1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Shared application/kernel submission and completion ring pairs, for 4 * supporting fast/efficient IO. 5 * 6 * A note on the read/write ordering memory barriers that are matched between 7 * the application and kernel side. 8 * 9 * After the application reads the CQ ring tail, it must use an 10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses 11 * before writing the tail (using smp_load_acquire to read the tail will 12 * do). It also needs a smp_mb() before updating CQ head (ordering the 13 * entry load(s) with the head store), pairing with an implicit barrier 14 * through a control-dependency in io_get_cqe (smp_store_release to 15 * store head will do). Failure to do so could lead to reading invalid 16 * CQ entries. 17 * 18 * Likewise, the application must use an appropriate smp_wmb() before 19 * writing the SQ tail (ordering SQ entry stores with the tail store), 20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release 21 * to store the tail will do). And it needs a barrier ordering the SQ 22 * head load before writing new SQ entries (smp_load_acquire to read 23 * head will do). 24 * 25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application 26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after* 27 * updating the SQ tail; a full memory barrier smp_mb() is needed 28 * between. 29 * 30 * Also see the examples in the liburing library: 31 * 32 * git://git.kernel.dk/liburing 33 * 34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens 35 * from data shared between the kernel and application. This is done both 36 * for ordering purposes, but also to ensure that once a value is loaded from 37 * data that the application could potentially modify, it remains stable. 38 * 39 * Copyright (C) 2018-2019 Jens Axboe 40 * Copyright (c) 2018-2019 Christoph Hellwig 41 */ 42 #include <linux/kernel.h> 43 #include <linux/init.h> 44 #include <linux/errno.h> 45 #include <linux/syscalls.h> 46 #include <net/compat.h> 47 #include <linux/refcount.h> 48 #include <linux/uio.h> 49 #include <linux/bits.h> 50 51 #include <linux/sched/signal.h> 52 #include <linux/fs.h> 53 #include <linux/file.h> 54 #include <linux/mm.h> 55 #include <linux/mman.h> 56 #include <linux/percpu.h> 57 #include <linux/slab.h> 58 #include <linux/bvec.h> 59 #include <linux/net.h> 60 #include <net/sock.h> 61 #include <linux/anon_inodes.h> 62 #include <linux/sched/mm.h> 63 #include <linux/uaccess.h> 64 #include <linux/nospec.h> 65 #include <linux/fsnotify.h> 66 #include <linux/fadvise.h> 67 #include <linux/task_work.h> 68 #include <linux/io_uring.h> 69 #include <linux/io_uring/cmd.h> 70 #include <linux/audit.h> 71 #include <linux/security.h> 72 #include <linux/jump_label.h> 73 #include <asm/shmparam.h> 74 75 #define CREATE_TRACE_POINTS 76 #include <trace/events/io_uring.h> 77 78 #include <uapi/linux/io_uring.h> 79 80 #include "io-wq.h" 81 82 #include "io_uring.h" 83 #include "opdef.h" 84 #include "refs.h" 85 #include "tctx.h" 86 #include "register.h" 87 #include "sqpoll.h" 88 #include "fdinfo.h" 89 #include "kbuf.h" 90 #include "rsrc.h" 91 #include "cancel.h" 92 #include "net.h" 93 #include "notif.h" 94 #include "waitid.h" 95 #include "futex.h" 96 #include "napi.h" 97 #include "uring_cmd.h" 98 #include "msg_ring.h" 99 #include "memmap.h" 100 #include "zcrx.h" 101 102 #include "timeout.h" 103 #include "poll.h" 104 #include "rw.h" 105 #include "alloc_cache.h" 106 #include "eventfd.h" 107 108 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \ 109 IOSQE_IO_HARDLINK | IOSQE_ASYNC) 110 111 #define SQE_VALID_FLAGS (SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \ 112 IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS) 113 114 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK) 115 116 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \ 117 REQ_F_INFLIGHT | REQ_F_CREDS | REQ_F_ASYNC_DATA) 118 119 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | IO_REQ_LINK_FLAGS | \ 120 REQ_F_REISSUE | REQ_F_POLLED | \ 121 IO_REQ_CLEAN_FLAGS) 122 123 #define IO_TCTX_REFS_CACHE_NR (1U << 10) 124 125 #define IO_COMPL_BATCH 32 126 #define IO_REQ_ALLOC_BATCH 8 127 #define IO_LOCAL_TW_DEFAULT_MAX 20 128 129 struct io_defer_entry { 130 struct list_head list; 131 struct io_kiocb *req; 132 }; 133 134 /* requests with any of those set should undergo io_disarm_next() */ 135 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL) 136 137 /* 138 * No waiters. It's larger than any valid value of the tw counter 139 * so that tests against ->cq_wait_nr would fail and skip wake_up(). 140 */ 141 #define IO_CQ_WAKE_INIT (-1U) 142 /* Forced wake up if there is a waiter regardless of ->cq_wait_nr */ 143 #define IO_CQ_WAKE_FORCE (IO_CQ_WAKE_INIT >> 1) 144 145 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 146 struct io_uring_task *tctx, 147 bool cancel_all, 148 bool is_sqpoll_thread); 149 150 static void io_queue_sqe(struct io_kiocb *req, unsigned int extra_flags); 151 static void __io_req_caches_free(struct io_ring_ctx *ctx); 152 153 static __read_mostly DEFINE_STATIC_KEY_FALSE(io_key_has_sqarray); 154 155 struct kmem_cache *req_cachep; 156 static struct workqueue_struct *iou_wq __ro_after_init; 157 158 static int __read_mostly sysctl_io_uring_disabled; 159 static int __read_mostly sysctl_io_uring_group = -1; 160 161 #ifdef CONFIG_SYSCTL 162 static const struct ctl_table kernel_io_uring_disabled_table[] = { 163 { 164 .procname = "io_uring_disabled", 165 .data = &sysctl_io_uring_disabled, 166 .maxlen = sizeof(sysctl_io_uring_disabled), 167 .mode = 0644, 168 .proc_handler = proc_dointvec_minmax, 169 .extra1 = SYSCTL_ZERO, 170 .extra2 = SYSCTL_TWO, 171 }, 172 { 173 .procname = "io_uring_group", 174 .data = &sysctl_io_uring_group, 175 .maxlen = sizeof(gid_t), 176 .mode = 0644, 177 .proc_handler = proc_dointvec, 178 }, 179 }; 180 #endif 181 182 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx) 183 { 184 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head); 185 } 186 187 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx) 188 { 189 return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head); 190 } 191 192 static bool io_match_linked(struct io_kiocb *head) 193 { 194 struct io_kiocb *req; 195 196 io_for_each_link(req, head) { 197 if (req->flags & REQ_F_INFLIGHT) 198 return true; 199 } 200 return false; 201 } 202 203 /* 204 * As io_match_task() but protected against racing with linked timeouts. 205 * User must not hold timeout_lock. 206 */ 207 bool io_match_task_safe(struct io_kiocb *head, struct io_uring_task *tctx, 208 bool cancel_all) 209 { 210 bool matched; 211 212 if (tctx && head->tctx != tctx) 213 return false; 214 if (cancel_all) 215 return true; 216 217 if (head->flags & REQ_F_LINK_TIMEOUT) { 218 struct io_ring_ctx *ctx = head->ctx; 219 220 /* protect against races with linked timeouts */ 221 raw_spin_lock_irq(&ctx->timeout_lock); 222 matched = io_match_linked(head); 223 raw_spin_unlock_irq(&ctx->timeout_lock); 224 } else { 225 matched = io_match_linked(head); 226 } 227 return matched; 228 } 229 230 static inline void req_fail_link_node(struct io_kiocb *req, int res) 231 { 232 req_set_fail(req); 233 io_req_set_res(req, res, 0); 234 } 235 236 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx) 237 { 238 wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list); 239 } 240 241 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref) 242 { 243 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs); 244 245 complete(&ctx->ref_comp); 246 } 247 248 static __cold void io_fallback_req_func(struct work_struct *work) 249 { 250 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, 251 fallback_work.work); 252 struct llist_node *node = llist_del_all(&ctx->fallback_llist); 253 struct io_kiocb *req, *tmp; 254 struct io_tw_state ts = {}; 255 256 percpu_ref_get(&ctx->refs); 257 mutex_lock(&ctx->uring_lock); 258 llist_for_each_entry_safe(req, tmp, node, io_task_work.node) 259 req->io_task_work.func(req, ts); 260 io_submit_flush_completions(ctx); 261 mutex_unlock(&ctx->uring_lock); 262 percpu_ref_put(&ctx->refs); 263 } 264 265 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits) 266 { 267 unsigned int hash_buckets; 268 int i; 269 270 do { 271 hash_buckets = 1U << bits; 272 table->hbs = kvmalloc_array(hash_buckets, sizeof(table->hbs[0]), 273 GFP_KERNEL_ACCOUNT); 274 if (table->hbs) 275 break; 276 if (bits == 1) 277 return -ENOMEM; 278 bits--; 279 } while (1); 280 281 table->hash_bits = bits; 282 for (i = 0; i < hash_buckets; i++) 283 INIT_HLIST_HEAD(&table->hbs[i].list); 284 return 0; 285 } 286 287 static void io_free_alloc_caches(struct io_ring_ctx *ctx) 288 { 289 io_alloc_cache_free(&ctx->apoll_cache, kfree); 290 io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free); 291 io_alloc_cache_free(&ctx->rw_cache, io_rw_cache_free); 292 io_alloc_cache_free(&ctx->cmd_cache, io_cmd_cache_free); 293 io_futex_cache_free(ctx); 294 io_rsrc_cache_free(ctx); 295 } 296 297 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p) 298 { 299 struct io_ring_ctx *ctx; 300 int hash_bits; 301 bool ret; 302 303 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 304 if (!ctx) 305 return NULL; 306 307 xa_init(&ctx->io_bl_xa); 308 309 /* 310 * Use 5 bits less than the max cq entries, that should give us around 311 * 32 entries per hash list if totally full and uniformly spread, but 312 * don't keep too many buckets to not overconsume memory. 313 */ 314 hash_bits = ilog2(p->cq_entries) - 5; 315 hash_bits = clamp(hash_bits, 1, 8); 316 if (io_alloc_hash_table(&ctx->cancel_table, hash_bits)) 317 goto err; 318 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free, 319 0, GFP_KERNEL)) 320 goto err; 321 322 ctx->flags = p->flags; 323 ctx->hybrid_poll_time = LLONG_MAX; 324 atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT); 325 init_waitqueue_head(&ctx->sqo_sq_wait); 326 INIT_LIST_HEAD(&ctx->sqd_list); 327 INIT_LIST_HEAD(&ctx->cq_overflow_list); 328 ret = io_alloc_cache_init(&ctx->apoll_cache, IO_POLL_ALLOC_CACHE_MAX, 329 sizeof(struct async_poll), 0); 330 ret |= io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX, 331 sizeof(struct io_async_msghdr), 332 offsetof(struct io_async_msghdr, clear)); 333 ret |= io_alloc_cache_init(&ctx->rw_cache, IO_ALLOC_CACHE_MAX, 334 sizeof(struct io_async_rw), 335 offsetof(struct io_async_rw, clear)); 336 ret |= io_alloc_cache_init(&ctx->cmd_cache, IO_ALLOC_CACHE_MAX, 337 sizeof(struct io_async_cmd), 338 sizeof(struct io_async_cmd)); 339 ret |= io_futex_cache_init(ctx); 340 ret |= io_rsrc_cache_init(ctx); 341 if (ret) 342 goto free_ref; 343 init_completion(&ctx->ref_comp); 344 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1); 345 mutex_init(&ctx->uring_lock); 346 init_waitqueue_head(&ctx->cq_wait); 347 init_waitqueue_head(&ctx->poll_wq); 348 spin_lock_init(&ctx->completion_lock); 349 raw_spin_lock_init(&ctx->timeout_lock); 350 INIT_WQ_LIST(&ctx->iopoll_list); 351 INIT_LIST_HEAD(&ctx->defer_list); 352 INIT_LIST_HEAD(&ctx->timeout_list); 353 INIT_LIST_HEAD(&ctx->ltimeout_list); 354 init_llist_head(&ctx->work_llist); 355 INIT_LIST_HEAD(&ctx->tctx_list); 356 ctx->submit_state.free_list.next = NULL; 357 INIT_HLIST_HEAD(&ctx->waitid_list); 358 xa_init_flags(&ctx->zcrx_ctxs, XA_FLAGS_ALLOC); 359 #ifdef CONFIG_FUTEX 360 INIT_HLIST_HEAD(&ctx->futex_list); 361 #endif 362 INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func); 363 INIT_WQ_LIST(&ctx->submit_state.compl_reqs); 364 INIT_HLIST_HEAD(&ctx->cancelable_uring_cmd); 365 io_napi_init(ctx); 366 mutex_init(&ctx->mmap_lock); 367 368 return ctx; 369 370 free_ref: 371 percpu_ref_exit(&ctx->refs); 372 err: 373 io_free_alloc_caches(ctx); 374 kvfree(ctx->cancel_table.hbs); 375 xa_destroy(&ctx->io_bl_xa); 376 kfree(ctx); 377 return NULL; 378 } 379 380 static void io_clean_op(struct io_kiocb *req) 381 { 382 if (unlikely(req->flags & REQ_F_BUFFER_SELECTED)) 383 io_kbuf_drop_legacy(req); 384 385 if (req->flags & REQ_F_NEED_CLEANUP) { 386 const struct io_cold_def *def = &io_cold_defs[req->opcode]; 387 388 if (def->cleanup) 389 def->cleanup(req); 390 } 391 if (req->flags & REQ_F_INFLIGHT) 392 atomic_dec(&req->tctx->inflight_tracked); 393 if (req->flags & REQ_F_CREDS) 394 put_cred(req->creds); 395 if (req->flags & REQ_F_ASYNC_DATA) { 396 kfree(req->async_data); 397 req->async_data = NULL; 398 } 399 req->flags &= ~IO_REQ_CLEAN_FLAGS; 400 } 401 402 /* 403 * Mark the request as inflight, so that file cancelation will find it. 404 * Can be used if the file is an io_uring instance, or if the request itself 405 * relies on ->mm being alive for the duration of the request. 406 */ 407 inline void io_req_track_inflight(struct io_kiocb *req) 408 { 409 if (!(req->flags & REQ_F_INFLIGHT)) { 410 req->flags |= REQ_F_INFLIGHT; 411 atomic_inc(&req->tctx->inflight_tracked); 412 } 413 } 414 415 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req) 416 { 417 if (WARN_ON_ONCE(!req->link)) 418 return NULL; 419 420 req->flags &= ~REQ_F_ARM_LTIMEOUT; 421 req->flags |= REQ_F_LINK_TIMEOUT; 422 423 /* linked timeouts should have two refs once prep'ed */ 424 io_req_set_refcount(req); 425 __io_req_set_refcount(req->link, 2); 426 return req->link; 427 } 428 429 static void io_prep_async_work(struct io_kiocb *req) 430 { 431 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 432 struct io_ring_ctx *ctx = req->ctx; 433 434 if (!(req->flags & REQ_F_CREDS)) { 435 req->flags |= REQ_F_CREDS; 436 req->creds = get_current_cred(); 437 } 438 439 req->work.list.next = NULL; 440 atomic_set(&req->work.flags, 0); 441 if (req->flags & REQ_F_FORCE_ASYNC) 442 atomic_or(IO_WQ_WORK_CONCURRENT, &req->work.flags); 443 444 if (req->file && !(req->flags & REQ_F_FIXED_FILE)) 445 req->flags |= io_file_get_flags(req->file); 446 447 if (req->file && (req->flags & REQ_F_ISREG)) { 448 bool should_hash = def->hash_reg_file; 449 450 /* don't serialize this request if the fs doesn't need it */ 451 if (should_hash && (req->file->f_flags & O_DIRECT) && 452 (req->file->f_op->fop_flags & FOP_DIO_PARALLEL_WRITE)) 453 should_hash = false; 454 if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL)) 455 io_wq_hash_work(&req->work, file_inode(req->file)); 456 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) { 457 if (def->unbound_nonreg_file) 458 atomic_or(IO_WQ_WORK_UNBOUND, &req->work.flags); 459 } 460 } 461 462 static void io_prep_async_link(struct io_kiocb *req) 463 { 464 struct io_kiocb *cur; 465 466 if (req->flags & REQ_F_LINK_TIMEOUT) { 467 struct io_ring_ctx *ctx = req->ctx; 468 469 raw_spin_lock_irq(&ctx->timeout_lock); 470 io_for_each_link(cur, req) 471 io_prep_async_work(cur); 472 raw_spin_unlock_irq(&ctx->timeout_lock); 473 } else { 474 io_for_each_link(cur, req) 475 io_prep_async_work(cur); 476 } 477 } 478 479 static void io_queue_iowq(struct io_kiocb *req) 480 { 481 struct io_uring_task *tctx = req->tctx; 482 483 BUG_ON(!tctx); 484 485 if ((current->flags & PF_KTHREAD) || !tctx->io_wq) { 486 io_req_task_queue_fail(req, -ECANCELED); 487 return; 488 } 489 490 /* init ->work of the whole link before punting */ 491 io_prep_async_link(req); 492 493 /* 494 * Not expected to happen, but if we do have a bug where this _can_ 495 * happen, catch it here and ensure the request is marked as 496 * canceled. That will make io-wq go through the usual work cancel 497 * procedure rather than attempt to run this request (or create a new 498 * worker for it). 499 */ 500 if (WARN_ON_ONCE(!same_thread_group(tctx->task, current))) 501 atomic_or(IO_WQ_WORK_CANCEL, &req->work.flags); 502 503 trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work)); 504 io_wq_enqueue(tctx->io_wq, &req->work); 505 } 506 507 static void io_req_queue_iowq_tw(struct io_kiocb *req, io_tw_token_t tw) 508 { 509 io_queue_iowq(req); 510 } 511 512 void io_req_queue_iowq(struct io_kiocb *req) 513 { 514 req->io_task_work.func = io_req_queue_iowq_tw; 515 io_req_task_work_add(req); 516 } 517 518 static unsigned io_linked_nr(struct io_kiocb *req) 519 { 520 struct io_kiocb *tmp; 521 unsigned nr = 0; 522 523 io_for_each_link(tmp, req) 524 nr++; 525 return nr; 526 } 527 528 static __cold noinline void io_queue_deferred(struct io_ring_ctx *ctx) 529 { 530 bool drain_seen = false, first = true; 531 532 lockdep_assert_held(&ctx->uring_lock); 533 __io_req_caches_free(ctx); 534 535 while (!list_empty(&ctx->defer_list)) { 536 struct io_defer_entry *de = list_first_entry(&ctx->defer_list, 537 struct io_defer_entry, list); 538 539 drain_seen |= de->req->flags & REQ_F_IO_DRAIN; 540 if ((drain_seen || first) && ctx->nr_req_allocated != ctx->nr_drained) 541 return; 542 543 list_del_init(&de->list); 544 ctx->nr_drained -= io_linked_nr(de->req); 545 io_req_task_queue(de->req); 546 kfree(de); 547 first = false; 548 } 549 } 550 551 void __io_commit_cqring_flush(struct io_ring_ctx *ctx) 552 { 553 if (ctx->poll_activated) 554 io_poll_wq_wake(ctx); 555 if (ctx->off_timeout_used) 556 io_flush_timeouts(ctx); 557 if (ctx->has_evfd) 558 io_eventfd_signal(ctx, true); 559 } 560 561 static inline void __io_cq_lock(struct io_ring_ctx *ctx) 562 { 563 if (!ctx->lockless_cq) 564 spin_lock(&ctx->completion_lock); 565 } 566 567 static inline void io_cq_lock(struct io_ring_ctx *ctx) 568 __acquires(ctx->completion_lock) 569 { 570 spin_lock(&ctx->completion_lock); 571 } 572 573 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx) 574 { 575 io_commit_cqring(ctx); 576 if (!ctx->task_complete) { 577 if (!ctx->lockless_cq) 578 spin_unlock(&ctx->completion_lock); 579 /* IOPOLL rings only need to wake up if it's also SQPOLL */ 580 if (!ctx->syscall_iopoll) 581 io_cqring_wake(ctx); 582 } 583 io_commit_cqring_flush(ctx); 584 } 585 586 static void io_cq_unlock_post(struct io_ring_ctx *ctx) 587 __releases(ctx->completion_lock) 588 { 589 io_commit_cqring(ctx); 590 spin_unlock(&ctx->completion_lock); 591 io_cqring_wake(ctx); 592 io_commit_cqring_flush(ctx); 593 } 594 595 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool dying) 596 { 597 size_t cqe_size = sizeof(struct io_uring_cqe); 598 599 lockdep_assert_held(&ctx->uring_lock); 600 601 /* don't abort if we're dying, entries must get freed */ 602 if (!dying && __io_cqring_events(ctx) == ctx->cq_entries) 603 return; 604 605 if (ctx->flags & IORING_SETUP_CQE32) 606 cqe_size <<= 1; 607 608 io_cq_lock(ctx); 609 while (!list_empty(&ctx->cq_overflow_list)) { 610 struct io_uring_cqe *cqe; 611 struct io_overflow_cqe *ocqe; 612 613 ocqe = list_first_entry(&ctx->cq_overflow_list, 614 struct io_overflow_cqe, list); 615 616 if (!dying) { 617 if (!io_get_cqe_overflow(ctx, &cqe, true)) 618 break; 619 memcpy(cqe, &ocqe->cqe, cqe_size); 620 } 621 list_del(&ocqe->list); 622 kfree(ocqe); 623 624 /* 625 * For silly syzbot cases that deliberately overflow by huge 626 * amounts, check if we need to resched and drop and 627 * reacquire the locks if so. Nothing real would ever hit this. 628 * Ideally we'd have a non-posting unlock for this, but hard 629 * to care for a non-real case. 630 */ 631 if (need_resched()) { 632 ctx->cqe_sentinel = ctx->cqe_cached; 633 io_cq_unlock_post(ctx); 634 mutex_unlock(&ctx->uring_lock); 635 cond_resched(); 636 mutex_lock(&ctx->uring_lock); 637 io_cq_lock(ctx); 638 } 639 } 640 641 if (list_empty(&ctx->cq_overflow_list)) { 642 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 643 atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 644 } 645 io_cq_unlock_post(ctx); 646 } 647 648 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx) 649 { 650 if (ctx->rings) 651 __io_cqring_overflow_flush(ctx, true); 652 } 653 654 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx) 655 { 656 mutex_lock(&ctx->uring_lock); 657 __io_cqring_overflow_flush(ctx, false); 658 mutex_unlock(&ctx->uring_lock); 659 } 660 661 /* must to be called somewhat shortly after putting a request */ 662 static inline void io_put_task(struct io_kiocb *req) 663 { 664 struct io_uring_task *tctx = req->tctx; 665 666 if (likely(tctx->task == current)) { 667 tctx->cached_refs++; 668 } else { 669 percpu_counter_sub(&tctx->inflight, 1); 670 if (unlikely(atomic_read(&tctx->in_cancel))) 671 wake_up(&tctx->wait); 672 put_task_struct(tctx->task); 673 } 674 } 675 676 void io_task_refs_refill(struct io_uring_task *tctx) 677 { 678 unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR; 679 680 percpu_counter_add(&tctx->inflight, refill); 681 refcount_add(refill, ¤t->usage); 682 tctx->cached_refs += refill; 683 } 684 685 static __cold void io_uring_drop_tctx_refs(struct task_struct *task) 686 { 687 struct io_uring_task *tctx = task->io_uring; 688 unsigned int refs = tctx->cached_refs; 689 690 if (refs) { 691 tctx->cached_refs = 0; 692 percpu_counter_sub(&tctx->inflight, refs); 693 put_task_struct_many(task, refs); 694 } 695 } 696 697 static __cold bool io_cqring_add_overflow(struct io_ring_ctx *ctx, 698 struct io_overflow_cqe *ocqe) 699 { 700 lockdep_assert_held(&ctx->completion_lock); 701 702 if (!ocqe) { 703 struct io_rings *r = ctx->rings; 704 705 /* 706 * If we're in ring overflow flush mode, or in task cancel mode, 707 * or cannot allocate an overflow entry, then we need to drop it 708 * on the floor. 709 */ 710 WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1); 711 set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq); 712 return false; 713 } 714 if (list_empty(&ctx->cq_overflow_list)) { 715 set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 716 atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 717 718 } 719 list_add_tail(&ocqe->list, &ctx->cq_overflow_list); 720 return true; 721 } 722 723 static struct io_overflow_cqe *io_alloc_ocqe(struct io_ring_ctx *ctx, 724 struct io_cqe *cqe, 725 struct io_big_cqe *big_cqe, gfp_t gfp) 726 { 727 struct io_overflow_cqe *ocqe; 728 size_t ocq_size = sizeof(struct io_overflow_cqe); 729 bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32); 730 731 if (is_cqe32) 732 ocq_size += sizeof(struct io_uring_cqe); 733 734 ocqe = kzalloc(ocq_size, gfp | __GFP_ACCOUNT); 735 trace_io_uring_cqe_overflow(ctx, cqe->user_data, cqe->res, cqe->flags, ocqe); 736 if (ocqe) { 737 ocqe->cqe.user_data = cqe->user_data; 738 ocqe->cqe.res = cqe->res; 739 ocqe->cqe.flags = cqe->flags; 740 if (is_cqe32 && big_cqe) { 741 ocqe->cqe.big_cqe[0] = big_cqe->extra1; 742 ocqe->cqe.big_cqe[1] = big_cqe->extra2; 743 } 744 } 745 if (big_cqe) 746 big_cqe->extra1 = big_cqe->extra2 = 0; 747 return ocqe; 748 } 749 750 /* 751 * writes to the cq entry need to come after reading head; the 752 * control dependency is enough as we're using WRITE_ONCE to 753 * fill the cq entry 754 */ 755 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow) 756 { 757 struct io_rings *rings = ctx->rings; 758 unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1); 759 unsigned int free, queued, len; 760 761 /* 762 * Posting into the CQ when there are pending overflowed CQEs may break 763 * ordering guarantees, which will affect links, F_MORE users and more. 764 * Force overflow the completion. 765 */ 766 if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))) 767 return false; 768 769 /* userspace may cheat modifying the tail, be safe and do min */ 770 queued = min(__io_cqring_events(ctx), ctx->cq_entries); 771 free = ctx->cq_entries - queued; 772 /* we need a contiguous range, limit based on the current array offset */ 773 len = min(free, ctx->cq_entries - off); 774 if (!len) 775 return false; 776 777 if (ctx->flags & IORING_SETUP_CQE32) { 778 off <<= 1; 779 len <<= 1; 780 } 781 782 ctx->cqe_cached = &rings->cqes[off]; 783 ctx->cqe_sentinel = ctx->cqe_cached + len; 784 return true; 785 } 786 787 static bool io_fill_cqe_aux32(struct io_ring_ctx *ctx, 788 struct io_uring_cqe src_cqe[2]) 789 { 790 struct io_uring_cqe *cqe; 791 792 if (WARN_ON_ONCE(!(ctx->flags & IORING_SETUP_CQE32))) 793 return false; 794 if (unlikely(!io_get_cqe(ctx, &cqe))) 795 return false; 796 797 memcpy(cqe, src_cqe, 2 * sizeof(*cqe)); 798 trace_io_uring_complete(ctx, NULL, cqe); 799 return true; 800 } 801 802 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res, 803 u32 cflags) 804 { 805 struct io_uring_cqe *cqe; 806 807 if (likely(io_get_cqe(ctx, &cqe))) { 808 WRITE_ONCE(cqe->user_data, user_data); 809 WRITE_ONCE(cqe->res, res); 810 WRITE_ONCE(cqe->flags, cflags); 811 812 if (ctx->flags & IORING_SETUP_CQE32) { 813 WRITE_ONCE(cqe->big_cqe[0], 0); 814 WRITE_ONCE(cqe->big_cqe[1], 0); 815 } 816 817 trace_io_uring_complete(ctx, NULL, cqe); 818 return true; 819 } 820 return false; 821 } 822 823 static inline struct io_cqe io_init_cqe(u64 user_data, s32 res, u32 cflags) 824 { 825 return (struct io_cqe) { .user_data = user_data, .res = res, .flags = cflags }; 826 } 827 828 static __cold void io_cqe_overflow(struct io_ring_ctx *ctx, struct io_cqe *cqe, 829 struct io_big_cqe *big_cqe) 830 { 831 struct io_overflow_cqe *ocqe; 832 833 ocqe = io_alloc_ocqe(ctx, cqe, big_cqe, GFP_KERNEL); 834 spin_lock(&ctx->completion_lock); 835 io_cqring_add_overflow(ctx, ocqe); 836 spin_unlock(&ctx->completion_lock); 837 } 838 839 static __cold bool io_cqe_overflow_locked(struct io_ring_ctx *ctx, 840 struct io_cqe *cqe, 841 struct io_big_cqe *big_cqe) 842 { 843 struct io_overflow_cqe *ocqe; 844 845 ocqe = io_alloc_ocqe(ctx, cqe, big_cqe, GFP_ATOMIC); 846 return io_cqring_add_overflow(ctx, ocqe); 847 } 848 849 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags) 850 { 851 bool filled; 852 853 io_cq_lock(ctx); 854 filled = io_fill_cqe_aux(ctx, user_data, res, cflags); 855 if (unlikely(!filled)) { 856 struct io_cqe cqe = io_init_cqe(user_data, res, cflags); 857 858 filled = io_cqe_overflow_locked(ctx, &cqe, NULL); 859 } 860 io_cq_unlock_post(ctx); 861 return filled; 862 } 863 864 /* 865 * Must be called from inline task_work so we now a flush will happen later, 866 * and obviously with ctx->uring_lock held (tw always has that). 867 */ 868 void io_add_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags) 869 { 870 lockdep_assert_held(&ctx->uring_lock); 871 lockdep_assert(ctx->lockless_cq); 872 873 if (!io_fill_cqe_aux(ctx, user_data, res, cflags)) { 874 struct io_cqe cqe = io_init_cqe(user_data, res, cflags); 875 876 io_cqe_overflow(ctx, &cqe, NULL); 877 } 878 ctx->submit_state.cq_flush = true; 879 } 880 881 /* 882 * A helper for multishot requests posting additional CQEs. 883 * Should only be used from a task_work including IO_URING_F_MULTISHOT. 884 */ 885 bool io_req_post_cqe(struct io_kiocb *req, s32 res, u32 cflags) 886 { 887 struct io_ring_ctx *ctx = req->ctx; 888 bool posted; 889 890 /* 891 * If multishot has already posted deferred completions, ensure that 892 * those are flushed first before posting this one. If not, CQEs 893 * could get reordered. 894 */ 895 if (!wq_list_empty(&ctx->submit_state.compl_reqs)) 896 __io_submit_flush_completions(ctx); 897 898 lockdep_assert(!io_wq_current_is_worker()); 899 lockdep_assert_held(&ctx->uring_lock); 900 901 if (!ctx->lockless_cq) { 902 spin_lock(&ctx->completion_lock); 903 posted = io_fill_cqe_aux(ctx, req->cqe.user_data, res, cflags); 904 spin_unlock(&ctx->completion_lock); 905 } else { 906 posted = io_fill_cqe_aux(ctx, req->cqe.user_data, res, cflags); 907 } 908 909 ctx->submit_state.cq_flush = true; 910 return posted; 911 } 912 913 /* 914 * A helper for multishot requests posting additional CQEs. 915 * Should only be used from a task_work including IO_URING_F_MULTISHOT. 916 */ 917 bool io_req_post_cqe32(struct io_kiocb *req, struct io_uring_cqe cqe[2]) 918 { 919 struct io_ring_ctx *ctx = req->ctx; 920 bool posted; 921 922 lockdep_assert(!io_wq_current_is_worker()); 923 lockdep_assert_held(&ctx->uring_lock); 924 925 cqe[0].user_data = req->cqe.user_data; 926 if (!ctx->lockless_cq) { 927 spin_lock(&ctx->completion_lock); 928 posted = io_fill_cqe_aux32(ctx, cqe); 929 spin_unlock(&ctx->completion_lock); 930 } else { 931 posted = io_fill_cqe_aux32(ctx, cqe); 932 } 933 934 ctx->submit_state.cq_flush = true; 935 return posted; 936 } 937 938 static void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags) 939 { 940 struct io_ring_ctx *ctx = req->ctx; 941 bool completed = true; 942 943 /* 944 * All execution paths but io-wq use the deferred completions by 945 * passing IO_URING_F_COMPLETE_DEFER and thus should not end up here. 946 */ 947 if (WARN_ON_ONCE(!(issue_flags & IO_URING_F_IOWQ))) 948 return; 949 950 /* 951 * Handle special CQ sync cases via task_work. DEFER_TASKRUN requires 952 * the submitter task context, IOPOLL protects with uring_lock. 953 */ 954 if (ctx->lockless_cq || (req->flags & REQ_F_REISSUE)) { 955 defer_complete: 956 req->io_task_work.func = io_req_task_complete; 957 io_req_task_work_add(req); 958 return; 959 } 960 961 io_cq_lock(ctx); 962 if (!(req->flags & REQ_F_CQE_SKIP)) 963 completed = io_fill_cqe_req(ctx, req); 964 io_cq_unlock_post(ctx); 965 966 if (!completed) 967 goto defer_complete; 968 969 /* 970 * We don't free the request here because we know it's called from 971 * io-wq only, which holds a reference, so it cannot be the last put. 972 */ 973 req_ref_put(req); 974 } 975 976 void io_req_defer_failed(struct io_kiocb *req, s32 res) 977 __must_hold(&ctx->uring_lock) 978 { 979 const struct io_cold_def *def = &io_cold_defs[req->opcode]; 980 981 lockdep_assert_held(&req->ctx->uring_lock); 982 983 req_set_fail(req); 984 io_req_set_res(req, res, io_put_kbuf(req, res, IO_URING_F_UNLOCKED)); 985 if (def->fail) 986 def->fail(req); 987 io_req_complete_defer(req); 988 } 989 990 /* 991 * A request might get retired back into the request caches even before opcode 992 * handlers and io_issue_sqe() are done with it, e.g. inline completion path. 993 * Because of that, io_alloc_req() should be called only under ->uring_lock 994 * and with extra caution to not get a request that is still worked on. 995 */ 996 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx) 997 __must_hold(&ctx->uring_lock) 998 { 999 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO; 1000 void *reqs[IO_REQ_ALLOC_BATCH]; 1001 int ret; 1002 1003 ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs); 1004 1005 /* 1006 * Bulk alloc is all-or-nothing. If we fail to get a batch, 1007 * retry single alloc to be on the safe side. 1008 */ 1009 if (unlikely(ret <= 0)) { 1010 reqs[0] = kmem_cache_alloc(req_cachep, gfp); 1011 if (!reqs[0]) 1012 return false; 1013 ret = 1; 1014 } 1015 1016 percpu_ref_get_many(&ctx->refs, ret); 1017 ctx->nr_req_allocated += ret; 1018 1019 while (ret--) { 1020 struct io_kiocb *req = reqs[ret]; 1021 1022 io_req_add_to_cache(req, ctx); 1023 } 1024 return true; 1025 } 1026 1027 __cold void io_free_req(struct io_kiocb *req) 1028 { 1029 /* refs were already put, restore them for io_req_task_complete() */ 1030 req->flags &= ~REQ_F_REFCOUNT; 1031 /* we only want to free it, don't post CQEs */ 1032 req->flags |= REQ_F_CQE_SKIP; 1033 req->io_task_work.func = io_req_task_complete; 1034 io_req_task_work_add(req); 1035 } 1036 1037 static void __io_req_find_next_prep(struct io_kiocb *req) 1038 { 1039 struct io_ring_ctx *ctx = req->ctx; 1040 1041 spin_lock(&ctx->completion_lock); 1042 io_disarm_next(req); 1043 spin_unlock(&ctx->completion_lock); 1044 } 1045 1046 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req) 1047 { 1048 struct io_kiocb *nxt; 1049 1050 /* 1051 * If LINK is set, we have dependent requests in this chain. If we 1052 * didn't fail this request, queue the first one up, moving any other 1053 * dependencies to the next request. In case of failure, fail the rest 1054 * of the chain. 1055 */ 1056 if (unlikely(req->flags & IO_DISARM_MASK)) 1057 __io_req_find_next_prep(req); 1058 nxt = req->link; 1059 req->link = NULL; 1060 return nxt; 1061 } 1062 1063 static void ctx_flush_and_put(struct io_ring_ctx *ctx, io_tw_token_t tw) 1064 { 1065 if (!ctx) 1066 return; 1067 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1068 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1069 1070 io_submit_flush_completions(ctx); 1071 mutex_unlock(&ctx->uring_lock); 1072 percpu_ref_put(&ctx->refs); 1073 } 1074 1075 /* 1076 * Run queued task_work, returning the number of entries processed in *count. 1077 * If more entries than max_entries are available, stop processing once this 1078 * is reached and return the rest of the list. 1079 */ 1080 struct llist_node *io_handle_tw_list(struct llist_node *node, 1081 unsigned int *count, 1082 unsigned int max_entries) 1083 { 1084 struct io_ring_ctx *ctx = NULL; 1085 struct io_tw_state ts = { }; 1086 1087 do { 1088 struct llist_node *next = node->next; 1089 struct io_kiocb *req = container_of(node, struct io_kiocb, 1090 io_task_work.node); 1091 1092 if (req->ctx != ctx) { 1093 ctx_flush_and_put(ctx, ts); 1094 ctx = req->ctx; 1095 mutex_lock(&ctx->uring_lock); 1096 percpu_ref_get(&ctx->refs); 1097 } 1098 INDIRECT_CALL_2(req->io_task_work.func, 1099 io_poll_task_func, io_req_rw_complete, 1100 req, ts); 1101 node = next; 1102 (*count)++; 1103 if (unlikely(need_resched())) { 1104 ctx_flush_and_put(ctx, ts); 1105 ctx = NULL; 1106 cond_resched(); 1107 } 1108 } while (node && *count < max_entries); 1109 1110 ctx_flush_and_put(ctx, ts); 1111 return node; 1112 } 1113 1114 static __cold void __io_fallback_tw(struct llist_node *node, bool sync) 1115 { 1116 struct io_ring_ctx *last_ctx = NULL; 1117 struct io_kiocb *req; 1118 1119 while (node) { 1120 req = container_of(node, struct io_kiocb, io_task_work.node); 1121 node = node->next; 1122 if (last_ctx != req->ctx) { 1123 if (last_ctx) { 1124 if (sync) 1125 flush_delayed_work(&last_ctx->fallback_work); 1126 percpu_ref_put(&last_ctx->refs); 1127 } 1128 last_ctx = req->ctx; 1129 percpu_ref_get(&last_ctx->refs); 1130 } 1131 if (llist_add(&req->io_task_work.node, &last_ctx->fallback_llist)) 1132 schedule_delayed_work(&last_ctx->fallback_work, 1); 1133 } 1134 1135 if (last_ctx) { 1136 if (sync) 1137 flush_delayed_work(&last_ctx->fallback_work); 1138 percpu_ref_put(&last_ctx->refs); 1139 } 1140 } 1141 1142 static void io_fallback_tw(struct io_uring_task *tctx, bool sync) 1143 { 1144 struct llist_node *node = llist_del_all(&tctx->task_list); 1145 1146 __io_fallback_tw(node, sync); 1147 } 1148 1149 struct llist_node *tctx_task_work_run(struct io_uring_task *tctx, 1150 unsigned int max_entries, 1151 unsigned int *count) 1152 { 1153 struct llist_node *node; 1154 1155 if (unlikely(current->flags & PF_EXITING)) { 1156 io_fallback_tw(tctx, true); 1157 return NULL; 1158 } 1159 1160 node = llist_del_all(&tctx->task_list); 1161 if (node) { 1162 node = llist_reverse_order(node); 1163 node = io_handle_tw_list(node, count, max_entries); 1164 } 1165 1166 /* relaxed read is enough as only the task itself sets ->in_cancel */ 1167 if (unlikely(atomic_read(&tctx->in_cancel))) 1168 io_uring_drop_tctx_refs(current); 1169 1170 trace_io_uring_task_work_run(tctx, *count); 1171 return node; 1172 } 1173 1174 void tctx_task_work(struct callback_head *cb) 1175 { 1176 struct io_uring_task *tctx; 1177 struct llist_node *ret; 1178 unsigned int count = 0; 1179 1180 tctx = container_of(cb, struct io_uring_task, task_work); 1181 ret = tctx_task_work_run(tctx, UINT_MAX, &count); 1182 /* can't happen */ 1183 WARN_ON_ONCE(ret); 1184 } 1185 1186 static void io_req_local_work_add(struct io_kiocb *req, unsigned flags) 1187 { 1188 struct io_ring_ctx *ctx = req->ctx; 1189 unsigned nr_wait, nr_tw, nr_tw_prev; 1190 struct llist_node *head; 1191 1192 /* See comment above IO_CQ_WAKE_INIT */ 1193 BUILD_BUG_ON(IO_CQ_WAKE_FORCE <= IORING_MAX_CQ_ENTRIES); 1194 1195 /* 1196 * We don't know how many reuqests is there in the link and whether 1197 * they can even be queued lazily, fall back to non-lazy. 1198 */ 1199 if (req->flags & IO_REQ_LINK_FLAGS) 1200 flags &= ~IOU_F_TWQ_LAZY_WAKE; 1201 1202 guard(rcu)(); 1203 1204 head = READ_ONCE(ctx->work_llist.first); 1205 do { 1206 nr_tw_prev = 0; 1207 if (head) { 1208 struct io_kiocb *first_req = container_of(head, 1209 struct io_kiocb, 1210 io_task_work.node); 1211 /* 1212 * Might be executed at any moment, rely on 1213 * SLAB_TYPESAFE_BY_RCU to keep it alive. 1214 */ 1215 nr_tw_prev = READ_ONCE(first_req->nr_tw); 1216 } 1217 1218 /* 1219 * Theoretically, it can overflow, but that's fine as one of 1220 * previous adds should've tried to wake the task. 1221 */ 1222 nr_tw = nr_tw_prev + 1; 1223 if (!(flags & IOU_F_TWQ_LAZY_WAKE)) 1224 nr_tw = IO_CQ_WAKE_FORCE; 1225 1226 req->nr_tw = nr_tw; 1227 req->io_task_work.node.next = head; 1228 } while (!try_cmpxchg(&ctx->work_llist.first, &head, 1229 &req->io_task_work.node)); 1230 1231 /* 1232 * cmpxchg implies a full barrier, which pairs with the barrier 1233 * in set_current_state() on the io_cqring_wait() side. It's used 1234 * to ensure that either we see updated ->cq_wait_nr, or waiters 1235 * going to sleep will observe the work added to the list, which 1236 * is similar to the wait/wawke task state sync. 1237 */ 1238 1239 if (!head) { 1240 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1241 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1242 if (ctx->has_evfd) 1243 io_eventfd_signal(ctx, false); 1244 } 1245 1246 nr_wait = atomic_read(&ctx->cq_wait_nr); 1247 /* not enough or no one is waiting */ 1248 if (nr_tw < nr_wait) 1249 return; 1250 /* the previous add has already woken it up */ 1251 if (nr_tw_prev >= nr_wait) 1252 return; 1253 wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE); 1254 } 1255 1256 static void io_req_normal_work_add(struct io_kiocb *req) 1257 { 1258 struct io_uring_task *tctx = req->tctx; 1259 struct io_ring_ctx *ctx = req->ctx; 1260 1261 /* task_work already pending, we're done */ 1262 if (!llist_add(&req->io_task_work.node, &tctx->task_list)) 1263 return; 1264 1265 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1266 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1267 1268 /* SQPOLL doesn't need the task_work added, it'll run it itself */ 1269 if (ctx->flags & IORING_SETUP_SQPOLL) { 1270 __set_notify_signal(tctx->task); 1271 return; 1272 } 1273 1274 if (likely(!task_work_add(tctx->task, &tctx->task_work, ctx->notify_method))) 1275 return; 1276 1277 io_fallback_tw(tctx, false); 1278 } 1279 1280 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags) 1281 { 1282 if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN) 1283 io_req_local_work_add(req, flags); 1284 else 1285 io_req_normal_work_add(req); 1286 } 1287 1288 void io_req_task_work_add_remote(struct io_kiocb *req, unsigned flags) 1289 { 1290 if (WARN_ON_ONCE(!(req->ctx->flags & IORING_SETUP_DEFER_TASKRUN))) 1291 return; 1292 __io_req_task_work_add(req, flags); 1293 } 1294 1295 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx) 1296 { 1297 struct llist_node *node = llist_del_all(&ctx->work_llist); 1298 1299 __io_fallback_tw(node, false); 1300 node = llist_del_all(&ctx->retry_llist); 1301 __io_fallback_tw(node, false); 1302 } 1303 1304 static bool io_run_local_work_continue(struct io_ring_ctx *ctx, int events, 1305 int min_events) 1306 { 1307 if (!io_local_work_pending(ctx)) 1308 return false; 1309 if (events < min_events) 1310 return true; 1311 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1312 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1313 return false; 1314 } 1315 1316 static int __io_run_local_work_loop(struct llist_node **node, 1317 io_tw_token_t tw, 1318 int events) 1319 { 1320 int ret = 0; 1321 1322 while (*node) { 1323 struct llist_node *next = (*node)->next; 1324 struct io_kiocb *req = container_of(*node, struct io_kiocb, 1325 io_task_work.node); 1326 INDIRECT_CALL_2(req->io_task_work.func, 1327 io_poll_task_func, io_req_rw_complete, 1328 req, tw); 1329 *node = next; 1330 if (++ret >= events) 1331 break; 1332 } 1333 1334 return ret; 1335 } 1336 1337 static int __io_run_local_work(struct io_ring_ctx *ctx, io_tw_token_t tw, 1338 int min_events, int max_events) 1339 { 1340 struct llist_node *node; 1341 unsigned int loops = 0; 1342 int ret = 0; 1343 1344 if (WARN_ON_ONCE(ctx->submitter_task != current)) 1345 return -EEXIST; 1346 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1347 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1348 again: 1349 min_events -= ret; 1350 ret = __io_run_local_work_loop(&ctx->retry_llist.first, tw, max_events); 1351 if (ctx->retry_llist.first) 1352 goto retry_done; 1353 1354 /* 1355 * llists are in reverse order, flip it back the right way before 1356 * running the pending items. 1357 */ 1358 node = llist_reverse_order(llist_del_all(&ctx->work_llist)); 1359 ret += __io_run_local_work_loop(&node, tw, max_events - ret); 1360 ctx->retry_llist.first = node; 1361 loops++; 1362 1363 if (io_run_local_work_continue(ctx, ret, min_events)) 1364 goto again; 1365 retry_done: 1366 io_submit_flush_completions(ctx); 1367 if (io_run_local_work_continue(ctx, ret, min_events)) 1368 goto again; 1369 1370 trace_io_uring_local_work_run(ctx, ret, loops); 1371 return ret; 1372 } 1373 1374 static inline int io_run_local_work_locked(struct io_ring_ctx *ctx, 1375 int min_events) 1376 { 1377 struct io_tw_state ts = {}; 1378 1379 if (!io_local_work_pending(ctx)) 1380 return 0; 1381 return __io_run_local_work(ctx, ts, min_events, 1382 max(IO_LOCAL_TW_DEFAULT_MAX, min_events)); 1383 } 1384 1385 static int io_run_local_work(struct io_ring_ctx *ctx, int min_events, 1386 int max_events) 1387 { 1388 struct io_tw_state ts = {}; 1389 int ret; 1390 1391 mutex_lock(&ctx->uring_lock); 1392 ret = __io_run_local_work(ctx, ts, min_events, max_events); 1393 mutex_unlock(&ctx->uring_lock); 1394 return ret; 1395 } 1396 1397 static void io_req_task_cancel(struct io_kiocb *req, io_tw_token_t tw) 1398 { 1399 io_tw_lock(req->ctx, tw); 1400 io_req_defer_failed(req, req->cqe.res); 1401 } 1402 1403 void io_req_task_submit(struct io_kiocb *req, io_tw_token_t tw) 1404 { 1405 struct io_ring_ctx *ctx = req->ctx; 1406 1407 io_tw_lock(ctx, tw); 1408 if (unlikely(io_should_terminate_tw(ctx))) 1409 io_req_defer_failed(req, -EFAULT); 1410 else if (req->flags & REQ_F_FORCE_ASYNC) 1411 io_queue_iowq(req); 1412 else 1413 io_queue_sqe(req, 0); 1414 } 1415 1416 void io_req_task_queue_fail(struct io_kiocb *req, int ret) 1417 { 1418 io_req_set_res(req, ret, 0); 1419 req->io_task_work.func = io_req_task_cancel; 1420 io_req_task_work_add(req); 1421 } 1422 1423 void io_req_task_queue(struct io_kiocb *req) 1424 { 1425 req->io_task_work.func = io_req_task_submit; 1426 io_req_task_work_add(req); 1427 } 1428 1429 void io_queue_next(struct io_kiocb *req) 1430 { 1431 struct io_kiocb *nxt = io_req_find_next(req); 1432 1433 if (nxt) 1434 io_req_task_queue(nxt); 1435 } 1436 1437 static inline void io_req_put_rsrc_nodes(struct io_kiocb *req) 1438 { 1439 if (req->file_node) { 1440 io_put_rsrc_node(req->ctx, req->file_node); 1441 req->file_node = NULL; 1442 } 1443 if (req->flags & REQ_F_BUF_NODE) 1444 io_put_rsrc_node(req->ctx, req->buf_node); 1445 } 1446 1447 static void io_free_batch_list(struct io_ring_ctx *ctx, 1448 struct io_wq_work_node *node) 1449 __must_hold(&ctx->uring_lock) 1450 { 1451 do { 1452 struct io_kiocb *req = container_of(node, struct io_kiocb, 1453 comp_list); 1454 1455 if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) { 1456 if (req->flags & REQ_F_REISSUE) { 1457 node = req->comp_list.next; 1458 req->flags &= ~REQ_F_REISSUE; 1459 io_queue_iowq(req); 1460 continue; 1461 } 1462 if (req->flags & REQ_F_REFCOUNT) { 1463 node = req->comp_list.next; 1464 if (!req_ref_put_and_test(req)) 1465 continue; 1466 } 1467 if ((req->flags & REQ_F_POLLED) && req->apoll) { 1468 struct async_poll *apoll = req->apoll; 1469 1470 if (apoll->double_poll) 1471 kfree(apoll->double_poll); 1472 io_cache_free(&ctx->apoll_cache, apoll); 1473 req->flags &= ~REQ_F_POLLED; 1474 } 1475 if (req->flags & IO_REQ_LINK_FLAGS) 1476 io_queue_next(req); 1477 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS)) 1478 io_clean_op(req); 1479 } 1480 io_put_file(req); 1481 io_req_put_rsrc_nodes(req); 1482 io_put_task(req); 1483 1484 node = req->comp_list.next; 1485 io_req_add_to_cache(req, ctx); 1486 } while (node); 1487 } 1488 1489 void __io_submit_flush_completions(struct io_ring_ctx *ctx) 1490 __must_hold(&ctx->uring_lock) 1491 { 1492 struct io_submit_state *state = &ctx->submit_state; 1493 struct io_wq_work_node *node; 1494 1495 __io_cq_lock(ctx); 1496 __wq_list_for_each(node, &state->compl_reqs) { 1497 struct io_kiocb *req = container_of(node, struct io_kiocb, 1498 comp_list); 1499 1500 /* 1501 * Requests marked with REQUEUE should not post a CQE, they 1502 * will go through the io-wq retry machinery and post one 1503 * later. 1504 */ 1505 if (!(req->flags & (REQ_F_CQE_SKIP | REQ_F_REISSUE)) && 1506 unlikely(!io_fill_cqe_req(ctx, req))) { 1507 if (ctx->lockless_cq) 1508 io_cqe_overflow(ctx, &req->cqe, &req->big_cqe); 1509 else 1510 io_cqe_overflow_locked(ctx, &req->cqe, &req->big_cqe); 1511 } 1512 } 1513 __io_cq_unlock_post(ctx); 1514 1515 if (!wq_list_empty(&state->compl_reqs)) { 1516 io_free_batch_list(ctx, state->compl_reqs.first); 1517 INIT_WQ_LIST(&state->compl_reqs); 1518 } 1519 1520 if (unlikely(ctx->drain_active)) 1521 io_queue_deferred(ctx); 1522 1523 ctx->submit_state.cq_flush = false; 1524 } 1525 1526 static unsigned io_cqring_events(struct io_ring_ctx *ctx) 1527 { 1528 /* See comment at the top of this file */ 1529 smp_rmb(); 1530 return __io_cqring_events(ctx); 1531 } 1532 1533 /* 1534 * We can't just wait for polled events to come to us, we have to actively 1535 * find and complete them. 1536 */ 1537 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx) 1538 { 1539 if (!(ctx->flags & IORING_SETUP_IOPOLL)) 1540 return; 1541 1542 mutex_lock(&ctx->uring_lock); 1543 while (!wq_list_empty(&ctx->iopoll_list)) { 1544 /* let it sleep and repeat later if can't complete a request */ 1545 if (io_do_iopoll(ctx, true) == 0) 1546 break; 1547 /* 1548 * Ensure we allow local-to-the-cpu processing to take place, 1549 * in this case we need to ensure that we reap all events. 1550 * Also let task_work, etc. to progress by releasing the mutex 1551 */ 1552 if (need_resched()) { 1553 mutex_unlock(&ctx->uring_lock); 1554 cond_resched(); 1555 mutex_lock(&ctx->uring_lock); 1556 } 1557 } 1558 mutex_unlock(&ctx->uring_lock); 1559 1560 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 1561 io_move_task_work_from_local(ctx); 1562 } 1563 1564 static int io_iopoll_check(struct io_ring_ctx *ctx, unsigned int min_events) 1565 { 1566 unsigned int nr_events = 0; 1567 unsigned long check_cq; 1568 1569 min_events = min(min_events, ctx->cq_entries); 1570 1571 lockdep_assert_held(&ctx->uring_lock); 1572 1573 if (!io_allowed_run_tw(ctx)) 1574 return -EEXIST; 1575 1576 check_cq = READ_ONCE(ctx->check_cq); 1577 if (unlikely(check_cq)) { 1578 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 1579 __io_cqring_overflow_flush(ctx, false); 1580 /* 1581 * Similarly do not spin if we have not informed the user of any 1582 * dropped CQE. 1583 */ 1584 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) 1585 return -EBADR; 1586 } 1587 /* 1588 * Don't enter poll loop if we already have events pending. 1589 * If we do, we can potentially be spinning for commands that 1590 * already triggered a CQE (eg in error). 1591 */ 1592 if (io_cqring_events(ctx)) 1593 return 0; 1594 1595 do { 1596 int ret = 0; 1597 1598 /* 1599 * If a submit got punted to a workqueue, we can have the 1600 * application entering polling for a command before it gets 1601 * issued. That app will hold the uring_lock for the duration 1602 * of the poll right here, so we need to take a breather every 1603 * now and then to ensure that the issue has a chance to add 1604 * the poll to the issued list. Otherwise we can spin here 1605 * forever, while the workqueue is stuck trying to acquire the 1606 * very same mutex. 1607 */ 1608 if (wq_list_empty(&ctx->iopoll_list) || 1609 io_task_work_pending(ctx)) { 1610 u32 tail = ctx->cached_cq_tail; 1611 1612 (void) io_run_local_work_locked(ctx, min_events); 1613 1614 if (task_work_pending(current) || 1615 wq_list_empty(&ctx->iopoll_list)) { 1616 mutex_unlock(&ctx->uring_lock); 1617 io_run_task_work(); 1618 mutex_lock(&ctx->uring_lock); 1619 } 1620 /* some requests don't go through iopoll_list */ 1621 if (tail != ctx->cached_cq_tail || 1622 wq_list_empty(&ctx->iopoll_list)) 1623 break; 1624 } 1625 ret = io_do_iopoll(ctx, !min_events); 1626 if (unlikely(ret < 0)) 1627 return ret; 1628 1629 if (task_sigpending(current)) 1630 return -EINTR; 1631 if (need_resched()) 1632 break; 1633 1634 nr_events += ret; 1635 } while (nr_events < min_events); 1636 1637 return 0; 1638 } 1639 1640 void io_req_task_complete(struct io_kiocb *req, io_tw_token_t tw) 1641 { 1642 io_req_complete_defer(req); 1643 } 1644 1645 /* 1646 * After the iocb has been issued, it's safe to be found on the poll list. 1647 * Adding the kiocb to the list AFTER submission ensures that we don't 1648 * find it from a io_do_iopoll() thread before the issuer is done 1649 * accessing the kiocb cookie. 1650 */ 1651 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags) 1652 { 1653 struct io_ring_ctx *ctx = req->ctx; 1654 const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED; 1655 1656 /* workqueue context doesn't hold uring_lock, grab it now */ 1657 if (unlikely(needs_lock)) 1658 mutex_lock(&ctx->uring_lock); 1659 1660 /* 1661 * Track whether we have multiple files in our lists. This will impact 1662 * how we do polling eventually, not spinning if we're on potentially 1663 * different devices. 1664 */ 1665 if (wq_list_empty(&ctx->iopoll_list)) { 1666 ctx->poll_multi_queue = false; 1667 } else if (!ctx->poll_multi_queue) { 1668 struct io_kiocb *list_req; 1669 1670 list_req = container_of(ctx->iopoll_list.first, struct io_kiocb, 1671 comp_list); 1672 if (list_req->file != req->file) 1673 ctx->poll_multi_queue = true; 1674 } 1675 1676 /* 1677 * For fast devices, IO may have already completed. If it has, add 1678 * it to the front so we find it first. 1679 */ 1680 if (READ_ONCE(req->iopoll_completed)) 1681 wq_list_add_head(&req->comp_list, &ctx->iopoll_list); 1682 else 1683 wq_list_add_tail(&req->comp_list, &ctx->iopoll_list); 1684 1685 if (unlikely(needs_lock)) { 1686 /* 1687 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle 1688 * in sq thread task context or in io worker task context. If 1689 * current task context is sq thread, we don't need to check 1690 * whether should wake up sq thread. 1691 */ 1692 if ((ctx->flags & IORING_SETUP_SQPOLL) && 1693 wq_has_sleeper(&ctx->sq_data->wait)) 1694 wake_up(&ctx->sq_data->wait); 1695 1696 mutex_unlock(&ctx->uring_lock); 1697 } 1698 } 1699 1700 io_req_flags_t io_file_get_flags(struct file *file) 1701 { 1702 io_req_flags_t res = 0; 1703 1704 BUILD_BUG_ON(REQ_F_ISREG_BIT != REQ_F_SUPPORT_NOWAIT_BIT + 1); 1705 1706 if (S_ISREG(file_inode(file)->i_mode)) 1707 res |= REQ_F_ISREG; 1708 if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT)) 1709 res |= REQ_F_SUPPORT_NOWAIT; 1710 return res; 1711 } 1712 1713 static __cold void io_drain_req(struct io_kiocb *req) 1714 __must_hold(&ctx->uring_lock) 1715 { 1716 struct io_ring_ctx *ctx = req->ctx; 1717 bool drain = req->flags & IOSQE_IO_DRAIN; 1718 struct io_defer_entry *de; 1719 1720 de = kmalloc(sizeof(*de), GFP_KERNEL_ACCOUNT); 1721 if (!de) { 1722 io_req_defer_failed(req, -ENOMEM); 1723 return; 1724 } 1725 1726 io_prep_async_link(req); 1727 trace_io_uring_defer(req); 1728 de->req = req; 1729 1730 ctx->nr_drained += io_linked_nr(req); 1731 list_add_tail(&de->list, &ctx->defer_list); 1732 io_queue_deferred(ctx); 1733 if (!drain && list_empty(&ctx->defer_list)) 1734 ctx->drain_active = false; 1735 } 1736 1737 static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def, 1738 unsigned int issue_flags) 1739 { 1740 if (req->file || !def->needs_file) 1741 return true; 1742 1743 if (req->flags & REQ_F_FIXED_FILE) 1744 req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags); 1745 else 1746 req->file = io_file_get_normal(req, req->cqe.fd); 1747 1748 return !!req->file; 1749 } 1750 1751 #define REQ_ISSUE_SLOW_FLAGS (REQ_F_CREDS | REQ_F_ARM_LTIMEOUT) 1752 1753 static inline int __io_issue_sqe(struct io_kiocb *req, 1754 unsigned int issue_flags, 1755 const struct io_issue_def *def) 1756 { 1757 const struct cred *creds = NULL; 1758 struct io_kiocb *link = NULL; 1759 int ret; 1760 1761 if (unlikely(req->flags & REQ_ISSUE_SLOW_FLAGS)) { 1762 if ((req->flags & REQ_F_CREDS) && req->creds != current_cred()) 1763 creds = override_creds(req->creds); 1764 if (req->flags & REQ_F_ARM_LTIMEOUT) 1765 link = __io_prep_linked_timeout(req); 1766 } 1767 1768 if (!def->audit_skip) 1769 audit_uring_entry(req->opcode); 1770 1771 ret = def->issue(req, issue_flags); 1772 1773 if (!def->audit_skip) 1774 audit_uring_exit(!ret, ret); 1775 1776 if (unlikely(creds || link)) { 1777 if (creds) 1778 revert_creds(creds); 1779 if (link) 1780 io_queue_linked_timeout(link); 1781 } 1782 1783 return ret; 1784 } 1785 1786 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags) 1787 { 1788 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1789 int ret; 1790 1791 if (unlikely(!io_assign_file(req, def, issue_flags))) 1792 return -EBADF; 1793 1794 ret = __io_issue_sqe(req, issue_flags, def); 1795 1796 if (ret == IOU_COMPLETE) { 1797 if (issue_flags & IO_URING_F_COMPLETE_DEFER) 1798 io_req_complete_defer(req); 1799 else 1800 io_req_complete_post(req, issue_flags); 1801 1802 return 0; 1803 } 1804 1805 if (ret == IOU_ISSUE_SKIP_COMPLETE) { 1806 ret = 0; 1807 1808 /* If the op doesn't have a file, we're not polling for it */ 1809 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue) 1810 io_iopoll_req_issued(req, issue_flags); 1811 } 1812 return ret; 1813 } 1814 1815 int io_poll_issue(struct io_kiocb *req, io_tw_token_t tw) 1816 { 1817 const unsigned int issue_flags = IO_URING_F_NONBLOCK | 1818 IO_URING_F_MULTISHOT | 1819 IO_URING_F_COMPLETE_DEFER; 1820 int ret; 1821 1822 io_tw_lock(req->ctx, tw); 1823 1824 WARN_ON_ONCE(!req->file); 1825 if (WARN_ON_ONCE(req->ctx->flags & IORING_SETUP_IOPOLL)) 1826 return -EFAULT; 1827 1828 ret = __io_issue_sqe(req, issue_flags, &io_issue_defs[req->opcode]); 1829 1830 WARN_ON_ONCE(ret == IOU_ISSUE_SKIP_COMPLETE); 1831 return ret; 1832 } 1833 1834 struct io_wq_work *io_wq_free_work(struct io_wq_work *work) 1835 { 1836 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1837 struct io_kiocb *nxt = NULL; 1838 1839 if (req_ref_put_and_test_atomic(req)) { 1840 if (req->flags & IO_REQ_LINK_FLAGS) 1841 nxt = io_req_find_next(req); 1842 io_free_req(req); 1843 } 1844 return nxt ? &nxt->work : NULL; 1845 } 1846 1847 void io_wq_submit_work(struct io_wq_work *work) 1848 { 1849 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1850 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1851 unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ; 1852 bool needs_poll = false; 1853 int ret = 0, err = -ECANCELED; 1854 1855 /* one will be dropped by io_wq_free_work() after returning to io-wq */ 1856 if (!(req->flags & REQ_F_REFCOUNT)) 1857 __io_req_set_refcount(req, 2); 1858 else 1859 req_ref_get(req); 1860 1861 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */ 1862 if (atomic_read(&work->flags) & IO_WQ_WORK_CANCEL) { 1863 fail: 1864 io_req_task_queue_fail(req, err); 1865 return; 1866 } 1867 if (!io_assign_file(req, def, issue_flags)) { 1868 err = -EBADF; 1869 atomic_or(IO_WQ_WORK_CANCEL, &work->flags); 1870 goto fail; 1871 } 1872 1873 /* 1874 * If DEFER_TASKRUN is set, it's only allowed to post CQEs from the 1875 * submitter task context. Final request completions are handed to the 1876 * right context, however this is not the case of auxiliary CQEs, 1877 * which is the main mean of operation for multishot requests. 1878 * Don't allow any multishot execution from io-wq. It's more restrictive 1879 * than necessary and also cleaner. 1880 */ 1881 if (req->flags & (REQ_F_MULTISHOT|REQ_F_APOLL_MULTISHOT)) { 1882 err = -EBADFD; 1883 if (!io_file_can_poll(req)) 1884 goto fail; 1885 if (req->file->f_flags & O_NONBLOCK || 1886 req->file->f_mode & FMODE_NOWAIT) { 1887 err = -ECANCELED; 1888 if (io_arm_poll_handler(req, issue_flags) != IO_APOLL_OK) 1889 goto fail; 1890 return; 1891 } else { 1892 req->flags &= ~(REQ_F_APOLL_MULTISHOT|REQ_F_MULTISHOT); 1893 } 1894 } 1895 1896 if (req->flags & REQ_F_FORCE_ASYNC) { 1897 bool opcode_poll = def->pollin || def->pollout; 1898 1899 if (opcode_poll && io_file_can_poll(req)) { 1900 needs_poll = true; 1901 issue_flags |= IO_URING_F_NONBLOCK; 1902 } 1903 } 1904 1905 do { 1906 ret = io_issue_sqe(req, issue_flags); 1907 if (ret != -EAGAIN) 1908 break; 1909 1910 /* 1911 * If REQ_F_NOWAIT is set, then don't wait or retry with 1912 * poll. -EAGAIN is final for that case. 1913 */ 1914 if (req->flags & REQ_F_NOWAIT) 1915 break; 1916 1917 /* 1918 * We can get EAGAIN for iopolled IO even though we're 1919 * forcing a sync submission from here, since we can't 1920 * wait for request slots on the block side. 1921 */ 1922 if (!needs_poll) { 1923 if (!(req->ctx->flags & IORING_SETUP_IOPOLL)) 1924 break; 1925 if (io_wq_worker_stopped()) 1926 break; 1927 cond_resched(); 1928 continue; 1929 } 1930 1931 if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK) 1932 return; 1933 /* aborted or ready, in either case retry blocking */ 1934 needs_poll = false; 1935 issue_flags &= ~IO_URING_F_NONBLOCK; 1936 } while (1); 1937 1938 /* avoid locking problems by failing it from a clean context */ 1939 if (ret) 1940 io_req_task_queue_fail(req, ret); 1941 } 1942 1943 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd, 1944 unsigned int issue_flags) 1945 { 1946 struct io_ring_ctx *ctx = req->ctx; 1947 struct io_rsrc_node *node; 1948 struct file *file = NULL; 1949 1950 io_ring_submit_lock(ctx, issue_flags); 1951 node = io_rsrc_node_lookup(&ctx->file_table.data, fd); 1952 if (node) { 1953 node->refs++; 1954 req->file_node = node; 1955 req->flags |= io_slot_flags(node); 1956 file = io_slot_file(node); 1957 } 1958 io_ring_submit_unlock(ctx, issue_flags); 1959 return file; 1960 } 1961 1962 struct file *io_file_get_normal(struct io_kiocb *req, int fd) 1963 { 1964 struct file *file = fget(fd); 1965 1966 trace_io_uring_file_get(req, fd); 1967 1968 /* we don't allow fixed io_uring files */ 1969 if (file && io_is_uring_fops(file)) 1970 io_req_track_inflight(req); 1971 return file; 1972 } 1973 1974 static int io_req_sqe_copy(struct io_kiocb *req, unsigned int issue_flags) 1975 { 1976 const struct io_cold_def *def = &io_cold_defs[req->opcode]; 1977 1978 if (req->flags & REQ_F_SQE_COPIED) 1979 return 0; 1980 req->flags |= REQ_F_SQE_COPIED; 1981 if (!def->sqe_copy) 1982 return 0; 1983 if (WARN_ON_ONCE(!(issue_flags & IO_URING_F_INLINE))) 1984 return -EFAULT; 1985 def->sqe_copy(req); 1986 return 0; 1987 } 1988 1989 static void io_queue_async(struct io_kiocb *req, unsigned int issue_flags, int ret) 1990 __must_hold(&req->ctx->uring_lock) 1991 { 1992 if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) { 1993 fail: 1994 io_req_defer_failed(req, ret); 1995 return; 1996 } 1997 1998 ret = io_req_sqe_copy(req, issue_flags); 1999 if (unlikely(ret)) 2000 goto fail; 2001 2002 switch (io_arm_poll_handler(req, 0)) { 2003 case IO_APOLL_READY: 2004 io_kbuf_recycle(req, 0); 2005 io_req_task_queue(req); 2006 break; 2007 case IO_APOLL_ABORTED: 2008 io_kbuf_recycle(req, 0); 2009 io_queue_iowq(req); 2010 break; 2011 case IO_APOLL_OK: 2012 break; 2013 } 2014 } 2015 2016 static inline void io_queue_sqe(struct io_kiocb *req, unsigned int extra_flags) 2017 __must_hold(&req->ctx->uring_lock) 2018 { 2019 unsigned int issue_flags = IO_URING_F_NONBLOCK | 2020 IO_URING_F_COMPLETE_DEFER | extra_flags; 2021 int ret; 2022 2023 ret = io_issue_sqe(req, issue_flags); 2024 2025 /* 2026 * We async punt it if the file wasn't marked NOWAIT, or if the file 2027 * doesn't support non-blocking read/write attempts 2028 */ 2029 if (unlikely(ret)) 2030 io_queue_async(req, issue_flags, ret); 2031 } 2032 2033 static void io_queue_sqe_fallback(struct io_kiocb *req) 2034 __must_hold(&req->ctx->uring_lock) 2035 { 2036 if (unlikely(req->flags & REQ_F_FAIL)) { 2037 /* 2038 * We don't submit, fail them all, for that replace hardlinks 2039 * with normal links. Extra REQ_F_LINK is tolerated. 2040 */ 2041 req->flags &= ~REQ_F_HARDLINK; 2042 req->flags |= REQ_F_LINK; 2043 io_req_defer_failed(req, req->cqe.res); 2044 } else { 2045 /* can't fail with IO_URING_F_INLINE */ 2046 io_req_sqe_copy(req, IO_URING_F_INLINE); 2047 if (unlikely(req->ctx->drain_active)) 2048 io_drain_req(req); 2049 else 2050 io_queue_iowq(req); 2051 } 2052 } 2053 2054 /* 2055 * Check SQE restrictions (opcode and flags). 2056 * 2057 * Returns 'true' if SQE is allowed, 'false' otherwise. 2058 */ 2059 static inline bool io_check_restriction(struct io_ring_ctx *ctx, 2060 struct io_kiocb *req, 2061 unsigned int sqe_flags) 2062 { 2063 if (!test_bit(req->opcode, ctx->restrictions.sqe_op)) 2064 return false; 2065 2066 if ((sqe_flags & ctx->restrictions.sqe_flags_required) != 2067 ctx->restrictions.sqe_flags_required) 2068 return false; 2069 2070 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed | 2071 ctx->restrictions.sqe_flags_required)) 2072 return false; 2073 2074 return true; 2075 } 2076 2077 static void io_init_drain(struct io_ring_ctx *ctx) 2078 { 2079 struct io_kiocb *head = ctx->submit_state.link.head; 2080 2081 ctx->drain_active = true; 2082 if (head) { 2083 /* 2084 * If we need to drain a request in the middle of a link, drain 2085 * the head request and the next request/link after the current 2086 * link. Considering sequential execution of links, 2087 * REQ_F_IO_DRAIN will be maintained for every request of our 2088 * link. 2089 */ 2090 head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 2091 ctx->drain_next = true; 2092 } 2093 } 2094 2095 static __cold int io_init_fail_req(struct io_kiocb *req, int err) 2096 { 2097 /* ensure per-opcode data is cleared if we fail before prep */ 2098 memset(&req->cmd.data, 0, sizeof(req->cmd.data)); 2099 return err; 2100 } 2101 2102 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req, 2103 const struct io_uring_sqe *sqe) 2104 __must_hold(&ctx->uring_lock) 2105 { 2106 const struct io_issue_def *def; 2107 unsigned int sqe_flags; 2108 int personality; 2109 u8 opcode; 2110 2111 req->ctx = ctx; 2112 req->opcode = opcode = READ_ONCE(sqe->opcode); 2113 /* same numerical values with corresponding REQ_F_*, safe to copy */ 2114 sqe_flags = READ_ONCE(sqe->flags); 2115 req->flags = (__force io_req_flags_t) sqe_flags; 2116 req->cqe.user_data = READ_ONCE(sqe->user_data); 2117 req->file = NULL; 2118 req->tctx = current->io_uring; 2119 req->cancel_seq_set = false; 2120 req->async_data = NULL; 2121 2122 if (unlikely(opcode >= IORING_OP_LAST)) { 2123 req->opcode = 0; 2124 return io_init_fail_req(req, -EINVAL); 2125 } 2126 opcode = array_index_nospec(opcode, IORING_OP_LAST); 2127 2128 def = &io_issue_defs[opcode]; 2129 if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) { 2130 /* enforce forwards compatibility on users */ 2131 if (sqe_flags & ~SQE_VALID_FLAGS) 2132 return io_init_fail_req(req, -EINVAL); 2133 if (sqe_flags & IOSQE_BUFFER_SELECT) { 2134 if (!def->buffer_select) 2135 return io_init_fail_req(req, -EOPNOTSUPP); 2136 req->buf_index = READ_ONCE(sqe->buf_group); 2137 } 2138 if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS) 2139 ctx->drain_disabled = true; 2140 if (sqe_flags & IOSQE_IO_DRAIN) { 2141 if (ctx->drain_disabled) 2142 return io_init_fail_req(req, -EOPNOTSUPP); 2143 io_init_drain(ctx); 2144 } 2145 } 2146 if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) { 2147 if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags)) 2148 return io_init_fail_req(req, -EACCES); 2149 /* knock it to the slow queue path, will be drained there */ 2150 if (ctx->drain_active) 2151 req->flags |= REQ_F_FORCE_ASYNC; 2152 /* if there is no link, we're at "next" request and need to drain */ 2153 if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) { 2154 ctx->drain_next = false; 2155 ctx->drain_active = true; 2156 req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 2157 } 2158 } 2159 2160 if (!def->ioprio && sqe->ioprio) 2161 return io_init_fail_req(req, -EINVAL); 2162 if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL)) 2163 return io_init_fail_req(req, -EINVAL); 2164 2165 if (def->needs_file) { 2166 struct io_submit_state *state = &ctx->submit_state; 2167 2168 req->cqe.fd = READ_ONCE(sqe->fd); 2169 2170 /* 2171 * Plug now if we have more than 2 IO left after this, and the 2172 * target is potentially a read/write to block based storage. 2173 */ 2174 if (state->need_plug && def->plug) { 2175 state->plug_started = true; 2176 state->need_plug = false; 2177 blk_start_plug_nr_ios(&state->plug, state->submit_nr); 2178 } 2179 } 2180 2181 personality = READ_ONCE(sqe->personality); 2182 if (personality) { 2183 int ret; 2184 2185 req->creds = xa_load(&ctx->personalities, personality); 2186 if (!req->creds) 2187 return io_init_fail_req(req, -EINVAL); 2188 get_cred(req->creds); 2189 ret = security_uring_override_creds(req->creds); 2190 if (ret) { 2191 put_cred(req->creds); 2192 return io_init_fail_req(req, ret); 2193 } 2194 req->flags |= REQ_F_CREDS; 2195 } 2196 2197 return def->prep(req, sqe); 2198 } 2199 2200 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe, 2201 struct io_kiocb *req, int ret) 2202 { 2203 struct io_ring_ctx *ctx = req->ctx; 2204 struct io_submit_link *link = &ctx->submit_state.link; 2205 struct io_kiocb *head = link->head; 2206 2207 trace_io_uring_req_failed(sqe, req, ret); 2208 2209 /* 2210 * Avoid breaking links in the middle as it renders links with SQPOLL 2211 * unusable. Instead of failing eagerly, continue assembling the link if 2212 * applicable and mark the head with REQ_F_FAIL. The link flushing code 2213 * should find the flag and handle the rest. 2214 */ 2215 req_fail_link_node(req, ret); 2216 if (head && !(head->flags & REQ_F_FAIL)) 2217 req_fail_link_node(head, -ECANCELED); 2218 2219 if (!(req->flags & IO_REQ_LINK_FLAGS)) { 2220 if (head) { 2221 link->last->link = req; 2222 link->head = NULL; 2223 req = head; 2224 } 2225 io_queue_sqe_fallback(req); 2226 return ret; 2227 } 2228 2229 if (head) 2230 link->last->link = req; 2231 else 2232 link->head = req; 2233 link->last = req; 2234 return 0; 2235 } 2236 2237 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req, 2238 const struct io_uring_sqe *sqe) 2239 __must_hold(&ctx->uring_lock) 2240 { 2241 struct io_submit_link *link = &ctx->submit_state.link; 2242 int ret; 2243 2244 ret = io_init_req(ctx, req, sqe); 2245 if (unlikely(ret)) 2246 return io_submit_fail_init(sqe, req, ret); 2247 2248 trace_io_uring_submit_req(req); 2249 2250 /* 2251 * If we already have a head request, queue this one for async 2252 * submittal once the head completes. If we don't have a head but 2253 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be 2254 * submitted sync once the chain is complete. If none of those 2255 * conditions are true (normal request), then just queue it. 2256 */ 2257 if (unlikely(link->head)) { 2258 trace_io_uring_link(req, link->last); 2259 io_req_sqe_copy(req, IO_URING_F_INLINE); 2260 link->last->link = req; 2261 link->last = req; 2262 2263 if (req->flags & IO_REQ_LINK_FLAGS) 2264 return 0; 2265 /* last request of the link, flush it */ 2266 req = link->head; 2267 link->head = NULL; 2268 if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL)) 2269 goto fallback; 2270 2271 } else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS | 2272 REQ_F_FORCE_ASYNC | REQ_F_FAIL))) { 2273 if (req->flags & IO_REQ_LINK_FLAGS) { 2274 link->head = req; 2275 link->last = req; 2276 } else { 2277 fallback: 2278 io_queue_sqe_fallback(req); 2279 } 2280 return 0; 2281 } 2282 2283 io_queue_sqe(req, IO_URING_F_INLINE); 2284 return 0; 2285 } 2286 2287 /* 2288 * Batched submission is done, ensure local IO is flushed out. 2289 */ 2290 static void io_submit_state_end(struct io_ring_ctx *ctx) 2291 { 2292 struct io_submit_state *state = &ctx->submit_state; 2293 2294 if (unlikely(state->link.head)) 2295 io_queue_sqe_fallback(state->link.head); 2296 /* flush only after queuing links as they can generate completions */ 2297 io_submit_flush_completions(ctx); 2298 if (state->plug_started) 2299 blk_finish_plug(&state->plug); 2300 } 2301 2302 /* 2303 * Start submission side cache. 2304 */ 2305 static void io_submit_state_start(struct io_submit_state *state, 2306 unsigned int max_ios) 2307 { 2308 state->plug_started = false; 2309 state->need_plug = max_ios > 2; 2310 state->submit_nr = max_ios; 2311 /* set only head, no need to init link_last in advance */ 2312 state->link.head = NULL; 2313 } 2314 2315 static void io_commit_sqring(struct io_ring_ctx *ctx) 2316 { 2317 struct io_rings *rings = ctx->rings; 2318 2319 /* 2320 * Ensure any loads from the SQEs are done at this point, 2321 * since once we write the new head, the application could 2322 * write new data to them. 2323 */ 2324 smp_store_release(&rings->sq.head, ctx->cached_sq_head); 2325 } 2326 2327 /* 2328 * Fetch an sqe, if one is available. Note this returns a pointer to memory 2329 * that is mapped by userspace. This means that care needs to be taken to 2330 * ensure that reads are stable, as we cannot rely on userspace always 2331 * being a good citizen. If members of the sqe are validated and then later 2332 * used, it's important that those reads are done through READ_ONCE() to 2333 * prevent a re-load down the line. 2334 */ 2335 static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe) 2336 { 2337 unsigned mask = ctx->sq_entries - 1; 2338 unsigned head = ctx->cached_sq_head++ & mask; 2339 2340 if (static_branch_unlikely(&io_key_has_sqarray) && 2341 (!(ctx->flags & IORING_SETUP_NO_SQARRAY))) { 2342 head = READ_ONCE(ctx->sq_array[head]); 2343 if (unlikely(head >= ctx->sq_entries)) { 2344 WRITE_ONCE(ctx->rings->sq_dropped, 2345 READ_ONCE(ctx->rings->sq_dropped) + 1); 2346 return false; 2347 } 2348 head = array_index_nospec(head, ctx->sq_entries); 2349 } 2350 2351 /* 2352 * The cached sq head (or cq tail) serves two purposes: 2353 * 2354 * 1) allows us to batch the cost of updating the user visible 2355 * head updates. 2356 * 2) allows the kernel side to track the head on its own, even 2357 * though the application is the one updating it. 2358 */ 2359 2360 /* double index for 128-byte SQEs, twice as long */ 2361 if (ctx->flags & IORING_SETUP_SQE128) 2362 head <<= 1; 2363 *sqe = &ctx->sq_sqes[head]; 2364 return true; 2365 } 2366 2367 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr) 2368 __must_hold(&ctx->uring_lock) 2369 { 2370 unsigned int entries = io_sqring_entries(ctx); 2371 unsigned int left; 2372 int ret; 2373 2374 if (unlikely(!entries)) 2375 return 0; 2376 /* make sure SQ entry isn't read before tail */ 2377 ret = left = min(nr, entries); 2378 io_get_task_refs(left); 2379 io_submit_state_start(&ctx->submit_state, left); 2380 2381 do { 2382 const struct io_uring_sqe *sqe; 2383 struct io_kiocb *req; 2384 2385 if (unlikely(!io_alloc_req(ctx, &req))) 2386 break; 2387 if (unlikely(!io_get_sqe(ctx, &sqe))) { 2388 io_req_add_to_cache(req, ctx); 2389 break; 2390 } 2391 2392 /* 2393 * Continue submitting even for sqe failure if the 2394 * ring was setup with IORING_SETUP_SUBMIT_ALL 2395 */ 2396 if (unlikely(io_submit_sqe(ctx, req, sqe)) && 2397 !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) { 2398 left--; 2399 break; 2400 } 2401 } while (--left); 2402 2403 if (unlikely(left)) { 2404 ret -= left; 2405 /* try again if it submitted nothing and can't allocate a req */ 2406 if (!ret && io_req_cache_empty(ctx)) 2407 ret = -EAGAIN; 2408 current->io_uring->cached_refs += left; 2409 } 2410 2411 io_submit_state_end(ctx); 2412 /* Commit SQ ring head once we've consumed and submitted all SQEs */ 2413 io_commit_sqring(ctx); 2414 return ret; 2415 } 2416 2417 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode, 2418 int wake_flags, void *key) 2419 { 2420 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq); 2421 2422 /* 2423 * Cannot safely flush overflowed CQEs from here, ensure we wake up 2424 * the task, and the next invocation will do it. 2425 */ 2426 if (io_should_wake(iowq) || io_has_work(iowq->ctx)) 2427 return autoremove_wake_function(curr, mode, wake_flags, key); 2428 return -1; 2429 } 2430 2431 int io_run_task_work_sig(struct io_ring_ctx *ctx) 2432 { 2433 if (io_local_work_pending(ctx)) { 2434 __set_current_state(TASK_RUNNING); 2435 if (io_run_local_work(ctx, INT_MAX, IO_LOCAL_TW_DEFAULT_MAX) > 0) 2436 return 0; 2437 } 2438 if (io_run_task_work() > 0) 2439 return 0; 2440 if (task_sigpending(current)) 2441 return -EINTR; 2442 return 0; 2443 } 2444 2445 static bool current_pending_io(void) 2446 { 2447 struct io_uring_task *tctx = current->io_uring; 2448 2449 if (!tctx) 2450 return false; 2451 return percpu_counter_read_positive(&tctx->inflight); 2452 } 2453 2454 static enum hrtimer_restart io_cqring_timer_wakeup(struct hrtimer *timer) 2455 { 2456 struct io_wait_queue *iowq = container_of(timer, struct io_wait_queue, t); 2457 2458 WRITE_ONCE(iowq->hit_timeout, 1); 2459 iowq->min_timeout = 0; 2460 wake_up_process(iowq->wq.private); 2461 return HRTIMER_NORESTART; 2462 } 2463 2464 /* 2465 * Doing min_timeout portion. If we saw any timeouts, events, or have work, 2466 * wake up. If not, and we have a normal timeout, switch to that and keep 2467 * sleeping. 2468 */ 2469 static enum hrtimer_restart io_cqring_min_timer_wakeup(struct hrtimer *timer) 2470 { 2471 struct io_wait_queue *iowq = container_of(timer, struct io_wait_queue, t); 2472 struct io_ring_ctx *ctx = iowq->ctx; 2473 2474 /* no general timeout, or shorter (or equal), we are done */ 2475 if (iowq->timeout == KTIME_MAX || 2476 ktime_compare(iowq->min_timeout, iowq->timeout) >= 0) 2477 goto out_wake; 2478 /* work we may need to run, wake function will see if we need to wake */ 2479 if (io_has_work(ctx)) 2480 goto out_wake; 2481 /* got events since we started waiting, min timeout is done */ 2482 if (iowq->cq_min_tail != READ_ONCE(ctx->rings->cq.tail)) 2483 goto out_wake; 2484 /* if we have any events and min timeout expired, we're done */ 2485 if (io_cqring_events(ctx)) 2486 goto out_wake; 2487 2488 /* 2489 * If using deferred task_work running and application is waiting on 2490 * more than one request, ensure we reset it now where we are switching 2491 * to normal sleeps. Any request completion post min_wait should wake 2492 * the task and return. 2493 */ 2494 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 2495 atomic_set(&ctx->cq_wait_nr, 1); 2496 smp_mb(); 2497 if (!llist_empty(&ctx->work_llist)) 2498 goto out_wake; 2499 } 2500 2501 hrtimer_update_function(&iowq->t, io_cqring_timer_wakeup); 2502 hrtimer_set_expires(timer, iowq->timeout); 2503 return HRTIMER_RESTART; 2504 out_wake: 2505 return io_cqring_timer_wakeup(timer); 2506 } 2507 2508 static int io_cqring_schedule_timeout(struct io_wait_queue *iowq, 2509 clockid_t clock_id, ktime_t start_time) 2510 { 2511 ktime_t timeout; 2512 2513 if (iowq->min_timeout) { 2514 timeout = ktime_add_ns(iowq->min_timeout, start_time); 2515 hrtimer_setup_on_stack(&iowq->t, io_cqring_min_timer_wakeup, clock_id, 2516 HRTIMER_MODE_ABS); 2517 } else { 2518 timeout = iowq->timeout; 2519 hrtimer_setup_on_stack(&iowq->t, io_cqring_timer_wakeup, clock_id, 2520 HRTIMER_MODE_ABS); 2521 } 2522 2523 hrtimer_set_expires_range_ns(&iowq->t, timeout, 0); 2524 hrtimer_start_expires(&iowq->t, HRTIMER_MODE_ABS); 2525 2526 if (!READ_ONCE(iowq->hit_timeout)) 2527 schedule(); 2528 2529 hrtimer_cancel(&iowq->t); 2530 destroy_hrtimer_on_stack(&iowq->t); 2531 __set_current_state(TASK_RUNNING); 2532 2533 return READ_ONCE(iowq->hit_timeout) ? -ETIME : 0; 2534 } 2535 2536 struct ext_arg { 2537 size_t argsz; 2538 struct timespec64 ts; 2539 const sigset_t __user *sig; 2540 ktime_t min_time; 2541 bool ts_set; 2542 bool iowait; 2543 }; 2544 2545 static int __io_cqring_wait_schedule(struct io_ring_ctx *ctx, 2546 struct io_wait_queue *iowq, 2547 struct ext_arg *ext_arg, 2548 ktime_t start_time) 2549 { 2550 int ret = 0; 2551 2552 /* 2553 * Mark us as being in io_wait if we have pending requests, so cpufreq 2554 * can take into account that the task is waiting for IO - turns out 2555 * to be important for low QD IO. 2556 */ 2557 if (ext_arg->iowait && current_pending_io()) 2558 current->in_iowait = 1; 2559 if (iowq->timeout != KTIME_MAX || iowq->min_timeout) 2560 ret = io_cqring_schedule_timeout(iowq, ctx->clockid, start_time); 2561 else 2562 schedule(); 2563 current->in_iowait = 0; 2564 return ret; 2565 } 2566 2567 /* If this returns > 0, the caller should retry */ 2568 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx, 2569 struct io_wait_queue *iowq, 2570 struct ext_arg *ext_arg, 2571 ktime_t start_time) 2572 { 2573 if (unlikely(READ_ONCE(ctx->check_cq))) 2574 return 1; 2575 if (unlikely(io_local_work_pending(ctx))) 2576 return 1; 2577 if (unlikely(task_work_pending(current))) 2578 return 1; 2579 if (unlikely(task_sigpending(current))) 2580 return -EINTR; 2581 if (unlikely(io_should_wake(iowq))) 2582 return 0; 2583 2584 return __io_cqring_wait_schedule(ctx, iowq, ext_arg, start_time); 2585 } 2586 2587 /* 2588 * Wait until events become available, if we don't already have some. The 2589 * application must reap them itself, as they reside on the shared cq ring. 2590 */ 2591 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events, u32 flags, 2592 struct ext_arg *ext_arg) 2593 { 2594 struct io_wait_queue iowq; 2595 struct io_rings *rings = ctx->rings; 2596 ktime_t start_time; 2597 int ret; 2598 2599 min_events = min_t(int, min_events, ctx->cq_entries); 2600 2601 if (!io_allowed_run_tw(ctx)) 2602 return -EEXIST; 2603 if (io_local_work_pending(ctx)) 2604 io_run_local_work(ctx, min_events, 2605 max(IO_LOCAL_TW_DEFAULT_MAX, min_events)); 2606 io_run_task_work(); 2607 2608 if (unlikely(test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))) 2609 io_cqring_do_overflow_flush(ctx); 2610 if (__io_cqring_events_user(ctx) >= min_events) 2611 return 0; 2612 2613 init_waitqueue_func_entry(&iowq.wq, io_wake_function); 2614 iowq.wq.private = current; 2615 INIT_LIST_HEAD(&iowq.wq.entry); 2616 iowq.ctx = ctx; 2617 iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events; 2618 iowq.cq_min_tail = READ_ONCE(ctx->rings->cq.tail); 2619 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts); 2620 iowq.hit_timeout = 0; 2621 iowq.min_timeout = ext_arg->min_time; 2622 iowq.timeout = KTIME_MAX; 2623 start_time = io_get_time(ctx); 2624 2625 if (ext_arg->ts_set) { 2626 iowq.timeout = timespec64_to_ktime(ext_arg->ts); 2627 if (!(flags & IORING_ENTER_ABS_TIMER)) 2628 iowq.timeout = ktime_add(iowq.timeout, start_time); 2629 } 2630 2631 if (ext_arg->sig) { 2632 #ifdef CONFIG_COMPAT 2633 if (in_compat_syscall()) 2634 ret = set_compat_user_sigmask((const compat_sigset_t __user *)ext_arg->sig, 2635 ext_arg->argsz); 2636 else 2637 #endif 2638 ret = set_user_sigmask(ext_arg->sig, ext_arg->argsz); 2639 2640 if (ret) 2641 return ret; 2642 } 2643 2644 io_napi_busy_loop(ctx, &iowq); 2645 2646 trace_io_uring_cqring_wait(ctx, min_events); 2647 do { 2648 unsigned long check_cq; 2649 int nr_wait; 2650 2651 /* if min timeout has been hit, don't reset wait count */ 2652 if (!iowq.hit_timeout) 2653 nr_wait = (int) iowq.cq_tail - 2654 READ_ONCE(ctx->rings->cq.tail); 2655 else 2656 nr_wait = 1; 2657 2658 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 2659 atomic_set(&ctx->cq_wait_nr, nr_wait); 2660 set_current_state(TASK_INTERRUPTIBLE); 2661 } else { 2662 prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq, 2663 TASK_INTERRUPTIBLE); 2664 } 2665 2666 ret = io_cqring_wait_schedule(ctx, &iowq, ext_arg, start_time); 2667 __set_current_state(TASK_RUNNING); 2668 atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT); 2669 2670 /* 2671 * Run task_work after scheduling and before io_should_wake(). 2672 * If we got woken because of task_work being processed, run it 2673 * now rather than let the caller do another wait loop. 2674 */ 2675 if (io_local_work_pending(ctx)) 2676 io_run_local_work(ctx, nr_wait, nr_wait); 2677 io_run_task_work(); 2678 2679 /* 2680 * Non-local task_work will be run on exit to userspace, but 2681 * if we're using DEFER_TASKRUN, then we could have waited 2682 * with a timeout for a number of requests. If the timeout 2683 * hits, we could have some requests ready to process. Ensure 2684 * this break is _after_ we have run task_work, to avoid 2685 * deferring running potentially pending requests until the 2686 * next time we wait for events. 2687 */ 2688 if (ret < 0) 2689 break; 2690 2691 check_cq = READ_ONCE(ctx->check_cq); 2692 if (unlikely(check_cq)) { 2693 /* let the caller flush overflows, retry */ 2694 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 2695 io_cqring_do_overflow_flush(ctx); 2696 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) { 2697 ret = -EBADR; 2698 break; 2699 } 2700 } 2701 2702 if (io_should_wake(&iowq)) { 2703 ret = 0; 2704 break; 2705 } 2706 cond_resched(); 2707 } while (1); 2708 2709 if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN)) 2710 finish_wait(&ctx->cq_wait, &iowq.wq); 2711 restore_saved_sigmask_unless(ret == -EINTR); 2712 2713 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0; 2714 } 2715 2716 static void io_rings_free(struct io_ring_ctx *ctx) 2717 { 2718 io_free_region(ctx, &ctx->sq_region); 2719 io_free_region(ctx, &ctx->ring_region); 2720 ctx->rings = NULL; 2721 ctx->sq_sqes = NULL; 2722 } 2723 2724 unsigned long rings_size(unsigned int flags, unsigned int sq_entries, 2725 unsigned int cq_entries, size_t *sq_offset) 2726 { 2727 struct io_rings *rings; 2728 size_t off, sq_array_size; 2729 2730 off = struct_size(rings, cqes, cq_entries); 2731 if (off == SIZE_MAX) 2732 return SIZE_MAX; 2733 if (flags & IORING_SETUP_CQE32) { 2734 if (check_shl_overflow(off, 1, &off)) 2735 return SIZE_MAX; 2736 } 2737 2738 #ifdef CONFIG_SMP 2739 off = ALIGN(off, SMP_CACHE_BYTES); 2740 if (off == 0) 2741 return SIZE_MAX; 2742 #endif 2743 2744 if (flags & IORING_SETUP_NO_SQARRAY) { 2745 *sq_offset = SIZE_MAX; 2746 return off; 2747 } 2748 2749 *sq_offset = off; 2750 2751 sq_array_size = array_size(sizeof(u32), sq_entries); 2752 if (sq_array_size == SIZE_MAX) 2753 return SIZE_MAX; 2754 2755 if (check_add_overflow(off, sq_array_size, &off)) 2756 return SIZE_MAX; 2757 2758 return off; 2759 } 2760 2761 static __cold void __io_req_caches_free(struct io_ring_ctx *ctx) 2762 { 2763 struct io_kiocb *req; 2764 int nr = 0; 2765 2766 while (!io_req_cache_empty(ctx)) { 2767 req = io_extract_req(ctx); 2768 kmem_cache_free(req_cachep, req); 2769 nr++; 2770 } 2771 if (nr) { 2772 ctx->nr_req_allocated -= nr; 2773 percpu_ref_put_many(&ctx->refs, nr); 2774 } 2775 } 2776 2777 static __cold void io_req_caches_free(struct io_ring_ctx *ctx) 2778 { 2779 guard(mutex)(&ctx->uring_lock); 2780 __io_req_caches_free(ctx); 2781 } 2782 2783 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx) 2784 { 2785 io_sq_thread_finish(ctx); 2786 2787 mutex_lock(&ctx->uring_lock); 2788 io_sqe_buffers_unregister(ctx); 2789 io_sqe_files_unregister(ctx); 2790 io_unregister_zcrx_ifqs(ctx); 2791 io_cqring_overflow_kill(ctx); 2792 io_eventfd_unregister(ctx); 2793 io_free_alloc_caches(ctx); 2794 io_destroy_buffers(ctx); 2795 io_free_region(ctx, &ctx->param_region); 2796 mutex_unlock(&ctx->uring_lock); 2797 if (ctx->sq_creds) 2798 put_cred(ctx->sq_creds); 2799 if (ctx->submitter_task) 2800 put_task_struct(ctx->submitter_task); 2801 2802 WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list)); 2803 2804 if (ctx->mm_account) { 2805 mmdrop(ctx->mm_account); 2806 ctx->mm_account = NULL; 2807 } 2808 io_rings_free(ctx); 2809 2810 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) 2811 static_branch_dec(&io_key_has_sqarray); 2812 2813 percpu_ref_exit(&ctx->refs); 2814 free_uid(ctx->user); 2815 io_req_caches_free(ctx); 2816 2817 WARN_ON_ONCE(ctx->nr_req_allocated); 2818 2819 if (ctx->hash_map) 2820 io_wq_put_hash(ctx->hash_map); 2821 io_napi_free(ctx); 2822 kvfree(ctx->cancel_table.hbs); 2823 xa_destroy(&ctx->io_bl_xa); 2824 kfree(ctx); 2825 } 2826 2827 static __cold void io_activate_pollwq_cb(struct callback_head *cb) 2828 { 2829 struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx, 2830 poll_wq_task_work); 2831 2832 mutex_lock(&ctx->uring_lock); 2833 ctx->poll_activated = true; 2834 mutex_unlock(&ctx->uring_lock); 2835 2836 /* 2837 * Wake ups for some events between start of polling and activation 2838 * might've been lost due to loose synchronisation. 2839 */ 2840 wake_up_all(&ctx->poll_wq); 2841 percpu_ref_put(&ctx->refs); 2842 } 2843 2844 __cold void io_activate_pollwq(struct io_ring_ctx *ctx) 2845 { 2846 spin_lock(&ctx->completion_lock); 2847 /* already activated or in progress */ 2848 if (ctx->poll_activated || ctx->poll_wq_task_work.func) 2849 goto out; 2850 if (WARN_ON_ONCE(!ctx->task_complete)) 2851 goto out; 2852 if (!ctx->submitter_task) 2853 goto out; 2854 /* 2855 * with ->submitter_task only the submitter task completes requests, we 2856 * only need to sync with it, which is done by injecting a tw 2857 */ 2858 init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb); 2859 percpu_ref_get(&ctx->refs); 2860 if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL)) 2861 percpu_ref_put(&ctx->refs); 2862 out: 2863 spin_unlock(&ctx->completion_lock); 2864 } 2865 2866 static __poll_t io_uring_poll(struct file *file, poll_table *wait) 2867 { 2868 struct io_ring_ctx *ctx = file->private_data; 2869 __poll_t mask = 0; 2870 2871 if (unlikely(!ctx->poll_activated)) 2872 io_activate_pollwq(ctx); 2873 /* 2874 * provides mb() which pairs with barrier from wq_has_sleeper 2875 * call in io_commit_cqring 2876 */ 2877 poll_wait(file, &ctx->poll_wq, wait); 2878 2879 if (!io_sqring_full(ctx)) 2880 mask |= EPOLLOUT | EPOLLWRNORM; 2881 2882 /* 2883 * Don't flush cqring overflow list here, just do a simple check. 2884 * Otherwise there could possible be ABBA deadlock: 2885 * CPU0 CPU1 2886 * ---- ---- 2887 * lock(&ctx->uring_lock); 2888 * lock(&ep->mtx); 2889 * lock(&ctx->uring_lock); 2890 * lock(&ep->mtx); 2891 * 2892 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this 2893 * pushes them to do the flush. 2894 */ 2895 2896 if (__io_cqring_events_user(ctx) || io_has_work(ctx)) 2897 mask |= EPOLLIN | EPOLLRDNORM; 2898 2899 return mask; 2900 } 2901 2902 struct io_tctx_exit { 2903 struct callback_head task_work; 2904 struct completion completion; 2905 struct io_ring_ctx *ctx; 2906 }; 2907 2908 static __cold void io_tctx_exit_cb(struct callback_head *cb) 2909 { 2910 struct io_uring_task *tctx = current->io_uring; 2911 struct io_tctx_exit *work; 2912 2913 work = container_of(cb, struct io_tctx_exit, task_work); 2914 /* 2915 * When @in_cancel, we're in cancellation and it's racy to remove the 2916 * node. It'll be removed by the end of cancellation, just ignore it. 2917 * tctx can be NULL if the queueing of this task_work raced with 2918 * work cancelation off the exec path. 2919 */ 2920 if (tctx && !atomic_read(&tctx->in_cancel)) 2921 io_uring_del_tctx_node((unsigned long)work->ctx); 2922 complete(&work->completion); 2923 } 2924 2925 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data) 2926 { 2927 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 2928 2929 return req->ctx == data; 2930 } 2931 2932 static __cold void io_ring_exit_work(struct work_struct *work) 2933 { 2934 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work); 2935 unsigned long timeout = jiffies + HZ * 60 * 5; 2936 unsigned long interval = HZ / 20; 2937 struct io_tctx_exit exit; 2938 struct io_tctx_node *node; 2939 int ret; 2940 2941 /* 2942 * If we're doing polled IO and end up having requests being 2943 * submitted async (out-of-line), then completions can come in while 2944 * we're waiting for refs to drop. We need to reap these manually, 2945 * as nobody else will be looking for them. 2946 */ 2947 do { 2948 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) { 2949 mutex_lock(&ctx->uring_lock); 2950 io_cqring_overflow_kill(ctx); 2951 mutex_unlock(&ctx->uring_lock); 2952 } 2953 if (!xa_empty(&ctx->zcrx_ctxs)) { 2954 mutex_lock(&ctx->uring_lock); 2955 io_shutdown_zcrx_ifqs(ctx); 2956 mutex_unlock(&ctx->uring_lock); 2957 } 2958 2959 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 2960 io_move_task_work_from_local(ctx); 2961 2962 /* The SQPOLL thread never reaches this path */ 2963 while (io_uring_try_cancel_requests(ctx, NULL, true, false)) 2964 cond_resched(); 2965 2966 if (ctx->sq_data) { 2967 struct io_sq_data *sqd = ctx->sq_data; 2968 struct task_struct *tsk; 2969 2970 io_sq_thread_park(sqd); 2971 tsk = sqpoll_task_locked(sqd); 2972 if (tsk && tsk->io_uring && tsk->io_uring->io_wq) 2973 io_wq_cancel_cb(tsk->io_uring->io_wq, 2974 io_cancel_ctx_cb, ctx, true); 2975 io_sq_thread_unpark(sqd); 2976 } 2977 2978 io_req_caches_free(ctx); 2979 2980 if (WARN_ON_ONCE(time_after(jiffies, timeout))) { 2981 /* there is little hope left, don't run it too often */ 2982 interval = HZ * 60; 2983 } 2984 /* 2985 * This is really an uninterruptible wait, as it has to be 2986 * complete. But it's also run from a kworker, which doesn't 2987 * take signals, so it's fine to make it interruptible. This 2988 * avoids scenarios where we knowingly can wait much longer 2989 * on completions, for example if someone does a SIGSTOP on 2990 * a task that needs to finish task_work to make this loop 2991 * complete. That's a synthetic situation that should not 2992 * cause a stuck task backtrace, and hence a potential panic 2993 * on stuck tasks if that is enabled. 2994 */ 2995 } while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval)); 2996 2997 init_completion(&exit.completion); 2998 init_task_work(&exit.task_work, io_tctx_exit_cb); 2999 exit.ctx = ctx; 3000 3001 mutex_lock(&ctx->uring_lock); 3002 while (!list_empty(&ctx->tctx_list)) { 3003 WARN_ON_ONCE(time_after(jiffies, timeout)); 3004 3005 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node, 3006 ctx_node); 3007 /* don't spin on a single task if cancellation failed */ 3008 list_rotate_left(&ctx->tctx_list); 3009 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL); 3010 if (WARN_ON_ONCE(ret)) 3011 continue; 3012 3013 mutex_unlock(&ctx->uring_lock); 3014 /* 3015 * See comment above for 3016 * wait_for_completion_interruptible_timeout() on why this 3017 * wait is marked as interruptible. 3018 */ 3019 wait_for_completion_interruptible(&exit.completion); 3020 mutex_lock(&ctx->uring_lock); 3021 } 3022 mutex_unlock(&ctx->uring_lock); 3023 spin_lock(&ctx->completion_lock); 3024 spin_unlock(&ctx->completion_lock); 3025 3026 /* pairs with RCU read section in io_req_local_work_add() */ 3027 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3028 synchronize_rcu(); 3029 3030 io_ring_ctx_free(ctx); 3031 } 3032 3033 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx) 3034 { 3035 unsigned long index; 3036 struct creds *creds; 3037 3038 mutex_lock(&ctx->uring_lock); 3039 percpu_ref_kill(&ctx->refs); 3040 xa_for_each(&ctx->personalities, index, creds) 3041 io_unregister_personality(ctx, index); 3042 mutex_unlock(&ctx->uring_lock); 3043 3044 flush_delayed_work(&ctx->fallback_work); 3045 3046 INIT_WORK(&ctx->exit_work, io_ring_exit_work); 3047 /* 3048 * Use system_unbound_wq to avoid spawning tons of event kworkers 3049 * if we're exiting a ton of rings at the same time. It just adds 3050 * noise and overhead, there's no discernable change in runtime 3051 * over using system_wq. 3052 */ 3053 queue_work(iou_wq, &ctx->exit_work); 3054 } 3055 3056 static int io_uring_release(struct inode *inode, struct file *file) 3057 { 3058 struct io_ring_ctx *ctx = file->private_data; 3059 3060 file->private_data = NULL; 3061 io_ring_ctx_wait_and_kill(ctx); 3062 return 0; 3063 } 3064 3065 struct io_task_cancel { 3066 struct io_uring_task *tctx; 3067 bool all; 3068 }; 3069 3070 static bool io_cancel_task_cb(struct io_wq_work *work, void *data) 3071 { 3072 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 3073 struct io_task_cancel *cancel = data; 3074 3075 return io_match_task_safe(req, cancel->tctx, cancel->all); 3076 } 3077 3078 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx, 3079 struct io_uring_task *tctx, 3080 bool cancel_all) 3081 { 3082 struct io_defer_entry *de; 3083 LIST_HEAD(list); 3084 3085 list_for_each_entry_reverse(de, &ctx->defer_list, list) { 3086 if (io_match_task_safe(de->req, tctx, cancel_all)) { 3087 list_cut_position(&list, &ctx->defer_list, &de->list); 3088 break; 3089 } 3090 } 3091 if (list_empty(&list)) 3092 return false; 3093 3094 while (!list_empty(&list)) { 3095 de = list_first_entry(&list, struct io_defer_entry, list); 3096 list_del_init(&de->list); 3097 ctx->nr_drained -= io_linked_nr(de->req); 3098 io_req_task_queue_fail(de->req, -ECANCELED); 3099 kfree(de); 3100 } 3101 return true; 3102 } 3103 3104 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx) 3105 { 3106 struct io_tctx_node *node; 3107 enum io_wq_cancel cret; 3108 bool ret = false; 3109 3110 mutex_lock(&ctx->uring_lock); 3111 list_for_each_entry(node, &ctx->tctx_list, ctx_node) { 3112 struct io_uring_task *tctx = node->task->io_uring; 3113 3114 /* 3115 * io_wq will stay alive while we hold uring_lock, because it's 3116 * killed after ctx nodes, which requires to take the lock. 3117 */ 3118 if (!tctx || !tctx->io_wq) 3119 continue; 3120 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true); 3121 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 3122 } 3123 mutex_unlock(&ctx->uring_lock); 3124 3125 return ret; 3126 } 3127 3128 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 3129 struct io_uring_task *tctx, 3130 bool cancel_all, 3131 bool is_sqpoll_thread) 3132 { 3133 struct io_task_cancel cancel = { .tctx = tctx, .all = cancel_all, }; 3134 enum io_wq_cancel cret; 3135 bool ret = false; 3136 3137 /* set it so io_req_local_work_add() would wake us up */ 3138 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 3139 atomic_set(&ctx->cq_wait_nr, 1); 3140 smp_mb(); 3141 } 3142 3143 /* failed during ring init, it couldn't have issued any requests */ 3144 if (!ctx->rings) 3145 return false; 3146 3147 if (!tctx) { 3148 ret |= io_uring_try_cancel_iowq(ctx); 3149 } else if (tctx->io_wq) { 3150 /* 3151 * Cancels requests of all rings, not only @ctx, but 3152 * it's fine as the task is in exit/exec. 3153 */ 3154 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb, 3155 &cancel, true); 3156 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 3157 } 3158 3159 /* SQPOLL thread does its own polling */ 3160 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) || 3161 is_sqpoll_thread) { 3162 while (!wq_list_empty(&ctx->iopoll_list)) { 3163 io_iopoll_try_reap_events(ctx); 3164 ret = true; 3165 cond_resched(); 3166 } 3167 } 3168 3169 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && 3170 io_allowed_defer_tw_run(ctx)) 3171 ret |= io_run_local_work(ctx, INT_MAX, INT_MAX) > 0; 3172 mutex_lock(&ctx->uring_lock); 3173 ret |= io_cancel_defer_files(ctx, tctx, cancel_all); 3174 ret |= io_poll_remove_all(ctx, tctx, cancel_all); 3175 ret |= io_waitid_remove_all(ctx, tctx, cancel_all); 3176 ret |= io_futex_remove_all(ctx, tctx, cancel_all); 3177 ret |= io_uring_try_cancel_uring_cmd(ctx, tctx, cancel_all); 3178 mutex_unlock(&ctx->uring_lock); 3179 ret |= io_kill_timeouts(ctx, tctx, cancel_all); 3180 if (tctx) 3181 ret |= io_run_task_work() > 0; 3182 else 3183 ret |= flush_delayed_work(&ctx->fallback_work); 3184 return ret; 3185 } 3186 3187 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked) 3188 { 3189 if (tracked) 3190 return atomic_read(&tctx->inflight_tracked); 3191 return percpu_counter_sum(&tctx->inflight); 3192 } 3193 3194 /* 3195 * Find any io_uring ctx that this task has registered or done IO on, and cancel 3196 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation. 3197 */ 3198 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd) 3199 { 3200 struct io_uring_task *tctx = current->io_uring; 3201 struct io_ring_ctx *ctx; 3202 struct io_tctx_node *node; 3203 unsigned long index; 3204 s64 inflight; 3205 DEFINE_WAIT(wait); 3206 3207 WARN_ON_ONCE(sqd && sqpoll_task_locked(sqd) != current); 3208 3209 if (!current->io_uring) 3210 return; 3211 if (tctx->io_wq) 3212 io_wq_exit_start(tctx->io_wq); 3213 3214 atomic_inc(&tctx->in_cancel); 3215 do { 3216 bool loop = false; 3217 3218 io_uring_drop_tctx_refs(current); 3219 if (!tctx_inflight(tctx, !cancel_all)) 3220 break; 3221 3222 /* read completions before cancelations */ 3223 inflight = tctx_inflight(tctx, false); 3224 if (!inflight) 3225 break; 3226 3227 if (!sqd) { 3228 xa_for_each(&tctx->xa, index, node) { 3229 /* sqpoll task will cancel all its requests */ 3230 if (node->ctx->sq_data) 3231 continue; 3232 loop |= io_uring_try_cancel_requests(node->ctx, 3233 current->io_uring, 3234 cancel_all, 3235 false); 3236 } 3237 } else { 3238 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) 3239 loop |= io_uring_try_cancel_requests(ctx, 3240 current->io_uring, 3241 cancel_all, 3242 true); 3243 } 3244 3245 if (loop) { 3246 cond_resched(); 3247 continue; 3248 } 3249 3250 prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE); 3251 io_run_task_work(); 3252 io_uring_drop_tctx_refs(current); 3253 xa_for_each(&tctx->xa, index, node) { 3254 if (io_local_work_pending(node->ctx)) { 3255 WARN_ON_ONCE(node->ctx->submitter_task && 3256 node->ctx->submitter_task != current); 3257 goto end_wait; 3258 } 3259 } 3260 /* 3261 * If we've seen completions, retry without waiting. This 3262 * avoids a race where a completion comes in before we did 3263 * prepare_to_wait(). 3264 */ 3265 if (inflight == tctx_inflight(tctx, !cancel_all)) 3266 schedule(); 3267 end_wait: 3268 finish_wait(&tctx->wait, &wait); 3269 } while (1); 3270 3271 io_uring_clean_tctx(tctx); 3272 if (cancel_all) { 3273 /* 3274 * We shouldn't run task_works after cancel, so just leave 3275 * ->in_cancel set for normal exit. 3276 */ 3277 atomic_dec(&tctx->in_cancel); 3278 /* for exec all current's requests should be gone, kill tctx */ 3279 __io_uring_free(current); 3280 } 3281 } 3282 3283 void __io_uring_cancel(bool cancel_all) 3284 { 3285 io_uring_unreg_ringfd(); 3286 io_uring_cancel_generic(cancel_all, NULL); 3287 } 3288 3289 static struct io_uring_reg_wait *io_get_ext_arg_reg(struct io_ring_ctx *ctx, 3290 const struct io_uring_getevents_arg __user *uarg) 3291 { 3292 unsigned long size = sizeof(struct io_uring_reg_wait); 3293 unsigned long offset = (uintptr_t)uarg; 3294 unsigned long end; 3295 3296 if (unlikely(offset % sizeof(long))) 3297 return ERR_PTR(-EFAULT); 3298 3299 /* also protects from NULL ->cq_wait_arg as the size would be 0 */ 3300 if (unlikely(check_add_overflow(offset, size, &end) || 3301 end > ctx->cq_wait_size)) 3302 return ERR_PTR(-EFAULT); 3303 3304 offset = array_index_nospec(offset, ctx->cq_wait_size - size); 3305 return ctx->cq_wait_arg + offset; 3306 } 3307 3308 static int io_validate_ext_arg(struct io_ring_ctx *ctx, unsigned flags, 3309 const void __user *argp, size_t argsz) 3310 { 3311 struct io_uring_getevents_arg arg; 3312 3313 if (!(flags & IORING_ENTER_EXT_ARG)) 3314 return 0; 3315 if (flags & IORING_ENTER_EXT_ARG_REG) 3316 return -EINVAL; 3317 if (argsz != sizeof(arg)) 3318 return -EINVAL; 3319 if (copy_from_user(&arg, argp, sizeof(arg))) 3320 return -EFAULT; 3321 return 0; 3322 } 3323 3324 static int io_get_ext_arg(struct io_ring_ctx *ctx, unsigned flags, 3325 const void __user *argp, struct ext_arg *ext_arg) 3326 { 3327 const struct io_uring_getevents_arg __user *uarg = argp; 3328 struct io_uring_getevents_arg arg; 3329 3330 ext_arg->iowait = !(flags & IORING_ENTER_NO_IOWAIT); 3331 3332 /* 3333 * If EXT_ARG isn't set, then we have no timespec and the argp pointer 3334 * is just a pointer to the sigset_t. 3335 */ 3336 if (!(flags & IORING_ENTER_EXT_ARG)) { 3337 ext_arg->sig = (const sigset_t __user *) argp; 3338 return 0; 3339 } 3340 3341 if (flags & IORING_ENTER_EXT_ARG_REG) { 3342 struct io_uring_reg_wait *w; 3343 3344 if (ext_arg->argsz != sizeof(struct io_uring_reg_wait)) 3345 return -EINVAL; 3346 w = io_get_ext_arg_reg(ctx, argp); 3347 if (IS_ERR(w)) 3348 return PTR_ERR(w); 3349 3350 if (w->flags & ~IORING_REG_WAIT_TS) 3351 return -EINVAL; 3352 ext_arg->min_time = READ_ONCE(w->min_wait_usec) * NSEC_PER_USEC; 3353 ext_arg->sig = u64_to_user_ptr(READ_ONCE(w->sigmask)); 3354 ext_arg->argsz = READ_ONCE(w->sigmask_sz); 3355 if (w->flags & IORING_REG_WAIT_TS) { 3356 ext_arg->ts.tv_sec = READ_ONCE(w->ts.tv_sec); 3357 ext_arg->ts.tv_nsec = READ_ONCE(w->ts.tv_nsec); 3358 ext_arg->ts_set = true; 3359 } 3360 return 0; 3361 } 3362 3363 /* 3364 * EXT_ARG is set - ensure we agree on the size of it and copy in our 3365 * timespec and sigset_t pointers if good. 3366 */ 3367 if (ext_arg->argsz != sizeof(arg)) 3368 return -EINVAL; 3369 #ifdef CONFIG_64BIT 3370 if (!user_access_begin(uarg, sizeof(*uarg))) 3371 return -EFAULT; 3372 unsafe_get_user(arg.sigmask, &uarg->sigmask, uaccess_end); 3373 unsafe_get_user(arg.sigmask_sz, &uarg->sigmask_sz, uaccess_end); 3374 unsafe_get_user(arg.min_wait_usec, &uarg->min_wait_usec, uaccess_end); 3375 unsafe_get_user(arg.ts, &uarg->ts, uaccess_end); 3376 user_access_end(); 3377 #else 3378 if (copy_from_user(&arg, uarg, sizeof(arg))) 3379 return -EFAULT; 3380 #endif 3381 ext_arg->min_time = arg.min_wait_usec * NSEC_PER_USEC; 3382 ext_arg->sig = u64_to_user_ptr(arg.sigmask); 3383 ext_arg->argsz = arg.sigmask_sz; 3384 if (arg.ts) { 3385 if (get_timespec64(&ext_arg->ts, u64_to_user_ptr(arg.ts))) 3386 return -EFAULT; 3387 ext_arg->ts_set = true; 3388 } 3389 return 0; 3390 #ifdef CONFIG_64BIT 3391 uaccess_end: 3392 user_access_end(); 3393 return -EFAULT; 3394 #endif 3395 } 3396 3397 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit, 3398 u32, min_complete, u32, flags, const void __user *, argp, 3399 size_t, argsz) 3400 { 3401 struct io_ring_ctx *ctx; 3402 struct file *file; 3403 long ret; 3404 3405 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP | 3406 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG | 3407 IORING_ENTER_REGISTERED_RING | 3408 IORING_ENTER_ABS_TIMER | 3409 IORING_ENTER_EXT_ARG_REG | 3410 IORING_ENTER_NO_IOWAIT))) 3411 return -EINVAL; 3412 3413 /* 3414 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we 3415 * need only dereference our task private array to find it. 3416 */ 3417 if (flags & IORING_ENTER_REGISTERED_RING) { 3418 struct io_uring_task *tctx = current->io_uring; 3419 3420 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX)) 3421 return -EINVAL; 3422 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX); 3423 file = tctx->registered_rings[fd]; 3424 if (unlikely(!file)) 3425 return -EBADF; 3426 } else { 3427 file = fget(fd); 3428 if (unlikely(!file)) 3429 return -EBADF; 3430 ret = -EOPNOTSUPP; 3431 if (unlikely(!io_is_uring_fops(file))) 3432 goto out; 3433 } 3434 3435 ctx = file->private_data; 3436 ret = -EBADFD; 3437 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED)) 3438 goto out; 3439 3440 /* 3441 * For SQ polling, the thread will do all submissions and completions. 3442 * Just return the requested submit count, and wake the thread if 3443 * we were asked to. 3444 */ 3445 ret = 0; 3446 if (ctx->flags & IORING_SETUP_SQPOLL) { 3447 if (unlikely(ctx->sq_data->thread == NULL)) { 3448 ret = -EOWNERDEAD; 3449 goto out; 3450 } 3451 if (flags & IORING_ENTER_SQ_WAKEUP) 3452 wake_up(&ctx->sq_data->wait); 3453 if (flags & IORING_ENTER_SQ_WAIT) 3454 io_sqpoll_wait_sq(ctx); 3455 3456 ret = to_submit; 3457 } else if (to_submit) { 3458 ret = io_uring_add_tctx_node(ctx); 3459 if (unlikely(ret)) 3460 goto out; 3461 3462 mutex_lock(&ctx->uring_lock); 3463 ret = io_submit_sqes(ctx, to_submit); 3464 if (ret != to_submit) { 3465 mutex_unlock(&ctx->uring_lock); 3466 goto out; 3467 } 3468 if (flags & IORING_ENTER_GETEVENTS) { 3469 if (ctx->syscall_iopoll) 3470 goto iopoll_locked; 3471 /* 3472 * Ignore errors, we'll soon call io_cqring_wait() and 3473 * it should handle ownership problems if any. 3474 */ 3475 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3476 (void)io_run_local_work_locked(ctx, min_complete); 3477 } 3478 mutex_unlock(&ctx->uring_lock); 3479 } 3480 3481 if (flags & IORING_ENTER_GETEVENTS) { 3482 int ret2; 3483 3484 if (ctx->syscall_iopoll) { 3485 /* 3486 * We disallow the app entering submit/complete with 3487 * polling, but we still need to lock the ring to 3488 * prevent racing with polled issue that got punted to 3489 * a workqueue. 3490 */ 3491 mutex_lock(&ctx->uring_lock); 3492 iopoll_locked: 3493 ret2 = io_validate_ext_arg(ctx, flags, argp, argsz); 3494 if (likely(!ret2)) 3495 ret2 = io_iopoll_check(ctx, min_complete); 3496 mutex_unlock(&ctx->uring_lock); 3497 } else { 3498 struct ext_arg ext_arg = { .argsz = argsz }; 3499 3500 ret2 = io_get_ext_arg(ctx, flags, argp, &ext_arg); 3501 if (likely(!ret2)) 3502 ret2 = io_cqring_wait(ctx, min_complete, flags, 3503 &ext_arg); 3504 } 3505 3506 if (!ret) { 3507 ret = ret2; 3508 3509 /* 3510 * EBADR indicates that one or more CQE were dropped. 3511 * Once the user has been informed we can clear the bit 3512 * as they are obviously ok with those drops. 3513 */ 3514 if (unlikely(ret2 == -EBADR)) 3515 clear_bit(IO_CHECK_CQ_DROPPED_BIT, 3516 &ctx->check_cq); 3517 } 3518 } 3519 out: 3520 if (!(flags & IORING_ENTER_REGISTERED_RING)) 3521 fput(file); 3522 return ret; 3523 } 3524 3525 static const struct file_operations io_uring_fops = { 3526 .release = io_uring_release, 3527 .mmap = io_uring_mmap, 3528 .get_unmapped_area = io_uring_get_unmapped_area, 3529 #ifndef CONFIG_MMU 3530 .mmap_capabilities = io_uring_nommu_mmap_capabilities, 3531 #endif 3532 .poll = io_uring_poll, 3533 #ifdef CONFIG_PROC_FS 3534 .show_fdinfo = io_uring_show_fdinfo, 3535 #endif 3536 }; 3537 3538 bool io_is_uring_fops(struct file *file) 3539 { 3540 return file->f_op == &io_uring_fops; 3541 } 3542 3543 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx, 3544 struct io_uring_params *p) 3545 { 3546 struct io_uring_region_desc rd; 3547 struct io_rings *rings; 3548 size_t size, sq_array_offset; 3549 int ret; 3550 3551 /* make sure these are sane, as we already accounted them */ 3552 ctx->sq_entries = p->sq_entries; 3553 ctx->cq_entries = p->cq_entries; 3554 3555 size = rings_size(ctx->flags, p->sq_entries, p->cq_entries, 3556 &sq_array_offset); 3557 if (size == SIZE_MAX) 3558 return -EOVERFLOW; 3559 3560 memset(&rd, 0, sizeof(rd)); 3561 rd.size = PAGE_ALIGN(size); 3562 if (ctx->flags & IORING_SETUP_NO_MMAP) { 3563 rd.user_addr = p->cq_off.user_addr; 3564 rd.flags |= IORING_MEM_REGION_TYPE_USER; 3565 } 3566 ret = io_create_region(ctx, &ctx->ring_region, &rd, IORING_OFF_CQ_RING); 3567 if (ret) 3568 return ret; 3569 ctx->rings = rings = io_region_get_ptr(&ctx->ring_region); 3570 3571 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) 3572 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset); 3573 rings->sq_ring_mask = p->sq_entries - 1; 3574 rings->cq_ring_mask = p->cq_entries - 1; 3575 rings->sq_ring_entries = p->sq_entries; 3576 rings->cq_ring_entries = p->cq_entries; 3577 3578 if (p->flags & IORING_SETUP_SQE128) 3579 size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries); 3580 else 3581 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries); 3582 if (size == SIZE_MAX) { 3583 io_rings_free(ctx); 3584 return -EOVERFLOW; 3585 } 3586 3587 memset(&rd, 0, sizeof(rd)); 3588 rd.size = PAGE_ALIGN(size); 3589 if (ctx->flags & IORING_SETUP_NO_MMAP) { 3590 rd.user_addr = p->sq_off.user_addr; 3591 rd.flags |= IORING_MEM_REGION_TYPE_USER; 3592 } 3593 ret = io_create_region(ctx, &ctx->sq_region, &rd, IORING_OFF_SQES); 3594 if (ret) { 3595 io_rings_free(ctx); 3596 return ret; 3597 } 3598 ctx->sq_sqes = io_region_get_ptr(&ctx->sq_region); 3599 return 0; 3600 } 3601 3602 static int io_uring_install_fd(struct file *file) 3603 { 3604 int fd; 3605 3606 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 3607 if (fd < 0) 3608 return fd; 3609 fd_install(fd, file); 3610 return fd; 3611 } 3612 3613 /* 3614 * Allocate an anonymous fd, this is what constitutes the application 3615 * visible backing of an io_uring instance. The application mmaps this 3616 * fd to gain access to the SQ/CQ ring details. 3617 */ 3618 static struct file *io_uring_get_file(struct io_ring_ctx *ctx) 3619 { 3620 /* Create a new inode so that the LSM can block the creation. */ 3621 return anon_inode_create_getfile("[io_uring]", &io_uring_fops, ctx, 3622 O_RDWR | O_CLOEXEC, NULL); 3623 } 3624 3625 static int io_uring_sanitise_params(struct io_uring_params *p) 3626 { 3627 unsigned flags = p->flags; 3628 3629 /* There is no way to mmap rings without a real fd */ 3630 if ((flags & IORING_SETUP_REGISTERED_FD_ONLY) && 3631 !(flags & IORING_SETUP_NO_MMAP)) 3632 return -EINVAL; 3633 3634 if (flags & IORING_SETUP_SQPOLL) { 3635 /* IPI related flags don't make sense with SQPOLL */ 3636 if (flags & (IORING_SETUP_COOP_TASKRUN | 3637 IORING_SETUP_TASKRUN_FLAG | 3638 IORING_SETUP_DEFER_TASKRUN)) 3639 return -EINVAL; 3640 } 3641 3642 if (flags & IORING_SETUP_TASKRUN_FLAG) { 3643 if (!(flags & (IORING_SETUP_COOP_TASKRUN | 3644 IORING_SETUP_DEFER_TASKRUN))) 3645 return -EINVAL; 3646 } 3647 3648 /* HYBRID_IOPOLL only valid with IOPOLL */ 3649 if ((flags & IORING_SETUP_HYBRID_IOPOLL) && !(flags & IORING_SETUP_IOPOLL)) 3650 return -EINVAL; 3651 3652 /* 3653 * For DEFER_TASKRUN we require the completion task to be the same as 3654 * the submission task. This implies that there is only one submitter. 3655 */ 3656 if ((flags & IORING_SETUP_DEFER_TASKRUN) && 3657 !(flags & IORING_SETUP_SINGLE_ISSUER)) 3658 return -EINVAL; 3659 3660 return 0; 3661 } 3662 3663 int io_uring_fill_params(unsigned entries, struct io_uring_params *p) 3664 { 3665 if (!entries) 3666 return -EINVAL; 3667 if (entries > IORING_MAX_ENTRIES) { 3668 if (!(p->flags & IORING_SETUP_CLAMP)) 3669 return -EINVAL; 3670 entries = IORING_MAX_ENTRIES; 3671 } 3672 3673 /* 3674 * Use twice as many entries for the CQ ring. It's possible for the 3675 * application to drive a higher depth than the size of the SQ ring, 3676 * since the sqes are only used at submission time. This allows for 3677 * some flexibility in overcommitting a bit. If the application has 3678 * set IORING_SETUP_CQSIZE, it will have passed in the desired number 3679 * of CQ ring entries manually. 3680 */ 3681 p->sq_entries = roundup_pow_of_two(entries); 3682 if (p->flags & IORING_SETUP_CQSIZE) { 3683 /* 3684 * If IORING_SETUP_CQSIZE is set, we do the same roundup 3685 * to a power-of-two, if it isn't already. We do NOT impose 3686 * any cq vs sq ring sizing. 3687 */ 3688 if (!p->cq_entries) 3689 return -EINVAL; 3690 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) { 3691 if (!(p->flags & IORING_SETUP_CLAMP)) 3692 return -EINVAL; 3693 p->cq_entries = IORING_MAX_CQ_ENTRIES; 3694 } 3695 p->cq_entries = roundup_pow_of_two(p->cq_entries); 3696 if (p->cq_entries < p->sq_entries) 3697 return -EINVAL; 3698 } else { 3699 p->cq_entries = 2 * p->sq_entries; 3700 } 3701 3702 p->sq_off.head = offsetof(struct io_rings, sq.head); 3703 p->sq_off.tail = offsetof(struct io_rings, sq.tail); 3704 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask); 3705 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries); 3706 p->sq_off.flags = offsetof(struct io_rings, sq_flags); 3707 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped); 3708 p->sq_off.resv1 = 0; 3709 if (!(p->flags & IORING_SETUP_NO_MMAP)) 3710 p->sq_off.user_addr = 0; 3711 3712 p->cq_off.head = offsetof(struct io_rings, cq.head); 3713 p->cq_off.tail = offsetof(struct io_rings, cq.tail); 3714 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask); 3715 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries); 3716 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow); 3717 p->cq_off.cqes = offsetof(struct io_rings, cqes); 3718 p->cq_off.flags = offsetof(struct io_rings, cq_flags); 3719 p->cq_off.resv1 = 0; 3720 if (!(p->flags & IORING_SETUP_NO_MMAP)) 3721 p->cq_off.user_addr = 0; 3722 3723 return 0; 3724 } 3725 3726 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p, 3727 struct io_uring_params __user *params) 3728 { 3729 struct io_ring_ctx *ctx; 3730 struct io_uring_task *tctx; 3731 struct file *file; 3732 int ret; 3733 3734 ret = io_uring_sanitise_params(p); 3735 if (ret) 3736 return ret; 3737 3738 ret = io_uring_fill_params(entries, p); 3739 if (unlikely(ret)) 3740 return ret; 3741 3742 ctx = io_ring_ctx_alloc(p); 3743 if (!ctx) 3744 return -ENOMEM; 3745 3746 ctx->clockid = CLOCK_MONOTONIC; 3747 ctx->clock_offset = 0; 3748 3749 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) 3750 static_branch_inc(&io_key_has_sqarray); 3751 3752 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && 3753 !(ctx->flags & IORING_SETUP_IOPOLL) && 3754 !(ctx->flags & IORING_SETUP_SQPOLL)) 3755 ctx->task_complete = true; 3756 3757 if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL)) 3758 ctx->lockless_cq = true; 3759 3760 /* 3761 * lazy poll_wq activation relies on ->task_complete for synchronisation 3762 * purposes, see io_activate_pollwq() 3763 */ 3764 if (!ctx->task_complete) 3765 ctx->poll_activated = true; 3766 3767 /* 3768 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user 3769 * space applications don't need to do io completion events 3770 * polling again, they can rely on io_sq_thread to do polling 3771 * work, which can reduce cpu usage and uring_lock contention. 3772 */ 3773 if (ctx->flags & IORING_SETUP_IOPOLL && 3774 !(ctx->flags & IORING_SETUP_SQPOLL)) 3775 ctx->syscall_iopoll = 1; 3776 3777 ctx->compat = in_compat_syscall(); 3778 if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK)) 3779 ctx->user = get_uid(current_user()); 3780 3781 /* 3782 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if 3783 * COOP_TASKRUN is set, then IPIs are never needed by the app. 3784 */ 3785 if (ctx->flags & (IORING_SETUP_SQPOLL|IORING_SETUP_COOP_TASKRUN)) 3786 ctx->notify_method = TWA_SIGNAL_NO_IPI; 3787 else 3788 ctx->notify_method = TWA_SIGNAL; 3789 3790 /* 3791 * This is just grabbed for accounting purposes. When a process exits, 3792 * the mm is exited and dropped before the files, hence we need to hang 3793 * on to this mm purely for the purposes of being able to unaccount 3794 * memory (locked/pinned vm). It's not used for anything else. 3795 */ 3796 mmgrab(current->mm); 3797 ctx->mm_account = current->mm; 3798 3799 ret = io_allocate_scq_urings(ctx, p); 3800 if (ret) 3801 goto err; 3802 3803 if (!(p->flags & IORING_SETUP_NO_SQARRAY)) 3804 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings; 3805 3806 ret = io_sq_offload_create(ctx, p); 3807 if (ret) 3808 goto err; 3809 3810 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP | 3811 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS | 3812 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL | 3813 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED | 3814 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS | 3815 IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP | 3816 IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING | 3817 IORING_FEAT_RECVSEND_BUNDLE | IORING_FEAT_MIN_TIMEOUT | 3818 IORING_FEAT_RW_ATTR | IORING_FEAT_NO_IOWAIT; 3819 3820 if (copy_to_user(params, p, sizeof(*p))) { 3821 ret = -EFAULT; 3822 goto err; 3823 } 3824 3825 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER 3826 && !(ctx->flags & IORING_SETUP_R_DISABLED)) 3827 WRITE_ONCE(ctx->submitter_task, get_task_struct(current)); 3828 3829 file = io_uring_get_file(ctx); 3830 if (IS_ERR(file)) { 3831 ret = PTR_ERR(file); 3832 goto err; 3833 } 3834 3835 ret = __io_uring_add_tctx_node(ctx); 3836 if (ret) 3837 goto err_fput; 3838 tctx = current->io_uring; 3839 3840 /* 3841 * Install ring fd as the very last thing, so we don't risk someone 3842 * having closed it before we finish setup 3843 */ 3844 if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY) 3845 ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX); 3846 else 3847 ret = io_uring_install_fd(file); 3848 if (ret < 0) 3849 goto err_fput; 3850 3851 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags); 3852 return ret; 3853 err: 3854 io_ring_ctx_wait_and_kill(ctx); 3855 return ret; 3856 err_fput: 3857 fput(file); 3858 return ret; 3859 } 3860 3861 /* 3862 * Sets up an aio uring context, and returns the fd. Applications asks for a 3863 * ring size, we return the actual sq/cq ring sizes (among other things) in the 3864 * params structure passed in. 3865 */ 3866 static long io_uring_setup(u32 entries, struct io_uring_params __user *params) 3867 { 3868 struct io_uring_params p; 3869 int i; 3870 3871 if (copy_from_user(&p, params, sizeof(p))) 3872 return -EFAULT; 3873 for (i = 0; i < ARRAY_SIZE(p.resv); i++) { 3874 if (p.resv[i]) 3875 return -EINVAL; 3876 } 3877 3878 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL | 3879 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE | 3880 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ | 3881 IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL | 3882 IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG | 3883 IORING_SETUP_SQE128 | IORING_SETUP_CQE32 | 3884 IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN | 3885 IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY | 3886 IORING_SETUP_NO_SQARRAY | IORING_SETUP_HYBRID_IOPOLL)) 3887 return -EINVAL; 3888 3889 return io_uring_create(entries, &p, params); 3890 } 3891 3892 static inline int io_uring_allowed(void) 3893 { 3894 int disabled = READ_ONCE(sysctl_io_uring_disabled); 3895 kgid_t io_uring_group; 3896 3897 if (disabled == 2) 3898 return -EPERM; 3899 3900 if (disabled == 0 || capable(CAP_SYS_ADMIN)) 3901 goto allowed_lsm; 3902 3903 io_uring_group = make_kgid(&init_user_ns, sysctl_io_uring_group); 3904 if (!gid_valid(io_uring_group)) 3905 return -EPERM; 3906 3907 if (!in_group_p(io_uring_group)) 3908 return -EPERM; 3909 3910 allowed_lsm: 3911 return security_uring_allowed(); 3912 } 3913 3914 SYSCALL_DEFINE2(io_uring_setup, u32, entries, 3915 struct io_uring_params __user *, params) 3916 { 3917 int ret; 3918 3919 ret = io_uring_allowed(); 3920 if (ret) 3921 return ret; 3922 3923 return io_uring_setup(entries, params); 3924 } 3925 3926 static int __init io_uring_init(void) 3927 { 3928 struct kmem_cache_args kmem_args = { 3929 .useroffset = offsetof(struct io_kiocb, cmd.data), 3930 .usersize = sizeof_field(struct io_kiocb, cmd.data), 3931 .freeptr_offset = offsetof(struct io_kiocb, work), 3932 .use_freeptr_offset = true, 3933 }; 3934 3935 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \ 3936 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \ 3937 BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \ 3938 } while (0) 3939 3940 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \ 3941 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename) 3942 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \ 3943 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename) 3944 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64); 3945 BUILD_BUG_SQE_ELEM(0, __u8, opcode); 3946 BUILD_BUG_SQE_ELEM(1, __u8, flags); 3947 BUILD_BUG_SQE_ELEM(2, __u16, ioprio); 3948 BUILD_BUG_SQE_ELEM(4, __s32, fd); 3949 BUILD_BUG_SQE_ELEM(8, __u64, off); 3950 BUILD_BUG_SQE_ELEM(8, __u64, addr2); 3951 BUILD_BUG_SQE_ELEM(8, __u32, cmd_op); 3952 BUILD_BUG_SQE_ELEM(12, __u32, __pad1); 3953 BUILD_BUG_SQE_ELEM(16, __u64, addr); 3954 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in); 3955 BUILD_BUG_SQE_ELEM(24, __u32, len); 3956 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags); 3957 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags); 3958 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags); 3959 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags); 3960 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events); 3961 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events); 3962 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags); 3963 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags); 3964 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags); 3965 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags); 3966 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags); 3967 BUILD_BUG_SQE_ELEM(28, __u32, open_flags); 3968 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags); 3969 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice); 3970 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags); 3971 BUILD_BUG_SQE_ELEM(28, __u32, rename_flags); 3972 BUILD_BUG_SQE_ELEM(28, __u32, unlink_flags); 3973 BUILD_BUG_SQE_ELEM(28, __u32, hardlink_flags); 3974 BUILD_BUG_SQE_ELEM(28, __u32, xattr_flags); 3975 BUILD_BUG_SQE_ELEM(28, __u32, msg_ring_flags); 3976 BUILD_BUG_SQE_ELEM(32, __u64, user_data); 3977 BUILD_BUG_SQE_ELEM(40, __u16, buf_index); 3978 BUILD_BUG_SQE_ELEM(40, __u16, buf_group); 3979 BUILD_BUG_SQE_ELEM(42, __u16, personality); 3980 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in); 3981 BUILD_BUG_SQE_ELEM(44, __u32, file_index); 3982 BUILD_BUG_SQE_ELEM(44, __u16, addr_len); 3983 BUILD_BUG_SQE_ELEM(44, __u8, write_stream); 3984 BUILD_BUG_SQE_ELEM(45, __u8, __pad4[0]); 3985 BUILD_BUG_SQE_ELEM(46, __u16, __pad3[0]); 3986 BUILD_BUG_SQE_ELEM(48, __u64, addr3); 3987 BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd); 3988 BUILD_BUG_SQE_ELEM(48, __u64, attr_ptr); 3989 BUILD_BUG_SQE_ELEM(56, __u64, attr_type_mask); 3990 BUILD_BUG_SQE_ELEM(56, __u64, __pad2); 3991 3992 BUILD_BUG_ON(sizeof(struct io_uring_files_update) != 3993 sizeof(struct io_uring_rsrc_update)); 3994 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) > 3995 sizeof(struct io_uring_rsrc_update2)); 3996 3997 /* ->buf_index is u16 */ 3998 BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0); 3999 BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) != 4000 offsetof(struct io_uring_buf_ring, tail)); 4001 4002 /* should fit into one byte */ 4003 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8)); 4004 BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8)); 4005 BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS); 4006 4007 BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof_field(struct io_kiocb, flags)); 4008 4009 BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32)); 4010 4011 /* top 8bits are for internal use */ 4012 BUILD_BUG_ON((IORING_URING_CMD_MASK & 0xff000000) != 0); 4013 4014 io_uring_optable_init(); 4015 4016 /* imu->dir is u8 */ 4017 BUILD_BUG_ON((IO_IMU_DEST | IO_IMU_SOURCE) > U8_MAX); 4018 4019 /* 4020 * Allow user copy in the per-command field, which starts after the 4021 * file in io_kiocb and until the opcode field. The openat2 handling 4022 * requires copying in user memory into the io_kiocb object in that 4023 * range, and HARDENED_USERCOPY will complain if we haven't 4024 * correctly annotated this range. 4025 */ 4026 req_cachep = kmem_cache_create("io_kiocb", sizeof(struct io_kiocb), &kmem_args, 4027 SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT | 4028 SLAB_TYPESAFE_BY_RCU); 4029 4030 iou_wq = alloc_workqueue("iou_exit", WQ_UNBOUND, 64); 4031 BUG_ON(!iou_wq); 4032 4033 #ifdef CONFIG_SYSCTL 4034 register_sysctl_init("kernel", kernel_io_uring_disabled_table); 4035 #endif 4036 4037 return 0; 4038 }; 4039 __initcall(io_uring_init); 4040