xref: /linux/net/sunrpc/svc_xprt.c (revision f34b580514c9816a317764e6b138ec66a4adab25)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/net/sunrpc/svc_xprt.c
4  *
5  * Author: Tom Tucker <tom@opengridcomputing.com>
6  */
7 
8 #include <linux/sched.h>
9 #include <linux/sched/mm.h>
10 #include <linux/errno.h>
11 #include <linux/freezer.h>
12 #include <linux/slab.h>
13 #include <net/sock.h>
14 #include <linux/sunrpc/addr.h>
15 #include <linux/sunrpc/stats.h>
16 #include <linux/sunrpc/svc_xprt.h>
17 #include <linux/sunrpc/svcsock.h>
18 #include <linux/sunrpc/xprt.h>
19 #include <linux/sunrpc/bc_xprt.h>
20 #include <linux/module.h>
21 #include <linux/netdevice.h>
22 #include <trace/events/sunrpc.h>
23 
24 #define RPCDBG_FACILITY	RPCDBG_SVCXPRT
25 
26 static unsigned int svc_rpc_per_connection_limit __read_mostly;
27 module_param(svc_rpc_per_connection_limit, uint, 0644);
28 
29 
30 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
31 static int svc_deferred_recv(struct svc_rqst *rqstp);
32 static struct cache_deferred_req *svc_defer(struct cache_req *req);
33 static void svc_age_temp_xprts(struct timer_list *t);
34 static void svc_delete_xprt(struct svc_xprt *xprt);
35 
36 /* apparently the "standard" is that clients close
37  * idle connections after 5 minutes, servers after
38  * 6 minutes
39  *   http://nfsv4bat.org/Documents/ConnectAThon/1996/nfstcp.pdf
40  */
41 static int svc_conn_age_period = 6*60;
42 
43 /* List of registered transport classes */
44 static DEFINE_SPINLOCK(svc_xprt_class_lock);
45 static LIST_HEAD(svc_xprt_class_list);
46 
47 /* SMP locking strategy:
48  *
49  *	svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
50  *	when both need to be taken (rare), svc_serv->sv_lock is first.
51  *	The "service mutex" protects svc_serv->sv_nrthread.
52  *	svc_sock->sk_lock protects the svc_sock->sk_deferred list
53  *             and the ->sk_info_authunix cache.
54  *
55  *	The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
56  *	enqueued multiply. During normal transport processing this bit
57  *	is set by svc_xprt_enqueue and cleared by svc_xprt_received.
58  *	Providers should not manipulate this bit directly.
59  *
60  *	Some flags can be set to certain values at any time
61  *	providing that certain rules are followed:
62  *
63  *	XPT_CONN, XPT_DATA:
64  *		- Can be set or cleared at any time.
65  *		- After a set, svc_xprt_enqueue must be called to enqueue
66  *		  the transport for processing.
67  *		- After a clear, the transport must be read/accepted.
68  *		  If this succeeds, it must be set again.
69  *	XPT_CLOSE:
70  *		- Can set at any time. It is never cleared.
71  *      XPT_DEAD:
72  *		- Can only be set while XPT_BUSY is held which ensures
73  *		  that no other thread will be using the transport or will
74  *		  try to set XPT_DEAD.
75  */
76 
77 /**
78  * svc_reg_xprt_class - Register a server-side RPC transport class
79  * @xcl: New transport class to be registered
80  *
81  * Returns zero on success; otherwise a negative errno is returned.
82  */
83 int svc_reg_xprt_class(struct svc_xprt_class *xcl)
84 {
85 	struct svc_xprt_class *cl;
86 	int res = -EEXIST;
87 
88 	INIT_LIST_HEAD(&xcl->xcl_list);
89 	spin_lock(&svc_xprt_class_lock);
90 	/* Make sure there isn't already a class with the same name */
91 	list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
92 		if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
93 			goto out;
94 	}
95 	list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
96 	res = 0;
97 out:
98 	spin_unlock(&svc_xprt_class_lock);
99 	return res;
100 }
101 EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
102 
103 /**
104  * svc_unreg_xprt_class - Unregister a server-side RPC transport class
105  * @xcl: Transport class to be unregistered
106  *
107  */
108 void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
109 {
110 	spin_lock(&svc_xprt_class_lock);
111 	list_del_init(&xcl->xcl_list);
112 	spin_unlock(&svc_xprt_class_lock);
113 }
114 EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
115 
116 /**
117  * svc_print_xprts - Format the transport list for printing
118  * @buf: target buffer for formatted address
119  * @maxlen: length of target buffer
120  *
121  * Fills in @buf with a string containing a list of transport names, each name
122  * terminated with '\n'. If the buffer is too small, some entries may be
123  * missing, but it is guaranteed that all lines in the output buffer are
124  * complete.
125  *
126  * Returns positive length of the filled-in string.
127  */
128 int svc_print_xprts(char *buf, int maxlen)
129 {
130 	struct svc_xprt_class *xcl;
131 	char tmpstr[80];
132 	int len = 0;
133 	buf[0] = '\0';
134 
135 	spin_lock(&svc_xprt_class_lock);
136 	list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
137 		int slen;
138 
139 		slen = snprintf(tmpstr, sizeof(tmpstr), "%s %d\n",
140 				xcl->xcl_name, xcl->xcl_max_payload);
141 		if (slen >= sizeof(tmpstr) || len + slen >= maxlen)
142 			break;
143 		len += slen;
144 		strcat(buf, tmpstr);
145 	}
146 	spin_unlock(&svc_xprt_class_lock);
147 
148 	return len;
149 }
150 
151 /**
152  * svc_xprt_deferred_close - Close a transport
153  * @xprt: transport instance
154  *
155  * Used in contexts that need to defer the work of shutting down
156  * the transport to an nfsd thread.
157  */
158 void svc_xprt_deferred_close(struct svc_xprt *xprt)
159 {
160 	trace_svc_xprt_close(xprt);
161 	if (!test_and_set_bit(XPT_CLOSE, &xprt->xpt_flags))
162 		svc_xprt_enqueue(xprt);
163 }
164 EXPORT_SYMBOL_GPL(svc_xprt_deferred_close);
165 
166 static void svc_xprt_free(struct kref *kref)
167 {
168 	struct svc_xprt *xprt =
169 		container_of(kref, struct svc_xprt, xpt_ref);
170 	struct module *owner = xprt->xpt_class->xcl_owner;
171 	if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags))
172 		svcauth_unix_info_release(xprt);
173 	put_cred(xprt->xpt_cred);
174 	put_net_track(xprt->xpt_net, &xprt->ns_tracker);
175 	/* See comment on corresponding get in xs_setup_bc_tcp(): */
176 	if (xprt->xpt_bc_xprt)
177 		xprt_put(xprt->xpt_bc_xprt);
178 	if (xprt->xpt_bc_xps)
179 		xprt_switch_put(xprt->xpt_bc_xps);
180 	trace_svc_xprt_free(xprt);
181 	xprt->xpt_ops->xpo_free(xprt);
182 	module_put(owner);
183 }
184 
185 void svc_xprt_put(struct svc_xprt *xprt)
186 {
187 	kref_put(&xprt->xpt_ref, svc_xprt_free);
188 }
189 EXPORT_SYMBOL_GPL(svc_xprt_put);
190 
191 /*
192  * Called by transport drivers to initialize the transport independent
193  * portion of the transport instance.
194  */
195 void svc_xprt_init(struct net *net, struct svc_xprt_class *xcl,
196 		   struct svc_xprt *xprt, struct svc_serv *serv)
197 {
198 	memset(xprt, 0, sizeof(*xprt));
199 	xprt->xpt_class = xcl;
200 	xprt->xpt_ops = xcl->xcl_ops;
201 	kref_init(&xprt->xpt_ref);
202 	xprt->xpt_server = serv;
203 	INIT_LIST_HEAD(&xprt->xpt_list);
204 	INIT_LIST_HEAD(&xprt->xpt_deferred);
205 	INIT_LIST_HEAD(&xprt->xpt_users);
206 	mutex_init(&xprt->xpt_mutex);
207 	spin_lock_init(&xprt->xpt_lock);
208 	set_bit(XPT_BUSY, &xprt->xpt_flags);
209 	xprt->xpt_net = get_net_track(net, &xprt->ns_tracker, GFP_ATOMIC);
210 	strcpy(xprt->xpt_remotebuf, "uninitialized");
211 }
212 EXPORT_SYMBOL_GPL(svc_xprt_init);
213 
214 /**
215  * svc_xprt_received - start next receiver thread
216  * @xprt: controlling transport
217  *
218  * The caller must hold the XPT_BUSY bit and must
219  * not thereafter touch transport data.
220  *
221  * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
222  * insufficient) data.
223  */
224 void svc_xprt_received(struct svc_xprt *xprt)
225 {
226 	if (!test_bit(XPT_BUSY, &xprt->xpt_flags)) {
227 		WARN_ONCE(1, "xprt=0x%p already busy!", xprt);
228 		return;
229 	}
230 
231 	/* As soon as we clear busy, the xprt could be closed and
232 	 * 'put', so we need a reference to call svc_xprt_enqueue with:
233 	 */
234 	svc_xprt_get(xprt);
235 	smp_mb__before_atomic();
236 	clear_bit(XPT_BUSY, &xprt->xpt_flags);
237 	svc_xprt_enqueue(xprt);
238 	svc_xprt_put(xprt);
239 }
240 EXPORT_SYMBOL_GPL(svc_xprt_received);
241 
242 void svc_add_new_perm_xprt(struct svc_serv *serv, struct svc_xprt *new)
243 {
244 	clear_bit(XPT_TEMP, &new->xpt_flags);
245 	spin_lock_bh(&serv->sv_lock);
246 	list_add(&new->xpt_list, &serv->sv_permsocks);
247 	spin_unlock_bh(&serv->sv_lock);
248 	svc_xprt_received(new);
249 }
250 
251 static int _svc_xprt_create(struct svc_serv *serv, const char *xprt_name,
252 			    struct net *net, struct sockaddr *sap,
253 			    size_t len, int flags, const struct cred *cred)
254 {
255 	struct svc_xprt_class *xcl;
256 
257 	spin_lock(&svc_xprt_class_lock);
258 	list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
259 		struct svc_xprt *newxprt;
260 		unsigned short newport;
261 
262 		if (strcmp(xprt_name, xcl->xcl_name))
263 			continue;
264 
265 		if (!try_module_get(xcl->xcl_owner))
266 			goto err;
267 
268 		spin_unlock(&svc_xprt_class_lock);
269 		newxprt = xcl->xcl_ops->xpo_create(serv, net, sap, len, flags);
270 		if (IS_ERR(newxprt)) {
271 			trace_svc_xprt_create_err(serv->sv_programs->pg_name,
272 						  xcl->xcl_name, sap, len,
273 						  newxprt);
274 			module_put(xcl->xcl_owner);
275 			return PTR_ERR(newxprt);
276 		}
277 		newxprt->xpt_cred = get_cred(cred);
278 		svc_add_new_perm_xprt(serv, newxprt);
279 		newport = svc_xprt_local_port(newxprt);
280 		return newport;
281 	}
282  err:
283 	spin_unlock(&svc_xprt_class_lock);
284 	/* This errno is exposed to user space.  Provide a reasonable
285 	 * perror msg for a bad transport. */
286 	return -EPROTONOSUPPORT;
287 }
288 
289 /**
290  * svc_xprt_create_from_sa - Add a new listener to @serv from socket address
291  * @serv: target RPC service
292  * @xprt_name: transport class name
293  * @net: network namespace
294  * @sap: socket address pointer
295  * @flags: SVC_SOCK flags
296  * @cred: credential to bind to this transport
297  *
298  * Return local xprt port on success or %-EPROTONOSUPPORT on failure
299  */
300 int svc_xprt_create_from_sa(struct svc_serv *serv, const char *xprt_name,
301 			    struct net *net, struct sockaddr *sap,
302 			    int flags, const struct cred *cred)
303 {
304 	size_t len;
305 	int err;
306 
307 	switch (sap->sa_family) {
308 	case AF_INET:
309 		len = sizeof(struct sockaddr_in);
310 		break;
311 #if IS_ENABLED(CONFIG_IPV6)
312 	case AF_INET6:
313 		len = sizeof(struct sockaddr_in6);
314 		break;
315 #endif
316 	default:
317 		return -EAFNOSUPPORT;
318 	}
319 
320 	err = _svc_xprt_create(serv, xprt_name, net, sap, len, flags, cred);
321 	if (err == -EPROTONOSUPPORT) {
322 		request_module("svc%s", xprt_name);
323 		err = _svc_xprt_create(serv, xprt_name, net, sap, len, flags,
324 				       cred);
325 	}
326 
327 	return err;
328 }
329 EXPORT_SYMBOL_GPL(svc_xprt_create_from_sa);
330 
331 /**
332  * svc_xprt_create - Add a new listener to @serv
333  * @serv: target RPC service
334  * @xprt_name: transport class name
335  * @net: network namespace
336  * @family: network address family
337  * @port: listener port
338  * @flags: SVC_SOCK flags
339  * @cred: credential to bind to this transport
340  *
341  * Return local xprt port on success or %-EPROTONOSUPPORT on failure
342  */
343 int svc_xprt_create(struct svc_serv *serv, const char *xprt_name,
344 		    struct net *net, const int family,
345 		    const unsigned short port, int flags,
346 		    const struct cred *cred)
347 {
348 	struct sockaddr_in sin = {
349 		.sin_family		= AF_INET,
350 		.sin_addr.s_addr	= htonl(INADDR_ANY),
351 		.sin_port		= htons(port),
352 	};
353 #if IS_ENABLED(CONFIG_IPV6)
354 	struct sockaddr_in6 sin6 = {
355 		.sin6_family		= AF_INET6,
356 		.sin6_addr		= IN6ADDR_ANY_INIT,
357 		.sin6_port		= htons(port),
358 	};
359 #endif
360 	struct sockaddr *sap;
361 
362 	switch (family) {
363 	case PF_INET:
364 		sap = (struct sockaddr *)&sin;
365 		break;
366 #if IS_ENABLED(CONFIG_IPV6)
367 	case PF_INET6:
368 		sap = (struct sockaddr *)&sin6;
369 		break;
370 #endif
371 	default:
372 		return -EAFNOSUPPORT;
373 	}
374 
375 	return svc_xprt_create_from_sa(serv, xprt_name, net, sap, flags, cred);
376 }
377 EXPORT_SYMBOL_GPL(svc_xprt_create);
378 
379 /*
380  * Copy the local and remote xprt addresses to the rqstp structure
381  */
382 void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
383 {
384 	memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
385 	rqstp->rq_addrlen = xprt->xpt_remotelen;
386 
387 	/*
388 	 * Destination address in request is needed for binding the
389 	 * source address in RPC replies/callbacks later.
390 	 */
391 	memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen);
392 	rqstp->rq_daddrlen = xprt->xpt_locallen;
393 }
394 EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
395 
396 /**
397  * svc_print_addr - Format rq_addr field for printing
398  * @rqstp: svc_rqst struct containing address to print
399  * @buf: target buffer for formatted address
400  * @len: length of target buffer
401  *
402  */
403 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
404 {
405 	return __svc_print_addr(svc_addr(rqstp), buf, len);
406 }
407 EXPORT_SYMBOL_GPL(svc_print_addr);
408 
409 static bool svc_xprt_slots_in_range(struct svc_xprt *xprt)
410 {
411 	unsigned int limit = svc_rpc_per_connection_limit;
412 	int nrqsts = atomic_read(&xprt->xpt_nr_rqsts);
413 
414 	return limit == 0 || (nrqsts >= 0 && nrqsts < limit);
415 }
416 
417 static bool svc_xprt_reserve_slot(struct svc_rqst *rqstp, struct svc_xprt *xprt)
418 {
419 	if (!test_bit(RQ_DATA, &rqstp->rq_flags)) {
420 		if (!svc_xprt_slots_in_range(xprt))
421 			return false;
422 		atomic_inc(&xprt->xpt_nr_rqsts);
423 		set_bit(RQ_DATA, &rqstp->rq_flags);
424 	}
425 	return true;
426 }
427 
428 static void svc_xprt_release_slot(struct svc_rqst *rqstp)
429 {
430 	struct svc_xprt	*xprt = rqstp->rq_xprt;
431 	if (test_and_clear_bit(RQ_DATA, &rqstp->rq_flags)) {
432 		atomic_dec(&xprt->xpt_nr_rqsts);
433 		smp_wmb(); /* See smp_rmb() in svc_xprt_ready() */
434 		svc_xprt_enqueue(xprt);
435 	}
436 }
437 
438 static bool svc_xprt_ready(struct svc_xprt *xprt)
439 {
440 	unsigned long xpt_flags;
441 
442 	/*
443 	 * If another cpu has recently updated xpt_flags,
444 	 * sk_sock->flags, xpt_reserved, or xpt_nr_rqsts, we need to
445 	 * know about it; otherwise it's possible that both that cpu and
446 	 * this one could call svc_xprt_enqueue() without either
447 	 * svc_xprt_enqueue() recognizing that the conditions below
448 	 * are satisfied, and we could stall indefinitely:
449 	 */
450 	smp_rmb();
451 	xpt_flags = READ_ONCE(xprt->xpt_flags);
452 
453 	trace_svc_xprt_enqueue(xprt, xpt_flags);
454 	if (xpt_flags & BIT(XPT_BUSY))
455 		return false;
456 	if (xpt_flags & (BIT(XPT_CONN) | BIT(XPT_CLOSE) | BIT(XPT_HANDSHAKE)))
457 		return true;
458 	if (xpt_flags & (BIT(XPT_DATA) | BIT(XPT_DEFERRED))) {
459 		if (xprt->xpt_ops->xpo_has_wspace(xprt) &&
460 		    svc_xprt_slots_in_range(xprt))
461 			return true;
462 		trace_svc_xprt_no_write_space(xprt);
463 		return false;
464 	}
465 	return false;
466 }
467 
468 /**
469  * svc_xprt_enqueue - Queue a transport on an idle nfsd thread
470  * @xprt: transport with data pending
471  *
472  */
473 void svc_xprt_enqueue(struct svc_xprt *xprt)
474 {
475 	struct svc_pool *pool;
476 
477 	if (!svc_xprt_ready(xprt))
478 		return;
479 
480 	/* Mark transport as busy. It will remain in this state until
481 	 * the provider calls svc_xprt_received. We update XPT_BUSY
482 	 * atomically because it also guards against trying to enqueue
483 	 * the transport twice.
484 	 */
485 	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
486 		return;
487 
488 	pool = svc_pool_for_cpu(xprt->xpt_server);
489 
490 	percpu_counter_inc(&pool->sp_sockets_queued);
491 	lwq_enqueue(&xprt->xpt_ready, &pool->sp_xprts);
492 
493 	svc_pool_wake_idle_thread(pool);
494 }
495 EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
496 
497 /*
498  * Dequeue the first transport, if there is one.
499  */
500 static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
501 {
502 	struct svc_xprt	*xprt = NULL;
503 
504 	xprt = lwq_dequeue(&pool->sp_xprts, struct svc_xprt, xpt_ready);
505 	if (xprt)
506 		svc_xprt_get(xprt);
507 	return xprt;
508 }
509 
510 /**
511  * svc_reserve - change the space reserved for the reply to a request.
512  * @rqstp:  The request in question
513  * @space: new max space to reserve
514  *
515  * Each request reserves some space on the output queue of the transport
516  * to make sure the reply fits.  This function reduces that reserved
517  * space to be the amount of space used already, plus @space.
518  *
519  */
520 void svc_reserve(struct svc_rqst *rqstp, int space)
521 {
522 	struct svc_xprt *xprt = rqstp->rq_xprt;
523 
524 	space += rqstp->rq_res.head[0].iov_len;
525 
526 	if (xprt && space < rqstp->rq_reserved) {
527 		atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
528 		rqstp->rq_reserved = space;
529 		smp_wmb(); /* See smp_rmb() in svc_xprt_ready() */
530 		svc_xprt_enqueue(xprt);
531 	}
532 }
533 EXPORT_SYMBOL_GPL(svc_reserve);
534 
535 static void free_deferred(struct svc_xprt *xprt, struct svc_deferred_req *dr)
536 {
537 	if (!dr)
538 		return;
539 
540 	xprt->xpt_ops->xpo_release_ctxt(xprt, dr->xprt_ctxt);
541 	kfree(dr);
542 }
543 
544 static void svc_xprt_release(struct svc_rqst *rqstp)
545 {
546 	struct svc_xprt	*xprt = rqstp->rq_xprt;
547 
548 	xprt->xpt_ops->xpo_release_ctxt(xprt, rqstp->rq_xprt_ctxt);
549 	rqstp->rq_xprt_ctxt = NULL;
550 
551 	free_deferred(xprt, rqstp->rq_deferred);
552 	rqstp->rq_deferred = NULL;
553 
554 	svc_rqst_release_pages(rqstp);
555 	rqstp->rq_res.page_len = 0;
556 	rqstp->rq_res.page_base = 0;
557 
558 	/* Reset response buffer and release
559 	 * the reservation.
560 	 * But first, check that enough space was reserved
561 	 * for the reply, otherwise we have a bug!
562 	 */
563 	if ((rqstp->rq_res.len) >  rqstp->rq_reserved)
564 		printk(KERN_ERR "RPC request reserved %d but used %d\n",
565 		       rqstp->rq_reserved,
566 		       rqstp->rq_res.len);
567 
568 	rqstp->rq_res.head[0].iov_len = 0;
569 	svc_reserve(rqstp, 0);
570 	svc_xprt_release_slot(rqstp);
571 	rqstp->rq_xprt = NULL;
572 	svc_xprt_put(xprt);
573 }
574 
575 /**
576  * svc_wake_up - Wake up a service thread for non-transport work
577  * @serv: RPC service
578  *
579  * Some svc_serv's will have occasional work to do, even when a xprt is not
580  * waiting to be serviced. This function is there to "kick" a task in one of
581  * those services so that it can wake up and do that work. Note that we only
582  * bother with pool 0 as we don't need to wake up more than one thread for
583  * this purpose.
584  */
585 void svc_wake_up(struct svc_serv *serv)
586 {
587 	struct svc_pool *pool = &serv->sv_pools[0];
588 
589 	set_bit(SP_TASK_PENDING, &pool->sp_flags);
590 	svc_pool_wake_idle_thread(pool);
591 }
592 EXPORT_SYMBOL_GPL(svc_wake_up);
593 
594 int svc_port_is_privileged(struct sockaddr *sin)
595 {
596 	switch (sin->sa_family) {
597 	case AF_INET:
598 		return ntohs(((struct sockaddr_in *)sin)->sin_port)
599 			< PROT_SOCK;
600 	case AF_INET6:
601 		return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
602 			< PROT_SOCK;
603 	default:
604 		return 0;
605 	}
606 }
607 
608 /*
609  * Make sure that we don't have too many connections that have not yet
610  * demonstrated that they have access to the NFS server. If we have,
611  * something must be dropped. It's not clear what will happen if we allow
612  * "too many" connections, but when dealing with network-facing software,
613  * we have to code defensively. Here we do that by imposing hard limits.
614  *
615  * There's no point in trying to do random drop here for DoS
616  * prevention. The NFS clients does 1 reconnect in 15 seconds. An
617  * attacker can easily beat that.
618  *
619  * The only somewhat efficient mechanism would be if drop old
620  * connections from the same IP first. But right now we don't even
621  * record the client IP in svc_sock.
622  */
623 static void svc_check_conn_limits(struct svc_serv *serv)
624 {
625 	if (serv->sv_tmpcnt > XPT_MAX_TMP_CONN) {
626 		struct svc_xprt *xprt = NULL, *xprti;
627 		spin_lock_bh(&serv->sv_lock);
628 		if (!list_empty(&serv->sv_tempsocks)) {
629 			/*
630 			 * Always select the oldest connection. It's not fair,
631 			 * but nor is life.
632 			 */
633 			list_for_each_entry_reverse(xprti, &serv->sv_tempsocks,
634 						    xpt_list) {
635 				if (!test_bit(XPT_PEER_VALID, &xprti->xpt_flags)) {
636 					xprt = xprti;
637 					set_bit(XPT_CLOSE, &xprt->xpt_flags);
638 					svc_xprt_get(xprt);
639 					break;
640 				}
641 			}
642 		}
643 		spin_unlock_bh(&serv->sv_lock);
644 
645 		if (xprt) {
646 			svc_xprt_enqueue(xprt);
647 			svc_xprt_put(xprt);
648 		}
649 	}
650 }
651 
652 static bool svc_alloc_arg(struct svc_rqst *rqstp)
653 {
654 	struct svc_serv *serv = rqstp->rq_server;
655 	struct xdr_buf *arg = &rqstp->rq_arg;
656 	unsigned long pages, filled, ret;
657 
658 	pages = (serv->sv_max_mesg + 2 * PAGE_SIZE) >> PAGE_SHIFT;
659 	if (pages > RPCSVC_MAXPAGES) {
660 		pr_warn_once("svc: warning: pages=%lu > RPCSVC_MAXPAGES=%lu\n",
661 			     pages, RPCSVC_MAXPAGES);
662 		/* use as many pages as possible */
663 		pages = RPCSVC_MAXPAGES;
664 	}
665 
666 	for (filled = 0; filled < pages; filled = ret) {
667 		ret = alloc_pages_bulk(GFP_KERNEL, pages, rqstp->rq_pages);
668 		if (ret > filled)
669 			/* Made progress, don't sleep yet */
670 			continue;
671 
672 		set_current_state(TASK_IDLE);
673 		if (svc_thread_should_stop(rqstp)) {
674 			set_current_state(TASK_RUNNING);
675 			return false;
676 		}
677 		trace_svc_alloc_arg_err(pages, ret);
678 		memalloc_retry_wait(GFP_KERNEL);
679 	}
680 	rqstp->rq_page_end = &rqstp->rq_pages[pages];
681 	rqstp->rq_pages[pages] = NULL; /* this might be seen in nfsd_splice_actor() */
682 
683 	/* Make arg->head point to first page and arg->pages point to rest */
684 	arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
685 	arg->head[0].iov_len = PAGE_SIZE;
686 	arg->pages = rqstp->rq_pages + 1;
687 	arg->page_base = 0;
688 	/* save at least one page for response */
689 	arg->page_len = (pages-2)*PAGE_SIZE;
690 	arg->len = (pages-1)*PAGE_SIZE;
691 	arg->tail[0].iov_len = 0;
692 
693 	rqstp->rq_xid = xdr_zero;
694 	return true;
695 }
696 
697 static bool
698 svc_thread_should_sleep(struct svc_rqst *rqstp)
699 {
700 	struct svc_pool		*pool = rqstp->rq_pool;
701 
702 	/* did someone call svc_wake_up? */
703 	if (test_bit(SP_TASK_PENDING, &pool->sp_flags))
704 		return false;
705 
706 	/* was a socket queued? */
707 	if (!lwq_empty(&pool->sp_xprts))
708 		return false;
709 
710 	/* are we shutting down? */
711 	if (svc_thread_should_stop(rqstp))
712 		return false;
713 
714 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
715 	if (svc_is_backchannel(rqstp)) {
716 		if (!lwq_empty(&rqstp->rq_server->sv_cb_list))
717 			return false;
718 	}
719 #endif
720 
721 	return true;
722 }
723 
724 static void svc_thread_wait_for_work(struct svc_rqst *rqstp)
725 {
726 	struct svc_pool *pool = rqstp->rq_pool;
727 
728 	if (svc_thread_should_sleep(rqstp)) {
729 		set_current_state(TASK_IDLE | TASK_FREEZABLE);
730 		llist_add(&rqstp->rq_idle, &pool->sp_idle_threads);
731 		if (likely(svc_thread_should_sleep(rqstp)))
732 			schedule();
733 
734 		while (!llist_del_first_this(&pool->sp_idle_threads,
735 					     &rqstp->rq_idle)) {
736 			/* Work just became available.  This thread can only
737 			 * handle it after removing rqstp from the idle
738 			 * list. If that attempt failed, some other thread
739 			 * must have queued itself after finding no
740 			 * work to do, so that thread has taken responsibly
741 			 * for this new work.  This thread can safely sleep
742 			 * until woken again.
743 			 */
744 			schedule();
745 			set_current_state(TASK_IDLE | TASK_FREEZABLE);
746 		}
747 		__set_current_state(TASK_RUNNING);
748 	} else {
749 		cond_resched();
750 	}
751 	try_to_freeze();
752 }
753 
754 static void svc_add_new_temp_xprt(struct svc_serv *serv, struct svc_xprt *newxpt)
755 {
756 	spin_lock_bh(&serv->sv_lock);
757 	set_bit(XPT_TEMP, &newxpt->xpt_flags);
758 	list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
759 	serv->sv_tmpcnt++;
760 	if (serv->sv_temptimer.function == NULL) {
761 		/* setup timer to age temp transports */
762 		serv->sv_temptimer.function = svc_age_temp_xprts;
763 		mod_timer(&serv->sv_temptimer,
764 			  jiffies + svc_conn_age_period * HZ);
765 	}
766 	spin_unlock_bh(&serv->sv_lock);
767 	svc_xprt_received(newxpt);
768 }
769 
770 static void svc_handle_xprt(struct svc_rqst *rqstp, struct svc_xprt *xprt)
771 {
772 	struct svc_serv *serv = rqstp->rq_server;
773 	int len = 0;
774 
775 	if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
776 		if (test_and_clear_bit(XPT_KILL_TEMP, &xprt->xpt_flags))
777 			xprt->xpt_ops->xpo_kill_temp_xprt(xprt);
778 		svc_delete_xprt(xprt);
779 		/* Leave XPT_BUSY set on the dead xprt: */
780 		goto out;
781 	}
782 	if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
783 		struct svc_xprt *newxpt;
784 		/*
785 		 * We know this module_get will succeed because the
786 		 * listener holds a reference too
787 		 */
788 		__module_get(xprt->xpt_class->xcl_owner);
789 		svc_check_conn_limits(xprt->xpt_server);
790 		newxpt = xprt->xpt_ops->xpo_accept(xprt);
791 		if (newxpt) {
792 			newxpt->xpt_cred = get_cred(xprt->xpt_cred);
793 			svc_add_new_temp_xprt(serv, newxpt);
794 			trace_svc_xprt_accept(newxpt, serv->sv_name);
795 		} else {
796 			module_put(xprt->xpt_class->xcl_owner);
797 		}
798 		svc_xprt_received(xprt);
799 	} else if (test_bit(XPT_HANDSHAKE, &xprt->xpt_flags)) {
800 		xprt->xpt_ops->xpo_handshake(xprt);
801 		svc_xprt_received(xprt);
802 	} else if (svc_xprt_reserve_slot(rqstp, xprt)) {
803 		/* XPT_DATA|XPT_DEFERRED case: */
804 		rqstp->rq_deferred = svc_deferred_dequeue(xprt);
805 		if (rqstp->rq_deferred)
806 			len = svc_deferred_recv(rqstp);
807 		else
808 			len = xprt->xpt_ops->xpo_recvfrom(rqstp);
809 		rqstp->rq_reserved = serv->sv_max_mesg;
810 		atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
811 		if (len <= 0)
812 			goto out;
813 
814 		trace_svc_xdr_recvfrom(&rqstp->rq_arg);
815 
816 		clear_bit(XPT_OLD, &xprt->xpt_flags);
817 
818 		rqstp->rq_chandle.defer = svc_defer;
819 
820 		if (serv->sv_stats)
821 			serv->sv_stats->netcnt++;
822 		percpu_counter_inc(&rqstp->rq_pool->sp_messages_arrived);
823 		rqstp->rq_stime = ktime_get();
824 		svc_process(rqstp);
825 	} else
826 		svc_xprt_received(xprt);
827 
828 out:
829 	rqstp->rq_res.len = 0;
830 	svc_xprt_release(rqstp);
831 }
832 
833 static void svc_thread_wake_next(struct svc_rqst *rqstp)
834 {
835 	if (!svc_thread_should_sleep(rqstp))
836 		/* More work pending after I dequeued some,
837 		 * wake another worker
838 		 */
839 		svc_pool_wake_idle_thread(rqstp->rq_pool);
840 }
841 
842 /**
843  * svc_recv - Receive and process the next request on any transport
844  * @rqstp: an idle RPC service thread
845  *
846  * This code is carefully organised not to touch any cachelines in
847  * the shared svc_serv structure, only cachelines in the local
848  * svc_pool.
849  */
850 void svc_recv(struct svc_rqst *rqstp)
851 {
852 	struct svc_pool *pool = rqstp->rq_pool;
853 
854 	if (!svc_alloc_arg(rqstp))
855 		return;
856 
857 	svc_thread_wait_for_work(rqstp);
858 
859 	clear_bit(SP_TASK_PENDING, &pool->sp_flags);
860 
861 	if (svc_thread_should_stop(rqstp)) {
862 		svc_thread_wake_next(rqstp);
863 		return;
864 	}
865 
866 	rqstp->rq_xprt = svc_xprt_dequeue(pool);
867 	if (rqstp->rq_xprt) {
868 		struct svc_xprt *xprt = rqstp->rq_xprt;
869 
870 		svc_thread_wake_next(rqstp);
871 		/* Normally we will wait up to 5 seconds for any required
872 		 * cache information to be provided.  When there are no
873 		 * idle threads, we reduce the wait time.
874 		 */
875 		if (pool->sp_idle_threads.first)
876 			rqstp->rq_chandle.thread_wait = 5 * HZ;
877 		else
878 			rqstp->rq_chandle.thread_wait = 1 * HZ;
879 
880 		trace_svc_xprt_dequeue(rqstp);
881 		svc_handle_xprt(rqstp, xprt);
882 	}
883 
884 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
885 	if (svc_is_backchannel(rqstp)) {
886 		struct svc_serv *serv = rqstp->rq_server;
887 		struct rpc_rqst *req;
888 
889 		req = lwq_dequeue(&serv->sv_cb_list,
890 				  struct rpc_rqst, rq_bc_list);
891 		if (req) {
892 			svc_thread_wake_next(rqstp);
893 			svc_process_bc(req, rqstp);
894 		}
895 	}
896 #endif
897 }
898 EXPORT_SYMBOL_GPL(svc_recv);
899 
900 /**
901  * svc_send - Return reply to client
902  * @rqstp: RPC transaction context
903  *
904  */
905 void svc_send(struct svc_rqst *rqstp)
906 {
907 	struct svc_xprt	*xprt;
908 	struct xdr_buf	*xb;
909 	int status;
910 
911 	xprt = rqstp->rq_xprt;
912 
913 	/* calculate over-all length */
914 	xb = &rqstp->rq_res;
915 	xb->len = xb->head[0].iov_len +
916 		xb->page_len +
917 		xb->tail[0].iov_len;
918 	trace_svc_xdr_sendto(rqstp->rq_xid, xb);
919 	trace_svc_stats_latency(rqstp);
920 
921 	status = xprt->xpt_ops->xpo_sendto(rqstp);
922 
923 	trace_svc_send(rqstp, status);
924 }
925 
926 /*
927  * Timer function to close old temporary transports, using
928  * a mark-and-sweep algorithm.
929  */
930 static void svc_age_temp_xprts(struct timer_list *t)
931 {
932 	struct svc_serv *serv = from_timer(serv, t, sv_temptimer);
933 	struct svc_xprt *xprt;
934 	struct list_head *le, *next;
935 
936 	dprintk("svc_age_temp_xprts\n");
937 
938 	if (!spin_trylock_bh(&serv->sv_lock)) {
939 		/* busy, try again 1 sec later */
940 		dprintk("svc_age_temp_xprts: busy\n");
941 		mod_timer(&serv->sv_temptimer, jiffies + HZ);
942 		return;
943 	}
944 
945 	list_for_each_safe(le, next, &serv->sv_tempsocks) {
946 		xprt = list_entry(le, struct svc_xprt, xpt_list);
947 
948 		/* First time through, just mark it OLD. Second time
949 		 * through, close it. */
950 		if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
951 			continue;
952 		if (kref_read(&xprt->xpt_ref) > 1 ||
953 		    test_bit(XPT_BUSY, &xprt->xpt_flags))
954 			continue;
955 		list_del_init(le);
956 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
957 		dprintk("queuing xprt %p for closing\n", xprt);
958 
959 		/* a thread will dequeue and close it soon */
960 		svc_xprt_enqueue(xprt);
961 	}
962 	spin_unlock_bh(&serv->sv_lock);
963 
964 	mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
965 }
966 
967 /* Close temporary transports whose xpt_local matches server_addr immediately
968  * instead of waiting for them to be picked up by the timer.
969  *
970  * This is meant to be called from a notifier_block that runs when an ip
971  * address is deleted.
972  */
973 void svc_age_temp_xprts_now(struct svc_serv *serv, struct sockaddr *server_addr)
974 {
975 	struct svc_xprt *xprt;
976 	struct list_head *le, *next;
977 	LIST_HEAD(to_be_closed);
978 
979 	spin_lock_bh(&serv->sv_lock);
980 	list_for_each_safe(le, next, &serv->sv_tempsocks) {
981 		xprt = list_entry(le, struct svc_xprt, xpt_list);
982 		if (rpc_cmp_addr(server_addr, (struct sockaddr *)
983 				&xprt->xpt_local)) {
984 			dprintk("svc_age_temp_xprts_now: found %p\n", xprt);
985 			list_move(le, &to_be_closed);
986 		}
987 	}
988 	spin_unlock_bh(&serv->sv_lock);
989 
990 	while (!list_empty(&to_be_closed)) {
991 		le = to_be_closed.next;
992 		list_del_init(le);
993 		xprt = list_entry(le, struct svc_xprt, xpt_list);
994 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
995 		set_bit(XPT_KILL_TEMP, &xprt->xpt_flags);
996 		dprintk("svc_age_temp_xprts_now: queuing xprt %p for closing\n",
997 				xprt);
998 		svc_xprt_enqueue(xprt);
999 	}
1000 }
1001 EXPORT_SYMBOL_GPL(svc_age_temp_xprts_now);
1002 
1003 static void call_xpt_users(struct svc_xprt *xprt)
1004 {
1005 	struct svc_xpt_user *u;
1006 
1007 	spin_lock(&xprt->xpt_lock);
1008 	while (!list_empty(&xprt->xpt_users)) {
1009 		u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list);
1010 		list_del_init(&u->list);
1011 		u->callback(u);
1012 	}
1013 	spin_unlock(&xprt->xpt_lock);
1014 }
1015 
1016 /*
1017  * Remove a dead transport
1018  */
1019 static void svc_delete_xprt(struct svc_xprt *xprt)
1020 {
1021 	struct svc_serv	*serv = xprt->xpt_server;
1022 	struct svc_deferred_req *dr;
1023 
1024 	if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
1025 		return;
1026 
1027 	trace_svc_xprt_detach(xprt);
1028 	xprt->xpt_ops->xpo_detach(xprt);
1029 	if (xprt->xpt_bc_xprt)
1030 		xprt->xpt_bc_xprt->ops->close(xprt->xpt_bc_xprt);
1031 
1032 	spin_lock_bh(&serv->sv_lock);
1033 	list_del_init(&xprt->xpt_list);
1034 	if (test_bit(XPT_TEMP, &xprt->xpt_flags) &&
1035 	    !test_bit(XPT_PEER_VALID, &xprt->xpt_flags))
1036 		serv->sv_tmpcnt--;
1037 	spin_unlock_bh(&serv->sv_lock);
1038 
1039 	while ((dr = svc_deferred_dequeue(xprt)) != NULL)
1040 		free_deferred(xprt, dr);
1041 
1042 	call_xpt_users(xprt);
1043 	svc_xprt_put(xprt);
1044 }
1045 
1046 /**
1047  * svc_xprt_close - Close a client connection
1048  * @xprt: transport to disconnect
1049  *
1050  */
1051 void svc_xprt_close(struct svc_xprt *xprt)
1052 {
1053 	trace_svc_xprt_close(xprt);
1054 	set_bit(XPT_CLOSE, &xprt->xpt_flags);
1055 	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
1056 		/* someone else will have to effect the close */
1057 		return;
1058 	/*
1059 	 * We expect svc_close_xprt() to work even when no threads are
1060 	 * running (e.g., while configuring the server before starting
1061 	 * any threads), so if the transport isn't busy, we delete
1062 	 * it ourself:
1063 	 */
1064 	svc_delete_xprt(xprt);
1065 }
1066 EXPORT_SYMBOL_GPL(svc_xprt_close);
1067 
1068 static int svc_close_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net)
1069 {
1070 	struct svc_xprt *xprt;
1071 	int ret = 0;
1072 
1073 	spin_lock_bh(&serv->sv_lock);
1074 	list_for_each_entry(xprt, xprt_list, xpt_list) {
1075 		if (xprt->xpt_net != net)
1076 			continue;
1077 		ret++;
1078 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
1079 		svc_xprt_enqueue(xprt);
1080 	}
1081 	spin_unlock_bh(&serv->sv_lock);
1082 	return ret;
1083 }
1084 
1085 static void svc_clean_up_xprts(struct svc_serv *serv, struct net *net)
1086 {
1087 	struct svc_xprt *xprt;
1088 	int i;
1089 
1090 	for (i = 0; i < serv->sv_nrpools; i++) {
1091 		struct svc_pool *pool = &serv->sv_pools[i];
1092 		struct llist_node *q, **t1, *t2;
1093 
1094 		q = lwq_dequeue_all(&pool->sp_xprts);
1095 		lwq_for_each_safe(xprt, t1, t2, &q, xpt_ready) {
1096 			if (xprt->xpt_net == net) {
1097 				set_bit(XPT_CLOSE, &xprt->xpt_flags);
1098 				svc_delete_xprt(xprt);
1099 				xprt = NULL;
1100 			}
1101 		}
1102 
1103 		if (q)
1104 			lwq_enqueue_batch(q, &pool->sp_xprts);
1105 	}
1106 }
1107 
1108 /**
1109  * svc_xprt_destroy_all - Destroy transports associated with @serv
1110  * @serv: RPC service to be shut down
1111  * @net: target network namespace
1112  *
1113  * Server threads may still be running (especially in the case where the
1114  * service is still running in other network namespaces).
1115  *
1116  * So we shut down sockets the same way we would on a running server, by
1117  * setting XPT_CLOSE, enqueuing, and letting a thread pick it up to do
1118  * the close.  In the case there are no such other threads,
1119  * threads running, svc_clean_up_xprts() does a simple version of a
1120  * server's main event loop, and in the case where there are other
1121  * threads, we may need to wait a little while and then check again to
1122  * see if they're done.
1123  */
1124 void svc_xprt_destroy_all(struct svc_serv *serv, struct net *net)
1125 {
1126 	int delay = 0;
1127 
1128 	while (svc_close_list(serv, &serv->sv_permsocks, net) +
1129 	       svc_close_list(serv, &serv->sv_tempsocks, net)) {
1130 
1131 		svc_clean_up_xprts(serv, net);
1132 		msleep(delay++);
1133 	}
1134 }
1135 EXPORT_SYMBOL_GPL(svc_xprt_destroy_all);
1136 
1137 /*
1138  * Handle defer and revisit of requests
1139  */
1140 
1141 static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
1142 {
1143 	struct svc_deferred_req *dr =
1144 		container_of(dreq, struct svc_deferred_req, handle);
1145 	struct svc_xprt *xprt = dr->xprt;
1146 
1147 	spin_lock(&xprt->xpt_lock);
1148 	set_bit(XPT_DEFERRED, &xprt->xpt_flags);
1149 	if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
1150 		spin_unlock(&xprt->xpt_lock);
1151 		trace_svc_defer_drop(dr);
1152 		free_deferred(xprt, dr);
1153 		svc_xprt_put(xprt);
1154 		return;
1155 	}
1156 	dr->xprt = NULL;
1157 	list_add(&dr->handle.recent, &xprt->xpt_deferred);
1158 	spin_unlock(&xprt->xpt_lock);
1159 	trace_svc_defer_queue(dr);
1160 	svc_xprt_enqueue(xprt);
1161 	svc_xprt_put(xprt);
1162 }
1163 
1164 /*
1165  * Save the request off for later processing. The request buffer looks
1166  * like this:
1167  *
1168  * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
1169  *
1170  * This code can only handle requests that consist of an xprt-header
1171  * and rpc-header.
1172  */
1173 static struct cache_deferred_req *svc_defer(struct cache_req *req)
1174 {
1175 	struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1176 	struct svc_deferred_req *dr;
1177 
1178 	if (rqstp->rq_arg.page_len || !test_bit(RQ_USEDEFERRAL, &rqstp->rq_flags))
1179 		return NULL; /* if more than a page, give up FIXME */
1180 	if (rqstp->rq_deferred) {
1181 		dr = rqstp->rq_deferred;
1182 		rqstp->rq_deferred = NULL;
1183 	} else {
1184 		size_t skip;
1185 		size_t size;
1186 		/* FIXME maybe discard if size too large */
1187 		size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
1188 		dr = kmalloc(size, GFP_KERNEL);
1189 		if (dr == NULL)
1190 			return NULL;
1191 
1192 		dr->handle.owner = rqstp->rq_server;
1193 		dr->prot = rqstp->rq_prot;
1194 		memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1195 		dr->addrlen = rqstp->rq_addrlen;
1196 		dr->daddr = rqstp->rq_daddr;
1197 		dr->argslen = rqstp->rq_arg.len >> 2;
1198 
1199 		/* back up head to the start of the buffer and copy */
1200 		skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1201 		memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
1202 		       dr->argslen << 2);
1203 	}
1204 	dr->xprt_ctxt = rqstp->rq_xprt_ctxt;
1205 	rqstp->rq_xprt_ctxt = NULL;
1206 	trace_svc_defer(rqstp);
1207 	svc_xprt_get(rqstp->rq_xprt);
1208 	dr->xprt = rqstp->rq_xprt;
1209 	set_bit(RQ_DROPME, &rqstp->rq_flags);
1210 
1211 	dr->handle.revisit = svc_revisit;
1212 	return &dr->handle;
1213 }
1214 
1215 /*
1216  * recv data from a deferred request into an active one
1217  */
1218 static noinline int svc_deferred_recv(struct svc_rqst *rqstp)
1219 {
1220 	struct svc_deferred_req *dr = rqstp->rq_deferred;
1221 
1222 	trace_svc_defer_recv(dr);
1223 
1224 	/* setup iov_base past transport header */
1225 	rqstp->rq_arg.head[0].iov_base = dr->args;
1226 	/* The iov_len does not include the transport header bytes */
1227 	rqstp->rq_arg.head[0].iov_len = dr->argslen << 2;
1228 	rqstp->rq_arg.page_len = 0;
1229 	/* The rq_arg.len includes the transport header bytes */
1230 	rqstp->rq_arg.len     = dr->argslen << 2;
1231 	rqstp->rq_prot        = dr->prot;
1232 	memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1233 	rqstp->rq_addrlen     = dr->addrlen;
1234 	/* Save off transport header len in case we get deferred again */
1235 	rqstp->rq_daddr       = dr->daddr;
1236 	rqstp->rq_respages    = rqstp->rq_pages;
1237 	rqstp->rq_xprt_ctxt   = dr->xprt_ctxt;
1238 
1239 	dr->xprt_ctxt = NULL;
1240 	svc_xprt_received(rqstp->rq_xprt);
1241 	return dr->argslen << 2;
1242 }
1243 
1244 
1245 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
1246 {
1247 	struct svc_deferred_req *dr = NULL;
1248 
1249 	if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
1250 		return NULL;
1251 	spin_lock(&xprt->xpt_lock);
1252 	if (!list_empty(&xprt->xpt_deferred)) {
1253 		dr = list_entry(xprt->xpt_deferred.next,
1254 				struct svc_deferred_req,
1255 				handle.recent);
1256 		list_del_init(&dr->handle.recent);
1257 	} else
1258 		clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
1259 	spin_unlock(&xprt->xpt_lock);
1260 	return dr;
1261 }
1262 
1263 /**
1264  * svc_find_listener - find an RPC transport instance
1265  * @serv: pointer to svc_serv to search
1266  * @xcl_name: C string containing transport's class name
1267  * @net: owner net pointer
1268  * @sa: sockaddr containing address
1269  *
1270  * Return the transport instance pointer for the endpoint accepting
1271  * connections/peer traffic from the specified transport class,
1272  * and matching sockaddr.
1273  */
1274 struct svc_xprt *svc_find_listener(struct svc_serv *serv, const char *xcl_name,
1275 				   struct net *net, const struct sockaddr *sa)
1276 {
1277 	struct svc_xprt *xprt;
1278 	struct svc_xprt *found = NULL;
1279 
1280 	spin_lock_bh(&serv->sv_lock);
1281 	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1282 		if (xprt->xpt_net != net)
1283 			continue;
1284 		if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1285 			continue;
1286 		if (!rpc_cmp_addr_port(sa, (struct sockaddr *)&xprt->xpt_local))
1287 			continue;
1288 		found = xprt;
1289 		svc_xprt_get(xprt);
1290 		break;
1291 	}
1292 	spin_unlock_bh(&serv->sv_lock);
1293 	return found;
1294 }
1295 EXPORT_SYMBOL_GPL(svc_find_listener);
1296 
1297 /**
1298  * svc_find_xprt - find an RPC transport instance
1299  * @serv: pointer to svc_serv to search
1300  * @xcl_name: C string containing transport's class name
1301  * @net: owner net pointer
1302  * @af: Address family of transport's local address
1303  * @port: transport's IP port number
1304  *
1305  * Return the transport instance pointer for the endpoint accepting
1306  * connections/peer traffic from the specified transport class,
1307  * address family and port.
1308  *
1309  * Specifying 0 for the address family or port is effectively a
1310  * wild-card, and will result in matching the first transport in the
1311  * service's list that has a matching class name.
1312  */
1313 struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
1314 			       struct net *net, const sa_family_t af,
1315 			       const unsigned short port)
1316 {
1317 	struct svc_xprt *xprt;
1318 	struct svc_xprt *found = NULL;
1319 
1320 	/* Sanity check the args */
1321 	if (serv == NULL || xcl_name == NULL)
1322 		return found;
1323 
1324 	spin_lock_bh(&serv->sv_lock);
1325 	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1326 		if (xprt->xpt_net != net)
1327 			continue;
1328 		if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1329 			continue;
1330 		if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1331 			continue;
1332 		if (port != 0 && port != svc_xprt_local_port(xprt))
1333 			continue;
1334 		found = xprt;
1335 		svc_xprt_get(xprt);
1336 		break;
1337 	}
1338 	spin_unlock_bh(&serv->sv_lock);
1339 	return found;
1340 }
1341 EXPORT_SYMBOL_GPL(svc_find_xprt);
1342 
1343 static int svc_one_xprt_name(const struct svc_xprt *xprt,
1344 			     char *pos, int remaining)
1345 {
1346 	int len;
1347 
1348 	len = snprintf(pos, remaining, "%s %u\n",
1349 			xprt->xpt_class->xcl_name,
1350 			svc_xprt_local_port(xprt));
1351 	if (len >= remaining)
1352 		return -ENAMETOOLONG;
1353 	return len;
1354 }
1355 
1356 /**
1357  * svc_xprt_names - format a buffer with a list of transport names
1358  * @serv: pointer to an RPC service
1359  * @buf: pointer to a buffer to be filled in
1360  * @buflen: length of buffer to be filled in
1361  *
1362  * Fills in @buf with a string containing a list of transport names,
1363  * each name terminated with '\n'.
1364  *
1365  * Returns positive length of the filled-in string on success; otherwise
1366  * a negative errno value is returned if an error occurs.
1367  */
1368 int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
1369 {
1370 	struct svc_xprt *xprt;
1371 	int len, totlen;
1372 	char *pos;
1373 
1374 	/* Sanity check args */
1375 	if (!serv)
1376 		return 0;
1377 
1378 	spin_lock_bh(&serv->sv_lock);
1379 
1380 	pos = buf;
1381 	totlen = 0;
1382 	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1383 		len = svc_one_xprt_name(xprt, pos, buflen - totlen);
1384 		if (len < 0) {
1385 			*buf = '\0';
1386 			totlen = len;
1387 		}
1388 		if (len <= 0)
1389 			break;
1390 
1391 		pos += len;
1392 		totlen += len;
1393 	}
1394 
1395 	spin_unlock_bh(&serv->sv_lock);
1396 	return totlen;
1397 }
1398 EXPORT_SYMBOL_GPL(svc_xprt_names);
1399 
1400 /*----------------------------------------------------------------------------*/
1401 
1402 static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
1403 {
1404 	unsigned int pidx = (unsigned int)*pos;
1405 	struct svc_info *si = m->private;
1406 
1407 	dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
1408 
1409 	mutex_lock(si->mutex);
1410 
1411 	if (!pidx)
1412 		return SEQ_START_TOKEN;
1413 	if (!si->serv)
1414 		return NULL;
1415 	return pidx > si->serv->sv_nrpools ? NULL
1416 		: &si->serv->sv_pools[pidx - 1];
1417 }
1418 
1419 static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
1420 {
1421 	struct svc_pool *pool = p;
1422 	struct svc_info *si = m->private;
1423 	struct svc_serv *serv = si->serv;
1424 
1425 	dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
1426 
1427 	if (!serv) {
1428 		pool = NULL;
1429 	} else if (p == SEQ_START_TOKEN) {
1430 		pool = &serv->sv_pools[0];
1431 	} else {
1432 		unsigned int pidx = (pool - &serv->sv_pools[0]);
1433 		if (pidx < serv->sv_nrpools-1)
1434 			pool = &serv->sv_pools[pidx+1];
1435 		else
1436 			pool = NULL;
1437 	}
1438 	++*pos;
1439 	return pool;
1440 }
1441 
1442 static void svc_pool_stats_stop(struct seq_file *m, void *p)
1443 {
1444 	struct svc_info *si = m->private;
1445 
1446 	mutex_unlock(si->mutex);
1447 }
1448 
1449 static int svc_pool_stats_show(struct seq_file *m, void *p)
1450 {
1451 	struct svc_pool *pool = p;
1452 
1453 	if (p == SEQ_START_TOKEN) {
1454 		seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
1455 		return 0;
1456 	}
1457 
1458 	seq_printf(m, "%u %llu %llu %llu 0\n",
1459 		   pool->sp_id,
1460 		   percpu_counter_sum_positive(&pool->sp_messages_arrived),
1461 		   percpu_counter_sum_positive(&pool->sp_sockets_queued),
1462 		   percpu_counter_sum_positive(&pool->sp_threads_woken));
1463 
1464 	return 0;
1465 }
1466 
1467 static const struct seq_operations svc_pool_stats_seq_ops = {
1468 	.start	= svc_pool_stats_start,
1469 	.next	= svc_pool_stats_next,
1470 	.stop	= svc_pool_stats_stop,
1471 	.show	= svc_pool_stats_show,
1472 };
1473 
1474 int svc_pool_stats_open(struct svc_info *info, struct file *file)
1475 {
1476 	struct seq_file *seq;
1477 	int err;
1478 
1479 	err = seq_open(file, &svc_pool_stats_seq_ops);
1480 	if (err)
1481 		return err;
1482 	seq = file->private_data;
1483 	seq->private = info;
1484 
1485 	return 0;
1486 }
1487 EXPORT_SYMBOL(svc_pool_stats_open);
1488 
1489 /*----------------------------------------------------------------------------*/
1490