xref: /linux/kernel/trace/ring_buffer.c (revision 3c4a063b1f8ab71352df1421d9668521acb63cd9)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Generic ring buffer
4  *
5  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6  */
7 #include <linux/trace_recursion.h>
8 #include <linux/trace_events.h>
9 #include <linux/ring_buffer.h>
10 #include <linux/trace_clock.h>
11 #include <linux/sched/clock.h>
12 #include <linux/cacheflush.h>
13 #include <linux/trace_seq.h>
14 #include <linux/spinlock.h>
15 #include <linux/irq_work.h>
16 #include <linux/security.h>
17 #include <linux/uaccess.h>
18 #include <linux/hardirq.h>
19 #include <linux/kthread.h>	/* for self test */
20 #include <linux/module.h>
21 #include <linux/percpu.h>
22 #include <linux/mutex.h>
23 #include <linux/delay.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/hash.h>
27 #include <linux/list.h>
28 #include <linux/cpu.h>
29 #include <linux/oom.h>
30 #include <linux/mm.h>
31 
32 #include <asm/local64.h>
33 #include <asm/local.h>
34 #include <asm/setup.h>
35 
36 #include "trace.h"
37 
38 /*
39  * The "absolute" timestamp in the buffer is only 59 bits.
40  * If a clock has the 5 MSBs set, it needs to be saved and
41  * reinserted.
42  */
43 #define TS_MSB		(0xf8ULL << 56)
44 #define ABS_TS_MASK	(~TS_MSB)
45 
46 static void update_pages_handler(struct work_struct *work);
47 
48 #define RING_BUFFER_META_MAGIC	0xBADFEED
49 
50 struct ring_buffer_meta {
51 	int		magic;
52 	int		struct_sizes;
53 	unsigned long	total_size;
54 	unsigned long	buffers_offset;
55 };
56 
57 struct ring_buffer_cpu_meta {
58 	unsigned long	first_buffer;
59 	unsigned long	head_buffer;
60 	unsigned long	commit_buffer;
61 	__u32		subbuf_size;
62 	__u32		nr_subbufs;
63 	int		buffers[];
64 };
65 
66 /*
67  * The ring buffer header is special. We must manually up keep it.
68  */
ring_buffer_print_entry_header(struct trace_seq * s)69 int ring_buffer_print_entry_header(struct trace_seq *s)
70 {
71 	trace_seq_puts(s, "# compressed entry header\n");
72 	trace_seq_puts(s, "\ttype_len    :    5 bits\n");
73 	trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
74 	trace_seq_puts(s, "\tarray       :   32 bits\n");
75 	trace_seq_putc(s, '\n');
76 	trace_seq_printf(s, "\tpadding     : type == %d\n",
77 			 RINGBUF_TYPE_PADDING);
78 	trace_seq_printf(s, "\ttime_extend : type == %d\n",
79 			 RINGBUF_TYPE_TIME_EXTEND);
80 	trace_seq_printf(s, "\ttime_stamp : type == %d\n",
81 			 RINGBUF_TYPE_TIME_STAMP);
82 	trace_seq_printf(s, "\tdata max type_len  == %d\n",
83 			 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
84 
85 	return !trace_seq_has_overflowed(s);
86 }
87 
88 /*
89  * The ring buffer is made up of a list of pages. A separate list of pages is
90  * allocated for each CPU. A writer may only write to a buffer that is
91  * associated with the CPU it is currently executing on.  A reader may read
92  * from any per cpu buffer.
93  *
94  * The reader is special. For each per cpu buffer, the reader has its own
95  * reader page. When a reader has read the entire reader page, this reader
96  * page is swapped with another page in the ring buffer.
97  *
98  * Now, as long as the writer is off the reader page, the reader can do what
99  * ever it wants with that page. The writer will never write to that page
100  * again (as long as it is out of the ring buffer).
101  *
102  * Here's some silly ASCII art.
103  *
104  *   +------+
105  *   |reader|          RING BUFFER
106  *   |page  |
107  *   +------+        +---+   +---+   +---+
108  *                   |   |-->|   |-->|   |
109  *                   +---+   +---+   +---+
110  *                     ^               |
111  *                     |               |
112  *                     +---------------+
113  *
114  *
115  *   +------+
116  *   |reader|          RING BUFFER
117  *   |page  |------------------v
118  *   +------+        +---+   +---+   +---+
119  *                   |   |-->|   |-->|   |
120  *                   +---+   +---+   +---+
121  *                     ^               |
122  *                     |               |
123  *                     +---------------+
124  *
125  *
126  *   +------+
127  *   |reader|          RING BUFFER
128  *   |page  |------------------v
129  *   +------+        +---+   +---+   +---+
130  *      ^            |   |-->|   |-->|   |
131  *      |            +---+   +---+   +---+
132  *      |                              |
133  *      |                              |
134  *      +------------------------------+
135  *
136  *
137  *   +------+
138  *   |buffer|          RING BUFFER
139  *   |page  |------------------v
140  *   +------+        +---+   +---+   +---+
141  *      ^            |   |   |   |-->|   |
142  *      |   New      +---+   +---+   +---+
143  *      |  Reader------^               |
144  *      |   page                       |
145  *      +------------------------------+
146  *
147  *
148  * After we make this swap, the reader can hand this page off to the splice
149  * code and be done with it. It can even allocate a new page if it needs to
150  * and swap that into the ring buffer.
151  *
152  * We will be using cmpxchg soon to make all this lockless.
153  *
154  */
155 
156 /* Used for individual buffers (after the counter) */
157 #define RB_BUFFER_OFF		(1 << 20)
158 
159 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
160 
161 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
162 #define RB_ALIGNMENT		4U
163 #define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
164 #define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
165 
166 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
167 # define RB_FORCE_8BYTE_ALIGNMENT	0
168 # define RB_ARCH_ALIGNMENT		RB_ALIGNMENT
169 #else
170 # define RB_FORCE_8BYTE_ALIGNMENT	1
171 # define RB_ARCH_ALIGNMENT		8U
172 #endif
173 
174 #define RB_ALIGN_DATA		__aligned(RB_ARCH_ALIGNMENT)
175 
176 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
177 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
178 
179 enum {
180 	RB_LEN_TIME_EXTEND = 8,
181 	RB_LEN_TIME_STAMP =  8,
182 };
183 
184 #define skip_time_extend(event) \
185 	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
186 
187 #define extended_time(event) \
188 	(event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
189 
rb_null_event(struct ring_buffer_event * event)190 static inline bool rb_null_event(struct ring_buffer_event *event)
191 {
192 	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
193 }
194 
rb_event_set_padding(struct ring_buffer_event * event)195 static void rb_event_set_padding(struct ring_buffer_event *event)
196 {
197 	/* padding has a NULL time_delta */
198 	event->type_len = RINGBUF_TYPE_PADDING;
199 	event->time_delta = 0;
200 }
201 
202 static unsigned
rb_event_data_length(struct ring_buffer_event * event)203 rb_event_data_length(struct ring_buffer_event *event)
204 {
205 	unsigned length;
206 
207 	if (event->type_len)
208 		length = event->type_len * RB_ALIGNMENT;
209 	else
210 		length = event->array[0];
211 	return length + RB_EVNT_HDR_SIZE;
212 }
213 
214 /*
215  * Return the length of the given event. Will return
216  * the length of the time extend if the event is a
217  * time extend.
218  */
219 static inline unsigned
rb_event_length(struct ring_buffer_event * event)220 rb_event_length(struct ring_buffer_event *event)
221 {
222 	switch (event->type_len) {
223 	case RINGBUF_TYPE_PADDING:
224 		if (rb_null_event(event))
225 			/* undefined */
226 			return -1;
227 		return  event->array[0] + RB_EVNT_HDR_SIZE;
228 
229 	case RINGBUF_TYPE_TIME_EXTEND:
230 		return RB_LEN_TIME_EXTEND;
231 
232 	case RINGBUF_TYPE_TIME_STAMP:
233 		return RB_LEN_TIME_STAMP;
234 
235 	case RINGBUF_TYPE_DATA:
236 		return rb_event_data_length(event);
237 	default:
238 		WARN_ON_ONCE(1);
239 	}
240 	/* not hit */
241 	return 0;
242 }
243 
244 /*
245  * Return total length of time extend and data,
246  *   or just the event length for all other events.
247  */
248 static inline unsigned
rb_event_ts_length(struct ring_buffer_event * event)249 rb_event_ts_length(struct ring_buffer_event *event)
250 {
251 	unsigned len = 0;
252 
253 	if (extended_time(event)) {
254 		/* time extends include the data event after it */
255 		len = RB_LEN_TIME_EXTEND;
256 		event = skip_time_extend(event);
257 	}
258 	return len + rb_event_length(event);
259 }
260 
261 /**
262  * ring_buffer_event_length - return the length of the event
263  * @event: the event to get the length of
264  *
265  * Returns the size of the data load of a data event.
266  * If the event is something other than a data event, it
267  * returns the size of the event itself. With the exception
268  * of a TIME EXTEND, where it still returns the size of the
269  * data load of the data event after it.
270  */
ring_buffer_event_length(struct ring_buffer_event * event)271 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
272 {
273 	unsigned length;
274 
275 	if (extended_time(event))
276 		event = skip_time_extend(event);
277 
278 	length = rb_event_length(event);
279 	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
280 		return length;
281 	length -= RB_EVNT_HDR_SIZE;
282 	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
283                 length -= sizeof(event->array[0]);
284 	return length;
285 }
286 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
287 
288 /* inline for ring buffer fast paths */
289 static __always_inline void *
rb_event_data(struct ring_buffer_event * event)290 rb_event_data(struct ring_buffer_event *event)
291 {
292 	if (extended_time(event))
293 		event = skip_time_extend(event);
294 	WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
295 	/* If length is in len field, then array[0] has the data */
296 	if (event->type_len)
297 		return (void *)&event->array[0];
298 	/* Otherwise length is in array[0] and array[1] has the data */
299 	return (void *)&event->array[1];
300 }
301 
302 /**
303  * ring_buffer_event_data - return the data of the event
304  * @event: the event to get the data from
305  */
ring_buffer_event_data(struct ring_buffer_event * event)306 void *ring_buffer_event_data(struct ring_buffer_event *event)
307 {
308 	return rb_event_data(event);
309 }
310 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
311 
312 #define for_each_buffer_cpu(buffer, cpu)		\
313 	for_each_cpu(cpu, buffer->cpumask)
314 
315 #define for_each_online_buffer_cpu(buffer, cpu)		\
316 	for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask)
317 
318 #define TS_SHIFT	27
319 #define TS_MASK		((1ULL << TS_SHIFT) - 1)
320 #define TS_DELTA_TEST	(~TS_MASK)
321 
rb_event_time_stamp(struct ring_buffer_event * event)322 static u64 rb_event_time_stamp(struct ring_buffer_event *event)
323 {
324 	u64 ts;
325 
326 	ts = event->array[0];
327 	ts <<= TS_SHIFT;
328 	ts += event->time_delta;
329 
330 	return ts;
331 }
332 
333 /* Flag when events were overwritten */
334 #define RB_MISSED_EVENTS	(1 << 31)
335 /* Missed count stored at end */
336 #define RB_MISSED_STORED	(1 << 30)
337 
338 #define RB_MISSED_MASK		(3 << 30)
339 
340 struct buffer_data_page {
341 	u64		 time_stamp;	/* page time stamp */
342 	local_t		 commit;	/* write committed index */
343 	unsigned char	 data[] RB_ALIGN_DATA;	/* data of buffer page */
344 };
345 
346 struct buffer_data_read_page {
347 	unsigned		order;	/* order of the page */
348 	struct buffer_data_page	*data;	/* actual data, stored in this page */
349 };
350 
351 /*
352  * Note, the buffer_page list must be first. The buffer pages
353  * are allocated in cache lines, which means that each buffer
354  * page will be at the beginning of a cache line, and thus
355  * the least significant bits will be zero. We use this to
356  * add flags in the list struct pointers, to make the ring buffer
357  * lockless.
358  */
359 struct buffer_page {
360 	struct list_head list;		/* list of buffer pages */
361 	local_t		 write;		/* index for next write */
362 	unsigned	 read;		/* index for next read */
363 	local_t		 entries;	/* entries on this page */
364 	unsigned long	 real_end;	/* real end of data */
365 	unsigned	 order;		/* order of the page */
366 	u32		 id:30;		/* ID for external mapping */
367 	u32		 range:1;	/* Mapped via a range */
368 	struct buffer_data_page *page;	/* Actual data page */
369 };
370 
371 /*
372  * The buffer page counters, write and entries, must be reset
373  * atomically when crossing page boundaries. To synchronize this
374  * update, two counters are inserted into the number. One is
375  * the actual counter for the write position or count on the page.
376  *
377  * The other is a counter of updaters. Before an update happens
378  * the update partition of the counter is incremented. This will
379  * allow the updater to update the counter atomically.
380  *
381  * The counter is 20 bits, and the state data is 12.
382  */
383 #define RB_WRITE_MASK		0xfffff
384 #define RB_WRITE_INTCNT		(1 << 20)
385 
rb_init_page(struct buffer_data_page * bpage)386 static void rb_init_page(struct buffer_data_page *bpage)
387 {
388 	local_set(&bpage->commit, 0);
389 }
390 
rb_page_commit(struct buffer_page * bpage)391 static __always_inline unsigned int rb_page_commit(struct buffer_page *bpage)
392 {
393 	return local_read(&bpage->page->commit);
394 }
395 
free_buffer_page(struct buffer_page * bpage)396 static void free_buffer_page(struct buffer_page *bpage)
397 {
398 	/* Range pages are not to be freed */
399 	if (!bpage->range)
400 		free_pages((unsigned long)bpage->page, bpage->order);
401 	kfree(bpage);
402 }
403 
404 /*
405  * We need to fit the time_stamp delta into 27 bits.
406  */
test_time_stamp(u64 delta)407 static inline bool test_time_stamp(u64 delta)
408 {
409 	return !!(delta & TS_DELTA_TEST);
410 }
411 
412 struct rb_irq_work {
413 	struct irq_work			work;
414 	wait_queue_head_t		waiters;
415 	wait_queue_head_t		full_waiters;
416 	atomic_t			seq;
417 	bool				waiters_pending;
418 	bool				full_waiters_pending;
419 	bool				wakeup_full;
420 };
421 
422 /*
423  * Structure to hold event state and handle nested events.
424  */
425 struct rb_event_info {
426 	u64			ts;
427 	u64			delta;
428 	u64			before;
429 	u64			after;
430 	unsigned long		length;
431 	struct buffer_page	*tail_page;
432 	int			add_timestamp;
433 };
434 
435 /*
436  * Used for the add_timestamp
437  *  NONE
438  *  EXTEND - wants a time extend
439  *  ABSOLUTE - the buffer requests all events to have absolute time stamps
440  *  FORCE - force a full time stamp.
441  */
442 enum {
443 	RB_ADD_STAMP_NONE		= 0,
444 	RB_ADD_STAMP_EXTEND		= BIT(1),
445 	RB_ADD_STAMP_ABSOLUTE		= BIT(2),
446 	RB_ADD_STAMP_FORCE		= BIT(3)
447 };
448 /*
449  * Used for which event context the event is in.
450  *  TRANSITION = 0
451  *  NMI     = 1
452  *  IRQ     = 2
453  *  SOFTIRQ = 3
454  *  NORMAL  = 4
455  *
456  * See trace_recursive_lock() comment below for more details.
457  */
458 enum {
459 	RB_CTX_TRANSITION,
460 	RB_CTX_NMI,
461 	RB_CTX_IRQ,
462 	RB_CTX_SOFTIRQ,
463 	RB_CTX_NORMAL,
464 	RB_CTX_MAX
465 };
466 
467 struct rb_time_struct {
468 	local64_t	time;
469 };
470 typedef struct rb_time_struct rb_time_t;
471 
472 #define MAX_NEST	5
473 
474 /*
475  * head_page == tail_page && head == tail then buffer is empty.
476  */
477 struct ring_buffer_per_cpu {
478 	int				cpu;
479 	atomic_t			record_disabled;
480 	atomic_t			resize_disabled;
481 	struct trace_buffer	*buffer;
482 	raw_spinlock_t			reader_lock;	/* serialize readers */
483 	arch_spinlock_t			lock;
484 	struct lock_class_key		lock_key;
485 	struct buffer_data_page		*free_page;
486 	unsigned long			nr_pages;
487 	unsigned int			current_context;
488 	struct list_head		*pages;
489 	/* pages generation counter, incremented when the list changes */
490 	unsigned long			cnt;
491 	struct buffer_page		*head_page;	/* read from head */
492 	struct buffer_page		*tail_page;	/* write to tail */
493 	struct buffer_page		*commit_page;	/* committed pages */
494 	struct buffer_page		*reader_page;
495 	unsigned long			lost_events;
496 	unsigned long			last_overrun;
497 	unsigned long			nest;
498 	local_t				entries_bytes;
499 	local_t				entries;
500 	local_t				overrun;
501 	local_t				commit_overrun;
502 	local_t				dropped_events;
503 	local_t				committing;
504 	local_t				commits;
505 	local_t				pages_touched;
506 	local_t				pages_lost;
507 	local_t				pages_read;
508 	long				last_pages_touch;
509 	size_t				shortest_full;
510 	unsigned long			read;
511 	unsigned long			read_bytes;
512 	rb_time_t			write_stamp;
513 	rb_time_t			before_stamp;
514 	u64				event_stamp[MAX_NEST];
515 	u64				read_stamp;
516 	/* pages removed since last reset */
517 	unsigned long			pages_removed;
518 
519 	unsigned int			mapped;
520 	unsigned int			user_mapped;	/* user space mapping */
521 	struct mutex			mapping_lock;
522 	unsigned long			*subbuf_ids;	/* ID to subbuf VA */
523 	struct trace_buffer_meta	*meta_page;
524 	struct ring_buffer_cpu_meta	*ring_meta;
525 
526 	/* ring buffer pages to update, > 0 to add, < 0 to remove */
527 	long				nr_pages_to_update;
528 	struct list_head		new_pages; /* new pages to add */
529 	struct work_struct		update_pages_work;
530 	struct completion		update_done;
531 
532 	struct rb_irq_work		irq_work;
533 };
534 
535 struct trace_buffer {
536 	unsigned			flags;
537 	int				cpus;
538 	atomic_t			record_disabled;
539 	atomic_t			resizing;
540 	cpumask_var_t			cpumask;
541 
542 	struct lock_class_key		*reader_lock_key;
543 
544 	struct mutex			mutex;
545 
546 	struct ring_buffer_per_cpu	**buffers;
547 
548 	struct hlist_node		node;
549 	u64				(*clock)(void);
550 
551 	struct rb_irq_work		irq_work;
552 	bool				time_stamp_abs;
553 
554 	unsigned long			range_addr_start;
555 	unsigned long			range_addr_end;
556 
557 	struct ring_buffer_meta		*meta;
558 
559 	unsigned int			subbuf_size;
560 	unsigned int			subbuf_order;
561 	unsigned int			max_data_size;
562 };
563 
564 struct ring_buffer_iter {
565 	struct ring_buffer_per_cpu	*cpu_buffer;
566 	unsigned long			head;
567 	unsigned long			next_event;
568 	struct buffer_page		*head_page;
569 	struct buffer_page		*cache_reader_page;
570 	unsigned long			cache_read;
571 	unsigned long			cache_pages_removed;
572 	u64				read_stamp;
573 	u64				page_stamp;
574 	struct ring_buffer_event	*event;
575 	size_t				event_size;
576 	int				missed_events;
577 };
578 
ring_buffer_print_page_header(struct trace_buffer * buffer,struct trace_seq * s)579 int ring_buffer_print_page_header(struct trace_buffer *buffer, struct trace_seq *s)
580 {
581 	struct buffer_data_page field;
582 
583 	trace_seq_printf(s, "\tfield: u64 timestamp;\t"
584 			 "offset:0;\tsize:%u;\tsigned:%u;\n",
585 			 (unsigned int)sizeof(field.time_stamp),
586 			 (unsigned int)is_signed_type(u64));
587 
588 	trace_seq_printf(s, "\tfield: local_t commit;\t"
589 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
590 			 (unsigned int)offsetof(typeof(field), commit),
591 			 (unsigned int)sizeof(field.commit),
592 			 (unsigned int)is_signed_type(long));
593 
594 	trace_seq_printf(s, "\tfield: int overwrite;\t"
595 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
596 			 (unsigned int)offsetof(typeof(field), commit),
597 			 1,
598 			 (unsigned int)is_signed_type(long));
599 
600 	trace_seq_printf(s, "\tfield: char data;\t"
601 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
602 			 (unsigned int)offsetof(typeof(field), data),
603 			 (unsigned int)buffer->subbuf_size,
604 			 (unsigned int)is_signed_type(char));
605 
606 	return !trace_seq_has_overflowed(s);
607 }
608 
rb_time_read(rb_time_t * t,u64 * ret)609 static inline void rb_time_read(rb_time_t *t, u64 *ret)
610 {
611 	*ret = local64_read(&t->time);
612 }
rb_time_set(rb_time_t * t,u64 val)613 static void rb_time_set(rb_time_t *t, u64 val)
614 {
615 	local64_set(&t->time, val);
616 }
617 
618 /*
619  * Enable this to make sure that the event passed to
620  * ring_buffer_event_time_stamp() is not committed and also
621  * is on the buffer that it passed in.
622  */
623 //#define RB_VERIFY_EVENT
624 #ifdef RB_VERIFY_EVENT
625 static struct list_head *rb_list_head(struct list_head *list);
verify_event(struct ring_buffer_per_cpu * cpu_buffer,void * event)626 static void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
627 			 void *event)
628 {
629 	struct buffer_page *page = cpu_buffer->commit_page;
630 	struct buffer_page *tail_page = READ_ONCE(cpu_buffer->tail_page);
631 	struct list_head *next;
632 	long commit, write;
633 	unsigned long addr = (unsigned long)event;
634 	bool done = false;
635 	int stop = 0;
636 
637 	/* Make sure the event exists and is not committed yet */
638 	do {
639 		if (page == tail_page || WARN_ON_ONCE(stop++ > 100))
640 			done = true;
641 		commit = local_read(&page->page->commit);
642 		write = local_read(&page->write);
643 		if (addr >= (unsigned long)&page->page->data[commit] &&
644 		    addr < (unsigned long)&page->page->data[write])
645 			return;
646 
647 		next = rb_list_head(page->list.next);
648 		page = list_entry(next, struct buffer_page, list);
649 	} while (!done);
650 	WARN_ON_ONCE(1);
651 }
652 #else
verify_event(struct ring_buffer_per_cpu * cpu_buffer,void * event)653 static inline void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
654 			 void *event)
655 {
656 }
657 #endif
658 
659 /*
660  * The absolute time stamp drops the 5 MSBs and some clocks may
661  * require them. The rb_fix_abs_ts() will take a previous full
662  * time stamp, and add the 5 MSB of that time stamp on to the
663  * saved absolute time stamp. Then they are compared in case of
664  * the unlikely event that the latest time stamp incremented
665  * the 5 MSB.
666  */
rb_fix_abs_ts(u64 abs,u64 save_ts)667 static inline u64 rb_fix_abs_ts(u64 abs, u64 save_ts)
668 {
669 	if (save_ts & TS_MSB) {
670 		abs |= save_ts & TS_MSB;
671 		/* Check for overflow */
672 		if (unlikely(abs < save_ts))
673 			abs += 1ULL << 59;
674 	}
675 	return abs;
676 }
677 
678 static inline u64 rb_time_stamp(struct trace_buffer *buffer);
679 
680 /**
681  * ring_buffer_event_time_stamp - return the event's current time stamp
682  * @buffer: The buffer that the event is on
683  * @event: the event to get the time stamp of
684  *
685  * Note, this must be called after @event is reserved, and before it is
686  * committed to the ring buffer. And must be called from the same
687  * context where the event was reserved (normal, softirq, irq, etc).
688  *
689  * Returns the time stamp associated with the current event.
690  * If the event has an extended time stamp, then that is used as
691  * the time stamp to return.
692  * In the highly unlikely case that the event was nested more than
693  * the max nesting, then the write_stamp of the buffer is returned,
694  * otherwise  current time is returned, but that really neither of
695  * the last two cases should ever happen.
696  */
ring_buffer_event_time_stamp(struct trace_buffer * buffer,struct ring_buffer_event * event)697 u64 ring_buffer_event_time_stamp(struct trace_buffer *buffer,
698 				 struct ring_buffer_event *event)
699 {
700 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[smp_processor_id()];
701 	unsigned int nest;
702 	u64 ts;
703 
704 	/* If the event includes an absolute time, then just use that */
705 	if (event->type_len == RINGBUF_TYPE_TIME_STAMP) {
706 		ts = rb_event_time_stamp(event);
707 		return rb_fix_abs_ts(ts, cpu_buffer->tail_page->page->time_stamp);
708 	}
709 
710 	nest = local_read(&cpu_buffer->committing);
711 	verify_event(cpu_buffer, event);
712 	if (WARN_ON_ONCE(!nest))
713 		goto fail;
714 
715 	/* Read the current saved nesting level time stamp */
716 	if (likely(--nest < MAX_NEST))
717 		return cpu_buffer->event_stamp[nest];
718 
719 	/* Shouldn't happen, warn if it does */
720 	WARN_ONCE(1, "nest (%d) greater than max", nest);
721 
722  fail:
723 	rb_time_read(&cpu_buffer->write_stamp, &ts);
724 
725 	return ts;
726 }
727 
728 /**
729  * ring_buffer_nr_dirty_pages - get the number of used pages in the ring buffer
730  * @buffer: The ring_buffer to get the number of pages from
731  * @cpu: The cpu of the ring_buffer to get the number of pages from
732  *
733  * Returns the number of pages that have content in the ring buffer.
734  */
ring_buffer_nr_dirty_pages(struct trace_buffer * buffer,int cpu)735 size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu)
736 {
737 	size_t read;
738 	size_t lost;
739 	size_t cnt;
740 
741 	read = local_read(&buffer->buffers[cpu]->pages_read);
742 	lost = local_read(&buffer->buffers[cpu]->pages_lost);
743 	cnt = local_read(&buffer->buffers[cpu]->pages_touched);
744 
745 	if (WARN_ON_ONCE(cnt < lost))
746 		return 0;
747 
748 	cnt -= lost;
749 
750 	/* The reader can read an empty page, but not more than that */
751 	if (cnt < read) {
752 		WARN_ON_ONCE(read > cnt + 1);
753 		return 0;
754 	}
755 
756 	return cnt - read;
757 }
758 
full_hit(struct trace_buffer * buffer,int cpu,int full)759 static __always_inline bool full_hit(struct trace_buffer *buffer, int cpu, int full)
760 {
761 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
762 	size_t nr_pages;
763 	size_t dirty;
764 
765 	nr_pages = cpu_buffer->nr_pages;
766 	if (!nr_pages || !full)
767 		return true;
768 
769 	/*
770 	 * Add one as dirty will never equal nr_pages, as the sub-buffer
771 	 * that the writer is on is not counted as dirty.
772 	 * This is needed if "buffer_percent" is set to 100.
773 	 */
774 	dirty = ring_buffer_nr_dirty_pages(buffer, cpu) + 1;
775 
776 	return (dirty * 100) >= (full * nr_pages);
777 }
778 
779 /*
780  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
781  *
782  * Schedules a delayed work to wake up any task that is blocked on the
783  * ring buffer waiters queue.
784  */
rb_wake_up_waiters(struct irq_work * work)785 static void rb_wake_up_waiters(struct irq_work *work)
786 {
787 	struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
788 
789 	/* For waiters waiting for the first wake up */
790 	(void)atomic_fetch_inc_release(&rbwork->seq);
791 
792 	wake_up_all(&rbwork->waiters);
793 	if (rbwork->full_waiters_pending || rbwork->wakeup_full) {
794 		/* Only cpu_buffer sets the above flags */
795 		struct ring_buffer_per_cpu *cpu_buffer =
796 			container_of(rbwork, struct ring_buffer_per_cpu, irq_work);
797 
798 		/* Called from interrupt context */
799 		raw_spin_lock(&cpu_buffer->reader_lock);
800 		rbwork->wakeup_full = false;
801 		rbwork->full_waiters_pending = false;
802 
803 		/* Waking up all waiters, they will reset the shortest full */
804 		cpu_buffer->shortest_full = 0;
805 		raw_spin_unlock(&cpu_buffer->reader_lock);
806 
807 		wake_up_all(&rbwork->full_waiters);
808 	}
809 }
810 
811 /**
812  * ring_buffer_wake_waiters - wake up any waiters on this ring buffer
813  * @buffer: The ring buffer to wake waiters on
814  * @cpu: The CPU buffer to wake waiters on
815  *
816  * In the case of a file that represents a ring buffer is closing,
817  * it is prudent to wake up any waiters that are on this.
818  */
ring_buffer_wake_waiters(struct trace_buffer * buffer,int cpu)819 void ring_buffer_wake_waiters(struct trace_buffer *buffer, int cpu)
820 {
821 	struct ring_buffer_per_cpu *cpu_buffer;
822 	struct rb_irq_work *rbwork;
823 
824 	if (!buffer)
825 		return;
826 
827 	if (cpu == RING_BUFFER_ALL_CPUS) {
828 
829 		/* Wake up individual ones too. One level recursion */
830 		for_each_buffer_cpu(buffer, cpu)
831 			ring_buffer_wake_waiters(buffer, cpu);
832 
833 		rbwork = &buffer->irq_work;
834 	} else {
835 		if (WARN_ON_ONCE(!buffer->buffers))
836 			return;
837 		if (WARN_ON_ONCE(cpu >= nr_cpu_ids))
838 			return;
839 
840 		cpu_buffer = buffer->buffers[cpu];
841 		/* The CPU buffer may not have been initialized yet */
842 		if (!cpu_buffer)
843 			return;
844 		rbwork = &cpu_buffer->irq_work;
845 	}
846 
847 	/* This can be called in any context */
848 	irq_work_queue(&rbwork->work);
849 }
850 
rb_watermark_hit(struct trace_buffer * buffer,int cpu,int full)851 static bool rb_watermark_hit(struct trace_buffer *buffer, int cpu, int full)
852 {
853 	struct ring_buffer_per_cpu *cpu_buffer;
854 	bool ret = false;
855 
856 	/* Reads of all CPUs always waits for any data */
857 	if (cpu == RING_BUFFER_ALL_CPUS)
858 		return !ring_buffer_empty(buffer);
859 
860 	cpu_buffer = buffer->buffers[cpu];
861 
862 	if (!ring_buffer_empty_cpu(buffer, cpu)) {
863 		unsigned long flags;
864 		bool pagebusy;
865 
866 		if (!full)
867 			return true;
868 
869 		raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
870 		pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
871 		ret = !pagebusy && full_hit(buffer, cpu, full);
872 
873 		if (!ret && (!cpu_buffer->shortest_full ||
874 			     cpu_buffer->shortest_full > full)) {
875 		    cpu_buffer->shortest_full = full;
876 		}
877 		raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
878 	}
879 	return ret;
880 }
881 
882 static inline bool
rb_wait_cond(struct rb_irq_work * rbwork,struct trace_buffer * buffer,int cpu,int full,ring_buffer_cond_fn cond,void * data)883 rb_wait_cond(struct rb_irq_work *rbwork, struct trace_buffer *buffer,
884 	     int cpu, int full, ring_buffer_cond_fn cond, void *data)
885 {
886 	if (rb_watermark_hit(buffer, cpu, full))
887 		return true;
888 
889 	if (cond(data))
890 		return true;
891 
892 	/*
893 	 * The events can happen in critical sections where
894 	 * checking a work queue can cause deadlocks.
895 	 * After adding a task to the queue, this flag is set
896 	 * only to notify events to try to wake up the queue
897 	 * using irq_work.
898 	 *
899 	 * We don't clear it even if the buffer is no longer
900 	 * empty. The flag only causes the next event to run
901 	 * irq_work to do the work queue wake up. The worse
902 	 * that can happen if we race with !trace_empty() is that
903 	 * an event will cause an irq_work to try to wake up
904 	 * an empty queue.
905 	 *
906 	 * There's no reason to protect this flag either, as
907 	 * the work queue and irq_work logic will do the necessary
908 	 * synchronization for the wake ups. The only thing
909 	 * that is necessary is that the wake up happens after
910 	 * a task has been queued. It's OK for spurious wake ups.
911 	 */
912 	if (full)
913 		rbwork->full_waiters_pending = true;
914 	else
915 		rbwork->waiters_pending = true;
916 
917 	return false;
918 }
919 
920 struct rb_wait_data {
921 	struct rb_irq_work		*irq_work;
922 	int				seq;
923 };
924 
925 /*
926  * The default wait condition for ring_buffer_wait() is to just to exit the
927  * wait loop the first time it is woken up.
928  */
rb_wait_once(void * data)929 static bool rb_wait_once(void *data)
930 {
931 	struct rb_wait_data *rdata = data;
932 	struct rb_irq_work *rbwork = rdata->irq_work;
933 
934 	return atomic_read_acquire(&rbwork->seq) != rdata->seq;
935 }
936 
937 /**
938  * ring_buffer_wait - wait for input to the ring buffer
939  * @buffer: buffer to wait on
940  * @cpu: the cpu buffer to wait on
941  * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
942  * @cond: condition function to break out of wait (NULL to run once)
943  * @data: the data to pass to @cond.
944  *
945  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
946  * as data is added to any of the @buffer's cpu buffers. Otherwise
947  * it will wait for data to be added to a specific cpu buffer.
948  */
ring_buffer_wait(struct trace_buffer * buffer,int cpu,int full,ring_buffer_cond_fn cond,void * data)949 int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full,
950 		     ring_buffer_cond_fn cond, void *data)
951 {
952 	struct ring_buffer_per_cpu *cpu_buffer;
953 	struct wait_queue_head *waitq;
954 	struct rb_irq_work *rbwork;
955 	struct rb_wait_data rdata;
956 	int ret = 0;
957 
958 	/*
959 	 * Depending on what the caller is waiting for, either any
960 	 * data in any cpu buffer, or a specific buffer, put the
961 	 * caller on the appropriate wait queue.
962 	 */
963 	if (cpu == RING_BUFFER_ALL_CPUS) {
964 		rbwork = &buffer->irq_work;
965 		/* Full only makes sense on per cpu reads */
966 		full = 0;
967 	} else {
968 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
969 			return -ENODEV;
970 		cpu_buffer = buffer->buffers[cpu];
971 		rbwork = &cpu_buffer->irq_work;
972 	}
973 
974 	if (full)
975 		waitq = &rbwork->full_waiters;
976 	else
977 		waitq = &rbwork->waiters;
978 
979 	/* Set up to exit loop as soon as it is woken */
980 	if (!cond) {
981 		cond = rb_wait_once;
982 		rdata.irq_work = rbwork;
983 		rdata.seq = atomic_read_acquire(&rbwork->seq);
984 		data = &rdata;
985 	}
986 
987 	ret = wait_event_interruptible((*waitq),
988 				rb_wait_cond(rbwork, buffer, cpu, full, cond, data));
989 
990 	return ret;
991 }
992 
993 /**
994  * ring_buffer_poll_wait - poll on buffer input
995  * @buffer: buffer to wait on
996  * @cpu: the cpu buffer to wait on
997  * @filp: the file descriptor
998  * @poll_table: The poll descriptor
999  * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
1000  *
1001  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
1002  * as data is added to any of the @buffer's cpu buffers. Otherwise
1003  * it will wait for data to be added to a specific cpu buffer.
1004  *
1005  * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
1006  * zero otherwise.
1007  */
ring_buffer_poll_wait(struct trace_buffer * buffer,int cpu,struct file * filp,poll_table * poll_table,int full)1008 __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu,
1009 			  struct file *filp, poll_table *poll_table, int full)
1010 {
1011 	struct ring_buffer_per_cpu *cpu_buffer;
1012 	struct rb_irq_work *rbwork;
1013 
1014 	if (cpu == RING_BUFFER_ALL_CPUS) {
1015 		rbwork = &buffer->irq_work;
1016 		full = 0;
1017 	} else {
1018 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
1019 			return EPOLLERR;
1020 
1021 		cpu_buffer = buffer->buffers[cpu];
1022 		rbwork = &cpu_buffer->irq_work;
1023 	}
1024 
1025 	if (full) {
1026 		poll_wait(filp, &rbwork->full_waiters, poll_table);
1027 
1028 		if (rb_watermark_hit(buffer, cpu, full))
1029 			return EPOLLIN | EPOLLRDNORM;
1030 		/*
1031 		 * Only allow full_waiters_pending update to be seen after
1032 		 * the shortest_full is set (in rb_watermark_hit). If the
1033 		 * writer sees the full_waiters_pending flag set, it will
1034 		 * compare the amount in the ring buffer to shortest_full.
1035 		 * If the amount in the ring buffer is greater than the
1036 		 * shortest_full percent, it will call the irq_work handler
1037 		 * to wake up this list. The irq_handler will reset shortest_full
1038 		 * back to zero. That's done under the reader_lock, but
1039 		 * the below smp_mb() makes sure that the update to
1040 		 * full_waiters_pending doesn't leak up into the above.
1041 		 */
1042 		smp_mb();
1043 		rbwork->full_waiters_pending = true;
1044 		return 0;
1045 	}
1046 
1047 	poll_wait(filp, &rbwork->waiters, poll_table);
1048 	rbwork->waiters_pending = true;
1049 
1050 	/*
1051 	 * There's a tight race between setting the waiters_pending and
1052 	 * checking if the ring buffer is empty.  Once the waiters_pending bit
1053 	 * is set, the next event will wake the task up, but we can get stuck
1054 	 * if there's only a single event in.
1055 	 *
1056 	 * FIXME: Ideally, we need a memory barrier on the writer side as well,
1057 	 * but adding a memory barrier to all events will cause too much of a
1058 	 * performance hit in the fast path.  We only need a memory barrier when
1059 	 * the buffer goes from empty to having content.  But as this race is
1060 	 * extremely small, and it's not a problem if another event comes in, we
1061 	 * will fix it later.
1062 	 */
1063 	smp_mb();
1064 
1065 	if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
1066 	    (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
1067 		return EPOLLIN | EPOLLRDNORM;
1068 	return 0;
1069 }
1070 
1071 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
1072 #define RB_WARN_ON(b, cond)						\
1073 	({								\
1074 		int _____ret = unlikely(cond);				\
1075 		if (_____ret) {						\
1076 			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
1077 				struct ring_buffer_per_cpu *__b =	\
1078 					(void *)b;			\
1079 				atomic_inc(&__b->buffer->record_disabled); \
1080 			} else						\
1081 				atomic_inc(&b->record_disabled);	\
1082 			WARN_ON(1);					\
1083 		}							\
1084 		_____ret;						\
1085 	})
1086 
1087 /* Up this if you want to test the TIME_EXTENTS and normalization */
1088 #define DEBUG_SHIFT 0
1089 
rb_time_stamp(struct trace_buffer * buffer)1090 static inline u64 rb_time_stamp(struct trace_buffer *buffer)
1091 {
1092 	u64 ts;
1093 
1094 	/* Skip retpolines :-( */
1095 	if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) && likely(buffer->clock == trace_clock_local))
1096 		ts = trace_clock_local();
1097 	else
1098 		ts = buffer->clock();
1099 
1100 	/* shift to debug/test normalization and TIME_EXTENTS */
1101 	return ts << DEBUG_SHIFT;
1102 }
1103 
ring_buffer_time_stamp(struct trace_buffer * buffer)1104 u64 ring_buffer_time_stamp(struct trace_buffer *buffer)
1105 {
1106 	u64 time;
1107 
1108 	preempt_disable_notrace();
1109 	time = rb_time_stamp(buffer);
1110 	preempt_enable_notrace();
1111 
1112 	return time;
1113 }
1114 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
1115 
ring_buffer_normalize_time_stamp(struct trace_buffer * buffer,int cpu,u64 * ts)1116 void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer,
1117 				      int cpu, u64 *ts)
1118 {
1119 	/* Just stupid testing the normalize function and deltas */
1120 	*ts >>= DEBUG_SHIFT;
1121 }
1122 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
1123 
1124 /*
1125  * Making the ring buffer lockless makes things tricky.
1126  * Although writes only happen on the CPU that they are on,
1127  * and they only need to worry about interrupts. Reads can
1128  * happen on any CPU.
1129  *
1130  * The reader page is always off the ring buffer, but when the
1131  * reader finishes with a page, it needs to swap its page with
1132  * a new one from the buffer. The reader needs to take from
1133  * the head (writes go to the tail). But if a writer is in overwrite
1134  * mode and wraps, it must push the head page forward.
1135  *
1136  * Here lies the problem.
1137  *
1138  * The reader must be careful to replace only the head page, and
1139  * not another one. As described at the top of the file in the
1140  * ASCII art, the reader sets its old page to point to the next
1141  * page after head. It then sets the page after head to point to
1142  * the old reader page. But if the writer moves the head page
1143  * during this operation, the reader could end up with the tail.
1144  *
1145  * We use cmpxchg to help prevent this race. We also do something
1146  * special with the page before head. We set the LSB to 1.
1147  *
1148  * When the writer must push the page forward, it will clear the
1149  * bit that points to the head page, move the head, and then set
1150  * the bit that points to the new head page.
1151  *
1152  * We also don't want an interrupt coming in and moving the head
1153  * page on another writer. Thus we use the second LSB to catch
1154  * that too. Thus:
1155  *
1156  * head->list->prev->next        bit 1          bit 0
1157  *                              -------        -------
1158  * Normal page                     0              0
1159  * Points to head page             0              1
1160  * New head page                   1              0
1161  *
1162  * Note we can not trust the prev pointer of the head page, because:
1163  *
1164  * +----+       +-----+        +-----+
1165  * |    |------>|  T  |---X--->|  N  |
1166  * |    |<------|     |        |     |
1167  * +----+       +-----+        +-----+
1168  *   ^                           ^ |
1169  *   |          +-----+          | |
1170  *   +----------|  R  |----------+ |
1171  *              |     |<-----------+
1172  *              +-----+
1173  *
1174  * Key:  ---X-->  HEAD flag set in pointer
1175  *         T      Tail page
1176  *         R      Reader page
1177  *         N      Next page
1178  *
1179  * (see __rb_reserve_next() to see where this happens)
1180  *
1181  *  What the above shows is that the reader just swapped out
1182  *  the reader page with a page in the buffer, but before it
1183  *  could make the new header point back to the new page added
1184  *  it was preempted by a writer. The writer moved forward onto
1185  *  the new page added by the reader and is about to move forward
1186  *  again.
1187  *
1188  *  You can see, it is legitimate for the previous pointer of
1189  *  the head (or any page) not to point back to itself. But only
1190  *  temporarily.
1191  */
1192 
1193 #define RB_PAGE_NORMAL		0UL
1194 #define RB_PAGE_HEAD		1UL
1195 #define RB_PAGE_UPDATE		2UL
1196 
1197 
1198 #define RB_FLAG_MASK		3UL
1199 
1200 /* PAGE_MOVED is not part of the mask */
1201 #define RB_PAGE_MOVED		4UL
1202 
1203 /*
1204  * rb_list_head - remove any bit
1205  */
rb_list_head(struct list_head * list)1206 static struct list_head *rb_list_head(struct list_head *list)
1207 {
1208 	unsigned long val = (unsigned long)list;
1209 
1210 	return (struct list_head *)(val & ~RB_FLAG_MASK);
1211 }
1212 
1213 /*
1214  * rb_is_head_page - test if the given page is the head page
1215  *
1216  * Because the reader may move the head_page pointer, we can
1217  * not trust what the head page is (it may be pointing to
1218  * the reader page). But if the next page is a header page,
1219  * its flags will be non zero.
1220  */
1221 static inline int
rb_is_head_page(struct buffer_page * page,struct list_head * list)1222 rb_is_head_page(struct buffer_page *page, struct list_head *list)
1223 {
1224 	unsigned long val;
1225 
1226 	val = (unsigned long)list->next;
1227 
1228 	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
1229 		return RB_PAGE_MOVED;
1230 
1231 	return val & RB_FLAG_MASK;
1232 }
1233 
1234 /*
1235  * rb_is_reader_page
1236  *
1237  * The unique thing about the reader page, is that, if the
1238  * writer is ever on it, the previous pointer never points
1239  * back to the reader page.
1240  */
rb_is_reader_page(struct buffer_page * page)1241 static bool rb_is_reader_page(struct buffer_page *page)
1242 {
1243 	struct list_head *list = page->list.prev;
1244 
1245 	return rb_list_head(list->next) != &page->list;
1246 }
1247 
1248 /*
1249  * rb_set_list_to_head - set a list_head to be pointing to head.
1250  */
rb_set_list_to_head(struct list_head * list)1251 static void rb_set_list_to_head(struct list_head *list)
1252 {
1253 	unsigned long *ptr;
1254 
1255 	ptr = (unsigned long *)&list->next;
1256 	*ptr |= RB_PAGE_HEAD;
1257 	*ptr &= ~RB_PAGE_UPDATE;
1258 }
1259 
1260 /*
1261  * rb_head_page_activate - sets up head page
1262  */
rb_head_page_activate(struct ring_buffer_per_cpu * cpu_buffer)1263 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
1264 {
1265 	struct buffer_page *head;
1266 
1267 	head = cpu_buffer->head_page;
1268 	if (!head)
1269 		return;
1270 
1271 	/*
1272 	 * Set the previous list pointer to have the HEAD flag.
1273 	 */
1274 	rb_set_list_to_head(head->list.prev);
1275 
1276 	if (cpu_buffer->ring_meta) {
1277 		struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta;
1278 		meta->head_buffer = (unsigned long)head->page;
1279 	}
1280 }
1281 
rb_list_head_clear(struct list_head * list)1282 static void rb_list_head_clear(struct list_head *list)
1283 {
1284 	unsigned long *ptr = (unsigned long *)&list->next;
1285 
1286 	*ptr &= ~RB_FLAG_MASK;
1287 }
1288 
1289 /*
1290  * rb_head_page_deactivate - clears head page ptr (for free list)
1291  */
1292 static void
rb_head_page_deactivate(struct ring_buffer_per_cpu * cpu_buffer)1293 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
1294 {
1295 	struct list_head *hd;
1296 
1297 	/* Go through the whole list and clear any pointers found. */
1298 	rb_list_head_clear(cpu_buffer->pages);
1299 
1300 	list_for_each(hd, cpu_buffer->pages)
1301 		rb_list_head_clear(hd);
1302 }
1303 
rb_head_page_set(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag,int new_flag)1304 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
1305 			    struct buffer_page *head,
1306 			    struct buffer_page *prev,
1307 			    int old_flag, int new_flag)
1308 {
1309 	struct list_head *list;
1310 	unsigned long val = (unsigned long)&head->list;
1311 	unsigned long ret;
1312 
1313 	list = &prev->list;
1314 
1315 	val &= ~RB_FLAG_MASK;
1316 
1317 	ret = cmpxchg((unsigned long *)&list->next,
1318 		      val | old_flag, val | new_flag);
1319 
1320 	/* check if the reader took the page */
1321 	if ((ret & ~RB_FLAG_MASK) != val)
1322 		return RB_PAGE_MOVED;
1323 
1324 	return ret & RB_FLAG_MASK;
1325 }
1326 
rb_head_page_set_update(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag)1327 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
1328 				   struct buffer_page *head,
1329 				   struct buffer_page *prev,
1330 				   int old_flag)
1331 {
1332 	return rb_head_page_set(cpu_buffer, head, prev,
1333 				old_flag, RB_PAGE_UPDATE);
1334 }
1335 
rb_head_page_set_head(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag)1336 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
1337 				 struct buffer_page *head,
1338 				 struct buffer_page *prev,
1339 				 int old_flag)
1340 {
1341 	return rb_head_page_set(cpu_buffer, head, prev,
1342 				old_flag, RB_PAGE_HEAD);
1343 }
1344 
rb_head_page_set_normal(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag)1345 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
1346 				   struct buffer_page *head,
1347 				   struct buffer_page *prev,
1348 				   int old_flag)
1349 {
1350 	return rb_head_page_set(cpu_buffer, head, prev,
1351 				old_flag, RB_PAGE_NORMAL);
1352 }
1353 
rb_inc_page(struct buffer_page ** bpage)1354 static inline void rb_inc_page(struct buffer_page **bpage)
1355 {
1356 	struct list_head *p = rb_list_head((*bpage)->list.next);
1357 
1358 	*bpage = list_entry(p, struct buffer_page, list);
1359 }
1360 
rb_dec_page(struct buffer_page ** bpage)1361 static inline void rb_dec_page(struct buffer_page **bpage)
1362 {
1363 	struct list_head *p = rb_list_head((*bpage)->list.prev);
1364 
1365 	*bpage = list_entry(p, struct buffer_page, list);
1366 }
1367 
1368 static struct buffer_page *
rb_set_head_page(struct ring_buffer_per_cpu * cpu_buffer)1369 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1370 {
1371 	struct buffer_page *head;
1372 	struct buffer_page *page;
1373 	struct list_head *list;
1374 	int i;
1375 
1376 	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1377 		return NULL;
1378 
1379 	/* sanity check */
1380 	list = cpu_buffer->pages;
1381 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1382 		return NULL;
1383 
1384 	page = head = cpu_buffer->head_page;
1385 	/*
1386 	 * It is possible that the writer moves the header behind
1387 	 * where we started, and we miss in one loop.
1388 	 * A second loop should grab the header, but we'll do
1389 	 * three loops just because I'm paranoid.
1390 	 */
1391 	for (i = 0; i < 3; i++) {
1392 		do {
1393 			if (rb_is_head_page(page, page->list.prev)) {
1394 				cpu_buffer->head_page = page;
1395 				return page;
1396 			}
1397 			rb_inc_page(&page);
1398 		} while (page != head);
1399 	}
1400 
1401 	RB_WARN_ON(cpu_buffer, 1);
1402 
1403 	return NULL;
1404 }
1405 
rb_head_page_replace(struct buffer_page * old,struct buffer_page * new)1406 static bool rb_head_page_replace(struct buffer_page *old,
1407 				struct buffer_page *new)
1408 {
1409 	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1410 	unsigned long val;
1411 
1412 	val = *ptr & ~RB_FLAG_MASK;
1413 	val |= RB_PAGE_HEAD;
1414 
1415 	return try_cmpxchg(ptr, &val, (unsigned long)&new->list);
1416 }
1417 
1418 /*
1419  * rb_tail_page_update - move the tail page forward
1420  */
rb_tail_page_update(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * tail_page,struct buffer_page * next_page)1421 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1422 			       struct buffer_page *tail_page,
1423 			       struct buffer_page *next_page)
1424 {
1425 	unsigned long old_entries;
1426 	unsigned long old_write;
1427 
1428 	/*
1429 	 * The tail page now needs to be moved forward.
1430 	 *
1431 	 * We need to reset the tail page, but without messing
1432 	 * with possible erasing of data brought in by interrupts
1433 	 * that have moved the tail page and are currently on it.
1434 	 *
1435 	 * We add a counter to the write field to denote this.
1436 	 */
1437 	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1438 	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1439 
1440 	/*
1441 	 * Just make sure we have seen our old_write and synchronize
1442 	 * with any interrupts that come in.
1443 	 */
1444 	barrier();
1445 
1446 	/*
1447 	 * If the tail page is still the same as what we think
1448 	 * it is, then it is up to us to update the tail
1449 	 * pointer.
1450 	 */
1451 	if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1452 		/* Zero the write counter */
1453 		unsigned long val = old_write & ~RB_WRITE_MASK;
1454 		unsigned long eval = old_entries & ~RB_WRITE_MASK;
1455 
1456 		/*
1457 		 * This will only succeed if an interrupt did
1458 		 * not come in and change it. In which case, we
1459 		 * do not want to modify it.
1460 		 *
1461 		 * We add (void) to let the compiler know that we do not care
1462 		 * about the return value of these functions. We use the
1463 		 * cmpxchg to only update if an interrupt did not already
1464 		 * do it for us. If the cmpxchg fails, we don't care.
1465 		 */
1466 		(void)local_cmpxchg(&next_page->write, old_write, val);
1467 		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
1468 
1469 		/*
1470 		 * No need to worry about races with clearing out the commit.
1471 		 * it only can increment when a commit takes place. But that
1472 		 * only happens in the outer most nested commit.
1473 		 */
1474 		local_set(&next_page->page->commit, 0);
1475 
1476 		/* Either we update tail_page or an interrupt does */
1477 		if (try_cmpxchg(&cpu_buffer->tail_page, &tail_page, next_page))
1478 			local_inc(&cpu_buffer->pages_touched);
1479 	}
1480 }
1481 
rb_check_bpage(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * bpage)1482 static void rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1483 			  struct buffer_page *bpage)
1484 {
1485 	unsigned long val = (unsigned long)bpage;
1486 
1487 	RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK);
1488 }
1489 
rb_check_links(struct ring_buffer_per_cpu * cpu_buffer,struct list_head * list)1490 static bool rb_check_links(struct ring_buffer_per_cpu *cpu_buffer,
1491 			   struct list_head *list)
1492 {
1493 	if (RB_WARN_ON(cpu_buffer,
1494 		       rb_list_head(rb_list_head(list->next)->prev) != list))
1495 		return false;
1496 
1497 	if (RB_WARN_ON(cpu_buffer,
1498 		       rb_list_head(rb_list_head(list->prev)->next) != list))
1499 		return false;
1500 
1501 	return true;
1502 }
1503 
1504 /**
1505  * rb_check_pages - integrity check of buffer pages
1506  * @cpu_buffer: CPU buffer with pages to test
1507  *
1508  * As a safety measure we check to make sure the data pages have not
1509  * been corrupted.
1510  */
rb_check_pages(struct ring_buffer_per_cpu * cpu_buffer)1511 static void rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1512 {
1513 	struct list_head *head, *tmp;
1514 	unsigned long buffer_cnt;
1515 	unsigned long flags;
1516 	int nr_loops = 0;
1517 
1518 	/*
1519 	 * Walk the linked list underpinning the ring buffer and validate all
1520 	 * its next and prev links.
1521 	 *
1522 	 * The check acquires the reader_lock to avoid concurrent processing
1523 	 * with code that could be modifying the list. However, the lock cannot
1524 	 * be held for the entire duration of the walk, as this would make the
1525 	 * time when interrupts are disabled non-deterministic, dependent on the
1526 	 * ring buffer size. Therefore, the code releases and re-acquires the
1527 	 * lock after checking each page. The ring_buffer_per_cpu.cnt variable
1528 	 * is then used to detect if the list was modified while the lock was
1529 	 * not held, in which case the check needs to be restarted.
1530 	 *
1531 	 * The code attempts to perform the check at most three times before
1532 	 * giving up. This is acceptable because this is only a self-validation
1533 	 * to detect problems early on. In practice, the list modification
1534 	 * operations are fairly spaced, and so this check typically succeeds at
1535 	 * most on the second try.
1536 	 */
1537 again:
1538 	if (++nr_loops > 3)
1539 		return;
1540 
1541 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1542 	head = rb_list_head(cpu_buffer->pages);
1543 	if (!rb_check_links(cpu_buffer, head))
1544 		goto out_locked;
1545 	buffer_cnt = cpu_buffer->cnt;
1546 	tmp = head;
1547 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1548 
1549 	while (true) {
1550 		raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1551 
1552 		if (buffer_cnt != cpu_buffer->cnt) {
1553 			/* The list was updated, try again. */
1554 			raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1555 			goto again;
1556 		}
1557 
1558 		tmp = rb_list_head(tmp->next);
1559 		if (tmp == head)
1560 			/* The iteration circled back, all is done. */
1561 			goto out_locked;
1562 
1563 		if (!rb_check_links(cpu_buffer, tmp))
1564 			goto out_locked;
1565 
1566 		raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1567 	}
1568 
1569 out_locked:
1570 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1571 }
1572 
1573 /*
1574  * Take an address, add the meta data size as well as the array of
1575  * array subbuffer indexes, then align it to a subbuffer size.
1576  *
1577  * This is used to help find the next per cpu subbuffer within a mapped range.
1578  */
1579 static unsigned long
rb_range_align_subbuf(unsigned long addr,int subbuf_size,int nr_subbufs)1580 rb_range_align_subbuf(unsigned long addr, int subbuf_size, int nr_subbufs)
1581 {
1582 	addr += sizeof(struct ring_buffer_cpu_meta) +
1583 		sizeof(int) * nr_subbufs;
1584 	return ALIGN(addr, subbuf_size);
1585 }
1586 
1587 /*
1588  * Return the ring_buffer_meta for a given @cpu.
1589  */
rb_range_meta(struct trace_buffer * buffer,int nr_pages,int cpu)1590 static void *rb_range_meta(struct trace_buffer *buffer, int nr_pages, int cpu)
1591 {
1592 	int subbuf_size = buffer->subbuf_size + BUF_PAGE_HDR_SIZE;
1593 	struct ring_buffer_cpu_meta *meta;
1594 	struct ring_buffer_meta *bmeta;
1595 	unsigned long ptr;
1596 	int nr_subbufs;
1597 
1598 	bmeta = buffer->meta;
1599 	if (!bmeta)
1600 		return NULL;
1601 
1602 	ptr = (unsigned long)bmeta + bmeta->buffers_offset;
1603 	meta = (struct ring_buffer_cpu_meta *)ptr;
1604 
1605 	/* When nr_pages passed in is zero, the first meta has already been initialized */
1606 	if (!nr_pages) {
1607 		nr_subbufs = meta->nr_subbufs;
1608 	} else {
1609 		/* Include the reader page */
1610 		nr_subbufs = nr_pages + 1;
1611 	}
1612 
1613 	/*
1614 	 * The first chunk may not be subbuffer aligned, where as
1615 	 * the rest of the chunks are.
1616 	 */
1617 	if (cpu) {
1618 		ptr = rb_range_align_subbuf(ptr, subbuf_size, nr_subbufs);
1619 		ptr += subbuf_size * nr_subbufs;
1620 
1621 		/* We can use multiplication to find chunks greater than 1 */
1622 		if (cpu > 1) {
1623 			unsigned long size;
1624 			unsigned long p;
1625 
1626 			/* Save the beginning of this CPU chunk */
1627 			p = ptr;
1628 			ptr = rb_range_align_subbuf(ptr, subbuf_size, nr_subbufs);
1629 			ptr += subbuf_size * nr_subbufs;
1630 
1631 			/* Now all chunks after this are the same size */
1632 			size = ptr - p;
1633 			ptr += size * (cpu - 2);
1634 		}
1635 	}
1636 	return (void *)ptr;
1637 }
1638 
1639 /* Return the start of subbufs given the meta pointer */
rb_subbufs_from_meta(struct ring_buffer_cpu_meta * meta)1640 static void *rb_subbufs_from_meta(struct ring_buffer_cpu_meta *meta)
1641 {
1642 	int subbuf_size = meta->subbuf_size;
1643 	unsigned long ptr;
1644 
1645 	ptr = (unsigned long)meta;
1646 	ptr = rb_range_align_subbuf(ptr, subbuf_size, meta->nr_subbufs);
1647 
1648 	return (void *)ptr;
1649 }
1650 
1651 /*
1652  * Return a specific sub-buffer for a given @cpu defined by @idx.
1653  */
rb_range_buffer(struct ring_buffer_per_cpu * cpu_buffer,int idx)1654 static void *rb_range_buffer(struct ring_buffer_per_cpu *cpu_buffer, int idx)
1655 {
1656 	struct ring_buffer_cpu_meta *meta;
1657 	unsigned long ptr;
1658 	int subbuf_size;
1659 
1660 	meta = rb_range_meta(cpu_buffer->buffer, 0, cpu_buffer->cpu);
1661 	if (!meta)
1662 		return NULL;
1663 
1664 	if (WARN_ON_ONCE(idx >= meta->nr_subbufs))
1665 		return NULL;
1666 
1667 	subbuf_size = meta->subbuf_size;
1668 
1669 	/* Map this buffer to the order that's in meta->buffers[] */
1670 	idx = meta->buffers[idx];
1671 
1672 	ptr = (unsigned long)rb_subbufs_from_meta(meta);
1673 
1674 	ptr += subbuf_size * idx;
1675 	if (ptr + subbuf_size > cpu_buffer->buffer->range_addr_end)
1676 		return NULL;
1677 
1678 	return (void *)ptr;
1679 }
1680 
1681 /*
1682  * See if the existing memory contains a valid meta section.
1683  * if so, use that, otherwise initialize it.
1684  */
rb_meta_init(struct trace_buffer * buffer,int scratch_size)1685 static bool rb_meta_init(struct trace_buffer *buffer, int scratch_size)
1686 {
1687 	unsigned long ptr = buffer->range_addr_start;
1688 	struct ring_buffer_meta *bmeta;
1689 	unsigned long total_size;
1690 	int struct_sizes;
1691 
1692 	bmeta = (struct ring_buffer_meta *)ptr;
1693 	buffer->meta = bmeta;
1694 
1695 	total_size = buffer->range_addr_end - buffer->range_addr_start;
1696 
1697 	struct_sizes = sizeof(struct ring_buffer_cpu_meta);
1698 	struct_sizes |= sizeof(*bmeta) << 16;
1699 
1700 	/* The first buffer will start word size after the meta page */
1701 	ptr += sizeof(*bmeta);
1702 	ptr = ALIGN(ptr, sizeof(long));
1703 	ptr += scratch_size;
1704 
1705 	if (bmeta->magic != RING_BUFFER_META_MAGIC) {
1706 		pr_info("Ring buffer boot meta mismatch of magic\n");
1707 		goto init;
1708 	}
1709 
1710 	if (bmeta->struct_sizes != struct_sizes) {
1711 		pr_info("Ring buffer boot meta mismatch of struct size\n");
1712 		goto init;
1713 	}
1714 
1715 	if (bmeta->total_size != total_size) {
1716 		pr_info("Ring buffer boot meta mismatch of total size\n");
1717 		goto init;
1718 	}
1719 
1720 	if (bmeta->buffers_offset > bmeta->total_size) {
1721 		pr_info("Ring buffer boot meta mismatch of offset outside of total size\n");
1722 		goto init;
1723 	}
1724 
1725 	if (bmeta->buffers_offset != (void *)ptr - (void *)bmeta) {
1726 		pr_info("Ring buffer boot meta mismatch of first buffer offset\n");
1727 		goto init;
1728 	}
1729 
1730 	return true;
1731 
1732  init:
1733 	bmeta->magic = RING_BUFFER_META_MAGIC;
1734 	bmeta->struct_sizes = struct_sizes;
1735 	bmeta->total_size = total_size;
1736 	bmeta->buffers_offset = (void *)ptr - (void *)bmeta;
1737 
1738 	/* Zero out the scatch pad */
1739 	memset((void *)bmeta + sizeof(*bmeta), 0, bmeta->buffers_offset - sizeof(*bmeta));
1740 
1741 	return false;
1742 }
1743 
1744 /*
1745  * See if the existing memory contains valid ring buffer data.
1746  * As the previous kernel must be the same as this kernel, all
1747  * the calculations (size of buffers and number of buffers)
1748  * must be the same.
1749  */
rb_cpu_meta_valid(struct ring_buffer_cpu_meta * meta,int cpu,struct trace_buffer * buffer,int nr_pages,unsigned long * subbuf_mask)1750 static bool rb_cpu_meta_valid(struct ring_buffer_cpu_meta *meta, int cpu,
1751 			      struct trace_buffer *buffer, int nr_pages,
1752 			      unsigned long *subbuf_mask)
1753 {
1754 	int subbuf_size = PAGE_SIZE;
1755 	struct buffer_data_page *subbuf;
1756 	unsigned long buffers_start;
1757 	unsigned long buffers_end;
1758 	int i;
1759 
1760 	if (!subbuf_mask)
1761 		return false;
1762 
1763 	buffers_start = meta->first_buffer;
1764 	buffers_end = meta->first_buffer + (subbuf_size * meta->nr_subbufs);
1765 
1766 	/* Is the head and commit buffers within the range of buffers? */
1767 	if (meta->head_buffer < buffers_start ||
1768 	    meta->head_buffer >= buffers_end) {
1769 		pr_info("Ring buffer boot meta [%d] head buffer out of range\n", cpu);
1770 		return false;
1771 	}
1772 
1773 	if (meta->commit_buffer < buffers_start ||
1774 	    meta->commit_buffer >= buffers_end) {
1775 		pr_info("Ring buffer boot meta [%d] commit buffer out of range\n", cpu);
1776 		return false;
1777 	}
1778 
1779 	subbuf = rb_subbufs_from_meta(meta);
1780 
1781 	bitmap_clear(subbuf_mask, 0, meta->nr_subbufs);
1782 
1783 	/* Is the meta buffers and the subbufs themselves have correct data? */
1784 	for (i = 0; i < meta->nr_subbufs; i++) {
1785 		if (meta->buffers[i] < 0 ||
1786 		    meta->buffers[i] >= meta->nr_subbufs) {
1787 			pr_info("Ring buffer boot meta [%d] array out of range\n", cpu);
1788 			return false;
1789 		}
1790 
1791 		if ((unsigned)local_read(&subbuf->commit) > subbuf_size) {
1792 			pr_info("Ring buffer boot meta [%d] buffer invalid commit\n", cpu);
1793 			return false;
1794 		}
1795 
1796 		if (test_bit(meta->buffers[i], subbuf_mask)) {
1797 			pr_info("Ring buffer boot meta [%d] array has duplicates\n", cpu);
1798 			return false;
1799 		}
1800 
1801 		set_bit(meta->buffers[i], subbuf_mask);
1802 		subbuf = (void *)subbuf + subbuf_size;
1803 	}
1804 
1805 	return true;
1806 }
1807 
1808 static int rb_meta_subbuf_idx(struct ring_buffer_cpu_meta *meta, void *subbuf);
1809 
rb_read_data_buffer(struct buffer_data_page * dpage,int tail,int cpu,unsigned long long * timestamp,u64 * delta_ptr)1810 static int rb_read_data_buffer(struct buffer_data_page *dpage, int tail, int cpu,
1811 			       unsigned long long *timestamp, u64 *delta_ptr)
1812 {
1813 	struct ring_buffer_event *event;
1814 	u64 ts, delta;
1815 	int events = 0;
1816 	int e;
1817 
1818 	*delta_ptr = 0;
1819 	*timestamp = 0;
1820 
1821 	ts = dpage->time_stamp;
1822 
1823 	for (e = 0; e < tail; e += rb_event_length(event)) {
1824 
1825 		event = (struct ring_buffer_event *)(dpage->data + e);
1826 
1827 		switch (event->type_len) {
1828 
1829 		case RINGBUF_TYPE_TIME_EXTEND:
1830 			delta = rb_event_time_stamp(event);
1831 			ts += delta;
1832 			break;
1833 
1834 		case RINGBUF_TYPE_TIME_STAMP:
1835 			delta = rb_event_time_stamp(event);
1836 			delta = rb_fix_abs_ts(delta, ts);
1837 			if (delta < ts) {
1838 				*delta_ptr = delta;
1839 				*timestamp = ts;
1840 				return -1;
1841 			}
1842 			ts = delta;
1843 			break;
1844 
1845 		case RINGBUF_TYPE_PADDING:
1846 			if (event->time_delta == 1)
1847 				break;
1848 			fallthrough;
1849 		case RINGBUF_TYPE_DATA:
1850 			events++;
1851 			ts += event->time_delta;
1852 			break;
1853 
1854 		default:
1855 			return -1;
1856 		}
1857 	}
1858 	*timestamp = ts;
1859 	return events;
1860 }
1861 
rb_validate_buffer(struct buffer_data_page * dpage,int cpu)1862 static int rb_validate_buffer(struct buffer_data_page *dpage, int cpu)
1863 {
1864 	unsigned long long ts;
1865 	u64 delta;
1866 	int tail;
1867 
1868 	tail = local_read(&dpage->commit);
1869 	return rb_read_data_buffer(dpage, tail, cpu, &ts, &delta);
1870 }
1871 
1872 /* If the meta data has been validated, now validate the events */
rb_meta_validate_events(struct ring_buffer_per_cpu * cpu_buffer)1873 static void rb_meta_validate_events(struct ring_buffer_per_cpu *cpu_buffer)
1874 {
1875 	struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta;
1876 	struct buffer_page *head_page, *orig_head;
1877 	unsigned long entry_bytes = 0;
1878 	unsigned long entries = 0;
1879 	int ret;
1880 	u64 ts;
1881 	int i;
1882 
1883 	if (!meta || !meta->head_buffer)
1884 		return;
1885 
1886 	/* Do the reader page first */
1887 	ret = rb_validate_buffer(cpu_buffer->reader_page->page, cpu_buffer->cpu);
1888 	if (ret < 0) {
1889 		pr_info("Ring buffer reader page is invalid\n");
1890 		goto invalid;
1891 	}
1892 	entries += ret;
1893 	entry_bytes += local_read(&cpu_buffer->reader_page->page->commit);
1894 	local_set(&cpu_buffer->reader_page->entries, ret);
1895 
1896 	orig_head = head_page = cpu_buffer->head_page;
1897 	ts = head_page->page->time_stamp;
1898 
1899 	/*
1900 	 * Try to rewind the head so that we can read the pages which already
1901 	 * read in the previous boot.
1902 	 */
1903 	if (head_page == cpu_buffer->tail_page)
1904 		goto skip_rewind;
1905 
1906 	rb_dec_page(&head_page);
1907 	for (i = 0; i < meta->nr_subbufs + 1; i++, rb_dec_page(&head_page)) {
1908 
1909 		/* Rewind until tail (writer) page. */
1910 		if (head_page == cpu_buffer->tail_page)
1911 			break;
1912 
1913 		/* Ensure the page has older data than head. */
1914 		if (ts < head_page->page->time_stamp)
1915 			break;
1916 
1917 		ts = head_page->page->time_stamp;
1918 		/* Ensure the page has correct timestamp and some data. */
1919 		if (!ts || rb_page_commit(head_page) == 0)
1920 			break;
1921 
1922 		/* Stop rewind if the page is invalid. */
1923 		ret = rb_validate_buffer(head_page->page, cpu_buffer->cpu);
1924 		if (ret < 0)
1925 			break;
1926 
1927 		/* Recover the number of entries and update stats. */
1928 		local_set(&head_page->entries, ret);
1929 		if (ret)
1930 			local_inc(&cpu_buffer->pages_touched);
1931 		entries += ret;
1932 		entry_bytes += rb_page_commit(head_page);
1933 	}
1934 	if (i)
1935 		pr_info("Ring buffer [%d] rewound %d pages\n", cpu_buffer->cpu, i);
1936 
1937 	/* The last rewound page must be skipped. */
1938 	if (head_page != orig_head)
1939 		rb_inc_page(&head_page);
1940 
1941 	/*
1942 	 * If the ring buffer was rewound, then inject the reader page
1943 	 * into the location just before the original head page.
1944 	 */
1945 	if (head_page != orig_head) {
1946 		struct buffer_page *bpage = orig_head;
1947 
1948 		rb_dec_page(&bpage);
1949 		/*
1950 		 * Insert the reader_page before the original head page.
1951 		 * Since the list encode RB_PAGE flags, general list
1952 		 * operations should be avoided.
1953 		 */
1954 		cpu_buffer->reader_page->list.next = &orig_head->list;
1955 		cpu_buffer->reader_page->list.prev = orig_head->list.prev;
1956 		orig_head->list.prev = &cpu_buffer->reader_page->list;
1957 		bpage->list.next = &cpu_buffer->reader_page->list;
1958 
1959 		/* Make the head_page the reader page */
1960 		cpu_buffer->reader_page = head_page;
1961 		bpage = head_page;
1962 		rb_inc_page(&head_page);
1963 		head_page->list.prev = bpage->list.prev;
1964 		rb_dec_page(&bpage);
1965 		bpage->list.next = &head_page->list;
1966 		rb_set_list_to_head(&bpage->list);
1967 		cpu_buffer->pages = &head_page->list;
1968 
1969 		cpu_buffer->head_page = head_page;
1970 		meta->head_buffer = (unsigned long)head_page->page;
1971 
1972 		/* Reset all the indexes */
1973 		bpage = cpu_buffer->reader_page;
1974 		meta->buffers[0] = rb_meta_subbuf_idx(meta, bpage->page);
1975 		bpage->id = 0;
1976 
1977 		for (i = 1, bpage = head_page; i < meta->nr_subbufs;
1978 		     i++, rb_inc_page(&bpage)) {
1979 			meta->buffers[i] = rb_meta_subbuf_idx(meta, bpage->page);
1980 			bpage->id = i;
1981 		}
1982 
1983 		/* We'll restart verifying from orig_head */
1984 		head_page = orig_head;
1985 	}
1986 
1987  skip_rewind:
1988 	/* If the commit_buffer is the reader page, update the commit page */
1989 	if (meta->commit_buffer == (unsigned long)cpu_buffer->reader_page->page) {
1990 		cpu_buffer->commit_page = cpu_buffer->reader_page;
1991 		/* Nothing more to do, the only page is the reader page */
1992 		goto done;
1993 	}
1994 
1995 	/* Iterate until finding the commit page */
1996 	for (i = 0; i < meta->nr_subbufs + 1; i++, rb_inc_page(&head_page)) {
1997 
1998 		/* Reader page has already been done */
1999 		if (head_page == cpu_buffer->reader_page)
2000 			continue;
2001 
2002 		ret = rb_validate_buffer(head_page->page, cpu_buffer->cpu);
2003 		if (ret < 0) {
2004 			pr_info("Ring buffer meta [%d] invalid buffer page\n",
2005 				cpu_buffer->cpu);
2006 			goto invalid;
2007 		}
2008 
2009 		/* If the buffer has content, update pages_touched */
2010 		if (ret)
2011 			local_inc(&cpu_buffer->pages_touched);
2012 
2013 		entries += ret;
2014 		entry_bytes += local_read(&head_page->page->commit);
2015 		local_set(&cpu_buffer->head_page->entries, ret);
2016 
2017 		if (head_page == cpu_buffer->commit_page)
2018 			break;
2019 	}
2020 
2021 	if (head_page != cpu_buffer->commit_page) {
2022 		pr_info("Ring buffer meta [%d] commit page not found\n",
2023 			cpu_buffer->cpu);
2024 		goto invalid;
2025 	}
2026  done:
2027 	local_set(&cpu_buffer->entries, entries);
2028 	local_set(&cpu_buffer->entries_bytes, entry_bytes);
2029 
2030 	pr_info("Ring buffer meta [%d] is from previous boot!\n", cpu_buffer->cpu);
2031 	return;
2032 
2033  invalid:
2034 	/* The content of the buffers are invalid, reset the meta data */
2035 	meta->head_buffer = 0;
2036 	meta->commit_buffer = 0;
2037 
2038 	/* Reset the reader page */
2039 	local_set(&cpu_buffer->reader_page->entries, 0);
2040 	local_set(&cpu_buffer->reader_page->page->commit, 0);
2041 
2042 	/* Reset all the subbuffers */
2043 	for (i = 0; i < meta->nr_subbufs - 1; i++, rb_inc_page(&head_page)) {
2044 		local_set(&head_page->entries, 0);
2045 		local_set(&head_page->page->commit, 0);
2046 	}
2047 }
2048 
rb_range_meta_init(struct trace_buffer * buffer,int nr_pages,int scratch_size)2049 static void rb_range_meta_init(struct trace_buffer *buffer, int nr_pages, int scratch_size)
2050 {
2051 	struct ring_buffer_cpu_meta *meta;
2052 	unsigned long *subbuf_mask;
2053 	unsigned long delta;
2054 	void *subbuf;
2055 	bool valid = false;
2056 	int cpu;
2057 	int i;
2058 
2059 	/* Create a mask to test the subbuf array */
2060 	subbuf_mask = bitmap_alloc(nr_pages + 1, GFP_KERNEL);
2061 	/* If subbuf_mask fails to allocate, then rb_meta_valid() will return false */
2062 
2063 	if (rb_meta_init(buffer, scratch_size))
2064 		valid = true;
2065 
2066 	for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
2067 		void *next_meta;
2068 
2069 		meta = rb_range_meta(buffer, nr_pages, cpu);
2070 
2071 		if (valid && rb_cpu_meta_valid(meta, cpu, buffer, nr_pages, subbuf_mask)) {
2072 			/* Make the mappings match the current address */
2073 			subbuf = rb_subbufs_from_meta(meta);
2074 			delta = (unsigned long)subbuf - meta->first_buffer;
2075 			meta->first_buffer += delta;
2076 			meta->head_buffer += delta;
2077 			meta->commit_buffer += delta;
2078 			continue;
2079 		}
2080 
2081 		if (cpu < nr_cpu_ids - 1)
2082 			next_meta = rb_range_meta(buffer, nr_pages, cpu + 1);
2083 		else
2084 			next_meta = (void *)buffer->range_addr_end;
2085 
2086 		memset(meta, 0, next_meta - (void *)meta);
2087 
2088 		meta->nr_subbufs = nr_pages + 1;
2089 		meta->subbuf_size = PAGE_SIZE;
2090 
2091 		subbuf = rb_subbufs_from_meta(meta);
2092 
2093 		meta->first_buffer = (unsigned long)subbuf;
2094 
2095 		/*
2096 		 * The buffers[] array holds the order of the sub-buffers
2097 		 * that are after the meta data. The sub-buffers may
2098 		 * be swapped out when read and inserted into a different
2099 		 * location of the ring buffer. Although their addresses
2100 		 * remain the same, the buffers[] array contains the
2101 		 * index into the sub-buffers holding their actual order.
2102 		 */
2103 		for (i = 0; i < meta->nr_subbufs; i++) {
2104 			meta->buffers[i] = i;
2105 			rb_init_page(subbuf);
2106 			subbuf += meta->subbuf_size;
2107 		}
2108 	}
2109 	bitmap_free(subbuf_mask);
2110 }
2111 
rbm_start(struct seq_file * m,loff_t * pos)2112 static void *rbm_start(struct seq_file *m, loff_t *pos)
2113 {
2114 	struct ring_buffer_per_cpu *cpu_buffer = m->private;
2115 	struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta;
2116 	unsigned long val;
2117 
2118 	if (!meta)
2119 		return NULL;
2120 
2121 	if (*pos > meta->nr_subbufs)
2122 		return NULL;
2123 
2124 	val = *pos;
2125 	val++;
2126 
2127 	return (void *)val;
2128 }
2129 
rbm_next(struct seq_file * m,void * v,loff_t * pos)2130 static void *rbm_next(struct seq_file *m, void *v, loff_t *pos)
2131 {
2132 	(*pos)++;
2133 
2134 	return rbm_start(m, pos);
2135 }
2136 
rbm_show(struct seq_file * m,void * v)2137 static int rbm_show(struct seq_file *m, void *v)
2138 {
2139 	struct ring_buffer_per_cpu *cpu_buffer = m->private;
2140 	struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta;
2141 	unsigned long val = (unsigned long)v;
2142 
2143 	if (val == 1) {
2144 		seq_printf(m, "head_buffer:   %d\n",
2145 			   rb_meta_subbuf_idx(meta, (void *)meta->head_buffer));
2146 		seq_printf(m, "commit_buffer: %d\n",
2147 			   rb_meta_subbuf_idx(meta, (void *)meta->commit_buffer));
2148 		seq_printf(m, "subbuf_size:   %d\n", meta->subbuf_size);
2149 		seq_printf(m, "nr_subbufs:    %d\n", meta->nr_subbufs);
2150 		return 0;
2151 	}
2152 
2153 	val -= 2;
2154 	seq_printf(m, "buffer[%ld]:    %d\n", val, meta->buffers[val]);
2155 
2156 	return 0;
2157 }
2158 
rbm_stop(struct seq_file * m,void * p)2159 static void rbm_stop(struct seq_file *m, void *p)
2160 {
2161 }
2162 
2163 static const struct seq_operations rb_meta_seq_ops = {
2164 	.start		= rbm_start,
2165 	.next		= rbm_next,
2166 	.show		= rbm_show,
2167 	.stop		= rbm_stop,
2168 };
2169 
ring_buffer_meta_seq_init(struct file * file,struct trace_buffer * buffer,int cpu)2170 int ring_buffer_meta_seq_init(struct file *file, struct trace_buffer *buffer, int cpu)
2171 {
2172 	struct seq_file *m;
2173 	int ret;
2174 
2175 	ret = seq_open(file, &rb_meta_seq_ops);
2176 	if (ret)
2177 		return ret;
2178 
2179 	m = file->private_data;
2180 	m->private = buffer->buffers[cpu];
2181 
2182 	return 0;
2183 }
2184 
2185 /* Map the buffer_pages to the previous head and commit pages */
rb_meta_buffer_update(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * bpage)2186 static void rb_meta_buffer_update(struct ring_buffer_per_cpu *cpu_buffer,
2187 				  struct buffer_page *bpage)
2188 {
2189 	struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta;
2190 
2191 	if (meta->head_buffer == (unsigned long)bpage->page)
2192 		cpu_buffer->head_page = bpage;
2193 
2194 	if (meta->commit_buffer == (unsigned long)bpage->page) {
2195 		cpu_buffer->commit_page = bpage;
2196 		cpu_buffer->tail_page = bpage;
2197 	}
2198 }
2199 
__rb_allocate_pages(struct ring_buffer_per_cpu * cpu_buffer,long nr_pages,struct list_head * pages)2200 static int __rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
2201 		long nr_pages, struct list_head *pages)
2202 {
2203 	struct trace_buffer *buffer = cpu_buffer->buffer;
2204 	struct ring_buffer_cpu_meta *meta = NULL;
2205 	struct buffer_page *bpage, *tmp;
2206 	bool user_thread = current->mm != NULL;
2207 	gfp_t mflags;
2208 	long i;
2209 
2210 	/*
2211 	 * Check if the available memory is there first.
2212 	 * Note, si_mem_available() only gives us a rough estimate of available
2213 	 * memory. It may not be accurate. But we don't care, we just want
2214 	 * to prevent doing any allocation when it is obvious that it is
2215 	 * not going to succeed.
2216 	 */
2217 	i = si_mem_available();
2218 	if (i < nr_pages)
2219 		return -ENOMEM;
2220 
2221 	/*
2222 	 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
2223 	 * gracefully without invoking oom-killer and the system is not
2224 	 * destabilized.
2225 	 */
2226 	mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
2227 
2228 	/*
2229 	 * If a user thread allocates too much, and si_mem_available()
2230 	 * reports there's enough memory, even though there is not.
2231 	 * Make sure the OOM killer kills this thread. This can happen
2232 	 * even with RETRY_MAYFAIL because another task may be doing
2233 	 * an allocation after this task has taken all memory.
2234 	 * This is the task the OOM killer needs to take out during this
2235 	 * loop, even if it was triggered by an allocation somewhere else.
2236 	 */
2237 	if (user_thread)
2238 		set_current_oom_origin();
2239 
2240 	if (buffer->range_addr_start)
2241 		meta = rb_range_meta(buffer, nr_pages, cpu_buffer->cpu);
2242 
2243 	for (i = 0; i < nr_pages; i++) {
2244 		struct page *page;
2245 
2246 		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
2247 				    mflags, cpu_to_node(cpu_buffer->cpu));
2248 		if (!bpage)
2249 			goto free_pages;
2250 
2251 		rb_check_bpage(cpu_buffer, bpage);
2252 
2253 		/*
2254 		 * Append the pages as for mapped buffers we want to keep
2255 		 * the order
2256 		 */
2257 		list_add_tail(&bpage->list, pages);
2258 
2259 		if (meta) {
2260 			/* A range was given. Use that for the buffer page */
2261 			bpage->page = rb_range_buffer(cpu_buffer, i + 1);
2262 			if (!bpage->page)
2263 				goto free_pages;
2264 			/* If this is valid from a previous boot */
2265 			if (meta->head_buffer)
2266 				rb_meta_buffer_update(cpu_buffer, bpage);
2267 			bpage->range = 1;
2268 			bpage->id = i + 1;
2269 		} else {
2270 			page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu),
2271 						mflags | __GFP_COMP | __GFP_ZERO,
2272 						cpu_buffer->buffer->subbuf_order);
2273 			if (!page)
2274 				goto free_pages;
2275 			bpage->page = page_address(page);
2276 			rb_init_page(bpage->page);
2277 		}
2278 		bpage->order = cpu_buffer->buffer->subbuf_order;
2279 
2280 		if (user_thread && fatal_signal_pending(current))
2281 			goto free_pages;
2282 	}
2283 	if (user_thread)
2284 		clear_current_oom_origin();
2285 
2286 	return 0;
2287 
2288 free_pages:
2289 	list_for_each_entry_safe(bpage, tmp, pages, list) {
2290 		list_del_init(&bpage->list);
2291 		free_buffer_page(bpage);
2292 	}
2293 	if (user_thread)
2294 		clear_current_oom_origin();
2295 
2296 	return -ENOMEM;
2297 }
2298 
rb_allocate_pages(struct ring_buffer_per_cpu * cpu_buffer,unsigned long nr_pages)2299 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
2300 			     unsigned long nr_pages)
2301 {
2302 	LIST_HEAD(pages);
2303 
2304 	WARN_ON(!nr_pages);
2305 
2306 	if (__rb_allocate_pages(cpu_buffer, nr_pages, &pages))
2307 		return -ENOMEM;
2308 
2309 	/*
2310 	 * The ring buffer page list is a circular list that does not
2311 	 * start and end with a list head. All page list items point to
2312 	 * other pages.
2313 	 */
2314 	cpu_buffer->pages = pages.next;
2315 	list_del(&pages);
2316 
2317 	cpu_buffer->nr_pages = nr_pages;
2318 
2319 	rb_check_pages(cpu_buffer);
2320 
2321 	return 0;
2322 }
2323 
2324 static struct ring_buffer_per_cpu *
rb_allocate_cpu_buffer(struct trace_buffer * buffer,long nr_pages,int cpu)2325 rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu)
2326 {
2327 	struct ring_buffer_per_cpu *cpu_buffer __free(kfree) = NULL;
2328 	struct ring_buffer_cpu_meta *meta;
2329 	struct buffer_page *bpage;
2330 	struct page *page;
2331 	int ret;
2332 
2333 	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
2334 				  GFP_KERNEL, cpu_to_node(cpu));
2335 	if (!cpu_buffer)
2336 		return NULL;
2337 
2338 	cpu_buffer->cpu = cpu;
2339 	cpu_buffer->buffer = buffer;
2340 	raw_spin_lock_init(&cpu_buffer->reader_lock);
2341 	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
2342 	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
2343 	INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
2344 	init_completion(&cpu_buffer->update_done);
2345 	init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
2346 	init_waitqueue_head(&cpu_buffer->irq_work.waiters);
2347 	init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
2348 	mutex_init(&cpu_buffer->mapping_lock);
2349 
2350 	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
2351 			    GFP_KERNEL, cpu_to_node(cpu));
2352 	if (!bpage)
2353 		return NULL;
2354 
2355 	rb_check_bpage(cpu_buffer, bpage);
2356 
2357 	cpu_buffer->reader_page = bpage;
2358 
2359 	if (buffer->range_addr_start) {
2360 		/*
2361 		 * Range mapped buffers have the same restrictions as memory
2362 		 * mapped ones do.
2363 		 */
2364 		cpu_buffer->mapped = 1;
2365 		cpu_buffer->ring_meta = rb_range_meta(buffer, nr_pages, cpu);
2366 		bpage->page = rb_range_buffer(cpu_buffer, 0);
2367 		if (!bpage->page)
2368 			goto fail_free_reader;
2369 		if (cpu_buffer->ring_meta->head_buffer)
2370 			rb_meta_buffer_update(cpu_buffer, bpage);
2371 		bpage->range = 1;
2372 	} else {
2373 		page = alloc_pages_node(cpu_to_node(cpu),
2374 					GFP_KERNEL | __GFP_COMP | __GFP_ZERO,
2375 					cpu_buffer->buffer->subbuf_order);
2376 		if (!page)
2377 			goto fail_free_reader;
2378 		bpage->page = page_address(page);
2379 		rb_init_page(bpage->page);
2380 	}
2381 
2382 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
2383 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
2384 
2385 	ret = rb_allocate_pages(cpu_buffer, nr_pages);
2386 	if (ret < 0)
2387 		goto fail_free_reader;
2388 
2389 	rb_meta_validate_events(cpu_buffer);
2390 
2391 	/* If the boot meta was valid then this has already been updated */
2392 	meta = cpu_buffer->ring_meta;
2393 	if (!meta || !meta->head_buffer ||
2394 	    !cpu_buffer->head_page || !cpu_buffer->commit_page || !cpu_buffer->tail_page) {
2395 		if (meta && meta->head_buffer &&
2396 		    (cpu_buffer->head_page || cpu_buffer->commit_page || cpu_buffer->tail_page)) {
2397 			pr_warn("Ring buffer meta buffers not all mapped\n");
2398 			if (!cpu_buffer->head_page)
2399 				pr_warn("   Missing head_page\n");
2400 			if (!cpu_buffer->commit_page)
2401 				pr_warn("   Missing commit_page\n");
2402 			if (!cpu_buffer->tail_page)
2403 				pr_warn("   Missing tail_page\n");
2404 		}
2405 
2406 		cpu_buffer->head_page
2407 			= list_entry(cpu_buffer->pages, struct buffer_page, list);
2408 		cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
2409 
2410 		rb_head_page_activate(cpu_buffer);
2411 
2412 		if (cpu_buffer->ring_meta)
2413 			meta->commit_buffer = meta->head_buffer;
2414 	} else {
2415 		/* The valid meta buffer still needs to activate the head page */
2416 		rb_head_page_activate(cpu_buffer);
2417 	}
2418 
2419 	return_ptr(cpu_buffer);
2420 
2421  fail_free_reader:
2422 	free_buffer_page(cpu_buffer->reader_page);
2423 
2424 	return NULL;
2425 }
2426 
rb_free_cpu_buffer(struct ring_buffer_per_cpu * cpu_buffer)2427 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
2428 {
2429 	struct list_head *head = cpu_buffer->pages;
2430 	struct buffer_page *bpage, *tmp;
2431 
2432 	irq_work_sync(&cpu_buffer->irq_work.work);
2433 
2434 	free_buffer_page(cpu_buffer->reader_page);
2435 
2436 	if (head) {
2437 		rb_head_page_deactivate(cpu_buffer);
2438 
2439 		list_for_each_entry_safe(bpage, tmp, head, list) {
2440 			list_del_init(&bpage->list);
2441 			free_buffer_page(bpage);
2442 		}
2443 		bpage = list_entry(head, struct buffer_page, list);
2444 		free_buffer_page(bpage);
2445 	}
2446 
2447 	free_page((unsigned long)cpu_buffer->free_page);
2448 
2449 	kfree(cpu_buffer);
2450 }
2451 
alloc_buffer(unsigned long size,unsigned flags,int order,unsigned long start,unsigned long end,unsigned long scratch_size,struct lock_class_key * key)2452 static struct trace_buffer *alloc_buffer(unsigned long size, unsigned flags,
2453 					 int order, unsigned long start,
2454 					 unsigned long end,
2455 					 unsigned long scratch_size,
2456 					 struct lock_class_key *key)
2457 {
2458 	struct trace_buffer *buffer __free(kfree) = NULL;
2459 	long nr_pages;
2460 	int subbuf_size;
2461 	int bsize;
2462 	int cpu;
2463 	int ret;
2464 
2465 	/* keep it in its own cache line */
2466 	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
2467 			 GFP_KERNEL);
2468 	if (!buffer)
2469 		return NULL;
2470 
2471 	if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
2472 		return NULL;
2473 
2474 	buffer->subbuf_order = order;
2475 	subbuf_size = (PAGE_SIZE << order);
2476 	buffer->subbuf_size = subbuf_size - BUF_PAGE_HDR_SIZE;
2477 
2478 	/* Max payload is buffer page size - header (8bytes) */
2479 	buffer->max_data_size = buffer->subbuf_size - (sizeof(u32) * 2);
2480 
2481 	buffer->flags = flags;
2482 	buffer->clock = trace_clock_local;
2483 	buffer->reader_lock_key = key;
2484 
2485 	init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
2486 	init_waitqueue_head(&buffer->irq_work.waiters);
2487 
2488 	buffer->cpus = nr_cpu_ids;
2489 
2490 	bsize = sizeof(void *) * nr_cpu_ids;
2491 	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
2492 				  GFP_KERNEL);
2493 	if (!buffer->buffers)
2494 		goto fail_free_cpumask;
2495 
2496 	/* If start/end are specified, then that overrides size */
2497 	if (start && end) {
2498 		unsigned long buffers_start;
2499 		unsigned long ptr;
2500 		int n;
2501 
2502 		/* Make sure that start is word aligned */
2503 		start = ALIGN(start, sizeof(long));
2504 
2505 		/* scratch_size needs to be aligned too */
2506 		scratch_size = ALIGN(scratch_size, sizeof(long));
2507 
2508 		/* Subtract the buffer meta data and word aligned */
2509 		buffers_start = start + sizeof(struct ring_buffer_cpu_meta);
2510 		buffers_start = ALIGN(buffers_start, sizeof(long));
2511 		buffers_start += scratch_size;
2512 
2513 		/* Calculate the size for the per CPU data */
2514 		size = end - buffers_start;
2515 		size = size / nr_cpu_ids;
2516 
2517 		/*
2518 		 * The number of sub-buffers (nr_pages) is determined by the
2519 		 * total size allocated minus the meta data size.
2520 		 * Then that is divided by the number of per CPU buffers
2521 		 * needed, plus account for the integer array index that
2522 		 * will be appended to the meta data.
2523 		 */
2524 		nr_pages = (size - sizeof(struct ring_buffer_cpu_meta)) /
2525 			(subbuf_size + sizeof(int));
2526 		/* Need at least two pages plus the reader page */
2527 		if (nr_pages < 3)
2528 			goto fail_free_buffers;
2529 
2530  again:
2531 		/* Make sure that the size fits aligned */
2532 		for (n = 0, ptr = buffers_start; n < nr_cpu_ids; n++) {
2533 			ptr += sizeof(struct ring_buffer_cpu_meta) +
2534 				sizeof(int) * nr_pages;
2535 			ptr = ALIGN(ptr, subbuf_size);
2536 			ptr += subbuf_size * nr_pages;
2537 		}
2538 		if (ptr > end) {
2539 			if (nr_pages <= 3)
2540 				goto fail_free_buffers;
2541 			nr_pages--;
2542 			goto again;
2543 		}
2544 
2545 		/* nr_pages should not count the reader page */
2546 		nr_pages--;
2547 		buffer->range_addr_start = start;
2548 		buffer->range_addr_end = end;
2549 
2550 		rb_range_meta_init(buffer, nr_pages, scratch_size);
2551 	} else {
2552 
2553 		/* need at least two pages */
2554 		nr_pages = DIV_ROUND_UP(size, buffer->subbuf_size);
2555 		if (nr_pages < 2)
2556 			nr_pages = 2;
2557 	}
2558 
2559 	cpu = raw_smp_processor_id();
2560 	cpumask_set_cpu(cpu, buffer->cpumask);
2561 	buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
2562 	if (!buffer->buffers[cpu])
2563 		goto fail_free_buffers;
2564 
2565 	ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
2566 	if (ret < 0)
2567 		goto fail_free_buffers;
2568 
2569 	mutex_init(&buffer->mutex);
2570 
2571 	return_ptr(buffer);
2572 
2573  fail_free_buffers:
2574 	for_each_buffer_cpu(buffer, cpu) {
2575 		if (buffer->buffers[cpu])
2576 			rb_free_cpu_buffer(buffer->buffers[cpu]);
2577 	}
2578 	kfree(buffer->buffers);
2579 
2580  fail_free_cpumask:
2581 	free_cpumask_var(buffer->cpumask);
2582 
2583 	return NULL;
2584 }
2585 
2586 /**
2587  * __ring_buffer_alloc - allocate a new ring_buffer
2588  * @size: the size in bytes per cpu that is needed.
2589  * @flags: attributes to set for the ring buffer.
2590  * @key: ring buffer reader_lock_key.
2591  *
2592  * Currently the only flag that is available is the RB_FL_OVERWRITE
2593  * flag. This flag means that the buffer will overwrite old data
2594  * when the buffer wraps. If this flag is not set, the buffer will
2595  * drop data when the tail hits the head.
2596  */
__ring_buffer_alloc(unsigned long size,unsigned flags,struct lock_class_key * key)2597 struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
2598 					struct lock_class_key *key)
2599 {
2600 	/* Default buffer page size - one system page */
2601 	return alloc_buffer(size, flags, 0, 0, 0, 0, key);
2602 
2603 }
2604 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
2605 
2606 /**
2607  * __ring_buffer_alloc_range - allocate a new ring_buffer from existing memory
2608  * @size: the size in bytes per cpu that is needed.
2609  * @flags: attributes to set for the ring buffer.
2610  * @order: sub-buffer order
2611  * @start: start of allocated range
2612  * @range_size: size of allocated range
2613  * @scratch_size: size of scratch area (for preallocated memory buffers)
2614  * @key: ring buffer reader_lock_key.
2615  *
2616  * Currently the only flag that is available is the RB_FL_OVERWRITE
2617  * flag. This flag means that the buffer will overwrite old data
2618  * when the buffer wraps. If this flag is not set, the buffer will
2619  * drop data when the tail hits the head.
2620  */
__ring_buffer_alloc_range(unsigned long size,unsigned flags,int order,unsigned long start,unsigned long range_size,unsigned long scratch_size,struct lock_class_key * key)2621 struct trace_buffer *__ring_buffer_alloc_range(unsigned long size, unsigned flags,
2622 					       int order, unsigned long start,
2623 					       unsigned long range_size,
2624 					       unsigned long scratch_size,
2625 					       struct lock_class_key *key)
2626 {
2627 	return alloc_buffer(size, flags, order, start, start + range_size,
2628 			    scratch_size, key);
2629 }
2630 
ring_buffer_meta_scratch(struct trace_buffer * buffer,unsigned int * size)2631 void *ring_buffer_meta_scratch(struct trace_buffer *buffer, unsigned int *size)
2632 {
2633 	struct ring_buffer_meta *meta;
2634 	void *ptr;
2635 
2636 	if (!buffer || !buffer->meta)
2637 		return NULL;
2638 
2639 	meta = buffer->meta;
2640 
2641 	ptr = (void *)ALIGN((unsigned long)meta + sizeof(*meta), sizeof(long));
2642 
2643 	if (size)
2644 		*size = (void *)meta + meta->buffers_offset - ptr;
2645 
2646 	return ptr;
2647 }
2648 
2649 /**
2650  * ring_buffer_free - free a ring buffer.
2651  * @buffer: the buffer to free.
2652  */
2653 void
ring_buffer_free(struct trace_buffer * buffer)2654 ring_buffer_free(struct trace_buffer *buffer)
2655 {
2656 	int cpu;
2657 
2658 	cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
2659 
2660 	irq_work_sync(&buffer->irq_work.work);
2661 
2662 	for_each_buffer_cpu(buffer, cpu)
2663 		rb_free_cpu_buffer(buffer->buffers[cpu]);
2664 
2665 	kfree(buffer->buffers);
2666 	free_cpumask_var(buffer->cpumask);
2667 
2668 	kfree(buffer);
2669 }
2670 EXPORT_SYMBOL_GPL(ring_buffer_free);
2671 
ring_buffer_set_clock(struct trace_buffer * buffer,u64 (* clock)(void))2672 void ring_buffer_set_clock(struct trace_buffer *buffer,
2673 			   u64 (*clock)(void))
2674 {
2675 	buffer->clock = clock;
2676 }
2677 
ring_buffer_set_time_stamp_abs(struct trace_buffer * buffer,bool abs)2678 void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs)
2679 {
2680 	buffer->time_stamp_abs = abs;
2681 }
2682 
ring_buffer_time_stamp_abs(struct trace_buffer * buffer)2683 bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer)
2684 {
2685 	return buffer->time_stamp_abs;
2686 }
2687 
rb_page_entries(struct buffer_page * bpage)2688 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
2689 {
2690 	return local_read(&bpage->entries) & RB_WRITE_MASK;
2691 }
2692 
rb_page_write(struct buffer_page * bpage)2693 static inline unsigned long rb_page_write(struct buffer_page *bpage)
2694 {
2695 	return local_read(&bpage->write) & RB_WRITE_MASK;
2696 }
2697 
2698 static bool
rb_remove_pages(struct ring_buffer_per_cpu * cpu_buffer,unsigned long nr_pages)2699 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
2700 {
2701 	struct list_head *tail_page, *to_remove, *next_page;
2702 	struct buffer_page *to_remove_page, *tmp_iter_page;
2703 	struct buffer_page *last_page, *first_page;
2704 	unsigned long nr_removed;
2705 	unsigned long head_bit;
2706 	int page_entries;
2707 
2708 	head_bit = 0;
2709 
2710 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
2711 	atomic_inc(&cpu_buffer->record_disabled);
2712 	/*
2713 	 * We don't race with the readers since we have acquired the reader
2714 	 * lock. We also don't race with writers after disabling recording.
2715 	 * This makes it easy to figure out the first and the last page to be
2716 	 * removed from the list. We unlink all the pages in between including
2717 	 * the first and last pages. This is done in a busy loop so that we
2718 	 * lose the least number of traces.
2719 	 * The pages are freed after we restart recording and unlock readers.
2720 	 */
2721 	tail_page = &cpu_buffer->tail_page->list;
2722 
2723 	/*
2724 	 * tail page might be on reader page, we remove the next page
2725 	 * from the ring buffer
2726 	 */
2727 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
2728 		tail_page = rb_list_head(tail_page->next);
2729 	to_remove = tail_page;
2730 
2731 	/* start of pages to remove */
2732 	first_page = list_entry(rb_list_head(to_remove->next),
2733 				struct buffer_page, list);
2734 
2735 	for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
2736 		to_remove = rb_list_head(to_remove)->next;
2737 		head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
2738 	}
2739 	/* Read iterators need to reset themselves when some pages removed */
2740 	cpu_buffer->pages_removed += nr_removed;
2741 
2742 	next_page = rb_list_head(to_remove)->next;
2743 
2744 	/*
2745 	 * Now we remove all pages between tail_page and next_page.
2746 	 * Make sure that we have head_bit value preserved for the
2747 	 * next page
2748 	 */
2749 	tail_page->next = (struct list_head *)((unsigned long)next_page |
2750 						head_bit);
2751 	next_page = rb_list_head(next_page);
2752 	next_page->prev = tail_page;
2753 
2754 	/* make sure pages points to a valid page in the ring buffer */
2755 	cpu_buffer->pages = next_page;
2756 	cpu_buffer->cnt++;
2757 
2758 	/* update head page */
2759 	if (head_bit)
2760 		cpu_buffer->head_page = list_entry(next_page,
2761 						struct buffer_page, list);
2762 
2763 	/* pages are removed, resume tracing and then free the pages */
2764 	atomic_dec(&cpu_buffer->record_disabled);
2765 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
2766 
2767 	RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
2768 
2769 	/* last buffer page to remove */
2770 	last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
2771 				list);
2772 	tmp_iter_page = first_page;
2773 
2774 	do {
2775 		cond_resched();
2776 
2777 		to_remove_page = tmp_iter_page;
2778 		rb_inc_page(&tmp_iter_page);
2779 
2780 		/* update the counters */
2781 		page_entries = rb_page_entries(to_remove_page);
2782 		if (page_entries) {
2783 			/*
2784 			 * If something was added to this page, it was full
2785 			 * since it is not the tail page. So we deduct the
2786 			 * bytes consumed in ring buffer from here.
2787 			 * Increment overrun to account for the lost events.
2788 			 */
2789 			local_add(page_entries, &cpu_buffer->overrun);
2790 			local_sub(rb_page_commit(to_remove_page), &cpu_buffer->entries_bytes);
2791 			local_inc(&cpu_buffer->pages_lost);
2792 		}
2793 
2794 		/*
2795 		 * We have already removed references to this list item, just
2796 		 * free up the buffer_page and its page
2797 		 */
2798 		free_buffer_page(to_remove_page);
2799 		nr_removed--;
2800 
2801 	} while (to_remove_page != last_page);
2802 
2803 	RB_WARN_ON(cpu_buffer, nr_removed);
2804 
2805 	return nr_removed == 0;
2806 }
2807 
2808 static bool
rb_insert_pages(struct ring_buffer_per_cpu * cpu_buffer)2809 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
2810 {
2811 	struct list_head *pages = &cpu_buffer->new_pages;
2812 	unsigned long flags;
2813 	bool success;
2814 	int retries;
2815 
2816 	/* Can be called at early boot up, where interrupts must not been enabled */
2817 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2818 	/*
2819 	 * We are holding the reader lock, so the reader page won't be swapped
2820 	 * in the ring buffer. Now we are racing with the writer trying to
2821 	 * move head page and the tail page.
2822 	 * We are going to adapt the reader page update process where:
2823 	 * 1. We first splice the start and end of list of new pages between
2824 	 *    the head page and its previous page.
2825 	 * 2. We cmpxchg the prev_page->next to point from head page to the
2826 	 *    start of new pages list.
2827 	 * 3. Finally, we update the head->prev to the end of new list.
2828 	 *
2829 	 * We will try this process 10 times, to make sure that we don't keep
2830 	 * spinning.
2831 	 */
2832 	retries = 10;
2833 	success = false;
2834 	while (retries--) {
2835 		struct list_head *head_page, *prev_page;
2836 		struct list_head *last_page, *first_page;
2837 		struct list_head *head_page_with_bit;
2838 		struct buffer_page *hpage = rb_set_head_page(cpu_buffer);
2839 
2840 		if (!hpage)
2841 			break;
2842 		head_page = &hpage->list;
2843 		prev_page = head_page->prev;
2844 
2845 		first_page = pages->next;
2846 		last_page  = pages->prev;
2847 
2848 		head_page_with_bit = (struct list_head *)
2849 				     ((unsigned long)head_page | RB_PAGE_HEAD);
2850 
2851 		last_page->next = head_page_with_bit;
2852 		first_page->prev = prev_page;
2853 
2854 		/* caution: head_page_with_bit gets updated on cmpxchg failure */
2855 		if (try_cmpxchg(&prev_page->next,
2856 				&head_page_with_bit, first_page)) {
2857 			/*
2858 			 * yay, we replaced the page pointer to our new list,
2859 			 * now, we just have to update to head page's prev
2860 			 * pointer to point to end of list
2861 			 */
2862 			head_page->prev = last_page;
2863 			cpu_buffer->cnt++;
2864 			success = true;
2865 			break;
2866 		}
2867 	}
2868 
2869 	if (success)
2870 		INIT_LIST_HEAD(pages);
2871 	/*
2872 	 * If we weren't successful in adding in new pages, warn and stop
2873 	 * tracing
2874 	 */
2875 	RB_WARN_ON(cpu_buffer, !success);
2876 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2877 
2878 	/* free pages if they weren't inserted */
2879 	if (!success) {
2880 		struct buffer_page *bpage, *tmp;
2881 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2882 					 list) {
2883 			list_del_init(&bpage->list);
2884 			free_buffer_page(bpage);
2885 		}
2886 	}
2887 	return success;
2888 }
2889 
rb_update_pages(struct ring_buffer_per_cpu * cpu_buffer)2890 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
2891 {
2892 	bool success;
2893 
2894 	if (cpu_buffer->nr_pages_to_update > 0)
2895 		success = rb_insert_pages(cpu_buffer);
2896 	else
2897 		success = rb_remove_pages(cpu_buffer,
2898 					-cpu_buffer->nr_pages_to_update);
2899 
2900 	if (success)
2901 		cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
2902 }
2903 
update_pages_handler(struct work_struct * work)2904 static void update_pages_handler(struct work_struct *work)
2905 {
2906 	struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
2907 			struct ring_buffer_per_cpu, update_pages_work);
2908 	rb_update_pages(cpu_buffer);
2909 	complete(&cpu_buffer->update_done);
2910 }
2911 
2912 /**
2913  * ring_buffer_resize - resize the ring buffer
2914  * @buffer: the buffer to resize.
2915  * @size: the new size.
2916  * @cpu_id: the cpu buffer to resize
2917  *
2918  * Minimum size is 2 * buffer->subbuf_size.
2919  *
2920  * Returns 0 on success and < 0 on failure.
2921  */
ring_buffer_resize(struct trace_buffer * buffer,unsigned long size,int cpu_id)2922 int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size,
2923 			int cpu_id)
2924 {
2925 	struct ring_buffer_per_cpu *cpu_buffer;
2926 	unsigned long nr_pages;
2927 	int cpu, err;
2928 
2929 	/*
2930 	 * Always succeed at resizing a non-existent buffer:
2931 	 */
2932 	if (!buffer)
2933 		return 0;
2934 
2935 	/* Make sure the requested buffer exists */
2936 	if (cpu_id != RING_BUFFER_ALL_CPUS &&
2937 	    !cpumask_test_cpu(cpu_id, buffer->cpumask))
2938 		return 0;
2939 
2940 	nr_pages = DIV_ROUND_UP(size, buffer->subbuf_size);
2941 
2942 	/* we need a minimum of two pages */
2943 	if (nr_pages < 2)
2944 		nr_pages = 2;
2945 
2946 	/*
2947 	 * Keep CPUs from coming online while resizing to synchronize
2948 	 * with new per CPU buffers being created.
2949 	 */
2950 	guard(cpus_read_lock)();
2951 
2952 	/* prevent another thread from changing buffer sizes */
2953 	mutex_lock(&buffer->mutex);
2954 	atomic_inc(&buffer->resizing);
2955 
2956 	if (cpu_id == RING_BUFFER_ALL_CPUS) {
2957 		/*
2958 		 * Don't succeed if resizing is disabled, as a reader might be
2959 		 * manipulating the ring buffer and is expecting a sane state while
2960 		 * this is true.
2961 		 */
2962 		for_each_buffer_cpu(buffer, cpu) {
2963 			cpu_buffer = buffer->buffers[cpu];
2964 			if (atomic_read(&cpu_buffer->resize_disabled)) {
2965 				err = -EBUSY;
2966 				goto out_err_unlock;
2967 			}
2968 		}
2969 
2970 		/* calculate the pages to update */
2971 		for_each_buffer_cpu(buffer, cpu) {
2972 			cpu_buffer = buffer->buffers[cpu];
2973 
2974 			cpu_buffer->nr_pages_to_update = nr_pages -
2975 							cpu_buffer->nr_pages;
2976 			/*
2977 			 * nothing more to do for removing pages or no update
2978 			 */
2979 			if (cpu_buffer->nr_pages_to_update <= 0)
2980 				continue;
2981 			/*
2982 			 * to add pages, make sure all new pages can be
2983 			 * allocated without receiving ENOMEM
2984 			 */
2985 			INIT_LIST_HEAD(&cpu_buffer->new_pages);
2986 			if (__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2987 						&cpu_buffer->new_pages)) {
2988 				/* not enough memory for new pages */
2989 				err = -ENOMEM;
2990 				goto out_err;
2991 			}
2992 
2993 			cond_resched();
2994 		}
2995 
2996 		/*
2997 		 * Fire off all the required work handlers
2998 		 * We can't schedule on offline CPUs, but it's not necessary
2999 		 * since we can change their buffer sizes without any race.
3000 		 */
3001 		for_each_buffer_cpu(buffer, cpu) {
3002 			cpu_buffer = buffer->buffers[cpu];
3003 			if (!cpu_buffer->nr_pages_to_update)
3004 				continue;
3005 
3006 			/* Can't run something on an offline CPU. */
3007 			if (!cpu_online(cpu)) {
3008 				rb_update_pages(cpu_buffer);
3009 				cpu_buffer->nr_pages_to_update = 0;
3010 			} else {
3011 				/* Run directly if possible. */
3012 				migrate_disable();
3013 				if (cpu != smp_processor_id()) {
3014 					migrate_enable();
3015 					schedule_work_on(cpu,
3016 							 &cpu_buffer->update_pages_work);
3017 				} else {
3018 					update_pages_handler(&cpu_buffer->update_pages_work);
3019 					migrate_enable();
3020 				}
3021 			}
3022 		}
3023 
3024 		/* wait for all the updates to complete */
3025 		for_each_buffer_cpu(buffer, cpu) {
3026 			cpu_buffer = buffer->buffers[cpu];
3027 			if (!cpu_buffer->nr_pages_to_update)
3028 				continue;
3029 
3030 			if (cpu_online(cpu))
3031 				wait_for_completion(&cpu_buffer->update_done);
3032 			cpu_buffer->nr_pages_to_update = 0;
3033 		}
3034 
3035 	} else {
3036 		cpu_buffer = buffer->buffers[cpu_id];
3037 
3038 		if (nr_pages == cpu_buffer->nr_pages)
3039 			goto out;
3040 
3041 		/*
3042 		 * Don't succeed if resizing is disabled, as a reader might be
3043 		 * manipulating the ring buffer and is expecting a sane state while
3044 		 * this is true.
3045 		 */
3046 		if (atomic_read(&cpu_buffer->resize_disabled)) {
3047 			err = -EBUSY;
3048 			goto out_err_unlock;
3049 		}
3050 
3051 		cpu_buffer->nr_pages_to_update = nr_pages -
3052 						cpu_buffer->nr_pages;
3053 
3054 		INIT_LIST_HEAD(&cpu_buffer->new_pages);
3055 		if (cpu_buffer->nr_pages_to_update > 0 &&
3056 			__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
3057 					    &cpu_buffer->new_pages)) {
3058 			err = -ENOMEM;
3059 			goto out_err;
3060 		}
3061 
3062 		/* Can't run something on an offline CPU. */
3063 		if (!cpu_online(cpu_id))
3064 			rb_update_pages(cpu_buffer);
3065 		else {
3066 			/* Run directly if possible. */
3067 			migrate_disable();
3068 			if (cpu_id == smp_processor_id()) {
3069 				rb_update_pages(cpu_buffer);
3070 				migrate_enable();
3071 			} else {
3072 				migrate_enable();
3073 				schedule_work_on(cpu_id,
3074 						 &cpu_buffer->update_pages_work);
3075 				wait_for_completion(&cpu_buffer->update_done);
3076 			}
3077 		}
3078 
3079 		cpu_buffer->nr_pages_to_update = 0;
3080 	}
3081 
3082  out:
3083 	/*
3084 	 * The ring buffer resize can happen with the ring buffer
3085 	 * enabled, so that the update disturbs the tracing as little
3086 	 * as possible. But if the buffer is disabled, we do not need
3087 	 * to worry about that, and we can take the time to verify
3088 	 * that the buffer is not corrupt.
3089 	 */
3090 	if (atomic_read(&buffer->record_disabled)) {
3091 		atomic_inc(&buffer->record_disabled);
3092 		/*
3093 		 * Even though the buffer was disabled, we must make sure
3094 		 * that it is truly disabled before calling rb_check_pages.
3095 		 * There could have been a race between checking
3096 		 * record_disable and incrementing it.
3097 		 */
3098 		synchronize_rcu();
3099 		for_each_buffer_cpu(buffer, cpu) {
3100 			cpu_buffer = buffer->buffers[cpu];
3101 			rb_check_pages(cpu_buffer);
3102 		}
3103 		atomic_dec(&buffer->record_disabled);
3104 	}
3105 
3106 	atomic_dec(&buffer->resizing);
3107 	mutex_unlock(&buffer->mutex);
3108 	return 0;
3109 
3110  out_err:
3111 	for_each_buffer_cpu(buffer, cpu) {
3112 		struct buffer_page *bpage, *tmp;
3113 
3114 		cpu_buffer = buffer->buffers[cpu];
3115 		cpu_buffer->nr_pages_to_update = 0;
3116 
3117 		if (list_empty(&cpu_buffer->new_pages))
3118 			continue;
3119 
3120 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
3121 					list) {
3122 			list_del_init(&bpage->list);
3123 			free_buffer_page(bpage);
3124 		}
3125 	}
3126  out_err_unlock:
3127 	atomic_dec(&buffer->resizing);
3128 	mutex_unlock(&buffer->mutex);
3129 	return err;
3130 }
3131 EXPORT_SYMBOL_GPL(ring_buffer_resize);
3132 
ring_buffer_change_overwrite(struct trace_buffer * buffer,int val)3133 void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val)
3134 {
3135 	mutex_lock(&buffer->mutex);
3136 	if (val)
3137 		buffer->flags |= RB_FL_OVERWRITE;
3138 	else
3139 		buffer->flags &= ~RB_FL_OVERWRITE;
3140 	mutex_unlock(&buffer->mutex);
3141 }
3142 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
3143 
__rb_page_index(struct buffer_page * bpage,unsigned index)3144 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
3145 {
3146 	return bpage->page->data + index;
3147 }
3148 
3149 static __always_inline struct ring_buffer_event *
rb_reader_event(struct ring_buffer_per_cpu * cpu_buffer)3150 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
3151 {
3152 	return __rb_page_index(cpu_buffer->reader_page,
3153 			       cpu_buffer->reader_page->read);
3154 }
3155 
3156 static struct ring_buffer_event *
rb_iter_head_event(struct ring_buffer_iter * iter)3157 rb_iter_head_event(struct ring_buffer_iter *iter)
3158 {
3159 	struct ring_buffer_event *event;
3160 	struct buffer_page *iter_head_page = iter->head_page;
3161 	unsigned long commit;
3162 	unsigned length;
3163 
3164 	if (iter->head != iter->next_event)
3165 		return iter->event;
3166 
3167 	/*
3168 	 * When the writer goes across pages, it issues a cmpxchg which
3169 	 * is a mb(), which will synchronize with the rmb here.
3170 	 * (see rb_tail_page_update() and __rb_reserve_next())
3171 	 */
3172 	commit = rb_page_commit(iter_head_page);
3173 	smp_rmb();
3174 
3175 	/* An event needs to be at least 8 bytes in size */
3176 	if (iter->head > commit - 8)
3177 		goto reset;
3178 
3179 	event = __rb_page_index(iter_head_page, iter->head);
3180 	length = rb_event_length(event);
3181 
3182 	/*
3183 	 * READ_ONCE() doesn't work on functions and we don't want the
3184 	 * compiler doing any crazy optimizations with length.
3185 	 */
3186 	barrier();
3187 
3188 	if ((iter->head + length) > commit || length > iter->event_size)
3189 		/* Writer corrupted the read? */
3190 		goto reset;
3191 
3192 	memcpy(iter->event, event, length);
3193 	/*
3194 	 * If the page stamp is still the same after this rmb() then the
3195 	 * event was safely copied without the writer entering the page.
3196 	 */
3197 	smp_rmb();
3198 
3199 	/* Make sure the page didn't change since we read this */
3200 	if (iter->page_stamp != iter_head_page->page->time_stamp ||
3201 	    commit > rb_page_commit(iter_head_page))
3202 		goto reset;
3203 
3204 	iter->next_event = iter->head + length;
3205 	return iter->event;
3206  reset:
3207 	/* Reset to the beginning */
3208 	iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
3209 	iter->head = 0;
3210 	iter->next_event = 0;
3211 	iter->missed_events = 1;
3212 	return NULL;
3213 }
3214 
3215 /* Size is determined by what has been committed */
rb_page_size(struct buffer_page * bpage)3216 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
3217 {
3218 	return rb_page_commit(bpage) & ~RB_MISSED_MASK;
3219 }
3220 
3221 static __always_inline unsigned
rb_commit_index(struct ring_buffer_per_cpu * cpu_buffer)3222 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
3223 {
3224 	return rb_page_commit(cpu_buffer->commit_page);
3225 }
3226 
3227 static __always_inline unsigned
rb_event_index(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)3228 rb_event_index(struct ring_buffer_per_cpu *cpu_buffer, struct ring_buffer_event *event)
3229 {
3230 	unsigned long addr = (unsigned long)event;
3231 
3232 	addr &= (PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1;
3233 
3234 	return addr - BUF_PAGE_HDR_SIZE;
3235 }
3236 
rb_inc_iter(struct ring_buffer_iter * iter)3237 static void rb_inc_iter(struct ring_buffer_iter *iter)
3238 {
3239 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3240 
3241 	/*
3242 	 * The iterator could be on the reader page (it starts there).
3243 	 * But the head could have moved, since the reader was
3244 	 * found. Check for this case and assign the iterator
3245 	 * to the head page instead of next.
3246 	 */
3247 	if (iter->head_page == cpu_buffer->reader_page)
3248 		iter->head_page = rb_set_head_page(cpu_buffer);
3249 	else
3250 		rb_inc_page(&iter->head_page);
3251 
3252 	iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
3253 	iter->head = 0;
3254 	iter->next_event = 0;
3255 }
3256 
3257 /* Return the index into the sub-buffers for a given sub-buffer */
rb_meta_subbuf_idx(struct ring_buffer_cpu_meta * meta,void * subbuf)3258 static int rb_meta_subbuf_idx(struct ring_buffer_cpu_meta *meta, void *subbuf)
3259 {
3260 	void *subbuf_array;
3261 
3262 	subbuf_array = (void *)meta + sizeof(int) * meta->nr_subbufs;
3263 	subbuf_array = (void *)ALIGN((unsigned long)subbuf_array, meta->subbuf_size);
3264 	return (subbuf - subbuf_array) / meta->subbuf_size;
3265 }
3266 
rb_update_meta_head(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * next_page)3267 static void rb_update_meta_head(struct ring_buffer_per_cpu *cpu_buffer,
3268 				struct buffer_page *next_page)
3269 {
3270 	struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta;
3271 	unsigned long old_head = (unsigned long)next_page->page;
3272 	unsigned long new_head;
3273 
3274 	rb_inc_page(&next_page);
3275 	new_head = (unsigned long)next_page->page;
3276 
3277 	/*
3278 	 * Only move it forward once, if something else came in and
3279 	 * moved it forward, then we don't want to touch it.
3280 	 */
3281 	(void)cmpxchg(&meta->head_buffer, old_head, new_head);
3282 }
3283 
rb_update_meta_reader(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * reader)3284 static void rb_update_meta_reader(struct ring_buffer_per_cpu *cpu_buffer,
3285 				  struct buffer_page *reader)
3286 {
3287 	struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta;
3288 	void *old_reader = cpu_buffer->reader_page->page;
3289 	void *new_reader = reader->page;
3290 	int id;
3291 
3292 	id = reader->id;
3293 	cpu_buffer->reader_page->id = id;
3294 	reader->id = 0;
3295 
3296 	meta->buffers[0] = rb_meta_subbuf_idx(meta, new_reader);
3297 	meta->buffers[id] = rb_meta_subbuf_idx(meta, old_reader);
3298 
3299 	/* The head pointer is the one after the reader */
3300 	rb_update_meta_head(cpu_buffer, reader);
3301 }
3302 
3303 /*
3304  * rb_handle_head_page - writer hit the head page
3305  *
3306  * Returns: +1 to retry page
3307  *           0 to continue
3308  *          -1 on error
3309  */
3310 static int
rb_handle_head_page(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * tail_page,struct buffer_page * next_page)3311 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
3312 		    struct buffer_page *tail_page,
3313 		    struct buffer_page *next_page)
3314 {
3315 	struct buffer_page *new_head;
3316 	int entries;
3317 	int type;
3318 	int ret;
3319 
3320 	entries = rb_page_entries(next_page);
3321 
3322 	/*
3323 	 * The hard part is here. We need to move the head
3324 	 * forward, and protect against both readers on
3325 	 * other CPUs and writers coming in via interrupts.
3326 	 */
3327 	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
3328 				       RB_PAGE_HEAD);
3329 
3330 	/*
3331 	 * type can be one of four:
3332 	 *  NORMAL - an interrupt already moved it for us
3333 	 *  HEAD   - we are the first to get here.
3334 	 *  UPDATE - we are the interrupt interrupting
3335 	 *           a current move.
3336 	 *  MOVED  - a reader on another CPU moved the next
3337 	 *           pointer to its reader page. Give up
3338 	 *           and try again.
3339 	 */
3340 
3341 	switch (type) {
3342 	case RB_PAGE_HEAD:
3343 		/*
3344 		 * We changed the head to UPDATE, thus
3345 		 * it is our responsibility to update
3346 		 * the counters.
3347 		 */
3348 		local_add(entries, &cpu_buffer->overrun);
3349 		local_sub(rb_page_commit(next_page), &cpu_buffer->entries_bytes);
3350 		local_inc(&cpu_buffer->pages_lost);
3351 
3352 		if (cpu_buffer->ring_meta)
3353 			rb_update_meta_head(cpu_buffer, next_page);
3354 		/*
3355 		 * The entries will be zeroed out when we move the
3356 		 * tail page.
3357 		 */
3358 
3359 		/* still more to do */
3360 		break;
3361 
3362 	case RB_PAGE_UPDATE:
3363 		/*
3364 		 * This is an interrupt that interrupt the
3365 		 * previous update. Still more to do.
3366 		 */
3367 		break;
3368 	case RB_PAGE_NORMAL:
3369 		/*
3370 		 * An interrupt came in before the update
3371 		 * and processed this for us.
3372 		 * Nothing left to do.
3373 		 */
3374 		return 1;
3375 	case RB_PAGE_MOVED:
3376 		/*
3377 		 * The reader is on another CPU and just did
3378 		 * a swap with our next_page.
3379 		 * Try again.
3380 		 */
3381 		return 1;
3382 	default:
3383 		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
3384 		return -1;
3385 	}
3386 
3387 	/*
3388 	 * Now that we are here, the old head pointer is
3389 	 * set to UPDATE. This will keep the reader from
3390 	 * swapping the head page with the reader page.
3391 	 * The reader (on another CPU) will spin till
3392 	 * we are finished.
3393 	 *
3394 	 * We just need to protect against interrupts
3395 	 * doing the job. We will set the next pointer
3396 	 * to HEAD. After that, we set the old pointer
3397 	 * to NORMAL, but only if it was HEAD before.
3398 	 * otherwise we are an interrupt, and only
3399 	 * want the outer most commit to reset it.
3400 	 */
3401 	new_head = next_page;
3402 	rb_inc_page(&new_head);
3403 
3404 	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
3405 				    RB_PAGE_NORMAL);
3406 
3407 	/*
3408 	 * Valid returns are:
3409 	 *  HEAD   - an interrupt came in and already set it.
3410 	 *  NORMAL - One of two things:
3411 	 *            1) We really set it.
3412 	 *            2) A bunch of interrupts came in and moved
3413 	 *               the page forward again.
3414 	 */
3415 	switch (ret) {
3416 	case RB_PAGE_HEAD:
3417 	case RB_PAGE_NORMAL:
3418 		/* OK */
3419 		break;
3420 	default:
3421 		RB_WARN_ON(cpu_buffer, 1);
3422 		return -1;
3423 	}
3424 
3425 	/*
3426 	 * It is possible that an interrupt came in,
3427 	 * set the head up, then more interrupts came in
3428 	 * and moved it again. When we get back here,
3429 	 * the page would have been set to NORMAL but we
3430 	 * just set it back to HEAD.
3431 	 *
3432 	 * How do you detect this? Well, if that happened
3433 	 * the tail page would have moved.
3434 	 */
3435 	if (ret == RB_PAGE_NORMAL) {
3436 		struct buffer_page *buffer_tail_page;
3437 
3438 		buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
3439 		/*
3440 		 * If the tail had moved passed next, then we need
3441 		 * to reset the pointer.
3442 		 */
3443 		if (buffer_tail_page != tail_page &&
3444 		    buffer_tail_page != next_page)
3445 			rb_head_page_set_normal(cpu_buffer, new_head,
3446 						next_page,
3447 						RB_PAGE_HEAD);
3448 	}
3449 
3450 	/*
3451 	 * If this was the outer most commit (the one that
3452 	 * changed the original pointer from HEAD to UPDATE),
3453 	 * then it is up to us to reset it to NORMAL.
3454 	 */
3455 	if (type == RB_PAGE_HEAD) {
3456 		ret = rb_head_page_set_normal(cpu_buffer, next_page,
3457 					      tail_page,
3458 					      RB_PAGE_UPDATE);
3459 		if (RB_WARN_ON(cpu_buffer,
3460 			       ret != RB_PAGE_UPDATE))
3461 			return -1;
3462 	}
3463 
3464 	return 0;
3465 }
3466 
3467 static inline void
rb_reset_tail(struct ring_buffer_per_cpu * cpu_buffer,unsigned long tail,struct rb_event_info * info)3468 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
3469 	      unsigned long tail, struct rb_event_info *info)
3470 {
3471 	unsigned long bsize = READ_ONCE(cpu_buffer->buffer->subbuf_size);
3472 	struct buffer_page *tail_page = info->tail_page;
3473 	struct ring_buffer_event *event;
3474 	unsigned long length = info->length;
3475 
3476 	/*
3477 	 * Only the event that crossed the page boundary
3478 	 * must fill the old tail_page with padding.
3479 	 */
3480 	if (tail >= bsize) {
3481 		/*
3482 		 * If the page was filled, then we still need
3483 		 * to update the real_end. Reset it to zero
3484 		 * and the reader will ignore it.
3485 		 */
3486 		if (tail == bsize)
3487 			tail_page->real_end = 0;
3488 
3489 		local_sub(length, &tail_page->write);
3490 		return;
3491 	}
3492 
3493 	event = __rb_page_index(tail_page, tail);
3494 
3495 	/*
3496 	 * Save the original length to the meta data.
3497 	 * This will be used by the reader to add lost event
3498 	 * counter.
3499 	 */
3500 	tail_page->real_end = tail;
3501 
3502 	/*
3503 	 * If this event is bigger than the minimum size, then
3504 	 * we need to be careful that we don't subtract the
3505 	 * write counter enough to allow another writer to slip
3506 	 * in on this page.
3507 	 * We put in a discarded commit instead, to make sure
3508 	 * that this space is not used again, and this space will
3509 	 * not be accounted into 'entries_bytes'.
3510 	 *
3511 	 * If we are less than the minimum size, we don't need to
3512 	 * worry about it.
3513 	 */
3514 	if (tail > (bsize - RB_EVNT_MIN_SIZE)) {
3515 		/* No room for any events */
3516 
3517 		/* Mark the rest of the page with padding */
3518 		rb_event_set_padding(event);
3519 
3520 		/* Make sure the padding is visible before the write update */
3521 		smp_wmb();
3522 
3523 		/* Set the write back to the previous setting */
3524 		local_sub(length, &tail_page->write);
3525 		return;
3526 	}
3527 
3528 	/* Put in a discarded event */
3529 	event->array[0] = (bsize - tail) - RB_EVNT_HDR_SIZE;
3530 	event->type_len = RINGBUF_TYPE_PADDING;
3531 	/* time delta must be non zero */
3532 	event->time_delta = 1;
3533 
3534 	/* account for padding bytes */
3535 	local_add(bsize - tail, &cpu_buffer->entries_bytes);
3536 
3537 	/* Make sure the padding is visible before the tail_page->write update */
3538 	smp_wmb();
3539 
3540 	/* Set write to end of buffer */
3541 	length = (tail + length) - bsize;
3542 	local_sub(length, &tail_page->write);
3543 }
3544 
3545 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
3546 
3547 /*
3548  * This is the slow path, force gcc not to inline it.
3549  */
3550 static noinline struct ring_buffer_event *
rb_move_tail(struct ring_buffer_per_cpu * cpu_buffer,unsigned long tail,struct rb_event_info * info)3551 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
3552 	     unsigned long tail, struct rb_event_info *info)
3553 {
3554 	struct buffer_page *tail_page = info->tail_page;
3555 	struct buffer_page *commit_page = cpu_buffer->commit_page;
3556 	struct trace_buffer *buffer = cpu_buffer->buffer;
3557 	struct buffer_page *next_page;
3558 	int ret;
3559 
3560 	next_page = tail_page;
3561 
3562 	rb_inc_page(&next_page);
3563 
3564 	/*
3565 	 * If for some reason, we had an interrupt storm that made
3566 	 * it all the way around the buffer, bail, and warn
3567 	 * about it.
3568 	 */
3569 	if (unlikely(next_page == commit_page)) {
3570 		local_inc(&cpu_buffer->commit_overrun);
3571 		goto out_reset;
3572 	}
3573 
3574 	/*
3575 	 * This is where the fun begins!
3576 	 *
3577 	 * We are fighting against races between a reader that
3578 	 * could be on another CPU trying to swap its reader
3579 	 * page with the buffer head.
3580 	 *
3581 	 * We are also fighting against interrupts coming in and
3582 	 * moving the head or tail on us as well.
3583 	 *
3584 	 * If the next page is the head page then we have filled
3585 	 * the buffer, unless the commit page is still on the
3586 	 * reader page.
3587 	 */
3588 	if (rb_is_head_page(next_page, &tail_page->list)) {
3589 
3590 		/*
3591 		 * If the commit is not on the reader page, then
3592 		 * move the header page.
3593 		 */
3594 		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
3595 			/*
3596 			 * If we are not in overwrite mode,
3597 			 * this is easy, just stop here.
3598 			 */
3599 			if (!(buffer->flags & RB_FL_OVERWRITE)) {
3600 				local_inc(&cpu_buffer->dropped_events);
3601 				goto out_reset;
3602 			}
3603 
3604 			ret = rb_handle_head_page(cpu_buffer,
3605 						  tail_page,
3606 						  next_page);
3607 			if (ret < 0)
3608 				goto out_reset;
3609 			if (ret)
3610 				goto out_again;
3611 		} else {
3612 			/*
3613 			 * We need to be careful here too. The
3614 			 * commit page could still be on the reader
3615 			 * page. We could have a small buffer, and
3616 			 * have filled up the buffer with events
3617 			 * from interrupts and such, and wrapped.
3618 			 *
3619 			 * Note, if the tail page is also on the
3620 			 * reader_page, we let it move out.
3621 			 */
3622 			if (unlikely((cpu_buffer->commit_page !=
3623 				      cpu_buffer->tail_page) &&
3624 				     (cpu_buffer->commit_page ==
3625 				      cpu_buffer->reader_page))) {
3626 				local_inc(&cpu_buffer->commit_overrun);
3627 				goto out_reset;
3628 			}
3629 		}
3630 	}
3631 
3632 	rb_tail_page_update(cpu_buffer, tail_page, next_page);
3633 
3634  out_again:
3635 
3636 	rb_reset_tail(cpu_buffer, tail, info);
3637 
3638 	/* Commit what we have for now. */
3639 	rb_end_commit(cpu_buffer);
3640 	/* rb_end_commit() decs committing */
3641 	local_inc(&cpu_buffer->committing);
3642 
3643 	/* fail and let the caller try again */
3644 	return ERR_PTR(-EAGAIN);
3645 
3646  out_reset:
3647 	/* reset write */
3648 	rb_reset_tail(cpu_buffer, tail, info);
3649 
3650 	return NULL;
3651 }
3652 
3653 /* Slow path */
3654 static struct ring_buffer_event *
rb_add_time_stamp(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event,u64 delta,bool abs)3655 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3656 		  struct ring_buffer_event *event, u64 delta, bool abs)
3657 {
3658 	if (abs)
3659 		event->type_len = RINGBUF_TYPE_TIME_STAMP;
3660 	else
3661 		event->type_len = RINGBUF_TYPE_TIME_EXTEND;
3662 
3663 	/* Not the first event on the page, or not delta? */
3664 	if (abs || rb_event_index(cpu_buffer, event)) {
3665 		event->time_delta = delta & TS_MASK;
3666 		event->array[0] = delta >> TS_SHIFT;
3667 	} else {
3668 		/* nope, just zero it */
3669 		event->time_delta = 0;
3670 		event->array[0] = 0;
3671 	}
3672 
3673 	return skip_time_extend(event);
3674 }
3675 
3676 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
sched_clock_stable(void)3677 static inline bool sched_clock_stable(void)
3678 {
3679 	return true;
3680 }
3681 #endif
3682 
3683 static void
rb_check_timestamp(struct ring_buffer_per_cpu * cpu_buffer,struct rb_event_info * info)3684 rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
3685 		   struct rb_event_info *info)
3686 {
3687 	u64 write_stamp;
3688 
3689 	WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s",
3690 		  (unsigned long long)info->delta,
3691 		  (unsigned long long)info->ts,
3692 		  (unsigned long long)info->before,
3693 		  (unsigned long long)info->after,
3694 		  (unsigned long long)({rb_time_read(&cpu_buffer->write_stamp, &write_stamp); write_stamp;}),
3695 		  sched_clock_stable() ? "" :
3696 		  "If you just came from a suspend/resume,\n"
3697 		  "please switch to the trace global clock:\n"
3698 		  "  echo global > /sys/kernel/tracing/trace_clock\n"
3699 		  "or add trace_clock=global to the kernel command line\n");
3700 }
3701 
rb_add_timestamp(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event ** event,struct rb_event_info * info,u64 * delta,unsigned int * length)3702 static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
3703 				      struct ring_buffer_event **event,
3704 				      struct rb_event_info *info,
3705 				      u64 *delta,
3706 				      unsigned int *length)
3707 {
3708 	bool abs = info->add_timestamp &
3709 		(RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE);
3710 
3711 	if (unlikely(info->delta > (1ULL << 59))) {
3712 		/*
3713 		 * Some timers can use more than 59 bits, and when a timestamp
3714 		 * is added to the buffer, it will lose those bits.
3715 		 */
3716 		if (abs && (info->ts & TS_MSB)) {
3717 			info->delta &= ABS_TS_MASK;
3718 
3719 		/* did the clock go backwards */
3720 		} else if (info->before == info->after && info->before > info->ts) {
3721 			/* not interrupted */
3722 			static int once;
3723 
3724 			/*
3725 			 * This is possible with a recalibrating of the TSC.
3726 			 * Do not produce a call stack, but just report it.
3727 			 */
3728 			if (!once) {
3729 				once++;
3730 				pr_warn("Ring buffer clock went backwards: %llu -> %llu\n",
3731 					info->before, info->ts);
3732 			}
3733 		} else
3734 			rb_check_timestamp(cpu_buffer, info);
3735 		if (!abs)
3736 			info->delta = 0;
3737 	}
3738 	*event = rb_add_time_stamp(cpu_buffer, *event, info->delta, abs);
3739 	*length -= RB_LEN_TIME_EXTEND;
3740 	*delta = 0;
3741 }
3742 
3743 /**
3744  * rb_update_event - update event type and data
3745  * @cpu_buffer: The per cpu buffer of the @event
3746  * @event: the event to update
3747  * @info: The info to update the @event with (contains length and delta)
3748  *
3749  * Update the type and data fields of the @event. The length
3750  * is the actual size that is written to the ring buffer,
3751  * and with this, we can determine what to place into the
3752  * data field.
3753  */
3754 static void
rb_update_event(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event,struct rb_event_info * info)3755 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
3756 		struct ring_buffer_event *event,
3757 		struct rb_event_info *info)
3758 {
3759 	unsigned length = info->length;
3760 	u64 delta = info->delta;
3761 	unsigned int nest = local_read(&cpu_buffer->committing) - 1;
3762 
3763 	if (!WARN_ON_ONCE(nest >= MAX_NEST))
3764 		cpu_buffer->event_stamp[nest] = info->ts;
3765 
3766 	/*
3767 	 * If we need to add a timestamp, then we
3768 	 * add it to the start of the reserved space.
3769 	 */
3770 	if (unlikely(info->add_timestamp))
3771 		rb_add_timestamp(cpu_buffer, &event, info, &delta, &length);
3772 
3773 	event->time_delta = delta;
3774 	length -= RB_EVNT_HDR_SIZE;
3775 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
3776 		event->type_len = 0;
3777 		event->array[0] = length;
3778 	} else
3779 		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
3780 }
3781 
rb_calculate_event_length(unsigned length)3782 static unsigned rb_calculate_event_length(unsigned length)
3783 {
3784 	struct ring_buffer_event event; /* Used only for sizeof array */
3785 
3786 	/* zero length can cause confusions */
3787 	if (!length)
3788 		length++;
3789 
3790 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
3791 		length += sizeof(event.array[0]);
3792 
3793 	length += RB_EVNT_HDR_SIZE;
3794 	length = ALIGN(length, RB_ARCH_ALIGNMENT);
3795 
3796 	/*
3797 	 * In case the time delta is larger than the 27 bits for it
3798 	 * in the header, we need to add a timestamp. If another
3799 	 * event comes in when trying to discard this one to increase
3800 	 * the length, then the timestamp will be added in the allocated
3801 	 * space of this event. If length is bigger than the size needed
3802 	 * for the TIME_EXTEND, then padding has to be used. The events
3803 	 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
3804 	 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
3805 	 * As length is a multiple of 4, we only need to worry if it
3806 	 * is 12 (RB_LEN_TIME_EXTEND + 4).
3807 	 */
3808 	if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
3809 		length += RB_ALIGNMENT;
3810 
3811 	return length;
3812 }
3813 
3814 static inline bool
rb_try_to_discard(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)3815 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
3816 		  struct ring_buffer_event *event)
3817 {
3818 	unsigned long new_index, old_index;
3819 	struct buffer_page *bpage;
3820 	unsigned long addr;
3821 
3822 	new_index = rb_event_index(cpu_buffer, event);
3823 	old_index = new_index + rb_event_ts_length(event);
3824 	addr = (unsigned long)event;
3825 	addr &= ~((PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1);
3826 
3827 	bpage = READ_ONCE(cpu_buffer->tail_page);
3828 
3829 	/*
3830 	 * Make sure the tail_page is still the same and
3831 	 * the next write location is the end of this event
3832 	 */
3833 	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
3834 		unsigned long write_mask =
3835 			local_read(&bpage->write) & ~RB_WRITE_MASK;
3836 		unsigned long event_length = rb_event_length(event);
3837 
3838 		/*
3839 		 * For the before_stamp to be different than the write_stamp
3840 		 * to make sure that the next event adds an absolute
3841 		 * value and does not rely on the saved write stamp, which
3842 		 * is now going to be bogus.
3843 		 *
3844 		 * By setting the before_stamp to zero, the next event
3845 		 * is not going to use the write_stamp and will instead
3846 		 * create an absolute timestamp. This means there's no
3847 		 * reason to update the wirte_stamp!
3848 		 */
3849 		rb_time_set(&cpu_buffer->before_stamp, 0);
3850 
3851 		/*
3852 		 * If an event were to come in now, it would see that the
3853 		 * write_stamp and the before_stamp are different, and assume
3854 		 * that this event just added itself before updating
3855 		 * the write stamp. The interrupting event will fix the
3856 		 * write stamp for us, and use an absolute timestamp.
3857 		 */
3858 
3859 		/*
3860 		 * This is on the tail page. It is possible that
3861 		 * a write could come in and move the tail page
3862 		 * and write to the next page. That is fine
3863 		 * because we just shorten what is on this page.
3864 		 */
3865 		old_index += write_mask;
3866 		new_index += write_mask;
3867 
3868 		/* caution: old_index gets updated on cmpxchg failure */
3869 		if (local_try_cmpxchg(&bpage->write, &old_index, new_index)) {
3870 			/* update counters */
3871 			local_sub(event_length, &cpu_buffer->entries_bytes);
3872 			return true;
3873 		}
3874 	}
3875 
3876 	/* could not discard */
3877 	return false;
3878 }
3879 
rb_start_commit(struct ring_buffer_per_cpu * cpu_buffer)3880 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
3881 {
3882 	local_inc(&cpu_buffer->committing);
3883 	local_inc(&cpu_buffer->commits);
3884 }
3885 
3886 static __always_inline void
rb_set_commit_to_write(struct ring_buffer_per_cpu * cpu_buffer)3887 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
3888 {
3889 	unsigned long max_count;
3890 
3891 	/*
3892 	 * We only race with interrupts and NMIs on this CPU.
3893 	 * If we own the commit event, then we can commit
3894 	 * all others that interrupted us, since the interruptions
3895 	 * are in stack format (they finish before they come
3896 	 * back to us). This allows us to do a simple loop to
3897 	 * assign the commit to the tail.
3898 	 */
3899  again:
3900 	max_count = cpu_buffer->nr_pages * 100;
3901 
3902 	while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
3903 		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
3904 			return;
3905 		if (RB_WARN_ON(cpu_buffer,
3906 			       rb_is_reader_page(cpu_buffer->tail_page)))
3907 			return;
3908 		/*
3909 		 * No need for a memory barrier here, as the update
3910 		 * of the tail_page did it for this page.
3911 		 */
3912 		local_set(&cpu_buffer->commit_page->page->commit,
3913 			  rb_page_write(cpu_buffer->commit_page));
3914 		rb_inc_page(&cpu_buffer->commit_page);
3915 		if (cpu_buffer->ring_meta) {
3916 			struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta;
3917 			meta->commit_buffer = (unsigned long)cpu_buffer->commit_page->page;
3918 		}
3919 		/* add barrier to keep gcc from optimizing too much */
3920 		barrier();
3921 	}
3922 	while (rb_commit_index(cpu_buffer) !=
3923 	       rb_page_write(cpu_buffer->commit_page)) {
3924 
3925 		/* Make sure the readers see the content of what is committed. */
3926 		smp_wmb();
3927 		local_set(&cpu_buffer->commit_page->page->commit,
3928 			  rb_page_write(cpu_buffer->commit_page));
3929 		RB_WARN_ON(cpu_buffer,
3930 			   local_read(&cpu_buffer->commit_page->page->commit) &
3931 			   ~RB_WRITE_MASK);
3932 		barrier();
3933 	}
3934 
3935 	/* again, keep gcc from optimizing */
3936 	barrier();
3937 
3938 	/*
3939 	 * If an interrupt came in just after the first while loop
3940 	 * and pushed the tail page forward, we will be left with
3941 	 * a dangling commit that will never go forward.
3942 	 */
3943 	if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
3944 		goto again;
3945 }
3946 
rb_end_commit(struct ring_buffer_per_cpu * cpu_buffer)3947 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
3948 {
3949 	unsigned long commits;
3950 
3951 	if (RB_WARN_ON(cpu_buffer,
3952 		       !local_read(&cpu_buffer->committing)))
3953 		return;
3954 
3955  again:
3956 	commits = local_read(&cpu_buffer->commits);
3957 	/* synchronize with interrupts */
3958 	barrier();
3959 	if (local_read(&cpu_buffer->committing) == 1)
3960 		rb_set_commit_to_write(cpu_buffer);
3961 
3962 	local_dec(&cpu_buffer->committing);
3963 
3964 	/* synchronize with interrupts */
3965 	barrier();
3966 
3967 	/*
3968 	 * Need to account for interrupts coming in between the
3969 	 * updating of the commit page and the clearing of the
3970 	 * committing counter.
3971 	 */
3972 	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
3973 	    !local_read(&cpu_buffer->committing)) {
3974 		local_inc(&cpu_buffer->committing);
3975 		goto again;
3976 	}
3977 }
3978 
rb_event_discard(struct ring_buffer_event * event)3979 static inline void rb_event_discard(struct ring_buffer_event *event)
3980 {
3981 	if (extended_time(event))
3982 		event = skip_time_extend(event);
3983 
3984 	/* array[0] holds the actual length for the discarded event */
3985 	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
3986 	event->type_len = RINGBUF_TYPE_PADDING;
3987 	/* time delta must be non zero */
3988 	if (!event->time_delta)
3989 		event->time_delta = 1;
3990 }
3991 
rb_commit(struct ring_buffer_per_cpu * cpu_buffer)3992 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer)
3993 {
3994 	local_inc(&cpu_buffer->entries);
3995 	rb_end_commit(cpu_buffer);
3996 }
3997 
3998 static __always_inline void
rb_wakeups(struct trace_buffer * buffer,struct ring_buffer_per_cpu * cpu_buffer)3999 rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
4000 {
4001 	if (buffer->irq_work.waiters_pending) {
4002 		buffer->irq_work.waiters_pending = false;
4003 		/* irq_work_queue() supplies it's own memory barriers */
4004 		irq_work_queue(&buffer->irq_work.work);
4005 	}
4006 
4007 	if (cpu_buffer->irq_work.waiters_pending) {
4008 		cpu_buffer->irq_work.waiters_pending = false;
4009 		/* irq_work_queue() supplies it's own memory barriers */
4010 		irq_work_queue(&cpu_buffer->irq_work.work);
4011 	}
4012 
4013 	if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
4014 		return;
4015 
4016 	if (cpu_buffer->reader_page == cpu_buffer->commit_page)
4017 		return;
4018 
4019 	if (!cpu_buffer->irq_work.full_waiters_pending)
4020 		return;
4021 
4022 	cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
4023 
4024 	if (!full_hit(buffer, cpu_buffer->cpu, cpu_buffer->shortest_full))
4025 		return;
4026 
4027 	cpu_buffer->irq_work.wakeup_full = true;
4028 	cpu_buffer->irq_work.full_waiters_pending = false;
4029 	/* irq_work_queue() supplies it's own memory barriers */
4030 	irq_work_queue(&cpu_buffer->irq_work.work);
4031 }
4032 
4033 #ifdef CONFIG_RING_BUFFER_RECORD_RECURSION
4034 # define do_ring_buffer_record_recursion()	\
4035 	do_ftrace_record_recursion(_THIS_IP_, _RET_IP_)
4036 #else
4037 # define do_ring_buffer_record_recursion() do { } while (0)
4038 #endif
4039 
4040 /*
4041  * The lock and unlock are done within a preempt disable section.
4042  * The current_context per_cpu variable can only be modified
4043  * by the current task between lock and unlock. But it can
4044  * be modified more than once via an interrupt. To pass this
4045  * information from the lock to the unlock without having to
4046  * access the 'in_interrupt()' functions again (which do show
4047  * a bit of overhead in something as critical as function tracing,
4048  * we use a bitmask trick.
4049  *
4050  *  bit 1 =  NMI context
4051  *  bit 2 =  IRQ context
4052  *  bit 3 =  SoftIRQ context
4053  *  bit 4 =  normal context.
4054  *
4055  * This works because this is the order of contexts that can
4056  * preempt other contexts. A SoftIRQ never preempts an IRQ
4057  * context.
4058  *
4059  * When the context is determined, the corresponding bit is
4060  * checked and set (if it was set, then a recursion of that context
4061  * happened).
4062  *
4063  * On unlock, we need to clear this bit. To do so, just subtract
4064  * 1 from the current_context and AND it to itself.
4065  *
4066  * (binary)
4067  *  101 - 1 = 100
4068  *  101 & 100 = 100 (clearing bit zero)
4069  *
4070  *  1010 - 1 = 1001
4071  *  1010 & 1001 = 1000 (clearing bit 1)
4072  *
4073  * The least significant bit can be cleared this way, and it
4074  * just so happens that it is the same bit corresponding to
4075  * the current context.
4076  *
4077  * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit
4078  * is set when a recursion is detected at the current context, and if
4079  * the TRANSITION bit is already set, it will fail the recursion.
4080  * This is needed because there's a lag between the changing of
4081  * interrupt context and updating the preempt count. In this case,
4082  * a false positive will be found. To handle this, one extra recursion
4083  * is allowed, and this is done by the TRANSITION bit. If the TRANSITION
4084  * bit is already set, then it is considered a recursion and the function
4085  * ends. Otherwise, the TRANSITION bit is set, and that bit is returned.
4086  *
4087  * On the trace_recursive_unlock(), the TRANSITION bit will be the first
4088  * to be cleared. Even if it wasn't the context that set it. That is,
4089  * if an interrupt comes in while NORMAL bit is set and the ring buffer
4090  * is called before preempt_count() is updated, since the check will
4091  * be on the NORMAL bit, the TRANSITION bit will then be set. If an
4092  * NMI then comes in, it will set the NMI bit, but when the NMI code
4093  * does the trace_recursive_unlock() it will clear the TRANSITION bit
4094  * and leave the NMI bit set. But this is fine, because the interrupt
4095  * code that set the TRANSITION bit will then clear the NMI bit when it
4096  * calls trace_recursive_unlock(). If another NMI comes in, it will
4097  * set the TRANSITION bit and continue.
4098  *
4099  * Note: The TRANSITION bit only handles a single transition between context.
4100  */
4101 
4102 static __always_inline bool
trace_recursive_lock(struct ring_buffer_per_cpu * cpu_buffer)4103 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
4104 {
4105 	unsigned int val = cpu_buffer->current_context;
4106 	int bit = interrupt_context_level();
4107 
4108 	bit = RB_CTX_NORMAL - bit;
4109 
4110 	if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) {
4111 		/*
4112 		 * It is possible that this was called by transitioning
4113 		 * between interrupt context, and preempt_count() has not
4114 		 * been updated yet. In this case, use the TRANSITION bit.
4115 		 */
4116 		bit = RB_CTX_TRANSITION;
4117 		if (val & (1 << (bit + cpu_buffer->nest))) {
4118 			do_ring_buffer_record_recursion();
4119 			return true;
4120 		}
4121 	}
4122 
4123 	val |= (1 << (bit + cpu_buffer->nest));
4124 	cpu_buffer->current_context = val;
4125 
4126 	return false;
4127 }
4128 
4129 static __always_inline void
trace_recursive_unlock(struct ring_buffer_per_cpu * cpu_buffer)4130 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
4131 {
4132 	cpu_buffer->current_context &=
4133 		cpu_buffer->current_context - (1 << cpu_buffer->nest);
4134 }
4135 
4136 /* The recursive locking above uses 5 bits */
4137 #define NESTED_BITS 5
4138 
4139 /**
4140  * ring_buffer_nest_start - Allow to trace while nested
4141  * @buffer: The ring buffer to modify
4142  *
4143  * The ring buffer has a safety mechanism to prevent recursion.
4144  * But there may be a case where a trace needs to be done while
4145  * tracing something else. In this case, calling this function
4146  * will allow this function to nest within a currently active
4147  * ring_buffer_lock_reserve().
4148  *
4149  * Call this function before calling another ring_buffer_lock_reserve() and
4150  * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
4151  */
ring_buffer_nest_start(struct trace_buffer * buffer)4152 void ring_buffer_nest_start(struct trace_buffer *buffer)
4153 {
4154 	struct ring_buffer_per_cpu *cpu_buffer;
4155 	int cpu;
4156 
4157 	/* Enabled by ring_buffer_nest_end() */
4158 	preempt_disable_notrace();
4159 	cpu = raw_smp_processor_id();
4160 	cpu_buffer = buffer->buffers[cpu];
4161 	/* This is the shift value for the above recursive locking */
4162 	cpu_buffer->nest += NESTED_BITS;
4163 }
4164 
4165 /**
4166  * ring_buffer_nest_end - Allow to trace while nested
4167  * @buffer: The ring buffer to modify
4168  *
4169  * Must be called after ring_buffer_nest_start() and after the
4170  * ring_buffer_unlock_commit().
4171  */
ring_buffer_nest_end(struct trace_buffer * buffer)4172 void ring_buffer_nest_end(struct trace_buffer *buffer)
4173 {
4174 	struct ring_buffer_per_cpu *cpu_buffer;
4175 	int cpu;
4176 
4177 	/* disabled by ring_buffer_nest_start() */
4178 	cpu = raw_smp_processor_id();
4179 	cpu_buffer = buffer->buffers[cpu];
4180 	/* This is the shift value for the above recursive locking */
4181 	cpu_buffer->nest -= NESTED_BITS;
4182 	preempt_enable_notrace();
4183 }
4184 
4185 /**
4186  * ring_buffer_unlock_commit - commit a reserved
4187  * @buffer: The buffer to commit to
4188  *
4189  * This commits the data to the ring buffer, and releases any locks held.
4190  *
4191  * Must be paired with ring_buffer_lock_reserve.
4192  */
ring_buffer_unlock_commit(struct trace_buffer * buffer)4193 int ring_buffer_unlock_commit(struct trace_buffer *buffer)
4194 {
4195 	struct ring_buffer_per_cpu *cpu_buffer;
4196 	int cpu = raw_smp_processor_id();
4197 
4198 	cpu_buffer = buffer->buffers[cpu];
4199 
4200 	rb_commit(cpu_buffer);
4201 
4202 	rb_wakeups(buffer, cpu_buffer);
4203 
4204 	trace_recursive_unlock(cpu_buffer);
4205 
4206 	preempt_enable_notrace();
4207 
4208 	return 0;
4209 }
4210 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
4211 
4212 /* Special value to validate all deltas on a page. */
4213 #define CHECK_FULL_PAGE		1L
4214 
4215 #ifdef CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS
4216 
show_irq_str(int bits)4217 static const char *show_irq_str(int bits)
4218 {
4219 	static const char * type[] = {
4220 		".",	// 0
4221 		"s",	// 1
4222 		"h",	// 2
4223 		"Hs",	// 3
4224 		"n",	// 4
4225 		"Ns",	// 5
4226 		"Nh",	// 6
4227 		"NHs",	// 7
4228 	};
4229 
4230 	return type[bits];
4231 }
4232 
4233 /* Assume this is a trace event */
show_flags(struct ring_buffer_event * event)4234 static const char *show_flags(struct ring_buffer_event *event)
4235 {
4236 	struct trace_entry *entry;
4237 	int bits = 0;
4238 
4239 	if (rb_event_data_length(event) - RB_EVNT_HDR_SIZE < sizeof(*entry))
4240 		return "X";
4241 
4242 	entry = ring_buffer_event_data(event);
4243 
4244 	if (entry->flags & TRACE_FLAG_SOFTIRQ)
4245 		bits |= 1;
4246 
4247 	if (entry->flags & TRACE_FLAG_HARDIRQ)
4248 		bits |= 2;
4249 
4250 	if (entry->flags & TRACE_FLAG_NMI)
4251 		bits |= 4;
4252 
4253 	return show_irq_str(bits);
4254 }
4255 
show_irq(struct ring_buffer_event * event)4256 static const char *show_irq(struct ring_buffer_event *event)
4257 {
4258 	struct trace_entry *entry;
4259 
4260 	if (rb_event_data_length(event) - RB_EVNT_HDR_SIZE < sizeof(*entry))
4261 		return "";
4262 
4263 	entry = ring_buffer_event_data(event);
4264 	if (entry->flags & TRACE_FLAG_IRQS_OFF)
4265 		return "d";
4266 	return "";
4267 }
4268 
show_interrupt_level(void)4269 static const char *show_interrupt_level(void)
4270 {
4271 	unsigned long pc = preempt_count();
4272 	unsigned char level = 0;
4273 
4274 	if (pc & SOFTIRQ_OFFSET)
4275 		level |= 1;
4276 
4277 	if (pc & HARDIRQ_MASK)
4278 		level |= 2;
4279 
4280 	if (pc & NMI_MASK)
4281 		level |= 4;
4282 
4283 	return show_irq_str(level);
4284 }
4285 
dump_buffer_page(struct buffer_data_page * bpage,struct rb_event_info * info,unsigned long tail)4286 static void dump_buffer_page(struct buffer_data_page *bpage,
4287 			     struct rb_event_info *info,
4288 			     unsigned long tail)
4289 {
4290 	struct ring_buffer_event *event;
4291 	u64 ts, delta;
4292 	int e;
4293 
4294 	ts = bpage->time_stamp;
4295 	pr_warn("  [%lld] PAGE TIME STAMP\n", ts);
4296 
4297 	for (e = 0; e < tail; e += rb_event_length(event)) {
4298 
4299 		event = (struct ring_buffer_event *)(bpage->data + e);
4300 
4301 		switch (event->type_len) {
4302 
4303 		case RINGBUF_TYPE_TIME_EXTEND:
4304 			delta = rb_event_time_stamp(event);
4305 			ts += delta;
4306 			pr_warn(" 0x%x: [%lld] delta:%lld TIME EXTEND\n",
4307 				e, ts, delta);
4308 			break;
4309 
4310 		case RINGBUF_TYPE_TIME_STAMP:
4311 			delta = rb_event_time_stamp(event);
4312 			ts = rb_fix_abs_ts(delta, ts);
4313 			pr_warn(" 0x%x:  [%lld] absolute:%lld TIME STAMP\n",
4314 				e, ts, delta);
4315 			break;
4316 
4317 		case RINGBUF_TYPE_PADDING:
4318 			ts += event->time_delta;
4319 			pr_warn(" 0x%x:  [%lld] delta:%d PADDING\n",
4320 				e, ts, event->time_delta);
4321 			break;
4322 
4323 		case RINGBUF_TYPE_DATA:
4324 			ts += event->time_delta;
4325 			pr_warn(" 0x%x:  [%lld] delta:%d %s%s\n",
4326 				e, ts, event->time_delta,
4327 				show_flags(event), show_irq(event));
4328 			break;
4329 
4330 		default:
4331 			break;
4332 		}
4333 	}
4334 	pr_warn("expected end:0x%lx last event actually ended at:0x%x\n", tail, e);
4335 }
4336 
4337 static DEFINE_PER_CPU(atomic_t, checking);
4338 static atomic_t ts_dump;
4339 
4340 #define buffer_warn_return(fmt, ...)					\
4341 	do {								\
4342 		/* If another report is happening, ignore this one */	\
4343 		if (atomic_inc_return(&ts_dump) != 1) {			\
4344 			atomic_dec(&ts_dump);				\
4345 			goto out;					\
4346 		}							\
4347 		atomic_inc(&cpu_buffer->record_disabled);		\
4348 		pr_warn(fmt, ##__VA_ARGS__);				\
4349 		dump_buffer_page(bpage, info, tail);			\
4350 		atomic_dec(&ts_dump);					\
4351 		/* There's some cases in boot up that this can happen */ \
4352 		if (WARN_ON_ONCE(system_state != SYSTEM_BOOTING))	\
4353 			/* Do not re-enable checking */			\
4354 			return;						\
4355 	} while (0)
4356 
4357 /*
4358  * Check if the current event time stamp matches the deltas on
4359  * the buffer page.
4360  */
check_buffer(struct ring_buffer_per_cpu * cpu_buffer,struct rb_event_info * info,unsigned long tail)4361 static void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
4362 			 struct rb_event_info *info,
4363 			 unsigned long tail)
4364 {
4365 	struct buffer_data_page *bpage;
4366 	u64 ts, delta;
4367 	bool full = false;
4368 	int ret;
4369 
4370 	bpage = info->tail_page->page;
4371 
4372 	if (tail == CHECK_FULL_PAGE) {
4373 		full = true;
4374 		tail = local_read(&bpage->commit);
4375 	} else if (info->add_timestamp &
4376 		   (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)) {
4377 		/* Ignore events with absolute time stamps */
4378 		return;
4379 	}
4380 
4381 	/*
4382 	 * Do not check the first event (skip possible extends too).
4383 	 * Also do not check if previous events have not been committed.
4384 	 */
4385 	if (tail <= 8 || tail > local_read(&bpage->commit))
4386 		return;
4387 
4388 	/*
4389 	 * If this interrupted another event,
4390 	 */
4391 	if (atomic_inc_return(this_cpu_ptr(&checking)) != 1)
4392 		goto out;
4393 
4394 	ret = rb_read_data_buffer(bpage, tail, cpu_buffer->cpu, &ts, &delta);
4395 	if (ret < 0) {
4396 		if (delta < ts) {
4397 			buffer_warn_return("[CPU: %d]ABSOLUTE TIME WENT BACKWARDS: last ts: %lld absolute ts: %lld\n",
4398 					   cpu_buffer->cpu, ts, delta);
4399 			goto out;
4400 		}
4401 	}
4402 	if ((full && ts > info->ts) ||
4403 	    (!full && ts + info->delta != info->ts)) {
4404 		buffer_warn_return("[CPU: %d]TIME DOES NOT MATCH expected:%lld actual:%lld delta:%lld before:%lld after:%lld%s context:%s\n",
4405 				   cpu_buffer->cpu,
4406 				   ts + info->delta, info->ts, info->delta,
4407 				   info->before, info->after,
4408 				   full ? " (full)" : "", show_interrupt_level());
4409 	}
4410 out:
4411 	atomic_dec(this_cpu_ptr(&checking));
4412 }
4413 #else
check_buffer(struct ring_buffer_per_cpu * cpu_buffer,struct rb_event_info * info,unsigned long tail)4414 static inline void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
4415 			 struct rb_event_info *info,
4416 			 unsigned long tail)
4417 {
4418 }
4419 #endif /* CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS */
4420 
4421 static struct ring_buffer_event *
__rb_reserve_next(struct ring_buffer_per_cpu * cpu_buffer,struct rb_event_info * info)4422 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
4423 		  struct rb_event_info *info)
4424 {
4425 	struct ring_buffer_event *event;
4426 	struct buffer_page *tail_page;
4427 	unsigned long tail, write, w;
4428 
4429 	/* Don't let the compiler play games with cpu_buffer->tail_page */
4430 	tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
4431 
4432  /*A*/	w = local_read(&tail_page->write) & RB_WRITE_MASK;
4433 	barrier();
4434 	rb_time_read(&cpu_buffer->before_stamp, &info->before);
4435 	rb_time_read(&cpu_buffer->write_stamp, &info->after);
4436 	barrier();
4437 	info->ts = rb_time_stamp(cpu_buffer->buffer);
4438 
4439 	if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) {
4440 		info->delta = info->ts;
4441 	} else {
4442 		/*
4443 		 * If interrupting an event time update, we may need an
4444 		 * absolute timestamp.
4445 		 * Don't bother if this is the start of a new page (w == 0).
4446 		 */
4447 		if (!w) {
4448 			/* Use the sub-buffer timestamp */
4449 			info->delta = 0;
4450 		} else if (unlikely(info->before != info->after)) {
4451 			info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND;
4452 			info->length += RB_LEN_TIME_EXTEND;
4453 		} else {
4454 			info->delta = info->ts - info->after;
4455 			if (unlikely(test_time_stamp(info->delta))) {
4456 				info->add_timestamp |= RB_ADD_STAMP_EXTEND;
4457 				info->length += RB_LEN_TIME_EXTEND;
4458 			}
4459 		}
4460 	}
4461 
4462  /*B*/	rb_time_set(&cpu_buffer->before_stamp, info->ts);
4463 
4464  /*C*/	write = local_add_return(info->length, &tail_page->write);
4465 
4466 	/* set write to only the index of the write */
4467 	write &= RB_WRITE_MASK;
4468 
4469 	tail = write - info->length;
4470 
4471 	/* See if we shot pass the end of this buffer page */
4472 	if (unlikely(write > cpu_buffer->buffer->subbuf_size)) {
4473 		check_buffer(cpu_buffer, info, CHECK_FULL_PAGE);
4474 		return rb_move_tail(cpu_buffer, tail, info);
4475 	}
4476 
4477 	if (likely(tail == w)) {
4478 		/* Nothing interrupted us between A and C */
4479  /*D*/		rb_time_set(&cpu_buffer->write_stamp, info->ts);
4480 		/*
4481 		 * If something came in between C and D, the write stamp
4482 		 * may now not be in sync. But that's fine as the before_stamp
4483 		 * will be different and then next event will just be forced
4484 		 * to use an absolute timestamp.
4485 		 */
4486 		if (likely(!(info->add_timestamp &
4487 			     (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
4488 			/* This did not interrupt any time update */
4489 			info->delta = info->ts - info->after;
4490 		else
4491 			/* Just use full timestamp for interrupting event */
4492 			info->delta = info->ts;
4493 		check_buffer(cpu_buffer, info, tail);
4494 	} else {
4495 		u64 ts;
4496 		/* SLOW PATH - Interrupted between A and C */
4497 
4498 		/* Save the old before_stamp */
4499 		rb_time_read(&cpu_buffer->before_stamp, &info->before);
4500 
4501 		/*
4502 		 * Read a new timestamp and update the before_stamp to make
4503 		 * the next event after this one force using an absolute
4504 		 * timestamp. This is in case an interrupt were to come in
4505 		 * between E and F.
4506 		 */
4507 		ts = rb_time_stamp(cpu_buffer->buffer);
4508 		rb_time_set(&cpu_buffer->before_stamp, ts);
4509 
4510 		barrier();
4511  /*E*/		rb_time_read(&cpu_buffer->write_stamp, &info->after);
4512 		barrier();
4513  /*F*/		if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) &&
4514 		    info->after == info->before && info->after < ts) {
4515 			/*
4516 			 * Nothing came after this event between C and F, it is
4517 			 * safe to use info->after for the delta as it
4518 			 * matched info->before and is still valid.
4519 			 */
4520 			info->delta = ts - info->after;
4521 		} else {
4522 			/*
4523 			 * Interrupted between C and F:
4524 			 * Lost the previous events time stamp. Just set the
4525 			 * delta to zero, and this will be the same time as
4526 			 * the event this event interrupted. And the events that
4527 			 * came after this will still be correct (as they would
4528 			 * have built their delta on the previous event.
4529 			 */
4530 			info->delta = 0;
4531 		}
4532 		info->ts = ts;
4533 		info->add_timestamp &= ~RB_ADD_STAMP_FORCE;
4534 	}
4535 
4536 	/*
4537 	 * If this is the first commit on the page, then it has the same
4538 	 * timestamp as the page itself.
4539 	 */
4540 	if (unlikely(!tail && !(info->add_timestamp &
4541 				(RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
4542 		info->delta = 0;
4543 
4544 	/* We reserved something on the buffer */
4545 
4546 	event = __rb_page_index(tail_page, tail);
4547 	rb_update_event(cpu_buffer, event, info);
4548 
4549 	local_inc(&tail_page->entries);
4550 
4551 	/*
4552 	 * If this is the first commit on the page, then update
4553 	 * its timestamp.
4554 	 */
4555 	if (unlikely(!tail))
4556 		tail_page->page->time_stamp = info->ts;
4557 
4558 	/* account for these added bytes */
4559 	local_add(info->length, &cpu_buffer->entries_bytes);
4560 
4561 	return event;
4562 }
4563 
4564 static __always_inline struct ring_buffer_event *
rb_reserve_next_event(struct trace_buffer * buffer,struct ring_buffer_per_cpu * cpu_buffer,unsigned long length)4565 rb_reserve_next_event(struct trace_buffer *buffer,
4566 		      struct ring_buffer_per_cpu *cpu_buffer,
4567 		      unsigned long length)
4568 {
4569 	struct ring_buffer_event *event;
4570 	struct rb_event_info info;
4571 	int nr_loops = 0;
4572 	int add_ts_default;
4573 
4574 	/*
4575 	 * ring buffer does cmpxchg as well as atomic64 operations
4576 	 * (which some archs use locking for atomic64), make sure this
4577 	 * is safe in NMI context
4578 	 */
4579 	if ((!IS_ENABLED(CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG) ||
4580 	     IS_ENABLED(CONFIG_GENERIC_ATOMIC64)) &&
4581 	    (unlikely(in_nmi()))) {
4582 		return NULL;
4583 	}
4584 
4585 	rb_start_commit(cpu_buffer);
4586 	/* The commit page can not change after this */
4587 
4588 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4589 	/*
4590 	 * Due to the ability to swap a cpu buffer from a buffer
4591 	 * it is possible it was swapped before we committed.
4592 	 * (committing stops a swap). We check for it here and
4593 	 * if it happened, we have to fail the write.
4594 	 */
4595 	barrier();
4596 	if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
4597 		local_dec(&cpu_buffer->committing);
4598 		local_dec(&cpu_buffer->commits);
4599 		return NULL;
4600 	}
4601 #endif
4602 
4603 	info.length = rb_calculate_event_length(length);
4604 
4605 	if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) {
4606 		add_ts_default = RB_ADD_STAMP_ABSOLUTE;
4607 		info.length += RB_LEN_TIME_EXTEND;
4608 		if (info.length > cpu_buffer->buffer->max_data_size)
4609 			goto out_fail;
4610 	} else {
4611 		add_ts_default = RB_ADD_STAMP_NONE;
4612 	}
4613 
4614  again:
4615 	info.add_timestamp = add_ts_default;
4616 	info.delta = 0;
4617 
4618 	/*
4619 	 * We allow for interrupts to reenter here and do a trace.
4620 	 * If one does, it will cause this original code to loop
4621 	 * back here. Even with heavy interrupts happening, this
4622 	 * should only happen a few times in a row. If this happens
4623 	 * 1000 times in a row, there must be either an interrupt
4624 	 * storm or we have something buggy.
4625 	 * Bail!
4626 	 */
4627 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
4628 		goto out_fail;
4629 
4630 	event = __rb_reserve_next(cpu_buffer, &info);
4631 
4632 	if (unlikely(PTR_ERR(event) == -EAGAIN)) {
4633 		if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND))
4634 			info.length -= RB_LEN_TIME_EXTEND;
4635 		goto again;
4636 	}
4637 
4638 	if (likely(event))
4639 		return event;
4640  out_fail:
4641 	rb_end_commit(cpu_buffer);
4642 	return NULL;
4643 }
4644 
4645 /**
4646  * ring_buffer_lock_reserve - reserve a part of the buffer
4647  * @buffer: the ring buffer to reserve from
4648  * @length: the length of the data to reserve (excluding event header)
4649  *
4650  * Returns a reserved event on the ring buffer to copy directly to.
4651  * The user of this interface will need to get the body to write into
4652  * and can use the ring_buffer_event_data() interface.
4653  *
4654  * The length is the length of the data needed, not the event length
4655  * which also includes the event header.
4656  *
4657  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
4658  * If NULL is returned, then nothing has been allocated or locked.
4659  */
4660 struct ring_buffer_event *
ring_buffer_lock_reserve(struct trace_buffer * buffer,unsigned long length)4661 ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length)
4662 {
4663 	struct ring_buffer_per_cpu *cpu_buffer;
4664 	struct ring_buffer_event *event;
4665 	int cpu;
4666 
4667 	/* If we are tracing schedule, we don't want to recurse */
4668 	preempt_disable_notrace();
4669 
4670 	if (unlikely(atomic_read(&buffer->record_disabled)))
4671 		goto out;
4672 
4673 	cpu = raw_smp_processor_id();
4674 
4675 	if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
4676 		goto out;
4677 
4678 	cpu_buffer = buffer->buffers[cpu];
4679 
4680 	if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
4681 		goto out;
4682 
4683 	if (unlikely(length > buffer->max_data_size))
4684 		goto out;
4685 
4686 	if (unlikely(trace_recursive_lock(cpu_buffer)))
4687 		goto out;
4688 
4689 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
4690 	if (!event)
4691 		goto out_unlock;
4692 
4693 	return event;
4694 
4695  out_unlock:
4696 	trace_recursive_unlock(cpu_buffer);
4697  out:
4698 	preempt_enable_notrace();
4699 	return NULL;
4700 }
4701 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
4702 
4703 /*
4704  * Decrement the entries to the page that an event is on.
4705  * The event does not even need to exist, only the pointer
4706  * to the page it is on. This may only be called before the commit
4707  * takes place.
4708  */
4709 static inline void
rb_decrement_entry(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)4710 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
4711 		   struct ring_buffer_event *event)
4712 {
4713 	unsigned long addr = (unsigned long)event;
4714 	struct buffer_page *bpage = cpu_buffer->commit_page;
4715 	struct buffer_page *start;
4716 
4717 	addr &= ~((PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1);
4718 
4719 	/* Do the likely case first */
4720 	if (likely(bpage->page == (void *)addr)) {
4721 		local_dec(&bpage->entries);
4722 		return;
4723 	}
4724 
4725 	/*
4726 	 * Because the commit page may be on the reader page we
4727 	 * start with the next page and check the end loop there.
4728 	 */
4729 	rb_inc_page(&bpage);
4730 	start = bpage;
4731 	do {
4732 		if (bpage->page == (void *)addr) {
4733 			local_dec(&bpage->entries);
4734 			return;
4735 		}
4736 		rb_inc_page(&bpage);
4737 	} while (bpage != start);
4738 
4739 	/* commit not part of this buffer?? */
4740 	RB_WARN_ON(cpu_buffer, 1);
4741 }
4742 
4743 /**
4744  * ring_buffer_discard_commit - discard an event that has not been committed
4745  * @buffer: the ring buffer
4746  * @event: non committed event to discard
4747  *
4748  * Sometimes an event that is in the ring buffer needs to be ignored.
4749  * This function lets the user discard an event in the ring buffer
4750  * and then that event will not be read later.
4751  *
4752  * This function only works if it is called before the item has been
4753  * committed. It will try to free the event from the ring buffer
4754  * if another event has not been added behind it.
4755  *
4756  * If another event has been added behind it, it will set the event
4757  * up as discarded, and perform the commit.
4758  *
4759  * If this function is called, do not call ring_buffer_unlock_commit on
4760  * the event.
4761  */
ring_buffer_discard_commit(struct trace_buffer * buffer,struct ring_buffer_event * event)4762 void ring_buffer_discard_commit(struct trace_buffer *buffer,
4763 				struct ring_buffer_event *event)
4764 {
4765 	struct ring_buffer_per_cpu *cpu_buffer;
4766 	int cpu;
4767 
4768 	/* The event is discarded regardless */
4769 	rb_event_discard(event);
4770 
4771 	cpu = smp_processor_id();
4772 	cpu_buffer = buffer->buffers[cpu];
4773 
4774 	/*
4775 	 * This must only be called if the event has not been
4776 	 * committed yet. Thus we can assume that preemption
4777 	 * is still disabled.
4778 	 */
4779 	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
4780 
4781 	rb_decrement_entry(cpu_buffer, event);
4782 	rb_try_to_discard(cpu_buffer, event);
4783 	rb_end_commit(cpu_buffer);
4784 
4785 	trace_recursive_unlock(cpu_buffer);
4786 
4787 	preempt_enable_notrace();
4788 
4789 }
4790 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
4791 
4792 /**
4793  * ring_buffer_write - write data to the buffer without reserving
4794  * @buffer: The ring buffer to write to.
4795  * @length: The length of the data being written (excluding the event header)
4796  * @data: The data to write to the buffer.
4797  *
4798  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
4799  * one function. If you already have the data to write to the buffer, it
4800  * may be easier to simply call this function.
4801  *
4802  * Note, like ring_buffer_lock_reserve, the length is the length of the data
4803  * and not the length of the event which would hold the header.
4804  */
ring_buffer_write(struct trace_buffer * buffer,unsigned long length,void * data)4805 int ring_buffer_write(struct trace_buffer *buffer,
4806 		      unsigned long length,
4807 		      void *data)
4808 {
4809 	struct ring_buffer_per_cpu *cpu_buffer;
4810 	struct ring_buffer_event *event;
4811 	void *body;
4812 	int ret = -EBUSY;
4813 	int cpu;
4814 
4815 	guard(preempt_notrace)();
4816 
4817 	if (atomic_read(&buffer->record_disabled))
4818 		return -EBUSY;
4819 
4820 	cpu = raw_smp_processor_id();
4821 
4822 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4823 		return -EBUSY;
4824 
4825 	cpu_buffer = buffer->buffers[cpu];
4826 
4827 	if (atomic_read(&cpu_buffer->record_disabled))
4828 		return -EBUSY;
4829 
4830 	if (length > buffer->max_data_size)
4831 		return -EBUSY;
4832 
4833 	if (unlikely(trace_recursive_lock(cpu_buffer)))
4834 		return -EBUSY;
4835 
4836 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
4837 	if (!event)
4838 		goto out_unlock;
4839 
4840 	body = rb_event_data(event);
4841 
4842 	memcpy(body, data, length);
4843 
4844 	rb_commit(cpu_buffer);
4845 
4846 	rb_wakeups(buffer, cpu_buffer);
4847 
4848 	ret = 0;
4849 
4850  out_unlock:
4851 	trace_recursive_unlock(cpu_buffer);
4852 	return ret;
4853 }
4854 EXPORT_SYMBOL_GPL(ring_buffer_write);
4855 
4856 /*
4857  * The total entries in the ring buffer is the running counter
4858  * of entries entered into the ring buffer, minus the sum of
4859  * the entries read from the ring buffer and the number of
4860  * entries that were overwritten.
4861  */
4862 static inline unsigned long
rb_num_of_entries(struct ring_buffer_per_cpu * cpu_buffer)4863 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
4864 {
4865 	return local_read(&cpu_buffer->entries) -
4866 		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
4867 }
4868 
rb_per_cpu_empty(struct ring_buffer_per_cpu * cpu_buffer)4869 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
4870 {
4871 	return !rb_num_of_entries(cpu_buffer);
4872 }
4873 
4874 /**
4875  * ring_buffer_record_disable - stop all writes into the buffer
4876  * @buffer: The ring buffer to stop writes to.
4877  *
4878  * This prevents all writes to the buffer. Any attempt to write
4879  * to the buffer after this will fail and return NULL.
4880  *
4881  * The caller should call synchronize_rcu() after this.
4882  */
ring_buffer_record_disable(struct trace_buffer * buffer)4883 void ring_buffer_record_disable(struct trace_buffer *buffer)
4884 {
4885 	atomic_inc(&buffer->record_disabled);
4886 }
4887 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
4888 
4889 /**
4890  * ring_buffer_record_enable - enable writes to the buffer
4891  * @buffer: The ring buffer to enable writes
4892  *
4893  * Note, multiple disables will need the same number of enables
4894  * to truly enable the writing (much like preempt_disable).
4895  */
ring_buffer_record_enable(struct trace_buffer * buffer)4896 void ring_buffer_record_enable(struct trace_buffer *buffer)
4897 {
4898 	atomic_dec(&buffer->record_disabled);
4899 }
4900 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
4901 
4902 /**
4903  * ring_buffer_record_off - stop all writes into the buffer
4904  * @buffer: The ring buffer to stop writes to.
4905  *
4906  * This prevents all writes to the buffer. Any attempt to write
4907  * to the buffer after this will fail and return NULL.
4908  *
4909  * This is different than ring_buffer_record_disable() as
4910  * it works like an on/off switch, where as the disable() version
4911  * must be paired with a enable().
4912  */
ring_buffer_record_off(struct trace_buffer * buffer)4913 void ring_buffer_record_off(struct trace_buffer *buffer)
4914 {
4915 	unsigned int rd;
4916 	unsigned int new_rd;
4917 
4918 	rd = atomic_read(&buffer->record_disabled);
4919 	do {
4920 		new_rd = rd | RB_BUFFER_OFF;
4921 	} while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
4922 }
4923 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
4924 
4925 /**
4926  * ring_buffer_record_on - restart writes into the buffer
4927  * @buffer: The ring buffer to start writes to.
4928  *
4929  * This enables all writes to the buffer that was disabled by
4930  * ring_buffer_record_off().
4931  *
4932  * This is different than ring_buffer_record_enable() as
4933  * it works like an on/off switch, where as the enable() version
4934  * must be paired with a disable().
4935  */
ring_buffer_record_on(struct trace_buffer * buffer)4936 void ring_buffer_record_on(struct trace_buffer *buffer)
4937 {
4938 	unsigned int rd;
4939 	unsigned int new_rd;
4940 
4941 	rd = atomic_read(&buffer->record_disabled);
4942 	do {
4943 		new_rd = rd & ~RB_BUFFER_OFF;
4944 	} while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
4945 }
4946 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
4947 
4948 /**
4949  * ring_buffer_record_is_on - return true if the ring buffer can write
4950  * @buffer: The ring buffer to see if write is enabled
4951  *
4952  * Returns true if the ring buffer is in a state that it accepts writes.
4953  */
ring_buffer_record_is_on(struct trace_buffer * buffer)4954 bool ring_buffer_record_is_on(struct trace_buffer *buffer)
4955 {
4956 	return !atomic_read(&buffer->record_disabled);
4957 }
4958 
4959 /**
4960  * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
4961  * @buffer: The ring buffer to see if write is set enabled
4962  *
4963  * Returns true if the ring buffer is set writable by ring_buffer_record_on().
4964  * Note that this does NOT mean it is in a writable state.
4965  *
4966  * It may return true when the ring buffer has been disabled by
4967  * ring_buffer_record_disable(), as that is a temporary disabling of
4968  * the ring buffer.
4969  */
ring_buffer_record_is_set_on(struct trace_buffer * buffer)4970 bool ring_buffer_record_is_set_on(struct trace_buffer *buffer)
4971 {
4972 	return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
4973 }
4974 
4975 /**
4976  * ring_buffer_record_is_on_cpu - return true if the ring buffer can write
4977  * @buffer: The ring buffer to see if write is enabled
4978  * @cpu: The CPU to test if the ring buffer can write too
4979  *
4980  * Returns true if the ring buffer is in a state that it accepts writes
4981  *   for a particular CPU.
4982  */
ring_buffer_record_is_on_cpu(struct trace_buffer * buffer,int cpu)4983 bool ring_buffer_record_is_on_cpu(struct trace_buffer *buffer, int cpu)
4984 {
4985 	struct ring_buffer_per_cpu *cpu_buffer;
4986 
4987 	cpu_buffer = buffer->buffers[cpu];
4988 
4989 	return ring_buffer_record_is_set_on(buffer) &&
4990 		!atomic_read(&cpu_buffer->record_disabled);
4991 }
4992 
4993 /**
4994  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
4995  * @buffer: The ring buffer to stop writes to.
4996  * @cpu: The CPU buffer to stop
4997  *
4998  * This prevents all writes to the buffer. Any attempt to write
4999  * to the buffer after this will fail and return NULL.
5000  *
5001  * The caller should call synchronize_rcu() after this.
5002  */
ring_buffer_record_disable_cpu(struct trace_buffer * buffer,int cpu)5003 void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu)
5004 {
5005 	struct ring_buffer_per_cpu *cpu_buffer;
5006 
5007 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5008 		return;
5009 
5010 	cpu_buffer = buffer->buffers[cpu];
5011 	atomic_inc(&cpu_buffer->record_disabled);
5012 }
5013 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
5014 
5015 /**
5016  * ring_buffer_record_enable_cpu - enable writes to the buffer
5017  * @buffer: The ring buffer to enable writes
5018  * @cpu: The CPU to enable.
5019  *
5020  * Note, multiple disables will need the same number of enables
5021  * to truly enable the writing (much like preempt_disable).
5022  */
ring_buffer_record_enable_cpu(struct trace_buffer * buffer,int cpu)5023 void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu)
5024 {
5025 	struct ring_buffer_per_cpu *cpu_buffer;
5026 
5027 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5028 		return;
5029 
5030 	cpu_buffer = buffer->buffers[cpu];
5031 	atomic_dec(&cpu_buffer->record_disabled);
5032 }
5033 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
5034 
5035 /**
5036  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
5037  * @buffer: The ring buffer
5038  * @cpu: The per CPU buffer to read from.
5039  */
ring_buffer_oldest_event_ts(struct trace_buffer * buffer,int cpu)5040 u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu)
5041 {
5042 	unsigned long flags;
5043 	struct ring_buffer_per_cpu *cpu_buffer;
5044 	struct buffer_page *bpage;
5045 	u64 ret = 0;
5046 
5047 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5048 		return 0;
5049 
5050 	cpu_buffer = buffer->buffers[cpu];
5051 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5052 	/*
5053 	 * if the tail is on reader_page, oldest time stamp is on the reader
5054 	 * page
5055 	 */
5056 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
5057 		bpage = cpu_buffer->reader_page;
5058 	else
5059 		bpage = rb_set_head_page(cpu_buffer);
5060 	if (bpage)
5061 		ret = bpage->page->time_stamp;
5062 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5063 
5064 	return ret;
5065 }
5066 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
5067 
5068 /**
5069  * ring_buffer_bytes_cpu - get the number of bytes unconsumed in a cpu buffer
5070  * @buffer: The ring buffer
5071  * @cpu: The per CPU buffer to read from.
5072  */
ring_buffer_bytes_cpu(struct trace_buffer * buffer,int cpu)5073 unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu)
5074 {
5075 	struct ring_buffer_per_cpu *cpu_buffer;
5076 	unsigned long ret;
5077 
5078 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5079 		return 0;
5080 
5081 	cpu_buffer = buffer->buffers[cpu];
5082 	ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
5083 
5084 	return ret;
5085 }
5086 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
5087 
5088 /**
5089  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
5090  * @buffer: The ring buffer
5091  * @cpu: The per CPU buffer to get the entries from.
5092  */
ring_buffer_entries_cpu(struct trace_buffer * buffer,int cpu)5093 unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu)
5094 {
5095 	struct ring_buffer_per_cpu *cpu_buffer;
5096 
5097 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5098 		return 0;
5099 
5100 	cpu_buffer = buffer->buffers[cpu];
5101 
5102 	return rb_num_of_entries(cpu_buffer);
5103 }
5104 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
5105 
5106 /**
5107  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
5108  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
5109  * @buffer: The ring buffer
5110  * @cpu: The per CPU buffer to get the number of overruns from
5111  */
ring_buffer_overrun_cpu(struct trace_buffer * buffer,int cpu)5112 unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu)
5113 {
5114 	struct ring_buffer_per_cpu *cpu_buffer;
5115 	unsigned long ret;
5116 
5117 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5118 		return 0;
5119 
5120 	cpu_buffer = buffer->buffers[cpu];
5121 	ret = local_read(&cpu_buffer->overrun);
5122 
5123 	return ret;
5124 }
5125 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
5126 
5127 /**
5128  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
5129  * commits failing due to the buffer wrapping around while there are uncommitted
5130  * events, such as during an interrupt storm.
5131  * @buffer: The ring buffer
5132  * @cpu: The per CPU buffer to get the number of overruns from
5133  */
5134 unsigned long
ring_buffer_commit_overrun_cpu(struct trace_buffer * buffer,int cpu)5135 ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu)
5136 {
5137 	struct ring_buffer_per_cpu *cpu_buffer;
5138 	unsigned long ret;
5139 
5140 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5141 		return 0;
5142 
5143 	cpu_buffer = buffer->buffers[cpu];
5144 	ret = local_read(&cpu_buffer->commit_overrun);
5145 
5146 	return ret;
5147 }
5148 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
5149 
5150 /**
5151  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
5152  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
5153  * @buffer: The ring buffer
5154  * @cpu: The per CPU buffer to get the number of overruns from
5155  */
5156 unsigned long
ring_buffer_dropped_events_cpu(struct trace_buffer * buffer,int cpu)5157 ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu)
5158 {
5159 	struct ring_buffer_per_cpu *cpu_buffer;
5160 	unsigned long ret;
5161 
5162 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5163 		return 0;
5164 
5165 	cpu_buffer = buffer->buffers[cpu];
5166 	ret = local_read(&cpu_buffer->dropped_events);
5167 
5168 	return ret;
5169 }
5170 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
5171 
5172 /**
5173  * ring_buffer_read_events_cpu - get the number of events successfully read
5174  * @buffer: The ring buffer
5175  * @cpu: The per CPU buffer to get the number of events read
5176  */
5177 unsigned long
ring_buffer_read_events_cpu(struct trace_buffer * buffer,int cpu)5178 ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu)
5179 {
5180 	struct ring_buffer_per_cpu *cpu_buffer;
5181 
5182 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5183 		return 0;
5184 
5185 	cpu_buffer = buffer->buffers[cpu];
5186 	return cpu_buffer->read;
5187 }
5188 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
5189 
5190 /**
5191  * ring_buffer_entries - get the number of entries in a buffer
5192  * @buffer: The ring buffer
5193  *
5194  * Returns the total number of entries in the ring buffer
5195  * (all CPU entries)
5196  */
ring_buffer_entries(struct trace_buffer * buffer)5197 unsigned long ring_buffer_entries(struct trace_buffer *buffer)
5198 {
5199 	struct ring_buffer_per_cpu *cpu_buffer;
5200 	unsigned long entries = 0;
5201 	int cpu;
5202 
5203 	/* if you care about this being correct, lock the buffer */
5204 	for_each_buffer_cpu(buffer, cpu) {
5205 		cpu_buffer = buffer->buffers[cpu];
5206 		entries += rb_num_of_entries(cpu_buffer);
5207 	}
5208 
5209 	return entries;
5210 }
5211 EXPORT_SYMBOL_GPL(ring_buffer_entries);
5212 
5213 /**
5214  * ring_buffer_overruns - get the number of overruns in buffer
5215  * @buffer: The ring buffer
5216  *
5217  * Returns the total number of overruns in the ring buffer
5218  * (all CPU entries)
5219  */
ring_buffer_overruns(struct trace_buffer * buffer)5220 unsigned long ring_buffer_overruns(struct trace_buffer *buffer)
5221 {
5222 	struct ring_buffer_per_cpu *cpu_buffer;
5223 	unsigned long overruns = 0;
5224 	int cpu;
5225 
5226 	/* if you care about this being correct, lock the buffer */
5227 	for_each_buffer_cpu(buffer, cpu) {
5228 		cpu_buffer = buffer->buffers[cpu];
5229 		overruns += local_read(&cpu_buffer->overrun);
5230 	}
5231 
5232 	return overruns;
5233 }
5234 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
5235 
rb_iter_reset(struct ring_buffer_iter * iter)5236 static void rb_iter_reset(struct ring_buffer_iter *iter)
5237 {
5238 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5239 
5240 	/* Iterator usage is expected to have record disabled */
5241 	iter->head_page = cpu_buffer->reader_page;
5242 	iter->head = cpu_buffer->reader_page->read;
5243 	iter->next_event = iter->head;
5244 
5245 	iter->cache_reader_page = iter->head_page;
5246 	iter->cache_read = cpu_buffer->read;
5247 	iter->cache_pages_removed = cpu_buffer->pages_removed;
5248 
5249 	if (iter->head) {
5250 		iter->read_stamp = cpu_buffer->read_stamp;
5251 		iter->page_stamp = cpu_buffer->reader_page->page->time_stamp;
5252 	} else {
5253 		iter->read_stamp = iter->head_page->page->time_stamp;
5254 		iter->page_stamp = iter->read_stamp;
5255 	}
5256 }
5257 
5258 /**
5259  * ring_buffer_iter_reset - reset an iterator
5260  * @iter: The iterator to reset
5261  *
5262  * Resets the iterator, so that it will start from the beginning
5263  * again.
5264  */
ring_buffer_iter_reset(struct ring_buffer_iter * iter)5265 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
5266 {
5267 	struct ring_buffer_per_cpu *cpu_buffer;
5268 	unsigned long flags;
5269 
5270 	if (!iter)
5271 		return;
5272 
5273 	cpu_buffer = iter->cpu_buffer;
5274 
5275 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5276 	rb_iter_reset(iter);
5277 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5278 }
5279 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
5280 
5281 /**
5282  * ring_buffer_iter_empty - check if an iterator has no more to read
5283  * @iter: The iterator to check
5284  */
ring_buffer_iter_empty(struct ring_buffer_iter * iter)5285 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
5286 {
5287 	struct ring_buffer_per_cpu *cpu_buffer;
5288 	struct buffer_page *reader;
5289 	struct buffer_page *head_page;
5290 	struct buffer_page *commit_page;
5291 	struct buffer_page *curr_commit_page;
5292 	unsigned commit;
5293 	u64 curr_commit_ts;
5294 	u64 commit_ts;
5295 
5296 	cpu_buffer = iter->cpu_buffer;
5297 	reader = cpu_buffer->reader_page;
5298 	head_page = cpu_buffer->head_page;
5299 	commit_page = READ_ONCE(cpu_buffer->commit_page);
5300 	commit_ts = commit_page->page->time_stamp;
5301 
5302 	/*
5303 	 * When the writer goes across pages, it issues a cmpxchg which
5304 	 * is a mb(), which will synchronize with the rmb here.
5305 	 * (see rb_tail_page_update())
5306 	 */
5307 	smp_rmb();
5308 	commit = rb_page_commit(commit_page);
5309 	/* We want to make sure that the commit page doesn't change */
5310 	smp_rmb();
5311 
5312 	/* Make sure commit page didn't change */
5313 	curr_commit_page = READ_ONCE(cpu_buffer->commit_page);
5314 	curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp);
5315 
5316 	/* If the commit page changed, then there's more data */
5317 	if (curr_commit_page != commit_page ||
5318 	    curr_commit_ts != commit_ts)
5319 		return 0;
5320 
5321 	/* Still racy, as it may return a false positive, but that's OK */
5322 	return ((iter->head_page == commit_page && iter->head >= commit) ||
5323 		(iter->head_page == reader && commit_page == head_page &&
5324 		 head_page->read == commit &&
5325 		 iter->head == rb_page_size(cpu_buffer->reader_page)));
5326 }
5327 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
5328 
5329 static void
rb_update_read_stamp(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)5330 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
5331 		     struct ring_buffer_event *event)
5332 {
5333 	u64 delta;
5334 
5335 	switch (event->type_len) {
5336 	case RINGBUF_TYPE_PADDING:
5337 		return;
5338 
5339 	case RINGBUF_TYPE_TIME_EXTEND:
5340 		delta = rb_event_time_stamp(event);
5341 		cpu_buffer->read_stamp += delta;
5342 		return;
5343 
5344 	case RINGBUF_TYPE_TIME_STAMP:
5345 		delta = rb_event_time_stamp(event);
5346 		delta = rb_fix_abs_ts(delta, cpu_buffer->read_stamp);
5347 		cpu_buffer->read_stamp = delta;
5348 		return;
5349 
5350 	case RINGBUF_TYPE_DATA:
5351 		cpu_buffer->read_stamp += event->time_delta;
5352 		return;
5353 
5354 	default:
5355 		RB_WARN_ON(cpu_buffer, 1);
5356 	}
5357 }
5358 
5359 static void
rb_update_iter_read_stamp(struct ring_buffer_iter * iter,struct ring_buffer_event * event)5360 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
5361 			  struct ring_buffer_event *event)
5362 {
5363 	u64 delta;
5364 
5365 	switch (event->type_len) {
5366 	case RINGBUF_TYPE_PADDING:
5367 		return;
5368 
5369 	case RINGBUF_TYPE_TIME_EXTEND:
5370 		delta = rb_event_time_stamp(event);
5371 		iter->read_stamp += delta;
5372 		return;
5373 
5374 	case RINGBUF_TYPE_TIME_STAMP:
5375 		delta = rb_event_time_stamp(event);
5376 		delta = rb_fix_abs_ts(delta, iter->read_stamp);
5377 		iter->read_stamp = delta;
5378 		return;
5379 
5380 	case RINGBUF_TYPE_DATA:
5381 		iter->read_stamp += event->time_delta;
5382 		return;
5383 
5384 	default:
5385 		RB_WARN_ON(iter->cpu_buffer, 1);
5386 	}
5387 }
5388 
5389 static struct buffer_page *
rb_get_reader_page(struct ring_buffer_per_cpu * cpu_buffer)5390 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
5391 {
5392 	struct buffer_page *reader = NULL;
5393 	unsigned long bsize = READ_ONCE(cpu_buffer->buffer->subbuf_size);
5394 	unsigned long overwrite;
5395 	unsigned long flags;
5396 	int nr_loops = 0;
5397 	bool ret;
5398 
5399 	local_irq_save(flags);
5400 	arch_spin_lock(&cpu_buffer->lock);
5401 
5402  again:
5403 	/*
5404 	 * This should normally only loop twice. But because the
5405 	 * start of the reader inserts an empty page, it causes
5406 	 * a case where we will loop three times. There should be no
5407 	 * reason to loop four times (that I know of).
5408 	 */
5409 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
5410 		reader = NULL;
5411 		goto out;
5412 	}
5413 
5414 	reader = cpu_buffer->reader_page;
5415 
5416 	/* If there's more to read, return this page */
5417 	if (cpu_buffer->reader_page->read < rb_page_size(reader))
5418 		goto out;
5419 
5420 	/* Never should we have an index greater than the size */
5421 	if (RB_WARN_ON(cpu_buffer,
5422 		       cpu_buffer->reader_page->read > rb_page_size(reader)))
5423 		goto out;
5424 
5425 	/* check if we caught up to the tail */
5426 	reader = NULL;
5427 	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
5428 		goto out;
5429 
5430 	/* Don't bother swapping if the ring buffer is empty */
5431 	if (rb_num_of_entries(cpu_buffer) == 0)
5432 		goto out;
5433 
5434 	/*
5435 	 * Reset the reader page to size zero.
5436 	 */
5437 	local_set(&cpu_buffer->reader_page->write, 0);
5438 	local_set(&cpu_buffer->reader_page->entries, 0);
5439 	cpu_buffer->reader_page->real_end = 0;
5440 
5441  spin:
5442 	/*
5443 	 * Splice the empty reader page into the list around the head.
5444 	 */
5445 	reader = rb_set_head_page(cpu_buffer);
5446 	if (!reader)
5447 		goto out;
5448 	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
5449 	cpu_buffer->reader_page->list.prev = reader->list.prev;
5450 
5451 	/*
5452 	 * cpu_buffer->pages just needs to point to the buffer, it
5453 	 *  has no specific buffer page to point to. Lets move it out
5454 	 *  of our way so we don't accidentally swap it.
5455 	 */
5456 	cpu_buffer->pages = reader->list.prev;
5457 
5458 	/* The reader page will be pointing to the new head */
5459 	rb_set_list_to_head(&cpu_buffer->reader_page->list);
5460 
5461 	/*
5462 	 * We want to make sure we read the overruns after we set up our
5463 	 * pointers to the next object. The writer side does a
5464 	 * cmpxchg to cross pages which acts as the mb on the writer
5465 	 * side. Note, the reader will constantly fail the swap
5466 	 * while the writer is updating the pointers, so this
5467 	 * guarantees that the overwrite recorded here is the one we
5468 	 * want to compare with the last_overrun.
5469 	 */
5470 	smp_mb();
5471 	overwrite = local_read(&(cpu_buffer->overrun));
5472 
5473 	/*
5474 	 * Here's the tricky part.
5475 	 *
5476 	 * We need to move the pointer past the header page.
5477 	 * But we can only do that if a writer is not currently
5478 	 * moving it. The page before the header page has the
5479 	 * flag bit '1' set if it is pointing to the page we want.
5480 	 * but if the writer is in the process of moving it
5481 	 * then it will be '2' or already moved '0'.
5482 	 */
5483 
5484 	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
5485 
5486 	/*
5487 	 * If we did not convert it, then we must try again.
5488 	 */
5489 	if (!ret)
5490 		goto spin;
5491 
5492 	if (cpu_buffer->ring_meta)
5493 		rb_update_meta_reader(cpu_buffer, reader);
5494 
5495 	/*
5496 	 * Yay! We succeeded in replacing the page.
5497 	 *
5498 	 * Now make the new head point back to the reader page.
5499 	 */
5500 	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
5501 	rb_inc_page(&cpu_buffer->head_page);
5502 
5503 	cpu_buffer->cnt++;
5504 	local_inc(&cpu_buffer->pages_read);
5505 
5506 	/* Finally update the reader page to the new head */
5507 	cpu_buffer->reader_page = reader;
5508 	cpu_buffer->reader_page->read = 0;
5509 
5510 	if (overwrite != cpu_buffer->last_overrun) {
5511 		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
5512 		cpu_buffer->last_overrun = overwrite;
5513 	}
5514 
5515 	goto again;
5516 
5517  out:
5518 	/* Update the read_stamp on the first event */
5519 	if (reader && reader->read == 0)
5520 		cpu_buffer->read_stamp = reader->page->time_stamp;
5521 
5522 	arch_spin_unlock(&cpu_buffer->lock);
5523 	local_irq_restore(flags);
5524 
5525 	/*
5526 	 * The writer has preempt disable, wait for it. But not forever
5527 	 * Although, 1 second is pretty much "forever"
5528 	 */
5529 #define USECS_WAIT	1000000
5530         for (nr_loops = 0; nr_loops < USECS_WAIT; nr_loops++) {
5531 		/* If the write is past the end of page, a writer is still updating it */
5532 		if (likely(!reader || rb_page_write(reader) <= bsize))
5533 			break;
5534 
5535 		udelay(1);
5536 
5537 		/* Get the latest version of the reader write value */
5538 		smp_rmb();
5539 	}
5540 
5541 	/* The writer is not moving forward? Something is wrong */
5542 	if (RB_WARN_ON(cpu_buffer, nr_loops == USECS_WAIT))
5543 		reader = NULL;
5544 
5545 	/*
5546 	 * Make sure we see any padding after the write update
5547 	 * (see rb_reset_tail()).
5548 	 *
5549 	 * In addition, a writer may be writing on the reader page
5550 	 * if the page has not been fully filled, so the read barrier
5551 	 * is also needed to make sure we see the content of what is
5552 	 * committed by the writer (see rb_set_commit_to_write()).
5553 	 */
5554 	smp_rmb();
5555 
5556 
5557 	return reader;
5558 }
5559 
rb_advance_reader(struct ring_buffer_per_cpu * cpu_buffer)5560 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
5561 {
5562 	struct ring_buffer_event *event;
5563 	struct buffer_page *reader;
5564 	unsigned length;
5565 
5566 	reader = rb_get_reader_page(cpu_buffer);
5567 
5568 	/* This function should not be called when buffer is empty */
5569 	if (RB_WARN_ON(cpu_buffer, !reader))
5570 		return;
5571 
5572 	event = rb_reader_event(cpu_buffer);
5573 
5574 	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
5575 		cpu_buffer->read++;
5576 
5577 	rb_update_read_stamp(cpu_buffer, event);
5578 
5579 	length = rb_event_length(event);
5580 	cpu_buffer->reader_page->read += length;
5581 	cpu_buffer->read_bytes += length;
5582 }
5583 
rb_advance_iter(struct ring_buffer_iter * iter)5584 static void rb_advance_iter(struct ring_buffer_iter *iter)
5585 {
5586 	struct ring_buffer_per_cpu *cpu_buffer;
5587 
5588 	cpu_buffer = iter->cpu_buffer;
5589 
5590 	/* If head == next_event then we need to jump to the next event */
5591 	if (iter->head == iter->next_event) {
5592 		/* If the event gets overwritten again, there's nothing to do */
5593 		if (rb_iter_head_event(iter) == NULL)
5594 			return;
5595 	}
5596 
5597 	iter->head = iter->next_event;
5598 
5599 	/*
5600 	 * Check if we are at the end of the buffer.
5601 	 */
5602 	if (iter->next_event >= rb_page_size(iter->head_page)) {
5603 		/* discarded commits can make the page empty */
5604 		if (iter->head_page == cpu_buffer->commit_page)
5605 			return;
5606 		rb_inc_iter(iter);
5607 		return;
5608 	}
5609 
5610 	rb_update_iter_read_stamp(iter, iter->event);
5611 }
5612 
rb_lost_events(struct ring_buffer_per_cpu * cpu_buffer)5613 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
5614 {
5615 	return cpu_buffer->lost_events;
5616 }
5617 
5618 static struct ring_buffer_event *
rb_buffer_peek(struct ring_buffer_per_cpu * cpu_buffer,u64 * ts,unsigned long * lost_events)5619 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
5620 	       unsigned long *lost_events)
5621 {
5622 	struct ring_buffer_event *event;
5623 	struct buffer_page *reader;
5624 	int nr_loops = 0;
5625 
5626 	if (ts)
5627 		*ts = 0;
5628  again:
5629 	/*
5630 	 * We repeat when a time extend is encountered.
5631 	 * Since the time extend is always attached to a data event,
5632 	 * we should never loop more than once.
5633 	 * (We never hit the following condition more than twice).
5634 	 */
5635 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
5636 		return NULL;
5637 
5638 	reader = rb_get_reader_page(cpu_buffer);
5639 	if (!reader)
5640 		return NULL;
5641 
5642 	event = rb_reader_event(cpu_buffer);
5643 
5644 	switch (event->type_len) {
5645 	case RINGBUF_TYPE_PADDING:
5646 		if (rb_null_event(event))
5647 			RB_WARN_ON(cpu_buffer, 1);
5648 		/*
5649 		 * Because the writer could be discarding every
5650 		 * event it creates (which would probably be bad)
5651 		 * if we were to go back to "again" then we may never
5652 		 * catch up, and will trigger the warn on, or lock
5653 		 * the box. Return the padding, and we will release
5654 		 * the current locks, and try again.
5655 		 */
5656 		return event;
5657 
5658 	case RINGBUF_TYPE_TIME_EXTEND:
5659 		/* Internal data, OK to advance */
5660 		rb_advance_reader(cpu_buffer);
5661 		goto again;
5662 
5663 	case RINGBUF_TYPE_TIME_STAMP:
5664 		if (ts) {
5665 			*ts = rb_event_time_stamp(event);
5666 			*ts = rb_fix_abs_ts(*ts, reader->page->time_stamp);
5667 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
5668 							 cpu_buffer->cpu, ts);
5669 		}
5670 		/* Internal data, OK to advance */
5671 		rb_advance_reader(cpu_buffer);
5672 		goto again;
5673 
5674 	case RINGBUF_TYPE_DATA:
5675 		if (ts && !(*ts)) {
5676 			*ts = cpu_buffer->read_stamp + event->time_delta;
5677 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
5678 							 cpu_buffer->cpu, ts);
5679 		}
5680 		if (lost_events)
5681 			*lost_events = rb_lost_events(cpu_buffer);
5682 		return event;
5683 
5684 	default:
5685 		RB_WARN_ON(cpu_buffer, 1);
5686 	}
5687 
5688 	return NULL;
5689 }
5690 EXPORT_SYMBOL_GPL(ring_buffer_peek);
5691 
5692 static struct ring_buffer_event *
rb_iter_peek(struct ring_buffer_iter * iter,u64 * ts)5693 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
5694 {
5695 	struct trace_buffer *buffer;
5696 	struct ring_buffer_per_cpu *cpu_buffer;
5697 	struct ring_buffer_event *event;
5698 	int nr_loops = 0;
5699 
5700 	if (ts)
5701 		*ts = 0;
5702 
5703 	cpu_buffer = iter->cpu_buffer;
5704 	buffer = cpu_buffer->buffer;
5705 
5706 	/*
5707 	 * Check if someone performed a consuming read to the buffer
5708 	 * or removed some pages from the buffer. In these cases,
5709 	 * iterator was invalidated and we need to reset it.
5710 	 */
5711 	if (unlikely(iter->cache_read != cpu_buffer->read ||
5712 		     iter->cache_reader_page != cpu_buffer->reader_page ||
5713 		     iter->cache_pages_removed != cpu_buffer->pages_removed))
5714 		rb_iter_reset(iter);
5715 
5716  again:
5717 	if (ring_buffer_iter_empty(iter))
5718 		return NULL;
5719 
5720 	/*
5721 	 * As the writer can mess with what the iterator is trying
5722 	 * to read, just give up if we fail to get an event after
5723 	 * three tries. The iterator is not as reliable when reading
5724 	 * the ring buffer with an active write as the consumer is.
5725 	 * Do not warn if the three failures is reached.
5726 	 */
5727 	if (++nr_loops > 3)
5728 		return NULL;
5729 
5730 	if (rb_per_cpu_empty(cpu_buffer))
5731 		return NULL;
5732 
5733 	if (iter->head >= rb_page_size(iter->head_page)) {
5734 		rb_inc_iter(iter);
5735 		goto again;
5736 	}
5737 
5738 	event = rb_iter_head_event(iter);
5739 	if (!event)
5740 		goto again;
5741 
5742 	switch (event->type_len) {
5743 	case RINGBUF_TYPE_PADDING:
5744 		if (rb_null_event(event)) {
5745 			rb_inc_iter(iter);
5746 			goto again;
5747 		}
5748 		rb_advance_iter(iter);
5749 		return event;
5750 
5751 	case RINGBUF_TYPE_TIME_EXTEND:
5752 		/* Internal data, OK to advance */
5753 		rb_advance_iter(iter);
5754 		goto again;
5755 
5756 	case RINGBUF_TYPE_TIME_STAMP:
5757 		if (ts) {
5758 			*ts = rb_event_time_stamp(event);
5759 			*ts = rb_fix_abs_ts(*ts, iter->head_page->page->time_stamp);
5760 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
5761 							 cpu_buffer->cpu, ts);
5762 		}
5763 		/* Internal data, OK to advance */
5764 		rb_advance_iter(iter);
5765 		goto again;
5766 
5767 	case RINGBUF_TYPE_DATA:
5768 		if (ts && !(*ts)) {
5769 			*ts = iter->read_stamp + event->time_delta;
5770 			ring_buffer_normalize_time_stamp(buffer,
5771 							 cpu_buffer->cpu, ts);
5772 		}
5773 		return event;
5774 
5775 	default:
5776 		RB_WARN_ON(cpu_buffer, 1);
5777 	}
5778 
5779 	return NULL;
5780 }
5781 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
5782 
rb_reader_lock(struct ring_buffer_per_cpu * cpu_buffer)5783 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
5784 {
5785 	if (likely(!in_nmi())) {
5786 		raw_spin_lock(&cpu_buffer->reader_lock);
5787 		return true;
5788 	}
5789 
5790 	/*
5791 	 * If an NMI die dumps out the content of the ring buffer
5792 	 * trylock must be used to prevent a deadlock if the NMI
5793 	 * preempted a task that holds the ring buffer locks. If
5794 	 * we get the lock then all is fine, if not, then continue
5795 	 * to do the read, but this can corrupt the ring buffer,
5796 	 * so it must be permanently disabled from future writes.
5797 	 * Reading from NMI is a oneshot deal.
5798 	 */
5799 	if (raw_spin_trylock(&cpu_buffer->reader_lock))
5800 		return true;
5801 
5802 	/* Continue without locking, but disable the ring buffer */
5803 	atomic_inc(&cpu_buffer->record_disabled);
5804 	return false;
5805 }
5806 
5807 static inline void
rb_reader_unlock(struct ring_buffer_per_cpu * cpu_buffer,bool locked)5808 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
5809 {
5810 	if (likely(locked))
5811 		raw_spin_unlock(&cpu_buffer->reader_lock);
5812 }
5813 
5814 /**
5815  * ring_buffer_peek - peek at the next event to be read
5816  * @buffer: The ring buffer to read
5817  * @cpu: The cpu to peak at
5818  * @ts: The timestamp counter of this event.
5819  * @lost_events: a variable to store if events were lost (may be NULL)
5820  *
5821  * This will return the event that will be read next, but does
5822  * not consume the data.
5823  */
5824 struct ring_buffer_event *
ring_buffer_peek(struct trace_buffer * buffer,int cpu,u64 * ts,unsigned long * lost_events)5825 ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts,
5826 		 unsigned long *lost_events)
5827 {
5828 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5829 	struct ring_buffer_event *event;
5830 	unsigned long flags;
5831 	bool dolock;
5832 
5833 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5834 		return NULL;
5835 
5836  again:
5837 	local_irq_save(flags);
5838 	dolock = rb_reader_lock(cpu_buffer);
5839 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
5840 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
5841 		rb_advance_reader(cpu_buffer);
5842 	rb_reader_unlock(cpu_buffer, dolock);
5843 	local_irq_restore(flags);
5844 
5845 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
5846 		goto again;
5847 
5848 	return event;
5849 }
5850 
5851 /** ring_buffer_iter_dropped - report if there are dropped events
5852  * @iter: The ring buffer iterator
5853  *
5854  * Returns true if there was dropped events since the last peek.
5855  */
ring_buffer_iter_dropped(struct ring_buffer_iter * iter)5856 bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter)
5857 {
5858 	bool ret = iter->missed_events != 0;
5859 
5860 	iter->missed_events = 0;
5861 	return ret;
5862 }
5863 EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped);
5864 
5865 /**
5866  * ring_buffer_iter_peek - peek at the next event to be read
5867  * @iter: The ring buffer iterator
5868  * @ts: The timestamp counter of this event.
5869  *
5870  * This will return the event that will be read next, but does
5871  * not increment the iterator.
5872  */
5873 struct ring_buffer_event *
ring_buffer_iter_peek(struct ring_buffer_iter * iter,u64 * ts)5874 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
5875 {
5876 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5877 	struct ring_buffer_event *event;
5878 	unsigned long flags;
5879 
5880  again:
5881 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5882 	event = rb_iter_peek(iter, ts);
5883 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5884 
5885 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
5886 		goto again;
5887 
5888 	return event;
5889 }
5890 
5891 /**
5892  * ring_buffer_consume - return an event and consume it
5893  * @buffer: The ring buffer to get the next event from
5894  * @cpu: the cpu to read the buffer from
5895  * @ts: a variable to store the timestamp (may be NULL)
5896  * @lost_events: a variable to store if events were lost (may be NULL)
5897  *
5898  * Returns the next event in the ring buffer, and that event is consumed.
5899  * Meaning, that sequential reads will keep returning a different event,
5900  * and eventually empty the ring buffer if the producer is slower.
5901  */
5902 struct ring_buffer_event *
ring_buffer_consume(struct trace_buffer * buffer,int cpu,u64 * ts,unsigned long * lost_events)5903 ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts,
5904 		    unsigned long *lost_events)
5905 {
5906 	struct ring_buffer_per_cpu *cpu_buffer;
5907 	struct ring_buffer_event *event = NULL;
5908 	unsigned long flags;
5909 	bool dolock;
5910 
5911  again:
5912 	/* might be called in atomic */
5913 	preempt_disable();
5914 
5915 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5916 		goto out;
5917 
5918 	cpu_buffer = buffer->buffers[cpu];
5919 	local_irq_save(flags);
5920 	dolock = rb_reader_lock(cpu_buffer);
5921 
5922 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
5923 	if (event) {
5924 		cpu_buffer->lost_events = 0;
5925 		rb_advance_reader(cpu_buffer);
5926 	}
5927 
5928 	rb_reader_unlock(cpu_buffer, dolock);
5929 	local_irq_restore(flags);
5930 
5931  out:
5932 	preempt_enable();
5933 
5934 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
5935 		goto again;
5936 
5937 	return event;
5938 }
5939 EXPORT_SYMBOL_GPL(ring_buffer_consume);
5940 
5941 /**
5942  * ring_buffer_read_start - start a non consuming read of the buffer
5943  * @buffer: The ring buffer to read from
5944  * @cpu: The cpu buffer to iterate over
5945  * @flags: gfp flags to use for memory allocation
5946  *
5947  * This creates an iterator to allow non-consuming iteration through
5948  * the buffer. If the buffer is disabled for writing, it will produce
5949  * the same information each time, but if the buffer is still writing
5950  * then the first hit of a write will cause the iteration to stop.
5951  *
5952  * Must be paired with ring_buffer_read_finish.
5953  */
5954 struct ring_buffer_iter *
ring_buffer_read_start(struct trace_buffer * buffer,int cpu,gfp_t flags)5955 ring_buffer_read_start(struct trace_buffer *buffer, int cpu, gfp_t flags)
5956 {
5957 	struct ring_buffer_per_cpu *cpu_buffer;
5958 	struct ring_buffer_iter *iter;
5959 
5960 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5961 		return NULL;
5962 
5963 	iter = kzalloc(sizeof(*iter), flags);
5964 	if (!iter)
5965 		return NULL;
5966 
5967 	/* Holds the entire event: data and meta data */
5968 	iter->event_size = buffer->subbuf_size;
5969 	iter->event = kmalloc(iter->event_size, flags);
5970 	if (!iter->event) {
5971 		kfree(iter);
5972 		return NULL;
5973 	}
5974 
5975 	cpu_buffer = buffer->buffers[cpu];
5976 
5977 	iter->cpu_buffer = cpu_buffer;
5978 
5979 	atomic_inc(&cpu_buffer->resize_disabled);
5980 
5981 	guard(raw_spinlock_irqsave)(&cpu_buffer->reader_lock);
5982 	arch_spin_lock(&cpu_buffer->lock);
5983 	rb_iter_reset(iter);
5984 	arch_spin_unlock(&cpu_buffer->lock);
5985 
5986 	return iter;
5987 }
5988 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
5989 
5990 /**
5991  * ring_buffer_read_finish - finish reading the iterator of the buffer
5992  * @iter: The iterator retrieved by ring_buffer_start
5993  *
5994  * This re-enables resizing of the buffer, and frees the iterator.
5995  */
5996 void
ring_buffer_read_finish(struct ring_buffer_iter * iter)5997 ring_buffer_read_finish(struct ring_buffer_iter *iter)
5998 {
5999 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
6000 
6001 	/* Use this opportunity to check the integrity of the ring buffer. */
6002 	rb_check_pages(cpu_buffer);
6003 
6004 	atomic_dec(&cpu_buffer->resize_disabled);
6005 	kfree(iter->event);
6006 	kfree(iter);
6007 }
6008 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
6009 
6010 /**
6011  * ring_buffer_iter_advance - advance the iterator to the next location
6012  * @iter: The ring buffer iterator
6013  *
6014  * Move the location of the iterator such that the next read will
6015  * be the next location of the iterator.
6016  */
ring_buffer_iter_advance(struct ring_buffer_iter * iter)6017 void ring_buffer_iter_advance(struct ring_buffer_iter *iter)
6018 {
6019 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
6020 	unsigned long flags;
6021 
6022 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6023 
6024 	rb_advance_iter(iter);
6025 
6026 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6027 }
6028 EXPORT_SYMBOL_GPL(ring_buffer_iter_advance);
6029 
6030 /**
6031  * ring_buffer_size - return the size of the ring buffer (in bytes)
6032  * @buffer: The ring buffer.
6033  * @cpu: The CPU to get ring buffer size from.
6034  */
ring_buffer_size(struct trace_buffer * buffer,int cpu)6035 unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu)
6036 {
6037 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
6038 		return 0;
6039 
6040 	return buffer->subbuf_size * buffer->buffers[cpu]->nr_pages;
6041 }
6042 EXPORT_SYMBOL_GPL(ring_buffer_size);
6043 
6044 /**
6045  * ring_buffer_max_event_size - return the max data size of an event
6046  * @buffer: The ring buffer.
6047  *
6048  * Returns the maximum size an event can be.
6049  */
ring_buffer_max_event_size(struct trace_buffer * buffer)6050 unsigned long ring_buffer_max_event_size(struct trace_buffer *buffer)
6051 {
6052 	/* If abs timestamp is requested, events have a timestamp too */
6053 	if (ring_buffer_time_stamp_abs(buffer))
6054 		return buffer->max_data_size - RB_LEN_TIME_EXTEND;
6055 	return buffer->max_data_size;
6056 }
6057 EXPORT_SYMBOL_GPL(ring_buffer_max_event_size);
6058 
rb_clear_buffer_page(struct buffer_page * page)6059 static void rb_clear_buffer_page(struct buffer_page *page)
6060 {
6061 	local_set(&page->write, 0);
6062 	local_set(&page->entries, 0);
6063 	rb_init_page(page->page);
6064 	page->read = 0;
6065 }
6066 
6067 /*
6068  * When the buffer is memory mapped to user space, each sub buffer
6069  * has a unique id that is used by the meta data to tell the user
6070  * where the current reader page is.
6071  *
6072  * For a normal allocated ring buffer, the id is saved in the buffer page
6073  * id field, and updated via this function.
6074  *
6075  * But for a fixed memory mapped buffer, the id is already assigned for
6076  * fixed memory ording in the memory layout and can not be used. Instead
6077  * the index of where the page lies in the memory layout is used.
6078  *
6079  * For the normal pages, set the buffer page id with the passed in @id
6080  * value and return that.
6081  *
6082  * For fixed memory mapped pages, get the page index in the memory layout
6083  * and return that as the id.
6084  */
rb_page_id(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * bpage,int id)6085 static int rb_page_id(struct ring_buffer_per_cpu *cpu_buffer,
6086 		      struct buffer_page *bpage, int id)
6087 {
6088 	/*
6089 	 * For boot buffers, the id is the index,
6090 	 * otherwise, set the buffer page with this id
6091 	 */
6092 	if (cpu_buffer->ring_meta)
6093 		id = rb_meta_subbuf_idx(cpu_buffer->ring_meta, bpage->page);
6094 	else
6095 		bpage->id = id;
6096 
6097 	return id;
6098 }
6099 
rb_update_meta_page(struct ring_buffer_per_cpu * cpu_buffer)6100 static void rb_update_meta_page(struct ring_buffer_per_cpu *cpu_buffer)
6101 {
6102 	struct trace_buffer_meta *meta = cpu_buffer->meta_page;
6103 
6104 	if (!meta)
6105 		return;
6106 
6107 	meta->reader.read = cpu_buffer->reader_page->read;
6108 	meta->reader.id = rb_page_id(cpu_buffer, cpu_buffer->reader_page,
6109 				     cpu_buffer->reader_page->id);
6110 
6111 	meta->reader.lost_events = cpu_buffer->lost_events;
6112 
6113 	meta->entries = local_read(&cpu_buffer->entries);
6114 	meta->overrun = local_read(&cpu_buffer->overrun);
6115 	meta->read = cpu_buffer->read;
6116 
6117 	/* Some archs do not have data cache coherency between kernel and user-space */
6118 	flush_kernel_vmap_range(cpu_buffer->meta_page, PAGE_SIZE);
6119 }
6120 
6121 static void
rb_reset_cpu(struct ring_buffer_per_cpu * cpu_buffer)6122 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
6123 {
6124 	struct buffer_page *page;
6125 
6126 	rb_head_page_deactivate(cpu_buffer);
6127 
6128 	cpu_buffer->head_page
6129 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
6130 	rb_clear_buffer_page(cpu_buffer->head_page);
6131 	list_for_each_entry(page, cpu_buffer->pages, list) {
6132 		rb_clear_buffer_page(page);
6133 	}
6134 
6135 	cpu_buffer->tail_page = cpu_buffer->head_page;
6136 	cpu_buffer->commit_page = cpu_buffer->head_page;
6137 
6138 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
6139 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
6140 	rb_clear_buffer_page(cpu_buffer->reader_page);
6141 
6142 	local_set(&cpu_buffer->entries_bytes, 0);
6143 	local_set(&cpu_buffer->overrun, 0);
6144 	local_set(&cpu_buffer->commit_overrun, 0);
6145 	local_set(&cpu_buffer->dropped_events, 0);
6146 	local_set(&cpu_buffer->entries, 0);
6147 	local_set(&cpu_buffer->committing, 0);
6148 	local_set(&cpu_buffer->commits, 0);
6149 	local_set(&cpu_buffer->pages_touched, 0);
6150 	local_set(&cpu_buffer->pages_lost, 0);
6151 	local_set(&cpu_buffer->pages_read, 0);
6152 	cpu_buffer->last_pages_touch = 0;
6153 	cpu_buffer->shortest_full = 0;
6154 	cpu_buffer->read = 0;
6155 	cpu_buffer->read_bytes = 0;
6156 
6157 	rb_time_set(&cpu_buffer->write_stamp, 0);
6158 	rb_time_set(&cpu_buffer->before_stamp, 0);
6159 
6160 	memset(cpu_buffer->event_stamp, 0, sizeof(cpu_buffer->event_stamp));
6161 
6162 	cpu_buffer->lost_events = 0;
6163 	cpu_buffer->last_overrun = 0;
6164 
6165 	rb_head_page_activate(cpu_buffer);
6166 	cpu_buffer->pages_removed = 0;
6167 
6168 	if (cpu_buffer->mapped) {
6169 		rb_update_meta_page(cpu_buffer);
6170 		if (cpu_buffer->ring_meta) {
6171 			struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta;
6172 			meta->commit_buffer = meta->head_buffer;
6173 		}
6174 	}
6175 }
6176 
6177 /* Must have disabled the cpu buffer then done a synchronize_rcu */
reset_disabled_cpu_buffer(struct ring_buffer_per_cpu * cpu_buffer)6178 static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
6179 {
6180 	guard(raw_spinlock_irqsave)(&cpu_buffer->reader_lock);
6181 
6182 	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
6183 		return;
6184 
6185 	arch_spin_lock(&cpu_buffer->lock);
6186 
6187 	rb_reset_cpu(cpu_buffer);
6188 
6189 	arch_spin_unlock(&cpu_buffer->lock);
6190 }
6191 
6192 /**
6193  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
6194  * @buffer: The ring buffer to reset a per cpu buffer of
6195  * @cpu: The CPU buffer to be reset
6196  */
ring_buffer_reset_cpu(struct trace_buffer * buffer,int cpu)6197 void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu)
6198 {
6199 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
6200 
6201 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
6202 		return;
6203 
6204 	/* prevent another thread from changing buffer sizes */
6205 	mutex_lock(&buffer->mutex);
6206 
6207 	atomic_inc(&cpu_buffer->resize_disabled);
6208 	atomic_inc(&cpu_buffer->record_disabled);
6209 
6210 	/* Make sure all commits have finished */
6211 	synchronize_rcu();
6212 
6213 	reset_disabled_cpu_buffer(cpu_buffer);
6214 
6215 	atomic_dec(&cpu_buffer->record_disabled);
6216 	atomic_dec(&cpu_buffer->resize_disabled);
6217 
6218 	mutex_unlock(&buffer->mutex);
6219 }
6220 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
6221 
6222 /* Flag to ensure proper resetting of atomic variables */
6223 #define RESET_BIT	(1 << 30)
6224 
6225 /**
6226  * ring_buffer_reset_online_cpus - reset a ring buffer per CPU buffer
6227  * @buffer: The ring buffer to reset a per cpu buffer of
6228  */
ring_buffer_reset_online_cpus(struct trace_buffer * buffer)6229 void ring_buffer_reset_online_cpus(struct trace_buffer *buffer)
6230 {
6231 	struct ring_buffer_per_cpu *cpu_buffer;
6232 	int cpu;
6233 
6234 	/* prevent another thread from changing buffer sizes */
6235 	mutex_lock(&buffer->mutex);
6236 
6237 	for_each_online_buffer_cpu(buffer, cpu) {
6238 		cpu_buffer = buffer->buffers[cpu];
6239 
6240 		atomic_add(RESET_BIT, &cpu_buffer->resize_disabled);
6241 		atomic_inc(&cpu_buffer->record_disabled);
6242 	}
6243 
6244 	/* Make sure all commits have finished */
6245 	synchronize_rcu();
6246 
6247 	for_each_buffer_cpu(buffer, cpu) {
6248 		cpu_buffer = buffer->buffers[cpu];
6249 
6250 		/*
6251 		 * If a CPU came online during the synchronize_rcu(), then
6252 		 * ignore it.
6253 		 */
6254 		if (!(atomic_read(&cpu_buffer->resize_disabled) & RESET_BIT))
6255 			continue;
6256 
6257 		reset_disabled_cpu_buffer(cpu_buffer);
6258 
6259 		atomic_dec(&cpu_buffer->record_disabled);
6260 		atomic_sub(RESET_BIT, &cpu_buffer->resize_disabled);
6261 	}
6262 
6263 	mutex_unlock(&buffer->mutex);
6264 }
6265 
6266 /**
6267  * ring_buffer_reset - reset a ring buffer
6268  * @buffer: The ring buffer to reset all cpu buffers
6269  */
ring_buffer_reset(struct trace_buffer * buffer)6270 void ring_buffer_reset(struct trace_buffer *buffer)
6271 {
6272 	struct ring_buffer_per_cpu *cpu_buffer;
6273 	int cpu;
6274 
6275 	/* prevent another thread from changing buffer sizes */
6276 	mutex_lock(&buffer->mutex);
6277 
6278 	for_each_buffer_cpu(buffer, cpu) {
6279 		cpu_buffer = buffer->buffers[cpu];
6280 
6281 		atomic_inc(&cpu_buffer->resize_disabled);
6282 		atomic_inc(&cpu_buffer->record_disabled);
6283 	}
6284 
6285 	/* Make sure all commits have finished */
6286 	synchronize_rcu();
6287 
6288 	for_each_buffer_cpu(buffer, cpu) {
6289 		cpu_buffer = buffer->buffers[cpu];
6290 
6291 		reset_disabled_cpu_buffer(cpu_buffer);
6292 
6293 		atomic_dec(&cpu_buffer->record_disabled);
6294 		atomic_dec(&cpu_buffer->resize_disabled);
6295 	}
6296 
6297 	mutex_unlock(&buffer->mutex);
6298 }
6299 EXPORT_SYMBOL_GPL(ring_buffer_reset);
6300 
6301 /**
6302  * ring_buffer_empty - is the ring buffer empty?
6303  * @buffer: The ring buffer to test
6304  */
ring_buffer_empty(struct trace_buffer * buffer)6305 bool ring_buffer_empty(struct trace_buffer *buffer)
6306 {
6307 	struct ring_buffer_per_cpu *cpu_buffer;
6308 	unsigned long flags;
6309 	bool dolock;
6310 	bool ret;
6311 	int cpu;
6312 
6313 	/* yes this is racy, but if you don't like the race, lock the buffer */
6314 	for_each_buffer_cpu(buffer, cpu) {
6315 		cpu_buffer = buffer->buffers[cpu];
6316 		local_irq_save(flags);
6317 		dolock = rb_reader_lock(cpu_buffer);
6318 		ret = rb_per_cpu_empty(cpu_buffer);
6319 		rb_reader_unlock(cpu_buffer, dolock);
6320 		local_irq_restore(flags);
6321 
6322 		if (!ret)
6323 			return false;
6324 	}
6325 
6326 	return true;
6327 }
6328 EXPORT_SYMBOL_GPL(ring_buffer_empty);
6329 
6330 /**
6331  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
6332  * @buffer: The ring buffer
6333  * @cpu: The CPU buffer to test
6334  */
ring_buffer_empty_cpu(struct trace_buffer * buffer,int cpu)6335 bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu)
6336 {
6337 	struct ring_buffer_per_cpu *cpu_buffer;
6338 	unsigned long flags;
6339 	bool dolock;
6340 	bool ret;
6341 
6342 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
6343 		return true;
6344 
6345 	cpu_buffer = buffer->buffers[cpu];
6346 	local_irq_save(flags);
6347 	dolock = rb_reader_lock(cpu_buffer);
6348 	ret = rb_per_cpu_empty(cpu_buffer);
6349 	rb_reader_unlock(cpu_buffer, dolock);
6350 	local_irq_restore(flags);
6351 
6352 	return ret;
6353 }
6354 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
6355 
6356 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
6357 /**
6358  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
6359  * @buffer_a: One buffer to swap with
6360  * @buffer_b: The other buffer to swap with
6361  * @cpu: the CPU of the buffers to swap
6362  *
6363  * This function is useful for tracers that want to take a "snapshot"
6364  * of a CPU buffer and has another back up buffer lying around.
6365  * it is expected that the tracer handles the cpu buffer not being
6366  * used at the moment.
6367  */
ring_buffer_swap_cpu(struct trace_buffer * buffer_a,struct trace_buffer * buffer_b,int cpu)6368 int ring_buffer_swap_cpu(struct trace_buffer *buffer_a,
6369 			 struct trace_buffer *buffer_b, int cpu)
6370 {
6371 	struct ring_buffer_per_cpu *cpu_buffer_a;
6372 	struct ring_buffer_per_cpu *cpu_buffer_b;
6373 	int ret = -EINVAL;
6374 
6375 	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
6376 	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
6377 		return -EINVAL;
6378 
6379 	cpu_buffer_a = buffer_a->buffers[cpu];
6380 	cpu_buffer_b = buffer_b->buffers[cpu];
6381 
6382 	/* It's up to the callers to not try to swap mapped buffers */
6383 	if (WARN_ON_ONCE(cpu_buffer_a->mapped || cpu_buffer_b->mapped))
6384 		return -EBUSY;
6385 
6386 	/* At least make sure the two buffers are somewhat the same */
6387 	if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
6388 		return -EINVAL;
6389 
6390 	if (buffer_a->subbuf_order != buffer_b->subbuf_order)
6391 		return -EINVAL;
6392 
6393 	if (atomic_read(&buffer_a->record_disabled))
6394 		return -EAGAIN;
6395 
6396 	if (atomic_read(&buffer_b->record_disabled))
6397 		return -EAGAIN;
6398 
6399 	if (atomic_read(&cpu_buffer_a->record_disabled))
6400 		return -EAGAIN;
6401 
6402 	if (atomic_read(&cpu_buffer_b->record_disabled))
6403 		return -EAGAIN;
6404 
6405 	/*
6406 	 * We can't do a synchronize_rcu here because this
6407 	 * function can be called in atomic context.
6408 	 * Normally this will be called from the same CPU as cpu.
6409 	 * If not it's up to the caller to protect this.
6410 	 */
6411 	atomic_inc(&cpu_buffer_a->record_disabled);
6412 	atomic_inc(&cpu_buffer_b->record_disabled);
6413 
6414 	ret = -EBUSY;
6415 	if (local_read(&cpu_buffer_a->committing))
6416 		goto out_dec;
6417 	if (local_read(&cpu_buffer_b->committing))
6418 		goto out_dec;
6419 
6420 	/*
6421 	 * When resize is in progress, we cannot swap it because
6422 	 * it will mess the state of the cpu buffer.
6423 	 */
6424 	if (atomic_read(&buffer_a->resizing))
6425 		goto out_dec;
6426 	if (atomic_read(&buffer_b->resizing))
6427 		goto out_dec;
6428 
6429 	buffer_a->buffers[cpu] = cpu_buffer_b;
6430 	buffer_b->buffers[cpu] = cpu_buffer_a;
6431 
6432 	cpu_buffer_b->buffer = buffer_a;
6433 	cpu_buffer_a->buffer = buffer_b;
6434 
6435 	ret = 0;
6436 
6437 out_dec:
6438 	atomic_dec(&cpu_buffer_a->record_disabled);
6439 	atomic_dec(&cpu_buffer_b->record_disabled);
6440 	return ret;
6441 }
6442 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
6443 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
6444 
6445 /**
6446  * ring_buffer_alloc_read_page - allocate a page to read from buffer
6447  * @buffer: the buffer to allocate for.
6448  * @cpu: the cpu buffer to allocate.
6449  *
6450  * This function is used in conjunction with ring_buffer_read_page.
6451  * When reading a full page from the ring buffer, these functions
6452  * can be used to speed up the process. The calling function should
6453  * allocate a few pages first with this function. Then when it
6454  * needs to get pages from the ring buffer, it passes the result
6455  * of this function into ring_buffer_read_page, which will swap
6456  * the page that was allocated, with the read page of the buffer.
6457  *
6458  * Returns:
6459  *  The page allocated, or ERR_PTR
6460  */
6461 struct buffer_data_read_page *
ring_buffer_alloc_read_page(struct trace_buffer * buffer,int cpu)6462 ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu)
6463 {
6464 	struct ring_buffer_per_cpu *cpu_buffer;
6465 	struct buffer_data_read_page *bpage = NULL;
6466 	unsigned long flags;
6467 	struct page *page;
6468 
6469 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
6470 		return ERR_PTR(-ENODEV);
6471 
6472 	bpage = kzalloc(sizeof(*bpage), GFP_KERNEL);
6473 	if (!bpage)
6474 		return ERR_PTR(-ENOMEM);
6475 
6476 	bpage->order = buffer->subbuf_order;
6477 	cpu_buffer = buffer->buffers[cpu];
6478 	local_irq_save(flags);
6479 	arch_spin_lock(&cpu_buffer->lock);
6480 
6481 	if (cpu_buffer->free_page) {
6482 		bpage->data = cpu_buffer->free_page;
6483 		cpu_buffer->free_page = NULL;
6484 	}
6485 
6486 	arch_spin_unlock(&cpu_buffer->lock);
6487 	local_irq_restore(flags);
6488 
6489 	if (bpage->data)
6490 		goto out;
6491 
6492 	page = alloc_pages_node(cpu_to_node(cpu),
6493 				GFP_KERNEL | __GFP_NORETRY | __GFP_COMP | __GFP_ZERO,
6494 				cpu_buffer->buffer->subbuf_order);
6495 	if (!page) {
6496 		kfree(bpage);
6497 		return ERR_PTR(-ENOMEM);
6498 	}
6499 
6500 	bpage->data = page_address(page);
6501 
6502  out:
6503 	rb_init_page(bpage->data);
6504 
6505 	return bpage;
6506 }
6507 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
6508 
6509 /**
6510  * ring_buffer_free_read_page - free an allocated read page
6511  * @buffer: the buffer the page was allocate for
6512  * @cpu: the cpu buffer the page came from
6513  * @data_page: the page to free
6514  *
6515  * Free a page allocated from ring_buffer_alloc_read_page.
6516  */
ring_buffer_free_read_page(struct trace_buffer * buffer,int cpu,struct buffer_data_read_page * data_page)6517 void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu,
6518 				struct buffer_data_read_page *data_page)
6519 {
6520 	struct ring_buffer_per_cpu *cpu_buffer;
6521 	struct buffer_data_page *bpage = data_page->data;
6522 	struct page *page = virt_to_page(bpage);
6523 	unsigned long flags;
6524 
6525 	if (!buffer || !buffer->buffers || !buffer->buffers[cpu])
6526 		return;
6527 
6528 	cpu_buffer = buffer->buffers[cpu];
6529 
6530 	/*
6531 	 * If the page is still in use someplace else, or order of the page
6532 	 * is different from the subbuffer order of the buffer -
6533 	 * we can't reuse it
6534 	 */
6535 	if (page_ref_count(page) > 1 || data_page->order != buffer->subbuf_order)
6536 		goto out;
6537 
6538 	local_irq_save(flags);
6539 	arch_spin_lock(&cpu_buffer->lock);
6540 
6541 	if (!cpu_buffer->free_page) {
6542 		cpu_buffer->free_page = bpage;
6543 		bpage = NULL;
6544 	}
6545 
6546 	arch_spin_unlock(&cpu_buffer->lock);
6547 	local_irq_restore(flags);
6548 
6549  out:
6550 	free_pages((unsigned long)bpage, data_page->order);
6551 	kfree(data_page);
6552 }
6553 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
6554 
6555 /**
6556  * ring_buffer_read_page - extract a page from the ring buffer
6557  * @buffer: buffer to extract from
6558  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
6559  * @len: amount to extract
6560  * @cpu: the cpu of the buffer to extract
6561  * @full: should the extraction only happen when the page is full.
6562  *
6563  * This function will pull out a page from the ring buffer and consume it.
6564  * @data_page must be the address of the variable that was returned
6565  * from ring_buffer_alloc_read_page. This is because the page might be used
6566  * to swap with a page in the ring buffer.
6567  *
6568  * for example:
6569  *	rpage = ring_buffer_alloc_read_page(buffer, cpu);
6570  *	if (IS_ERR(rpage))
6571  *		return PTR_ERR(rpage);
6572  *	ret = ring_buffer_read_page(buffer, rpage, len, cpu, 0);
6573  *	if (ret >= 0)
6574  *		process_page(ring_buffer_read_page_data(rpage), ret);
6575  *	ring_buffer_free_read_page(buffer, cpu, rpage);
6576  *
6577  * When @full is set, the function will not return true unless
6578  * the writer is off the reader page.
6579  *
6580  * Note: it is up to the calling functions to handle sleeps and wakeups.
6581  *  The ring buffer can be used anywhere in the kernel and can not
6582  *  blindly call wake_up. The layer that uses the ring buffer must be
6583  *  responsible for that.
6584  *
6585  * Returns:
6586  *  >=0 if data has been transferred, returns the offset of consumed data.
6587  *  <0 if no data has been transferred.
6588  */
ring_buffer_read_page(struct trace_buffer * buffer,struct buffer_data_read_page * data_page,size_t len,int cpu,int full)6589 int ring_buffer_read_page(struct trace_buffer *buffer,
6590 			  struct buffer_data_read_page *data_page,
6591 			  size_t len, int cpu, int full)
6592 {
6593 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
6594 	struct ring_buffer_event *event;
6595 	struct buffer_data_page *bpage;
6596 	struct buffer_page *reader;
6597 	unsigned long missed_events;
6598 	unsigned int commit;
6599 	unsigned int read;
6600 	u64 save_timestamp;
6601 
6602 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
6603 		return -1;
6604 
6605 	/*
6606 	 * If len is not big enough to hold the page header, then
6607 	 * we can not copy anything.
6608 	 */
6609 	if (len <= BUF_PAGE_HDR_SIZE)
6610 		return -1;
6611 
6612 	len -= BUF_PAGE_HDR_SIZE;
6613 
6614 	if (!data_page || !data_page->data)
6615 		return -1;
6616 
6617 	if (data_page->order != buffer->subbuf_order)
6618 		return -1;
6619 
6620 	bpage = data_page->data;
6621 	if (!bpage)
6622 		return -1;
6623 
6624 	guard(raw_spinlock_irqsave)(&cpu_buffer->reader_lock);
6625 
6626 	reader = rb_get_reader_page(cpu_buffer);
6627 	if (!reader)
6628 		return -1;
6629 
6630 	event = rb_reader_event(cpu_buffer);
6631 
6632 	read = reader->read;
6633 	commit = rb_page_size(reader);
6634 
6635 	/* Check if any events were dropped */
6636 	missed_events = cpu_buffer->lost_events;
6637 
6638 	/*
6639 	 * If this page has been partially read or
6640 	 * if len is not big enough to read the rest of the page or
6641 	 * a writer is still on the page, then
6642 	 * we must copy the data from the page to the buffer.
6643 	 * Otherwise, we can simply swap the page with the one passed in.
6644 	 */
6645 	if (read || (len < (commit - read)) ||
6646 	    cpu_buffer->reader_page == cpu_buffer->commit_page ||
6647 	    cpu_buffer->mapped) {
6648 		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
6649 		unsigned int rpos = read;
6650 		unsigned int pos = 0;
6651 		unsigned int size;
6652 
6653 		/*
6654 		 * If a full page is expected, this can still be returned
6655 		 * if there's been a previous partial read and the
6656 		 * rest of the page can be read and the commit page is off
6657 		 * the reader page.
6658 		 */
6659 		if (full &&
6660 		    (!read || (len < (commit - read)) ||
6661 		     cpu_buffer->reader_page == cpu_buffer->commit_page))
6662 			return -1;
6663 
6664 		if (len > (commit - read))
6665 			len = (commit - read);
6666 
6667 		/* Always keep the time extend and data together */
6668 		size = rb_event_ts_length(event);
6669 
6670 		if (len < size)
6671 			return -1;
6672 
6673 		/* save the current timestamp, since the user will need it */
6674 		save_timestamp = cpu_buffer->read_stamp;
6675 
6676 		/* Need to copy one event at a time */
6677 		do {
6678 			/* We need the size of one event, because
6679 			 * rb_advance_reader only advances by one event,
6680 			 * whereas rb_event_ts_length may include the size of
6681 			 * one or two events.
6682 			 * We have already ensured there's enough space if this
6683 			 * is a time extend. */
6684 			size = rb_event_length(event);
6685 			memcpy(bpage->data + pos, rpage->data + rpos, size);
6686 
6687 			len -= size;
6688 
6689 			rb_advance_reader(cpu_buffer);
6690 			rpos = reader->read;
6691 			pos += size;
6692 
6693 			if (rpos >= commit)
6694 				break;
6695 
6696 			event = rb_reader_event(cpu_buffer);
6697 			/* Always keep the time extend and data together */
6698 			size = rb_event_ts_length(event);
6699 		} while (len >= size);
6700 
6701 		/* update bpage */
6702 		local_set(&bpage->commit, pos);
6703 		bpage->time_stamp = save_timestamp;
6704 
6705 		/* we copied everything to the beginning */
6706 		read = 0;
6707 	} else {
6708 		/* update the entry counter */
6709 		cpu_buffer->read += rb_page_entries(reader);
6710 		cpu_buffer->read_bytes += rb_page_size(reader);
6711 
6712 		/* swap the pages */
6713 		rb_init_page(bpage);
6714 		bpage = reader->page;
6715 		reader->page = data_page->data;
6716 		local_set(&reader->write, 0);
6717 		local_set(&reader->entries, 0);
6718 		reader->read = 0;
6719 		data_page->data = bpage;
6720 
6721 		/*
6722 		 * Use the real_end for the data size,
6723 		 * This gives us a chance to store the lost events
6724 		 * on the page.
6725 		 */
6726 		if (reader->real_end)
6727 			local_set(&bpage->commit, reader->real_end);
6728 	}
6729 
6730 	cpu_buffer->lost_events = 0;
6731 
6732 	commit = local_read(&bpage->commit);
6733 	/*
6734 	 * Set a flag in the commit field if we lost events
6735 	 */
6736 	if (missed_events) {
6737 		/* If there is room at the end of the page to save the
6738 		 * missed events, then record it there.
6739 		 */
6740 		if (buffer->subbuf_size - commit >= sizeof(missed_events)) {
6741 			memcpy(&bpage->data[commit], &missed_events,
6742 			       sizeof(missed_events));
6743 			local_add(RB_MISSED_STORED, &bpage->commit);
6744 			commit += sizeof(missed_events);
6745 		}
6746 		local_add(RB_MISSED_EVENTS, &bpage->commit);
6747 	}
6748 
6749 	/*
6750 	 * This page may be off to user land. Zero it out here.
6751 	 */
6752 	if (commit < buffer->subbuf_size)
6753 		memset(&bpage->data[commit], 0, buffer->subbuf_size - commit);
6754 
6755 	return read;
6756 }
6757 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
6758 
6759 /**
6760  * ring_buffer_read_page_data - get pointer to the data in the page.
6761  * @page:  the page to get the data from
6762  *
6763  * Returns pointer to the actual data in this page.
6764  */
ring_buffer_read_page_data(struct buffer_data_read_page * page)6765 void *ring_buffer_read_page_data(struct buffer_data_read_page *page)
6766 {
6767 	return page->data;
6768 }
6769 EXPORT_SYMBOL_GPL(ring_buffer_read_page_data);
6770 
6771 /**
6772  * ring_buffer_subbuf_size_get - get size of the sub buffer.
6773  * @buffer: the buffer to get the sub buffer size from
6774  *
6775  * Returns size of the sub buffer, in bytes.
6776  */
ring_buffer_subbuf_size_get(struct trace_buffer * buffer)6777 int ring_buffer_subbuf_size_get(struct trace_buffer *buffer)
6778 {
6779 	return buffer->subbuf_size + BUF_PAGE_HDR_SIZE;
6780 }
6781 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_size_get);
6782 
6783 /**
6784  * ring_buffer_subbuf_order_get - get order of system sub pages in one buffer page.
6785  * @buffer: The ring_buffer to get the system sub page order from
6786  *
6787  * By default, one ring buffer sub page equals to one system page. This parameter
6788  * is configurable, per ring buffer. The size of the ring buffer sub page can be
6789  * extended, but must be an order of system page size.
6790  *
6791  * Returns the order of buffer sub page size, in system pages:
6792  * 0 means the sub buffer size is 1 system page and so forth.
6793  * In case of an error < 0 is returned.
6794  */
ring_buffer_subbuf_order_get(struct trace_buffer * buffer)6795 int ring_buffer_subbuf_order_get(struct trace_buffer *buffer)
6796 {
6797 	if (!buffer)
6798 		return -EINVAL;
6799 
6800 	return buffer->subbuf_order;
6801 }
6802 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_get);
6803 
6804 /**
6805  * ring_buffer_subbuf_order_set - set the size of ring buffer sub page.
6806  * @buffer: The ring_buffer to set the new page size.
6807  * @order: Order of the system pages in one sub buffer page
6808  *
6809  * By default, one ring buffer pages equals to one system page. This API can be
6810  * used to set new size of the ring buffer page. The size must be order of
6811  * system page size, that's why the input parameter @order is the order of
6812  * system pages that are allocated for one ring buffer page:
6813  *  0 - 1 system page
6814  *  1 - 2 system pages
6815  *  3 - 4 system pages
6816  *  ...
6817  *
6818  * Returns 0 on success or < 0 in case of an error.
6819  */
ring_buffer_subbuf_order_set(struct trace_buffer * buffer,int order)6820 int ring_buffer_subbuf_order_set(struct trace_buffer *buffer, int order)
6821 {
6822 	struct ring_buffer_per_cpu *cpu_buffer;
6823 	struct buffer_page *bpage, *tmp;
6824 	int old_order, old_size;
6825 	int nr_pages;
6826 	int psize;
6827 	int err;
6828 	int cpu;
6829 
6830 	if (!buffer || order < 0)
6831 		return -EINVAL;
6832 
6833 	if (buffer->subbuf_order == order)
6834 		return 0;
6835 
6836 	psize = (1 << order) * PAGE_SIZE;
6837 	if (psize <= BUF_PAGE_HDR_SIZE)
6838 		return -EINVAL;
6839 
6840 	/* Size of a subbuf cannot be greater than the write counter */
6841 	if (psize > RB_WRITE_MASK + 1)
6842 		return -EINVAL;
6843 
6844 	old_order = buffer->subbuf_order;
6845 	old_size = buffer->subbuf_size;
6846 
6847 	/* prevent another thread from changing buffer sizes */
6848 	guard(mutex)(&buffer->mutex);
6849 	atomic_inc(&buffer->record_disabled);
6850 
6851 	/* Make sure all commits have finished */
6852 	synchronize_rcu();
6853 
6854 	buffer->subbuf_order = order;
6855 	buffer->subbuf_size = psize - BUF_PAGE_HDR_SIZE;
6856 
6857 	/* Make sure all new buffers are allocated, before deleting the old ones */
6858 	for_each_buffer_cpu(buffer, cpu) {
6859 
6860 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
6861 			continue;
6862 
6863 		cpu_buffer = buffer->buffers[cpu];
6864 
6865 		if (cpu_buffer->mapped) {
6866 			err = -EBUSY;
6867 			goto error;
6868 		}
6869 
6870 		/* Update the number of pages to match the new size */
6871 		nr_pages = old_size * buffer->buffers[cpu]->nr_pages;
6872 		nr_pages = DIV_ROUND_UP(nr_pages, buffer->subbuf_size);
6873 
6874 		/* we need a minimum of two pages */
6875 		if (nr_pages < 2)
6876 			nr_pages = 2;
6877 
6878 		cpu_buffer->nr_pages_to_update = nr_pages;
6879 
6880 		/* Include the reader page */
6881 		nr_pages++;
6882 
6883 		/* Allocate the new size buffer */
6884 		INIT_LIST_HEAD(&cpu_buffer->new_pages);
6885 		if (__rb_allocate_pages(cpu_buffer, nr_pages,
6886 					&cpu_buffer->new_pages)) {
6887 			/* not enough memory for new pages */
6888 			err = -ENOMEM;
6889 			goto error;
6890 		}
6891 	}
6892 
6893 	for_each_buffer_cpu(buffer, cpu) {
6894 		struct buffer_data_page *old_free_data_page;
6895 		struct list_head old_pages;
6896 		unsigned long flags;
6897 
6898 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
6899 			continue;
6900 
6901 		cpu_buffer = buffer->buffers[cpu];
6902 
6903 		raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6904 
6905 		/* Clear the head bit to make the link list normal to read */
6906 		rb_head_page_deactivate(cpu_buffer);
6907 
6908 		/*
6909 		 * Collect buffers from the cpu_buffer pages list and the
6910 		 * reader_page on old_pages, so they can be freed later when not
6911 		 * under a spinlock. The pages list is a linked list with no
6912 		 * head, adding old_pages turns it into a regular list with
6913 		 * old_pages being the head.
6914 		 */
6915 		list_add(&old_pages, cpu_buffer->pages);
6916 		list_add(&cpu_buffer->reader_page->list, &old_pages);
6917 
6918 		/* One page was allocated for the reader page */
6919 		cpu_buffer->reader_page = list_entry(cpu_buffer->new_pages.next,
6920 						     struct buffer_page, list);
6921 		list_del_init(&cpu_buffer->reader_page->list);
6922 
6923 		/* Install the new pages, remove the head from the list */
6924 		cpu_buffer->pages = cpu_buffer->new_pages.next;
6925 		list_del_init(&cpu_buffer->new_pages);
6926 		cpu_buffer->cnt++;
6927 
6928 		cpu_buffer->head_page
6929 			= list_entry(cpu_buffer->pages, struct buffer_page, list);
6930 		cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
6931 
6932 		cpu_buffer->nr_pages = cpu_buffer->nr_pages_to_update;
6933 		cpu_buffer->nr_pages_to_update = 0;
6934 
6935 		old_free_data_page = cpu_buffer->free_page;
6936 		cpu_buffer->free_page = NULL;
6937 
6938 		rb_head_page_activate(cpu_buffer);
6939 
6940 		raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6941 
6942 		/* Free old sub buffers */
6943 		list_for_each_entry_safe(bpage, tmp, &old_pages, list) {
6944 			list_del_init(&bpage->list);
6945 			free_buffer_page(bpage);
6946 		}
6947 		free_pages((unsigned long)old_free_data_page, old_order);
6948 
6949 		rb_check_pages(cpu_buffer);
6950 	}
6951 
6952 	atomic_dec(&buffer->record_disabled);
6953 
6954 	return 0;
6955 
6956 error:
6957 	buffer->subbuf_order = old_order;
6958 	buffer->subbuf_size = old_size;
6959 
6960 	atomic_dec(&buffer->record_disabled);
6961 
6962 	for_each_buffer_cpu(buffer, cpu) {
6963 		cpu_buffer = buffer->buffers[cpu];
6964 
6965 		if (!cpu_buffer->nr_pages_to_update)
6966 			continue;
6967 
6968 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, list) {
6969 			list_del_init(&bpage->list);
6970 			free_buffer_page(bpage);
6971 		}
6972 	}
6973 
6974 	return err;
6975 }
6976 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_set);
6977 
rb_alloc_meta_page(struct ring_buffer_per_cpu * cpu_buffer)6978 static int rb_alloc_meta_page(struct ring_buffer_per_cpu *cpu_buffer)
6979 {
6980 	struct page *page;
6981 
6982 	if (cpu_buffer->meta_page)
6983 		return 0;
6984 
6985 	page = alloc_page(GFP_USER | __GFP_ZERO);
6986 	if (!page)
6987 		return -ENOMEM;
6988 
6989 	cpu_buffer->meta_page = page_to_virt(page);
6990 
6991 	return 0;
6992 }
6993 
rb_free_meta_page(struct ring_buffer_per_cpu * cpu_buffer)6994 static void rb_free_meta_page(struct ring_buffer_per_cpu *cpu_buffer)
6995 {
6996 	unsigned long addr = (unsigned long)cpu_buffer->meta_page;
6997 
6998 	free_page(addr);
6999 	cpu_buffer->meta_page = NULL;
7000 }
7001 
rb_setup_ids_meta_page(struct ring_buffer_per_cpu * cpu_buffer,unsigned long * subbuf_ids)7002 static void rb_setup_ids_meta_page(struct ring_buffer_per_cpu *cpu_buffer,
7003 				   unsigned long *subbuf_ids)
7004 {
7005 	struct trace_buffer_meta *meta = cpu_buffer->meta_page;
7006 	unsigned int nr_subbufs = cpu_buffer->nr_pages + 1;
7007 	struct buffer_page *first_subbuf, *subbuf;
7008 	int cnt = 0;
7009 	int id = 0;
7010 
7011 	id = rb_page_id(cpu_buffer, cpu_buffer->reader_page, id);
7012 	subbuf_ids[id++] = (unsigned long)cpu_buffer->reader_page->page;
7013 	cnt++;
7014 
7015 	first_subbuf = subbuf = rb_set_head_page(cpu_buffer);
7016 	do {
7017 		id = rb_page_id(cpu_buffer, subbuf, id);
7018 
7019 		if (WARN_ON(id >= nr_subbufs))
7020 			break;
7021 
7022 		subbuf_ids[id] = (unsigned long)subbuf->page;
7023 
7024 		rb_inc_page(&subbuf);
7025 		id++;
7026 		cnt++;
7027 	} while (subbuf != first_subbuf);
7028 
7029 	WARN_ON(cnt != nr_subbufs);
7030 
7031 	/* install subbuf ID to kern VA translation */
7032 	cpu_buffer->subbuf_ids = subbuf_ids;
7033 
7034 	meta->meta_struct_len = sizeof(*meta);
7035 	meta->nr_subbufs = nr_subbufs;
7036 	meta->subbuf_size = cpu_buffer->buffer->subbuf_size + BUF_PAGE_HDR_SIZE;
7037 	meta->meta_page_size = meta->subbuf_size;
7038 
7039 	rb_update_meta_page(cpu_buffer);
7040 }
7041 
7042 static struct ring_buffer_per_cpu *
rb_get_mapped_buffer(struct trace_buffer * buffer,int cpu)7043 rb_get_mapped_buffer(struct trace_buffer *buffer, int cpu)
7044 {
7045 	struct ring_buffer_per_cpu *cpu_buffer;
7046 
7047 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
7048 		return ERR_PTR(-EINVAL);
7049 
7050 	cpu_buffer = buffer->buffers[cpu];
7051 
7052 	mutex_lock(&cpu_buffer->mapping_lock);
7053 
7054 	if (!cpu_buffer->user_mapped) {
7055 		mutex_unlock(&cpu_buffer->mapping_lock);
7056 		return ERR_PTR(-ENODEV);
7057 	}
7058 
7059 	return cpu_buffer;
7060 }
7061 
rb_put_mapped_buffer(struct ring_buffer_per_cpu * cpu_buffer)7062 static void rb_put_mapped_buffer(struct ring_buffer_per_cpu *cpu_buffer)
7063 {
7064 	mutex_unlock(&cpu_buffer->mapping_lock);
7065 }
7066 
7067 /*
7068  * Fast-path for rb_buffer_(un)map(). Called whenever the meta-page doesn't need
7069  * to be set-up or torn-down.
7070  */
__rb_inc_dec_mapped(struct ring_buffer_per_cpu * cpu_buffer,bool inc)7071 static int __rb_inc_dec_mapped(struct ring_buffer_per_cpu *cpu_buffer,
7072 			       bool inc)
7073 {
7074 	unsigned long flags;
7075 
7076 	lockdep_assert_held(&cpu_buffer->mapping_lock);
7077 
7078 	/* mapped is always greater or equal to user_mapped */
7079 	if (WARN_ON(cpu_buffer->mapped < cpu_buffer->user_mapped))
7080 		return -EINVAL;
7081 
7082 	if (inc && cpu_buffer->mapped == UINT_MAX)
7083 		return -EBUSY;
7084 
7085 	if (WARN_ON(!inc && cpu_buffer->user_mapped == 0))
7086 		return -EINVAL;
7087 
7088 	mutex_lock(&cpu_buffer->buffer->mutex);
7089 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7090 
7091 	if (inc) {
7092 		cpu_buffer->user_mapped++;
7093 		cpu_buffer->mapped++;
7094 	} else {
7095 		cpu_buffer->user_mapped--;
7096 		cpu_buffer->mapped--;
7097 	}
7098 
7099 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7100 	mutex_unlock(&cpu_buffer->buffer->mutex);
7101 
7102 	return 0;
7103 }
7104 
7105 /*
7106  *   +--------------+  pgoff == 0
7107  *   |   meta page  |
7108  *   +--------------+  pgoff == 1
7109  *   | subbuffer 0  |
7110  *   |              |
7111  *   +--------------+  pgoff == (1 + (1 << subbuf_order))
7112  *   | subbuffer 1  |
7113  *   |              |
7114  *         ...
7115  */
7116 #ifdef CONFIG_MMU
__rb_map_vma(struct ring_buffer_per_cpu * cpu_buffer,struct vm_area_struct * vma)7117 static int __rb_map_vma(struct ring_buffer_per_cpu *cpu_buffer,
7118 			struct vm_area_struct *vma)
7119 {
7120 	unsigned long nr_subbufs, nr_pages, nr_vma_pages, pgoff = vma->vm_pgoff;
7121 	unsigned int subbuf_pages, subbuf_order;
7122 	struct page **pages __free(kfree) = NULL;
7123 	int p = 0, s = 0;
7124 	int err;
7125 
7126 	/* Refuse MP_PRIVATE or writable mappings */
7127 	if (vma->vm_flags & VM_WRITE || vma->vm_flags & VM_EXEC ||
7128 	    !(vma->vm_flags & VM_MAYSHARE))
7129 		return -EPERM;
7130 
7131 	subbuf_order = cpu_buffer->buffer->subbuf_order;
7132 	subbuf_pages = 1 << subbuf_order;
7133 
7134 	if (subbuf_order && pgoff % subbuf_pages)
7135 		return -EINVAL;
7136 
7137 	/*
7138 	 * Make sure the mapping cannot become writable later. Also tell the VM
7139 	 * to not touch these pages (VM_DONTCOPY | VM_DONTEXPAND).
7140 	 */
7141 	vm_flags_mod(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP,
7142 		     VM_MAYWRITE);
7143 
7144 	lockdep_assert_held(&cpu_buffer->mapping_lock);
7145 
7146 	nr_subbufs = cpu_buffer->nr_pages + 1; /* + reader-subbuf */
7147 	nr_pages = ((nr_subbufs + 1) << subbuf_order); /* + meta-page */
7148 	if (nr_pages <= pgoff)
7149 		return -EINVAL;
7150 
7151 	nr_pages -= pgoff;
7152 
7153 	nr_vma_pages = vma_pages(vma);
7154 	if (!nr_vma_pages || nr_vma_pages > nr_pages)
7155 		return -EINVAL;
7156 
7157 	nr_pages = nr_vma_pages;
7158 
7159 	pages = kcalloc(nr_pages, sizeof(*pages), GFP_KERNEL);
7160 	if (!pages)
7161 		return -ENOMEM;
7162 
7163 	if (!pgoff) {
7164 		unsigned long meta_page_padding;
7165 
7166 		pages[p++] = virt_to_page(cpu_buffer->meta_page);
7167 
7168 		/*
7169 		 * Pad with the zero-page to align the meta-page with the
7170 		 * sub-buffers.
7171 		 */
7172 		meta_page_padding = subbuf_pages - 1;
7173 		while (meta_page_padding-- && p < nr_pages) {
7174 			unsigned long __maybe_unused zero_addr =
7175 				vma->vm_start + (PAGE_SIZE * p);
7176 
7177 			pages[p++] = ZERO_PAGE(zero_addr);
7178 		}
7179 	} else {
7180 		/* Skip the meta-page */
7181 		pgoff -= subbuf_pages;
7182 
7183 		s += pgoff / subbuf_pages;
7184 	}
7185 
7186 	while (p < nr_pages) {
7187 		struct page *page;
7188 		int off = 0;
7189 
7190 		if (WARN_ON_ONCE(s >= nr_subbufs))
7191 			return -EINVAL;
7192 
7193 		page = virt_to_page((void *)cpu_buffer->subbuf_ids[s]);
7194 
7195 		for (; off < (1 << (subbuf_order)); off++, page++) {
7196 			if (p >= nr_pages)
7197 				break;
7198 
7199 			pages[p++] = page;
7200 		}
7201 		s++;
7202 	}
7203 
7204 	err = vm_insert_pages(vma, vma->vm_start, pages, &nr_pages);
7205 
7206 	return err;
7207 }
7208 #else
__rb_map_vma(struct ring_buffer_per_cpu * cpu_buffer,struct vm_area_struct * vma)7209 static int __rb_map_vma(struct ring_buffer_per_cpu *cpu_buffer,
7210 			struct vm_area_struct *vma)
7211 {
7212 	return -EOPNOTSUPP;
7213 }
7214 #endif
7215 
ring_buffer_map(struct trace_buffer * buffer,int cpu,struct vm_area_struct * vma)7216 int ring_buffer_map(struct trace_buffer *buffer, int cpu,
7217 		    struct vm_area_struct *vma)
7218 {
7219 	struct ring_buffer_per_cpu *cpu_buffer;
7220 	unsigned long flags, *subbuf_ids;
7221 	int err;
7222 
7223 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
7224 		return -EINVAL;
7225 
7226 	cpu_buffer = buffer->buffers[cpu];
7227 
7228 	guard(mutex)(&cpu_buffer->mapping_lock);
7229 
7230 	if (cpu_buffer->user_mapped) {
7231 		err = __rb_map_vma(cpu_buffer, vma);
7232 		if (!err)
7233 			err = __rb_inc_dec_mapped(cpu_buffer, true);
7234 		return err;
7235 	}
7236 
7237 	/* prevent another thread from changing buffer/sub-buffer sizes */
7238 	guard(mutex)(&buffer->mutex);
7239 
7240 	err = rb_alloc_meta_page(cpu_buffer);
7241 	if (err)
7242 		return err;
7243 
7244 	/* subbuf_ids include the reader while nr_pages does not */
7245 	subbuf_ids = kcalloc(cpu_buffer->nr_pages + 1, sizeof(*subbuf_ids), GFP_KERNEL);
7246 	if (!subbuf_ids) {
7247 		rb_free_meta_page(cpu_buffer);
7248 		return -ENOMEM;
7249 	}
7250 
7251 	atomic_inc(&cpu_buffer->resize_disabled);
7252 
7253 	/*
7254 	 * Lock all readers to block any subbuf swap until the subbuf IDs are
7255 	 * assigned.
7256 	 */
7257 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7258 	rb_setup_ids_meta_page(cpu_buffer, subbuf_ids);
7259 
7260 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7261 
7262 	err = __rb_map_vma(cpu_buffer, vma);
7263 	if (!err) {
7264 		raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7265 		/* This is the first time it is mapped by user */
7266 		cpu_buffer->mapped++;
7267 		cpu_buffer->user_mapped = 1;
7268 		raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7269 	} else {
7270 		kfree(cpu_buffer->subbuf_ids);
7271 		cpu_buffer->subbuf_ids = NULL;
7272 		rb_free_meta_page(cpu_buffer);
7273 		atomic_dec(&cpu_buffer->resize_disabled);
7274 	}
7275 
7276 	return 0;
7277 }
7278 
ring_buffer_unmap(struct trace_buffer * buffer,int cpu)7279 int ring_buffer_unmap(struct trace_buffer *buffer, int cpu)
7280 {
7281 	struct ring_buffer_per_cpu *cpu_buffer;
7282 	unsigned long flags;
7283 
7284 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
7285 		return -EINVAL;
7286 
7287 	cpu_buffer = buffer->buffers[cpu];
7288 
7289 	guard(mutex)(&cpu_buffer->mapping_lock);
7290 
7291 	if (!cpu_buffer->user_mapped) {
7292 		return -ENODEV;
7293 	} else if (cpu_buffer->user_mapped > 1) {
7294 		__rb_inc_dec_mapped(cpu_buffer, false);
7295 		return 0;
7296 	}
7297 
7298 	guard(mutex)(&buffer->mutex);
7299 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7300 
7301 	/* This is the last user space mapping */
7302 	if (!WARN_ON_ONCE(cpu_buffer->mapped < cpu_buffer->user_mapped))
7303 		cpu_buffer->mapped--;
7304 	cpu_buffer->user_mapped = 0;
7305 
7306 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7307 
7308 	kfree(cpu_buffer->subbuf_ids);
7309 	cpu_buffer->subbuf_ids = NULL;
7310 	rb_free_meta_page(cpu_buffer);
7311 	atomic_dec(&cpu_buffer->resize_disabled);
7312 
7313 	return 0;
7314 }
7315 
ring_buffer_map_get_reader(struct trace_buffer * buffer,int cpu)7316 int ring_buffer_map_get_reader(struct trace_buffer *buffer, int cpu)
7317 {
7318 	struct ring_buffer_per_cpu *cpu_buffer;
7319 	struct buffer_page *reader;
7320 	unsigned long missed_events;
7321 	unsigned long reader_size;
7322 	unsigned long flags;
7323 
7324 	cpu_buffer = rb_get_mapped_buffer(buffer, cpu);
7325 	if (IS_ERR(cpu_buffer))
7326 		return (int)PTR_ERR(cpu_buffer);
7327 
7328 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7329 
7330 consume:
7331 	if (rb_per_cpu_empty(cpu_buffer))
7332 		goto out;
7333 
7334 	reader_size = rb_page_size(cpu_buffer->reader_page);
7335 
7336 	/*
7337 	 * There are data to be read on the current reader page, we can
7338 	 * return to the caller. But before that, we assume the latter will read
7339 	 * everything. Let's update the kernel reader accordingly.
7340 	 */
7341 	if (cpu_buffer->reader_page->read < reader_size) {
7342 		while (cpu_buffer->reader_page->read < reader_size)
7343 			rb_advance_reader(cpu_buffer);
7344 		goto out;
7345 	}
7346 
7347 	reader = rb_get_reader_page(cpu_buffer);
7348 	if (WARN_ON(!reader))
7349 		goto out;
7350 
7351 	/* Check if any events were dropped */
7352 	missed_events = cpu_buffer->lost_events;
7353 
7354 	if (missed_events) {
7355 		if (cpu_buffer->reader_page != cpu_buffer->commit_page) {
7356 			struct buffer_data_page *bpage = reader->page;
7357 			unsigned int commit;
7358 			/*
7359 			 * Use the real_end for the data size,
7360 			 * This gives us a chance to store the lost events
7361 			 * on the page.
7362 			 */
7363 			if (reader->real_end)
7364 				local_set(&bpage->commit, reader->real_end);
7365 			/*
7366 			 * If there is room at the end of the page to save the
7367 			 * missed events, then record it there.
7368 			 */
7369 			commit = rb_page_size(reader);
7370 			if (buffer->subbuf_size - commit >= sizeof(missed_events)) {
7371 				memcpy(&bpage->data[commit], &missed_events,
7372 				       sizeof(missed_events));
7373 				local_add(RB_MISSED_STORED, &bpage->commit);
7374 			}
7375 			local_add(RB_MISSED_EVENTS, &bpage->commit);
7376 		} else if (!WARN_ONCE(cpu_buffer->reader_page == cpu_buffer->tail_page,
7377 				      "Reader on commit with %ld missed events",
7378 				      missed_events)) {
7379 			/*
7380 			 * There shouldn't be any missed events if the tail_page
7381 			 * is on the reader page. But if the tail page is not on the
7382 			 * reader page and the commit_page is, that would mean that
7383 			 * there's a commit_overrun (an interrupt preempted an
7384 			 * addition of an event and then filled the buffer
7385 			 * with new events). In this case it's not an
7386 			 * error, but it should still be reported.
7387 			 *
7388 			 * TODO: Add missed events to the page for user space to know.
7389 			 */
7390 			pr_info("Ring buffer [%d] commit overrun lost %ld events at timestamp:%lld\n",
7391 				cpu, missed_events, cpu_buffer->reader_page->page->time_stamp);
7392 		}
7393 	}
7394 
7395 	cpu_buffer->lost_events = 0;
7396 
7397 	goto consume;
7398 
7399 out:
7400 	/* Some archs do not have data cache coherency between kernel and user-space */
7401 	flush_kernel_vmap_range(cpu_buffer->reader_page->page,
7402 				buffer->subbuf_size + BUF_PAGE_HDR_SIZE);
7403 
7404 	rb_update_meta_page(cpu_buffer);
7405 
7406 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7407 	rb_put_mapped_buffer(cpu_buffer);
7408 
7409 	return 0;
7410 }
7411 
7412 /*
7413  * We only allocate new buffers, never free them if the CPU goes down.
7414  * If we were to free the buffer, then the user would lose any trace that was in
7415  * the buffer.
7416  */
trace_rb_cpu_prepare(unsigned int cpu,struct hlist_node * node)7417 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
7418 {
7419 	struct trace_buffer *buffer;
7420 	long nr_pages_same;
7421 	int cpu_i;
7422 	unsigned long nr_pages;
7423 
7424 	buffer = container_of(node, struct trace_buffer, node);
7425 	if (cpumask_test_cpu(cpu, buffer->cpumask))
7426 		return 0;
7427 
7428 	nr_pages = 0;
7429 	nr_pages_same = 1;
7430 	/* check if all cpu sizes are same */
7431 	for_each_buffer_cpu(buffer, cpu_i) {
7432 		/* fill in the size from first enabled cpu */
7433 		if (nr_pages == 0)
7434 			nr_pages = buffer->buffers[cpu_i]->nr_pages;
7435 		if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
7436 			nr_pages_same = 0;
7437 			break;
7438 		}
7439 	}
7440 	/* allocate minimum pages, user can later expand it */
7441 	if (!nr_pages_same)
7442 		nr_pages = 2;
7443 	buffer->buffers[cpu] =
7444 		rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
7445 	if (!buffer->buffers[cpu]) {
7446 		WARN(1, "failed to allocate ring buffer on CPU %u\n",
7447 		     cpu);
7448 		return -ENOMEM;
7449 	}
7450 	smp_wmb();
7451 	cpumask_set_cpu(cpu, buffer->cpumask);
7452 	return 0;
7453 }
7454 
7455 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
7456 /*
7457  * This is a basic integrity check of the ring buffer.
7458  * Late in the boot cycle this test will run when configured in.
7459  * It will kick off a thread per CPU that will go into a loop
7460  * writing to the per cpu ring buffer various sizes of data.
7461  * Some of the data will be large items, some small.
7462  *
7463  * Another thread is created that goes into a spin, sending out
7464  * IPIs to the other CPUs to also write into the ring buffer.
7465  * this is to test the nesting ability of the buffer.
7466  *
7467  * Basic stats are recorded and reported. If something in the
7468  * ring buffer should happen that's not expected, a big warning
7469  * is displayed and all ring buffers are disabled.
7470  */
7471 static struct task_struct *rb_threads[NR_CPUS] __initdata;
7472 
7473 struct rb_test_data {
7474 	struct trace_buffer *buffer;
7475 	unsigned long		events;
7476 	unsigned long		bytes_written;
7477 	unsigned long		bytes_alloc;
7478 	unsigned long		bytes_dropped;
7479 	unsigned long		events_nested;
7480 	unsigned long		bytes_written_nested;
7481 	unsigned long		bytes_alloc_nested;
7482 	unsigned long		bytes_dropped_nested;
7483 	int			min_size_nested;
7484 	int			max_size_nested;
7485 	int			max_size;
7486 	int			min_size;
7487 	int			cpu;
7488 	int			cnt;
7489 };
7490 
7491 static struct rb_test_data rb_data[NR_CPUS] __initdata;
7492 
7493 /* 1 meg per cpu */
7494 #define RB_TEST_BUFFER_SIZE	1048576
7495 
7496 static char rb_string[] __initdata =
7497 	"abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
7498 	"?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
7499 	"!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
7500 
7501 static bool rb_test_started __initdata;
7502 
7503 struct rb_item {
7504 	int size;
7505 	char str[];
7506 };
7507 
rb_write_something(struct rb_test_data * data,bool nested)7508 static __init int rb_write_something(struct rb_test_data *data, bool nested)
7509 {
7510 	struct ring_buffer_event *event;
7511 	struct rb_item *item;
7512 	bool started;
7513 	int event_len;
7514 	int size;
7515 	int len;
7516 	int cnt;
7517 
7518 	/* Have nested writes different that what is written */
7519 	cnt = data->cnt + (nested ? 27 : 0);
7520 
7521 	/* Multiply cnt by ~e, to make some unique increment */
7522 	size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
7523 
7524 	len = size + sizeof(struct rb_item);
7525 
7526 	started = rb_test_started;
7527 	/* read rb_test_started before checking buffer enabled */
7528 	smp_rmb();
7529 
7530 	event = ring_buffer_lock_reserve(data->buffer, len);
7531 	if (!event) {
7532 		/* Ignore dropped events before test starts. */
7533 		if (started) {
7534 			if (nested)
7535 				data->bytes_dropped_nested += len;
7536 			else
7537 				data->bytes_dropped += len;
7538 		}
7539 		return len;
7540 	}
7541 
7542 	event_len = ring_buffer_event_length(event);
7543 
7544 	if (RB_WARN_ON(data->buffer, event_len < len))
7545 		goto out;
7546 
7547 	item = ring_buffer_event_data(event);
7548 	item->size = size;
7549 	memcpy(item->str, rb_string, size);
7550 
7551 	if (nested) {
7552 		data->bytes_alloc_nested += event_len;
7553 		data->bytes_written_nested += len;
7554 		data->events_nested++;
7555 		if (!data->min_size_nested || len < data->min_size_nested)
7556 			data->min_size_nested = len;
7557 		if (len > data->max_size_nested)
7558 			data->max_size_nested = len;
7559 	} else {
7560 		data->bytes_alloc += event_len;
7561 		data->bytes_written += len;
7562 		data->events++;
7563 		if (!data->min_size || len < data->min_size)
7564 			data->max_size = len;
7565 		if (len > data->max_size)
7566 			data->max_size = len;
7567 	}
7568 
7569  out:
7570 	ring_buffer_unlock_commit(data->buffer);
7571 
7572 	return 0;
7573 }
7574 
rb_test(void * arg)7575 static __init int rb_test(void *arg)
7576 {
7577 	struct rb_test_data *data = arg;
7578 
7579 	while (!kthread_should_stop()) {
7580 		rb_write_something(data, false);
7581 		data->cnt++;
7582 
7583 		set_current_state(TASK_INTERRUPTIBLE);
7584 		/* Now sleep between a min of 100-300us and a max of 1ms */
7585 		usleep_range(((data->cnt % 3) + 1) * 100, 1000);
7586 	}
7587 
7588 	return 0;
7589 }
7590 
rb_ipi(void * ignore)7591 static __init void rb_ipi(void *ignore)
7592 {
7593 	struct rb_test_data *data;
7594 	int cpu = smp_processor_id();
7595 
7596 	data = &rb_data[cpu];
7597 	rb_write_something(data, true);
7598 }
7599 
rb_hammer_test(void * arg)7600 static __init int rb_hammer_test(void *arg)
7601 {
7602 	while (!kthread_should_stop()) {
7603 
7604 		/* Send an IPI to all cpus to write data! */
7605 		smp_call_function(rb_ipi, NULL, 1);
7606 		/* No sleep, but for non preempt, let others run */
7607 		schedule();
7608 	}
7609 
7610 	return 0;
7611 }
7612 
test_ringbuffer(void)7613 static __init int test_ringbuffer(void)
7614 {
7615 	struct task_struct *rb_hammer;
7616 	struct trace_buffer *buffer;
7617 	int cpu;
7618 	int ret = 0;
7619 
7620 	if (security_locked_down(LOCKDOWN_TRACEFS)) {
7621 		pr_warn("Lockdown is enabled, skipping ring buffer tests\n");
7622 		return 0;
7623 	}
7624 
7625 	pr_info("Running ring buffer tests...\n");
7626 
7627 	buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
7628 	if (WARN_ON(!buffer))
7629 		return 0;
7630 
7631 	/* Disable buffer so that threads can't write to it yet */
7632 	ring_buffer_record_off(buffer);
7633 
7634 	for_each_online_cpu(cpu) {
7635 		rb_data[cpu].buffer = buffer;
7636 		rb_data[cpu].cpu = cpu;
7637 		rb_data[cpu].cnt = cpu;
7638 		rb_threads[cpu] = kthread_run_on_cpu(rb_test, &rb_data[cpu],
7639 						     cpu, "rbtester/%u");
7640 		if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
7641 			pr_cont("FAILED\n");
7642 			ret = PTR_ERR(rb_threads[cpu]);
7643 			goto out_free;
7644 		}
7645 	}
7646 
7647 	/* Now create the rb hammer! */
7648 	rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
7649 	if (WARN_ON(IS_ERR(rb_hammer))) {
7650 		pr_cont("FAILED\n");
7651 		ret = PTR_ERR(rb_hammer);
7652 		goto out_free;
7653 	}
7654 
7655 	ring_buffer_record_on(buffer);
7656 	/*
7657 	 * Show buffer is enabled before setting rb_test_started.
7658 	 * Yes there's a small race window where events could be
7659 	 * dropped and the thread wont catch it. But when a ring
7660 	 * buffer gets enabled, there will always be some kind of
7661 	 * delay before other CPUs see it. Thus, we don't care about
7662 	 * those dropped events. We care about events dropped after
7663 	 * the threads see that the buffer is active.
7664 	 */
7665 	smp_wmb();
7666 	rb_test_started = true;
7667 
7668 	set_current_state(TASK_INTERRUPTIBLE);
7669 	/* Just run for 10 seconds */;
7670 	schedule_timeout(10 * HZ);
7671 
7672 	kthread_stop(rb_hammer);
7673 
7674  out_free:
7675 	for_each_online_cpu(cpu) {
7676 		if (!rb_threads[cpu])
7677 			break;
7678 		kthread_stop(rb_threads[cpu]);
7679 	}
7680 	if (ret) {
7681 		ring_buffer_free(buffer);
7682 		return ret;
7683 	}
7684 
7685 	/* Report! */
7686 	pr_info("finished\n");
7687 	for_each_online_cpu(cpu) {
7688 		struct ring_buffer_event *event;
7689 		struct rb_test_data *data = &rb_data[cpu];
7690 		struct rb_item *item;
7691 		unsigned long total_events;
7692 		unsigned long total_dropped;
7693 		unsigned long total_written;
7694 		unsigned long total_alloc;
7695 		unsigned long total_read = 0;
7696 		unsigned long total_size = 0;
7697 		unsigned long total_len = 0;
7698 		unsigned long total_lost = 0;
7699 		unsigned long lost;
7700 		int big_event_size;
7701 		int small_event_size;
7702 
7703 		ret = -1;
7704 
7705 		total_events = data->events + data->events_nested;
7706 		total_written = data->bytes_written + data->bytes_written_nested;
7707 		total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
7708 		total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
7709 
7710 		big_event_size = data->max_size + data->max_size_nested;
7711 		small_event_size = data->min_size + data->min_size_nested;
7712 
7713 		pr_info("CPU %d:\n", cpu);
7714 		pr_info("              events:    %ld\n", total_events);
7715 		pr_info("       dropped bytes:    %ld\n", total_dropped);
7716 		pr_info("       alloced bytes:    %ld\n", total_alloc);
7717 		pr_info("       written bytes:    %ld\n", total_written);
7718 		pr_info("       biggest event:    %d\n", big_event_size);
7719 		pr_info("      smallest event:    %d\n", small_event_size);
7720 
7721 		if (RB_WARN_ON(buffer, total_dropped))
7722 			break;
7723 
7724 		ret = 0;
7725 
7726 		while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
7727 			total_lost += lost;
7728 			item = ring_buffer_event_data(event);
7729 			total_len += ring_buffer_event_length(event);
7730 			total_size += item->size + sizeof(struct rb_item);
7731 			if (memcmp(&item->str[0], rb_string, item->size) != 0) {
7732 				pr_info("FAILED!\n");
7733 				pr_info("buffer had: %.*s\n", item->size, item->str);
7734 				pr_info("expected:   %.*s\n", item->size, rb_string);
7735 				RB_WARN_ON(buffer, 1);
7736 				ret = -1;
7737 				break;
7738 			}
7739 			total_read++;
7740 		}
7741 		if (ret)
7742 			break;
7743 
7744 		ret = -1;
7745 
7746 		pr_info("         read events:   %ld\n", total_read);
7747 		pr_info("         lost events:   %ld\n", total_lost);
7748 		pr_info("        total events:   %ld\n", total_lost + total_read);
7749 		pr_info("  recorded len bytes:   %ld\n", total_len);
7750 		pr_info(" recorded size bytes:   %ld\n", total_size);
7751 		if (total_lost) {
7752 			pr_info(" With dropped events, record len and size may not match\n"
7753 				" alloced and written from above\n");
7754 		} else {
7755 			if (RB_WARN_ON(buffer, total_len != total_alloc ||
7756 				       total_size != total_written))
7757 				break;
7758 		}
7759 		if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
7760 			break;
7761 
7762 		ret = 0;
7763 	}
7764 	if (!ret)
7765 		pr_info("Ring buffer PASSED!\n");
7766 
7767 	ring_buffer_free(buffer);
7768 	return 0;
7769 }
7770 
7771 late_initcall(test_ringbuffer);
7772 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
7773