1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/mount.h> 3 #include <linux/pseudo_fs.h> 4 #include <linux/file.h> 5 #include <linux/fs.h> 6 #include <linux/proc_fs.h> 7 #include <linux/proc_ns.h> 8 #include <linux/magic.h> 9 #include <linux/ktime.h> 10 #include <linux/seq_file.h> 11 #include <linux/pid_namespace.h> 12 #include <linux/user_namespace.h> 13 #include <linux/nsfs.h> 14 #include <linux/uaccess.h> 15 #include <linux/mnt_namespace.h> 16 #include <linux/ipc_namespace.h> 17 #include <linux/time_namespace.h> 18 #include <linux/utsname.h> 19 #include <linux/exportfs.h> 20 #include <linux/nstree.h> 21 #include <net/net_namespace.h> 22 23 #include "mount.h" 24 #include "internal.h" 25 26 static struct vfsmount *nsfs_mnt; 27 28 static struct path nsfs_root_path = {}; 29 30 void nsfs_get_root(struct path *path) 31 { 32 *path = nsfs_root_path; 33 path_get(path); 34 } 35 36 static long ns_ioctl(struct file *filp, unsigned int ioctl, 37 unsigned long arg); 38 static const struct file_operations ns_file_operations = { 39 .unlocked_ioctl = ns_ioctl, 40 .compat_ioctl = compat_ptr_ioctl, 41 }; 42 43 static char *ns_dname(struct dentry *dentry, char *buffer, int buflen) 44 { 45 struct inode *inode = d_inode(dentry); 46 struct ns_common *ns = inode->i_private; 47 const struct proc_ns_operations *ns_ops = ns->ops; 48 49 return dynamic_dname(buffer, buflen, "%s:[%lu]", 50 ns_ops->name, inode->i_ino); 51 } 52 53 const struct dentry_operations ns_dentry_operations = { 54 .d_dname = ns_dname, 55 .d_prune = stashed_dentry_prune, 56 }; 57 58 static void nsfs_evict(struct inode *inode) 59 { 60 struct ns_common *ns = inode->i_private; 61 62 __ns_ref_active_put(ns); 63 clear_inode(inode); 64 ns->ops->put(ns); 65 } 66 67 int ns_get_path_cb(struct path *path, ns_get_path_helper_t *ns_get_cb, 68 void *private_data) 69 { 70 struct ns_common *ns; 71 72 ns = ns_get_cb(private_data); 73 if (!ns) 74 return -ENOENT; 75 76 return path_from_stashed(&ns->stashed, nsfs_mnt, ns, path); 77 } 78 79 struct ns_get_path_task_args { 80 const struct proc_ns_operations *ns_ops; 81 struct task_struct *task; 82 }; 83 84 static struct ns_common *ns_get_path_task(void *private_data) 85 { 86 struct ns_get_path_task_args *args = private_data; 87 88 return args->ns_ops->get(args->task); 89 } 90 91 int ns_get_path(struct path *path, struct task_struct *task, 92 const struct proc_ns_operations *ns_ops) 93 { 94 struct ns_get_path_task_args args = { 95 .ns_ops = ns_ops, 96 .task = task, 97 }; 98 99 return ns_get_path_cb(path, ns_get_path_task, &args); 100 } 101 102 struct file *open_namespace_file(struct ns_common *ns) 103 { 104 struct path path __free(path_put) = {}; 105 int err; 106 107 /* call first to consume reference */ 108 err = path_from_stashed(&ns->stashed, nsfs_mnt, ns, &path); 109 if (err < 0) 110 return ERR_PTR(err); 111 112 return dentry_open(&path, O_RDONLY, current_cred()); 113 } 114 115 /** 116 * open_namespace - open a namespace 117 * @ns: the namespace to open 118 * 119 * This will consume a reference to @ns indendent of success or failure. 120 * 121 * Return: A file descriptor on success or a negative error code on failure. 122 */ 123 int open_namespace(struct ns_common *ns) 124 { 125 struct path path __free(path_put) = {}; 126 int err; 127 128 /* call first to consume reference */ 129 err = path_from_stashed(&ns->stashed, nsfs_mnt, ns, &path); 130 if (err < 0) 131 return err; 132 133 return FD_ADD(O_CLOEXEC, dentry_open(&path, O_RDONLY, current_cred())); 134 } 135 136 int open_related_ns(struct ns_common *ns, 137 struct ns_common *(*get_ns)(struct ns_common *ns)) 138 { 139 struct ns_common *relative; 140 141 relative = get_ns(ns); 142 if (IS_ERR(relative)) 143 return PTR_ERR(relative); 144 145 return open_namespace(relative); 146 } 147 EXPORT_SYMBOL_GPL(open_related_ns); 148 149 static int copy_ns_info_to_user(const struct mnt_namespace *mnt_ns, 150 struct mnt_ns_info __user *uinfo, size_t usize, 151 struct mnt_ns_info *kinfo) 152 { 153 /* 154 * If userspace and the kernel have the same struct size it can just 155 * be copied. If userspace provides an older struct, only the bits that 156 * userspace knows about will be copied. If userspace provides a new 157 * struct, only the bits that the kernel knows aobut will be copied and 158 * the size value will be set to the size the kernel knows about. 159 */ 160 kinfo->size = min(usize, sizeof(*kinfo)); 161 kinfo->mnt_ns_id = mnt_ns->ns.ns_id; 162 kinfo->nr_mounts = READ_ONCE(mnt_ns->nr_mounts); 163 /* Subtract the root mount of the mount namespace. */ 164 if (kinfo->nr_mounts) 165 kinfo->nr_mounts--; 166 167 if (copy_to_user(uinfo, kinfo, kinfo->size)) 168 return -EFAULT; 169 170 return 0; 171 } 172 173 static bool nsfs_ioctl_valid(unsigned int cmd) 174 { 175 switch (cmd) { 176 case NS_GET_USERNS: 177 case NS_GET_PARENT: 178 case NS_GET_NSTYPE: 179 case NS_GET_OWNER_UID: 180 case NS_GET_MNTNS_ID: 181 case NS_GET_PID_FROM_PIDNS: 182 case NS_GET_TGID_FROM_PIDNS: 183 case NS_GET_PID_IN_PIDNS: 184 case NS_GET_TGID_IN_PIDNS: 185 case NS_GET_ID: 186 return true; 187 } 188 189 /* Extensible ioctls require some extra handling. */ 190 switch (_IOC_NR(cmd)) { 191 case _IOC_NR(NS_MNT_GET_INFO): 192 return extensible_ioctl_valid(cmd, NS_MNT_GET_INFO, MNT_NS_INFO_SIZE_VER0); 193 case _IOC_NR(NS_MNT_GET_NEXT): 194 return extensible_ioctl_valid(cmd, NS_MNT_GET_NEXT, MNT_NS_INFO_SIZE_VER0); 195 case _IOC_NR(NS_MNT_GET_PREV): 196 return extensible_ioctl_valid(cmd, NS_MNT_GET_PREV, MNT_NS_INFO_SIZE_VER0); 197 } 198 199 return false; 200 } 201 202 static long ns_ioctl(struct file *filp, unsigned int ioctl, 203 unsigned long arg) 204 { 205 struct user_namespace *user_ns; 206 struct pid_namespace *pid_ns; 207 struct task_struct *tsk; 208 struct ns_common *ns; 209 struct mnt_namespace *mnt_ns; 210 bool previous = false; 211 uid_t __user *argp; 212 uid_t uid; 213 int ret; 214 215 if (!nsfs_ioctl_valid(ioctl)) 216 return -ENOIOCTLCMD; 217 218 ns = get_proc_ns(file_inode(filp)); 219 switch (ioctl) { 220 case NS_GET_USERNS: 221 return open_related_ns(ns, ns_get_owner); 222 case NS_GET_PARENT: 223 if (!ns->ops->get_parent) 224 return -EINVAL; 225 return open_related_ns(ns, ns->ops->get_parent); 226 case NS_GET_NSTYPE: 227 return ns->ns_type; 228 case NS_GET_OWNER_UID: 229 if (ns->ns_type != CLONE_NEWUSER) 230 return -EINVAL; 231 user_ns = container_of(ns, struct user_namespace, ns); 232 argp = (uid_t __user *) arg; 233 uid = from_kuid_munged(current_user_ns(), user_ns->owner); 234 return put_user(uid, argp); 235 case NS_GET_PID_FROM_PIDNS: 236 fallthrough; 237 case NS_GET_TGID_FROM_PIDNS: 238 fallthrough; 239 case NS_GET_PID_IN_PIDNS: 240 fallthrough; 241 case NS_GET_TGID_IN_PIDNS: { 242 if (ns->ns_type != CLONE_NEWPID) 243 return -EINVAL; 244 245 ret = -ESRCH; 246 pid_ns = container_of(ns, struct pid_namespace, ns); 247 248 guard(rcu)(); 249 250 if (ioctl == NS_GET_PID_IN_PIDNS || 251 ioctl == NS_GET_TGID_IN_PIDNS) 252 tsk = find_task_by_vpid(arg); 253 else 254 tsk = find_task_by_pid_ns(arg, pid_ns); 255 if (!tsk) 256 break; 257 258 switch (ioctl) { 259 case NS_GET_PID_FROM_PIDNS: 260 ret = task_pid_vnr(tsk); 261 break; 262 case NS_GET_TGID_FROM_PIDNS: 263 ret = task_tgid_vnr(tsk); 264 break; 265 case NS_GET_PID_IN_PIDNS: 266 ret = task_pid_nr_ns(tsk, pid_ns); 267 break; 268 case NS_GET_TGID_IN_PIDNS: 269 ret = task_tgid_nr_ns(tsk, pid_ns); 270 break; 271 default: 272 ret = 0; 273 break; 274 } 275 276 if (!ret) 277 ret = -ESRCH; 278 return ret; 279 } 280 case NS_GET_MNTNS_ID: 281 if (ns->ns_type != CLONE_NEWNS) 282 return -EINVAL; 283 fallthrough; 284 case NS_GET_ID: { 285 __u64 __user *idp; 286 __u64 id; 287 288 idp = (__u64 __user *)arg; 289 id = ns->ns_id; 290 return put_user(id, idp); 291 } 292 } 293 294 /* extensible ioctls */ 295 switch (_IOC_NR(ioctl)) { 296 case _IOC_NR(NS_MNT_GET_INFO): { 297 struct mnt_ns_info kinfo = {}; 298 struct mnt_ns_info __user *uinfo = (struct mnt_ns_info __user *)arg; 299 size_t usize = _IOC_SIZE(ioctl); 300 301 if (ns->ns_type != CLONE_NEWNS) 302 return -EINVAL; 303 304 if (!uinfo) 305 return -EINVAL; 306 307 if (usize < MNT_NS_INFO_SIZE_VER0) 308 return -EINVAL; 309 310 return copy_ns_info_to_user(to_mnt_ns(ns), uinfo, usize, &kinfo); 311 } 312 case _IOC_NR(NS_MNT_GET_PREV): 313 previous = true; 314 fallthrough; 315 case _IOC_NR(NS_MNT_GET_NEXT): { 316 struct mnt_ns_info kinfo = {}; 317 struct mnt_ns_info __user *uinfo = (struct mnt_ns_info __user *)arg; 318 struct path path __free(path_put) = {}; 319 size_t usize = _IOC_SIZE(ioctl); 320 321 if (ns->ns_type != CLONE_NEWNS) 322 return -EINVAL; 323 324 if (usize < MNT_NS_INFO_SIZE_VER0) 325 return -EINVAL; 326 327 mnt_ns = get_sequential_mnt_ns(to_mnt_ns(ns), previous); 328 if (IS_ERR(mnt_ns)) 329 return PTR_ERR(mnt_ns); 330 331 ns = to_ns_common(mnt_ns); 332 /* Transfer ownership of @mnt_ns reference to @path. */ 333 ret = path_from_stashed(&ns->stashed, nsfs_mnt, ns, &path); 334 if (ret) 335 return ret; 336 337 FD_PREPARE(fdf, O_CLOEXEC, dentry_open(&path, O_RDONLY, current_cred())); 338 if (fdf.err) 339 return fdf.err; 340 /* 341 * If @uinfo is passed return all information about the 342 * mount namespace as well. 343 */ 344 ret = copy_ns_info_to_user(to_mnt_ns(ns), uinfo, usize, &kinfo); 345 if (ret) 346 return ret; 347 ret = fd_publish(fdf); 348 break; 349 } 350 default: 351 ret = -ENOTTY; 352 } 353 354 return ret; 355 } 356 357 int ns_get_name(char *buf, size_t size, struct task_struct *task, 358 const struct proc_ns_operations *ns_ops) 359 { 360 struct ns_common *ns; 361 int res = -ENOENT; 362 const char *name; 363 ns = ns_ops->get(task); 364 if (ns) { 365 name = ns_ops->real_ns_name ? : ns_ops->name; 366 res = snprintf(buf, size, "%s:[%u]", name, ns->inum); 367 ns_ops->put(ns); 368 } 369 return res; 370 } 371 372 bool proc_ns_file(const struct file *file) 373 { 374 return file->f_op == &ns_file_operations; 375 } 376 377 /** 378 * ns_match() - Returns true if current namespace matches dev/ino provided. 379 * @ns: current namespace 380 * @dev: dev_t from nsfs that will be matched against current nsfs 381 * @ino: ino_t from nsfs that will be matched against current nsfs 382 * 383 * Return: true if dev and ino matches the current nsfs. 384 */ 385 bool ns_match(const struct ns_common *ns, dev_t dev, ino_t ino) 386 { 387 return (ns->inum == ino) && (nsfs_mnt->mnt_sb->s_dev == dev); 388 } 389 390 391 static int nsfs_show_path(struct seq_file *seq, struct dentry *dentry) 392 { 393 struct inode *inode = d_inode(dentry); 394 const struct ns_common *ns = inode->i_private; 395 const struct proc_ns_operations *ns_ops = ns->ops; 396 397 seq_printf(seq, "%s:[%lu]", ns_ops->name, inode->i_ino); 398 return 0; 399 } 400 401 static const struct super_operations nsfs_ops = { 402 .statfs = simple_statfs, 403 .evict_inode = nsfs_evict, 404 .show_path = nsfs_show_path, 405 .drop_inode = inode_just_drop, 406 }; 407 408 static int nsfs_init_inode(struct inode *inode, void *data) 409 { 410 struct ns_common *ns = data; 411 412 inode->i_private = data; 413 inode->i_mode |= S_IRUGO; 414 inode->i_fop = &ns_file_operations; 415 inode->i_ino = ns->inum; 416 417 /* 418 * Bring the namespace subtree back to life if we have to. This 419 * can happen when e.g., all processes using a network namespace 420 * and all namespace files or namespace file bind-mounts have 421 * died but there are still sockets pinning it. The SIOCGSKNS 422 * ioctl on such a socket will resurrect the relevant namespace 423 * subtree. 424 */ 425 __ns_ref_active_get(ns); 426 return 0; 427 } 428 429 static void nsfs_put_data(void *data) 430 { 431 struct ns_common *ns = data; 432 ns->ops->put(ns); 433 } 434 435 static const struct stashed_operations nsfs_stashed_ops = { 436 .init_inode = nsfs_init_inode, 437 .put_data = nsfs_put_data, 438 }; 439 440 #define NSFS_FID_SIZE_U32_VER0 (NSFS_FILE_HANDLE_SIZE_VER0 / sizeof(u32)) 441 #define NSFS_FID_SIZE_U32_LATEST (NSFS_FILE_HANDLE_SIZE_LATEST / sizeof(u32)) 442 443 static int nsfs_encode_fh(struct inode *inode, u32 *fh, int *max_len, 444 struct inode *parent) 445 { 446 struct nsfs_file_handle *fid = (struct nsfs_file_handle *)fh; 447 struct ns_common *ns = inode->i_private; 448 int len = *max_len; 449 450 if (parent) 451 return FILEID_INVALID; 452 453 if (len < NSFS_FID_SIZE_U32_VER0) { 454 *max_len = NSFS_FID_SIZE_U32_LATEST; 455 return FILEID_INVALID; 456 } else if (len > NSFS_FID_SIZE_U32_LATEST) { 457 *max_len = NSFS_FID_SIZE_U32_LATEST; 458 } 459 460 fid->ns_id = ns->ns_id; 461 fid->ns_type = ns->ns_type; 462 fid->ns_inum = inode->i_ino; 463 return FILEID_NSFS; 464 } 465 466 bool is_current_namespace(struct ns_common *ns) 467 { 468 switch (ns->ns_type) { 469 #ifdef CONFIG_CGROUPS 470 case CLONE_NEWCGROUP: 471 return current_in_namespace(to_cg_ns(ns)); 472 #endif 473 #ifdef CONFIG_IPC_NS 474 case CLONE_NEWIPC: 475 return current_in_namespace(to_ipc_ns(ns)); 476 #endif 477 case CLONE_NEWNS: 478 return current_in_namespace(to_mnt_ns(ns)); 479 #ifdef CONFIG_NET_NS 480 case CLONE_NEWNET: 481 return current_in_namespace(to_net_ns(ns)); 482 #endif 483 #ifdef CONFIG_PID_NS 484 case CLONE_NEWPID: 485 return current_in_namespace(to_pid_ns(ns)); 486 #endif 487 #ifdef CONFIG_TIME_NS 488 case CLONE_NEWTIME: 489 return current_in_namespace(to_time_ns(ns)); 490 #endif 491 #ifdef CONFIG_USER_NS 492 case CLONE_NEWUSER: 493 return current_in_namespace(to_user_ns(ns)); 494 #endif 495 #ifdef CONFIG_UTS_NS 496 case CLONE_NEWUTS: 497 return current_in_namespace(to_uts_ns(ns)); 498 #endif 499 default: 500 VFS_WARN_ON_ONCE(true); 501 return false; 502 } 503 } 504 505 static struct dentry *nsfs_fh_to_dentry(struct super_block *sb, struct fid *fh, 506 int fh_len, int fh_type) 507 { 508 struct path path __free(path_put) = {}; 509 struct nsfs_file_handle *fid = (struct nsfs_file_handle *)fh; 510 struct user_namespace *owning_ns = NULL; 511 struct ns_common *ns; 512 int ret; 513 514 if (fh_len < NSFS_FID_SIZE_U32_VER0) 515 return NULL; 516 517 /* Check that any trailing bytes are zero. */ 518 if ((fh_len > NSFS_FID_SIZE_U32_LATEST) && 519 memchr_inv((void *)fid + NSFS_FID_SIZE_U32_LATEST, 0, 520 fh_len - NSFS_FID_SIZE_U32_LATEST)) 521 return NULL; 522 523 switch (fh_type) { 524 case FILEID_NSFS: 525 break; 526 default: 527 return NULL; 528 } 529 530 if (!fid->ns_id) 531 return NULL; 532 /* Either both are set or both are unset. */ 533 if (!fid->ns_inum != !fid->ns_type) 534 return NULL; 535 536 scoped_guard(rcu) { 537 ns = ns_tree_lookup_rcu(fid->ns_id, fid->ns_type); 538 if (!ns) 539 return NULL; 540 541 VFS_WARN_ON_ONCE(ns->ns_id != fid->ns_id); 542 543 if (fid->ns_inum && (fid->ns_inum != ns->inum)) 544 return NULL; 545 if (fid->ns_type && (fid->ns_type != ns->ns_type)) 546 return NULL; 547 548 /* 549 * This is racy because we're not actually taking an 550 * active reference. IOW, it could happen that the 551 * namespace becomes inactive after this check. 552 * We don't care because nsfs_init_inode() will just 553 * resurrect the relevant namespace tree for us. If it 554 * has been active here we just allow it's resurrection. 555 * We could try to take an active reference here and 556 * then drop it again. But really, why bother. 557 */ 558 if (!ns_get_unless_inactive(ns)) 559 return NULL; 560 } 561 562 switch (ns->ns_type) { 563 #ifdef CONFIG_CGROUPS 564 case CLONE_NEWCGROUP: 565 if (!current_in_namespace(to_cg_ns(ns))) 566 owning_ns = to_cg_ns(ns)->user_ns; 567 break; 568 #endif 569 #ifdef CONFIG_IPC_NS 570 case CLONE_NEWIPC: 571 if (!current_in_namespace(to_ipc_ns(ns))) 572 owning_ns = to_ipc_ns(ns)->user_ns; 573 break; 574 #endif 575 case CLONE_NEWNS: 576 if (!current_in_namespace(to_mnt_ns(ns))) 577 owning_ns = to_mnt_ns(ns)->user_ns; 578 break; 579 #ifdef CONFIG_NET_NS 580 case CLONE_NEWNET: 581 if (!current_in_namespace(to_net_ns(ns))) 582 owning_ns = to_net_ns(ns)->user_ns; 583 break; 584 #endif 585 #ifdef CONFIG_PID_NS 586 case CLONE_NEWPID: 587 if (!current_in_namespace(to_pid_ns(ns))) { 588 owning_ns = to_pid_ns(ns)->user_ns; 589 } else if (!READ_ONCE(to_pid_ns(ns)->child_reaper)) { 590 ns->ops->put(ns); 591 return ERR_PTR(-EPERM); 592 } 593 break; 594 #endif 595 #ifdef CONFIG_TIME_NS 596 case CLONE_NEWTIME: 597 if (!current_in_namespace(to_time_ns(ns))) 598 owning_ns = to_time_ns(ns)->user_ns; 599 break; 600 #endif 601 #ifdef CONFIG_USER_NS 602 case CLONE_NEWUSER: 603 if (!current_in_namespace(to_user_ns(ns))) 604 owning_ns = to_user_ns(ns); 605 break; 606 #endif 607 #ifdef CONFIG_UTS_NS 608 case CLONE_NEWUTS: 609 if (!current_in_namespace(to_uts_ns(ns))) 610 owning_ns = to_uts_ns(ns)->user_ns; 611 break; 612 #endif 613 default: 614 return ERR_PTR(-EOPNOTSUPP); 615 } 616 617 if (owning_ns && !ns_capable(owning_ns, CAP_SYS_ADMIN)) { 618 ns->ops->put(ns); 619 return ERR_PTR(-EPERM); 620 } 621 622 /* path_from_stashed() unconditionally consumes the reference. */ 623 ret = path_from_stashed(&ns->stashed, nsfs_mnt, ns, &path); 624 if (ret) 625 return ERR_PTR(ret); 626 627 return no_free_ptr(path.dentry); 628 } 629 630 static int nsfs_export_permission(struct handle_to_path_ctx *ctx, 631 unsigned int oflags) 632 { 633 /* nsfs_fh_to_dentry() performs all permission checks. */ 634 return 0; 635 } 636 637 static struct file *nsfs_export_open(const struct path *path, unsigned int oflags) 638 { 639 return file_open_root(path, "", oflags, 0); 640 } 641 642 static const struct export_operations nsfs_export_operations = { 643 .encode_fh = nsfs_encode_fh, 644 .fh_to_dentry = nsfs_fh_to_dentry, 645 .open = nsfs_export_open, 646 .permission = nsfs_export_permission, 647 }; 648 649 static int nsfs_init_fs_context(struct fs_context *fc) 650 { 651 struct pseudo_fs_context *ctx = init_pseudo(fc, NSFS_MAGIC); 652 if (!ctx) 653 return -ENOMEM; 654 fc->s_iflags |= SB_I_NOEXEC | SB_I_NODEV; 655 ctx->s_d_flags |= DCACHE_DONTCACHE; 656 ctx->ops = &nsfs_ops; 657 ctx->eops = &nsfs_export_operations; 658 ctx->dops = &ns_dentry_operations; 659 fc->s_fs_info = (void *)&nsfs_stashed_ops; 660 return 0; 661 } 662 663 static struct file_system_type nsfs = { 664 .name = "nsfs", 665 .init_fs_context = nsfs_init_fs_context, 666 .kill_sb = kill_anon_super, 667 }; 668 669 void __init nsfs_init(void) 670 { 671 nsfs_mnt = kern_mount(&nsfs); 672 if (IS_ERR(nsfs_mnt)) 673 panic("can't set nsfs up\n"); 674 nsfs_mnt->mnt_sb->s_flags &= ~SB_NOUSER; 675 nsfs_root_path.mnt = nsfs_mnt; 676 nsfs_root_path.dentry = nsfs_mnt->mnt_root; 677 } 678 679 void nsproxy_ns_active_get(struct nsproxy *ns) 680 { 681 ns_ref_active_get(ns->mnt_ns); 682 ns_ref_active_get(ns->uts_ns); 683 ns_ref_active_get(ns->ipc_ns); 684 ns_ref_active_get(ns->pid_ns_for_children); 685 ns_ref_active_get(ns->cgroup_ns); 686 ns_ref_active_get(ns->net_ns); 687 ns_ref_active_get(ns->time_ns); 688 ns_ref_active_get(ns->time_ns_for_children); 689 } 690 691 void nsproxy_ns_active_put(struct nsproxy *ns) 692 { 693 ns_ref_active_put(ns->mnt_ns); 694 ns_ref_active_put(ns->uts_ns); 695 ns_ref_active_put(ns->ipc_ns); 696 ns_ref_active_put(ns->pid_ns_for_children); 697 ns_ref_active_put(ns->cgroup_ns); 698 ns_ref_active_put(ns->net_ns); 699 ns_ref_active_put(ns->time_ns); 700 ns_ref_active_put(ns->time_ns_for_children); 701 } 702