1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/oom_kill.c
4 *
5 * Copyright (C) 1998,2000 Rik van Riel
6 * Thanks go out to Claus Fischer for some serious inspiration and
7 * for goading me into coding this file...
8 * Copyright (C) 2010 Google, Inc.
9 * Rewritten by David Rientjes
10 *
11 * The routines in this file are used to kill a process when
12 * we're seriously out of memory. This gets called from __alloc_pages()
13 * in mm/page_alloc.c when we really run out of memory.
14 *
15 * Since we won't call these routines often (on a well-configured
16 * machine) this file will double as a 'coding guide' and a signpost
17 * for newbie kernel hackers. It features several pointers to major
18 * kernel subsystems and hints as to where to find out what things do.
19 */
20
21 #include <linux/oom.h>
22 #include <linux/mm.h>
23 #include <linux/err.h>
24 #include <linux/gfp.h>
25 #include <linux/sched.h>
26 #include <linux/sched/mm.h>
27 #include <linux/sched/task.h>
28 #include <linux/sched/debug.h>
29 #include <linux/swap.h>
30 #include <linux/syscalls.h>
31 #include <linux/timex.h>
32 #include <linux/jiffies.h>
33 #include <linux/cpuset.h>
34 #include <linux/export.h>
35 #include <linux/notifier.h>
36 #include <linux/memcontrol.h>
37 #include <linux/mempolicy.h>
38 #include <linux/security.h>
39 #include <linux/ptrace.h>
40 #include <linux/freezer.h>
41 #include <linux/ftrace.h>
42 #include <linux/ratelimit.h>
43 #include <linux/kthread.h>
44 #include <linux/init.h>
45 #include <linux/mmu_notifier.h>
46 #include <linux/cred.h>
47 #include <linux/nmi.h>
48
49 #include <asm/tlb.h>
50 #include "internal.h"
51 #include "slab.h"
52
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/oom.h>
55
56 static int sysctl_panic_on_oom;
57 static int sysctl_oom_kill_allocating_task;
58 static int sysctl_oom_dump_tasks = 1;
59
60 /*
61 * Serializes oom killer invocations (out_of_memory()) from all contexts to
62 * prevent from over eager oom killing (e.g. when the oom killer is invoked
63 * from different domains).
64 *
65 * oom_killer_disable() relies on this lock to stabilize oom_killer_disabled
66 * and mark_oom_victim
67 */
68 DEFINE_MUTEX(oom_lock);
69 /* Serializes oom_score_adj and oom_score_adj_min updates */
70 DEFINE_MUTEX(oom_adj_mutex);
71
is_memcg_oom(struct oom_control * oc)72 static inline bool is_memcg_oom(struct oom_control *oc)
73 {
74 return oc->memcg != NULL;
75 }
76
77 #ifdef CONFIG_NUMA
78 /**
79 * oom_cpuset_eligible() - check task eligibility for kill
80 * @start: task struct of which task to consider
81 * @oc: pointer to struct oom_control
82 *
83 * Task eligibility is determined by whether or not a candidate task, @tsk,
84 * shares the same mempolicy nodes as current if it is bound by such a policy
85 * and whether or not it has the same set of allowed cpuset nodes.
86 *
87 * This function is assuming oom-killer context and 'current' has triggered
88 * the oom-killer.
89 */
oom_cpuset_eligible(struct task_struct * start,struct oom_control * oc)90 static bool oom_cpuset_eligible(struct task_struct *start,
91 struct oom_control *oc)
92 {
93 struct task_struct *tsk;
94 bool ret = false;
95 const nodemask_t *mask = oc->nodemask;
96
97 rcu_read_lock();
98 for_each_thread(start, tsk) {
99 if (mask) {
100 /*
101 * If this is a mempolicy constrained oom, tsk's
102 * cpuset is irrelevant. Only return true if its
103 * mempolicy intersects current, otherwise it may be
104 * needlessly killed.
105 */
106 ret = mempolicy_in_oom_domain(tsk, mask);
107 } else {
108 /*
109 * This is not a mempolicy constrained oom, so only
110 * check the mems of tsk's cpuset.
111 */
112 ret = cpuset_mems_allowed_intersects(current, tsk);
113 }
114 if (ret)
115 break;
116 }
117 rcu_read_unlock();
118
119 return ret;
120 }
121 #else
oom_cpuset_eligible(struct task_struct * tsk,struct oom_control * oc)122 static bool oom_cpuset_eligible(struct task_struct *tsk, struct oom_control *oc)
123 {
124 return true;
125 }
126 #endif /* CONFIG_NUMA */
127
128 /*
129 * The process p may have detached its own ->mm while exiting or through
130 * kthread_use_mm(), but one or more of its subthreads may still have a valid
131 * pointer. Return p, or any of its subthreads with a valid ->mm, with
132 * task_lock() held.
133 */
find_lock_task_mm(struct task_struct * p)134 struct task_struct *find_lock_task_mm(struct task_struct *p)
135 {
136 struct task_struct *t;
137
138 rcu_read_lock();
139
140 for_each_thread(p, t) {
141 task_lock(t);
142 if (likely(t->mm))
143 goto found;
144 task_unlock(t);
145 }
146 t = NULL;
147 found:
148 rcu_read_unlock();
149
150 return t;
151 }
152
153 /*
154 * order == -1 means the oom kill is required by sysrq, otherwise only
155 * for display purposes.
156 */
is_sysrq_oom(struct oom_control * oc)157 static inline bool is_sysrq_oom(struct oom_control *oc)
158 {
159 return oc->order == -1;
160 }
161
162 /* return true if the task is not adequate as candidate victim task. */
oom_unkillable_task(struct task_struct * p)163 static bool oom_unkillable_task(struct task_struct *p)
164 {
165 if (is_global_init(p))
166 return true;
167 if (p->flags & PF_KTHREAD)
168 return true;
169 return false;
170 }
171
172 /*
173 * Check whether unreclaimable slab amount is greater than
174 * all user memory(LRU pages).
175 * dump_unreclaimable_slab() could help in the case that
176 * oom due to too much unreclaimable slab used by kernel.
177 */
should_dump_unreclaim_slab(void)178 static bool should_dump_unreclaim_slab(void)
179 {
180 unsigned long nr_lru;
181
182 nr_lru = global_node_page_state(NR_ACTIVE_ANON) +
183 global_node_page_state(NR_INACTIVE_ANON) +
184 global_node_page_state(NR_ACTIVE_FILE) +
185 global_node_page_state(NR_INACTIVE_FILE) +
186 global_node_page_state(NR_ISOLATED_ANON) +
187 global_node_page_state(NR_ISOLATED_FILE) +
188 global_node_page_state(NR_UNEVICTABLE);
189
190 return (global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B) > nr_lru);
191 }
192
193 /**
194 * oom_badness - heuristic function to determine which candidate task to kill
195 * @p: task struct of which task we should calculate
196 * @totalpages: total present RAM allowed for page allocation
197 *
198 * The heuristic for determining which task to kill is made to be as simple and
199 * predictable as possible. The goal is to return the highest value for the
200 * task consuming the most memory to avoid subsequent oom failures.
201 */
oom_badness(struct task_struct * p,unsigned long totalpages)202 long oom_badness(struct task_struct *p, unsigned long totalpages)
203 {
204 long points;
205 long adj;
206
207 if (oom_unkillable_task(p))
208 return LONG_MIN;
209
210 p = find_lock_task_mm(p);
211 if (!p)
212 return LONG_MIN;
213
214 /*
215 * Do not even consider tasks which are explicitly marked oom
216 * unkillable or have been already oom reaped or the are in
217 * the middle of vfork
218 */
219 adj = (long)p->signal->oom_score_adj;
220 if (adj == OOM_SCORE_ADJ_MIN ||
221 mm_flags_test(MMF_OOM_SKIP, p->mm) ||
222 in_vfork(p)) {
223 task_unlock(p);
224 return LONG_MIN;
225 }
226
227 /*
228 * The baseline for the badness score is the proportion of RAM that each
229 * task's rss, pagetable and swap space use.
230 */
231 points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
232 mm_pgtables_bytes(p->mm) / PAGE_SIZE;
233 task_unlock(p);
234
235 /* Normalize to oom_score_adj units */
236 adj *= totalpages / 1000;
237 points += adj;
238
239 return points;
240 }
241
242 static const char * const oom_constraint_text[] = {
243 [CONSTRAINT_NONE] = "CONSTRAINT_NONE",
244 [CONSTRAINT_CPUSET] = "CONSTRAINT_CPUSET",
245 [CONSTRAINT_MEMORY_POLICY] = "CONSTRAINT_MEMORY_POLICY",
246 [CONSTRAINT_MEMCG] = "CONSTRAINT_MEMCG",
247 };
248
249 /*
250 * Determine the type of allocation constraint.
251 */
constrained_alloc(struct oom_control * oc)252 static enum oom_constraint constrained_alloc(struct oom_control *oc)
253 {
254 struct zone *zone;
255 struct zoneref *z;
256 enum zone_type highest_zoneidx = gfp_zone(oc->gfp_mask);
257 bool cpuset_limited = false;
258 int nid;
259
260 if (is_memcg_oom(oc)) {
261 oc->totalpages = mem_cgroup_get_max(oc->memcg) ?: 1;
262 return CONSTRAINT_MEMCG;
263 }
264
265 /* Default to all available memory */
266 oc->totalpages = totalram_pages() + total_swap_pages;
267
268 if (!IS_ENABLED(CONFIG_NUMA))
269 return CONSTRAINT_NONE;
270
271 if (!oc->zonelist)
272 return CONSTRAINT_NONE;
273 /*
274 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
275 * to kill current.We have to random task kill in this case.
276 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
277 */
278 if (oc->gfp_mask & __GFP_THISNODE)
279 return CONSTRAINT_NONE;
280
281 /*
282 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
283 * the page allocator means a mempolicy is in effect. Cpuset policy
284 * is enforced in get_page_from_freelist().
285 */
286 if (oc->nodemask &&
287 !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) {
288 oc->totalpages = total_swap_pages;
289 for_each_node_mask(nid, *oc->nodemask)
290 oc->totalpages += node_present_pages(nid);
291 return CONSTRAINT_MEMORY_POLICY;
292 }
293
294 /* Check this allocation failure is caused by cpuset's wall function */
295 for_each_zone_zonelist_nodemask(zone, z, oc->zonelist,
296 highest_zoneidx, oc->nodemask)
297 if (!cpuset_zone_allowed(zone, oc->gfp_mask))
298 cpuset_limited = true;
299
300 if (cpuset_limited) {
301 oc->totalpages = total_swap_pages;
302 for_each_node_mask(nid, cpuset_current_mems_allowed)
303 oc->totalpages += node_present_pages(nid);
304 return CONSTRAINT_CPUSET;
305 }
306 return CONSTRAINT_NONE;
307 }
308
oom_evaluate_task(struct task_struct * task,void * arg)309 static int oom_evaluate_task(struct task_struct *task, void *arg)
310 {
311 struct oom_control *oc = arg;
312 long points;
313
314 if (oom_unkillable_task(task))
315 goto next;
316
317 /* p may not have freeable memory in nodemask */
318 if (!is_memcg_oom(oc) && !oom_cpuset_eligible(task, oc))
319 goto next;
320
321 /*
322 * This task already has access to memory reserves and is being killed.
323 * Don't allow any other task to have access to the reserves unless
324 * the task has MMF_OOM_SKIP because chances that it would release
325 * any memory is quite low.
326 */
327 if (!is_sysrq_oom(oc) && tsk_is_oom_victim(task)) {
328 if (mm_flags_test(MMF_OOM_SKIP, task->signal->oom_mm))
329 goto next;
330 goto abort;
331 }
332
333 /*
334 * If task is allocating a lot of memory and has been marked to be
335 * killed first if it triggers an oom, then select it.
336 */
337 if (oom_task_origin(task)) {
338 points = LONG_MAX;
339 goto select;
340 }
341
342 points = oom_badness(task, oc->totalpages);
343 if (points == LONG_MIN || points < oc->chosen_points)
344 goto next;
345
346 select:
347 if (oc->chosen)
348 put_task_struct(oc->chosen);
349 get_task_struct(task);
350 oc->chosen = task;
351 oc->chosen_points = points;
352 next:
353 return 0;
354 abort:
355 if (oc->chosen)
356 put_task_struct(oc->chosen);
357 oc->chosen = (void *)-1UL;
358 return 1;
359 }
360
361 /*
362 * Simple selection loop. We choose the process with the highest number of
363 * 'points'. In case scan was aborted, oc->chosen is set to -1.
364 */
select_bad_process(struct oom_control * oc)365 static void select_bad_process(struct oom_control *oc)
366 {
367 oc->chosen_points = LONG_MIN;
368
369 if (is_memcg_oom(oc))
370 mem_cgroup_scan_tasks(oc->memcg, oom_evaluate_task, oc);
371 else {
372 struct task_struct *p;
373
374 rcu_read_lock();
375 for_each_process(p)
376 if (oom_evaluate_task(p, oc))
377 break;
378 rcu_read_unlock();
379 }
380 }
381
dump_task(struct task_struct * p,void * arg)382 static int dump_task(struct task_struct *p, void *arg)
383 {
384 struct oom_control *oc = arg;
385 struct task_struct *task;
386
387 if (oom_unkillable_task(p))
388 return 0;
389
390 /* p may not have freeable memory in nodemask */
391 if (!is_memcg_oom(oc) && !oom_cpuset_eligible(p, oc))
392 return 0;
393
394 task = find_lock_task_mm(p);
395 if (!task) {
396 /*
397 * All of p's threads have already detached their mm's. There's
398 * no need to report them; they can't be oom killed anyway.
399 */
400 return 0;
401 }
402
403 pr_info("[%7d] %5d %5d %8lu %8lu %8lu %8lu %9lu %8ld %8lu %5hd %s\n",
404 task->pid, from_kuid(&init_user_ns, task_uid(task)),
405 task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
406 get_mm_counter(task->mm, MM_ANONPAGES), get_mm_counter(task->mm, MM_FILEPAGES),
407 get_mm_counter(task->mm, MM_SHMEMPAGES), mm_pgtables_bytes(task->mm),
408 get_mm_counter(task->mm, MM_SWAPENTS),
409 task->signal->oom_score_adj, task->comm);
410 task_unlock(task);
411
412 return 0;
413 }
414
415 /**
416 * dump_tasks - dump current memory state of all system tasks
417 * @oc: pointer to struct oom_control
418 *
419 * Dumps the current memory state of all eligible tasks. Tasks not in the same
420 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
421 * are not shown.
422 * State information includes task's pid, uid, tgid, vm size, rss,
423 * pgtables_bytes, swapents, oom_score_adj value, and name.
424 */
dump_tasks(struct oom_control * oc)425 static void dump_tasks(struct oom_control *oc)
426 {
427 pr_info("Tasks state (memory values in pages):\n");
428 pr_info("[ pid ] uid tgid total_vm rss rss_anon rss_file rss_shmem pgtables_bytes swapents oom_score_adj name\n");
429
430 if (is_memcg_oom(oc))
431 mem_cgroup_scan_tasks(oc->memcg, dump_task, oc);
432 else {
433 struct task_struct *p;
434 int i = 0;
435
436 rcu_read_lock();
437 for_each_process(p) {
438 /* Avoid potential softlockup warning */
439 if ((++i & 1023) == 0)
440 touch_softlockup_watchdog();
441 dump_task(p, oc);
442 }
443 rcu_read_unlock();
444 }
445 }
446
dump_oom_victim(struct oom_control * oc,struct task_struct * victim)447 static void dump_oom_victim(struct oom_control *oc, struct task_struct *victim)
448 {
449 /* one line summary of the oom killer context. */
450 pr_info("oom-kill:constraint=%s,nodemask=%*pbl",
451 oom_constraint_text[oc->constraint],
452 nodemask_pr_args(oc->nodemask));
453 cpuset_print_current_mems_allowed();
454 mem_cgroup_print_oom_context(oc->memcg, victim);
455 pr_cont(",task=%s,pid=%d,uid=%d\n", victim->comm, victim->pid,
456 from_kuid(&init_user_ns, task_uid(victim)));
457 }
458
dump_header(struct oom_control * oc)459 static void dump_header(struct oom_control *oc)
460 {
461 pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), order=%d, oom_score_adj=%hd\n",
462 current->comm, oc->gfp_mask, &oc->gfp_mask, oc->order,
463 current->signal->oom_score_adj);
464 if (!IS_ENABLED(CONFIG_COMPACTION) && oc->order)
465 pr_warn("COMPACTION is disabled!!!\n");
466
467 dump_stack();
468 if (is_memcg_oom(oc))
469 mem_cgroup_print_oom_meminfo(oc->memcg);
470 else {
471 __show_mem(SHOW_MEM_FILTER_NODES, oc->nodemask, gfp_zone(oc->gfp_mask));
472 if (should_dump_unreclaim_slab())
473 dump_unreclaimable_slab();
474 }
475 if (sysctl_oom_dump_tasks)
476 dump_tasks(oc);
477 }
478
479 /*
480 * Number of OOM victims in flight
481 */
482 static atomic_t oom_victims = ATOMIC_INIT(0);
483 static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
484
485 static bool oom_killer_disabled __read_mostly;
486
487 /*
488 * task->mm can be NULL if the task is the exited group leader. So to
489 * determine whether the task is using a particular mm, we examine all the
490 * task's threads: if one of those is using this mm then this task was also
491 * using it.
492 */
process_shares_mm(const struct task_struct * p,const struct mm_struct * mm)493 bool process_shares_mm(const struct task_struct *p, const struct mm_struct *mm)
494 {
495 const struct task_struct *t;
496
497 for_each_thread(p, t) {
498 const struct mm_struct *t_mm = READ_ONCE(t->mm);
499 if (t_mm)
500 return t_mm == mm;
501 }
502 return false;
503 }
504
505 #ifdef CONFIG_MMU
506 /*
507 * OOM Reaper kernel thread which tries to reap the memory used by the OOM
508 * victim (if that is possible) to help the OOM killer to move on.
509 */
510 static struct task_struct *oom_reaper_th;
511 static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait);
512 static struct task_struct *oom_reaper_list;
513 static DEFINE_SPINLOCK(oom_reaper_lock);
514
__oom_reap_task_mm(struct mm_struct * mm)515 static bool __oom_reap_task_mm(struct mm_struct *mm)
516 {
517 struct vm_area_struct *vma;
518 bool ret = true;
519 MA_STATE(mas, &mm->mm_mt, ULONG_MAX, ULONG_MAX);
520
521 /*
522 * Tell all users of get_user/copy_from_user etc... that the content
523 * is no longer stable. No barriers really needed because unmapping
524 * should imply barriers already and the reader would hit a page fault
525 * if it stumbled over a reaped memory.
526 */
527 mm_flags_set(MMF_UNSTABLE, mm);
528
529 /*
530 * It might start racing with the dying task and compete for shared
531 * resources - e.g. page table lock contention has been observed.
532 * Reduce those races by reaping the oom victim from the other end
533 * of the address space.
534 */
535 mas_for_each_rev(&mas, vma, 0) {
536 if (vma->vm_flags & (VM_HUGETLB|VM_PFNMAP))
537 continue;
538
539 /*
540 * Only anonymous pages have a good chance to be dropped
541 * without additional steps which we cannot afford as we
542 * are OOM already.
543 *
544 * We do not even care about fs backed pages because all
545 * which are reclaimable have already been reclaimed and
546 * we do not want to block exit_mmap by keeping mm ref
547 * count elevated without a good reason.
548 */
549 if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED)) {
550 struct mmu_notifier_range range;
551 struct mmu_gather tlb;
552
553 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0,
554 mm, vma->vm_start,
555 vma->vm_end);
556 tlb_gather_mmu(&tlb, mm);
557 if (mmu_notifier_invalidate_range_start_nonblock(&range)) {
558 tlb_finish_mmu(&tlb);
559 ret = false;
560 continue;
561 }
562 unmap_page_range(&tlb, vma, range.start, range.end, NULL);
563 mmu_notifier_invalidate_range_end(&range);
564 tlb_finish_mmu(&tlb);
565 }
566 }
567
568 return ret;
569 }
570
571 /*
572 * Reaps the address space of the given task.
573 *
574 * Returns true on success and false if none or part of the address space
575 * has been reclaimed and the caller should retry later.
576 */
oom_reap_task_mm(struct task_struct * tsk,struct mm_struct * mm)577 static bool oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm)
578 {
579 bool ret = true;
580
581 if (!mmap_read_trylock(mm)) {
582 trace_skip_task_reaping(tsk->pid);
583 return false;
584 }
585
586 /*
587 * MMF_OOM_SKIP is set by exit_mmap when the OOM reaper can't
588 * work on the mm anymore. The check for MMF_OOM_SKIP must run
589 * under mmap_lock for reading because it serializes against the
590 * mmap_write_lock();mmap_write_unlock() cycle in exit_mmap().
591 */
592 if (mm_flags_test(MMF_OOM_SKIP, mm)) {
593 trace_skip_task_reaping(tsk->pid);
594 goto out_unlock;
595 }
596
597 trace_start_task_reaping(tsk->pid);
598
599 /* failed to reap part of the address space. Try again later */
600 ret = __oom_reap_task_mm(mm);
601 if (!ret)
602 goto out_finish;
603
604 pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
605 task_pid_nr(tsk), tsk->comm,
606 K(get_mm_counter(mm, MM_ANONPAGES)),
607 K(get_mm_counter(mm, MM_FILEPAGES)),
608 K(get_mm_counter(mm, MM_SHMEMPAGES)));
609 out_finish:
610 trace_finish_task_reaping(tsk->pid);
611 out_unlock:
612 mmap_read_unlock(mm);
613
614 return ret;
615 }
616
617 #define MAX_OOM_REAP_RETRIES 10
oom_reap_task(struct task_struct * tsk)618 static void oom_reap_task(struct task_struct *tsk)
619 {
620 int attempts = 0;
621 struct mm_struct *mm = tsk->signal->oom_mm;
622
623 /* Retry the mmap_read_trylock(mm) a few times */
624 while (attempts++ < MAX_OOM_REAP_RETRIES && !oom_reap_task_mm(tsk, mm))
625 schedule_timeout_idle(HZ/10);
626
627 if (attempts <= MAX_OOM_REAP_RETRIES ||
628 mm_flags_test(MMF_OOM_SKIP, mm))
629 goto done;
630
631 pr_info("oom_reaper: unable to reap pid:%d (%s)\n",
632 task_pid_nr(tsk), tsk->comm);
633 sched_show_task(tsk);
634 debug_show_all_locks();
635
636 done:
637 tsk->oom_reaper_list = NULL;
638
639 /*
640 * Hide this mm from OOM killer because it has been either reaped or
641 * somebody can't call mmap_write_unlock(mm).
642 */
643 mm_flags_set(MMF_OOM_SKIP, mm);
644
645 /* Drop a reference taken by queue_oom_reaper */
646 put_task_struct(tsk);
647 }
648
oom_reaper(void * unused)649 static int oom_reaper(void *unused)
650 {
651 set_freezable();
652
653 while (true) {
654 struct task_struct *tsk = NULL;
655
656 wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL);
657 spin_lock_irq(&oom_reaper_lock);
658 if (oom_reaper_list != NULL) {
659 tsk = oom_reaper_list;
660 oom_reaper_list = tsk->oom_reaper_list;
661 }
662 spin_unlock_irq(&oom_reaper_lock);
663
664 if (tsk)
665 oom_reap_task(tsk);
666 }
667
668 return 0;
669 }
670
wake_oom_reaper(struct timer_list * timer)671 static void wake_oom_reaper(struct timer_list *timer)
672 {
673 struct task_struct *tsk = container_of(timer, struct task_struct,
674 oom_reaper_timer);
675 struct mm_struct *mm = tsk->signal->oom_mm;
676 unsigned long flags;
677
678 /* The victim managed to terminate on its own - see exit_mmap */
679 if (mm_flags_test(MMF_OOM_SKIP, mm)) {
680 put_task_struct(tsk);
681 return;
682 }
683
684 spin_lock_irqsave(&oom_reaper_lock, flags);
685 tsk->oom_reaper_list = oom_reaper_list;
686 oom_reaper_list = tsk;
687 spin_unlock_irqrestore(&oom_reaper_lock, flags);
688 trace_wake_reaper(tsk->pid);
689 wake_up(&oom_reaper_wait);
690 }
691
692 /*
693 * Give the OOM victim time to exit naturally before invoking the oom_reaping.
694 * The timers timeout is arbitrary... the longer it is, the longer the worst
695 * case scenario for the OOM can take. If it is too small, the oom_reaper can
696 * get in the way and release resources needed by the process exit path.
697 * e.g. The futex robust list can sit in Anon|Private memory that gets reaped
698 * before the exit path is able to wake the futex waiters.
699 */
700 #define OOM_REAPER_DELAY (2*HZ)
queue_oom_reaper(struct task_struct * tsk)701 static void queue_oom_reaper(struct task_struct *tsk)
702 {
703 /* mm is already queued? */
704 if (mm_flags_test_and_set(MMF_OOM_REAP_QUEUED, tsk->signal->oom_mm))
705 return;
706
707 get_task_struct(tsk);
708 timer_setup(&tsk->oom_reaper_timer, wake_oom_reaper, 0);
709 tsk->oom_reaper_timer.expires = jiffies + OOM_REAPER_DELAY;
710 add_timer(&tsk->oom_reaper_timer);
711 }
712
713 #ifdef CONFIG_SYSCTL
714 static const struct ctl_table vm_oom_kill_table[] = {
715 {
716 .procname = "panic_on_oom",
717 .data = &sysctl_panic_on_oom,
718 .maxlen = sizeof(sysctl_panic_on_oom),
719 .mode = 0644,
720 .proc_handler = proc_dointvec_minmax,
721 .extra1 = SYSCTL_ZERO,
722 .extra2 = SYSCTL_TWO,
723 },
724 {
725 .procname = "oom_kill_allocating_task",
726 .data = &sysctl_oom_kill_allocating_task,
727 .maxlen = sizeof(sysctl_oom_kill_allocating_task),
728 .mode = 0644,
729 .proc_handler = proc_dointvec,
730 },
731 {
732 .procname = "oom_dump_tasks",
733 .data = &sysctl_oom_dump_tasks,
734 .maxlen = sizeof(sysctl_oom_dump_tasks),
735 .mode = 0644,
736 .proc_handler = proc_dointvec,
737 },
738 };
739 #endif
740
oom_init(void)741 static int __init oom_init(void)
742 {
743 oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper");
744 #ifdef CONFIG_SYSCTL
745 register_sysctl_init("vm", vm_oom_kill_table);
746 #endif
747 return 0;
748 }
subsys_initcall(oom_init)749 subsys_initcall(oom_init)
750 #else
751 static inline void queue_oom_reaper(struct task_struct *tsk)
752 {
753 }
754 #endif /* CONFIG_MMU */
755
756 /**
757 * mark_oom_victim - mark the given task as OOM victim
758 * @tsk: task to mark
759 *
760 * Has to be called with oom_lock held and never after
761 * oom has been disabled already.
762 *
763 * tsk->mm has to be non NULL and caller has to guarantee it is stable (either
764 * under task_lock or operate on the current).
765 */
766 static void mark_oom_victim(struct task_struct *tsk)
767 {
768 const struct cred *cred;
769 struct mm_struct *mm = tsk->mm;
770
771 WARN_ON(oom_killer_disabled);
772 /* OOM killer might race with memcg OOM */
773 if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE))
774 return;
775
776 /* oom_mm is bound to the signal struct life time. */
777 if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm))
778 mmgrab(tsk->signal->oom_mm);
779
780 /*
781 * Make sure that the process is woken up from uninterruptible sleep
782 * if it is frozen because OOM killer wouldn't be able to free any
783 * memory and livelock. The freezer will thaw the tasks that are OOM
784 * victims regardless of the PM freezing and cgroup freezing states.
785 */
786 thaw_process(tsk);
787 atomic_inc(&oom_victims);
788 cred = get_task_cred(tsk);
789 trace_mark_victim(tsk, cred->uid.val);
790 put_cred(cred);
791 }
792
793 /**
794 * exit_oom_victim - note the exit of an OOM victim
795 */
exit_oom_victim(void)796 void exit_oom_victim(void)
797 {
798 clear_thread_flag(TIF_MEMDIE);
799
800 if (!atomic_dec_return(&oom_victims))
801 wake_up_all(&oom_victims_wait);
802 }
803
804 /**
805 * oom_killer_enable - enable OOM killer
806 */
oom_killer_enable(void)807 void oom_killer_enable(void)
808 {
809 oom_killer_disabled = false;
810 pr_info("OOM killer enabled.\n");
811 }
812
813 /**
814 * oom_killer_disable - disable OOM killer
815 * @timeout: maximum timeout to wait for oom victims in jiffies
816 *
817 * Forces all page allocations to fail rather than trigger OOM killer.
818 * Will block and wait until all OOM victims are killed or the given
819 * timeout expires.
820 *
821 * The function cannot be called when there are runnable user tasks because
822 * the userspace would see unexpected allocation failures as a result. Any
823 * new usage of this function should be consulted with MM people.
824 *
825 * Returns true if successful and false if the OOM killer cannot be
826 * disabled.
827 */
oom_killer_disable(signed long timeout)828 bool oom_killer_disable(signed long timeout)
829 {
830 signed long ret;
831
832 /*
833 * Make sure to not race with an ongoing OOM killer. Check that the
834 * current is not killed (possibly due to sharing the victim's memory).
835 */
836 if (mutex_lock_killable(&oom_lock))
837 return false;
838 oom_killer_disabled = true;
839 mutex_unlock(&oom_lock);
840
841 ret = wait_event_interruptible_timeout(oom_victims_wait,
842 !atomic_read(&oom_victims), timeout);
843 if (ret <= 0) {
844 oom_killer_enable();
845 return false;
846 }
847 pr_info("OOM killer disabled.\n");
848
849 return true;
850 }
851
__task_will_free_mem(struct task_struct * task)852 static inline bool __task_will_free_mem(struct task_struct *task)
853 {
854 struct signal_struct *sig = task->signal;
855
856 /*
857 * A coredumping process may sleep for an extended period in
858 * coredump_task_exit(), so the oom killer cannot assume that
859 * the process will promptly exit and release memory.
860 */
861 if (sig->core_state)
862 return false;
863
864 if (sig->flags & SIGNAL_GROUP_EXIT)
865 return true;
866
867 if (thread_group_empty(task) && (task->flags & PF_EXITING))
868 return true;
869
870 return false;
871 }
872
873 /*
874 * Checks whether the given task is dying or exiting and likely to
875 * release its address space. This means that all threads and processes
876 * sharing the same mm have to be killed or exiting.
877 * Caller has to make sure that task->mm is stable (hold task_lock or
878 * it operates on the current).
879 */
task_will_free_mem(struct task_struct * task)880 static bool task_will_free_mem(struct task_struct *task)
881 {
882 struct mm_struct *mm = task->mm;
883 struct task_struct *p;
884 bool ret = true;
885
886 /*
887 * Skip tasks without mm because it might have passed its exit_mm and
888 * exit_oom_victim. oom_reaper could have rescued that but do not rely
889 * on that for now. We can consider find_lock_task_mm in future.
890 */
891 if (!mm)
892 return false;
893
894 if (!__task_will_free_mem(task))
895 return false;
896
897 /*
898 * This task has already been drained by the oom reaper so there are
899 * only small chances it will free some more
900 */
901 if (mm_flags_test(MMF_OOM_SKIP, mm))
902 return false;
903
904 if (atomic_read(&mm->mm_users) <= 1)
905 return true;
906
907 /*
908 * Make sure that all tasks which share the mm with the given tasks
909 * are dying as well to make sure that a) nobody pins its mm and
910 * b) the task is also reapable by the oom reaper.
911 */
912 rcu_read_lock();
913 for_each_process(p) {
914 if (!process_shares_mm(p, mm))
915 continue;
916 if (same_thread_group(task, p))
917 continue;
918 ret = __task_will_free_mem(p);
919 if (!ret)
920 break;
921 }
922 rcu_read_unlock();
923
924 return ret;
925 }
926
__oom_kill_process(struct task_struct * victim,const char * message)927 static void __oom_kill_process(struct task_struct *victim, const char *message)
928 {
929 struct task_struct *p;
930 struct mm_struct *mm;
931 bool can_oom_reap = true;
932
933 p = find_lock_task_mm(victim);
934 if (!p) {
935 pr_info("%s: OOM victim %d (%s) is already exiting. Skip killing the task\n",
936 message, task_pid_nr(victim), victim->comm);
937 put_task_struct(victim);
938 return;
939 } else if (victim != p) {
940 get_task_struct(p);
941 put_task_struct(victim);
942 victim = p;
943 }
944
945 /* Get a reference to safely compare mm after task_unlock(victim) */
946 mm = victim->mm;
947 mmgrab(mm);
948
949 /* Raise event before sending signal: task reaper must see this */
950 count_vm_event(OOM_KILL);
951 memcg_memory_event_mm(mm, MEMCG_OOM_KILL);
952
953 /*
954 * We should send SIGKILL before granting access to memory reserves
955 * in order to prevent the OOM victim from depleting the memory
956 * reserves from the user space under its control.
957 */
958 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, victim, PIDTYPE_TGID);
959 mark_oom_victim(victim);
960 pr_err("%s: Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB, UID:%u pgtables:%lukB oom_score_adj:%hd\n",
961 message, task_pid_nr(victim), victim->comm, K(mm->total_vm),
962 K(get_mm_counter(mm, MM_ANONPAGES)),
963 K(get_mm_counter(mm, MM_FILEPAGES)),
964 K(get_mm_counter(mm, MM_SHMEMPAGES)),
965 from_kuid(&init_user_ns, task_uid(victim)),
966 mm_pgtables_bytes(mm) >> 10, victim->signal->oom_score_adj);
967 task_unlock(victim);
968
969 /*
970 * Kill all user processes sharing victim->mm in other thread groups, if
971 * any. They don't get access to memory reserves, though, to avoid
972 * depletion of all memory. This prevents mm->mmap_lock livelock when an
973 * oom killed thread cannot exit because it requires the semaphore and
974 * its contended by another thread trying to allocate memory itself.
975 * That thread will now get access to memory reserves since it has a
976 * pending fatal signal.
977 */
978 rcu_read_lock();
979 for_each_process(p) {
980 if (!process_shares_mm(p, mm))
981 continue;
982 if (same_thread_group(p, victim))
983 continue;
984 if (is_global_init(p)) {
985 can_oom_reap = false;
986 mm_flags_set(MMF_OOM_SKIP, mm);
987 pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n",
988 task_pid_nr(victim), victim->comm,
989 task_pid_nr(p), p->comm);
990 continue;
991 }
992 /*
993 * No kthread_use_mm() user needs to read from the userspace so
994 * we are ok to reap it.
995 */
996 if (unlikely(p->flags & PF_KTHREAD))
997 continue;
998 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_TGID);
999 }
1000 rcu_read_unlock();
1001
1002 if (can_oom_reap)
1003 queue_oom_reaper(victim);
1004
1005 mmdrop(mm);
1006 put_task_struct(victim);
1007 }
1008
1009 /*
1010 * Kill provided task unless it's secured by setting
1011 * oom_score_adj to OOM_SCORE_ADJ_MIN.
1012 */
oom_kill_memcg_member(struct task_struct * task,void * message)1013 static int oom_kill_memcg_member(struct task_struct *task, void *message)
1014 {
1015 if (task->signal->oom_score_adj != OOM_SCORE_ADJ_MIN &&
1016 !is_global_init(task)) {
1017 get_task_struct(task);
1018 __oom_kill_process(task, message);
1019 }
1020 return 0;
1021 }
1022
oom_kill_process(struct oom_control * oc,const char * message)1023 static void oom_kill_process(struct oom_control *oc, const char *message)
1024 {
1025 struct task_struct *victim = oc->chosen;
1026 struct mem_cgroup *oom_group;
1027 static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1028 DEFAULT_RATELIMIT_BURST);
1029
1030 /*
1031 * If the task is already exiting, don't alarm the sysadmin or kill
1032 * its children or threads, just give it access to memory reserves
1033 * so it can die quickly
1034 */
1035 task_lock(victim);
1036 if (task_will_free_mem(victim)) {
1037 mark_oom_victim(victim);
1038 queue_oom_reaper(victim);
1039 task_unlock(victim);
1040 put_task_struct(victim);
1041 return;
1042 }
1043 task_unlock(victim);
1044
1045 if (__ratelimit(&oom_rs)) {
1046 dump_header(oc);
1047 dump_oom_victim(oc, victim);
1048 }
1049
1050 /*
1051 * Do we need to kill the entire memory cgroup?
1052 * Or even one of the ancestor memory cgroups?
1053 * Check this out before killing the victim task.
1054 */
1055 oom_group = mem_cgroup_get_oom_group(victim, oc->memcg);
1056
1057 __oom_kill_process(victim, message);
1058
1059 /*
1060 * If necessary, kill all tasks in the selected memory cgroup.
1061 */
1062 if (oom_group) {
1063 memcg_memory_event(oom_group, MEMCG_OOM_GROUP_KILL);
1064 mem_cgroup_print_oom_group(oom_group);
1065 mem_cgroup_scan_tasks(oom_group, oom_kill_memcg_member,
1066 (void *)message);
1067 mem_cgroup_put(oom_group);
1068 }
1069 }
1070
1071 /*
1072 * Determines whether the kernel must panic because of the panic_on_oom sysctl.
1073 */
check_panic_on_oom(struct oom_control * oc)1074 static void check_panic_on_oom(struct oom_control *oc)
1075 {
1076 if (likely(!sysctl_panic_on_oom))
1077 return;
1078 if (sysctl_panic_on_oom != 2) {
1079 /*
1080 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
1081 * does not panic for cpuset, mempolicy, or memcg allocation
1082 * failures.
1083 */
1084 if (oc->constraint != CONSTRAINT_NONE)
1085 return;
1086 }
1087 /* Do not panic for oom kills triggered by sysrq */
1088 if (is_sysrq_oom(oc))
1089 return;
1090 dump_header(oc);
1091 panic("Out of memory: %s panic_on_oom is enabled\n",
1092 sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
1093 }
1094
1095 static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
1096
register_oom_notifier(struct notifier_block * nb)1097 int register_oom_notifier(struct notifier_block *nb)
1098 {
1099 return blocking_notifier_chain_register(&oom_notify_list, nb);
1100 }
1101 EXPORT_SYMBOL_GPL(register_oom_notifier);
1102
unregister_oom_notifier(struct notifier_block * nb)1103 int unregister_oom_notifier(struct notifier_block *nb)
1104 {
1105 return blocking_notifier_chain_unregister(&oom_notify_list, nb);
1106 }
1107 EXPORT_SYMBOL_GPL(unregister_oom_notifier);
1108
1109 /**
1110 * out_of_memory - kill the "best" process when we run out of memory
1111 * @oc: pointer to struct oom_control
1112 *
1113 * If we run out of memory, we have the choice between either
1114 * killing a random task (bad), letting the system crash (worse)
1115 * OR try to be smart about which process to kill. Note that we
1116 * don't have to be perfect here, we just have to be good.
1117 */
out_of_memory(struct oom_control * oc)1118 bool out_of_memory(struct oom_control *oc)
1119 {
1120 unsigned long freed = 0;
1121
1122 if (oom_killer_disabled)
1123 return false;
1124
1125 if (!is_memcg_oom(oc)) {
1126 blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
1127 if (freed > 0 && !is_sysrq_oom(oc))
1128 /* Got some memory back in the last second. */
1129 return true;
1130 }
1131
1132 /*
1133 * If current has a pending SIGKILL or is exiting, then automatically
1134 * select it. The goal is to allow it to allocate so that it may
1135 * quickly exit and free its memory.
1136 */
1137 if (task_will_free_mem(current)) {
1138 mark_oom_victim(current);
1139 queue_oom_reaper(current);
1140 return true;
1141 }
1142
1143 /*
1144 * The OOM killer does not compensate for IO-less reclaim.
1145 * But mem_cgroup_oom() has to invoke the OOM killer even
1146 * if it is a GFP_NOFS allocation.
1147 */
1148 if (!(oc->gfp_mask & __GFP_FS) && !is_memcg_oom(oc))
1149 return true;
1150
1151 /*
1152 * Check if there were limitations on the allocation (only relevant for
1153 * NUMA and memcg) that may require different handling.
1154 */
1155 oc->constraint = constrained_alloc(oc);
1156 if (oc->constraint != CONSTRAINT_MEMORY_POLICY)
1157 oc->nodemask = NULL;
1158 check_panic_on_oom(oc);
1159
1160 if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task &&
1161 current->mm && !oom_unkillable_task(current) &&
1162 oom_cpuset_eligible(current, oc) &&
1163 current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
1164 get_task_struct(current);
1165 oc->chosen = current;
1166 oom_kill_process(oc, "Out of memory (oom_kill_allocating_task)");
1167 return true;
1168 }
1169
1170 select_bad_process(oc);
1171 /* Found nothing?!?! */
1172 if (!oc->chosen) {
1173 dump_header(oc);
1174 pr_warn("Out of memory and no killable processes...\n");
1175 /*
1176 * If we got here due to an actual allocation at the
1177 * system level, we cannot survive this and will enter
1178 * an endless loop in the allocator. Bail out now.
1179 */
1180 if (!is_sysrq_oom(oc) && !is_memcg_oom(oc))
1181 panic("System is deadlocked on memory\n");
1182 }
1183 if (oc->chosen && oc->chosen != (void *)-1UL)
1184 oom_kill_process(oc, !is_memcg_oom(oc) ? "Out of memory" :
1185 "Memory cgroup out of memory");
1186 return !!oc->chosen;
1187 }
1188
1189 /*
1190 * The pagefault handler calls here because some allocation has failed. We have
1191 * to take care of the memcg OOM here because this is the only safe context without
1192 * any locks held but let the oom killer triggered from the allocation context care
1193 * about the global OOM.
1194 */
pagefault_out_of_memory(void)1195 void pagefault_out_of_memory(void)
1196 {
1197 static DEFINE_RATELIMIT_STATE(pfoom_rs, DEFAULT_RATELIMIT_INTERVAL,
1198 DEFAULT_RATELIMIT_BURST);
1199
1200 if (mem_cgroup_oom_synchronize(true))
1201 return;
1202
1203 if (fatal_signal_pending(current))
1204 return;
1205
1206 if (__ratelimit(&pfoom_rs))
1207 pr_warn("Huh VM_FAULT_OOM leaked out to the #PF handler. Retrying PF\n");
1208 }
1209
SYSCALL_DEFINE2(process_mrelease,int,pidfd,unsigned int,flags)1210 SYSCALL_DEFINE2(process_mrelease, int, pidfd, unsigned int, flags)
1211 {
1212 #ifdef CONFIG_MMU
1213 struct mm_struct *mm = NULL;
1214 struct task_struct *task;
1215 struct task_struct *p;
1216 unsigned int f_flags;
1217 bool reap = false;
1218 long ret = 0;
1219
1220 if (flags)
1221 return -EINVAL;
1222
1223 task = pidfd_get_task(pidfd, &f_flags);
1224 if (IS_ERR(task))
1225 return PTR_ERR(task);
1226
1227 /*
1228 * Make sure to choose a thread which still has a reference to mm
1229 * during the group exit
1230 */
1231 p = find_lock_task_mm(task);
1232 if (!p) {
1233 ret = -ESRCH;
1234 goto put_task;
1235 }
1236
1237 mm = p->mm;
1238 mmgrab(mm);
1239
1240 if (task_will_free_mem(p))
1241 reap = true;
1242 else {
1243 /* Error only if the work has not been done already */
1244 if (!mm_flags_test(MMF_OOM_SKIP, mm))
1245 ret = -EINVAL;
1246 }
1247 task_unlock(p);
1248
1249 if (!reap)
1250 goto drop_mm;
1251
1252 if (mmap_read_lock_killable(mm)) {
1253 ret = -EINTR;
1254 goto drop_mm;
1255 }
1256 /*
1257 * Check MMF_OOM_SKIP again under mmap_read_lock protection to ensure
1258 * possible change in exit_mmap is seen
1259 */
1260 if (!mm_flags_test(MMF_OOM_SKIP, mm) && !__oom_reap_task_mm(mm))
1261 ret = -EAGAIN;
1262 mmap_read_unlock(mm);
1263
1264 drop_mm:
1265 mmdrop(mm);
1266 put_task:
1267 put_task_struct(task);
1268 return ret;
1269 #else
1270 return -ENOSYS;
1271 #endif /* CONFIG_MMU */
1272 }
1273