_LUNID, TYPE_CMD)) {
8950 		goto out;
8951 	}
8952 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
8953 			DEFAULT_TIMEOUT);
8954 	if (rc)
8955 		goto out;
8956 	if (c->err_info->CommandStatus != 0)
8957 out:
8958 		dev_warn(&h->pdev->dev,
8959 			"error flushing cache on controller\n");
8960 	cmd_free(h, c);
8961 	kfree(flush_buf);
8962 }
8963 
8964 /* Make controller gather fresh report lun data each time we
8965  * send down a report luns request
8966  */
hpsa_disable_rld_caching(struct ctlr_info * h)8967 static void hpsa_disable_rld_caching(struct ctlr_info *h)
8968 {
8969 	u32 *options;
8970 	struct CommandList *c;
8971 	int rc;
8972 
8973 	/* Don't bother trying to set diag options if locked up */
8974 	if (unlikely(h->lockup_detected))
8975 		return;
8976 
8977 	options = kzalloc(sizeof(*options), GFP_KERNEL);
8978 	if (!options)
8979 		return;
8980 
8981 	c = cmd_alloc(h);
8982 
8983 	/* first, get the current diag options settings */
8984 	if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8985 		RAID_CTLR_LUNID, TYPE_CMD))
8986 		goto errout;
8987 
8988 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
8989 			NO_TIMEOUT);
8990 	if ((rc != 0) || (c->err_info->CommandStatus != 0))
8991 		goto errout;
8992 
8993 	/* Now, set the bit for disabling the RLD caching */
8994 	*options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
8995 
8996 	if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
8997 		RAID_CTLR_LUNID, TYPE_CMD))
8998 		goto errout;
8999 
9000 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
9001 			NO_TIMEOUT);
9002 	if ((rc != 0)  || (c->err_info->CommandStatus != 0))
9003 		goto errout;
9004 
9005 	/* Now verify that it got set: */
9006 	if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
9007 		RAID_CTLR_LUNID, TYPE_CMD))
9008 		goto errout;
9009 
9010 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
9011 			NO_TIMEOUT);
9012 	if ((rc != 0)  || (c->err_info->CommandStatus != 0))
9013 		goto errout;
9014 
9015 	if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
9016 		goto out;
9017 
9018 errout:
9019 	dev_err(&h->pdev->dev,
9020 			"Error: failed to disable report lun data caching.\n");
9021 out:
9022 	cmd_free(h, c);
9023 	kfree(options);
9024 }
9025 
__hpsa_shutdown(struct pci_dev * pdev)9026 static void __hpsa_shutdown(struct pci_dev *pdev)
9027 {
9028 	struct ctlr_info *h;
9029 
9030 	h = pci_get_drvdata(pdev);
9031 	/* Turn board interrupts off  and send the flush cache command
9032 	 * sendcmd will turn off interrupt, and send the flush...
9033 	 * To write all data in the battery backed cache to disks
9034 	 */
9035 	hpsa_flush_cache(h);
9036 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
9037 	hpsa_free_irqs(h);			/* init_one 4 */
9038 	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
9039 }
9040 
hpsa_shutdown(struct pci_dev * pdev)9041 static void hpsa_shutdown(struct pci_dev *pdev)
9042 {
9043 	__hpsa_shutdown(pdev);
9044 	pci_disable_device(pdev);
9045 }
9046 
hpsa_free_device_info(struct ctlr_info * h)9047 static void hpsa_free_device_info(struct ctlr_info *h)
9048 {
9049 	int i;
9050 
9051 	for (i = 0; i < h->ndevices; i++) {
9052 		kfree(h->dev[i]);
9053 		h->dev[i] = NULL;
9054 	}
9055 }
9056 
hpsa_remove_one(struct pci_dev * pdev)9057 static void hpsa_remove_one(struct pci_dev *pdev)
9058 {
9059 	struct ctlr_info *h;
9060 	unsigned long flags;
9061 
9062 	if (pci_get_drvdata(pdev) == NULL) {
9063 		dev_err(&pdev->dev, "unable to remove device\n");
9064 		return;
9065 	}
9066 	h = pci_get_drvdata(pdev);
9067 
9068 	/* Get rid of any controller monitoring work items */
9069 	spin_lock_irqsave(&h->lock, flags);
9070 	h->remove_in_progress = 1;
9071 	spin_unlock_irqrestore(&h->lock, flags);
9072 	cancel_delayed_work_sync(&h->monitor_ctlr_work);
9073 	cancel_delayed_work_sync(&h->rescan_ctlr_work);
9074 	cancel_delayed_work_sync(&h->event_monitor_work);
9075 	destroy_workqueue(h->rescan_ctlr_wq);
9076 	destroy_workqueue(h->resubmit_wq);
9077 	destroy_workqueue(h->monitor_ctlr_wq);
9078 
9079 	hpsa_delete_sas_host(h);
9080 
9081 	/*
9082 	 * Call before disabling interrupts.
9083 	 * scsi_remove_host can trigger I/O operations especially
9084 	 * when multipath is enabled. There can be SYNCHRONIZE CACHE
9085 	 * operations which cannot complete and will hang the system.
9086 	 */
9087 	if (h->scsi_host)
9088 		scsi_remove_host(h->scsi_host);		/* init_one 8 */
9089 	/* includes hpsa_free_irqs - init_one 4 */
9090 	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
9091 	__hpsa_shutdown(pdev);
9092 
9093 	hpsa_free_device_info(h);		/* scan */
9094 
9095 	kfree(h->hba_inquiry_data);			/* init_one 10 */
9096 	h->hba_inquiry_data = NULL;			/* init_one 10 */
9097 	hpsa_free_ioaccel2_sg_chain_blocks(h);
9098 	hpsa_free_performant_mode(h);			/* init_one 7 */
9099 	hpsa_free_sg_chain_blocks(h);			/* init_one 6 */
9100 	hpsa_free_cmd_pool(h);				/* init_one 5 */
9101 	kfree(h->lastlogicals);
9102 
9103 	/* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
9104 
9105 	scsi_host_put(h->scsi_host);			/* init_one 3 */
9106 	h->scsi_host = NULL;				/* init_one 3 */
9107 
9108 	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
9109 	hpsa_free_pci_init(h);				/* init_one 2.5 */
9110 
9111 	free_percpu(h->lockup_detected);		/* init_one 2 */
9112 	h->lockup_detected = NULL;			/* init_one 2 */
9113 
9114 	hpda_free_ctlr_info(h);				/* init_one 1 */
9115 }
9116 
hpsa_suspend(struct device * dev)9117 static int __maybe_unused hpsa_suspend(
9118 	__attribute__((unused)) struct device *dev)
9119 {
9120 	return -ENOSYS;
9121 }
9122 
hpsa_resume(struct device * dev)9123 static int __maybe_unused hpsa_resume
9124 	(__attribute__((unused)) struct device *dev)
9125 {
9126 	return -ENOSYS;
9127 }
9128 
9129 static SIMPLE_DEV_PM_OPS(hpsa_pm_ops, hpsa_suspend, hpsa_resume);
9130 
9131 static struct pci_driver hpsa_pci_driver = {
9132 	.name = HPSA,
9133 	.probe = hpsa_init_one,
9134 	.remove = hpsa_remove_one,
9135 	.id_table = hpsa_pci_device_id,	/* id_table */
9136 	.shutdown = hpsa_shutdown,
9137 	.driver.pm = &hpsa_pm_ops,
9138 };
9139 
9140 /* Fill in bucket_map[], given nsgs (the max number of
9141  * scatter gather elements supported) and bucket[],
9142  * which is an array of 8 integers.  The bucket[] array
9143  * contains 8 different DMA transfer sizes (in 16
9144  * byte increments) which the controller uses to fetch
9145  * commands.  This function fills in bucket_map[], which
9146  * maps a given number of scatter gather elements to one of
9147  * the 8 DMA transfer sizes.  The point of it is to allow the
9148  * controller to only do as much DMA as needed to fetch the
9149  * command, with the DMA transfer size encoded in the lower
9150  * bits of the command address.
9151  */
calc_bucket_map(int bucket[],int num_buckets,int nsgs,int min_blocks,u32 * bucket_map)9152 static void  calc_bucket_map(int bucket[], int num_buckets,
9153 	int nsgs, int min_blocks, u32 *bucket_map)
9154 {
9155 	int i, j, b, size;
9156 
9157 	/* Note, bucket_map must have nsgs+1 entries. */
9158 	for (i = 0; i <= nsgs; i++) {
9159 		/* Compute size of a command with i SG entries */
9160 		size = i + min_blocks;
9161 		b = num_buckets; /* Assume the biggest bucket */
9162 		/* Find the bucket that is just big enough */
9163 		for (j = 0; j < num_buckets; j++) {
9164 			if (bucket[j] >= size) {
9165 				b = j;
9166 				break;
9167 			}
9168 		}
9169 		/* for a command with i SG entries, use bucket b. */
9170 		bucket_map[i] = b;
9171 	}
9172 }
9173 
9174 /*
9175  * return -ENODEV on err, 0 on success (or no action)
9176  * allocates numerous items that must be freed later
9177  */
hpsa_enter_performant_mode(struct ctlr_info * h,u32 trans_support)9178 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
9179 {
9180 	int i;
9181 	unsigned long register_value;
9182 	unsigned long transMethod = CFGTBL_Trans_Performant |
9183 			(trans_support & CFGTBL_Trans_use_short_tags) |
9184 				CFGTBL_Trans_enable_directed_msix |
9185 			(trans_support & (CFGTBL_Trans_io_accel1 |
9186 				CFGTBL_Trans_io_accel2));
9187 	struct access_method access = SA5_performant_access;
9188 
9189 	/* This is a bit complicated.  There are 8 registers on
9190 	 * the controller which we write to to tell it 8 different
9191 	 * sizes of commands which there may be.  It's a way of
9192 	 * reducing the DMA done to fetch each command.  Encoded into
9193 	 * each command's tag are 3 bits which communicate to the controller
9194 	 * which of the eight sizes that command fits within.  The size of
9195 	 * each command depends on how many scatter gather entries there are.
9196 	 * Each SG entry requires 16 bytes.  The eight registers are programmed
9197 	 * with the number of 16-byte blocks a command of that size requires.
9198 	 * The smallest command possible requires 5 such 16 byte blocks.
9199 	 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
9200 	 * blocks.  Note, this only extends to the SG entries contained
9201 	 * within the command block, and does not extend to chained blocks
9202 	 * of SG elements.   bft[] contains the eight values we write to
9203 	 * the registers.  They are not evenly distributed, but have more
9204 	 * sizes for small commands, and fewer sizes for larger commands.
9205 	 */
9206 	int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
9207 #define MIN_IOACCEL2_BFT_ENTRY 5
9208 #define HPSA_IOACCEL2_HEADER_SZ 4
9209 	int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
9210 			13, 14, 15, 16, 17, 18, 19,
9211 			HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
9212 	BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
9213 	BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
9214 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
9215 				 16 * MIN_IOACCEL2_BFT_ENTRY);
9216 	BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
9217 	BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
9218 	/*  5 = 1 s/g entry or 4k
9219 	 *  6 = 2 s/g entry or 8k
9220 	 *  8 = 4 s/g entry or 16k
9221 	 * 10 = 6 s/g entry or 24k
9222 	 */
9223 
9224 	/* If the controller supports either ioaccel method then
9225 	 * we can also use the RAID stack submit path that does not
9226 	 * perform the superfluous readl() after each command submission.
9227 	 */
9228 	if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
9229 		access = SA5_performant_access_no_read;
9230 
9231 	/* Controller spec: zero out this buffer. */
9232 	for (i = 0; i < h->nreply_queues; i++)
9233 		memset(h->reply_queue[i].head, 0, h->reply_queue_size);
9234 
9235 	bft[7] = SG_ENTRIES_IN_CMD + 4;
9236 	calc_bucket_map(bft, ARRAY_SIZE(bft),
9237 				SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
9238 	for (i = 0; i < 8; i++)
9239 		writel(bft[i], &h->transtable->BlockFetch[i]);
9240 
9241 	/* size of controller ring buffer */
9242 	writel(h->max_commands, &h->transtable->RepQSize);
9243 	writel(h->nreply_queues, &h->transtable->RepQCount);
9244 	writel(0, &h->transtable->RepQCtrAddrLow32);
9245 	writel(0, &h->transtable->RepQCtrAddrHigh32);
9246 
9247 	for (i = 0; i < h->nreply_queues; i++) {
9248 		writel(0, &h->transtable->RepQAddr[i].upper);
9249 		writel(h->reply_queue[i].busaddr,
9250 			&h->transtable->RepQAddr[i].lower);
9251 	}
9252 
9253 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
9254 	writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
9255 	/*
9256 	 * enable outbound interrupt coalescing in accelerator mode;
9257 	 */
9258 	if (trans_support & CFGTBL_Trans_io_accel1) {
9259 		access = SA5_ioaccel_mode1_access;
9260 		writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9261 		writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9262 	} else
9263 		if (trans_support & CFGTBL_Trans_io_accel2)
9264 			access = SA5_ioaccel_mode2_access;
9265 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9266 	if (hpsa_wait_for_mode_change_ack(h)) {
9267 		dev_err(&h->pdev->dev,
9268 			"performant mode problem - doorbell timeout\n");
9269 		return -ENODEV;
9270 	}
9271 	register_value = readl(&(h->cfgtable->TransportActive));
9272 	if (!(register_value & CFGTBL_Trans_Performant)) {
9273 		dev_err(&h->pdev->dev,
9274 			"performant mode problem - transport not active\n");
9275 		return -ENODEV;
9276 	}
9277 	/* Change the access methods to the performant access methods */
9278 	h->access = access;
9279 	h->transMethod = transMethod;
9280 
9281 	if (!((trans_support & CFGTBL_Trans_io_accel1) ||
9282 		(trans_support & CFGTBL_Trans_io_accel2)))
9283 		return 0;
9284 
9285 	if (trans_support & CFGTBL_Trans_io_accel1) {
9286 		/* Set up I/O accelerator mode */
9287 		for (i = 0; i < h->nreply_queues; i++) {
9288 			writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
9289 			h->reply_queue[i].current_entry =
9290 				readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
9291 		}
9292 		bft[7] = h->ioaccel_maxsg + 8;
9293 		calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
9294 				h->ioaccel1_blockFetchTable);
9295 
9296 		/* initialize all reply queue entries to unused */
9297 		for (i = 0; i < h->nreply_queues; i++)
9298 			memset(h->reply_queue[i].head,
9299 				(u8) IOACCEL_MODE1_REPLY_UNUSED,
9300 				h->reply_queue_size);
9301 
9302 		/* set all the constant fields in the accelerator command
9303 		 * frames once at init time to save CPU cycles later.
9304 		 */
9305 		for (i = 0; i < h->nr_cmds; i++) {
9306 			struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
9307 
9308 			cp->function = IOACCEL1_FUNCTION_SCSIIO;
9309 			cp->err_info = (u32) (h->errinfo_pool_dhandle +
9310 					(i * sizeof(struct ErrorInfo)));
9311 			cp->err_info_len = sizeof(struct ErrorInfo);
9312 			cp->sgl_offset = IOACCEL1_SGLOFFSET;
9313 			cp->host_context_flags =
9314 				cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
9315 			cp->timeout_sec = 0;
9316 			cp->ReplyQueue = 0;
9317 			cp->tag =
9318 				cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
9319 			cp->host_addr =
9320 				cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
9321 					(i * sizeof(struct io_accel1_cmd)));
9322 		}
9323 	} else if (trans_support & CFGTBL_Trans_io_accel2) {
9324 		u64 cfg_offset, cfg_base_addr_index;
9325 		u32 bft2_offset, cfg_base_addr;
9326 
9327 		hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
9328 				    &cfg_base_addr_index, &cfg_offset);
9329 		BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
9330 		bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
9331 		calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
9332 				4, h->ioaccel2_blockFetchTable);
9333 		bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
9334 		BUILD_BUG_ON(offsetof(struct CfgTable,
9335 				io_accel_request_size_offset) != 0xb8);
9336 		h->ioaccel2_bft2_regs =
9337 			remap_pci_mem(pci_resource_start(h->pdev,
9338 					cfg_base_addr_index) +
9339 					cfg_offset + bft2_offset,
9340 					ARRAY_SIZE(bft2) *
9341 					sizeof(*h->ioaccel2_bft2_regs));
9342 		for (i = 0; i < ARRAY_SIZE(bft2); i++)
9343 			writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9344 	}
9345 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9346 	if (hpsa_wait_for_mode_change_ack(h)) {
9347 		dev_err(&h->pdev->dev,
9348 			"performant mode problem - enabling ioaccel mode\n");
9349 		return -ENODEV;
9350 	}
9351 	return 0;
9352 }
9353 
9354 /* Free ioaccel1 mode command blocks and block fetch table */
hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info * h)9355 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9356 {
9357 	if (h->ioaccel_cmd_pool) {
9358 		dma_free_coherent(&h->pdev->dev,
9359 				  h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9360 				  h->ioaccel_cmd_pool,
9361 				  h->ioaccel_cmd_pool_dhandle);
9362 		h->ioaccel_cmd_pool = NULL;
9363 		h->ioaccel_cmd_pool_dhandle = 0;
9364 	}
9365 	kfree(h->ioaccel1_blockFetchTable);
9366 	h->ioaccel1_blockFetchTable = NULL;
9367 }
9368 
9369 /* Allocate ioaccel1 mode command blocks and block fetch table */
hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info * h)9370 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9371 {
9372 	h->ioaccel_maxsg =
9373 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9374 	if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9375 		h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9376 
9377 	/* Command structures must be aligned on a 128-byte boundary
9378 	 * because the 7 lower bits of the address are used by the
9379 	 * hardware.
9380 	 */
9381 	BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9382 			IOACCEL1_COMMANDLIST_ALIGNMENT);
9383 	h->ioaccel_cmd_pool =
9384 		dma_alloc_coherent(&h->pdev->dev,
9385 			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9386 			&h->ioaccel_cmd_pool_dhandle, GFP_KERNEL);
9387 
9388 	h->ioaccel1_blockFetchTable =
9389 		kmalloc(((h->ioaccel_maxsg + 1) *
9390 				sizeof(u32)), GFP_KERNEL);
9391 
9392 	if ((h->ioaccel_cmd_pool == NULL) ||
9393 		(h->ioaccel1_blockFetchTable == NULL))
9394 		goto clean_up;
9395 
9396 	memset(h->ioaccel_cmd_pool, 0,
9397 		h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9398 	return 0;
9399 
9400 clean_up:
9401 	hpsa_free_ioaccel1_cmd_and_bft(h);
9402 	return -ENOMEM;
9403 }
9404 
9405 /* Free ioaccel2 mode command blocks and block fetch table */
hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info * h)9406 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9407 {
9408 	hpsa_free_ioaccel2_sg_chain_blocks(h);
9409 
9410 	if (h->ioaccel2_cmd_pool) {
9411 		dma_free_coherent(&h->pdev->dev,
9412 				  h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9413 				  h->ioaccel2_cmd_pool,
9414 				  h->ioaccel2_cmd_pool_dhandle);
9415 		h->ioaccel2_cmd_pool = NULL;
9416 		h->ioaccel2_cmd_pool_dhandle = 0;
9417 	}
9418 	kfree(h->ioaccel2_blockFetchTable);
9419 	h->ioaccel2_blockFetchTable = NULL;
9420 }
9421 
9422 /* Allocate ioaccel2 mode command blocks and block fetch table */
hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info * h)9423 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9424 {
9425 	int rc;
9426 
9427 	/* Allocate ioaccel2 mode command blocks and block fetch table */
9428 
9429 	h->ioaccel_maxsg =
9430 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9431 	if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9432 		h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9433 
9434 	BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9435 			IOACCEL2_COMMANDLIST_ALIGNMENT);
9436 	h->ioaccel2_cmd_pool =
9437 		dma_alloc_coherent(&h->pdev->dev,
9438 			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9439 			&h->ioaccel2_cmd_pool_dhandle, GFP_KERNEL);
9440 
9441 	h->ioaccel2_blockFetchTable =
9442 		kmalloc(((h->ioaccel_maxsg + 1) *
9443 				sizeof(u32)), GFP_KERNEL);
9444 
9445 	if ((h->ioaccel2_cmd_pool == NULL) ||
9446 		(h->ioaccel2_blockFetchTable == NULL)) {
9447 		rc = -ENOMEM;
9448 		goto clean_up;
9449 	}
9450 
9451 	rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9452 	if (rc)
9453 		goto clean_up;
9454 
9455 	memset(h->ioaccel2_cmd_pool, 0,
9456 		h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9457 	return 0;
9458 
9459 clean_up:
9460 	hpsa_free_ioaccel2_cmd_and_bft(h);
9461 	return rc;
9462 }
9463 
9464 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
hpsa_free_performant_mode(struct ctlr_info * h)9465 static void hpsa_free_performant_mode(struct ctlr_info *h)
9466 {
9467 	kfree(h->blockFetchTable);
9468 	h->blockFetchTable = NULL;
9469 	hpsa_free_reply_queues(h);
9470 	hpsa_free_ioaccel1_cmd_and_bft(h);
9471 	hpsa_free_ioaccel2_cmd_and_bft(h);
9472 }
9473 
9474 /* return -ENODEV on error, 0 on success (or no action)
9475  * allocates numerous items that must be freed later
9476  */
hpsa_put_ctlr_into_performant_mode(struct ctlr_info * h)9477 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9478 {
9479 	u32 trans_support;
9480 	int i, rc;
9481 
9482 	if (hpsa_simple_mode)
9483 		return 0;
9484 
9485 	trans_support = readl(&(h->cfgtable->TransportSupport));
9486 	if (!(trans_support & PERFORMANT_MODE))
9487 		return 0;
9488 
9489 	/* Check for I/O accelerator mode support */
9490 	if (trans_support & CFGTBL_Trans_io_accel1) {
9491 		rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9492 		if (rc)
9493 			return rc;
9494 	} else if (trans_support & CFGTBL_Trans_io_accel2) {
9495 		rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9496 		if (rc)
9497 			return rc;
9498 	}
9499 
9500 	h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1;
9501 	hpsa_get_max_perf_mode_cmds(h);
9502 	/* Performant mode ring buffer and supporting data structures */
9503 	h->reply_queue_size = h->max_commands * sizeof(u64);
9504 
9505 	for (i = 0; i < h->nreply_queues; i++) {
9506 		h->reply_queue[i].head = dma_alloc_coherent(&h->pdev->dev,
9507 						h->reply_queue_size,
9508 						&h->reply_queue[i].busaddr,
9509 						GFP_KERNEL);
9510 		if (!h->reply_queue[i].head) {
9511 			rc = -ENOMEM;
9512 			goto clean1;	/* rq, ioaccel */
9513 		}
9514 		h->reply_queue[i].size = h->max_commands;
9515 		h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
9516 		h->reply_queue[i].current_entry = 0;
9517 	}
9518 
9519 	/* Need a block fetch table for performant mode */
9520 	h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9521 				sizeof(u32)), GFP_KERNEL);
9522 	if (!h->blockFetchTable) {
9523 		rc = -ENOMEM;
9524 		goto clean1;	/* rq, ioaccel */
9525 	}
9526 
9527 	rc = hpsa_enter_performant_mode(h, trans_support);
9528 	if (rc)
9529 		goto clean2;	/* bft, rq, ioaccel */
9530 	return 0;
9531 
9532 clean2:	/* bft, rq, ioaccel */
9533 	kfree(h->blockFetchTable);
9534 	h->blockFetchTable = NULL;
9535 clean1:	/* rq, ioaccel */
9536 	hpsa_free_reply_queues(h);
9537 	hpsa_free_ioaccel1_cmd_and_bft(h);
9538 	hpsa_free_ioaccel2_cmd_and_bft(h);
9539 	return rc;
9540 }
9541 
is_accelerated_cmd(struct CommandList * c)9542 static int is_accelerated_cmd(struct CommandList *c)
9543 {
9544 	return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9545 }
9546 
hpsa_drain_accel_commands(struct ctlr_info * h)9547 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9548 {
9549 	struct CommandList *c = NULL;
9550 	int i, accel_cmds_out;
9551 	int refcount;
9552 
9553 	do { /* wait for all outstanding ioaccel commands to drain out */
9554 		accel_cmds_out = 0;
9555 		for (i = 0; i < h->nr_cmds; i++) {
9556 			c = h->cmd_pool + i;
9557 			refcount = atomic_inc_return(&c->refcount);
9558 			if (refcount > 1) /* Command is allocated */
9559 				accel_cmds_out += is_accelerated_cmd(c);
9560 			cmd_free(h, c);
9561 		}
9562 		if (accel_cmds_out <= 0)
9563 			break;
9564 		msleep(100);
9565 	} while (1);
9566 }
9567 
hpsa_alloc_sas_phy(struct hpsa_sas_port * hpsa_sas_port)9568 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9569 				struct hpsa_sas_port *hpsa_sas_port)
9570 {
9571 	struct hpsa_sas_phy *hpsa_sas_phy;
9572 	struct sas_phy *phy;
9573 
9574 	hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9575 	if (!hpsa_sas_phy)
9576 		return NULL;
9577 
9578 	phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9579 		hpsa_sas_port->next_phy_index);
9580 	if (!phy) {
9581 		kfree(hpsa_sas_phy);
9582 		return NULL;
9583 	}
9584 
9585 	hpsa_sas_port->next_phy_index++;
9586 	hpsa_sas_phy->phy = phy;
9587 	hpsa_sas_phy->parent_port = hpsa_sas_port;
9588 
9589 	return hpsa_sas_phy;
9590 }
9591 
hpsa_free_sas_phy(struct hpsa_sas_phy * hpsa_sas_phy)9592 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9593 {
9594 	struct sas_phy *phy = hpsa_sas_phy->phy;
9595 
9596 	sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9597 	if (hpsa_sas_phy->added_to_port)
9598 		list_del(&hpsa_sas_phy->phy_list_entry);
9599 	sas_phy_delete(phy);
9600 	kfree(hpsa_sas_phy);
9601 }
9602 
hpsa_sas_port_add_phy(struct hpsa_sas_phy * hpsa_sas_phy)9603 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9604 {
9605 	int rc;
9606 	struct hpsa_sas_port *hpsa_sas_port;
9607 	struct sas_phy *phy;
9608 	struct sas_identify *identify;
9609 
9610 	hpsa_sas_port = hpsa_sas_phy->parent_port;
9611 	phy = hpsa_sas_phy->phy;
9612 
9613 	identify = &phy->identify;
9614 	memset(identify, 0, sizeof(*identify));
9615 	identify->sas_address = hpsa_sas_port->sas_address;
9616 	identify->device_type = SAS_END_DEVICE;
9617 	identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9618 	identify->target_port_protocols = SAS_PROTOCOL_STP;
9619 	phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9620 	phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9621 	phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9622 	phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9623 	phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9624 
9625 	rc = sas_phy_add(hpsa_sas_phy->phy);
9626 	if (rc)
9627 		return rc;
9628 
9629 	sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9630 	list_add_tail(&hpsa_sas_phy->phy_list_entry,
9631 			&hpsa_sas_port->phy_list_head);
9632 	hpsa_sas_phy->added_to_port = true;
9633 
9634 	return 0;
9635 }
9636 
9637 static int
hpsa_sas_port_add_rphy(struct hpsa_sas_port * hpsa_sas_port,struct sas_rphy * rphy)9638 	hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9639 				struct sas_rphy *rphy)
9640 {
9641 	struct sas_identify *identify;
9642 
9643 	identify = &rphy->identify;
9644 	identify->sas_address = hpsa_sas_port->sas_address;
9645 	identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9646 	identify->target_port_protocols = SAS_PROTOCOL_STP;
9647 
9648 	return sas_rphy_add(rphy);
9649 }
9650 
9651 static struct hpsa_sas_port
hpsa_alloc_sas_port(struct hpsa_sas_node * hpsa_sas_node,u64 sas_address)9652 	*hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9653 				u64 sas_address)
9654 {
9655 	int rc;
9656 	struct hpsa_sas_port *hpsa_sas_port;
9657 	struct sas_port *port;
9658 
9659 	hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9660 	if (!hpsa_sas_port)
9661 		return NULL;
9662 
9663 	INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9664 	hpsa_sas_port->parent_node = hpsa_sas_node;
9665 
9666 	port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9667 	if (!port)
9668 		goto free_hpsa_port;
9669 
9670 	rc = sas_port_add(port);
9671 	if (rc)
9672 		goto free_sas_port;
9673 
9674 	hpsa_sas_port->port = port;
9675 	hpsa_sas_port->sas_address = sas_address;
9676 	list_add_tail(&hpsa_sas_port->port_list_entry,
9677 			&hpsa_sas_node->port_list_head);
9678 
9679 	return hpsa_sas_port;
9680 
9681 free_sas_port:
9682 	sas_port_free(port);
9683 free_hpsa_port:
9684 	kfree(hpsa_sas_port);
9685 
9686 	return NULL;
9687 }
9688 
hpsa_free_sas_port(struct hpsa_sas_port * hpsa_sas_port)9689 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9690 {
9691 	struct hpsa_sas_phy *hpsa_sas_phy;
9692 	struct hpsa_sas_phy *next;
9693 
9694 	list_for_each_entry_safe(hpsa_sas_phy, next,
9695 			&hpsa_sas_port->phy_list_head, phy_list_entry)
9696 		hpsa_free_sas_phy(hpsa_sas_phy);
9697 
9698 	sas_port_delete(hpsa_sas_port->port);
9699 	list_del(&hpsa_sas_port->port_list_entry);
9700 	kfree(hpsa_sas_port);
9701 }
9702 
hpsa_alloc_sas_node(struct device * parent_dev)9703 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9704 {
9705 	struct hpsa_sas_node *hpsa_sas_node;
9706 
9707 	hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9708 	if (hpsa_sas_node) {
9709 		hpsa_sas_node->parent_dev = parent_dev;
9710 		INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9711 	}
9712 
9713 	return hpsa_sas_node;
9714 }
9715 
hpsa_free_sas_node(struct hpsa_sas_node * hpsa_sas_node)9716 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9717 {
9718 	struct hpsa_sas_port *hpsa_sas_port;
9719 	struct hpsa_sas_port *next;
9720 
9721 	if (!hpsa_sas_node)
9722 		return;
9723 
9724 	list_for_each_entry_safe(hpsa_sas_port, next,
9725 			&hpsa_sas_node->port_list_head, port_list_entry)
9726 		hpsa_free_sas_port(hpsa_sas_port);
9727 
9728 	kfree(hpsa_sas_node);
9729 }
9730 
9731 static struct hpsa_scsi_dev_t
hpsa_find_device_by_sas_rphy(struct ctlr_info * h,struct sas_rphy * rphy)9732 	*hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9733 					struct sas_rphy *rphy)
9734 {
9735 	int i;
9736 	struct hpsa_scsi_dev_t *device;
9737 
9738 	for (i = 0; i < h->ndevices; i++) {
9739 		device = h->dev[i];
9740 		if (!device->sas_port)
9741 			continue;
9742 		if (device->sas_port->rphy == rphy)
9743 			return device;
9744 	}
9745 
9746 	return NULL;
9747 }
9748 
hpsa_add_sas_host(struct ctlr_info * h)9749 static int hpsa_add_sas_host(struct ctlr_info *h)
9750 {
9751 	int rc;
9752 	struct device *parent_dev;
9753 	struct hpsa_sas_node *hpsa_sas_node;
9754 	struct hpsa_sas_port *hpsa_sas_port;
9755 	struct hpsa_sas_phy *hpsa_sas_phy;
9756 
9757 	parent_dev = &h->scsi_host->shost_dev;
9758 
9759 	hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9760 	if (!hpsa_sas_node)
9761 		return -ENOMEM;
9762 
9763 	hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9764 	if (!hpsa_sas_port) {
9765 		rc = -ENODEV;
9766 		goto free_sas_node;
9767 	}
9768 
9769 	hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9770 	if (!hpsa_sas_phy) {
9771 		rc = -ENODEV;
9772 		goto free_sas_port;
9773 	}
9774 
9775 	rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9776 	if (rc)
9777 		goto free_sas_phy;
9778 
9779 	h->sas_host = hpsa_sas_node;
9780 
9781 	return 0;
9782 
9783 free_sas_phy:
9784 	sas_phy_free(hpsa_sas_phy->phy);
9785 	kfree(hpsa_sas_phy);
9786 free_sas_port:
9787 	hpsa_free_sas_port(hpsa_sas_port);
9788 free_sas_node:
9789 	hpsa_free_sas_node(hpsa_sas_node);
9790 
9791 	return rc;
9792 }
9793 
hpsa_delete_sas_host(struct ctlr_info * h)9794 static void hpsa_delete_sas_host(struct ctlr_info *h)
9795 {
9796 	hpsa_free_sas_node(h->sas_host);
9797 }
9798 
hpsa_add_sas_device(struct hpsa_sas_node * hpsa_sas_node,struct hpsa_scsi_dev_t * device)9799 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9800 				struct hpsa_scsi_dev_t *device)
9801 {
9802 	int rc;
9803 	struct hpsa_sas_port *hpsa_sas_port;
9804 	struct sas_rphy *rphy;
9805 
9806 	hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9807 	if (!hpsa_sas_port)
9808 		return -ENOMEM;
9809 
9810 	rphy = sas_end_device_alloc(hpsa_sas_port->port);
9811 	if (!rphy) {
9812 		rc = -ENODEV;
9813 		goto free_sas_port;
9814 	}
9815 
9816 	hpsa_sas_port->rphy = rphy;
9817 	device->sas_port = hpsa_sas_port;
9818 
9819 	rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9820 	if (rc)
9821 		goto free_sas_rphy;
9822 
9823 	return 0;
9824 
9825 free_sas_rphy:
9826 	sas_rphy_free(rphy);
9827 free_sas_port:
9828 	hpsa_free_sas_port(hpsa_sas_port);
9829 	device->sas_port = NULL;
9830 
9831 	return rc;
9832 }
9833 
hpsa_remove_sas_device(struct hpsa_scsi_dev_t * device)9834 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9835 {
9836 	if (device->sas_port) {
9837 		hpsa_free_sas_port(device->sas_port);
9838 		device->sas_port = NULL;
9839 	}
9840 }
9841 
9842 static int
hpsa_sas_get_linkerrors(struct sas_phy * phy)9843 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9844 {
9845 	return 0;
9846 }
9847 
9848 static int
hpsa_sas_get_enclosure_identifier(struct sas_rphy * rphy,u64 * identifier)9849 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9850 {
9851 	struct Scsi_Host *shost = phy_to_shost(rphy);
9852 	struct ctlr_info *h;
9853 	struct hpsa_scsi_dev_t *sd;
9854 
9855 	if (!shost)
9856 		return -ENXIO;
9857 
9858 	h = shost_to_hba(shost);
9859 
9860 	if (!h)
9861 		return -ENXIO;
9862 
9863 	sd = hpsa_find_device_by_sas_rphy(h, rphy);
9864 	if (!sd)
9865 		return -ENXIO;
9866 
9867 	*identifier = sd->eli;
9868 
9869 	return 0;
9870 }
9871 
9872 static int
hpsa_sas_get_bay_identifier(struct sas_rphy * rphy)9873 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9874 {
9875 	return -ENXIO;
9876 }
9877 
9878 static int
hpsa_sas_phy_reset(struct sas_phy * phy,int hard_reset)9879 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9880 {
9881 	return 0;
9882 }
9883 
9884 static int
hpsa_sas_phy_enable(struct sas_phy * phy,int enable)9885 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9886 {
9887 	return 0;
9888 }
9889 
9890 static int
hpsa_sas_phy_setup(struct sas_phy * phy)9891 hpsa_sas_phy_setup(struct sas_phy *phy)
9892 {
9893 	return 0;
9894 }
9895 
9896 static void
hpsa_sas_phy_release(struct sas_phy * phy)9897 hpsa_sas_phy_release(struct sas_phy *phy)
9898 {
9899 }
9900 
9901 static int
hpsa_sas_phy_speed(struct sas_phy * phy,struct sas_phy_linkrates * rates)9902 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9903 {
9904 	return -EINVAL;
9905 }
9906 
9907 static struct sas_function_template hpsa_sas_transport_functions = {
9908 	.get_linkerrors = hpsa_sas_get_linkerrors,
9909 	.get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9910 	.get_bay_identifier = hpsa_sas_get_bay_identifier,
9911 	.phy_reset = hpsa_sas_phy_reset,
9912 	.phy_enable = hpsa_sas_phy_enable,
9913 	.phy_setup = hpsa_sas_phy_setup,
9914 	.phy_release = hpsa_sas_phy_release,
9915 	.set_phy_speed = hpsa_sas_phy_speed,
9916 };
9917 
9918 /*
9919  *  This is it.  Register the PCI driver information for the cards we control
9920  *  the OS will call our registered routines when it finds one of our cards.
9921  */
hpsa_init(void)9922 static int __init hpsa_init(void)
9923 {
9924 	int rc;
9925 
9926 	hpsa_sas_transport_template =
9927 		sas_attach_transport(&hpsa_sas_transport_functions);
9928 	if (!hpsa_sas_transport_template)
9929 		return -ENODEV;
9930 
9931 	rc = pci_register_driver(&hpsa_pci_driver);
9932 
9933 	if (rc)
9934 		sas_release_transport(hpsa_sas_transport_template);
9935 
9936 	return rc;
9937 }
9938 
hpsa_cleanup(void)9939 static void __exit hpsa_cleanup(void)
9940 {
9941 	pci_unregister_driver(&hpsa_pci_driver);
9942 	sas_release_transport(hpsa_sas_transport_template);
9943 }
9944 
verify_offsets(void)9945 static void __attribute__((unused)) verify_offsets(void)
9946 {
9947 #define VERIFY_OFFSET(member, offset) \
9948 	BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9949 
9950 	VERIFY_OFFSET(structure_size, 0);
9951 	VERIFY_OFFSET(volume_blk_size, 4);
9952 	VERIFY_OFFSET(volume_blk_cnt, 8);
9953 	VERIFY_OFFSET(phys_blk_shift, 16);
9954 	VERIFY_OFFSET(parity_rotation_shift, 17);
9955 	VERIFY_OFFSET(strip_size, 18);
9956 	VERIFY_OFFSET(disk_starting_blk, 20);
9957 	VERIFY_OFFSET(disk_blk_cnt, 28);
9958 	VERIFY_OFFSET(data_disks_per_row, 36);
9959 	VERIFY_OFFSET(metadata_disks_per_row, 38);
9960 	VERIFY_OFFSET(row_cnt, 40);
9961 	VERIFY_OFFSET(layout_map_count, 42);
9962 	VERIFY_OFFSET(flags, 44);
9963 	VERIFY_OFFSET(dekindex, 46);
9964 	/* VERIFY_OFFSET(reserved, 48 */
9965 	VERIFY_OFFSET(data, 64);
9966 
9967 #undef VERIFY_OFFSET
9968 
9969 #define VERIFY_OFFSET(member, offset) \
9970 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9971 
9972 	VERIFY_OFFSET(IU_type, 0);
9973 	VERIFY_OFFSET(direction, 1);
9974 	VERIFY_OFFSET(reply_queue, 2);
9975 	/* VERIFY_OFFSET(reserved1, 3);  */
9976 	VERIFY_OFFSET(scsi_nexus, 4);
9977 	VERIFY_OFFSET(Tag, 8);
9978 	VERIFY_OFFSET(cdb, 16);
9979 	VERIFY_OFFSET(cciss_lun, 32);
9980 	VERIFY_OFFSET(data_len, 40);
9981 	VERIFY_OFFSET(cmd_priority_task_attr, 44);
9982 	VERIFY_OFFSET(sg_count, 45);
9983 	/* VERIFY_OFFSET(reserved3 */
9984 	VERIFY_OFFSET(err_ptr, 48);
9985 	VERIFY_OFFSET(err_len, 56);
9986 	/* VERIFY_OFFSET(reserved4  */
9987 	VERIFY_OFFSET(sg, 64);
9988 
9989 #undef VERIFY_OFFSET
9990 
9991 #define VERIFY_OFFSET(member, offset) \
9992 	BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9993 
9994 	VERIFY_OFFSET(dev_handle, 0x00);
9995 	VERIFY_OFFSET(reserved1, 0x02);
9996 	VERIFY_OFFSET(function, 0x03);
9997 	VERIFY_OFFSET(reserved2, 0x04);
9998 	VERIFY_OFFSET(err_info, 0x0C);
9999 	VERIFY_OFFSET(reserved3, 0x10);
10000 	VERIFY_OFFSET(err_info_len, 0x12);
10001 	VERIFY_OFFSET(reserved4, 0x13);
10002 	VERIFY_OFFSET(sgl_offset, 0x14);
10003 	VERIFY_OFFSET(reserved5, 0x15);
10004 	VERIFY_OFFSET(transfer_len, 0x1C);
10005 	VERIFY_OFFSET(reserved6, 0x20);
10006 	VERIFY_OFFSET(io_flags, 0x24);
10007 	VERIFY_OFFSET(reserved7, 0x26);
10008 	VERIFY_OFFSET(LUN, 0x34);
10009 	VERIFY_OFFSET(control, 0x3C);
10010 	VERIFY_OFFSET(CDB, 0x40);
10011 	VERIFY_OFFSET(reserved8, 0x50);
10012 	VERIFY_OFFSET(host_context_flags, 0x60);
10013 	VERIFY_OFFSET(timeout_sec, 0x62);
10014 	VERIFY_OFFSET(ReplyQueue, 0x64);
10015 	VERIFY_OFFSET(reserved9, 0x65);
10016 	VERIFY_OFFSET(tag, 0x68);
10017 	VERIFY_OFFSET(host_addr, 0x70);
10018 	VERIFY_OFFSET(CISS_LUN, 0x78);
10019 	VERIFY_OFFSET(SG, 0x78 + 8);
10020 #undef VERIFY_OFFSET
10021 }
10022 
10023 module_init(hpsa_init);
10024 module_exit(hpsa_cleanup);
10025