xref: /linux/mm/migrate.c (revision 8804d970fab45726b3c7cd7f240b31122aa94219)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15 
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/ksm.h>
24 #include <linux/rmap.h>
25 #include <linux/topology.h>
26 #include <linux/cpu.h>
27 #include <linux/cpuset.h>
28 #include <linux/writeback.h>
29 #include <linux/mempolicy.h>
30 #include <linux/vmalloc.h>
31 #include <linux/security.h>
32 #include <linux/backing-dev.h>
33 #include <linux/compaction.h>
34 #include <linux/syscalls.h>
35 #include <linux/compat.h>
36 #include <linux/hugetlb.h>
37 #include <linux/gfp.h>
38 #include <linux/page_idle.h>
39 #include <linux/page_owner.h>
40 #include <linux/sched/mm.h>
41 #include <linux/ptrace.h>
42 #include <linux/memory.h>
43 #include <linux/sched/sysctl.h>
44 #include <linux/memory-tiers.h>
45 #include <linux/pagewalk.h>
46 
47 #include <asm/tlbflush.h>
48 
49 #include <trace/events/migrate.h>
50 
51 #include "internal.h"
52 #include "swap.h"
53 
54 static const struct movable_operations *offline_movable_ops;
55 static const struct movable_operations *zsmalloc_movable_ops;
56 
set_movable_ops(const struct movable_operations * ops,enum pagetype type)57 int set_movable_ops(const struct movable_operations *ops, enum pagetype type)
58 {
59 	/*
60 	 * We only allow for selected types and don't handle concurrent
61 	 * registration attempts yet.
62 	 */
63 	switch (type) {
64 	case PGTY_offline:
65 		if (offline_movable_ops && ops)
66 			return -EBUSY;
67 		offline_movable_ops = ops;
68 		break;
69 	case PGTY_zsmalloc:
70 		if (zsmalloc_movable_ops && ops)
71 			return -EBUSY;
72 		zsmalloc_movable_ops = ops;
73 		break;
74 	default:
75 		return -EINVAL;
76 	}
77 	return 0;
78 }
79 EXPORT_SYMBOL_GPL(set_movable_ops);
80 
page_movable_ops(struct page * page)81 static const struct movable_operations *page_movable_ops(struct page *page)
82 {
83 	VM_WARN_ON_ONCE_PAGE(!page_has_movable_ops(page), page);
84 
85 	/*
86 	 * If we enable page migration for a page of a certain type by marking
87 	 * it as movable, the page type must be sticky until the page gets freed
88 	 * back to the buddy.
89 	 */
90 	if (PageOffline(page))
91 		/* Only balloon compaction sets PageOffline pages movable. */
92 		return offline_movable_ops;
93 	if (PageZsmalloc(page))
94 		return zsmalloc_movable_ops;
95 
96 	return NULL;
97 }
98 
99 /**
100  * isolate_movable_ops_page - isolate a movable_ops page for migration
101  * @page: The page.
102  * @mode: The isolation mode.
103  *
104  * Try to isolate a movable_ops page for migration. Will fail if the page is
105  * not a movable_ops page, if the page is already isolated for migration
106  * or if the page was just was released by its owner.
107  *
108  * Once isolated, the page cannot get freed until it is either putback
109  * or migrated.
110  *
111  * Returns true if isolation succeeded, otherwise false.
112  */
isolate_movable_ops_page(struct page * page,isolate_mode_t mode)113 bool isolate_movable_ops_page(struct page *page, isolate_mode_t mode)
114 {
115 	/*
116 	 * TODO: these pages will not be folios in the future. All
117 	 * folio dependencies will have to be removed.
118 	 */
119 	struct folio *folio = folio_get_nontail_page(page);
120 	const struct movable_operations *mops;
121 
122 	/*
123 	 * Avoid burning cycles with pages that are yet under __free_pages(),
124 	 * or just got freed under us.
125 	 *
126 	 * In case we 'win' a race for a movable page being freed under us and
127 	 * raise its refcount preventing __free_pages() from doing its job
128 	 * the put_page() at the end of this block will take care of
129 	 * release this page, thus avoiding a nasty leakage.
130 	 */
131 	if (!folio)
132 		goto out;
133 
134 	/*
135 	 * Check for movable_ops pages before taking the page lock because
136 	 * we use non-atomic bitops on newly allocated page flags so
137 	 * unconditionally grabbing the lock ruins page's owner side.
138 	 *
139 	 * Note that once a page has movable_ops, it will stay that way
140 	 * until the page was freed.
141 	 */
142 	if (unlikely(!page_has_movable_ops(page)))
143 		goto out_putfolio;
144 
145 	/*
146 	 * As movable pages are not isolated from LRU lists, concurrent
147 	 * compaction threads can race against page migration functions
148 	 * as well as race against the releasing a page.
149 	 *
150 	 * In order to avoid having an already isolated movable page
151 	 * being (wrongly) re-isolated while it is under migration,
152 	 * or to avoid attempting to isolate pages being released,
153 	 * lets be sure we have the page lock
154 	 * before proceeding with the movable page isolation steps.
155 	 */
156 	if (unlikely(!folio_trylock(folio)))
157 		goto out_putfolio;
158 
159 	VM_WARN_ON_ONCE_PAGE(!page_has_movable_ops(page), page);
160 	if (PageMovableOpsIsolated(page))
161 		goto out_no_isolated;
162 
163 	mops = page_movable_ops(page);
164 	if (WARN_ON_ONCE(!mops))
165 		goto out_no_isolated;
166 
167 	if (!mops->isolate_page(page, mode))
168 		goto out_no_isolated;
169 
170 	/* Driver shouldn't use the isolated flag */
171 	VM_WARN_ON_ONCE_PAGE(PageMovableOpsIsolated(page), page);
172 	SetPageMovableOpsIsolated(page);
173 	folio_unlock(folio);
174 
175 	return true;
176 
177 out_no_isolated:
178 	folio_unlock(folio);
179 out_putfolio:
180 	folio_put(folio);
181 out:
182 	return false;
183 }
184 
185 /**
186  * putback_movable_ops_page - putback an isolated movable_ops page
187  * @page: The isolated page.
188  *
189  * Putback an isolated movable_ops page.
190  *
191  * After the page was putback, it might get freed instantly.
192  */
putback_movable_ops_page(struct page * page)193 static void putback_movable_ops_page(struct page *page)
194 {
195 	/*
196 	 * TODO: these pages will not be folios in the future. All
197 	 * folio dependencies will have to be removed.
198 	 */
199 	struct folio *folio = page_folio(page);
200 
201 	VM_WARN_ON_ONCE_PAGE(!page_has_movable_ops(page), page);
202 	VM_WARN_ON_ONCE_PAGE(!PageMovableOpsIsolated(page), page);
203 	folio_lock(folio);
204 	page_movable_ops(page)->putback_page(page);
205 	ClearPageMovableOpsIsolated(page);
206 	folio_unlock(folio);
207 	folio_put(folio);
208 }
209 
210 /**
211  * migrate_movable_ops_page - migrate an isolated movable_ops page
212  * @dst: The destination page.
213  * @src: The source page.
214  * @mode: The migration mode.
215  *
216  * Migrate an isolated movable_ops page.
217  *
218  * If the src page was already released by its owner, the src page is
219  * un-isolated (putback) and migration succeeds; the migration core will be the
220  * owner of both pages.
221  *
222  * If the src page was not released by its owner and the migration was
223  * successful, the owner of the src page and the dst page are swapped and
224  * the src page is un-isolated.
225  *
226  * If migration fails, the ownership stays unmodified and the src page
227  * remains isolated: migration may be retried later or the page can be putback.
228  *
229  * TODO: migration core will treat both pages as folios and lock them before
230  * this call to unlock them after this call. Further, the folio refcounts on
231  * src and dst are also released by migration core. These pages will not be
232  * folios in the future, so that must be reworked.
233  *
234  * Returns 0 on success, otherwise a negative error code.
235  */
migrate_movable_ops_page(struct page * dst,struct page * src,enum migrate_mode mode)236 static int migrate_movable_ops_page(struct page *dst, struct page *src,
237 		enum migrate_mode mode)
238 {
239 	int rc;
240 
241 	VM_WARN_ON_ONCE_PAGE(!page_has_movable_ops(src), src);
242 	VM_WARN_ON_ONCE_PAGE(!PageMovableOpsIsolated(src), src);
243 	rc = page_movable_ops(src)->migrate_page(dst, src, mode);
244 	if (!rc)
245 		ClearPageMovableOpsIsolated(src);
246 	return rc;
247 }
248 
249 /*
250  * Put previously isolated pages back onto the appropriate lists
251  * from where they were once taken off for compaction/migration.
252  *
253  * This function shall be used whenever the isolated pageset has been
254  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
255  * and folio_isolate_hugetlb().
256  */
putback_movable_pages(struct list_head * l)257 void putback_movable_pages(struct list_head *l)
258 {
259 	struct folio *folio;
260 	struct folio *folio2;
261 
262 	list_for_each_entry_safe(folio, folio2, l, lru) {
263 		if (unlikely(folio_test_hugetlb(folio))) {
264 			folio_putback_hugetlb(folio);
265 			continue;
266 		}
267 		list_del(&folio->lru);
268 		if (unlikely(page_has_movable_ops(&folio->page))) {
269 			putback_movable_ops_page(&folio->page);
270 		} else {
271 			node_stat_mod_folio(folio, NR_ISOLATED_ANON +
272 					folio_is_file_lru(folio), -folio_nr_pages(folio));
273 			folio_putback_lru(folio);
274 		}
275 	}
276 }
277 
278 /* Must be called with an elevated refcount on the non-hugetlb folio */
isolate_folio_to_list(struct folio * folio,struct list_head * list)279 bool isolate_folio_to_list(struct folio *folio, struct list_head *list)
280 {
281 	if (folio_test_hugetlb(folio))
282 		return folio_isolate_hugetlb(folio, list);
283 
284 	if (page_has_movable_ops(&folio->page)) {
285 		if (!isolate_movable_ops_page(&folio->page,
286 					      ISOLATE_UNEVICTABLE))
287 			return false;
288 	} else {
289 		if (!folio_isolate_lru(folio))
290 			return false;
291 		node_stat_add_folio(folio, NR_ISOLATED_ANON +
292 				    folio_is_file_lru(folio));
293 	}
294 	list_add(&folio->lru, list);
295 	return true;
296 }
297 
try_to_map_unused_to_zeropage(struct page_vma_mapped_walk * pvmw,struct folio * folio,unsigned long idx)298 static bool try_to_map_unused_to_zeropage(struct page_vma_mapped_walk *pvmw,
299 					  struct folio *folio,
300 					  unsigned long idx)
301 {
302 	struct page *page = folio_page(folio, idx);
303 	bool contains_data;
304 	pte_t newpte;
305 	void *addr;
306 
307 	if (PageCompound(page))
308 		return false;
309 	VM_BUG_ON_PAGE(!PageAnon(page), page);
310 	VM_BUG_ON_PAGE(!PageLocked(page), page);
311 	VM_BUG_ON_PAGE(pte_present(ptep_get(pvmw->pte)), page);
312 
313 	if (folio_test_mlocked(folio) || (pvmw->vma->vm_flags & VM_LOCKED) ||
314 	    mm_forbids_zeropage(pvmw->vma->vm_mm))
315 		return false;
316 
317 	/*
318 	 * The pmd entry mapping the old thp was flushed and the pte mapping
319 	 * this subpage has been non present. If the subpage is only zero-filled
320 	 * then map it to the shared zeropage.
321 	 */
322 	addr = kmap_local_page(page);
323 	contains_data = memchr_inv(addr, 0, PAGE_SIZE);
324 	kunmap_local(addr);
325 
326 	if (contains_data)
327 		return false;
328 
329 	newpte = pte_mkspecial(pfn_pte(my_zero_pfn(pvmw->address),
330 					pvmw->vma->vm_page_prot));
331 	set_pte_at(pvmw->vma->vm_mm, pvmw->address, pvmw->pte, newpte);
332 
333 	dec_mm_counter(pvmw->vma->vm_mm, mm_counter(folio));
334 	return true;
335 }
336 
337 struct rmap_walk_arg {
338 	struct folio *folio;
339 	bool map_unused_to_zeropage;
340 };
341 
342 /*
343  * Restore a potential migration pte to a working pte entry
344  */
remove_migration_pte(struct folio * folio,struct vm_area_struct * vma,unsigned long addr,void * arg)345 static bool remove_migration_pte(struct folio *folio,
346 		struct vm_area_struct *vma, unsigned long addr, void *arg)
347 {
348 	struct rmap_walk_arg *rmap_walk_arg = arg;
349 	DEFINE_FOLIO_VMA_WALK(pvmw, rmap_walk_arg->folio, vma, addr, PVMW_SYNC | PVMW_MIGRATION);
350 
351 	while (page_vma_mapped_walk(&pvmw)) {
352 		rmap_t rmap_flags = RMAP_NONE;
353 		pte_t old_pte;
354 		pte_t pte;
355 		swp_entry_t entry;
356 		struct page *new;
357 		unsigned long idx = 0;
358 
359 		/* pgoff is invalid for ksm pages, but they are never large */
360 		if (folio_test_large(folio) && !folio_test_hugetlb(folio))
361 			idx = linear_page_index(vma, pvmw.address) - pvmw.pgoff;
362 		new = folio_page(folio, idx);
363 
364 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
365 		/* PMD-mapped THP migration entry */
366 		if (!pvmw.pte) {
367 			VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
368 					!folio_test_pmd_mappable(folio), folio);
369 			remove_migration_pmd(&pvmw, new);
370 			continue;
371 		}
372 #endif
373 		if (rmap_walk_arg->map_unused_to_zeropage &&
374 		    try_to_map_unused_to_zeropage(&pvmw, folio, idx))
375 			continue;
376 
377 		folio_get(folio);
378 		pte = mk_pte(new, READ_ONCE(vma->vm_page_prot));
379 		old_pte = ptep_get(pvmw.pte);
380 
381 		entry = pte_to_swp_entry(old_pte);
382 		if (!is_migration_entry_young(entry))
383 			pte = pte_mkold(pte);
384 		if (folio_test_dirty(folio) && is_migration_entry_dirty(entry))
385 			pte = pte_mkdirty(pte);
386 		if (pte_swp_soft_dirty(old_pte))
387 			pte = pte_mksoft_dirty(pte);
388 		else
389 			pte = pte_clear_soft_dirty(pte);
390 
391 		if (is_writable_migration_entry(entry))
392 			pte = pte_mkwrite(pte, vma);
393 		else if (pte_swp_uffd_wp(old_pte))
394 			pte = pte_mkuffd_wp(pte);
395 
396 		if (folio_test_anon(folio) && !is_readable_migration_entry(entry))
397 			rmap_flags |= RMAP_EXCLUSIVE;
398 
399 		if (unlikely(is_device_private_page(new))) {
400 			if (pte_write(pte))
401 				entry = make_writable_device_private_entry(
402 							page_to_pfn(new));
403 			else
404 				entry = make_readable_device_private_entry(
405 							page_to_pfn(new));
406 			pte = swp_entry_to_pte(entry);
407 			if (pte_swp_soft_dirty(old_pte))
408 				pte = pte_swp_mksoft_dirty(pte);
409 			if (pte_swp_uffd_wp(old_pte))
410 				pte = pte_swp_mkuffd_wp(pte);
411 		}
412 
413 #ifdef CONFIG_HUGETLB_PAGE
414 		if (folio_test_hugetlb(folio)) {
415 			struct hstate *h = hstate_vma(vma);
416 			unsigned int shift = huge_page_shift(h);
417 			unsigned long psize = huge_page_size(h);
418 
419 			pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
420 			if (folio_test_anon(folio))
421 				hugetlb_add_anon_rmap(folio, vma, pvmw.address,
422 						      rmap_flags);
423 			else
424 				hugetlb_add_file_rmap(folio);
425 			set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte,
426 					psize);
427 		} else
428 #endif
429 		{
430 			if (folio_test_anon(folio))
431 				folio_add_anon_rmap_pte(folio, new, vma,
432 							pvmw.address, rmap_flags);
433 			else
434 				folio_add_file_rmap_pte(folio, new, vma);
435 			set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
436 		}
437 		if (READ_ONCE(vma->vm_flags) & VM_LOCKED)
438 			mlock_drain_local();
439 
440 		trace_remove_migration_pte(pvmw.address, pte_val(pte),
441 					   compound_order(new));
442 
443 		/* No need to invalidate - it was non-present before */
444 		update_mmu_cache(vma, pvmw.address, pvmw.pte);
445 	}
446 
447 	return true;
448 }
449 
450 /*
451  * Get rid of all migration entries and replace them by
452  * references to the indicated page.
453  */
remove_migration_ptes(struct folio * src,struct folio * dst,int flags)454 void remove_migration_ptes(struct folio *src, struct folio *dst, int flags)
455 {
456 	struct rmap_walk_arg rmap_walk_arg = {
457 		.folio = src,
458 		.map_unused_to_zeropage = flags & RMP_USE_SHARED_ZEROPAGE,
459 	};
460 
461 	struct rmap_walk_control rwc = {
462 		.rmap_one = remove_migration_pte,
463 		.arg = &rmap_walk_arg,
464 	};
465 
466 	VM_BUG_ON_FOLIO((flags & RMP_USE_SHARED_ZEROPAGE) && (src != dst), src);
467 
468 	if (flags & RMP_LOCKED)
469 		rmap_walk_locked(dst, &rwc);
470 	else
471 		rmap_walk(dst, &rwc);
472 }
473 
474 /*
475  * Something used the pte of a page under migration. We need to
476  * get to the page and wait until migration is finished.
477  * When we return from this function the fault will be retried.
478  */
migration_entry_wait(struct mm_struct * mm,pmd_t * pmd,unsigned long address)479 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
480 			  unsigned long address)
481 {
482 	spinlock_t *ptl;
483 	pte_t *ptep;
484 	pte_t pte;
485 	swp_entry_t entry;
486 
487 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
488 	if (!ptep)
489 		return;
490 
491 	pte = ptep_get(ptep);
492 	pte_unmap(ptep);
493 
494 	if (!is_swap_pte(pte))
495 		goto out;
496 
497 	entry = pte_to_swp_entry(pte);
498 	if (!is_migration_entry(entry))
499 		goto out;
500 
501 	migration_entry_wait_on_locked(entry, ptl);
502 	return;
503 out:
504 	spin_unlock(ptl);
505 }
506 
507 #ifdef CONFIG_HUGETLB_PAGE
508 /*
509  * The vma read lock must be held upon entry. Holding that lock prevents either
510  * the pte or the ptl from being freed.
511  *
512  * This function will release the vma lock before returning.
513  */
migration_entry_wait_huge(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)514 void migration_entry_wait_huge(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep)
515 {
516 	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), vma->vm_mm, ptep);
517 	pte_t pte;
518 
519 	hugetlb_vma_assert_locked(vma);
520 	spin_lock(ptl);
521 	pte = huge_ptep_get(vma->vm_mm, addr, ptep);
522 
523 	if (unlikely(!is_hugetlb_entry_migration(pte))) {
524 		spin_unlock(ptl);
525 		hugetlb_vma_unlock_read(vma);
526 	} else {
527 		/*
528 		 * If migration entry existed, safe to release vma lock
529 		 * here because the pgtable page won't be freed without the
530 		 * pgtable lock released.  See comment right above pgtable
531 		 * lock release in migration_entry_wait_on_locked().
532 		 */
533 		hugetlb_vma_unlock_read(vma);
534 		migration_entry_wait_on_locked(pte_to_swp_entry(pte), ptl);
535 	}
536 }
537 #endif
538 
539 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
pmd_migration_entry_wait(struct mm_struct * mm,pmd_t * pmd)540 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
541 {
542 	spinlock_t *ptl;
543 
544 	ptl = pmd_lock(mm, pmd);
545 	if (!is_pmd_migration_entry(*pmd))
546 		goto unlock;
547 	migration_entry_wait_on_locked(pmd_to_swp_entry(*pmd), ptl);
548 	return;
549 unlock:
550 	spin_unlock(ptl);
551 }
552 #endif
553 
554 /*
555  * Replace the folio in the mapping.
556  *
557  * The number of remaining references must be:
558  * 1 for anonymous folios without a mapping
559  * 2 for folios with a mapping
560  * 3 for folios with a mapping and the private flag set.
561  */
__folio_migrate_mapping(struct address_space * mapping,struct folio * newfolio,struct folio * folio,int expected_count)562 static int __folio_migrate_mapping(struct address_space *mapping,
563 		struct folio *newfolio, struct folio *folio, int expected_count)
564 {
565 	XA_STATE(xas, &mapping->i_pages, folio_index(folio));
566 	struct swap_cluster_info *ci = NULL;
567 	struct zone *oldzone, *newzone;
568 	int dirty;
569 	long nr = folio_nr_pages(folio);
570 
571 	if (!mapping) {
572 		/* Take off deferred split queue while frozen and memcg set */
573 		if (folio_test_large(folio) &&
574 		    folio_test_large_rmappable(folio)) {
575 			if (!folio_ref_freeze(folio, expected_count))
576 				return -EAGAIN;
577 			folio_unqueue_deferred_split(folio);
578 			folio_ref_unfreeze(folio, expected_count);
579 		}
580 
581 		/* No turning back from here */
582 		newfolio->index = folio->index;
583 		newfolio->mapping = folio->mapping;
584 		if (folio_test_anon(folio) && folio_test_large(folio))
585 			mod_mthp_stat(folio_order(folio), MTHP_STAT_NR_ANON, 1);
586 		if (folio_test_swapbacked(folio))
587 			__folio_set_swapbacked(newfolio);
588 
589 		return 0;
590 	}
591 
592 	oldzone = folio_zone(folio);
593 	newzone = folio_zone(newfolio);
594 
595 	if (folio_test_swapcache(folio))
596 		ci = swap_cluster_get_and_lock_irq(folio);
597 	else
598 		xas_lock_irq(&xas);
599 
600 	if (!folio_ref_freeze(folio, expected_count)) {
601 		if (ci)
602 			swap_cluster_unlock_irq(ci);
603 		else
604 			xas_unlock_irq(&xas);
605 		return -EAGAIN;
606 	}
607 
608 	/* Take off deferred split queue while frozen and memcg set */
609 	folio_unqueue_deferred_split(folio);
610 
611 	/*
612 	 * Now we know that no one else is looking at the folio:
613 	 * no turning back from here.
614 	 */
615 	newfolio->index = folio->index;
616 	newfolio->mapping = folio->mapping;
617 	if (folio_test_anon(folio) && folio_test_large(folio))
618 		mod_mthp_stat(folio_order(folio), MTHP_STAT_NR_ANON, 1);
619 	folio_ref_add(newfolio, nr); /* add cache reference */
620 	if (folio_test_swapbacked(folio))
621 		__folio_set_swapbacked(newfolio);
622 	if (folio_test_swapcache(folio)) {
623 		folio_set_swapcache(newfolio);
624 		newfolio->private = folio_get_private(folio);
625 	}
626 
627 	/* Move dirty while folio refs frozen and newfolio not yet exposed */
628 	dirty = folio_test_dirty(folio);
629 	if (dirty) {
630 		folio_clear_dirty(folio);
631 		folio_set_dirty(newfolio);
632 	}
633 
634 	if (folio_test_swapcache(folio))
635 		__swap_cache_replace_folio(ci, folio, newfolio);
636 	else
637 		xas_store(&xas, newfolio);
638 
639 	/*
640 	 * Drop cache reference from old folio by unfreezing
641 	 * to one less reference.
642 	 * We know this isn't the last reference.
643 	 */
644 	folio_ref_unfreeze(folio, expected_count - nr);
645 
646 	/* Leave irq disabled to prevent preemption while updating stats */
647 	if (ci)
648 		swap_cluster_unlock(ci);
649 	else
650 		xas_unlock(&xas);
651 
652 	/*
653 	 * If moved to a different zone then also account
654 	 * the folio for that zone. Other VM counters will be
655 	 * taken care of when we establish references to the
656 	 * new folio and drop references to the old folio.
657 	 *
658 	 * Note that anonymous folios are accounted for
659 	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
660 	 * are mapped to swap space.
661 	 */
662 	if (newzone != oldzone) {
663 		struct lruvec *old_lruvec, *new_lruvec;
664 		struct mem_cgroup *memcg;
665 
666 		memcg = folio_memcg(folio);
667 		old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
668 		new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
669 
670 		__mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
671 		__mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
672 		if (folio_test_swapbacked(folio) && !folio_test_swapcache(folio)) {
673 			__mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
674 			__mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
675 
676 			if (folio_test_pmd_mappable(folio)) {
677 				__mod_lruvec_state(old_lruvec, NR_SHMEM_THPS, -nr);
678 				__mod_lruvec_state(new_lruvec, NR_SHMEM_THPS, nr);
679 			}
680 		}
681 #ifdef CONFIG_SWAP
682 		if (folio_test_swapcache(folio)) {
683 			__mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr);
684 			__mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr);
685 		}
686 #endif
687 		if (dirty && mapping_can_writeback(mapping)) {
688 			__mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
689 			__mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
690 			__mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
691 			__mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
692 		}
693 	}
694 	local_irq_enable();
695 
696 	return 0;
697 }
698 
folio_migrate_mapping(struct address_space * mapping,struct folio * newfolio,struct folio * folio,int extra_count)699 int folio_migrate_mapping(struct address_space *mapping,
700 		struct folio *newfolio, struct folio *folio, int extra_count)
701 {
702 	int expected_count = folio_expected_ref_count(folio) + extra_count + 1;
703 
704 	if (folio_ref_count(folio) != expected_count)
705 		return -EAGAIN;
706 
707 	return __folio_migrate_mapping(mapping, newfolio, folio, expected_count);
708 }
709 EXPORT_SYMBOL(folio_migrate_mapping);
710 
711 /*
712  * The expected number of remaining references is the same as that
713  * of folio_migrate_mapping().
714  */
migrate_huge_page_move_mapping(struct address_space * mapping,struct folio * dst,struct folio * src)715 int migrate_huge_page_move_mapping(struct address_space *mapping,
716 				   struct folio *dst, struct folio *src)
717 {
718 	XA_STATE(xas, &mapping->i_pages, folio_index(src));
719 	int rc, expected_count = folio_expected_ref_count(src) + 1;
720 
721 	if (folio_ref_count(src) != expected_count)
722 		return -EAGAIN;
723 
724 	rc = folio_mc_copy(dst, src);
725 	if (unlikely(rc))
726 		return rc;
727 
728 	xas_lock_irq(&xas);
729 	if (!folio_ref_freeze(src, expected_count)) {
730 		xas_unlock_irq(&xas);
731 		return -EAGAIN;
732 	}
733 
734 	dst->index = src->index;
735 	dst->mapping = src->mapping;
736 
737 	folio_ref_add(dst, folio_nr_pages(dst));
738 
739 	xas_store(&xas, dst);
740 
741 	folio_ref_unfreeze(src, expected_count - folio_nr_pages(src));
742 
743 	xas_unlock_irq(&xas);
744 
745 	return 0;
746 }
747 
748 /*
749  * Copy the flags and some other ancillary information
750  */
folio_migrate_flags(struct folio * newfolio,struct folio * folio)751 void folio_migrate_flags(struct folio *newfolio, struct folio *folio)
752 {
753 	int cpupid;
754 
755 	if (folio_test_referenced(folio))
756 		folio_set_referenced(newfolio);
757 	if (folio_test_uptodate(folio))
758 		folio_mark_uptodate(newfolio);
759 	if (folio_test_clear_active(folio)) {
760 		VM_BUG_ON_FOLIO(folio_test_unevictable(folio), folio);
761 		folio_set_active(newfolio);
762 	} else if (folio_test_clear_unevictable(folio))
763 		folio_set_unevictable(newfolio);
764 	if (folio_test_workingset(folio))
765 		folio_set_workingset(newfolio);
766 	if (folio_test_checked(folio))
767 		folio_set_checked(newfolio);
768 	/*
769 	 * PG_anon_exclusive (-> PG_mappedtodisk) is always migrated via
770 	 * migration entries. We can still have PG_anon_exclusive set on an
771 	 * effectively unmapped and unreferenced first sub-pages of an
772 	 * anonymous THP: we can simply copy it here via PG_mappedtodisk.
773 	 */
774 	if (folio_test_mappedtodisk(folio))
775 		folio_set_mappedtodisk(newfolio);
776 
777 	/* Move dirty on pages not done by folio_migrate_mapping() */
778 	if (folio_test_dirty(folio))
779 		folio_set_dirty(newfolio);
780 
781 	if (folio_test_young(folio))
782 		folio_set_young(newfolio);
783 	if (folio_test_idle(folio))
784 		folio_set_idle(newfolio);
785 
786 	folio_migrate_refs(newfolio, folio);
787 	/*
788 	 * Copy NUMA information to the new page, to prevent over-eager
789 	 * future migrations of this same page.
790 	 */
791 	cpupid = folio_xchg_last_cpupid(folio, -1);
792 	/*
793 	 * For memory tiering mode, when migrate between slow and fast
794 	 * memory node, reset cpupid, because that is used to record
795 	 * page access time in slow memory node.
796 	 */
797 	if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) {
798 		bool f_toptier = node_is_toptier(folio_nid(folio));
799 		bool t_toptier = node_is_toptier(folio_nid(newfolio));
800 
801 		if (f_toptier != t_toptier)
802 			cpupid = -1;
803 	}
804 	folio_xchg_last_cpupid(newfolio, cpupid);
805 
806 	folio_migrate_ksm(newfolio, folio);
807 	/*
808 	 * Please do not reorder this without considering how mm/ksm.c's
809 	 * ksm_get_folio() depends upon ksm_migrate_page() and the
810 	 * swapcache flag.
811 	 */
812 	if (folio_test_swapcache(folio))
813 		folio_clear_swapcache(folio);
814 	folio_clear_private(folio);
815 
816 	/* page->private contains hugetlb specific flags */
817 	if (!folio_test_hugetlb(folio))
818 		folio->private = NULL;
819 
820 	/*
821 	 * If any waiters have accumulated on the new page then
822 	 * wake them up.
823 	 */
824 	if (folio_test_writeback(newfolio))
825 		folio_end_writeback(newfolio);
826 
827 	/*
828 	 * PG_readahead shares the same bit with PG_reclaim.  The above
829 	 * end_page_writeback() may clear PG_readahead mistakenly, so set the
830 	 * bit after that.
831 	 */
832 	if (folio_test_readahead(folio))
833 		folio_set_readahead(newfolio);
834 
835 	folio_copy_owner(newfolio, folio);
836 	pgalloc_tag_swap(newfolio, folio);
837 
838 	mem_cgroup_migrate(folio, newfolio);
839 }
840 EXPORT_SYMBOL(folio_migrate_flags);
841 
842 /************************************************************
843  *                    Migration functions
844  ***********************************************************/
845 
__migrate_folio(struct address_space * mapping,struct folio * dst,struct folio * src,void * src_private,enum migrate_mode mode)846 static int __migrate_folio(struct address_space *mapping, struct folio *dst,
847 			   struct folio *src, void *src_private,
848 			   enum migrate_mode mode)
849 {
850 	int rc, expected_count = folio_expected_ref_count(src) + 1;
851 
852 	/* Check whether src does not have extra refs before we do more work */
853 	if (folio_ref_count(src) != expected_count)
854 		return -EAGAIN;
855 
856 	rc = folio_mc_copy(dst, src);
857 	if (unlikely(rc))
858 		return rc;
859 
860 	rc = __folio_migrate_mapping(mapping, dst, src, expected_count);
861 	if (rc)
862 		return rc;
863 
864 	if (src_private)
865 		folio_attach_private(dst, folio_detach_private(src));
866 
867 	folio_migrate_flags(dst, src);
868 	return 0;
869 }
870 
871 /**
872  * migrate_folio() - Simple folio migration.
873  * @mapping: The address_space containing the folio.
874  * @dst: The folio to migrate the data to.
875  * @src: The folio containing the current data.
876  * @mode: How to migrate the page.
877  *
878  * Common logic to directly migrate a single LRU folio suitable for
879  * folios that do not have private data.
880  *
881  * Folios are locked upon entry and exit.
882  */
migrate_folio(struct address_space * mapping,struct folio * dst,struct folio * src,enum migrate_mode mode)883 int migrate_folio(struct address_space *mapping, struct folio *dst,
884 		  struct folio *src, enum migrate_mode mode)
885 {
886 	BUG_ON(folio_test_writeback(src));	/* Writeback must be complete */
887 	return __migrate_folio(mapping, dst, src, NULL, mode);
888 }
889 EXPORT_SYMBOL(migrate_folio);
890 
891 #ifdef CONFIG_BUFFER_HEAD
892 /* Returns true if all buffers are successfully locked */
buffer_migrate_lock_buffers(struct buffer_head * head,enum migrate_mode mode)893 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
894 							enum migrate_mode mode)
895 {
896 	struct buffer_head *bh = head;
897 	struct buffer_head *failed_bh;
898 
899 	do {
900 		if (!trylock_buffer(bh)) {
901 			if (mode == MIGRATE_ASYNC)
902 				goto unlock;
903 			if (mode == MIGRATE_SYNC_LIGHT && !buffer_uptodate(bh))
904 				goto unlock;
905 			lock_buffer(bh);
906 		}
907 
908 		bh = bh->b_this_page;
909 	} while (bh != head);
910 
911 	return true;
912 
913 unlock:
914 	/* We failed to lock the buffer and cannot stall. */
915 	failed_bh = bh;
916 	bh = head;
917 	while (bh != failed_bh) {
918 		unlock_buffer(bh);
919 		bh = bh->b_this_page;
920 	}
921 
922 	return false;
923 }
924 
__buffer_migrate_folio(struct address_space * mapping,struct folio * dst,struct folio * src,enum migrate_mode mode,bool check_refs)925 static int __buffer_migrate_folio(struct address_space *mapping,
926 		struct folio *dst, struct folio *src, enum migrate_mode mode,
927 		bool check_refs)
928 {
929 	struct buffer_head *bh, *head;
930 	int rc;
931 	int expected_count;
932 
933 	head = folio_buffers(src);
934 	if (!head)
935 		return migrate_folio(mapping, dst, src, mode);
936 
937 	/* Check whether page does not have extra refs before we do more work */
938 	expected_count = folio_expected_ref_count(src) + 1;
939 	if (folio_ref_count(src) != expected_count)
940 		return -EAGAIN;
941 
942 	if (!buffer_migrate_lock_buffers(head, mode))
943 		return -EAGAIN;
944 
945 	if (check_refs) {
946 		bool busy, migrating;
947 		bool invalidated = false;
948 
949 		migrating = test_and_set_bit_lock(BH_Migrate, &head->b_state);
950 		VM_WARN_ON_ONCE(migrating);
951 recheck_buffers:
952 		busy = false;
953 		spin_lock(&mapping->i_private_lock);
954 		bh = head;
955 		do {
956 			if (atomic_read(&bh->b_count)) {
957 				busy = true;
958 				break;
959 			}
960 			bh = bh->b_this_page;
961 		} while (bh != head);
962 		spin_unlock(&mapping->i_private_lock);
963 		if (busy) {
964 			if (invalidated) {
965 				rc = -EAGAIN;
966 				goto unlock_buffers;
967 			}
968 			invalidate_bh_lrus();
969 			invalidated = true;
970 			goto recheck_buffers;
971 		}
972 	}
973 
974 	rc = filemap_migrate_folio(mapping, dst, src, mode);
975 	if (rc)
976 		goto unlock_buffers;
977 
978 	bh = head;
979 	do {
980 		folio_set_bh(bh, dst, bh_offset(bh));
981 		bh = bh->b_this_page;
982 	} while (bh != head);
983 
984 unlock_buffers:
985 	if (check_refs)
986 		clear_bit_unlock(BH_Migrate, &head->b_state);
987 	bh = head;
988 	do {
989 		unlock_buffer(bh);
990 		bh = bh->b_this_page;
991 	} while (bh != head);
992 
993 	return rc;
994 }
995 
996 /**
997  * buffer_migrate_folio() - Migration function for folios with buffers.
998  * @mapping: The address space containing @src.
999  * @dst: The folio to migrate to.
1000  * @src: The folio to migrate from.
1001  * @mode: How to migrate the folio.
1002  *
1003  * This function can only be used if the underlying filesystem guarantees
1004  * that no other references to @src exist. For example attached buffer
1005  * heads are accessed only under the folio lock.  If your filesystem cannot
1006  * provide this guarantee, buffer_migrate_folio_norefs() may be more
1007  * appropriate.
1008  *
1009  * Return: 0 on success or a negative errno on failure.
1010  */
buffer_migrate_folio(struct address_space * mapping,struct folio * dst,struct folio * src,enum migrate_mode mode)1011 int buffer_migrate_folio(struct address_space *mapping,
1012 		struct folio *dst, struct folio *src, enum migrate_mode mode)
1013 {
1014 	return __buffer_migrate_folio(mapping, dst, src, mode, false);
1015 }
1016 EXPORT_SYMBOL(buffer_migrate_folio);
1017 
1018 /**
1019  * buffer_migrate_folio_norefs() - Migration function for folios with buffers.
1020  * @mapping: The address space containing @src.
1021  * @dst: The folio to migrate to.
1022  * @src: The folio to migrate from.
1023  * @mode: How to migrate the folio.
1024  *
1025  * Like buffer_migrate_folio() except that this variant is more careful
1026  * and checks that there are also no buffer head references. This function
1027  * is the right one for mappings where buffer heads are directly looked
1028  * up and referenced (such as block device mappings).
1029  *
1030  * Return: 0 on success or a negative errno on failure.
1031  */
buffer_migrate_folio_norefs(struct address_space * mapping,struct folio * dst,struct folio * src,enum migrate_mode mode)1032 int buffer_migrate_folio_norefs(struct address_space *mapping,
1033 		struct folio *dst, struct folio *src, enum migrate_mode mode)
1034 {
1035 	return __buffer_migrate_folio(mapping, dst, src, mode, true);
1036 }
1037 EXPORT_SYMBOL_GPL(buffer_migrate_folio_norefs);
1038 #endif /* CONFIG_BUFFER_HEAD */
1039 
filemap_migrate_folio(struct address_space * mapping,struct folio * dst,struct folio * src,enum migrate_mode mode)1040 int filemap_migrate_folio(struct address_space *mapping,
1041 		struct folio *dst, struct folio *src, enum migrate_mode mode)
1042 {
1043 	return __migrate_folio(mapping, dst, src, folio_get_private(src), mode);
1044 }
1045 EXPORT_SYMBOL_GPL(filemap_migrate_folio);
1046 
1047 /*
1048  * Default handling if a filesystem does not provide a migration function.
1049  */
fallback_migrate_folio(struct address_space * mapping,struct folio * dst,struct folio * src,enum migrate_mode mode)1050 static int fallback_migrate_folio(struct address_space *mapping,
1051 		struct folio *dst, struct folio *src, enum migrate_mode mode)
1052 {
1053 	WARN_ONCE(mapping->a_ops->writepages,
1054 			"%ps does not implement migrate_folio\n",
1055 			mapping->a_ops);
1056 	if (folio_test_dirty(src))
1057 		return -EBUSY;
1058 
1059 	/*
1060 	 * Filesystem may have private data at folio->private that we
1061 	 * can't migrate automatically.
1062 	 */
1063 	if (!filemap_release_folio(src, GFP_KERNEL))
1064 		return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
1065 
1066 	return migrate_folio(mapping, dst, src, mode);
1067 }
1068 
1069 /*
1070  * Move a src folio to a newly allocated dst folio.
1071  *
1072  * The src and dst folios are locked and the src folios was unmapped from
1073  * the page tables.
1074  *
1075  * On success, the src folio was replaced by the dst folio.
1076  *
1077  * Return value:
1078  *   < 0 - error code
1079  *     0 - success
1080  */
move_to_new_folio(struct folio * dst,struct folio * src,enum migrate_mode mode)1081 static int move_to_new_folio(struct folio *dst, struct folio *src,
1082 				enum migrate_mode mode)
1083 {
1084 	struct address_space *mapping = folio_mapping(src);
1085 	int rc = -EAGAIN;
1086 
1087 	VM_BUG_ON_FOLIO(!folio_test_locked(src), src);
1088 	VM_BUG_ON_FOLIO(!folio_test_locked(dst), dst);
1089 
1090 	if (!mapping)
1091 		rc = migrate_folio(mapping, dst, src, mode);
1092 	else if (mapping_inaccessible(mapping))
1093 		rc = -EOPNOTSUPP;
1094 	else if (mapping->a_ops->migrate_folio)
1095 		/*
1096 		 * Most folios have a mapping and most filesystems
1097 		 * provide a migrate_folio callback. Anonymous folios
1098 		 * are part of swap space which also has its own
1099 		 * migrate_folio callback. This is the most common path
1100 		 * for page migration.
1101 		 */
1102 		rc = mapping->a_ops->migrate_folio(mapping, dst, src,
1103 							mode);
1104 	else
1105 		rc = fallback_migrate_folio(mapping, dst, src, mode);
1106 
1107 	if (!rc) {
1108 		/*
1109 		 * For pagecache folios, src->mapping must be cleared before src
1110 		 * is freed. Anonymous folios must stay anonymous until freed.
1111 		 */
1112 		if (!folio_test_anon(src))
1113 			src->mapping = NULL;
1114 
1115 		if (likely(!folio_is_zone_device(dst)))
1116 			flush_dcache_folio(dst);
1117 	}
1118 	return rc;
1119 }
1120 
1121 /*
1122  * To record some information during migration, we use unused private
1123  * field of struct folio of the newly allocated destination folio.
1124  * This is safe because nobody is using it except us.
1125  */
1126 enum {
1127 	PAGE_WAS_MAPPED = BIT(0),
1128 	PAGE_WAS_MLOCKED = BIT(1),
1129 	PAGE_OLD_STATES = PAGE_WAS_MAPPED | PAGE_WAS_MLOCKED,
1130 };
1131 
__migrate_folio_record(struct folio * dst,int old_page_state,struct anon_vma * anon_vma)1132 static void __migrate_folio_record(struct folio *dst,
1133 				   int old_page_state,
1134 				   struct anon_vma *anon_vma)
1135 {
1136 	dst->private = (void *)anon_vma + old_page_state;
1137 }
1138 
__migrate_folio_extract(struct folio * dst,int * old_page_state,struct anon_vma ** anon_vmap)1139 static void __migrate_folio_extract(struct folio *dst,
1140 				   int *old_page_state,
1141 				   struct anon_vma **anon_vmap)
1142 {
1143 	unsigned long private = (unsigned long)dst->private;
1144 
1145 	*anon_vmap = (struct anon_vma *)(private & ~PAGE_OLD_STATES);
1146 	*old_page_state = private & PAGE_OLD_STATES;
1147 	dst->private = NULL;
1148 }
1149 
1150 /* Restore the source folio to the original state upon failure */
migrate_folio_undo_src(struct folio * src,int page_was_mapped,struct anon_vma * anon_vma,bool locked,struct list_head * ret)1151 static void migrate_folio_undo_src(struct folio *src,
1152 				   int page_was_mapped,
1153 				   struct anon_vma *anon_vma,
1154 				   bool locked,
1155 				   struct list_head *ret)
1156 {
1157 	if (page_was_mapped)
1158 		remove_migration_ptes(src, src, 0);
1159 	/* Drop an anon_vma reference if we took one */
1160 	if (anon_vma)
1161 		put_anon_vma(anon_vma);
1162 	if (locked)
1163 		folio_unlock(src);
1164 	if (ret)
1165 		list_move_tail(&src->lru, ret);
1166 }
1167 
1168 /* Restore the destination folio to the original state upon failure */
migrate_folio_undo_dst(struct folio * dst,bool locked,free_folio_t put_new_folio,unsigned long private)1169 static void migrate_folio_undo_dst(struct folio *dst, bool locked,
1170 		free_folio_t put_new_folio, unsigned long private)
1171 {
1172 	if (locked)
1173 		folio_unlock(dst);
1174 	if (put_new_folio)
1175 		put_new_folio(dst, private);
1176 	else
1177 		folio_put(dst);
1178 }
1179 
1180 /* Cleanup src folio upon migration success */
migrate_folio_done(struct folio * src,enum migrate_reason reason)1181 static void migrate_folio_done(struct folio *src,
1182 			       enum migrate_reason reason)
1183 {
1184 	if (likely(!page_has_movable_ops(&src->page)) && reason != MR_DEMOTION)
1185 		mod_node_page_state(folio_pgdat(src), NR_ISOLATED_ANON +
1186 				    folio_is_file_lru(src), -folio_nr_pages(src));
1187 
1188 	if (reason != MR_MEMORY_FAILURE)
1189 		/* We release the page in page_handle_poison. */
1190 		folio_put(src);
1191 }
1192 
1193 /* Obtain the lock on page, remove all ptes. */
migrate_folio_unmap(new_folio_t get_new_folio,free_folio_t put_new_folio,unsigned long private,struct folio * src,struct folio ** dstp,enum migrate_mode mode,struct list_head * ret)1194 static int migrate_folio_unmap(new_folio_t get_new_folio,
1195 		free_folio_t put_new_folio, unsigned long private,
1196 		struct folio *src, struct folio **dstp, enum migrate_mode mode,
1197 		struct list_head *ret)
1198 {
1199 	struct folio *dst;
1200 	int rc = -EAGAIN;
1201 	int old_page_state = 0;
1202 	struct anon_vma *anon_vma = NULL;
1203 	bool locked = false;
1204 	bool dst_locked = false;
1205 
1206 	dst = get_new_folio(src, private);
1207 	if (!dst)
1208 		return -ENOMEM;
1209 	*dstp = dst;
1210 
1211 	dst->private = NULL;
1212 
1213 	if (!folio_trylock(src)) {
1214 		if (mode == MIGRATE_ASYNC)
1215 			goto out;
1216 
1217 		/*
1218 		 * It's not safe for direct compaction to call lock_page.
1219 		 * For example, during page readahead pages are added locked
1220 		 * to the LRU. Later, when the IO completes the pages are
1221 		 * marked uptodate and unlocked. However, the queueing
1222 		 * could be merging multiple pages for one bio (e.g.
1223 		 * mpage_readahead). If an allocation happens for the
1224 		 * second or third page, the process can end up locking
1225 		 * the same page twice and deadlocking. Rather than
1226 		 * trying to be clever about what pages can be locked,
1227 		 * avoid the use of lock_page for direct compaction
1228 		 * altogether.
1229 		 */
1230 		if (current->flags & PF_MEMALLOC)
1231 			goto out;
1232 
1233 		/*
1234 		 * In "light" mode, we can wait for transient locks (eg
1235 		 * inserting a page into the page table), but it's not
1236 		 * worth waiting for I/O.
1237 		 */
1238 		if (mode == MIGRATE_SYNC_LIGHT && !folio_test_uptodate(src))
1239 			goto out;
1240 
1241 		folio_lock(src);
1242 	}
1243 	locked = true;
1244 	if (folio_test_mlocked(src))
1245 		old_page_state |= PAGE_WAS_MLOCKED;
1246 
1247 	if (folio_test_writeback(src)) {
1248 		/*
1249 		 * Only in the case of a full synchronous migration is it
1250 		 * necessary to wait for PageWriteback. In the async case,
1251 		 * the retry loop is too short and in the sync-light case,
1252 		 * the overhead of stalling is too much
1253 		 */
1254 		switch (mode) {
1255 		case MIGRATE_SYNC:
1256 			break;
1257 		default:
1258 			rc = -EBUSY;
1259 			goto out;
1260 		}
1261 		folio_wait_writeback(src);
1262 	}
1263 
1264 	/*
1265 	 * By try_to_migrate(), src->mapcount goes down to 0 here. In this case,
1266 	 * we cannot notice that anon_vma is freed while we migrate a page.
1267 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
1268 	 * of migration. File cache pages are no problem because of page_lock()
1269 	 * File Caches may use write_page() or lock_page() in migration, then,
1270 	 * just care Anon page here.
1271 	 *
1272 	 * Only folio_get_anon_vma() understands the subtleties of
1273 	 * getting a hold on an anon_vma from outside one of its mms.
1274 	 * But if we cannot get anon_vma, then we won't need it anyway,
1275 	 * because that implies that the anon page is no longer mapped
1276 	 * (and cannot be remapped so long as we hold the page lock).
1277 	 */
1278 	if (folio_test_anon(src) && !folio_test_ksm(src))
1279 		anon_vma = folio_get_anon_vma(src);
1280 
1281 	/*
1282 	 * Block others from accessing the new page when we get around to
1283 	 * establishing additional references. We are usually the only one
1284 	 * holding a reference to dst at this point. We used to have a BUG
1285 	 * here if folio_trylock(dst) fails, but would like to allow for
1286 	 * cases where there might be a race with the previous use of dst.
1287 	 * This is much like races on refcount of oldpage: just don't BUG().
1288 	 */
1289 	if (unlikely(!folio_trylock(dst)))
1290 		goto out;
1291 	dst_locked = true;
1292 
1293 	if (unlikely(page_has_movable_ops(&src->page))) {
1294 		__migrate_folio_record(dst, old_page_state, anon_vma);
1295 		return 0;
1296 	}
1297 
1298 	/*
1299 	 * Corner case handling:
1300 	 * 1. When a new swap-cache page is read into, it is added to the LRU
1301 	 * and treated as swapcache but it has no rmap yet.
1302 	 * Calling try_to_unmap() against a src->mapping==NULL page will
1303 	 * trigger a BUG.  So handle it here.
1304 	 * 2. An orphaned page (see truncate_cleanup_page) might have
1305 	 * fs-private metadata. The page can be picked up due to memory
1306 	 * offlining.  Everywhere else except page reclaim, the page is
1307 	 * invisible to the vm, so the page can not be migrated.  So try to
1308 	 * free the metadata, so the page can be freed.
1309 	 */
1310 	if (!src->mapping) {
1311 		if (folio_test_private(src)) {
1312 			try_to_free_buffers(src);
1313 			goto out;
1314 		}
1315 	} else if (folio_mapped(src)) {
1316 		/* Establish migration ptes */
1317 		VM_BUG_ON_FOLIO(folio_test_anon(src) &&
1318 			       !folio_test_ksm(src) && !anon_vma, src);
1319 		try_to_migrate(src, mode == MIGRATE_ASYNC ? TTU_BATCH_FLUSH : 0);
1320 		old_page_state |= PAGE_WAS_MAPPED;
1321 	}
1322 
1323 	if (!folio_mapped(src)) {
1324 		__migrate_folio_record(dst, old_page_state, anon_vma);
1325 		return 0;
1326 	}
1327 
1328 out:
1329 	/*
1330 	 * A folio that has not been unmapped will be restored to
1331 	 * right list unless we want to retry.
1332 	 */
1333 	if (rc == -EAGAIN)
1334 		ret = NULL;
1335 
1336 	migrate_folio_undo_src(src, old_page_state & PAGE_WAS_MAPPED,
1337 			       anon_vma, locked, ret);
1338 	migrate_folio_undo_dst(dst, dst_locked, put_new_folio, private);
1339 
1340 	return rc;
1341 }
1342 
1343 /* Migrate the folio to the newly allocated folio in dst. */
migrate_folio_move(free_folio_t put_new_folio,unsigned long private,struct folio * src,struct folio * dst,enum migrate_mode mode,enum migrate_reason reason,struct list_head * ret)1344 static int migrate_folio_move(free_folio_t put_new_folio, unsigned long private,
1345 			      struct folio *src, struct folio *dst,
1346 			      enum migrate_mode mode, enum migrate_reason reason,
1347 			      struct list_head *ret)
1348 {
1349 	int rc;
1350 	int old_page_state = 0;
1351 	struct anon_vma *anon_vma = NULL;
1352 	struct list_head *prev;
1353 
1354 	__migrate_folio_extract(dst, &old_page_state, &anon_vma);
1355 	prev = dst->lru.prev;
1356 	list_del(&dst->lru);
1357 
1358 	if (unlikely(page_has_movable_ops(&src->page))) {
1359 		rc = migrate_movable_ops_page(&dst->page, &src->page, mode);
1360 		if (rc)
1361 			goto out;
1362 		goto out_unlock_both;
1363 	}
1364 
1365 	rc = move_to_new_folio(dst, src, mode);
1366 	if (rc)
1367 		goto out;
1368 
1369 	/*
1370 	 * When successful, push dst to LRU immediately: so that if it
1371 	 * turns out to be an mlocked page, remove_migration_ptes() will
1372 	 * automatically build up the correct dst->mlock_count for it.
1373 	 *
1374 	 * We would like to do something similar for the old page, when
1375 	 * unsuccessful, and other cases when a page has been temporarily
1376 	 * isolated from the unevictable LRU: but this case is the easiest.
1377 	 */
1378 	folio_add_lru(dst);
1379 	if (old_page_state & PAGE_WAS_MLOCKED)
1380 		lru_add_drain();
1381 
1382 	if (old_page_state & PAGE_WAS_MAPPED)
1383 		remove_migration_ptes(src, dst, 0);
1384 
1385 out_unlock_both:
1386 	folio_unlock(dst);
1387 	folio_set_owner_migrate_reason(dst, reason);
1388 	/*
1389 	 * If migration is successful, decrease refcount of dst,
1390 	 * which will not free the page because new page owner increased
1391 	 * refcounter.
1392 	 */
1393 	folio_put(dst);
1394 
1395 	/*
1396 	 * A folio that has been migrated has all references removed
1397 	 * and will be freed.
1398 	 */
1399 	list_del(&src->lru);
1400 	/* Drop an anon_vma reference if we took one */
1401 	if (anon_vma)
1402 		put_anon_vma(anon_vma);
1403 	folio_unlock(src);
1404 	migrate_folio_done(src, reason);
1405 
1406 	return rc;
1407 out:
1408 	/*
1409 	 * A folio that has not been migrated will be restored to
1410 	 * right list unless we want to retry.
1411 	 */
1412 	if (rc == -EAGAIN) {
1413 		list_add(&dst->lru, prev);
1414 		__migrate_folio_record(dst, old_page_state, anon_vma);
1415 		return rc;
1416 	}
1417 
1418 	migrate_folio_undo_src(src, old_page_state & PAGE_WAS_MAPPED,
1419 			       anon_vma, true, ret);
1420 	migrate_folio_undo_dst(dst, true, put_new_folio, private);
1421 
1422 	return rc;
1423 }
1424 
1425 /*
1426  * Counterpart of unmap_and_move_page() for hugepage migration.
1427  *
1428  * This function doesn't wait the completion of hugepage I/O
1429  * because there is no race between I/O and migration for hugepage.
1430  * Note that currently hugepage I/O occurs only in direct I/O
1431  * where no lock is held and PG_writeback is irrelevant,
1432  * and writeback status of all subpages are counted in the reference
1433  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1434  * under direct I/O, the reference of the head page is 512 and a bit more.)
1435  * This means that when we try to migrate hugepage whose subpages are
1436  * doing direct I/O, some references remain after try_to_unmap() and
1437  * hugepage migration fails without data corruption.
1438  *
1439  * There is also no race when direct I/O is issued on the page under migration,
1440  * because then pte is replaced with migration swap entry and direct I/O code
1441  * will wait in the page fault for migration to complete.
1442  */
unmap_and_move_huge_page(new_folio_t get_new_folio,free_folio_t put_new_folio,unsigned long private,struct folio * src,int force,enum migrate_mode mode,int reason,struct list_head * ret)1443 static int unmap_and_move_huge_page(new_folio_t get_new_folio,
1444 		free_folio_t put_new_folio, unsigned long private,
1445 		struct folio *src, int force, enum migrate_mode mode,
1446 		int reason, struct list_head *ret)
1447 {
1448 	struct folio *dst;
1449 	int rc = -EAGAIN;
1450 	int page_was_mapped = 0;
1451 	struct anon_vma *anon_vma = NULL;
1452 	struct address_space *mapping = NULL;
1453 
1454 	if (folio_ref_count(src) == 1) {
1455 		/* page was freed from under us. So we are done. */
1456 		folio_putback_hugetlb(src);
1457 		return 0;
1458 	}
1459 
1460 	dst = get_new_folio(src, private);
1461 	if (!dst)
1462 		return -ENOMEM;
1463 
1464 	if (!folio_trylock(src)) {
1465 		if (!force)
1466 			goto out;
1467 		switch (mode) {
1468 		case MIGRATE_SYNC:
1469 			break;
1470 		default:
1471 			goto out;
1472 		}
1473 		folio_lock(src);
1474 	}
1475 
1476 	/*
1477 	 * Check for pages which are in the process of being freed.  Without
1478 	 * folio_mapping() set, hugetlbfs specific move page routine will not
1479 	 * be called and we could leak usage counts for subpools.
1480 	 */
1481 	if (hugetlb_folio_subpool(src) && !folio_mapping(src)) {
1482 		rc = -EBUSY;
1483 		goto out_unlock;
1484 	}
1485 
1486 	if (folio_test_anon(src))
1487 		anon_vma = folio_get_anon_vma(src);
1488 
1489 	if (unlikely(!folio_trylock(dst)))
1490 		goto put_anon;
1491 
1492 	if (folio_mapped(src)) {
1493 		enum ttu_flags ttu = 0;
1494 
1495 		if (!folio_test_anon(src)) {
1496 			/*
1497 			 * In shared mappings, try_to_unmap could potentially
1498 			 * call huge_pmd_unshare.  Because of this, take
1499 			 * semaphore in write mode here and set TTU_RMAP_LOCKED
1500 			 * to let lower levels know we have taken the lock.
1501 			 */
1502 			mapping = hugetlb_folio_mapping_lock_write(src);
1503 			if (unlikely(!mapping))
1504 				goto unlock_put_anon;
1505 
1506 			ttu = TTU_RMAP_LOCKED;
1507 		}
1508 
1509 		try_to_migrate(src, ttu);
1510 		page_was_mapped = 1;
1511 
1512 		if (ttu & TTU_RMAP_LOCKED)
1513 			i_mmap_unlock_write(mapping);
1514 	}
1515 
1516 	if (!folio_mapped(src))
1517 		rc = move_to_new_folio(dst, src, mode);
1518 
1519 	if (page_was_mapped)
1520 		remove_migration_ptes(src, !rc ? dst : src, 0);
1521 
1522 unlock_put_anon:
1523 	folio_unlock(dst);
1524 
1525 put_anon:
1526 	if (anon_vma)
1527 		put_anon_vma(anon_vma);
1528 
1529 	if (!rc) {
1530 		move_hugetlb_state(src, dst, reason);
1531 		put_new_folio = NULL;
1532 	}
1533 
1534 out_unlock:
1535 	folio_unlock(src);
1536 out:
1537 	if (!rc)
1538 		folio_putback_hugetlb(src);
1539 	else if (rc != -EAGAIN)
1540 		list_move_tail(&src->lru, ret);
1541 
1542 	/*
1543 	 * If migration was not successful and there's a freeing callback,
1544 	 * return the folio to that special allocator. Otherwise, simply drop
1545 	 * our additional reference.
1546 	 */
1547 	if (put_new_folio)
1548 		put_new_folio(dst, private);
1549 	else
1550 		folio_put(dst);
1551 
1552 	return rc;
1553 }
1554 
try_split_folio(struct folio * folio,struct list_head * split_folios,enum migrate_mode mode)1555 static inline int try_split_folio(struct folio *folio, struct list_head *split_folios,
1556 				  enum migrate_mode mode)
1557 {
1558 	int rc;
1559 
1560 	if (mode == MIGRATE_ASYNC) {
1561 		if (!folio_trylock(folio))
1562 			return -EAGAIN;
1563 	} else {
1564 		folio_lock(folio);
1565 	}
1566 	rc = split_folio_to_list(folio, split_folios);
1567 	folio_unlock(folio);
1568 	if (!rc)
1569 		list_move_tail(&folio->lru, split_folios);
1570 
1571 	return rc;
1572 }
1573 
1574 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1575 #define NR_MAX_BATCHED_MIGRATION	HPAGE_PMD_NR
1576 #else
1577 #define NR_MAX_BATCHED_MIGRATION	512
1578 #endif
1579 #define NR_MAX_MIGRATE_PAGES_RETRY	10
1580 #define NR_MAX_MIGRATE_ASYNC_RETRY	3
1581 #define NR_MAX_MIGRATE_SYNC_RETRY					\
1582 	(NR_MAX_MIGRATE_PAGES_RETRY - NR_MAX_MIGRATE_ASYNC_RETRY)
1583 
1584 struct migrate_pages_stats {
1585 	int nr_succeeded;	/* Normal and large folios migrated successfully, in
1586 				   units of base pages */
1587 	int nr_failed_pages;	/* Normal and large folios failed to be migrated, in
1588 				   units of base pages.  Untried folios aren't counted */
1589 	int nr_thp_succeeded;	/* THP migrated successfully */
1590 	int nr_thp_failed;	/* THP failed to be migrated */
1591 	int nr_thp_split;	/* THP split before migrating */
1592 	int nr_split;	/* Large folio (include THP) split before migrating */
1593 };
1594 
1595 /*
1596  * Returns the number of hugetlb folios that were not migrated, or an error code
1597  * after NR_MAX_MIGRATE_PAGES_RETRY attempts or if no hugetlb folios are movable
1598  * any more because the list has become empty or no retryable hugetlb folios
1599  * exist any more. It is caller's responsibility to call putback_movable_pages()
1600  * only if ret != 0.
1601  */
migrate_hugetlbs(struct list_head * from,new_folio_t get_new_folio,free_folio_t put_new_folio,unsigned long private,enum migrate_mode mode,int reason,struct migrate_pages_stats * stats,struct list_head * ret_folios)1602 static int migrate_hugetlbs(struct list_head *from, new_folio_t get_new_folio,
1603 			    free_folio_t put_new_folio, unsigned long private,
1604 			    enum migrate_mode mode, int reason,
1605 			    struct migrate_pages_stats *stats,
1606 			    struct list_head *ret_folios)
1607 {
1608 	int retry = 1;
1609 	int nr_failed = 0;
1610 	int nr_retry_pages = 0;
1611 	int pass = 0;
1612 	struct folio *folio, *folio2;
1613 	int rc, nr_pages;
1614 
1615 	for (pass = 0; pass < NR_MAX_MIGRATE_PAGES_RETRY && retry; pass++) {
1616 		retry = 0;
1617 		nr_retry_pages = 0;
1618 
1619 		list_for_each_entry_safe(folio, folio2, from, lru) {
1620 			if (!folio_test_hugetlb(folio))
1621 				continue;
1622 
1623 			nr_pages = folio_nr_pages(folio);
1624 
1625 			cond_resched();
1626 
1627 			/*
1628 			 * Migratability of hugepages depends on architectures and
1629 			 * their size.  This check is necessary because some callers
1630 			 * of hugepage migration like soft offline and memory
1631 			 * hotremove don't walk through page tables or check whether
1632 			 * the hugepage is pmd-based or not before kicking migration.
1633 			 */
1634 			if (!hugepage_migration_supported(folio_hstate(folio))) {
1635 				nr_failed++;
1636 				stats->nr_failed_pages += nr_pages;
1637 				list_move_tail(&folio->lru, ret_folios);
1638 				continue;
1639 			}
1640 
1641 			rc = unmap_and_move_huge_page(get_new_folio,
1642 						      put_new_folio, private,
1643 						      folio, pass > 2, mode,
1644 						      reason, ret_folios);
1645 			/*
1646 			 * The rules are:
1647 			 *	0: hugetlb folio will be put back
1648 			 *	-EAGAIN: stay on the from list
1649 			 *	-ENOMEM: stay on the from list
1650 			 *	Other errno: put on ret_folios list
1651 			 */
1652 			switch(rc) {
1653 			case -ENOMEM:
1654 				/*
1655 				 * When memory is low, don't bother to try to migrate
1656 				 * other folios, just exit.
1657 				 */
1658 				stats->nr_failed_pages += nr_pages + nr_retry_pages;
1659 				return -ENOMEM;
1660 			case -EAGAIN:
1661 				retry++;
1662 				nr_retry_pages += nr_pages;
1663 				break;
1664 			case 0:
1665 				stats->nr_succeeded += nr_pages;
1666 				break;
1667 			default:
1668 				/*
1669 				 * Permanent failure (-EBUSY, etc.):
1670 				 * unlike -EAGAIN case, the failed folio is
1671 				 * removed from migration folio list and not
1672 				 * retried in the next outer loop.
1673 				 */
1674 				nr_failed++;
1675 				stats->nr_failed_pages += nr_pages;
1676 				break;
1677 			}
1678 		}
1679 	}
1680 	/*
1681 	 * nr_failed is number of hugetlb folios failed to be migrated.  After
1682 	 * NR_MAX_MIGRATE_PAGES_RETRY attempts, give up and count retried hugetlb
1683 	 * folios as failed.
1684 	 */
1685 	nr_failed += retry;
1686 	stats->nr_failed_pages += nr_retry_pages;
1687 
1688 	return nr_failed;
1689 }
1690 
migrate_folios_move(struct list_head * src_folios,struct list_head * dst_folios,free_folio_t put_new_folio,unsigned long private,enum migrate_mode mode,int reason,struct list_head * ret_folios,struct migrate_pages_stats * stats,int * retry,int * thp_retry,int * nr_failed,int * nr_retry_pages)1691 static void migrate_folios_move(struct list_head *src_folios,
1692 		struct list_head *dst_folios,
1693 		free_folio_t put_new_folio, unsigned long private,
1694 		enum migrate_mode mode, int reason,
1695 		struct list_head *ret_folios,
1696 		struct migrate_pages_stats *stats,
1697 		int *retry, int *thp_retry, int *nr_failed,
1698 		int *nr_retry_pages)
1699 {
1700 	struct folio *folio, *folio2, *dst, *dst2;
1701 	bool is_thp;
1702 	int nr_pages;
1703 	int rc;
1704 
1705 	dst = list_first_entry(dst_folios, struct folio, lru);
1706 	dst2 = list_next_entry(dst, lru);
1707 	list_for_each_entry_safe(folio, folio2, src_folios, lru) {
1708 		is_thp = folio_test_large(folio) && folio_test_pmd_mappable(folio);
1709 		nr_pages = folio_nr_pages(folio);
1710 
1711 		cond_resched();
1712 
1713 		rc = migrate_folio_move(put_new_folio, private,
1714 				folio, dst, mode,
1715 				reason, ret_folios);
1716 		/*
1717 		 * The rules are:
1718 		 *	0: folio will be freed
1719 		 *	-EAGAIN: stay on the unmap_folios list
1720 		 *	Other errno: put on ret_folios list
1721 		 */
1722 		switch (rc) {
1723 		case -EAGAIN:
1724 			*retry += 1;
1725 			*thp_retry += is_thp;
1726 			*nr_retry_pages += nr_pages;
1727 			break;
1728 		case 0:
1729 			stats->nr_succeeded += nr_pages;
1730 			stats->nr_thp_succeeded += is_thp;
1731 			break;
1732 		default:
1733 			*nr_failed += 1;
1734 			stats->nr_thp_failed += is_thp;
1735 			stats->nr_failed_pages += nr_pages;
1736 			break;
1737 		}
1738 		dst = dst2;
1739 		dst2 = list_next_entry(dst, lru);
1740 	}
1741 }
1742 
migrate_folios_undo(struct list_head * src_folios,struct list_head * dst_folios,free_folio_t put_new_folio,unsigned long private,struct list_head * ret_folios)1743 static void migrate_folios_undo(struct list_head *src_folios,
1744 		struct list_head *dst_folios,
1745 		free_folio_t put_new_folio, unsigned long private,
1746 		struct list_head *ret_folios)
1747 {
1748 	struct folio *folio, *folio2, *dst, *dst2;
1749 
1750 	dst = list_first_entry(dst_folios, struct folio, lru);
1751 	dst2 = list_next_entry(dst, lru);
1752 	list_for_each_entry_safe(folio, folio2, src_folios, lru) {
1753 		int old_page_state = 0;
1754 		struct anon_vma *anon_vma = NULL;
1755 
1756 		__migrate_folio_extract(dst, &old_page_state, &anon_vma);
1757 		migrate_folio_undo_src(folio, old_page_state & PAGE_WAS_MAPPED,
1758 				anon_vma, true, ret_folios);
1759 		list_del(&dst->lru);
1760 		migrate_folio_undo_dst(dst, true, put_new_folio, private);
1761 		dst = dst2;
1762 		dst2 = list_next_entry(dst, lru);
1763 	}
1764 }
1765 
1766 /*
1767  * migrate_pages_batch() first unmaps folios in the from list as many as
1768  * possible, then move the unmapped folios.
1769  *
1770  * We only batch migration if mode == MIGRATE_ASYNC to avoid to wait a
1771  * lock or bit when we have locked more than one folio.  Which may cause
1772  * deadlock (e.g., for loop device).  So, if mode != MIGRATE_ASYNC, the
1773  * length of the from list must be <= 1.
1774  */
migrate_pages_batch(struct list_head * from,new_folio_t get_new_folio,free_folio_t put_new_folio,unsigned long private,enum migrate_mode mode,int reason,struct list_head * ret_folios,struct list_head * split_folios,struct migrate_pages_stats * stats,int nr_pass)1775 static int migrate_pages_batch(struct list_head *from,
1776 		new_folio_t get_new_folio, free_folio_t put_new_folio,
1777 		unsigned long private, enum migrate_mode mode, int reason,
1778 		struct list_head *ret_folios, struct list_head *split_folios,
1779 		struct migrate_pages_stats *stats, int nr_pass)
1780 {
1781 	int retry = 1;
1782 	int thp_retry = 1;
1783 	int nr_failed = 0;
1784 	int nr_retry_pages = 0;
1785 	int pass = 0;
1786 	bool is_thp = false;
1787 	bool is_large = false;
1788 	struct folio *folio, *folio2, *dst = NULL;
1789 	int rc, rc_saved = 0, nr_pages;
1790 	LIST_HEAD(unmap_folios);
1791 	LIST_HEAD(dst_folios);
1792 	bool nosplit = (reason == MR_NUMA_MISPLACED);
1793 
1794 	VM_WARN_ON_ONCE(mode != MIGRATE_ASYNC &&
1795 			!list_empty(from) && !list_is_singular(from));
1796 
1797 	for (pass = 0; pass < nr_pass && retry; pass++) {
1798 		retry = 0;
1799 		thp_retry = 0;
1800 		nr_retry_pages = 0;
1801 
1802 		list_for_each_entry_safe(folio, folio2, from, lru) {
1803 			is_large = folio_test_large(folio);
1804 			is_thp = folio_test_pmd_mappable(folio);
1805 			nr_pages = folio_nr_pages(folio);
1806 
1807 			cond_resched();
1808 
1809 			/*
1810 			 * The rare folio on the deferred split list should
1811 			 * be split now. It should not count as a failure:
1812 			 * but increment nr_failed because, without doing so,
1813 			 * migrate_pages() may report success with (split but
1814 			 * unmigrated) pages still on its fromlist; whereas it
1815 			 * always reports success when its fromlist is empty.
1816 			 * stats->nr_thp_failed should be increased too,
1817 			 * otherwise stats inconsistency will happen when
1818 			 * migrate_pages_batch is called via migrate_pages()
1819 			 * with MIGRATE_SYNC and MIGRATE_ASYNC.
1820 			 *
1821 			 * Only check it without removing it from the list.
1822 			 * Since the folio can be on deferred_split_scan()
1823 			 * local list and removing it can cause the local list
1824 			 * corruption. Folio split process below can handle it
1825 			 * with the help of folio_ref_freeze().
1826 			 *
1827 			 * nr_pages > 2 is needed to avoid checking order-1
1828 			 * page cache folios. They exist, in contrast to
1829 			 * non-existent order-1 anonymous folios, and do not
1830 			 * use _deferred_list.
1831 			 */
1832 			if (nr_pages > 2 &&
1833 			   !list_empty(&folio->_deferred_list) &&
1834 			   folio_test_partially_mapped(folio)) {
1835 				if (!try_split_folio(folio, split_folios, mode)) {
1836 					nr_failed++;
1837 					stats->nr_thp_failed += is_thp;
1838 					stats->nr_thp_split += is_thp;
1839 					stats->nr_split++;
1840 					continue;
1841 				}
1842 			}
1843 
1844 			/*
1845 			 * Large folio migration might be unsupported or
1846 			 * the allocation might be failed so we should retry
1847 			 * on the same folio with the large folio split
1848 			 * to normal folios.
1849 			 *
1850 			 * Split folios are put in split_folios, and
1851 			 * we will migrate them after the rest of the
1852 			 * list is processed.
1853 			 */
1854 			if (!thp_migration_supported() && is_thp) {
1855 				nr_failed++;
1856 				stats->nr_thp_failed++;
1857 				if (!try_split_folio(folio, split_folios, mode)) {
1858 					stats->nr_thp_split++;
1859 					stats->nr_split++;
1860 					continue;
1861 				}
1862 				stats->nr_failed_pages += nr_pages;
1863 				list_move_tail(&folio->lru, ret_folios);
1864 				continue;
1865 			}
1866 
1867 			/*
1868 			 * If we are holding the last folio reference, the folio
1869 			 * was freed from under us, so just drop our reference.
1870 			 */
1871 			if (likely(!page_has_movable_ops(&folio->page)) &&
1872 			    folio_ref_count(folio) == 1) {
1873 				folio_clear_active(folio);
1874 				folio_clear_unevictable(folio);
1875 				list_del(&folio->lru);
1876 				migrate_folio_done(folio, reason);
1877 				stats->nr_succeeded += nr_pages;
1878 				stats->nr_thp_succeeded += is_thp;
1879 				continue;
1880 			}
1881 
1882 			rc = migrate_folio_unmap(get_new_folio, put_new_folio,
1883 					private, folio, &dst, mode, ret_folios);
1884 			/*
1885 			 * The rules are:
1886 			 *	0: folio will be put on unmap_folios list,
1887 			 *	   dst folio put on dst_folios list
1888 			 *	-EAGAIN: stay on the from list
1889 			 *	-ENOMEM: stay on the from list
1890 			 *	Other errno: put on ret_folios list
1891 			 */
1892 			switch(rc) {
1893 			case -ENOMEM:
1894 				/*
1895 				 * When memory is low, don't bother to try to migrate
1896 				 * other folios, move unmapped folios, then exit.
1897 				 */
1898 				nr_failed++;
1899 				stats->nr_thp_failed += is_thp;
1900 				/* Large folio NUMA faulting doesn't split to retry. */
1901 				if (is_large && !nosplit) {
1902 					int ret = try_split_folio(folio, split_folios, mode);
1903 
1904 					if (!ret) {
1905 						stats->nr_thp_split += is_thp;
1906 						stats->nr_split++;
1907 						break;
1908 					} else if (reason == MR_LONGTERM_PIN &&
1909 						   ret == -EAGAIN) {
1910 						/*
1911 						 * Try again to split large folio to
1912 						 * mitigate the failure of longterm pinning.
1913 						 */
1914 						retry++;
1915 						thp_retry += is_thp;
1916 						nr_retry_pages += nr_pages;
1917 						/* Undo duplicated failure counting. */
1918 						nr_failed--;
1919 						stats->nr_thp_failed -= is_thp;
1920 						break;
1921 					}
1922 				}
1923 
1924 				stats->nr_failed_pages += nr_pages + nr_retry_pages;
1925 				/* nr_failed isn't updated for not used */
1926 				stats->nr_thp_failed += thp_retry;
1927 				rc_saved = rc;
1928 				if (list_empty(&unmap_folios))
1929 					goto out;
1930 				else
1931 					goto move;
1932 			case -EAGAIN:
1933 				retry++;
1934 				thp_retry += is_thp;
1935 				nr_retry_pages += nr_pages;
1936 				break;
1937 			case 0:
1938 				list_move_tail(&folio->lru, &unmap_folios);
1939 				list_add_tail(&dst->lru, &dst_folios);
1940 				break;
1941 			default:
1942 				/*
1943 				 * Permanent failure (-EBUSY, etc.):
1944 				 * unlike -EAGAIN case, the failed folio is
1945 				 * removed from migration folio list and not
1946 				 * retried in the next outer loop.
1947 				 */
1948 				nr_failed++;
1949 				stats->nr_thp_failed += is_thp;
1950 				stats->nr_failed_pages += nr_pages;
1951 				break;
1952 			}
1953 		}
1954 	}
1955 	nr_failed += retry;
1956 	stats->nr_thp_failed += thp_retry;
1957 	stats->nr_failed_pages += nr_retry_pages;
1958 move:
1959 	/* Flush TLBs for all unmapped folios */
1960 	try_to_unmap_flush();
1961 
1962 	retry = 1;
1963 	for (pass = 0; pass < nr_pass && retry; pass++) {
1964 		retry = 0;
1965 		thp_retry = 0;
1966 		nr_retry_pages = 0;
1967 
1968 		/* Move the unmapped folios */
1969 		migrate_folios_move(&unmap_folios, &dst_folios,
1970 				put_new_folio, private, mode, reason,
1971 				ret_folios, stats, &retry, &thp_retry,
1972 				&nr_failed, &nr_retry_pages);
1973 	}
1974 	nr_failed += retry;
1975 	stats->nr_thp_failed += thp_retry;
1976 	stats->nr_failed_pages += nr_retry_pages;
1977 
1978 	rc = rc_saved ? : nr_failed;
1979 out:
1980 	/* Cleanup remaining folios */
1981 	migrate_folios_undo(&unmap_folios, &dst_folios,
1982 			put_new_folio, private, ret_folios);
1983 
1984 	return rc;
1985 }
1986 
migrate_pages_sync(struct list_head * from,new_folio_t get_new_folio,free_folio_t put_new_folio,unsigned long private,enum migrate_mode mode,int reason,struct list_head * ret_folios,struct list_head * split_folios,struct migrate_pages_stats * stats)1987 static int migrate_pages_sync(struct list_head *from, new_folio_t get_new_folio,
1988 		free_folio_t put_new_folio, unsigned long private,
1989 		enum migrate_mode mode, int reason,
1990 		struct list_head *ret_folios, struct list_head *split_folios,
1991 		struct migrate_pages_stats *stats)
1992 {
1993 	int rc, nr_failed = 0;
1994 	LIST_HEAD(folios);
1995 	struct migrate_pages_stats astats;
1996 
1997 	memset(&astats, 0, sizeof(astats));
1998 	/* Try to migrate in batch with MIGRATE_ASYNC mode firstly */
1999 	rc = migrate_pages_batch(from, get_new_folio, put_new_folio, private, MIGRATE_ASYNC,
2000 				 reason, &folios, split_folios, &astats,
2001 				 NR_MAX_MIGRATE_ASYNC_RETRY);
2002 	stats->nr_succeeded += astats.nr_succeeded;
2003 	stats->nr_thp_succeeded += astats.nr_thp_succeeded;
2004 	stats->nr_thp_split += astats.nr_thp_split;
2005 	stats->nr_split += astats.nr_split;
2006 	if (rc < 0) {
2007 		stats->nr_failed_pages += astats.nr_failed_pages;
2008 		stats->nr_thp_failed += astats.nr_thp_failed;
2009 		list_splice_tail(&folios, ret_folios);
2010 		return rc;
2011 	}
2012 	stats->nr_thp_failed += astats.nr_thp_split;
2013 	/*
2014 	 * Do not count rc, as pages will be retried below.
2015 	 * Count nr_split only, since it includes nr_thp_split.
2016 	 */
2017 	nr_failed += astats.nr_split;
2018 	/*
2019 	 * Fall back to migrate all failed folios one by one synchronously. All
2020 	 * failed folios except split THPs will be retried, so their failure
2021 	 * isn't counted
2022 	 */
2023 	list_splice_tail_init(&folios, from);
2024 	while (!list_empty(from)) {
2025 		list_move(from->next, &folios);
2026 		rc = migrate_pages_batch(&folios, get_new_folio, put_new_folio,
2027 					 private, mode, reason, ret_folios,
2028 					 split_folios, stats, NR_MAX_MIGRATE_SYNC_RETRY);
2029 		list_splice_tail_init(&folios, ret_folios);
2030 		if (rc < 0)
2031 			return rc;
2032 		nr_failed += rc;
2033 	}
2034 
2035 	return nr_failed;
2036 }
2037 
2038 /*
2039  * migrate_pages - migrate the folios specified in a list, to the free folios
2040  *		   supplied as the target for the page migration
2041  *
2042  * @from:		The list of folios to be migrated.
2043  * @get_new_folio:	The function used to allocate free folios to be used
2044  *			as the target of the folio migration.
2045  * @put_new_folio:	The function used to free target folios if migration
2046  *			fails, or NULL if no special handling is necessary.
2047  * @private:		Private data to be passed on to get_new_folio()
2048  * @mode:		The migration mode that specifies the constraints for
2049  *			folio migration, if any.
2050  * @reason:		The reason for folio migration.
2051  * @ret_succeeded:	Set to the number of folios migrated successfully if
2052  *			the caller passes a non-NULL pointer.
2053  *
2054  * The function returns after NR_MAX_MIGRATE_PAGES_RETRY attempts or if no folios
2055  * are movable any more because the list has become empty or no retryable folios
2056  * exist any more. It is caller's responsibility to call putback_movable_pages()
2057  * only if ret != 0.
2058  *
2059  * Returns the number of {normal folio, large folio, hugetlb} that were not
2060  * migrated, or an error code. The number of large folio splits will be
2061  * considered as the number of non-migrated large folio, no matter how many
2062  * split folios of the large folio are migrated successfully.
2063  */
migrate_pages(struct list_head * from,new_folio_t get_new_folio,free_folio_t put_new_folio,unsigned long private,enum migrate_mode mode,int reason,unsigned int * ret_succeeded)2064 int migrate_pages(struct list_head *from, new_folio_t get_new_folio,
2065 		free_folio_t put_new_folio, unsigned long private,
2066 		enum migrate_mode mode, int reason, unsigned int *ret_succeeded)
2067 {
2068 	int rc, rc_gather;
2069 	int nr_pages;
2070 	struct folio *folio, *folio2;
2071 	LIST_HEAD(folios);
2072 	LIST_HEAD(ret_folios);
2073 	LIST_HEAD(split_folios);
2074 	struct migrate_pages_stats stats;
2075 
2076 	trace_mm_migrate_pages_start(mode, reason);
2077 
2078 	memset(&stats, 0, sizeof(stats));
2079 
2080 	rc_gather = migrate_hugetlbs(from, get_new_folio, put_new_folio, private,
2081 				     mode, reason, &stats, &ret_folios);
2082 	if (rc_gather < 0)
2083 		goto out;
2084 
2085 again:
2086 	nr_pages = 0;
2087 	list_for_each_entry_safe(folio, folio2, from, lru) {
2088 		/* Retried hugetlb folios will be kept in list  */
2089 		if (folio_test_hugetlb(folio)) {
2090 			list_move_tail(&folio->lru, &ret_folios);
2091 			continue;
2092 		}
2093 
2094 		nr_pages += folio_nr_pages(folio);
2095 		if (nr_pages >= NR_MAX_BATCHED_MIGRATION)
2096 			break;
2097 	}
2098 	if (nr_pages >= NR_MAX_BATCHED_MIGRATION)
2099 		list_cut_before(&folios, from, &folio2->lru);
2100 	else
2101 		list_splice_init(from, &folios);
2102 	if (mode == MIGRATE_ASYNC)
2103 		rc = migrate_pages_batch(&folios, get_new_folio, put_new_folio,
2104 				private, mode, reason, &ret_folios,
2105 				&split_folios, &stats,
2106 				NR_MAX_MIGRATE_PAGES_RETRY);
2107 	else
2108 		rc = migrate_pages_sync(&folios, get_new_folio, put_new_folio,
2109 				private, mode, reason, &ret_folios,
2110 				&split_folios, &stats);
2111 	list_splice_tail_init(&folios, &ret_folios);
2112 	if (rc < 0) {
2113 		rc_gather = rc;
2114 		list_splice_tail(&split_folios, &ret_folios);
2115 		goto out;
2116 	}
2117 	if (!list_empty(&split_folios)) {
2118 		/*
2119 		 * Failure isn't counted since all split folios of a large folio
2120 		 * is counted as 1 failure already.  And, we only try to migrate
2121 		 * with minimal effort, force MIGRATE_ASYNC mode and retry once.
2122 		 */
2123 		migrate_pages_batch(&split_folios, get_new_folio,
2124 				put_new_folio, private, MIGRATE_ASYNC, reason,
2125 				&ret_folios, NULL, &stats, 1);
2126 		list_splice_tail_init(&split_folios, &ret_folios);
2127 	}
2128 	rc_gather += rc;
2129 	if (!list_empty(from))
2130 		goto again;
2131 out:
2132 	/*
2133 	 * Put the permanent failure folio back to migration list, they
2134 	 * will be put back to the right list by the caller.
2135 	 */
2136 	list_splice(&ret_folios, from);
2137 
2138 	/*
2139 	 * Return 0 in case all split folios of fail-to-migrate large folios
2140 	 * are migrated successfully.
2141 	 */
2142 	if (list_empty(from))
2143 		rc_gather = 0;
2144 
2145 	count_vm_events(PGMIGRATE_SUCCESS, stats.nr_succeeded);
2146 	count_vm_events(PGMIGRATE_FAIL, stats.nr_failed_pages);
2147 	count_vm_events(THP_MIGRATION_SUCCESS, stats.nr_thp_succeeded);
2148 	count_vm_events(THP_MIGRATION_FAIL, stats.nr_thp_failed);
2149 	count_vm_events(THP_MIGRATION_SPLIT, stats.nr_thp_split);
2150 	trace_mm_migrate_pages(stats.nr_succeeded, stats.nr_failed_pages,
2151 			       stats.nr_thp_succeeded, stats.nr_thp_failed,
2152 			       stats.nr_thp_split, stats.nr_split, mode,
2153 			       reason);
2154 
2155 	if (ret_succeeded)
2156 		*ret_succeeded = stats.nr_succeeded;
2157 
2158 	return rc_gather;
2159 }
2160 
alloc_migration_target(struct folio * src,unsigned long private)2161 struct folio *alloc_migration_target(struct folio *src, unsigned long private)
2162 {
2163 	struct migration_target_control *mtc;
2164 	gfp_t gfp_mask;
2165 	unsigned int order = 0;
2166 	int nid;
2167 	int zidx;
2168 
2169 	mtc = (struct migration_target_control *)private;
2170 	gfp_mask = mtc->gfp_mask;
2171 	nid = mtc->nid;
2172 	if (nid == NUMA_NO_NODE)
2173 		nid = folio_nid(src);
2174 
2175 	if (folio_test_hugetlb(src)) {
2176 		struct hstate *h = folio_hstate(src);
2177 
2178 		gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
2179 		return alloc_hugetlb_folio_nodemask(h, nid,
2180 						mtc->nmask, gfp_mask,
2181 						htlb_allow_alloc_fallback(mtc->reason));
2182 	}
2183 
2184 	if (folio_test_large(src)) {
2185 		/*
2186 		 * clear __GFP_RECLAIM to make the migration callback
2187 		 * consistent with regular THP allocations.
2188 		 */
2189 		gfp_mask &= ~__GFP_RECLAIM;
2190 		gfp_mask |= GFP_TRANSHUGE;
2191 		order = folio_order(src);
2192 	}
2193 	zidx = zone_idx(folio_zone(src));
2194 	if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
2195 		gfp_mask |= __GFP_HIGHMEM;
2196 
2197 	return __folio_alloc(gfp_mask, order, nid, mtc->nmask);
2198 }
2199 
2200 #ifdef CONFIG_NUMA
2201 
store_status(int __user * status,int start,int value,int nr)2202 static int store_status(int __user *status, int start, int value, int nr)
2203 {
2204 	while (nr-- > 0) {
2205 		if (put_user(value, status + start))
2206 			return -EFAULT;
2207 		start++;
2208 	}
2209 
2210 	return 0;
2211 }
2212 
do_move_pages_to_node(struct list_head * pagelist,int node)2213 static int do_move_pages_to_node(struct list_head *pagelist, int node)
2214 {
2215 	int err;
2216 	struct migration_target_control mtc = {
2217 		.nid = node,
2218 		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
2219 		.reason = MR_SYSCALL,
2220 	};
2221 
2222 	err = migrate_pages(pagelist, alloc_migration_target, NULL,
2223 		(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
2224 	if (err)
2225 		putback_movable_pages(pagelist);
2226 	return err;
2227 }
2228 
__add_folio_for_migration(struct folio * folio,int node,struct list_head * pagelist,bool migrate_all)2229 static int __add_folio_for_migration(struct folio *folio, int node,
2230 		struct list_head *pagelist, bool migrate_all)
2231 {
2232 	if (is_zero_folio(folio) || is_huge_zero_folio(folio))
2233 		return -EFAULT;
2234 
2235 	if (folio_is_zone_device(folio))
2236 		return -ENOENT;
2237 
2238 	if (folio_nid(folio) == node)
2239 		return 0;
2240 
2241 	if (folio_maybe_mapped_shared(folio) && !migrate_all)
2242 		return -EACCES;
2243 
2244 	if (folio_test_hugetlb(folio)) {
2245 		if (folio_isolate_hugetlb(folio, pagelist))
2246 			return 1;
2247 	} else if (folio_isolate_lru(folio)) {
2248 		list_add_tail(&folio->lru, pagelist);
2249 		node_stat_mod_folio(folio,
2250 			NR_ISOLATED_ANON + folio_is_file_lru(folio),
2251 			folio_nr_pages(folio));
2252 		return 1;
2253 	}
2254 	return -EBUSY;
2255 }
2256 
2257 /*
2258  * Resolves the given address to a struct folio, isolates it from the LRU and
2259  * puts it to the given pagelist.
2260  * Returns:
2261  *     errno - if the folio cannot be found/isolated
2262  *     0 - when it doesn't have to be migrated because it is already on the
2263  *         target node
2264  *     1 - when it has been queued
2265  */
add_folio_for_migration(struct mm_struct * mm,const void __user * p,int node,struct list_head * pagelist,bool migrate_all)2266 static int add_folio_for_migration(struct mm_struct *mm, const void __user *p,
2267 		int node, struct list_head *pagelist, bool migrate_all)
2268 {
2269 	struct vm_area_struct *vma;
2270 	struct folio_walk fw;
2271 	struct folio *folio;
2272 	unsigned long addr;
2273 	int err = -EFAULT;
2274 
2275 	mmap_read_lock(mm);
2276 	addr = (unsigned long)untagged_addr_remote(mm, p);
2277 
2278 	vma = vma_lookup(mm, addr);
2279 	if (vma && vma_migratable(vma)) {
2280 		folio = folio_walk_start(&fw, vma, addr, FW_ZEROPAGE);
2281 		if (folio) {
2282 			err = __add_folio_for_migration(folio, node, pagelist,
2283 							migrate_all);
2284 			folio_walk_end(&fw, vma);
2285 		} else {
2286 			err = -ENOENT;
2287 		}
2288 	}
2289 	mmap_read_unlock(mm);
2290 	return err;
2291 }
2292 
move_pages_and_store_status(int node,struct list_head * pagelist,int __user * status,int start,int i,unsigned long nr_pages)2293 static int move_pages_and_store_status(int node,
2294 		struct list_head *pagelist, int __user *status,
2295 		int start, int i, unsigned long nr_pages)
2296 {
2297 	int err;
2298 
2299 	if (list_empty(pagelist))
2300 		return 0;
2301 
2302 	err = do_move_pages_to_node(pagelist, node);
2303 	if (err) {
2304 		/*
2305 		 * Positive err means the number of failed
2306 		 * pages to migrate.  Since we are going to
2307 		 * abort and return the number of non-migrated
2308 		 * pages, so need to include the rest of the
2309 		 * nr_pages that have not been attempted as
2310 		 * well.
2311 		 */
2312 		if (err > 0)
2313 			err += nr_pages - i;
2314 		return err;
2315 	}
2316 	return store_status(status, start, node, i - start);
2317 }
2318 
2319 /*
2320  * Migrate an array of page address onto an array of nodes and fill
2321  * the corresponding array of status.
2322  */
do_pages_move(struct mm_struct * mm,nodemask_t task_nodes,unsigned long nr_pages,const void __user * __user * pages,const int __user * nodes,int __user * status,int flags)2323 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
2324 			 unsigned long nr_pages,
2325 			 const void __user * __user *pages,
2326 			 const int __user *nodes,
2327 			 int __user *status, int flags)
2328 {
2329 	compat_uptr_t __user *compat_pages = (void __user *)pages;
2330 	int current_node = NUMA_NO_NODE;
2331 	LIST_HEAD(pagelist);
2332 	int start, i;
2333 	int err = 0, err1;
2334 
2335 	lru_cache_disable();
2336 
2337 	for (i = start = 0; i < nr_pages; i++) {
2338 		const void __user *p;
2339 		int node;
2340 
2341 		err = -EFAULT;
2342 		if (in_compat_syscall()) {
2343 			compat_uptr_t cp;
2344 
2345 			if (get_user(cp, compat_pages + i))
2346 				goto out_flush;
2347 
2348 			p = compat_ptr(cp);
2349 		} else {
2350 			if (get_user(p, pages + i))
2351 				goto out_flush;
2352 		}
2353 		if (get_user(node, nodes + i))
2354 			goto out_flush;
2355 
2356 		err = -ENODEV;
2357 		if (node < 0 || node >= MAX_NUMNODES)
2358 			goto out_flush;
2359 		if (!node_state(node, N_MEMORY))
2360 			goto out_flush;
2361 
2362 		err = -EACCES;
2363 		if (!node_isset(node, task_nodes))
2364 			goto out_flush;
2365 
2366 		if (current_node == NUMA_NO_NODE) {
2367 			current_node = node;
2368 			start = i;
2369 		} else if (node != current_node) {
2370 			err = move_pages_and_store_status(current_node,
2371 					&pagelist, status, start, i, nr_pages);
2372 			if (err)
2373 				goto out;
2374 			start = i;
2375 			current_node = node;
2376 		}
2377 
2378 		/*
2379 		 * Errors in the page lookup or isolation are not fatal and we simply
2380 		 * report them via status
2381 		 */
2382 		err = add_folio_for_migration(mm, p, current_node, &pagelist,
2383 					      flags & MPOL_MF_MOVE_ALL);
2384 
2385 		if (err > 0) {
2386 			/* The page is successfully queued for migration */
2387 			continue;
2388 		}
2389 
2390 		/*
2391 		 * If the page is already on the target node (!err), store the
2392 		 * node, otherwise, store the err.
2393 		 */
2394 		err = store_status(status, i, err ? : current_node, 1);
2395 		if (err)
2396 			goto out_flush;
2397 
2398 		err = move_pages_and_store_status(current_node, &pagelist,
2399 				status, start, i, nr_pages);
2400 		if (err) {
2401 			/* We have accounted for page i */
2402 			if (err > 0)
2403 				err--;
2404 			goto out;
2405 		}
2406 		current_node = NUMA_NO_NODE;
2407 	}
2408 out_flush:
2409 	/* Make sure we do not overwrite the existing error */
2410 	err1 = move_pages_and_store_status(current_node, &pagelist,
2411 				status, start, i, nr_pages);
2412 	if (err >= 0)
2413 		err = err1;
2414 out:
2415 	lru_cache_enable();
2416 	return err;
2417 }
2418 
2419 /*
2420  * Determine the nodes of an array of pages and store it in an array of status.
2421  */
do_pages_stat_array(struct mm_struct * mm,unsigned long nr_pages,const void __user ** pages,int * status)2422 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
2423 				const void __user **pages, int *status)
2424 {
2425 	unsigned long i;
2426 
2427 	mmap_read_lock(mm);
2428 
2429 	for (i = 0; i < nr_pages; i++) {
2430 		unsigned long addr = (unsigned long)(*pages);
2431 		struct vm_area_struct *vma;
2432 		struct folio_walk fw;
2433 		struct folio *folio;
2434 		int err = -EFAULT;
2435 
2436 		vma = vma_lookup(mm, addr);
2437 		if (!vma)
2438 			goto set_status;
2439 
2440 		folio = folio_walk_start(&fw, vma, addr, FW_ZEROPAGE);
2441 		if (folio) {
2442 			if (is_zero_folio(folio) || is_huge_zero_folio(folio))
2443 				err = -EFAULT;
2444 			else if (folio_is_zone_device(folio))
2445 				err = -ENOENT;
2446 			else
2447 				err = folio_nid(folio);
2448 			folio_walk_end(&fw, vma);
2449 		} else {
2450 			err = -ENOENT;
2451 		}
2452 set_status:
2453 		*status = err;
2454 
2455 		pages++;
2456 		status++;
2457 	}
2458 
2459 	mmap_read_unlock(mm);
2460 }
2461 
get_compat_pages_array(const void __user * chunk_pages[],const void __user * __user * pages,unsigned long chunk_offset,unsigned long chunk_nr)2462 static int get_compat_pages_array(const void __user *chunk_pages[],
2463 				  const void __user * __user *pages,
2464 				  unsigned long chunk_offset,
2465 				  unsigned long chunk_nr)
2466 {
2467 	compat_uptr_t __user *pages32 = (compat_uptr_t __user *)pages;
2468 	compat_uptr_t p;
2469 	int i;
2470 
2471 	for (i = 0; i < chunk_nr; i++) {
2472 		if (get_user(p, pages32 + chunk_offset + i))
2473 			return -EFAULT;
2474 		chunk_pages[i] = compat_ptr(p);
2475 	}
2476 
2477 	return 0;
2478 }
2479 
2480 /*
2481  * Determine the nodes of a user array of pages and store it in
2482  * a user array of status.
2483  */
do_pages_stat(struct mm_struct * mm,unsigned long nr_pages,const void __user * __user * pages,int __user * status)2484 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
2485 			 const void __user * __user *pages,
2486 			 int __user *status)
2487 {
2488 #define DO_PAGES_STAT_CHUNK_NR 16UL
2489 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
2490 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
2491 	unsigned long chunk_offset = 0;
2492 
2493 	while (nr_pages) {
2494 		unsigned long chunk_nr = min(nr_pages, DO_PAGES_STAT_CHUNK_NR);
2495 
2496 		if (in_compat_syscall()) {
2497 			if (get_compat_pages_array(chunk_pages, pages,
2498 						   chunk_offset, chunk_nr))
2499 				break;
2500 		} else {
2501 			if (copy_from_user(chunk_pages, pages + chunk_offset,
2502 				      chunk_nr * sizeof(*chunk_pages)))
2503 				break;
2504 		}
2505 
2506 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
2507 
2508 		if (copy_to_user(status + chunk_offset, chunk_status,
2509 				 chunk_nr * sizeof(*status)))
2510 			break;
2511 
2512 		chunk_offset += chunk_nr;
2513 		nr_pages -= chunk_nr;
2514 	}
2515 	return nr_pages ? -EFAULT : 0;
2516 }
2517 
find_mm_struct(pid_t pid,nodemask_t * mem_nodes)2518 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
2519 {
2520 	struct task_struct *task;
2521 	struct mm_struct *mm;
2522 
2523 	/*
2524 	 * There is no need to check if current process has the right to modify
2525 	 * the specified process when they are same.
2526 	 */
2527 	if (!pid) {
2528 		mmget(current->mm);
2529 		*mem_nodes = cpuset_mems_allowed(current);
2530 		return current->mm;
2531 	}
2532 
2533 	task = find_get_task_by_vpid(pid);
2534 	if (!task) {
2535 		return ERR_PTR(-ESRCH);
2536 	}
2537 
2538 	/*
2539 	 * Check if this process has the right to modify the specified
2540 	 * process. Use the regular "ptrace_may_access()" checks.
2541 	 */
2542 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
2543 		mm = ERR_PTR(-EPERM);
2544 		goto out;
2545 	}
2546 
2547 	mm = ERR_PTR(security_task_movememory(task));
2548 	if (IS_ERR(mm))
2549 		goto out;
2550 	*mem_nodes = cpuset_mems_allowed(task);
2551 	mm = get_task_mm(task);
2552 out:
2553 	put_task_struct(task);
2554 	if (!mm)
2555 		mm = ERR_PTR(-EINVAL);
2556 	return mm;
2557 }
2558 
2559 /*
2560  * Move a list of pages in the address space of the currently executing
2561  * process.
2562  */
kernel_move_pages(pid_t pid,unsigned long nr_pages,const void __user * __user * pages,const int __user * nodes,int __user * status,int flags)2563 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
2564 			     const void __user * __user *pages,
2565 			     const int __user *nodes,
2566 			     int __user *status, int flags)
2567 {
2568 	struct mm_struct *mm;
2569 	int err;
2570 	nodemask_t task_nodes;
2571 
2572 	/* Check flags */
2573 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
2574 		return -EINVAL;
2575 
2576 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
2577 		return -EPERM;
2578 
2579 	mm = find_mm_struct(pid, &task_nodes);
2580 	if (IS_ERR(mm))
2581 		return PTR_ERR(mm);
2582 
2583 	if (nodes)
2584 		err = do_pages_move(mm, task_nodes, nr_pages, pages,
2585 				    nodes, status, flags);
2586 	else
2587 		err = do_pages_stat(mm, nr_pages, pages, status);
2588 
2589 	mmput(mm);
2590 	return err;
2591 }
2592 
SYSCALL_DEFINE6(move_pages,pid_t,pid,unsigned long,nr_pages,const void __user * __user *,pages,const int __user *,nodes,int __user *,status,int,flags)2593 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
2594 		const void __user * __user *, pages,
2595 		const int __user *, nodes,
2596 		int __user *, status, int, flags)
2597 {
2598 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
2599 }
2600 
2601 #ifdef CONFIG_NUMA_BALANCING
2602 /*
2603  * Returns true if this is a safe migration target node for misplaced NUMA
2604  * pages. Currently it only checks the watermarks which is crude.
2605  */
migrate_balanced_pgdat(struct pglist_data * pgdat,unsigned long nr_migrate_pages)2606 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
2607 				   unsigned long nr_migrate_pages)
2608 {
2609 	int z;
2610 
2611 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2612 		struct zone *zone = pgdat->node_zones + z;
2613 
2614 		if (!managed_zone(zone))
2615 			continue;
2616 
2617 		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
2618 		if (!zone_watermark_ok(zone, 0,
2619 				       high_wmark_pages(zone) +
2620 				       nr_migrate_pages,
2621 				       ZONE_MOVABLE, ALLOC_CMA))
2622 			continue;
2623 		return true;
2624 	}
2625 	return false;
2626 }
2627 
alloc_misplaced_dst_folio(struct folio * src,unsigned long data)2628 static struct folio *alloc_misplaced_dst_folio(struct folio *src,
2629 					   unsigned long data)
2630 {
2631 	int nid = (int) data;
2632 	int order = folio_order(src);
2633 	gfp_t gfp = __GFP_THISNODE;
2634 
2635 	if (order > 0)
2636 		gfp |= GFP_TRANSHUGE_LIGHT;
2637 	else {
2638 		gfp |= GFP_HIGHUSER_MOVABLE | __GFP_NOMEMALLOC | __GFP_NORETRY |
2639 			__GFP_NOWARN;
2640 		gfp &= ~__GFP_RECLAIM;
2641 	}
2642 	return __folio_alloc_node(gfp, order, nid);
2643 }
2644 
2645 /*
2646  * Prepare for calling migrate_misplaced_folio() by isolating the folio if
2647  * permitted. Must be called with the PTL still held.
2648  */
migrate_misplaced_folio_prepare(struct folio * folio,struct vm_area_struct * vma,int node)2649 int migrate_misplaced_folio_prepare(struct folio *folio,
2650 		struct vm_area_struct *vma, int node)
2651 {
2652 	int nr_pages = folio_nr_pages(folio);
2653 	pg_data_t *pgdat = NODE_DATA(node);
2654 
2655 	if (folio_is_file_lru(folio)) {
2656 		/*
2657 		 * Do not migrate file folios that are mapped in multiple
2658 		 * processes with execute permissions as they are probably
2659 		 * shared libraries.
2660 		 *
2661 		 * See folio_maybe_mapped_shared() on possible imprecision
2662 		 * when we cannot easily detect if a folio is shared.
2663 		 */
2664 		if ((vma->vm_flags & VM_EXEC) && folio_maybe_mapped_shared(folio))
2665 			return -EACCES;
2666 
2667 		/*
2668 		 * Do not migrate dirty folios as not all filesystems can move
2669 		 * dirty folios in MIGRATE_ASYNC mode which is a waste of
2670 		 * cycles.
2671 		 */
2672 		if (folio_test_dirty(folio))
2673 			return -EAGAIN;
2674 	}
2675 
2676 	/* Avoid migrating to a node that is nearly full */
2677 	if (!migrate_balanced_pgdat(pgdat, nr_pages)) {
2678 		int z;
2679 
2680 		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING))
2681 			return -EAGAIN;
2682 		for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2683 			if (managed_zone(pgdat->node_zones + z))
2684 				break;
2685 		}
2686 
2687 		/*
2688 		 * If there are no managed zones, it should not proceed
2689 		 * further.
2690 		 */
2691 		if (z < 0)
2692 			return -EAGAIN;
2693 
2694 		wakeup_kswapd(pgdat->node_zones + z, 0,
2695 			      folio_order(folio), ZONE_MOVABLE);
2696 		return -EAGAIN;
2697 	}
2698 
2699 	if (!folio_isolate_lru(folio))
2700 		return -EAGAIN;
2701 
2702 	node_stat_mod_folio(folio, NR_ISOLATED_ANON + folio_is_file_lru(folio),
2703 			    nr_pages);
2704 	return 0;
2705 }
2706 
2707 /*
2708  * Attempt to migrate a misplaced folio to the specified destination
2709  * node. Caller is expected to have isolated the folio by calling
2710  * migrate_misplaced_folio_prepare(), which will result in an
2711  * elevated reference count on the folio. This function will un-isolate the
2712  * folio, dereferencing the folio before returning.
2713  */
migrate_misplaced_folio(struct folio * folio,int node)2714 int migrate_misplaced_folio(struct folio *folio, int node)
2715 {
2716 	pg_data_t *pgdat = NODE_DATA(node);
2717 	int nr_remaining;
2718 	unsigned int nr_succeeded;
2719 	LIST_HEAD(migratepages);
2720 	struct mem_cgroup *memcg = get_mem_cgroup_from_folio(folio);
2721 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
2722 
2723 	list_add(&folio->lru, &migratepages);
2724 	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_folio,
2725 				     NULL, node, MIGRATE_ASYNC,
2726 				     MR_NUMA_MISPLACED, &nr_succeeded);
2727 	if (nr_remaining && !list_empty(&migratepages))
2728 		putback_movable_pages(&migratepages);
2729 	if (nr_succeeded) {
2730 		count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_succeeded);
2731 		count_memcg_events(memcg, NUMA_PAGE_MIGRATE, nr_succeeded);
2732 		if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)
2733 		    && !node_is_toptier(folio_nid(folio))
2734 		    && node_is_toptier(node))
2735 			mod_lruvec_state(lruvec, PGPROMOTE_SUCCESS, nr_succeeded);
2736 	}
2737 	mem_cgroup_put(memcg);
2738 	BUG_ON(!list_empty(&migratepages));
2739 	return nr_remaining ? -EAGAIN : 0;
2740 }
2741 #endif /* CONFIG_NUMA_BALANCING */
2742 #endif /* CONFIG_NUMA */
2743