xref: /linux/kernel/workqueue.c (revision 9bdc64892dcce732d55b2c07d80b36a6c3e1b5f4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/workqueue.c - generic async execution with shared worker pool
4  *
5  * Copyright (C) 2002		Ingo Molnar
6  *
7  *   Derived from the taskqueue/keventd code by:
8  *     David Woodhouse <dwmw2@infradead.org>
9  *     Andrew Morton
10  *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
11  *     Theodore Ts'o <tytso@mit.edu>
12  *
13  * Made to use alloc_percpu by Christoph Lameter.
14  *
15  * Copyright (C) 2010		SUSE Linux Products GmbH
16  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
17  *
18  * This is the generic async execution mechanism.  Work items as are
19  * executed in process context.  The worker pool is shared and
20  * automatically managed.  There are two worker pools for each CPU (one for
21  * normal work items and the other for high priority ones) and some extra
22  * pools for workqueues which are not bound to any specific CPU - the
23  * number of these backing pools is dynamic.
24  *
25  * Please read Documentation/core-api/workqueue.rst for details.
26  */
27 
28 #include <linux/export.h>
29 #include <linux/kernel.h>
30 #include <linux/sched.h>
31 #include <linux/init.h>
32 #include <linux/interrupt.h>
33 #include <linux/signal.h>
34 #include <linux/completion.h>
35 #include <linux/workqueue.h>
36 #include <linux/slab.h>
37 #include <linux/cpu.h>
38 #include <linux/notifier.h>
39 #include <linux/kthread.h>
40 #include <linux/hardirq.h>
41 #include <linux/mempolicy.h>
42 #include <linux/freezer.h>
43 #include <linux/debug_locks.h>
44 #include <linux/lockdep.h>
45 #include <linux/idr.h>
46 #include <linux/jhash.h>
47 #include <linux/hashtable.h>
48 #include <linux/rculist.h>
49 #include <linux/nodemask.h>
50 #include <linux/moduleparam.h>
51 #include <linux/uaccess.h>
52 #include <linux/sched/isolation.h>
53 #include <linux/sched/debug.h>
54 #include <linux/nmi.h>
55 #include <linux/kvm_para.h>
56 #include <linux/delay.h>
57 #include <linux/irq_work.h>
58 
59 #include "workqueue_internal.h"
60 
61 enum worker_pool_flags {
62 	/*
63 	 * worker_pool flags
64 	 *
65 	 * A bound pool is either associated or disassociated with its CPU.
66 	 * While associated (!DISASSOCIATED), all workers are bound to the
67 	 * CPU and none has %WORKER_UNBOUND set and concurrency management
68 	 * is in effect.
69 	 *
70 	 * While DISASSOCIATED, the cpu may be offline and all workers have
71 	 * %WORKER_UNBOUND set and concurrency management disabled, and may
72 	 * be executing on any CPU.  The pool behaves as an unbound one.
73 	 *
74 	 * Note that DISASSOCIATED should be flipped only while holding
75 	 * wq_pool_attach_mutex to avoid changing binding state while
76 	 * worker_attach_to_pool() is in progress.
77 	 *
78 	 * As there can only be one concurrent BH execution context per CPU, a
79 	 * BH pool is per-CPU and always DISASSOCIATED.
80 	 */
81 	POOL_BH			= 1 << 0,	/* is a BH pool */
82 	POOL_MANAGER_ACTIVE	= 1 << 1,	/* being managed */
83 	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
84 	POOL_BH_DRAINING	= 1 << 3,	/* draining after CPU offline */
85 };
86 
87 enum worker_flags {
88 	/* worker flags */
89 	WORKER_DIE		= 1 << 1,	/* die die die */
90 	WORKER_IDLE		= 1 << 2,	/* is idle */
91 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
92 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
93 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
94 	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
95 
96 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
97 				  WORKER_UNBOUND | WORKER_REBOUND,
98 };
99 
100 enum work_cancel_flags {
101 	WORK_CANCEL_DELAYED	= 1 << 0,	/* canceling a delayed_work */
102 	WORK_CANCEL_DISABLE	= 1 << 1,	/* canceling to disable */
103 };
104 
105 enum wq_internal_consts {
106 	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
107 
108 	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
109 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
110 
111 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
112 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
113 
114 	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
115 						/* call for help after 10ms
116 						   (min two ticks) */
117 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
118 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
119 
120 	RESCUER_BATCH		= 16,		/* process items per turn */
121 
122 	/*
123 	 * Rescue workers are used only on emergencies and shared by
124 	 * all cpus.  Give MIN_NICE.
125 	 */
126 	RESCUER_NICE_LEVEL	= MIN_NICE,
127 	HIGHPRI_NICE_LEVEL	= MIN_NICE,
128 
129 	WQ_NAME_LEN		= 32,
130 	WORKER_ID_LEN		= 10 + WQ_NAME_LEN, /* "kworker/R-" + WQ_NAME_LEN */
131 };
132 
133 /*
134  * We don't want to trap softirq for too long. See MAX_SOFTIRQ_TIME and
135  * MAX_SOFTIRQ_RESTART in kernel/softirq.c. These are macros because
136  * msecs_to_jiffies() can't be an initializer.
137  */
138 #define BH_WORKER_JIFFIES	msecs_to_jiffies(2)
139 #define BH_WORKER_RESTARTS	10
140 
141 /*
142  * Structure fields follow one of the following exclusion rules.
143  *
144  * I: Modifiable by initialization/destruction paths and read-only for
145  *    everyone else.
146  *
147  * P: Preemption protected.  Disabling preemption is enough and should
148  *    only be modified and accessed from the local cpu.
149  *
150  * L: pool->lock protected.  Access with pool->lock held.
151  *
152  * LN: pool->lock and wq_node_nr_active->lock protected for writes. Either for
153  *     reads.
154  *
155  * K: Only modified by worker while holding pool->lock. Can be safely read by
156  *    self, while holding pool->lock or from IRQ context if %current is the
157  *    kworker.
158  *
159  * S: Only modified by worker self.
160  *
161  * A: wq_pool_attach_mutex protected.
162  *
163  * PL: wq_pool_mutex protected.
164  *
165  * PR: wq_pool_mutex protected for writes.  RCU protected for reads.
166  *
167  * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
168  *
169  * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
170  *      RCU for reads.
171  *
172  * WQ: wq->mutex protected.
173  *
174  * WR: wq->mutex protected for writes.  RCU protected for reads.
175  *
176  * WO: wq->mutex protected for writes. Updated with WRITE_ONCE() and can be read
177  *     with READ_ONCE() without locking.
178  *
179  * MD: wq_mayday_lock protected.
180  *
181  * WD: Used internally by the watchdog.
182  */
183 
184 /* struct worker is defined in workqueue_internal.h */
185 
186 struct worker_pool {
187 	raw_spinlock_t		lock;		/* the pool lock */
188 	int			cpu;		/* I: the associated cpu */
189 	int			node;		/* I: the associated node ID */
190 	int			id;		/* I: pool ID */
191 	unsigned int		flags;		/* L: flags */
192 
193 	unsigned long		watchdog_ts;	/* L: watchdog timestamp */
194 	bool			cpu_stall;	/* WD: stalled cpu bound pool */
195 
196 	/*
197 	 * The counter is incremented in a process context on the associated CPU
198 	 * w/ preemption disabled, and decremented or reset in the same context
199 	 * but w/ pool->lock held. The readers grab pool->lock and are
200 	 * guaranteed to see if the counter reached zero.
201 	 */
202 	int			nr_running;
203 
204 	struct list_head	worklist;	/* L: list of pending works */
205 
206 	int			nr_workers;	/* L: total number of workers */
207 	int			nr_idle;	/* L: currently idle workers */
208 
209 	struct list_head	idle_list;	/* L: list of idle workers */
210 	struct timer_list	idle_timer;	/* L: worker idle timeout */
211 	struct work_struct      idle_cull_work; /* L: worker idle cleanup */
212 
213 	struct timer_list	mayday_timer;	  /* L: SOS timer for workers */
214 
215 	/* a workers is either on busy_hash or idle_list, or the manager */
216 	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
217 						/* L: hash of busy workers */
218 
219 	struct worker		*manager;	/* L: purely informational */
220 	struct list_head	workers;	/* A: attached workers */
221 
222 	struct ida		worker_ida;	/* worker IDs for task name */
223 
224 	struct workqueue_attrs	*attrs;		/* I: worker attributes */
225 	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
226 	int			refcnt;		/* PL: refcnt for unbound pools */
227 #ifdef CONFIG_PREEMPT_RT
228 	spinlock_t		cb_lock;	/* BH worker cancel lock */
229 #endif
230 	/*
231 	 * Destruction of pool is RCU protected to allow dereferences
232 	 * from get_work_pool().
233 	 */
234 	struct rcu_head		rcu;
235 };
236 
237 /*
238  * Per-pool_workqueue statistics. These can be monitored using
239  * tools/workqueue/wq_monitor.py.
240  */
241 enum pool_workqueue_stats {
242 	PWQ_STAT_STARTED,	/* work items started execution */
243 	PWQ_STAT_COMPLETED,	/* work items completed execution */
244 	PWQ_STAT_CPU_TIME,	/* total CPU time consumed */
245 	PWQ_STAT_CPU_INTENSIVE,	/* wq_cpu_intensive_thresh_us violations */
246 	PWQ_STAT_CM_WAKEUP,	/* concurrency-management worker wakeups */
247 	PWQ_STAT_REPATRIATED,	/* unbound workers brought back into scope */
248 	PWQ_STAT_MAYDAY,	/* maydays to rescuer */
249 	PWQ_STAT_RESCUED,	/* linked work items executed by rescuer */
250 
251 	PWQ_NR_STATS,
252 };
253 
254 /*
255  * The per-pool workqueue.  While queued, bits below WORK_PWQ_SHIFT
256  * of work_struct->data are used for flags and the remaining high bits
257  * point to the pwq; thus, pwqs need to be aligned at two's power of the
258  * number of flag bits.
259  */
260 struct pool_workqueue {
261 	struct worker_pool	*pool;		/* I: the associated pool */
262 	struct workqueue_struct *wq;		/* I: the owning workqueue */
263 	int			work_color;	/* L: current color */
264 	int			flush_color;	/* L: flushing color */
265 	int			refcnt;		/* L: reference count */
266 	int			nr_in_flight[WORK_NR_COLORS];
267 						/* L: nr of in_flight works */
268 	bool			plugged;	/* L: execution suspended */
269 
270 	/*
271 	 * nr_active management and WORK_STRUCT_INACTIVE:
272 	 *
273 	 * When pwq->nr_active >= max_active, new work item is queued to
274 	 * pwq->inactive_works instead of pool->worklist and marked with
275 	 * WORK_STRUCT_INACTIVE.
276 	 *
277 	 * All work items marked with WORK_STRUCT_INACTIVE do not participate in
278 	 * nr_active and all work items in pwq->inactive_works are marked with
279 	 * WORK_STRUCT_INACTIVE. But not all WORK_STRUCT_INACTIVE work items are
280 	 * in pwq->inactive_works. Some of them are ready to run in
281 	 * pool->worklist or worker->scheduled. Those work itmes are only struct
282 	 * wq_barrier which is used for flush_work() and should not participate
283 	 * in nr_active. For non-barrier work item, it is marked with
284 	 * WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works.
285 	 */
286 	int			nr_active;	/* L: nr of active works */
287 	struct list_head	inactive_works;	/* L: inactive works */
288 	struct list_head	pending_node;	/* LN: node on wq_node_nr_active->pending_pwqs */
289 	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
290 	struct list_head	mayday_node;	/* MD: node on wq->maydays */
291 	struct work_struct	mayday_cursor;	/* L: cursor on pool->worklist */
292 
293 	u64			stats[PWQ_NR_STATS];
294 
295 	/*
296 	 * Release of unbound pwq is punted to a kthread_worker. See put_pwq()
297 	 * and pwq_release_workfn() for details. pool_workqueue itself is also
298 	 * RCU protected so that the first pwq can be determined without
299 	 * grabbing wq->mutex.
300 	 */
301 	struct kthread_work	release_work;
302 	struct rcu_head		rcu;
303 } __aligned(1 << WORK_STRUCT_PWQ_SHIFT);
304 
305 /*
306  * Structure used to wait for workqueue flush.
307  */
308 struct wq_flusher {
309 	struct list_head	list;		/* WQ: list of flushers */
310 	int			flush_color;	/* WQ: flush color waiting for */
311 	struct completion	done;		/* flush completion */
312 };
313 
314 struct wq_device;
315 
316 /*
317  * Unlike in a per-cpu workqueue where max_active limits its concurrency level
318  * on each CPU, in an unbound workqueue, max_active applies to the whole system.
319  * As sharing a single nr_active across multiple sockets can be very expensive,
320  * the counting and enforcement is per NUMA node.
321  *
322  * The following struct is used to enforce per-node max_active. When a pwq wants
323  * to start executing a work item, it should increment ->nr using
324  * tryinc_node_nr_active(). If acquisition fails due to ->nr already being over
325  * ->max, the pwq is queued on ->pending_pwqs. As in-flight work items finish
326  * and decrement ->nr, node_activate_pending_pwq() activates the pending pwqs in
327  * round-robin order.
328  */
329 struct wq_node_nr_active {
330 	int			max;		/* per-node max_active */
331 	atomic_t		nr;		/* per-node nr_active */
332 	raw_spinlock_t		lock;		/* nests inside pool locks */
333 	struct list_head	pending_pwqs;	/* LN: pwqs with inactive works */
334 };
335 
336 /*
337  * The externally visible workqueue.  It relays the issued work items to
338  * the appropriate worker_pool through its pool_workqueues.
339  */
340 struct workqueue_struct {
341 	struct list_head	pwqs;		/* WR: all pwqs of this wq */
342 	struct list_head	list;		/* PR: list of all workqueues */
343 
344 	struct mutex		mutex;		/* protects this wq */
345 	int			work_color;	/* WQ: current work color */
346 	int			flush_color;	/* WQ: current flush color */
347 	atomic_t		nr_pwqs_to_flush; /* flush in progress */
348 	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
349 	struct list_head	flusher_queue;	/* WQ: flush waiters */
350 	struct list_head	flusher_overflow; /* WQ: flush overflow list */
351 
352 	struct list_head	maydays;	/* MD: pwqs requesting rescue */
353 	struct worker		*rescuer;	/* MD: rescue worker */
354 
355 	int			nr_drainers;	/* WQ: drain in progress */
356 
357 	/* See alloc_workqueue() function comment for info on min/max_active */
358 	int			max_active;	/* WO: max active works */
359 	int			min_active;	/* WO: min active works */
360 	int			saved_max_active; /* WQ: saved max_active */
361 	int			saved_min_active; /* WQ: saved min_active */
362 
363 	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
364 	struct pool_workqueue __rcu *dfl_pwq;   /* PW: only for unbound wqs */
365 
366 #ifdef CONFIG_SYSFS
367 	struct wq_device	*wq_dev;	/* I: for sysfs interface */
368 #endif
369 #ifdef CONFIG_LOCKDEP
370 	char			*lock_name;
371 	struct lock_class_key	key;
372 	struct lockdep_map	__lockdep_map;
373 	struct lockdep_map	*lockdep_map;
374 #endif
375 	char			name[WQ_NAME_LEN]; /* I: workqueue name */
376 
377 	/*
378 	 * Destruction of workqueue_struct is RCU protected to allow walking
379 	 * the workqueues list without grabbing wq_pool_mutex.
380 	 * This is used to dump all workqueues from sysrq.
381 	 */
382 	struct rcu_head		rcu;
383 
384 	/* hot fields used during command issue, aligned to cacheline */
385 	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
386 	struct pool_workqueue __rcu * __percpu *cpu_pwq; /* I: per-cpu pwqs */
387 	struct wq_node_nr_active *node_nr_active[]; /* I: per-node nr_active */
388 };
389 
390 /*
391  * Each pod type describes how CPUs should be grouped for unbound workqueues.
392  * See the comment above workqueue_attrs->affn_scope.
393  */
394 struct wq_pod_type {
395 	int			nr_pods;	/* number of pods */
396 	cpumask_var_t		*pod_cpus;	/* pod -> cpus */
397 	int			*pod_node;	/* pod -> node */
398 	int			*cpu_pod;	/* cpu -> pod */
399 };
400 
401 struct work_offq_data {
402 	u32			pool_id;
403 	u32			disable;
404 	u32			flags;
405 };
406 
407 static const char *wq_affn_names[WQ_AFFN_NR_TYPES] = {
408 	[WQ_AFFN_DFL]		= "default",
409 	[WQ_AFFN_CPU]		= "cpu",
410 	[WQ_AFFN_SMT]		= "smt",
411 	[WQ_AFFN_CACHE]		= "cache",
412 	[WQ_AFFN_NUMA]		= "numa",
413 	[WQ_AFFN_SYSTEM]	= "system",
414 };
415 
416 /*
417  * Per-cpu work items which run for longer than the following threshold are
418  * automatically considered CPU intensive and excluded from concurrency
419  * management to prevent them from noticeably delaying other per-cpu work items.
420  * ULONG_MAX indicates that the user hasn't overridden it with a boot parameter.
421  * The actual value is initialized in wq_cpu_intensive_thresh_init().
422  */
423 static unsigned long wq_cpu_intensive_thresh_us = ULONG_MAX;
424 module_param_named(cpu_intensive_thresh_us, wq_cpu_intensive_thresh_us, ulong, 0644);
425 #ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT
426 static unsigned int wq_cpu_intensive_warning_thresh = 4;
427 module_param_named(cpu_intensive_warning_thresh, wq_cpu_intensive_warning_thresh, uint, 0644);
428 #endif
429 
430 /* see the comment above the definition of WQ_POWER_EFFICIENT */
431 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
432 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
433 
434 static bool wq_online;			/* can kworkers be created yet? */
435 static bool wq_topo_initialized __read_mostly = false;
436 
437 static struct kmem_cache *pwq_cache;
438 
439 static struct wq_pod_type wq_pod_types[WQ_AFFN_NR_TYPES];
440 static enum wq_affn_scope wq_affn_dfl = WQ_AFFN_CACHE;
441 
442 /* buf for wq_update_unbound_pod_attrs(), protected by CPU hotplug exclusion */
443 static struct workqueue_attrs *unbound_wq_update_pwq_attrs_buf;
444 
445 static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
446 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
447 static DEFINE_RAW_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
448 /* wait for manager to go away */
449 static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
450 
451 static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
452 static bool workqueue_freezing;		/* PL: have wqs started freezing? */
453 
454 /* PL: mirror the cpu_online_mask excluding the CPU in the midst of hotplugging */
455 static cpumask_var_t wq_online_cpumask;
456 
457 /* PL&A: allowable cpus for unbound wqs and work items */
458 static cpumask_var_t wq_unbound_cpumask;
459 
460 /* PL: user requested unbound cpumask via sysfs */
461 static cpumask_var_t wq_requested_unbound_cpumask;
462 
463 /* PL: isolated cpumask to be excluded from unbound cpumask */
464 static cpumask_var_t wq_isolated_cpumask;
465 
466 /* for further constrain wq_unbound_cpumask by cmdline parameter*/
467 static struct cpumask wq_cmdline_cpumask __initdata;
468 
469 /* CPU where unbound work was last round robin scheduled from this CPU */
470 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
471 
472 /*
473  * Local execution of unbound work items is no longer guaranteed.  The
474  * following always forces round-robin CPU selection on unbound work items
475  * to uncover usages which depend on it.
476  */
477 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
478 static bool wq_debug_force_rr_cpu = true;
479 #else
480 static bool wq_debug_force_rr_cpu = false;
481 #endif
482 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
483 
484 /* to raise softirq for the BH worker pools on other CPUs */
485 static DEFINE_PER_CPU_SHARED_ALIGNED(struct irq_work [NR_STD_WORKER_POOLS], bh_pool_irq_works);
486 
487 /* the BH worker pools */
488 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], bh_worker_pools);
489 
490 /* the per-cpu worker pools */
491 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
492 
493 static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
494 
495 /* PL: hash of all unbound pools keyed by pool->attrs */
496 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
497 
498 /* I: attributes used when instantiating standard unbound pools on demand */
499 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
500 
501 /* I: attributes used when instantiating ordered pools on demand */
502 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
503 
504 /*
505  * I: kthread_worker to release pwq's. pwq release needs to be bounced to a
506  * process context while holding a pool lock. Bounce to a dedicated kthread
507  * worker to avoid A-A deadlocks.
508  */
509 static struct kthread_worker *pwq_release_worker __ro_after_init;
510 
511 struct workqueue_struct *system_wq __ro_after_init;
512 EXPORT_SYMBOL(system_wq);
513 struct workqueue_struct *system_percpu_wq __ro_after_init;
514 EXPORT_SYMBOL(system_percpu_wq);
515 struct workqueue_struct *system_highpri_wq __ro_after_init;
516 EXPORT_SYMBOL_GPL(system_highpri_wq);
517 struct workqueue_struct *system_long_wq __ro_after_init;
518 EXPORT_SYMBOL_GPL(system_long_wq);
519 struct workqueue_struct *system_unbound_wq __ro_after_init;
520 EXPORT_SYMBOL_GPL(system_unbound_wq);
521 struct workqueue_struct *system_dfl_wq __ro_after_init;
522 EXPORT_SYMBOL_GPL(system_dfl_wq);
523 struct workqueue_struct *system_freezable_wq __ro_after_init;
524 EXPORT_SYMBOL_GPL(system_freezable_wq);
525 struct workqueue_struct *system_power_efficient_wq __ro_after_init;
526 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
527 struct workqueue_struct *system_freezable_power_efficient_wq __ro_after_init;
528 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
529 struct workqueue_struct *system_bh_wq;
530 EXPORT_SYMBOL_GPL(system_bh_wq);
531 struct workqueue_struct *system_bh_highpri_wq;
532 EXPORT_SYMBOL_GPL(system_bh_highpri_wq);
533 
534 static int worker_thread(void *__worker);
535 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
536 static void show_pwq(struct pool_workqueue *pwq);
537 static void show_one_worker_pool(struct worker_pool *pool);
538 
539 #define CREATE_TRACE_POINTS
540 #include <trace/events/workqueue.h>
541 
542 #define assert_rcu_or_pool_mutex()					\
543 	RCU_LOCKDEP_WARN(!rcu_read_lock_any_held() &&			\
544 			 !lockdep_is_held(&wq_pool_mutex),		\
545 			 "RCU or wq_pool_mutex should be held")
546 
547 #define for_each_bh_worker_pool(pool, cpu)				\
548 	for ((pool) = &per_cpu(bh_worker_pools, cpu)[0];		\
549 	     (pool) < &per_cpu(bh_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
550 	     (pool)++)
551 
552 #define for_each_cpu_worker_pool(pool, cpu)				\
553 	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
554 	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
555 	     (pool)++)
556 
557 /**
558  * for_each_pool - iterate through all worker_pools in the system
559  * @pool: iteration cursor
560  * @pi: integer used for iteration
561  *
562  * This must be called either with wq_pool_mutex held or RCU read
563  * locked.  If the pool needs to be used beyond the locking in effect, the
564  * caller is responsible for guaranteeing that the pool stays online.
565  *
566  * The if/else clause exists only for the lockdep assertion and can be
567  * ignored.
568  */
569 #define for_each_pool(pool, pi)						\
570 	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
571 		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
572 		else
573 
574 /**
575  * for_each_pool_worker - iterate through all workers of a worker_pool
576  * @worker: iteration cursor
577  * @pool: worker_pool to iterate workers of
578  *
579  * This must be called with wq_pool_attach_mutex.
580  *
581  * The if/else clause exists only for the lockdep assertion and can be
582  * ignored.
583  */
584 #define for_each_pool_worker(worker, pool)				\
585 	list_for_each_entry((worker), &(pool)->workers, node)		\
586 		if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
587 		else
588 
589 /**
590  * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
591  * @pwq: iteration cursor
592  * @wq: the target workqueue
593  *
594  * This must be called either with wq->mutex held or RCU read locked.
595  * If the pwq needs to be used beyond the locking in effect, the caller is
596  * responsible for guaranteeing that the pwq stays online.
597  *
598  * The if/else clause exists only for the lockdep assertion and can be
599  * ignored.
600  */
601 #define for_each_pwq(pwq, wq)						\
602 	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node,		\
603 				 lockdep_is_held(&(wq->mutex)))
604 
605 #ifdef CONFIG_DEBUG_OBJECTS_WORK
606 
607 static const struct debug_obj_descr work_debug_descr;
608 
609 static void *work_debug_hint(void *addr)
610 {
611 	return ((struct work_struct *) addr)->func;
612 }
613 
614 static bool work_is_static_object(void *addr)
615 {
616 	struct work_struct *work = addr;
617 
618 	return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
619 }
620 
621 /*
622  * fixup_init is called when:
623  * - an active object is initialized
624  */
625 static bool work_fixup_init(void *addr, enum debug_obj_state state)
626 {
627 	struct work_struct *work = addr;
628 
629 	switch (state) {
630 	case ODEBUG_STATE_ACTIVE:
631 		cancel_work_sync(work);
632 		debug_object_init(work, &work_debug_descr);
633 		return true;
634 	default:
635 		return false;
636 	}
637 }
638 
639 /*
640  * fixup_free is called when:
641  * - an active object is freed
642  */
643 static bool work_fixup_free(void *addr, enum debug_obj_state state)
644 {
645 	struct work_struct *work = addr;
646 
647 	switch (state) {
648 	case ODEBUG_STATE_ACTIVE:
649 		cancel_work_sync(work);
650 		debug_object_free(work, &work_debug_descr);
651 		return true;
652 	default:
653 		return false;
654 	}
655 }
656 
657 static const struct debug_obj_descr work_debug_descr = {
658 	.name		= "work_struct",
659 	.debug_hint	= work_debug_hint,
660 	.is_static_object = work_is_static_object,
661 	.fixup_init	= work_fixup_init,
662 	.fixup_free	= work_fixup_free,
663 };
664 
665 static inline void debug_work_activate(struct work_struct *work)
666 {
667 	debug_object_activate(work, &work_debug_descr);
668 }
669 
670 static inline void debug_work_deactivate(struct work_struct *work)
671 {
672 	debug_object_deactivate(work, &work_debug_descr);
673 }
674 
675 void __init_work(struct work_struct *work, int onstack)
676 {
677 	if (onstack)
678 		debug_object_init_on_stack(work, &work_debug_descr);
679 	else
680 		debug_object_init(work, &work_debug_descr);
681 }
682 EXPORT_SYMBOL_GPL(__init_work);
683 
684 void destroy_work_on_stack(struct work_struct *work)
685 {
686 	debug_object_free(work, &work_debug_descr);
687 }
688 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
689 
690 void destroy_delayed_work_on_stack(struct delayed_work *work)
691 {
692 	timer_destroy_on_stack(&work->timer);
693 	debug_object_free(&work->work, &work_debug_descr);
694 }
695 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
696 
697 #else
698 static inline void debug_work_activate(struct work_struct *work) { }
699 static inline void debug_work_deactivate(struct work_struct *work) { }
700 #endif
701 
702 /**
703  * worker_pool_assign_id - allocate ID and assign it to @pool
704  * @pool: the pool pointer of interest
705  *
706  * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
707  * successfully, -errno on failure.
708  */
709 static int worker_pool_assign_id(struct worker_pool *pool)
710 {
711 	int ret;
712 
713 	lockdep_assert_held(&wq_pool_mutex);
714 
715 	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
716 			GFP_KERNEL);
717 	if (ret >= 0) {
718 		pool->id = ret;
719 		return 0;
720 	}
721 	return ret;
722 }
723 
724 static struct pool_workqueue __rcu **
725 unbound_pwq_slot(struct workqueue_struct *wq, int cpu)
726 {
727        if (cpu >= 0)
728                return per_cpu_ptr(wq->cpu_pwq, cpu);
729        else
730                return &wq->dfl_pwq;
731 }
732 
733 /* @cpu < 0 for dfl_pwq */
734 static struct pool_workqueue *unbound_pwq(struct workqueue_struct *wq, int cpu)
735 {
736 	return rcu_dereference_check(*unbound_pwq_slot(wq, cpu),
737 				     lockdep_is_held(&wq_pool_mutex) ||
738 				     lockdep_is_held(&wq->mutex));
739 }
740 
741 /**
742  * unbound_effective_cpumask - effective cpumask of an unbound workqueue
743  * @wq: workqueue of interest
744  *
745  * @wq->unbound_attrs->cpumask contains the cpumask requested by the user which
746  * is masked with wq_unbound_cpumask to determine the effective cpumask. The
747  * default pwq is always mapped to the pool with the current effective cpumask.
748  */
749 static struct cpumask *unbound_effective_cpumask(struct workqueue_struct *wq)
750 {
751 	return unbound_pwq(wq, -1)->pool->attrs->__pod_cpumask;
752 }
753 
754 static unsigned int work_color_to_flags(int color)
755 {
756 	return color << WORK_STRUCT_COLOR_SHIFT;
757 }
758 
759 static int get_work_color(unsigned long work_data)
760 {
761 	return (work_data >> WORK_STRUCT_COLOR_SHIFT) &
762 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
763 }
764 
765 static int work_next_color(int color)
766 {
767 	return (color + 1) % WORK_NR_COLORS;
768 }
769 
770 static unsigned long pool_offq_flags(struct worker_pool *pool)
771 {
772 	return (pool->flags & POOL_BH) ? WORK_OFFQ_BH : 0;
773 }
774 
775 /*
776  * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
777  * contain the pointer to the queued pwq.  Once execution starts, the flag
778  * is cleared and the high bits contain OFFQ flags and pool ID.
779  *
780  * set_work_pwq(), set_work_pool_and_clear_pending() and mark_work_canceling()
781  * can be used to set the pwq, pool or clear work->data. These functions should
782  * only be called while the work is owned - ie. while the PENDING bit is set.
783  *
784  * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
785  * corresponding to a work.  Pool is available once the work has been
786  * queued anywhere after initialization until it is sync canceled.  pwq is
787  * available only while the work item is queued.
788  */
789 static inline void set_work_data(struct work_struct *work, unsigned long data)
790 {
791 	WARN_ON_ONCE(!work_pending(work));
792 	atomic_long_set(&work->data, data | work_static(work));
793 }
794 
795 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
796 			 unsigned long flags)
797 {
798 	set_work_data(work, (unsigned long)pwq | WORK_STRUCT_PENDING |
799 		      WORK_STRUCT_PWQ | flags);
800 }
801 
802 static void set_work_pool_and_keep_pending(struct work_struct *work,
803 					   int pool_id, unsigned long flags)
804 {
805 	set_work_data(work, ((unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT) |
806 		      WORK_STRUCT_PENDING | flags);
807 }
808 
809 static void set_work_pool_and_clear_pending(struct work_struct *work,
810 					    int pool_id, unsigned long flags)
811 {
812 	/*
813 	 * The following wmb is paired with the implied mb in
814 	 * test_and_set_bit(PENDING) and ensures all updates to @work made
815 	 * here are visible to and precede any updates by the next PENDING
816 	 * owner.
817 	 */
818 	smp_wmb();
819 	set_work_data(work, ((unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT) |
820 		      flags);
821 	/*
822 	 * The following mb guarantees that previous clear of a PENDING bit
823 	 * will not be reordered with any speculative LOADS or STORES from
824 	 * work->current_func, which is executed afterwards.  This possible
825 	 * reordering can lead to a missed execution on attempt to queue
826 	 * the same @work.  E.g. consider this case:
827 	 *
828 	 *   CPU#0                         CPU#1
829 	 *   ----------------------------  --------------------------------
830 	 *
831 	 * 1  STORE event_indicated
832 	 * 2  queue_work_on() {
833 	 * 3    test_and_set_bit(PENDING)
834 	 * 4 }                             set_..._and_clear_pending() {
835 	 * 5                                 set_work_data() # clear bit
836 	 * 6                                 smp_mb()
837 	 * 7                               work->current_func() {
838 	 * 8				      LOAD event_indicated
839 	 *				   }
840 	 *
841 	 * Without an explicit full barrier speculative LOAD on line 8 can
842 	 * be executed before CPU#0 does STORE on line 1.  If that happens,
843 	 * CPU#0 observes the PENDING bit is still set and new execution of
844 	 * a @work is not queued in a hope, that CPU#1 will eventually
845 	 * finish the queued @work.  Meanwhile CPU#1 does not see
846 	 * event_indicated is set, because speculative LOAD was executed
847 	 * before actual STORE.
848 	 */
849 	smp_mb();
850 }
851 
852 static inline struct pool_workqueue *work_struct_pwq(unsigned long data)
853 {
854 	return (struct pool_workqueue *)(data & WORK_STRUCT_PWQ_MASK);
855 }
856 
857 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
858 {
859 	unsigned long data = atomic_long_read(&work->data);
860 
861 	if (data & WORK_STRUCT_PWQ)
862 		return work_struct_pwq(data);
863 	else
864 		return NULL;
865 }
866 
867 /**
868  * get_work_pool - return the worker_pool a given work was associated with
869  * @work: the work item of interest
870  *
871  * Pools are created and destroyed under wq_pool_mutex, and allows read
872  * access under RCU read lock.  As such, this function should be
873  * called under wq_pool_mutex or inside of a rcu_read_lock() region.
874  *
875  * All fields of the returned pool are accessible as long as the above
876  * mentioned locking is in effect.  If the returned pool needs to be used
877  * beyond the critical section, the caller is responsible for ensuring the
878  * returned pool is and stays online.
879  *
880  * Return: The worker_pool @work was last associated with.  %NULL if none.
881  */
882 static struct worker_pool *get_work_pool(struct work_struct *work)
883 {
884 	unsigned long data = atomic_long_read(&work->data);
885 	int pool_id;
886 
887 	assert_rcu_or_pool_mutex();
888 
889 	if (data & WORK_STRUCT_PWQ)
890 		return work_struct_pwq(data)->pool;
891 
892 	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
893 	if (pool_id == WORK_OFFQ_POOL_NONE)
894 		return NULL;
895 
896 	return idr_find(&worker_pool_idr, pool_id);
897 }
898 
899 static unsigned long shift_and_mask(unsigned long v, u32 shift, u32 bits)
900 {
901 	return (v >> shift) & ((1U << bits) - 1);
902 }
903 
904 static void work_offqd_unpack(struct work_offq_data *offqd, unsigned long data)
905 {
906 	WARN_ON_ONCE(data & WORK_STRUCT_PWQ);
907 
908 	offqd->pool_id = shift_and_mask(data, WORK_OFFQ_POOL_SHIFT,
909 					WORK_OFFQ_POOL_BITS);
910 	offqd->disable = shift_and_mask(data, WORK_OFFQ_DISABLE_SHIFT,
911 					WORK_OFFQ_DISABLE_BITS);
912 	offqd->flags = data & WORK_OFFQ_FLAG_MASK;
913 }
914 
915 static unsigned long work_offqd_pack_flags(struct work_offq_data *offqd)
916 {
917 	return ((unsigned long)offqd->disable << WORK_OFFQ_DISABLE_SHIFT) |
918 		((unsigned long)offqd->flags);
919 }
920 
921 /*
922  * Policy functions.  These define the policies on how the global worker
923  * pools are managed.  Unless noted otherwise, these functions assume that
924  * they're being called with pool->lock held.
925  */
926 
927 /*
928  * Need to wake up a worker?  Called from anything but currently
929  * running workers.
930  *
931  * Note that, because unbound workers never contribute to nr_running, this
932  * function will always return %true for unbound pools as long as the
933  * worklist isn't empty.
934  */
935 static bool need_more_worker(struct worker_pool *pool)
936 {
937 	return !list_empty(&pool->worklist) && !pool->nr_running;
938 }
939 
940 /* Can I start working?  Called from busy but !running workers. */
941 static bool may_start_working(struct worker_pool *pool)
942 {
943 	return pool->nr_idle;
944 }
945 
946 /* Do I need to keep working?  Called from currently running workers. */
947 static bool keep_working(struct worker_pool *pool)
948 {
949 	return !list_empty(&pool->worklist) && (pool->nr_running <= 1);
950 }
951 
952 /* Do we need a new worker?  Called from manager. */
953 static bool need_to_create_worker(struct worker_pool *pool)
954 {
955 	return need_more_worker(pool) && !may_start_working(pool);
956 }
957 
958 /* Do we have too many workers and should some go away? */
959 static bool too_many_workers(struct worker_pool *pool)
960 {
961 	bool managing = pool->flags & POOL_MANAGER_ACTIVE;
962 	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
963 	int nr_busy = pool->nr_workers - nr_idle;
964 
965 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
966 }
967 
968 /**
969  * worker_set_flags - set worker flags and adjust nr_running accordingly
970  * @worker: self
971  * @flags: flags to set
972  *
973  * Set @flags in @worker->flags and adjust nr_running accordingly.
974  */
975 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
976 {
977 	struct worker_pool *pool = worker->pool;
978 
979 	lockdep_assert_held(&pool->lock);
980 
981 	/* If transitioning into NOT_RUNNING, adjust nr_running. */
982 	if ((flags & WORKER_NOT_RUNNING) &&
983 	    !(worker->flags & WORKER_NOT_RUNNING)) {
984 		pool->nr_running--;
985 	}
986 
987 	worker->flags |= flags;
988 }
989 
990 /**
991  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
992  * @worker: self
993  * @flags: flags to clear
994  *
995  * Clear @flags in @worker->flags and adjust nr_running accordingly.
996  */
997 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
998 {
999 	struct worker_pool *pool = worker->pool;
1000 	unsigned int oflags = worker->flags;
1001 
1002 	lockdep_assert_held(&pool->lock);
1003 
1004 	worker->flags &= ~flags;
1005 
1006 	/*
1007 	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
1008 	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
1009 	 * of multiple flags, not a single flag.
1010 	 */
1011 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
1012 		if (!(worker->flags & WORKER_NOT_RUNNING))
1013 			pool->nr_running++;
1014 }
1015 
1016 /* Return the first idle worker.  Called with pool->lock held. */
1017 static struct worker *first_idle_worker(struct worker_pool *pool)
1018 {
1019 	if (unlikely(list_empty(&pool->idle_list)))
1020 		return NULL;
1021 
1022 	return list_first_entry(&pool->idle_list, struct worker, entry);
1023 }
1024 
1025 /**
1026  * worker_enter_idle - enter idle state
1027  * @worker: worker which is entering idle state
1028  *
1029  * @worker is entering idle state.  Update stats and idle timer if
1030  * necessary.
1031  *
1032  * LOCKING:
1033  * raw_spin_lock_irq(pool->lock).
1034  */
1035 static void worker_enter_idle(struct worker *worker)
1036 {
1037 	struct worker_pool *pool = worker->pool;
1038 
1039 	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1040 	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
1041 			 (worker->hentry.next || worker->hentry.pprev)))
1042 		return;
1043 
1044 	/* can't use worker_set_flags(), also called from create_worker() */
1045 	worker->flags |= WORKER_IDLE;
1046 	pool->nr_idle++;
1047 	worker->last_active = jiffies;
1048 
1049 	/* idle_list is LIFO */
1050 	list_add(&worker->entry, &pool->idle_list);
1051 
1052 	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1053 		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1054 
1055 	/* Sanity check nr_running. */
1056 	WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && pool->nr_running);
1057 }
1058 
1059 /**
1060  * worker_leave_idle - leave idle state
1061  * @worker: worker which is leaving idle state
1062  *
1063  * @worker is leaving idle state.  Update stats.
1064  *
1065  * LOCKING:
1066  * raw_spin_lock_irq(pool->lock).
1067  */
1068 static void worker_leave_idle(struct worker *worker)
1069 {
1070 	struct worker_pool *pool = worker->pool;
1071 
1072 	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1073 		return;
1074 	worker_clr_flags(worker, WORKER_IDLE);
1075 	pool->nr_idle--;
1076 	list_del_init(&worker->entry);
1077 }
1078 
1079 /**
1080  * find_worker_executing_work - find worker which is executing a work
1081  * @pool: pool of interest
1082  * @work: work to find worker for
1083  *
1084  * Find a worker which is executing @work on @pool by searching
1085  * @pool->busy_hash which is keyed by the address of @work.  For a worker
1086  * to match, its current execution should match the address of @work and
1087  * its work function.  This is to avoid unwanted dependency between
1088  * unrelated work executions through a work item being recycled while still
1089  * being executed.
1090  *
1091  * This is a bit tricky.  A work item may be freed once its execution
1092  * starts and nothing prevents the freed area from being recycled for
1093  * another work item.  If the same work item address ends up being reused
1094  * before the original execution finishes, workqueue will identify the
1095  * recycled work item as currently executing and make it wait until the
1096  * current execution finishes, introducing an unwanted dependency.
1097  *
1098  * This function checks the work item address and work function to avoid
1099  * false positives.  Note that this isn't complete as one may construct a
1100  * work function which can introduce dependency onto itself through a
1101  * recycled work item.  Well, if somebody wants to shoot oneself in the
1102  * foot that badly, there's only so much we can do, and if such deadlock
1103  * actually occurs, it should be easy to locate the culprit work function.
1104  *
1105  * CONTEXT:
1106  * raw_spin_lock_irq(pool->lock).
1107  *
1108  * Return:
1109  * Pointer to worker which is executing @work if found, %NULL
1110  * otherwise.
1111  */
1112 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1113 						 struct work_struct *work)
1114 {
1115 	struct worker *worker;
1116 
1117 	hash_for_each_possible(pool->busy_hash, worker, hentry,
1118 			       (unsigned long)work)
1119 		if (worker->current_work == work &&
1120 		    worker->current_func == work->func)
1121 			return worker;
1122 
1123 	return NULL;
1124 }
1125 
1126 static void mayday_cursor_func(struct work_struct *work)
1127 {
1128 	/* should not be processed, only for marking position */
1129 	BUG();
1130 }
1131 
1132 /**
1133  * move_linked_works - move linked works to a list
1134  * @work: start of series of works to be scheduled
1135  * @head: target list to append @work to
1136  * @nextp: out parameter for nested worklist walking
1137  *
1138  * Schedule linked works starting from @work to @head. Work series to be
1139  * scheduled starts at @work and includes any consecutive work with
1140  * WORK_STRUCT_LINKED set in its predecessor. See assign_work() for details on
1141  * @nextp.
1142  *
1143  * CONTEXT:
1144  * raw_spin_lock_irq(pool->lock).
1145  */
1146 static void move_linked_works(struct work_struct *work, struct list_head *head,
1147 			      struct work_struct **nextp)
1148 {
1149 	struct work_struct *n;
1150 
1151 	/*
1152 	 * Linked worklist will always end before the end of the list,
1153 	 * use NULL for list head.
1154 	 */
1155 	list_for_each_entry_safe_from(work, n, NULL, entry) {
1156 		list_move_tail(&work->entry, head);
1157 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1158 			break;
1159 	}
1160 
1161 	/*
1162 	 * If we're already inside safe list traversal and have moved
1163 	 * multiple works to the scheduled queue, the next position
1164 	 * needs to be updated.
1165 	 */
1166 	if (nextp)
1167 		*nextp = n;
1168 }
1169 
1170 /**
1171  * assign_work - assign a work item and its linked work items to a worker
1172  * @work: work to assign
1173  * @worker: worker to assign to
1174  * @nextp: out parameter for nested worklist walking
1175  *
1176  * Assign @work and its linked work items to @worker. If @work is already being
1177  * executed by another worker in the same pool, it'll be punted there.
1178  *
1179  * If @nextp is not NULL, it's updated to point to the next work of the last
1180  * scheduled work. This allows assign_work() to be nested inside
1181  * list_for_each_entry_safe().
1182  *
1183  * Returns %true if @work was successfully assigned to @worker. %false if @work
1184  * was punted to another worker already executing it.
1185  */
1186 static bool assign_work(struct work_struct *work, struct worker *worker,
1187 			struct work_struct **nextp)
1188 {
1189 	struct worker_pool *pool = worker->pool;
1190 	struct worker *collision;
1191 
1192 	lockdep_assert_held(&pool->lock);
1193 
1194 	/* The cursor work should not be processed */
1195 	if (unlikely(work->func == mayday_cursor_func)) {
1196 		/* only worker_thread() can possibly take this branch */
1197 		WARN_ON_ONCE(worker->rescue_wq);
1198 		if (nextp)
1199 			*nextp = list_next_entry(work, entry);
1200 		list_del_init(&work->entry);
1201 		return false;
1202 	}
1203 
1204 	/*
1205 	 * A single work shouldn't be executed concurrently by multiple workers.
1206 	 * __queue_work() ensures that @work doesn't jump to a different pool
1207 	 * while still running in the previous pool. Here, we should ensure that
1208 	 * @work is not executed concurrently by multiple workers from the same
1209 	 * pool. Check whether anyone is already processing the work. If so,
1210 	 * defer the work to the currently executing one.
1211 	 */
1212 	collision = find_worker_executing_work(pool, work);
1213 	if (unlikely(collision)) {
1214 		move_linked_works(work, &collision->scheduled, nextp);
1215 		return false;
1216 	}
1217 
1218 	move_linked_works(work, &worker->scheduled, nextp);
1219 	return true;
1220 }
1221 
1222 static struct irq_work *bh_pool_irq_work(struct worker_pool *pool)
1223 {
1224 	int high = pool->attrs->nice == HIGHPRI_NICE_LEVEL ? 1 : 0;
1225 
1226 	return &per_cpu(bh_pool_irq_works, pool->cpu)[high];
1227 }
1228 
1229 static void kick_bh_pool(struct worker_pool *pool)
1230 {
1231 #ifdef CONFIG_SMP
1232 	/* see drain_dead_softirq_workfn() for BH_DRAINING */
1233 	if (unlikely(pool->cpu != smp_processor_id() &&
1234 		     !(pool->flags & POOL_BH_DRAINING))) {
1235 		irq_work_queue_on(bh_pool_irq_work(pool), pool->cpu);
1236 		return;
1237 	}
1238 #endif
1239 	if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
1240 		raise_softirq_irqoff(HI_SOFTIRQ);
1241 	else
1242 		raise_softirq_irqoff(TASKLET_SOFTIRQ);
1243 }
1244 
1245 /**
1246  * kick_pool - wake up an idle worker if necessary
1247  * @pool: pool to kick
1248  *
1249  * @pool may have pending work items. Wake up worker if necessary. Returns
1250  * whether a worker was woken up.
1251  */
1252 static bool kick_pool(struct worker_pool *pool)
1253 {
1254 	struct worker *worker = first_idle_worker(pool);
1255 	struct task_struct *p;
1256 
1257 	lockdep_assert_held(&pool->lock);
1258 
1259 	if (!need_more_worker(pool) || !worker)
1260 		return false;
1261 
1262 	if (pool->flags & POOL_BH) {
1263 		kick_bh_pool(pool);
1264 		return true;
1265 	}
1266 
1267 	p = worker->task;
1268 
1269 #ifdef CONFIG_SMP
1270 	/*
1271 	 * Idle @worker is about to execute @work and waking up provides an
1272 	 * opportunity to migrate @worker at a lower cost by setting the task's
1273 	 * wake_cpu field. Let's see if we want to move @worker to improve
1274 	 * execution locality.
1275 	 *
1276 	 * We're waking the worker that went idle the latest and there's some
1277 	 * chance that @worker is marked idle but hasn't gone off CPU yet. If
1278 	 * so, setting the wake_cpu won't do anything. As this is a best-effort
1279 	 * optimization and the race window is narrow, let's leave as-is for
1280 	 * now. If this becomes pronounced, we can skip over workers which are
1281 	 * still on cpu when picking an idle worker.
1282 	 *
1283 	 * If @pool has non-strict affinity, @worker might have ended up outside
1284 	 * its affinity scope. Repatriate.
1285 	 */
1286 	if (!pool->attrs->affn_strict &&
1287 	    !cpumask_test_cpu(p->wake_cpu, pool->attrs->__pod_cpumask)) {
1288 		struct work_struct *work = list_first_entry(&pool->worklist,
1289 						struct work_struct, entry);
1290 		int wake_cpu = cpumask_any_and_distribute(pool->attrs->__pod_cpumask,
1291 							  cpu_online_mask);
1292 		if (wake_cpu < nr_cpu_ids) {
1293 			p->wake_cpu = wake_cpu;
1294 			get_work_pwq(work)->stats[PWQ_STAT_REPATRIATED]++;
1295 		}
1296 	}
1297 #endif
1298 	wake_up_process(p);
1299 	return true;
1300 }
1301 
1302 #ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT
1303 
1304 /*
1305  * Concurrency-managed per-cpu work items that hog CPU for longer than
1306  * wq_cpu_intensive_thresh_us trigger the automatic CPU_INTENSIVE mechanism,
1307  * which prevents them from stalling other concurrency-managed work items. If a
1308  * work function keeps triggering this mechanism, it's likely that the work item
1309  * should be using an unbound workqueue instead.
1310  *
1311  * wq_cpu_intensive_report() tracks work functions which trigger such conditions
1312  * and report them so that they can be examined and converted to use unbound
1313  * workqueues as appropriate. To avoid flooding the console, each violating work
1314  * function is tracked and reported with exponential backoff.
1315  */
1316 #define WCI_MAX_ENTS 128
1317 
1318 struct wci_ent {
1319 	work_func_t		func;
1320 	atomic64_t		cnt;
1321 	struct hlist_node	hash_node;
1322 };
1323 
1324 static struct wci_ent wci_ents[WCI_MAX_ENTS];
1325 static int wci_nr_ents;
1326 static DEFINE_RAW_SPINLOCK(wci_lock);
1327 static DEFINE_HASHTABLE(wci_hash, ilog2(WCI_MAX_ENTS));
1328 
1329 static struct wci_ent *wci_find_ent(work_func_t func)
1330 {
1331 	struct wci_ent *ent;
1332 
1333 	hash_for_each_possible_rcu(wci_hash, ent, hash_node,
1334 				   (unsigned long)func) {
1335 		if (ent->func == func)
1336 			return ent;
1337 	}
1338 	return NULL;
1339 }
1340 
1341 static void wq_cpu_intensive_report(work_func_t func)
1342 {
1343 	struct wci_ent *ent;
1344 
1345 restart:
1346 	ent = wci_find_ent(func);
1347 	if (ent) {
1348 		u64 cnt;
1349 
1350 		/*
1351 		 * Start reporting from the warning_thresh and back off
1352 		 * exponentially.
1353 		 */
1354 		cnt = atomic64_inc_return_relaxed(&ent->cnt);
1355 		if (wq_cpu_intensive_warning_thresh &&
1356 		    cnt >= wq_cpu_intensive_warning_thresh &&
1357 		    is_power_of_2(cnt + 1 - wq_cpu_intensive_warning_thresh))
1358 			printk_deferred(KERN_WARNING "workqueue: %ps hogged CPU for >%luus %llu times, consider switching to WQ_UNBOUND\n",
1359 					ent->func, wq_cpu_intensive_thresh_us,
1360 					atomic64_read(&ent->cnt));
1361 		return;
1362 	}
1363 
1364 	/*
1365 	 * @func is a new violation. Allocate a new entry for it. If wcn_ents[]
1366 	 * is exhausted, something went really wrong and we probably made enough
1367 	 * noise already.
1368 	 */
1369 	if (wci_nr_ents >= WCI_MAX_ENTS)
1370 		return;
1371 
1372 	raw_spin_lock(&wci_lock);
1373 
1374 	if (wci_nr_ents >= WCI_MAX_ENTS) {
1375 		raw_spin_unlock(&wci_lock);
1376 		return;
1377 	}
1378 
1379 	if (wci_find_ent(func)) {
1380 		raw_spin_unlock(&wci_lock);
1381 		goto restart;
1382 	}
1383 
1384 	ent = &wci_ents[wci_nr_ents++];
1385 	ent->func = func;
1386 	atomic64_set(&ent->cnt, 0);
1387 	hash_add_rcu(wci_hash, &ent->hash_node, (unsigned long)func);
1388 
1389 	raw_spin_unlock(&wci_lock);
1390 
1391 	goto restart;
1392 }
1393 
1394 #else	/* CONFIG_WQ_CPU_INTENSIVE_REPORT */
1395 static void wq_cpu_intensive_report(work_func_t func) {}
1396 #endif	/* CONFIG_WQ_CPU_INTENSIVE_REPORT */
1397 
1398 /**
1399  * wq_worker_running - a worker is running again
1400  * @task: task waking up
1401  *
1402  * This function is called when a worker returns from schedule()
1403  */
1404 void wq_worker_running(struct task_struct *task)
1405 {
1406 	struct worker *worker = kthread_data(task);
1407 
1408 	if (!READ_ONCE(worker->sleeping))
1409 		return;
1410 
1411 	/*
1412 	 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check
1413 	 * and the nr_running increment below, we may ruin the nr_running reset
1414 	 * and leave with an unexpected pool->nr_running == 1 on the newly unbound
1415 	 * pool. Protect against such race.
1416 	 */
1417 	preempt_disable();
1418 	if (!(worker->flags & WORKER_NOT_RUNNING))
1419 		worker->pool->nr_running++;
1420 	preempt_enable();
1421 
1422 	/*
1423 	 * CPU intensive auto-detection cares about how long a work item hogged
1424 	 * CPU without sleeping. Reset the starting timestamp on wakeup.
1425 	 */
1426 	worker->current_at = worker->task->se.sum_exec_runtime;
1427 
1428 	WRITE_ONCE(worker->sleeping, 0);
1429 }
1430 
1431 /**
1432  * wq_worker_sleeping - a worker is going to sleep
1433  * @task: task going to sleep
1434  *
1435  * This function is called from schedule() when a busy worker is
1436  * going to sleep.
1437  */
1438 void wq_worker_sleeping(struct task_struct *task)
1439 {
1440 	struct worker *worker = kthread_data(task);
1441 	struct worker_pool *pool;
1442 
1443 	/*
1444 	 * Rescuers, which may not have all the fields set up like normal
1445 	 * workers, also reach here, let's not access anything before
1446 	 * checking NOT_RUNNING.
1447 	 */
1448 	if (worker->flags & WORKER_NOT_RUNNING)
1449 		return;
1450 
1451 	pool = worker->pool;
1452 
1453 	/* Return if preempted before wq_worker_running() was reached */
1454 	if (READ_ONCE(worker->sleeping))
1455 		return;
1456 
1457 	WRITE_ONCE(worker->sleeping, 1);
1458 	raw_spin_lock_irq(&pool->lock);
1459 
1460 	/*
1461 	 * Recheck in case unbind_workers() preempted us. We don't
1462 	 * want to decrement nr_running after the worker is unbound
1463 	 * and nr_running has been reset.
1464 	 */
1465 	if (worker->flags & WORKER_NOT_RUNNING) {
1466 		raw_spin_unlock_irq(&pool->lock);
1467 		return;
1468 	}
1469 
1470 	pool->nr_running--;
1471 	if (kick_pool(pool))
1472 		worker->current_pwq->stats[PWQ_STAT_CM_WAKEUP]++;
1473 
1474 	raw_spin_unlock_irq(&pool->lock);
1475 }
1476 
1477 /**
1478  * wq_worker_tick - a scheduler tick occurred while a kworker is running
1479  * @task: task currently running
1480  *
1481  * Called from sched_tick(). We're in the IRQ context and the current
1482  * worker's fields which follow the 'K' locking rule can be accessed safely.
1483  */
1484 void wq_worker_tick(struct task_struct *task)
1485 {
1486 	struct worker *worker = kthread_data(task);
1487 	struct pool_workqueue *pwq = worker->current_pwq;
1488 	struct worker_pool *pool = worker->pool;
1489 
1490 	if (!pwq)
1491 		return;
1492 
1493 	pwq->stats[PWQ_STAT_CPU_TIME] += TICK_USEC;
1494 
1495 	if (!wq_cpu_intensive_thresh_us)
1496 		return;
1497 
1498 	/*
1499 	 * If the current worker is concurrency managed and hogged the CPU for
1500 	 * longer than wq_cpu_intensive_thresh_us, it's automatically marked
1501 	 * CPU_INTENSIVE to avoid stalling other concurrency-managed work items.
1502 	 *
1503 	 * Set @worker->sleeping means that @worker is in the process of
1504 	 * switching out voluntarily and won't be contributing to
1505 	 * @pool->nr_running until it wakes up. As wq_worker_sleeping() also
1506 	 * decrements ->nr_running, setting CPU_INTENSIVE here can lead to
1507 	 * double decrements. The task is releasing the CPU anyway. Let's skip.
1508 	 * We probably want to make this prettier in the future.
1509 	 */
1510 	if ((worker->flags & WORKER_NOT_RUNNING) || READ_ONCE(worker->sleeping) ||
1511 	    worker->task->se.sum_exec_runtime - worker->current_at <
1512 	    wq_cpu_intensive_thresh_us * NSEC_PER_USEC)
1513 		return;
1514 
1515 	raw_spin_lock(&pool->lock);
1516 
1517 	worker_set_flags(worker, WORKER_CPU_INTENSIVE);
1518 	wq_cpu_intensive_report(worker->current_func);
1519 	pwq->stats[PWQ_STAT_CPU_INTENSIVE]++;
1520 
1521 	if (kick_pool(pool))
1522 		pwq->stats[PWQ_STAT_CM_WAKEUP]++;
1523 
1524 	raw_spin_unlock(&pool->lock);
1525 }
1526 
1527 /**
1528  * wq_worker_last_func - retrieve worker's last work function
1529  * @task: Task to retrieve last work function of.
1530  *
1531  * Determine the last function a worker executed. This is called from
1532  * the scheduler to get a worker's last known identity.
1533  *
1534  * CONTEXT:
1535  * raw_spin_lock_irq(rq->lock)
1536  *
1537  * This function is called during schedule() when a kworker is going
1538  * to sleep. It's used by psi to identify aggregation workers during
1539  * dequeuing, to allow periodic aggregation to shut-off when that
1540  * worker is the last task in the system or cgroup to go to sleep.
1541  *
1542  * As this function doesn't involve any workqueue-related locking, it
1543  * only returns stable values when called from inside the scheduler's
1544  * queuing and dequeuing paths, when @task, which must be a kworker,
1545  * is guaranteed to not be processing any works.
1546  *
1547  * Return:
1548  * The last work function %current executed as a worker, NULL if it
1549  * hasn't executed any work yet.
1550  */
1551 work_func_t wq_worker_last_func(struct task_struct *task)
1552 {
1553 	struct worker *worker = kthread_data(task);
1554 
1555 	return worker->last_func;
1556 }
1557 
1558 /**
1559  * wq_node_nr_active - Determine wq_node_nr_active to use
1560  * @wq: workqueue of interest
1561  * @node: NUMA node, can be %NUMA_NO_NODE
1562  *
1563  * Determine wq_node_nr_active to use for @wq on @node. Returns:
1564  *
1565  * - %NULL for per-cpu workqueues as they don't need to use shared nr_active.
1566  *
1567  * - node_nr_active[nr_node_ids] if @node is %NUMA_NO_NODE.
1568  *
1569  * - Otherwise, node_nr_active[@node].
1570  */
1571 static struct wq_node_nr_active *wq_node_nr_active(struct workqueue_struct *wq,
1572 						   int node)
1573 {
1574 	if (!(wq->flags & WQ_UNBOUND))
1575 		return NULL;
1576 
1577 	if (node == NUMA_NO_NODE)
1578 		node = nr_node_ids;
1579 
1580 	return wq->node_nr_active[node];
1581 }
1582 
1583 /**
1584  * wq_update_node_max_active - Update per-node max_actives to use
1585  * @wq: workqueue to update
1586  * @off_cpu: CPU that's going down, -1 if a CPU is not going down
1587  *
1588  * Update @wq->node_nr_active[]->max. @wq must be unbound. max_active is
1589  * distributed among nodes according to the proportions of numbers of online
1590  * cpus. The result is always between @wq->min_active and max_active.
1591  */
1592 static void wq_update_node_max_active(struct workqueue_struct *wq, int off_cpu)
1593 {
1594 	struct cpumask *effective = unbound_effective_cpumask(wq);
1595 	int min_active = READ_ONCE(wq->min_active);
1596 	int max_active = READ_ONCE(wq->max_active);
1597 	int total_cpus, node;
1598 
1599 	lockdep_assert_held(&wq->mutex);
1600 
1601 	if (!wq_topo_initialized)
1602 		return;
1603 
1604 	if (off_cpu >= 0 && !cpumask_test_cpu(off_cpu, effective))
1605 		off_cpu = -1;
1606 
1607 	total_cpus = cpumask_weight_and(effective, cpu_online_mask);
1608 	if (off_cpu >= 0)
1609 		total_cpus--;
1610 
1611 	/* If all CPUs of the wq get offline, use the default values */
1612 	if (unlikely(!total_cpus)) {
1613 		for_each_node(node)
1614 			wq_node_nr_active(wq, node)->max = min_active;
1615 
1616 		wq_node_nr_active(wq, NUMA_NO_NODE)->max = max_active;
1617 		return;
1618 	}
1619 
1620 	for_each_node(node) {
1621 		int node_cpus;
1622 
1623 		node_cpus = cpumask_weight_and(effective, cpumask_of_node(node));
1624 		if (off_cpu >= 0 && cpu_to_node(off_cpu) == node)
1625 			node_cpus--;
1626 
1627 		wq_node_nr_active(wq, node)->max =
1628 			clamp(DIV_ROUND_UP(max_active * node_cpus, total_cpus),
1629 			      min_active, max_active);
1630 	}
1631 
1632 	wq_node_nr_active(wq, NUMA_NO_NODE)->max = max_active;
1633 }
1634 
1635 /**
1636  * get_pwq - get an extra reference on the specified pool_workqueue
1637  * @pwq: pool_workqueue to get
1638  *
1639  * Obtain an extra reference on @pwq.  The caller should guarantee that
1640  * @pwq has positive refcnt and be holding the matching pool->lock.
1641  */
1642 static void get_pwq(struct pool_workqueue *pwq)
1643 {
1644 	lockdep_assert_held(&pwq->pool->lock);
1645 	WARN_ON_ONCE(pwq->refcnt <= 0);
1646 	pwq->refcnt++;
1647 }
1648 
1649 /**
1650  * put_pwq - put a pool_workqueue reference
1651  * @pwq: pool_workqueue to put
1652  *
1653  * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1654  * destruction.  The caller should be holding the matching pool->lock.
1655  */
1656 static void put_pwq(struct pool_workqueue *pwq)
1657 {
1658 	lockdep_assert_held(&pwq->pool->lock);
1659 	if (likely(--pwq->refcnt))
1660 		return;
1661 	/*
1662 	 * @pwq can't be released under pool->lock, bounce to a dedicated
1663 	 * kthread_worker to avoid A-A deadlocks.
1664 	 */
1665 	kthread_queue_work(pwq_release_worker, &pwq->release_work);
1666 }
1667 
1668 /**
1669  * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1670  * @pwq: pool_workqueue to put (can be %NULL)
1671  *
1672  * put_pwq() with locking.  This function also allows %NULL @pwq.
1673  */
1674 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1675 {
1676 	if (pwq) {
1677 		/*
1678 		 * As both pwqs and pools are RCU protected, the
1679 		 * following lock operations are safe.
1680 		 */
1681 		raw_spin_lock_irq(&pwq->pool->lock);
1682 		put_pwq(pwq);
1683 		raw_spin_unlock_irq(&pwq->pool->lock);
1684 	}
1685 }
1686 
1687 static bool pwq_is_empty(struct pool_workqueue *pwq)
1688 {
1689 	return !pwq->nr_active && list_empty(&pwq->inactive_works);
1690 }
1691 
1692 static void __pwq_activate_work(struct pool_workqueue *pwq,
1693 				struct work_struct *work)
1694 {
1695 	unsigned long *wdb = work_data_bits(work);
1696 
1697 	WARN_ON_ONCE(!(*wdb & WORK_STRUCT_INACTIVE));
1698 	trace_workqueue_activate_work(work);
1699 	if (list_empty(&pwq->pool->worklist))
1700 		pwq->pool->watchdog_ts = jiffies;
1701 	move_linked_works(work, &pwq->pool->worklist, NULL);
1702 	__clear_bit(WORK_STRUCT_INACTIVE_BIT, wdb);
1703 }
1704 
1705 static bool tryinc_node_nr_active(struct wq_node_nr_active *nna)
1706 {
1707 	int max = READ_ONCE(nna->max);
1708 	int old = atomic_read(&nna->nr);
1709 
1710 	do {
1711 		if (old >= max)
1712 			return false;
1713 	} while (!atomic_try_cmpxchg_relaxed(&nna->nr, &old, old + 1));
1714 
1715 	return true;
1716 }
1717 
1718 /**
1719  * pwq_tryinc_nr_active - Try to increment nr_active for a pwq
1720  * @pwq: pool_workqueue of interest
1721  * @fill: max_active may have increased, try to increase concurrency level
1722  *
1723  * Try to increment nr_active for @pwq. Returns %true if an nr_active count is
1724  * successfully obtained. %false otherwise.
1725  */
1726 static bool pwq_tryinc_nr_active(struct pool_workqueue *pwq, bool fill)
1727 {
1728 	struct workqueue_struct *wq = pwq->wq;
1729 	struct worker_pool *pool = pwq->pool;
1730 	struct wq_node_nr_active *nna = wq_node_nr_active(wq, pool->node);
1731 	bool obtained = false;
1732 
1733 	lockdep_assert_held(&pool->lock);
1734 
1735 	if (!nna) {
1736 		/* BH or per-cpu workqueue, pwq->nr_active is sufficient */
1737 		obtained = pwq->nr_active < READ_ONCE(wq->max_active);
1738 		goto out;
1739 	}
1740 
1741 	if (unlikely(pwq->plugged))
1742 		return false;
1743 
1744 	/*
1745 	 * Unbound workqueue uses per-node shared nr_active $nna. If @pwq is
1746 	 * already waiting on $nna, pwq_dec_nr_active() will maintain the
1747 	 * concurrency level. Don't jump the line.
1748 	 *
1749 	 * We need to ignore the pending test after max_active has increased as
1750 	 * pwq_dec_nr_active() can only maintain the concurrency level but not
1751 	 * increase it. This is indicated by @fill.
1752 	 */
1753 	if (!list_empty(&pwq->pending_node) && likely(!fill))
1754 		goto out;
1755 
1756 	obtained = tryinc_node_nr_active(nna);
1757 	if (obtained)
1758 		goto out;
1759 
1760 	/*
1761 	 * Lockless acquisition failed. Lock, add ourself to $nna->pending_pwqs
1762 	 * and try again. The smp_mb() is paired with the implied memory barrier
1763 	 * of atomic_dec_return() in pwq_dec_nr_active() to ensure that either
1764 	 * we see the decremented $nna->nr or they see non-empty
1765 	 * $nna->pending_pwqs.
1766 	 */
1767 	raw_spin_lock(&nna->lock);
1768 
1769 	if (list_empty(&pwq->pending_node))
1770 		list_add_tail(&pwq->pending_node, &nna->pending_pwqs);
1771 	else if (likely(!fill))
1772 		goto out_unlock;
1773 
1774 	smp_mb();
1775 
1776 	obtained = tryinc_node_nr_active(nna);
1777 
1778 	/*
1779 	 * If @fill, @pwq might have already been pending. Being spuriously
1780 	 * pending in cold paths doesn't affect anything. Let's leave it be.
1781 	 */
1782 	if (obtained && likely(!fill))
1783 		list_del_init(&pwq->pending_node);
1784 
1785 out_unlock:
1786 	raw_spin_unlock(&nna->lock);
1787 out:
1788 	if (obtained)
1789 		pwq->nr_active++;
1790 	return obtained;
1791 }
1792 
1793 /**
1794  * pwq_activate_first_inactive - Activate the first inactive work item on a pwq
1795  * @pwq: pool_workqueue of interest
1796  * @fill: max_active may have increased, try to increase concurrency level
1797  *
1798  * Activate the first inactive work item of @pwq if available and allowed by
1799  * max_active limit.
1800  *
1801  * Returns %true if an inactive work item has been activated. %false if no
1802  * inactive work item is found or max_active limit is reached.
1803  */
1804 static bool pwq_activate_first_inactive(struct pool_workqueue *pwq, bool fill)
1805 {
1806 	struct work_struct *work =
1807 		list_first_entry_or_null(&pwq->inactive_works,
1808 					 struct work_struct, entry);
1809 
1810 	if (work && pwq_tryinc_nr_active(pwq, fill)) {
1811 		__pwq_activate_work(pwq, work);
1812 		return true;
1813 	} else {
1814 		return false;
1815 	}
1816 }
1817 
1818 /**
1819  * unplug_oldest_pwq - unplug the oldest pool_workqueue
1820  * @wq: workqueue_struct where its oldest pwq is to be unplugged
1821  *
1822  * This function should only be called for ordered workqueues where only the
1823  * oldest pwq is unplugged, the others are plugged to suspend execution to
1824  * ensure proper work item ordering::
1825  *
1826  *    dfl_pwq --------------+     [P] - plugged
1827  *                          |
1828  *                          v
1829  *    pwqs -> A -> B [P] -> C [P] (newest)
1830  *            |    |        |
1831  *            1    3        5
1832  *            |    |        |
1833  *            2    4        6
1834  *
1835  * When the oldest pwq is drained and removed, this function should be called
1836  * to unplug the next oldest one to start its work item execution. Note that
1837  * pwq's are linked into wq->pwqs with the oldest first, so the first one in
1838  * the list is the oldest.
1839  */
1840 static void unplug_oldest_pwq(struct workqueue_struct *wq)
1841 {
1842 	struct pool_workqueue *pwq;
1843 
1844 	lockdep_assert_held(&wq->mutex);
1845 
1846 	/* Caller should make sure that pwqs isn't empty before calling */
1847 	pwq = list_first_entry_or_null(&wq->pwqs, struct pool_workqueue,
1848 				       pwqs_node);
1849 	raw_spin_lock_irq(&pwq->pool->lock);
1850 	if (pwq->plugged) {
1851 		pwq->plugged = false;
1852 		if (pwq_activate_first_inactive(pwq, true))
1853 			kick_pool(pwq->pool);
1854 	}
1855 	raw_spin_unlock_irq(&pwq->pool->lock);
1856 }
1857 
1858 /**
1859  * node_activate_pending_pwq - Activate a pending pwq on a wq_node_nr_active
1860  * @nna: wq_node_nr_active to activate a pending pwq for
1861  * @caller_pool: worker_pool the caller is locking
1862  *
1863  * Activate a pwq in @nna->pending_pwqs. Called with @caller_pool locked.
1864  * @caller_pool may be unlocked and relocked to lock other worker_pools.
1865  */
1866 static void node_activate_pending_pwq(struct wq_node_nr_active *nna,
1867 				      struct worker_pool *caller_pool)
1868 {
1869 	struct worker_pool *locked_pool = caller_pool;
1870 	struct pool_workqueue *pwq;
1871 	struct work_struct *work;
1872 
1873 	lockdep_assert_held(&caller_pool->lock);
1874 
1875 	raw_spin_lock(&nna->lock);
1876 retry:
1877 	pwq = list_first_entry_or_null(&nna->pending_pwqs,
1878 				       struct pool_workqueue, pending_node);
1879 	if (!pwq)
1880 		goto out_unlock;
1881 
1882 	/*
1883 	 * If @pwq is for a different pool than @locked_pool, we need to lock
1884 	 * @pwq->pool->lock. Let's trylock first. If unsuccessful, do the unlock
1885 	 * / lock dance. For that, we also need to release @nna->lock as it's
1886 	 * nested inside pool locks.
1887 	 */
1888 	if (pwq->pool != locked_pool) {
1889 		raw_spin_unlock(&locked_pool->lock);
1890 		locked_pool = pwq->pool;
1891 		if (!raw_spin_trylock(&locked_pool->lock)) {
1892 			raw_spin_unlock(&nna->lock);
1893 			raw_spin_lock(&locked_pool->lock);
1894 			raw_spin_lock(&nna->lock);
1895 			goto retry;
1896 		}
1897 	}
1898 
1899 	/*
1900 	 * $pwq may not have any inactive work items due to e.g. cancellations.
1901 	 * Drop it from pending_pwqs and see if there's another one.
1902 	 */
1903 	work = list_first_entry_or_null(&pwq->inactive_works,
1904 					struct work_struct, entry);
1905 	if (!work) {
1906 		list_del_init(&pwq->pending_node);
1907 		goto retry;
1908 	}
1909 
1910 	/*
1911 	 * Acquire an nr_active count and activate the inactive work item. If
1912 	 * $pwq still has inactive work items, rotate it to the end of the
1913 	 * pending_pwqs so that we round-robin through them. This means that
1914 	 * inactive work items are not activated in queueing order which is fine
1915 	 * given that there has never been any ordering across different pwqs.
1916 	 */
1917 	if (likely(tryinc_node_nr_active(nna))) {
1918 		pwq->nr_active++;
1919 		__pwq_activate_work(pwq, work);
1920 
1921 		if (list_empty(&pwq->inactive_works))
1922 			list_del_init(&pwq->pending_node);
1923 		else
1924 			list_move_tail(&pwq->pending_node, &nna->pending_pwqs);
1925 
1926 		/* if activating a foreign pool, make sure it's running */
1927 		if (pwq->pool != caller_pool)
1928 			kick_pool(pwq->pool);
1929 	}
1930 
1931 out_unlock:
1932 	raw_spin_unlock(&nna->lock);
1933 	if (locked_pool != caller_pool) {
1934 		raw_spin_unlock(&locked_pool->lock);
1935 		raw_spin_lock(&caller_pool->lock);
1936 	}
1937 }
1938 
1939 /**
1940  * pwq_dec_nr_active - Retire an active count
1941  * @pwq: pool_workqueue of interest
1942  *
1943  * Decrement @pwq's nr_active and try to activate the first inactive work item.
1944  * For unbound workqueues, this function may temporarily drop @pwq->pool->lock.
1945  */
1946 static void pwq_dec_nr_active(struct pool_workqueue *pwq)
1947 {
1948 	struct worker_pool *pool = pwq->pool;
1949 	struct wq_node_nr_active *nna = wq_node_nr_active(pwq->wq, pool->node);
1950 
1951 	lockdep_assert_held(&pool->lock);
1952 
1953 	/*
1954 	 * @pwq->nr_active should be decremented for both percpu and unbound
1955 	 * workqueues.
1956 	 */
1957 	pwq->nr_active--;
1958 
1959 	/*
1960 	 * For a percpu workqueue, it's simple. Just need to kick the first
1961 	 * inactive work item on @pwq itself.
1962 	 */
1963 	if (!nna) {
1964 		pwq_activate_first_inactive(pwq, false);
1965 		return;
1966 	}
1967 
1968 	/*
1969 	 * If @pwq is for an unbound workqueue, it's more complicated because
1970 	 * multiple pwqs and pools may be sharing the nr_active count. When a
1971 	 * pwq needs to wait for an nr_active count, it puts itself on
1972 	 * $nna->pending_pwqs. The following atomic_dec_return()'s implied
1973 	 * memory barrier is paired with smp_mb() in pwq_tryinc_nr_active() to
1974 	 * guarantee that either we see non-empty pending_pwqs or they see
1975 	 * decremented $nna->nr.
1976 	 *
1977 	 * $nna->max may change as CPUs come online/offline and @pwq->wq's
1978 	 * max_active gets updated. However, it is guaranteed to be equal to or
1979 	 * larger than @pwq->wq->min_active which is above zero unless freezing.
1980 	 * This maintains the forward progress guarantee.
1981 	 */
1982 	if (atomic_dec_return(&nna->nr) >= READ_ONCE(nna->max))
1983 		return;
1984 
1985 	if (!list_empty(&nna->pending_pwqs))
1986 		node_activate_pending_pwq(nna, pool);
1987 }
1988 
1989 /**
1990  * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1991  * @pwq: pwq of interest
1992  * @work_data: work_data of work which left the queue
1993  *
1994  * A work either has completed or is removed from pending queue,
1995  * decrement nr_in_flight of its pwq and handle workqueue flushing.
1996  *
1997  * NOTE:
1998  * For unbound workqueues, this function may temporarily drop @pwq->pool->lock
1999  * and thus should be called after all other state updates for the in-flight
2000  * work item is complete.
2001  *
2002  * CONTEXT:
2003  * raw_spin_lock_irq(pool->lock).
2004  */
2005 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data)
2006 {
2007 	int color = get_work_color(work_data);
2008 
2009 	if (!(work_data & WORK_STRUCT_INACTIVE))
2010 		pwq_dec_nr_active(pwq);
2011 
2012 	pwq->nr_in_flight[color]--;
2013 
2014 	/* is flush in progress and are we at the flushing tip? */
2015 	if (likely(pwq->flush_color != color))
2016 		goto out_put;
2017 
2018 	/* are there still in-flight works? */
2019 	if (pwq->nr_in_flight[color])
2020 		goto out_put;
2021 
2022 	/* this pwq is done, clear flush_color */
2023 	pwq->flush_color = -1;
2024 
2025 	/*
2026 	 * If this was the last pwq, wake up the first flusher.  It
2027 	 * will handle the rest.
2028 	 */
2029 	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
2030 		complete(&pwq->wq->first_flusher->done);
2031 out_put:
2032 	put_pwq(pwq);
2033 }
2034 
2035 /**
2036  * try_to_grab_pending - steal work item from worklist and disable irq
2037  * @work: work item to steal
2038  * @cflags: %WORK_CANCEL_ flags
2039  * @irq_flags: place to store irq state
2040  *
2041  * Try to grab PENDING bit of @work.  This function can handle @work in any
2042  * stable state - idle, on timer or on worklist.
2043  *
2044  * Return:
2045  *
2046  *  ========	================================================================
2047  *  1		if @work was pending and we successfully stole PENDING
2048  *  0		if @work was idle and we claimed PENDING
2049  *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
2050  *  ========	================================================================
2051  *
2052  * Note:
2053  * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
2054  * interrupted while holding PENDING and @work off queue, irq must be
2055  * disabled on entry.  This, combined with delayed_work->timer being
2056  * irqsafe, ensures that we return -EAGAIN for finite short period of time.
2057  *
2058  * On successful return, >= 0, irq is disabled and the caller is
2059  * responsible for releasing it using local_irq_restore(*@irq_flags).
2060  *
2061  * This function is safe to call from any context including IRQ handler.
2062  */
2063 static int try_to_grab_pending(struct work_struct *work, u32 cflags,
2064 			       unsigned long *irq_flags)
2065 {
2066 	struct worker_pool *pool;
2067 	struct pool_workqueue *pwq;
2068 
2069 	local_irq_save(*irq_flags);
2070 
2071 	/* try to steal the timer if it exists */
2072 	if (cflags & WORK_CANCEL_DELAYED) {
2073 		struct delayed_work *dwork = to_delayed_work(work);
2074 
2075 		/*
2076 		 * dwork->timer is irqsafe.  If timer_delete() fails, it's
2077 		 * guaranteed that the timer is not queued anywhere and not
2078 		 * running on the local CPU.
2079 		 */
2080 		if (likely(timer_delete(&dwork->timer)))
2081 			return 1;
2082 	}
2083 
2084 	/* try to claim PENDING the normal way */
2085 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
2086 		return 0;
2087 
2088 	rcu_read_lock();
2089 	/*
2090 	 * The queueing is in progress, or it is already queued. Try to
2091 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
2092 	 */
2093 	pool = get_work_pool(work);
2094 	if (!pool)
2095 		goto fail;
2096 
2097 	raw_spin_lock(&pool->lock);
2098 	/*
2099 	 * work->data is guaranteed to point to pwq only while the work
2100 	 * item is queued on pwq->wq, and both updating work->data to point
2101 	 * to pwq on queueing and to pool on dequeueing are done under
2102 	 * pwq->pool->lock.  This in turn guarantees that, if work->data
2103 	 * points to pwq which is associated with a locked pool, the work
2104 	 * item is currently queued on that pool.
2105 	 */
2106 	pwq = get_work_pwq(work);
2107 	if (pwq && pwq->pool == pool) {
2108 		unsigned long work_data = *work_data_bits(work);
2109 
2110 		debug_work_deactivate(work);
2111 
2112 		/*
2113 		 * A cancelable inactive work item must be in the
2114 		 * pwq->inactive_works since a queued barrier can't be
2115 		 * canceled (see the comments in insert_wq_barrier()).
2116 		 *
2117 		 * An inactive work item cannot be deleted directly because
2118 		 * it might have linked barrier work items which, if left
2119 		 * on the inactive_works list, will confuse pwq->nr_active
2120 		 * management later on and cause stall.  Move the linked
2121 		 * barrier work items to the worklist when deleting the grabbed
2122 		 * item. Also keep WORK_STRUCT_INACTIVE in work_data, so that
2123 		 * it doesn't participate in nr_active management in later
2124 		 * pwq_dec_nr_in_flight().
2125 		 */
2126 		if (work_data & WORK_STRUCT_INACTIVE)
2127 			move_linked_works(work, &pwq->pool->worklist, NULL);
2128 
2129 		list_del_init(&work->entry);
2130 
2131 		/*
2132 		 * work->data points to pwq iff queued. Let's point to pool. As
2133 		 * this destroys work->data needed by the next step, stash it.
2134 		 */
2135 		set_work_pool_and_keep_pending(work, pool->id,
2136 					       pool_offq_flags(pool));
2137 
2138 		/* must be the last step, see the function comment */
2139 		pwq_dec_nr_in_flight(pwq, work_data);
2140 
2141 		raw_spin_unlock(&pool->lock);
2142 		rcu_read_unlock();
2143 		return 1;
2144 	}
2145 	raw_spin_unlock(&pool->lock);
2146 fail:
2147 	rcu_read_unlock();
2148 	local_irq_restore(*irq_flags);
2149 	return -EAGAIN;
2150 }
2151 
2152 /**
2153  * work_grab_pending - steal work item from worklist and disable irq
2154  * @work: work item to steal
2155  * @cflags: %WORK_CANCEL_ flags
2156  * @irq_flags: place to store IRQ state
2157  *
2158  * Grab PENDING bit of @work. @work can be in any stable state - idle, on timer
2159  * or on worklist.
2160  *
2161  * Can be called from any context. IRQ is disabled on return with IRQ state
2162  * stored in *@irq_flags. The caller is responsible for re-enabling it using
2163  * local_irq_restore().
2164  *
2165  * Returns %true if @work was pending. %false if idle.
2166  */
2167 static bool work_grab_pending(struct work_struct *work, u32 cflags,
2168 			      unsigned long *irq_flags)
2169 {
2170 	int ret;
2171 
2172 	while (true) {
2173 		ret = try_to_grab_pending(work, cflags, irq_flags);
2174 		if (ret >= 0)
2175 			return ret;
2176 		cpu_relax();
2177 	}
2178 }
2179 
2180 /**
2181  * insert_work - insert a work into a pool
2182  * @pwq: pwq @work belongs to
2183  * @work: work to insert
2184  * @head: insertion point
2185  * @extra_flags: extra WORK_STRUCT_* flags to set
2186  *
2187  * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
2188  * work_struct flags.
2189  *
2190  * CONTEXT:
2191  * raw_spin_lock_irq(pool->lock).
2192  */
2193 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
2194 			struct list_head *head, unsigned int extra_flags)
2195 {
2196 	debug_work_activate(work);
2197 
2198 	/* record the work call stack in order to print it in KASAN reports */
2199 	kasan_record_aux_stack(work);
2200 
2201 	/* we own @work, set data and link */
2202 	set_work_pwq(work, pwq, extra_flags);
2203 	list_add_tail(&work->entry, head);
2204 	get_pwq(pwq);
2205 }
2206 
2207 /*
2208  * Test whether @work is being queued from another work executing on the
2209  * same workqueue.
2210  */
2211 static bool is_chained_work(struct workqueue_struct *wq)
2212 {
2213 	struct worker *worker;
2214 
2215 	worker = current_wq_worker();
2216 	/*
2217 	 * Return %true iff I'm a worker executing a work item on @wq.  If
2218 	 * I'm @worker, it's safe to dereference it without locking.
2219 	 */
2220 	return worker && worker->current_pwq->wq == wq;
2221 }
2222 
2223 /*
2224  * When queueing an unbound work item to a wq, prefer local CPU if allowed
2225  * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
2226  * avoid perturbing sensitive tasks.
2227  */
2228 static int wq_select_unbound_cpu(int cpu)
2229 {
2230 	int new_cpu;
2231 
2232 	if (likely(!wq_debug_force_rr_cpu)) {
2233 		if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
2234 			return cpu;
2235 	} else {
2236 		pr_warn_once("workqueue: round-robin CPU selection forced, expect performance impact\n");
2237 	}
2238 
2239 	new_cpu = __this_cpu_read(wq_rr_cpu_last);
2240 	new_cpu = cpumask_next_and_wrap(new_cpu, wq_unbound_cpumask, cpu_online_mask);
2241 	if (unlikely(new_cpu >= nr_cpu_ids))
2242 		return cpu;
2243 	__this_cpu_write(wq_rr_cpu_last, new_cpu);
2244 
2245 	return new_cpu;
2246 }
2247 
2248 static void __queue_work(int cpu, struct workqueue_struct *wq,
2249 			 struct work_struct *work)
2250 {
2251 	struct pool_workqueue *pwq;
2252 	struct worker_pool *last_pool, *pool;
2253 	unsigned int work_flags;
2254 	unsigned int req_cpu = cpu;
2255 
2256 	/*
2257 	 * While a work item is PENDING && off queue, a task trying to
2258 	 * steal the PENDING will busy-loop waiting for it to either get
2259 	 * queued or lose PENDING.  Grabbing PENDING and queueing should
2260 	 * happen with IRQ disabled.
2261 	 */
2262 	lockdep_assert_irqs_disabled();
2263 
2264 	/*
2265 	 * For a draining wq, only works from the same workqueue are
2266 	 * allowed. The __WQ_DESTROYING helps to spot the issue that
2267 	 * queues a new work item to a wq after destroy_workqueue(wq).
2268 	 */
2269 	if (unlikely(wq->flags & (__WQ_DESTROYING | __WQ_DRAINING) &&
2270 		     WARN_ONCE(!is_chained_work(wq), "workqueue: cannot queue %ps on wq %s\n",
2271 			       work->func, wq->name))) {
2272 		return;
2273 	}
2274 	rcu_read_lock();
2275 retry:
2276 	/* pwq which will be used unless @work is executing elsewhere */
2277 	if (req_cpu == WORK_CPU_UNBOUND) {
2278 		if (wq->flags & WQ_UNBOUND)
2279 			cpu = wq_select_unbound_cpu(raw_smp_processor_id());
2280 		else
2281 			cpu = raw_smp_processor_id();
2282 	}
2283 
2284 	pwq = rcu_dereference(*per_cpu_ptr(wq->cpu_pwq, cpu));
2285 	pool = pwq->pool;
2286 
2287 	/*
2288 	 * If @work was previously on a different pool, it might still be
2289 	 * running there, in which case the work needs to be queued on that
2290 	 * pool to guarantee non-reentrancy.
2291 	 *
2292 	 * For ordered workqueue, work items must be queued on the newest pwq
2293 	 * for accurate order management.  Guaranteed order also guarantees
2294 	 * non-reentrancy.  See the comments above unplug_oldest_pwq().
2295 	 */
2296 	last_pool = get_work_pool(work);
2297 	if (last_pool && last_pool != pool && !(wq->flags & __WQ_ORDERED)) {
2298 		struct worker *worker;
2299 
2300 		raw_spin_lock(&last_pool->lock);
2301 
2302 		worker = find_worker_executing_work(last_pool, work);
2303 
2304 		if (worker && worker->current_pwq->wq == wq) {
2305 			pwq = worker->current_pwq;
2306 			pool = pwq->pool;
2307 			WARN_ON_ONCE(pool != last_pool);
2308 		} else {
2309 			/* meh... not running there, queue here */
2310 			raw_spin_unlock(&last_pool->lock);
2311 			raw_spin_lock(&pool->lock);
2312 		}
2313 	} else {
2314 		raw_spin_lock(&pool->lock);
2315 	}
2316 
2317 	/*
2318 	 * pwq is determined and locked. For unbound pools, we could have raced
2319 	 * with pwq release and it could already be dead. If its refcnt is zero,
2320 	 * repeat pwq selection. Note that unbound pwqs never die without
2321 	 * another pwq replacing it in cpu_pwq or while work items are executing
2322 	 * on it, so the retrying is guaranteed to make forward-progress.
2323 	 */
2324 	if (unlikely(!pwq->refcnt)) {
2325 		if (wq->flags & WQ_UNBOUND) {
2326 			raw_spin_unlock(&pool->lock);
2327 			cpu_relax();
2328 			goto retry;
2329 		}
2330 		/* oops */
2331 		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
2332 			  wq->name, cpu);
2333 	}
2334 
2335 	/* pwq determined, queue */
2336 	trace_workqueue_queue_work(req_cpu, pwq, work);
2337 
2338 	if (WARN_ON(!list_empty(&work->entry)))
2339 		goto out;
2340 
2341 	pwq->nr_in_flight[pwq->work_color]++;
2342 	work_flags = work_color_to_flags(pwq->work_color);
2343 
2344 	/*
2345 	 * Limit the number of concurrently active work items to max_active.
2346 	 * @work must also queue behind existing inactive work items to maintain
2347 	 * ordering when max_active changes. See wq_adjust_max_active().
2348 	 */
2349 	if (list_empty(&pwq->inactive_works) && pwq_tryinc_nr_active(pwq, false)) {
2350 		if (list_empty(&pool->worklist))
2351 			pool->watchdog_ts = jiffies;
2352 
2353 		trace_workqueue_activate_work(work);
2354 		insert_work(pwq, work, &pool->worklist, work_flags);
2355 		kick_pool(pool);
2356 	} else {
2357 		work_flags |= WORK_STRUCT_INACTIVE;
2358 		insert_work(pwq, work, &pwq->inactive_works, work_flags);
2359 	}
2360 
2361 out:
2362 	raw_spin_unlock(&pool->lock);
2363 	rcu_read_unlock();
2364 }
2365 
2366 static bool clear_pending_if_disabled(struct work_struct *work)
2367 {
2368 	unsigned long data = *work_data_bits(work);
2369 	struct work_offq_data offqd;
2370 
2371 	if (likely((data & WORK_STRUCT_PWQ) ||
2372 		   !(data & WORK_OFFQ_DISABLE_MASK)))
2373 		return false;
2374 
2375 	work_offqd_unpack(&offqd, data);
2376 	set_work_pool_and_clear_pending(work, offqd.pool_id,
2377 					work_offqd_pack_flags(&offqd));
2378 	return true;
2379 }
2380 
2381 /**
2382  * queue_work_on - queue work on specific cpu
2383  * @cpu: CPU number to execute work on
2384  * @wq: workqueue to use
2385  * @work: work to queue
2386  *
2387  * We queue the work to a specific CPU, the caller must ensure it
2388  * can't go away.  Callers that fail to ensure that the specified
2389  * CPU cannot go away will execute on a randomly chosen CPU.
2390  * But note well that callers specifying a CPU that never has been
2391  * online will get a splat.
2392  *
2393  * Return: %false if @work was already on a queue, %true otherwise.
2394  */
2395 bool queue_work_on(int cpu, struct workqueue_struct *wq,
2396 		   struct work_struct *work)
2397 {
2398 	bool ret = false;
2399 	unsigned long irq_flags;
2400 
2401 	local_irq_save(irq_flags);
2402 
2403 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) &&
2404 	    !clear_pending_if_disabled(work)) {
2405 		__queue_work(cpu, wq, work);
2406 		ret = true;
2407 	}
2408 
2409 	local_irq_restore(irq_flags);
2410 	return ret;
2411 }
2412 EXPORT_SYMBOL(queue_work_on);
2413 
2414 /**
2415  * select_numa_node_cpu - Select a CPU based on NUMA node
2416  * @node: NUMA node ID that we want to select a CPU from
2417  *
2418  * This function will attempt to find a "random" cpu available on a given
2419  * node. If there are no CPUs available on the given node it will return
2420  * WORK_CPU_UNBOUND indicating that we should just schedule to any
2421  * available CPU if we need to schedule this work.
2422  */
2423 static int select_numa_node_cpu(int node)
2424 {
2425 	int cpu;
2426 
2427 	/* Delay binding to CPU if node is not valid or online */
2428 	if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
2429 		return WORK_CPU_UNBOUND;
2430 
2431 	/* Use local node/cpu if we are already there */
2432 	cpu = raw_smp_processor_id();
2433 	if (node == cpu_to_node(cpu))
2434 		return cpu;
2435 
2436 	/* Use "random" otherwise know as "first" online CPU of node */
2437 	cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
2438 
2439 	/* If CPU is valid return that, otherwise just defer */
2440 	return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
2441 }
2442 
2443 /**
2444  * queue_work_node - queue work on a "random" cpu for a given NUMA node
2445  * @node: NUMA node that we are targeting the work for
2446  * @wq: workqueue to use
2447  * @work: work to queue
2448  *
2449  * We queue the work to a "random" CPU within a given NUMA node. The basic
2450  * idea here is to provide a way to somehow associate work with a given
2451  * NUMA node.
2452  *
2453  * This function will only make a best effort attempt at getting this onto
2454  * the right NUMA node. If no node is requested or the requested node is
2455  * offline then we just fall back to standard queue_work behavior.
2456  *
2457  * Currently the "random" CPU ends up being the first available CPU in the
2458  * intersection of cpu_online_mask and the cpumask of the node, unless we
2459  * are running on the node. In that case we just use the current CPU.
2460  *
2461  * Return: %false if @work was already on a queue, %true otherwise.
2462  */
2463 bool queue_work_node(int node, struct workqueue_struct *wq,
2464 		     struct work_struct *work)
2465 {
2466 	unsigned long irq_flags;
2467 	bool ret = false;
2468 
2469 	/*
2470 	 * This current implementation is specific to unbound workqueues.
2471 	 * Specifically we only return the first available CPU for a given
2472 	 * node instead of cycling through individual CPUs within the node.
2473 	 *
2474 	 * If this is used with a per-cpu workqueue then the logic in
2475 	 * workqueue_select_cpu_near would need to be updated to allow for
2476 	 * some round robin type logic.
2477 	 */
2478 	WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
2479 
2480 	local_irq_save(irq_flags);
2481 
2482 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) &&
2483 	    !clear_pending_if_disabled(work)) {
2484 		int cpu = select_numa_node_cpu(node);
2485 
2486 		__queue_work(cpu, wq, work);
2487 		ret = true;
2488 	}
2489 
2490 	local_irq_restore(irq_flags);
2491 	return ret;
2492 }
2493 EXPORT_SYMBOL_GPL(queue_work_node);
2494 
2495 void delayed_work_timer_fn(struct timer_list *t)
2496 {
2497 	struct delayed_work *dwork = timer_container_of(dwork, t, timer);
2498 
2499 	/* should have been called from irqsafe timer with irq already off */
2500 	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2501 }
2502 EXPORT_SYMBOL(delayed_work_timer_fn);
2503 
2504 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
2505 				struct delayed_work *dwork, unsigned long delay)
2506 {
2507 	struct timer_list *timer = &dwork->timer;
2508 	struct work_struct *work = &dwork->work;
2509 
2510 	WARN_ON_ONCE(!wq);
2511 	WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
2512 	WARN_ON_ONCE(timer_pending(timer));
2513 	WARN_ON_ONCE(!list_empty(&work->entry));
2514 
2515 	/*
2516 	 * If @delay is 0, queue @dwork->work immediately.  This is for
2517 	 * both optimization and correctness.  The earliest @timer can
2518 	 * expire is on the closest next tick and delayed_work users depend
2519 	 * on that there's no such delay when @delay is 0.
2520 	 */
2521 	if (!delay) {
2522 		__queue_work(cpu, wq, &dwork->work);
2523 		return;
2524 	}
2525 
2526 	WARN_ON_ONCE(cpu != WORK_CPU_UNBOUND && !cpu_online(cpu));
2527 	dwork->wq = wq;
2528 	dwork->cpu = cpu;
2529 	timer->expires = jiffies + delay;
2530 
2531 	if (housekeeping_enabled(HK_TYPE_TIMER)) {
2532 		/* If the current cpu is a housekeeping cpu, use it. */
2533 		cpu = smp_processor_id();
2534 		if (!housekeeping_test_cpu(cpu, HK_TYPE_TIMER))
2535 			cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
2536 		add_timer_on(timer, cpu);
2537 	} else {
2538 		if (likely(cpu == WORK_CPU_UNBOUND))
2539 			add_timer_global(timer);
2540 		else
2541 			add_timer_on(timer, cpu);
2542 	}
2543 }
2544 
2545 /**
2546  * queue_delayed_work_on - queue work on specific CPU after delay
2547  * @cpu: CPU number to execute work on
2548  * @wq: workqueue to use
2549  * @dwork: work to queue
2550  * @delay: number of jiffies to wait before queueing
2551  *
2552  * We queue the delayed_work to a specific CPU, for non-zero delays the
2553  * caller must ensure it is online and can't go away. Callers that fail
2554  * to ensure this, may get @dwork->timer queued to an offlined CPU and
2555  * this will prevent queueing of @dwork->work unless the offlined CPU
2556  * becomes online again.
2557  *
2558  * Return: %false if @work was already on a queue, %true otherwise.  If
2559  * @delay is zero and @dwork is idle, it will be scheduled for immediate
2560  * execution.
2561  */
2562 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
2563 			   struct delayed_work *dwork, unsigned long delay)
2564 {
2565 	struct work_struct *work = &dwork->work;
2566 	bool ret = false;
2567 	unsigned long irq_flags;
2568 
2569 	/* read the comment in __queue_work() */
2570 	local_irq_save(irq_flags);
2571 
2572 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) &&
2573 	    !clear_pending_if_disabled(work)) {
2574 		__queue_delayed_work(cpu, wq, dwork, delay);
2575 		ret = true;
2576 	}
2577 
2578 	local_irq_restore(irq_flags);
2579 	return ret;
2580 }
2581 EXPORT_SYMBOL(queue_delayed_work_on);
2582 
2583 /**
2584  * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
2585  * @cpu: CPU number to execute work on
2586  * @wq: workqueue to use
2587  * @dwork: work to queue
2588  * @delay: number of jiffies to wait before queueing
2589  *
2590  * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
2591  * modify @dwork's timer so that it expires after @delay.  If @delay is
2592  * zero, @work is guaranteed to be scheduled immediately regardless of its
2593  * current state.
2594  *
2595  * Return: %false if @dwork was idle and queued, %true if @dwork was
2596  * pending and its timer was modified.
2597  *
2598  * This function is safe to call from any context including IRQ handler.
2599  * See try_to_grab_pending() for details.
2600  */
2601 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
2602 			 struct delayed_work *dwork, unsigned long delay)
2603 {
2604 	unsigned long irq_flags;
2605 	bool ret;
2606 
2607 	ret = work_grab_pending(&dwork->work, WORK_CANCEL_DELAYED, &irq_flags);
2608 
2609 	if (!clear_pending_if_disabled(&dwork->work))
2610 		__queue_delayed_work(cpu, wq, dwork, delay);
2611 
2612 	local_irq_restore(irq_flags);
2613 	return ret;
2614 }
2615 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
2616 
2617 static void rcu_work_rcufn(struct rcu_head *rcu)
2618 {
2619 	struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
2620 
2621 	/* read the comment in __queue_work() */
2622 	local_irq_disable();
2623 	__queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
2624 	local_irq_enable();
2625 }
2626 
2627 /**
2628  * queue_rcu_work - queue work after a RCU grace period
2629  * @wq: workqueue to use
2630  * @rwork: work to queue
2631  *
2632  * Return: %false if @rwork was already pending, %true otherwise.  Note
2633  * that a full RCU grace period is guaranteed only after a %true return.
2634  * While @rwork is guaranteed to be executed after a %false return, the
2635  * execution may happen before a full RCU grace period has passed.
2636  */
2637 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
2638 {
2639 	struct work_struct *work = &rwork->work;
2640 
2641 	/*
2642 	 * rcu_work can't be canceled or disabled. Warn if the user reached
2643 	 * inside @rwork and disabled the inner work.
2644 	 */
2645 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) &&
2646 	    !WARN_ON_ONCE(clear_pending_if_disabled(work))) {
2647 		rwork->wq = wq;
2648 		call_rcu_hurry(&rwork->rcu, rcu_work_rcufn);
2649 		return true;
2650 	}
2651 
2652 	return false;
2653 }
2654 EXPORT_SYMBOL(queue_rcu_work);
2655 
2656 static struct worker *alloc_worker(int node)
2657 {
2658 	struct worker *worker;
2659 
2660 	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
2661 	if (worker) {
2662 		INIT_LIST_HEAD(&worker->entry);
2663 		INIT_LIST_HEAD(&worker->scheduled);
2664 		INIT_LIST_HEAD(&worker->node);
2665 		/* on creation a worker is in !idle && prep state */
2666 		worker->flags = WORKER_PREP;
2667 	}
2668 	return worker;
2669 }
2670 
2671 static cpumask_t *pool_allowed_cpus(struct worker_pool *pool)
2672 {
2673 	if (pool->cpu < 0 && pool->attrs->affn_strict)
2674 		return pool->attrs->__pod_cpumask;
2675 	else
2676 		return pool->attrs->cpumask;
2677 }
2678 
2679 /**
2680  * worker_attach_to_pool() - attach a worker to a pool
2681  * @worker: worker to be attached
2682  * @pool: the target pool
2683  *
2684  * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
2685  * cpu-binding of @worker are kept coordinated with the pool across
2686  * cpu-[un]hotplugs.
2687  */
2688 static void worker_attach_to_pool(struct worker *worker,
2689 				  struct worker_pool *pool)
2690 {
2691 	mutex_lock(&wq_pool_attach_mutex);
2692 
2693 	/*
2694 	 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains stable
2695 	 * across this function. See the comments above the flag definition for
2696 	 * details. BH workers are, while per-CPU, always DISASSOCIATED.
2697 	 */
2698 	if (pool->flags & POOL_DISASSOCIATED) {
2699 		worker->flags |= WORKER_UNBOUND;
2700 	} else {
2701 		WARN_ON_ONCE(pool->flags & POOL_BH);
2702 		kthread_set_per_cpu(worker->task, pool->cpu);
2703 	}
2704 
2705 	if (worker->rescue_wq)
2706 		set_cpus_allowed_ptr(worker->task, pool_allowed_cpus(pool));
2707 
2708 	list_add_tail(&worker->node, &pool->workers);
2709 	worker->pool = pool;
2710 
2711 	mutex_unlock(&wq_pool_attach_mutex);
2712 }
2713 
2714 static void unbind_worker(struct worker *worker)
2715 {
2716 	lockdep_assert_held(&wq_pool_attach_mutex);
2717 
2718 	kthread_set_per_cpu(worker->task, -1);
2719 	if (cpumask_intersects(wq_unbound_cpumask, cpu_active_mask))
2720 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, wq_unbound_cpumask) < 0);
2721 	else
2722 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0);
2723 }
2724 
2725 
2726 static void detach_worker(struct worker *worker)
2727 {
2728 	lockdep_assert_held(&wq_pool_attach_mutex);
2729 
2730 	unbind_worker(worker);
2731 	list_del(&worker->node);
2732 }
2733 
2734 /**
2735  * worker_detach_from_pool() - detach a worker from its pool
2736  * @worker: worker which is attached to its pool
2737  *
2738  * Undo the attaching which had been done in worker_attach_to_pool().  The
2739  * caller worker shouldn't access to the pool after detached except it has
2740  * other reference to the pool.
2741  */
2742 static void worker_detach_from_pool(struct worker *worker)
2743 {
2744 	struct worker_pool *pool = worker->pool;
2745 
2746 	/* there is one permanent BH worker per CPU which should never detach */
2747 	WARN_ON_ONCE(pool->flags & POOL_BH);
2748 
2749 	mutex_lock(&wq_pool_attach_mutex);
2750 	detach_worker(worker);
2751 	worker->pool = NULL;
2752 	mutex_unlock(&wq_pool_attach_mutex);
2753 
2754 	/* clear leftover flags without pool->lock after it is detached */
2755 	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
2756 }
2757 
2758 static int format_worker_id(char *buf, size_t size, struct worker *worker,
2759 			    struct worker_pool *pool)
2760 {
2761 	if (worker->rescue_wq)
2762 		return scnprintf(buf, size, "kworker/R-%s",
2763 				 worker->rescue_wq->name);
2764 
2765 	if (pool) {
2766 		if (pool->cpu >= 0)
2767 			return scnprintf(buf, size, "kworker/%d:%d%s",
2768 					 pool->cpu, worker->id,
2769 					 pool->attrs->nice < 0  ? "H" : "");
2770 		else
2771 			return scnprintf(buf, size, "kworker/u%d:%d",
2772 					 pool->id, worker->id);
2773 	} else {
2774 		return scnprintf(buf, size, "kworker/dying");
2775 	}
2776 }
2777 
2778 /**
2779  * create_worker - create a new workqueue worker
2780  * @pool: pool the new worker will belong to
2781  *
2782  * Create and start a new worker which is attached to @pool.
2783  *
2784  * CONTEXT:
2785  * Might sleep.  Does GFP_KERNEL allocations.
2786  *
2787  * Return:
2788  * Pointer to the newly created worker.
2789  */
2790 static struct worker *create_worker(struct worker_pool *pool)
2791 {
2792 	struct worker *worker;
2793 	int id;
2794 
2795 	/* ID is needed to determine kthread name */
2796 	id = ida_alloc(&pool->worker_ida, GFP_KERNEL);
2797 	if (id < 0) {
2798 		pr_err_once("workqueue: Failed to allocate a worker ID: %pe\n",
2799 			    ERR_PTR(id));
2800 		return NULL;
2801 	}
2802 
2803 	worker = alloc_worker(pool->node);
2804 	if (!worker) {
2805 		pr_err_once("workqueue: Failed to allocate a worker\n");
2806 		goto fail;
2807 	}
2808 
2809 	worker->id = id;
2810 
2811 	if (!(pool->flags & POOL_BH)) {
2812 		char id_buf[WORKER_ID_LEN];
2813 
2814 		format_worker_id(id_buf, sizeof(id_buf), worker, pool);
2815 		worker->task = kthread_create_on_node(worker_thread, worker,
2816 						      pool->node, "%s", id_buf);
2817 		if (IS_ERR(worker->task)) {
2818 			if (PTR_ERR(worker->task) == -EINTR) {
2819 				pr_err("workqueue: Interrupted when creating a worker thread \"%s\"\n",
2820 				       id_buf);
2821 			} else {
2822 				pr_err_once("workqueue: Failed to create a worker thread: %pe",
2823 					    worker->task);
2824 			}
2825 			goto fail;
2826 		}
2827 
2828 		set_user_nice(worker->task, pool->attrs->nice);
2829 		kthread_bind_mask(worker->task, pool_allowed_cpus(pool));
2830 	}
2831 
2832 	/* successful, attach the worker to the pool */
2833 	worker_attach_to_pool(worker, pool);
2834 
2835 	/* start the newly created worker */
2836 	raw_spin_lock_irq(&pool->lock);
2837 
2838 	worker->pool->nr_workers++;
2839 	worker_enter_idle(worker);
2840 
2841 	/*
2842 	 * @worker is waiting on a completion in kthread() and will trigger hung
2843 	 * check if not woken up soon. As kick_pool() is noop if @pool is empty,
2844 	 * wake it up explicitly.
2845 	 */
2846 	if (worker->task)
2847 		wake_up_process(worker->task);
2848 
2849 	raw_spin_unlock_irq(&pool->lock);
2850 
2851 	return worker;
2852 
2853 fail:
2854 	ida_free(&pool->worker_ida, id);
2855 	kfree(worker);
2856 	return NULL;
2857 }
2858 
2859 static void detach_dying_workers(struct list_head *cull_list)
2860 {
2861 	struct worker *worker;
2862 
2863 	list_for_each_entry(worker, cull_list, entry)
2864 		detach_worker(worker);
2865 }
2866 
2867 static void reap_dying_workers(struct list_head *cull_list)
2868 {
2869 	struct worker *worker, *tmp;
2870 
2871 	list_for_each_entry_safe(worker, tmp, cull_list, entry) {
2872 		list_del_init(&worker->entry);
2873 		kthread_stop_put(worker->task);
2874 		kfree(worker);
2875 	}
2876 }
2877 
2878 /**
2879  * set_worker_dying - Tag a worker for destruction
2880  * @worker: worker to be destroyed
2881  * @list: transfer worker away from its pool->idle_list and into list
2882  *
2883  * Tag @worker for destruction and adjust @pool stats accordingly.  The worker
2884  * should be idle.
2885  *
2886  * CONTEXT:
2887  * raw_spin_lock_irq(pool->lock).
2888  */
2889 static void set_worker_dying(struct worker *worker, struct list_head *list)
2890 {
2891 	struct worker_pool *pool = worker->pool;
2892 
2893 	lockdep_assert_held(&pool->lock);
2894 	lockdep_assert_held(&wq_pool_attach_mutex);
2895 
2896 	/* sanity check frenzy */
2897 	if (WARN_ON(worker->current_work) ||
2898 	    WARN_ON(!list_empty(&worker->scheduled)) ||
2899 	    WARN_ON(!(worker->flags & WORKER_IDLE)))
2900 		return;
2901 
2902 	pool->nr_workers--;
2903 	pool->nr_idle--;
2904 
2905 	worker->flags |= WORKER_DIE;
2906 
2907 	list_move(&worker->entry, list);
2908 
2909 	/* get an extra task struct reference for later kthread_stop_put() */
2910 	get_task_struct(worker->task);
2911 }
2912 
2913 /**
2914  * idle_worker_timeout - check if some idle workers can now be deleted.
2915  * @t: The pool's idle_timer that just expired
2916  *
2917  * The timer is armed in worker_enter_idle(). Note that it isn't disarmed in
2918  * worker_leave_idle(), as a worker flicking between idle and active while its
2919  * pool is at the too_many_workers() tipping point would cause too much timer
2920  * housekeeping overhead. Since IDLE_WORKER_TIMEOUT is long enough, we just let
2921  * it expire and re-evaluate things from there.
2922  */
2923 static void idle_worker_timeout(struct timer_list *t)
2924 {
2925 	struct worker_pool *pool = timer_container_of(pool, t, idle_timer);
2926 	bool do_cull = false;
2927 
2928 	if (work_pending(&pool->idle_cull_work))
2929 		return;
2930 
2931 	raw_spin_lock_irq(&pool->lock);
2932 
2933 	if (too_many_workers(pool)) {
2934 		struct worker *worker;
2935 		unsigned long expires;
2936 
2937 		/* idle_list is kept in LIFO order, check the last one */
2938 		worker = list_last_entry(&pool->idle_list, struct worker, entry);
2939 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2940 		do_cull = !time_before(jiffies, expires);
2941 
2942 		if (!do_cull)
2943 			mod_timer(&pool->idle_timer, expires);
2944 	}
2945 	raw_spin_unlock_irq(&pool->lock);
2946 
2947 	if (do_cull)
2948 		queue_work(system_dfl_wq, &pool->idle_cull_work);
2949 }
2950 
2951 /**
2952  * idle_cull_fn - cull workers that have been idle for too long.
2953  * @work: the pool's work for handling these idle workers
2954  *
2955  * This goes through a pool's idle workers and gets rid of those that have been
2956  * idle for at least IDLE_WORKER_TIMEOUT seconds.
2957  *
2958  * We don't want to disturb isolated CPUs because of a pcpu kworker being
2959  * culled, so this also resets worker affinity. This requires a sleepable
2960  * context, hence the split between timer callback and work item.
2961  */
2962 static void idle_cull_fn(struct work_struct *work)
2963 {
2964 	struct worker_pool *pool = container_of(work, struct worker_pool, idle_cull_work);
2965 	LIST_HEAD(cull_list);
2966 
2967 	/*
2968 	 * Grabbing wq_pool_attach_mutex here ensures an already-running worker
2969 	 * cannot proceed beyong set_pf_worker() in its self-destruct path.
2970 	 * This is required as a previously-preempted worker could run after
2971 	 * set_worker_dying() has happened but before detach_dying_workers() did.
2972 	 */
2973 	mutex_lock(&wq_pool_attach_mutex);
2974 	raw_spin_lock_irq(&pool->lock);
2975 
2976 	while (too_many_workers(pool)) {
2977 		struct worker *worker;
2978 		unsigned long expires;
2979 
2980 		worker = list_last_entry(&pool->idle_list, struct worker, entry);
2981 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2982 
2983 		if (time_before(jiffies, expires)) {
2984 			mod_timer(&pool->idle_timer, expires);
2985 			break;
2986 		}
2987 
2988 		set_worker_dying(worker, &cull_list);
2989 	}
2990 
2991 	raw_spin_unlock_irq(&pool->lock);
2992 	detach_dying_workers(&cull_list);
2993 	mutex_unlock(&wq_pool_attach_mutex);
2994 
2995 	reap_dying_workers(&cull_list);
2996 }
2997 
2998 static void send_mayday(struct pool_workqueue *pwq)
2999 {
3000 	struct workqueue_struct *wq = pwq->wq;
3001 
3002 	lockdep_assert_held(&wq_mayday_lock);
3003 
3004 	if (!wq->rescuer)
3005 		return;
3006 
3007 	/* mayday mayday mayday */
3008 	if (list_empty(&pwq->mayday_node)) {
3009 		/*
3010 		 * If @pwq is for an unbound wq, its base ref may be put at
3011 		 * any time due to an attribute change.  Pin @pwq until the
3012 		 * rescuer is done with it.
3013 		 */
3014 		get_pwq(pwq);
3015 		list_add_tail(&pwq->mayday_node, &wq->maydays);
3016 		wake_up_process(wq->rescuer->task);
3017 		pwq->stats[PWQ_STAT_MAYDAY]++;
3018 	}
3019 }
3020 
3021 static void pool_mayday_timeout(struct timer_list *t)
3022 {
3023 	struct worker_pool *pool = timer_container_of(pool, t, mayday_timer);
3024 	struct work_struct *work;
3025 
3026 	raw_spin_lock_irq(&pool->lock);
3027 	raw_spin_lock(&wq_mayday_lock);		/* for wq->maydays */
3028 
3029 	if (need_to_create_worker(pool)) {
3030 		/*
3031 		 * We've been trying to create a new worker but
3032 		 * haven't been successful.  We might be hitting an
3033 		 * allocation deadlock.  Send distress signals to
3034 		 * rescuers.
3035 		 */
3036 		list_for_each_entry(work, &pool->worklist, entry)
3037 			send_mayday(get_work_pwq(work));
3038 	}
3039 
3040 	raw_spin_unlock(&wq_mayday_lock);
3041 	raw_spin_unlock_irq(&pool->lock);
3042 
3043 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
3044 }
3045 
3046 /**
3047  * maybe_create_worker - create a new worker if necessary
3048  * @pool: pool to create a new worker for
3049  *
3050  * Create a new worker for @pool if necessary.  @pool is guaranteed to
3051  * have at least one idle worker on return from this function.  If
3052  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
3053  * sent to all rescuers with works scheduled on @pool to resolve
3054  * possible allocation deadlock.
3055  *
3056  * On return, need_to_create_worker() is guaranteed to be %false and
3057  * may_start_working() %true.
3058  *
3059  * LOCKING:
3060  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
3061  * multiple times.  Does GFP_KERNEL allocations.  Called only from
3062  * manager.
3063  */
3064 static void maybe_create_worker(struct worker_pool *pool)
3065 __releases(&pool->lock)
3066 __acquires(&pool->lock)
3067 {
3068 restart:
3069 	raw_spin_unlock_irq(&pool->lock);
3070 
3071 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
3072 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
3073 
3074 	while (true) {
3075 		if (create_worker(pool) || !need_to_create_worker(pool))
3076 			break;
3077 
3078 		schedule_timeout_interruptible(CREATE_COOLDOWN);
3079 
3080 		if (!need_to_create_worker(pool))
3081 			break;
3082 	}
3083 
3084 	timer_delete_sync(&pool->mayday_timer);
3085 	raw_spin_lock_irq(&pool->lock);
3086 	/*
3087 	 * This is necessary even after a new worker was just successfully
3088 	 * created as @pool->lock was dropped and the new worker might have
3089 	 * already become busy.
3090 	 */
3091 	if (need_to_create_worker(pool))
3092 		goto restart;
3093 }
3094 
3095 #ifdef CONFIG_PREEMPT_RT
3096 static void worker_lock_callback(struct worker_pool *pool)
3097 {
3098 	spin_lock(&pool->cb_lock);
3099 }
3100 
3101 static void worker_unlock_callback(struct worker_pool *pool)
3102 {
3103 	spin_unlock(&pool->cb_lock);
3104 }
3105 
3106 static void workqueue_callback_cancel_wait_running(struct worker_pool *pool)
3107 {
3108 	spin_lock(&pool->cb_lock);
3109 	spin_unlock(&pool->cb_lock);
3110 }
3111 
3112 #else
3113 
3114 static void worker_lock_callback(struct worker_pool *pool) { }
3115 static void worker_unlock_callback(struct worker_pool *pool) { }
3116 static void workqueue_callback_cancel_wait_running(struct worker_pool *pool) { }
3117 
3118 #endif
3119 
3120 /**
3121  * manage_workers - manage worker pool
3122  * @worker: self
3123  *
3124  * Assume the manager role and manage the worker pool @worker belongs
3125  * to.  At any given time, there can be only zero or one manager per
3126  * pool.  The exclusion is handled automatically by this function.
3127  *
3128  * The caller can safely start processing works on false return.  On
3129  * true return, it's guaranteed that need_to_create_worker() is false
3130  * and may_start_working() is true.
3131  *
3132  * CONTEXT:
3133  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
3134  * multiple times.  Does GFP_KERNEL allocations.
3135  *
3136  * Return:
3137  * %false if the pool doesn't need management and the caller can safely
3138  * start processing works, %true if management function was performed and
3139  * the conditions that the caller verified before calling the function may
3140  * no longer be true.
3141  */
3142 static bool manage_workers(struct worker *worker)
3143 {
3144 	struct worker_pool *pool = worker->pool;
3145 
3146 	if (pool->flags & POOL_MANAGER_ACTIVE)
3147 		return false;
3148 
3149 	pool->flags |= POOL_MANAGER_ACTIVE;
3150 	pool->manager = worker;
3151 
3152 	maybe_create_worker(pool);
3153 
3154 	pool->manager = NULL;
3155 	pool->flags &= ~POOL_MANAGER_ACTIVE;
3156 	rcuwait_wake_up(&manager_wait);
3157 	return true;
3158 }
3159 
3160 /**
3161  * process_one_work - process single work
3162  * @worker: self
3163  * @work: work to process
3164  *
3165  * Process @work.  This function contains all the logics necessary to
3166  * process a single work including synchronization against and
3167  * interaction with other workers on the same cpu, queueing and
3168  * flushing.  As long as context requirement is met, any worker can
3169  * call this function to process a work.
3170  *
3171  * CONTEXT:
3172  * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
3173  */
3174 static void process_one_work(struct worker *worker, struct work_struct *work)
3175 __releases(&pool->lock)
3176 __acquires(&pool->lock)
3177 {
3178 	struct pool_workqueue *pwq = get_work_pwq(work);
3179 	struct worker_pool *pool = worker->pool;
3180 	unsigned long work_data;
3181 	int lockdep_start_depth, rcu_start_depth;
3182 	bool bh_draining = pool->flags & POOL_BH_DRAINING;
3183 #ifdef CONFIG_LOCKDEP
3184 	/*
3185 	 * It is permissible to free the struct work_struct from
3186 	 * inside the function that is called from it, this we need to
3187 	 * take into account for lockdep too.  To avoid bogus "held
3188 	 * lock freed" warnings as well as problems when looking into
3189 	 * work->lockdep_map, make a copy and use that here.
3190 	 */
3191 	struct lockdep_map lockdep_map;
3192 
3193 	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
3194 #endif
3195 	/* ensure we're on the correct CPU */
3196 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
3197 		     raw_smp_processor_id() != pool->cpu);
3198 
3199 	/* claim and dequeue */
3200 	debug_work_deactivate(work);
3201 	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
3202 	worker->current_work = work;
3203 	worker->current_func = work->func;
3204 	worker->current_pwq = pwq;
3205 	if (worker->task)
3206 		worker->current_at = worker->task->se.sum_exec_runtime;
3207 	work_data = *work_data_bits(work);
3208 	worker->current_color = get_work_color(work_data);
3209 
3210 	/*
3211 	 * Record wq name for cmdline and debug reporting, may get
3212 	 * overridden through set_worker_desc().
3213 	 */
3214 	strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
3215 
3216 	list_del_init(&work->entry);
3217 
3218 	/*
3219 	 * CPU intensive works don't participate in concurrency management.
3220 	 * They're the scheduler's responsibility.  This takes @worker out
3221 	 * of concurrency management and the next code block will chain
3222 	 * execution of the pending work items.
3223 	 */
3224 	if (unlikely(pwq->wq->flags & WQ_CPU_INTENSIVE))
3225 		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
3226 
3227 	/*
3228 	 * Kick @pool if necessary. It's always noop for per-cpu worker pools
3229 	 * since nr_running would always be >= 1 at this point. This is used to
3230 	 * chain execution of the pending work items for WORKER_NOT_RUNNING
3231 	 * workers such as the UNBOUND and CPU_INTENSIVE ones.
3232 	 */
3233 	kick_pool(pool);
3234 
3235 	/*
3236 	 * Record the last pool and clear PENDING which should be the last
3237 	 * update to @work.  Also, do this inside @pool->lock so that
3238 	 * PENDING and queued state changes happen together while IRQ is
3239 	 * disabled.
3240 	 */
3241 	set_work_pool_and_clear_pending(work, pool->id, pool_offq_flags(pool));
3242 
3243 	pwq->stats[PWQ_STAT_STARTED]++;
3244 	raw_spin_unlock_irq(&pool->lock);
3245 
3246 	rcu_start_depth = rcu_preempt_depth();
3247 	lockdep_start_depth = lockdep_depth(current);
3248 	/* see drain_dead_softirq_workfn() */
3249 	if (!bh_draining)
3250 		lock_map_acquire(pwq->wq->lockdep_map);
3251 	lock_map_acquire(&lockdep_map);
3252 	/*
3253 	 * Strictly speaking we should mark the invariant state without holding
3254 	 * any locks, that is, before these two lock_map_acquire()'s.
3255 	 *
3256 	 * However, that would result in:
3257 	 *
3258 	 *   A(W1)
3259 	 *   WFC(C)
3260 	 *		A(W1)
3261 	 *		C(C)
3262 	 *
3263 	 * Which would create W1->C->W1 dependencies, even though there is no
3264 	 * actual deadlock possible. There are two solutions, using a
3265 	 * read-recursive acquire on the work(queue) 'locks', but this will then
3266 	 * hit the lockdep limitation on recursive locks, or simply discard
3267 	 * these locks.
3268 	 *
3269 	 * AFAICT there is no possible deadlock scenario between the
3270 	 * flush_work() and complete() primitives (except for single-threaded
3271 	 * workqueues), so hiding them isn't a problem.
3272 	 */
3273 	lockdep_invariant_state(true);
3274 	trace_workqueue_execute_start(work);
3275 	worker->current_func(work);
3276 	/*
3277 	 * While we must be careful to not use "work" after this, the trace
3278 	 * point will only record its address.
3279 	 */
3280 	trace_workqueue_execute_end(work, worker->current_func);
3281 
3282 	lock_map_release(&lockdep_map);
3283 	if (!bh_draining)
3284 		lock_map_release(pwq->wq->lockdep_map);
3285 
3286 	if (unlikely((worker->task && in_atomic()) ||
3287 		     lockdep_depth(current) != lockdep_start_depth ||
3288 		     rcu_preempt_depth() != rcu_start_depth)) {
3289 		pr_err("BUG: workqueue leaked atomic, lock or RCU: %s[%d]\n"
3290 		       "     preempt=0x%08x lock=%d->%d RCU=%d->%d workfn=%ps\n",
3291 		       current->comm, task_pid_nr(current), preempt_count(),
3292 		       lockdep_start_depth, lockdep_depth(current),
3293 		       rcu_start_depth, rcu_preempt_depth(),
3294 		       worker->current_func);
3295 		debug_show_held_locks(current);
3296 		dump_stack();
3297 	}
3298 
3299 	/*
3300 	 * The following prevents a kworker from hogging CPU on !PREEMPTION
3301 	 * kernels, where a requeueing work item waiting for something to
3302 	 * happen could deadlock with stop_machine as such work item could
3303 	 * indefinitely requeue itself while all other CPUs are trapped in
3304 	 * stop_machine. At the same time, report a quiescent RCU state so
3305 	 * the same condition doesn't freeze RCU.
3306 	 */
3307 	if (worker->task)
3308 		cond_resched();
3309 
3310 	raw_spin_lock_irq(&pool->lock);
3311 
3312 	pwq->stats[PWQ_STAT_COMPLETED]++;
3313 
3314 	/*
3315 	 * In addition to %WQ_CPU_INTENSIVE, @worker may also have been marked
3316 	 * CPU intensive by wq_worker_tick() if @work hogged CPU longer than
3317 	 * wq_cpu_intensive_thresh_us. Clear it.
3318 	 */
3319 	worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
3320 
3321 	/* tag the worker for identification in schedule() */
3322 	worker->last_func = worker->current_func;
3323 
3324 	/* we're done with it, release */
3325 	hash_del(&worker->hentry);
3326 	worker->current_work = NULL;
3327 	worker->current_func = NULL;
3328 	worker->current_pwq = NULL;
3329 	worker->current_color = INT_MAX;
3330 
3331 	/* must be the last step, see the function comment */
3332 	pwq_dec_nr_in_flight(pwq, work_data);
3333 }
3334 
3335 /**
3336  * process_scheduled_works - process scheduled works
3337  * @worker: self
3338  *
3339  * Process all scheduled works.  Please note that the scheduled list
3340  * may change while processing a work, so this function repeatedly
3341  * fetches a work from the top and executes it.
3342  *
3343  * CONTEXT:
3344  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
3345  * multiple times.
3346  */
3347 static void process_scheduled_works(struct worker *worker)
3348 {
3349 	struct work_struct *work;
3350 	bool first = true;
3351 
3352 	while ((work = list_first_entry_or_null(&worker->scheduled,
3353 						struct work_struct, entry))) {
3354 		if (first) {
3355 			worker->pool->watchdog_ts = jiffies;
3356 			first = false;
3357 		}
3358 		process_one_work(worker, work);
3359 	}
3360 }
3361 
3362 static void set_pf_worker(bool val)
3363 {
3364 	mutex_lock(&wq_pool_attach_mutex);
3365 	if (val)
3366 		current->flags |= PF_WQ_WORKER;
3367 	else
3368 		current->flags &= ~PF_WQ_WORKER;
3369 	mutex_unlock(&wq_pool_attach_mutex);
3370 }
3371 
3372 /**
3373  * worker_thread - the worker thread function
3374  * @__worker: self
3375  *
3376  * The worker thread function.  All workers belong to a worker_pool -
3377  * either a per-cpu one or dynamic unbound one.  These workers process all
3378  * work items regardless of their specific target workqueue.  The only
3379  * exception is work items which belong to workqueues with a rescuer which
3380  * will be explained in rescuer_thread().
3381  *
3382  * Return: 0
3383  */
3384 static int worker_thread(void *__worker)
3385 {
3386 	struct worker *worker = __worker;
3387 	struct worker_pool *pool = worker->pool;
3388 
3389 	/* tell the scheduler that this is a workqueue worker */
3390 	set_pf_worker(true);
3391 woke_up:
3392 	raw_spin_lock_irq(&pool->lock);
3393 
3394 	/* am I supposed to die? */
3395 	if (unlikely(worker->flags & WORKER_DIE)) {
3396 		raw_spin_unlock_irq(&pool->lock);
3397 		set_pf_worker(false);
3398 		/*
3399 		 * The worker is dead and PF_WQ_WORKER is cleared, worker->pool
3400 		 * shouldn't be accessed, reset it to NULL in case otherwise.
3401 		 */
3402 		worker->pool = NULL;
3403 		ida_free(&pool->worker_ida, worker->id);
3404 		return 0;
3405 	}
3406 
3407 	worker_leave_idle(worker);
3408 recheck:
3409 	/* no more worker necessary? */
3410 	if (!need_more_worker(pool))
3411 		goto sleep;
3412 
3413 	/* do we need to manage? */
3414 	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
3415 		goto recheck;
3416 
3417 	/*
3418 	 * ->scheduled list can only be filled while a worker is
3419 	 * preparing to process a work or actually processing it.
3420 	 * Make sure nobody diddled with it while I was sleeping.
3421 	 */
3422 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
3423 
3424 	/*
3425 	 * Finish PREP stage.  We're guaranteed to have at least one idle
3426 	 * worker or that someone else has already assumed the manager
3427 	 * role.  This is where @worker starts participating in concurrency
3428 	 * management if applicable and concurrency management is restored
3429 	 * after being rebound.  See rebind_workers() for details.
3430 	 */
3431 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
3432 
3433 	do {
3434 		struct work_struct *work =
3435 			list_first_entry(&pool->worklist,
3436 					 struct work_struct, entry);
3437 
3438 		if (assign_work(work, worker, NULL))
3439 			process_scheduled_works(worker);
3440 	} while (keep_working(pool));
3441 
3442 	worker_set_flags(worker, WORKER_PREP);
3443 sleep:
3444 	/*
3445 	 * pool->lock is held and there's no work to process and no need to
3446 	 * manage, sleep.  Workers are woken up only while holding
3447 	 * pool->lock or from local cpu, so setting the current state
3448 	 * before releasing pool->lock is enough to prevent losing any
3449 	 * event.
3450 	 */
3451 	worker_enter_idle(worker);
3452 	__set_current_state(TASK_IDLE);
3453 	raw_spin_unlock_irq(&pool->lock);
3454 	schedule();
3455 	goto woke_up;
3456 }
3457 
3458 static bool assign_rescuer_work(struct pool_workqueue *pwq, struct worker *rescuer)
3459 {
3460 	struct worker_pool *pool = pwq->pool;
3461 	struct work_struct *cursor = &pwq->mayday_cursor;
3462 	struct work_struct *work, *n;
3463 
3464 	/* have work items to rescue? */
3465 	if (!pwq->nr_active)
3466 		return false;
3467 
3468 	/* need rescue? */
3469 	if (!need_to_create_worker(pool)) {
3470 		/*
3471 		 * The pool has idle workers and doesn't need the rescuer, so it
3472 		 * could simply return false here.
3473 		 *
3474 		 * However, the memory pressure might not be fully relieved.
3475 		 * In PERCPU pool with concurrency enabled, having idle workers
3476 		 * does not necessarily mean memory pressure is gone; it may
3477 		 * simply mean regular workers have woken up, completed their
3478 		 * work, and gone idle again due to concurrency limits.
3479 		 *
3480 		 * In this case, those working workers may later sleep again,
3481 		 * the pool may run out of idle workers, and it will have to
3482 		 * allocate new ones and wait for the timer to send mayday,
3483 		 * causing unnecessary delay - especially if memory pressure
3484 		 * was never resolved throughout.
3485 		 *
3486 		 * Do more work if memory pressure is still on to reduce
3487 		 * relapse, using (pool->flags & POOL_MANAGER_ACTIVE), though
3488 		 * not precisely, unless there are other PWQs needing help.
3489 		 */
3490 		if (!(pool->flags & POOL_MANAGER_ACTIVE) ||
3491 		    !list_empty(&pwq->wq->maydays))
3492 			return false;
3493 	}
3494 
3495 	/* search from the start or cursor if available */
3496 	if (list_empty(&cursor->entry))
3497 		work = list_first_entry(&pool->worklist, struct work_struct, entry);
3498 	else
3499 		work = list_next_entry(cursor, entry);
3500 
3501 	/* find the next work item to rescue */
3502 	list_for_each_entry_safe_from(work, n, &pool->worklist, entry) {
3503 		if (get_work_pwq(work) == pwq && assign_work(work, rescuer, &n)) {
3504 			pwq->stats[PWQ_STAT_RESCUED]++;
3505 			/* put the cursor for next search */
3506 			list_move_tail(&cursor->entry, &n->entry);
3507 			return true;
3508 		}
3509 	}
3510 
3511 	return false;
3512 }
3513 
3514 /**
3515  * rescuer_thread - the rescuer thread function
3516  * @__rescuer: self
3517  *
3518  * Workqueue rescuer thread function.  There's one rescuer for each
3519  * workqueue which has WQ_MEM_RECLAIM set.
3520  *
3521  * Regular work processing on a pool may block trying to create a new
3522  * worker which uses GFP_KERNEL allocation which has slight chance of
3523  * developing into deadlock if some works currently on the same queue
3524  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
3525  * the problem rescuer solves.
3526  *
3527  * When such condition is possible, the pool summons rescuers of all
3528  * workqueues which have works queued on the pool and let them process
3529  * those works so that forward progress can be guaranteed.
3530  *
3531  * This should happen rarely.
3532  *
3533  * Return: 0
3534  */
3535 static int rescuer_thread(void *__rescuer)
3536 {
3537 	struct worker *rescuer = __rescuer;
3538 	struct workqueue_struct *wq = rescuer->rescue_wq;
3539 	bool should_stop;
3540 
3541 	set_user_nice(current, RESCUER_NICE_LEVEL);
3542 
3543 	/*
3544 	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
3545 	 * doesn't participate in concurrency management.
3546 	 */
3547 	set_pf_worker(true);
3548 repeat:
3549 	set_current_state(TASK_IDLE);
3550 
3551 	/*
3552 	 * By the time the rescuer is requested to stop, the workqueue
3553 	 * shouldn't have any work pending, but @wq->maydays may still have
3554 	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
3555 	 * all the work items before the rescuer got to them.  Go through
3556 	 * @wq->maydays processing before acting on should_stop so that the
3557 	 * list is always empty on exit.
3558 	 */
3559 	should_stop = kthread_should_stop();
3560 
3561 	/* see whether any pwq is asking for help */
3562 	raw_spin_lock_irq(&wq_mayday_lock);
3563 
3564 	while (!list_empty(&wq->maydays)) {
3565 		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
3566 					struct pool_workqueue, mayday_node);
3567 		struct worker_pool *pool = pwq->pool;
3568 		unsigned int count = 0;
3569 
3570 		__set_current_state(TASK_RUNNING);
3571 		list_del_init(&pwq->mayday_node);
3572 
3573 		raw_spin_unlock_irq(&wq_mayday_lock);
3574 
3575 		worker_attach_to_pool(rescuer, pool);
3576 
3577 		raw_spin_lock_irq(&pool->lock);
3578 
3579 		WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
3580 
3581 		while (assign_rescuer_work(pwq, rescuer)) {
3582 			process_scheduled_works(rescuer);
3583 
3584 			/*
3585 			 * If the per-turn work item limit is reached and other
3586 			 * PWQs are in mayday, requeue mayday for this PWQ and
3587 			 * let the rescuer handle the other PWQs first.
3588 			 */
3589 			if (++count > RESCUER_BATCH && !list_empty(&pwq->wq->maydays) &&
3590 			    pwq->nr_active && need_to_create_worker(pool)) {
3591 				raw_spin_lock(&wq_mayday_lock);
3592 				send_mayday(pwq);
3593 				raw_spin_unlock(&wq_mayday_lock);
3594 				break;
3595 			}
3596 		}
3597 
3598 		/* The cursor can not be left behind without the rescuer watching it. */
3599 		if (!list_empty(&pwq->mayday_cursor.entry) && list_empty(&pwq->mayday_node))
3600 			list_del_init(&pwq->mayday_cursor.entry);
3601 
3602 		/*
3603 		 * Leave this pool. Notify regular workers; otherwise, we end up
3604 		 * with 0 concurrency and stalling the execution.
3605 		 */
3606 		kick_pool(pool);
3607 
3608 		raw_spin_unlock_irq(&pool->lock);
3609 
3610 		worker_detach_from_pool(rescuer);
3611 
3612 		/*
3613 		 * Put the reference grabbed by send_mayday().  @pool might
3614 		 * go away any time after it.
3615 		 */
3616 		put_pwq_unlocked(pwq);
3617 
3618 		raw_spin_lock_irq(&wq_mayday_lock);
3619 	}
3620 
3621 	raw_spin_unlock_irq(&wq_mayday_lock);
3622 
3623 	if (should_stop) {
3624 		__set_current_state(TASK_RUNNING);
3625 		set_pf_worker(false);
3626 		return 0;
3627 	}
3628 
3629 	/* rescuers should never participate in concurrency management */
3630 	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
3631 	schedule();
3632 	goto repeat;
3633 }
3634 
3635 static void bh_worker(struct worker *worker)
3636 {
3637 	struct worker_pool *pool = worker->pool;
3638 	int nr_restarts = BH_WORKER_RESTARTS;
3639 	unsigned long end = jiffies + BH_WORKER_JIFFIES;
3640 
3641 	worker_lock_callback(pool);
3642 	raw_spin_lock_irq(&pool->lock);
3643 	worker_leave_idle(worker);
3644 
3645 	/*
3646 	 * This function follows the structure of worker_thread(). See there for
3647 	 * explanations on each step.
3648 	 */
3649 	if (!need_more_worker(pool))
3650 		goto done;
3651 
3652 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
3653 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
3654 
3655 	do {
3656 		struct work_struct *work =
3657 			list_first_entry(&pool->worklist,
3658 					 struct work_struct, entry);
3659 
3660 		if (assign_work(work, worker, NULL))
3661 			process_scheduled_works(worker);
3662 	} while (keep_working(pool) &&
3663 		 --nr_restarts && time_before(jiffies, end));
3664 
3665 	worker_set_flags(worker, WORKER_PREP);
3666 done:
3667 	worker_enter_idle(worker);
3668 	kick_pool(pool);
3669 	raw_spin_unlock_irq(&pool->lock);
3670 	worker_unlock_callback(pool);
3671 }
3672 
3673 /*
3674  * TODO: Convert all tasklet users to workqueue and use softirq directly.
3675  *
3676  * This is currently called from tasklet[_hi]action() and thus is also called
3677  * whenever there are tasklets to run. Let's do an early exit if there's nothing
3678  * queued. Once conversion from tasklet is complete, the need_more_worker() test
3679  * can be dropped.
3680  *
3681  * After full conversion, we'll add worker->softirq_action, directly use the
3682  * softirq action and obtain the worker pointer from the softirq_action pointer.
3683  */
3684 void workqueue_softirq_action(bool highpri)
3685 {
3686 	struct worker_pool *pool =
3687 		&per_cpu(bh_worker_pools, smp_processor_id())[highpri];
3688 	if (need_more_worker(pool))
3689 		bh_worker(list_first_entry(&pool->workers, struct worker, node));
3690 }
3691 
3692 struct wq_drain_dead_softirq_work {
3693 	struct work_struct	work;
3694 	struct worker_pool	*pool;
3695 	struct completion	done;
3696 };
3697 
3698 static void drain_dead_softirq_workfn(struct work_struct *work)
3699 {
3700 	struct wq_drain_dead_softirq_work *dead_work =
3701 		container_of(work, struct wq_drain_dead_softirq_work, work);
3702 	struct worker_pool *pool = dead_work->pool;
3703 	bool repeat;
3704 
3705 	/*
3706 	 * @pool's CPU is dead and we want to execute its still pending work
3707 	 * items from this BH work item which is running on a different CPU. As
3708 	 * its CPU is dead, @pool can't be kicked and, as work execution path
3709 	 * will be nested, a lockdep annotation needs to be suppressed. Mark
3710 	 * @pool with %POOL_BH_DRAINING for the special treatments.
3711 	 */
3712 	raw_spin_lock_irq(&pool->lock);
3713 	pool->flags |= POOL_BH_DRAINING;
3714 	raw_spin_unlock_irq(&pool->lock);
3715 
3716 	bh_worker(list_first_entry(&pool->workers, struct worker, node));
3717 
3718 	raw_spin_lock_irq(&pool->lock);
3719 	pool->flags &= ~POOL_BH_DRAINING;
3720 	repeat = need_more_worker(pool);
3721 	raw_spin_unlock_irq(&pool->lock);
3722 
3723 	/*
3724 	 * bh_worker() might hit consecutive execution limit and bail. If there
3725 	 * still are pending work items, reschedule self and return so that we
3726 	 * don't hog this CPU's BH.
3727 	 */
3728 	if (repeat) {
3729 		if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
3730 			queue_work(system_bh_highpri_wq, work);
3731 		else
3732 			queue_work(system_bh_wq, work);
3733 	} else {
3734 		complete(&dead_work->done);
3735 	}
3736 }
3737 
3738 /*
3739  * @cpu is dead. Drain the remaining BH work items on the current CPU. It's
3740  * possible to allocate dead_work per CPU and avoid flushing. However, then we
3741  * have to worry about draining overlapping with CPU coming back online or
3742  * nesting (one CPU's dead_work queued on another CPU which is also dead and so
3743  * on). Let's keep it simple and drain them synchronously. These are BH work
3744  * items which shouldn't be requeued on the same pool. Shouldn't take long.
3745  */
3746 void workqueue_softirq_dead(unsigned int cpu)
3747 {
3748 	int i;
3749 
3750 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
3751 		struct worker_pool *pool = &per_cpu(bh_worker_pools, cpu)[i];
3752 		struct wq_drain_dead_softirq_work dead_work;
3753 
3754 		if (!need_more_worker(pool))
3755 			continue;
3756 
3757 		INIT_WORK_ONSTACK(&dead_work.work, drain_dead_softirq_workfn);
3758 		dead_work.pool = pool;
3759 		init_completion(&dead_work.done);
3760 
3761 		if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
3762 			queue_work(system_bh_highpri_wq, &dead_work.work);
3763 		else
3764 			queue_work(system_bh_wq, &dead_work.work);
3765 
3766 		wait_for_completion(&dead_work.done);
3767 		destroy_work_on_stack(&dead_work.work);
3768 	}
3769 }
3770 
3771 /**
3772  * check_flush_dependency - check for flush dependency sanity
3773  * @target_wq: workqueue being flushed
3774  * @target_work: work item being flushed (NULL for workqueue flushes)
3775  * @from_cancel: are we called from the work cancel path
3776  *
3777  * %current is trying to flush the whole @target_wq or @target_work on it.
3778  * If this is not the cancel path (which implies work being flushed is either
3779  * already running, or will not be at all), check if @target_wq doesn't have
3780  * %WQ_MEM_RECLAIM and verify that %current is not reclaiming memory or running
3781  * on a workqueue which doesn't have %WQ_MEM_RECLAIM as that can break forward-
3782  * progress guarantee leading to a deadlock.
3783  */
3784 static void check_flush_dependency(struct workqueue_struct *target_wq,
3785 				   struct work_struct *target_work,
3786 				   bool from_cancel)
3787 {
3788 	work_func_t target_func;
3789 	struct worker *worker;
3790 
3791 	if (from_cancel || target_wq->flags & WQ_MEM_RECLAIM)
3792 		return;
3793 
3794 	worker = current_wq_worker();
3795 	target_func = target_work ? target_work->func : NULL;
3796 
3797 	WARN_ONCE(current->flags & PF_MEMALLOC,
3798 		  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
3799 		  current->pid, current->comm, target_wq->name, target_func);
3800 	WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
3801 			      (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
3802 		  "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
3803 		  worker->current_pwq->wq->name, worker->current_func,
3804 		  target_wq->name, target_func);
3805 }
3806 
3807 struct wq_barrier {
3808 	struct work_struct	work;
3809 	struct completion	done;
3810 	struct task_struct	*task;	/* purely informational */
3811 };
3812 
3813 static void wq_barrier_func(struct work_struct *work)
3814 {
3815 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
3816 	complete(&barr->done);
3817 }
3818 
3819 /**
3820  * insert_wq_barrier - insert a barrier work
3821  * @pwq: pwq to insert barrier into
3822  * @barr: wq_barrier to insert
3823  * @target: target work to attach @barr to
3824  * @worker: worker currently executing @target, NULL if @target is not executing
3825  *
3826  * @barr is linked to @target such that @barr is completed only after
3827  * @target finishes execution.  Please note that the ordering
3828  * guarantee is observed only with respect to @target and on the local
3829  * cpu.
3830  *
3831  * Currently, a queued barrier can't be canceled.  This is because
3832  * try_to_grab_pending() can't determine whether the work to be
3833  * grabbed is at the head of the queue and thus can't clear LINKED
3834  * flag of the previous work while there must be a valid next work
3835  * after a work with LINKED flag set.
3836  *
3837  * Note that when @worker is non-NULL, @target may be modified
3838  * underneath us, so we can't reliably determine pwq from @target.
3839  *
3840  * CONTEXT:
3841  * raw_spin_lock_irq(pool->lock).
3842  */
3843 static void insert_wq_barrier(struct pool_workqueue *pwq,
3844 			      struct wq_barrier *barr,
3845 			      struct work_struct *target, struct worker *worker)
3846 {
3847 	static __maybe_unused struct lock_class_key bh_key, thr_key;
3848 	unsigned int work_flags = 0;
3849 	unsigned int work_color;
3850 	struct list_head *head;
3851 
3852 	/*
3853 	 * debugobject calls are safe here even with pool->lock locked
3854 	 * as we know for sure that this will not trigger any of the
3855 	 * checks and call back into the fixup functions where we
3856 	 * might deadlock.
3857 	 *
3858 	 * BH and threaded workqueues need separate lockdep keys to avoid
3859 	 * spuriously triggering "inconsistent {SOFTIRQ-ON-W} -> {IN-SOFTIRQ-W}
3860 	 * usage".
3861 	 */
3862 	INIT_WORK_ONSTACK_KEY(&barr->work, wq_barrier_func,
3863 			      (pwq->wq->flags & WQ_BH) ? &bh_key : &thr_key);
3864 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
3865 
3866 	init_completion_map(&barr->done, &target->lockdep_map);
3867 
3868 	barr->task = current;
3869 
3870 	/* The barrier work item does not participate in nr_active. */
3871 	work_flags |= WORK_STRUCT_INACTIVE;
3872 
3873 	/*
3874 	 * If @target is currently being executed, schedule the
3875 	 * barrier to the worker; otherwise, put it after @target.
3876 	 */
3877 	if (worker) {
3878 		head = worker->scheduled.next;
3879 		work_color = worker->current_color;
3880 	} else {
3881 		unsigned long *bits = work_data_bits(target);
3882 
3883 		head = target->entry.next;
3884 		/* there can already be other linked works, inherit and set */
3885 		work_flags |= *bits & WORK_STRUCT_LINKED;
3886 		work_color = get_work_color(*bits);
3887 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
3888 	}
3889 
3890 	pwq->nr_in_flight[work_color]++;
3891 	work_flags |= work_color_to_flags(work_color);
3892 
3893 	insert_work(pwq, &barr->work, head, work_flags);
3894 }
3895 
3896 /**
3897  * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
3898  * @wq: workqueue being flushed
3899  * @flush_color: new flush color, < 0 for no-op
3900  * @work_color: new work color, < 0 for no-op
3901  *
3902  * Prepare pwqs for workqueue flushing.
3903  *
3904  * If @flush_color is non-negative, flush_color on all pwqs should be
3905  * -1.  If no pwq has in-flight commands at the specified color, all
3906  * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
3907  * has in flight commands, its pwq->flush_color is set to
3908  * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
3909  * wakeup logic is armed and %true is returned.
3910  *
3911  * The caller should have initialized @wq->first_flusher prior to
3912  * calling this function with non-negative @flush_color.  If
3913  * @flush_color is negative, no flush color update is done and %false
3914  * is returned.
3915  *
3916  * If @work_color is non-negative, all pwqs should have the same
3917  * work_color which is previous to @work_color and all will be
3918  * advanced to @work_color.
3919  *
3920  * CONTEXT:
3921  * mutex_lock(wq->mutex).
3922  *
3923  * Return:
3924  * %true if @flush_color >= 0 and there's something to flush.  %false
3925  * otherwise.
3926  */
3927 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
3928 				      int flush_color, int work_color)
3929 {
3930 	bool wait = false;
3931 	struct pool_workqueue *pwq;
3932 	struct worker_pool *current_pool = NULL;
3933 
3934 	if (flush_color >= 0) {
3935 		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
3936 		atomic_set(&wq->nr_pwqs_to_flush, 1);
3937 	}
3938 
3939 	/*
3940 	 * For unbound workqueue, pwqs will map to only a few pools.
3941 	 * Most of the time, pwqs within the same pool will be linked
3942 	 * sequentially to wq->pwqs by cpu index. So in the majority
3943 	 * of pwq iters, the pool is the same, only doing lock/unlock
3944 	 * if the pool has changed. This can largely reduce expensive
3945 	 * lock operations.
3946 	 */
3947 	for_each_pwq(pwq, wq) {
3948 		if (current_pool != pwq->pool) {
3949 			if (likely(current_pool))
3950 				raw_spin_unlock_irq(&current_pool->lock);
3951 			current_pool = pwq->pool;
3952 			raw_spin_lock_irq(&current_pool->lock);
3953 		}
3954 
3955 		if (flush_color >= 0) {
3956 			WARN_ON_ONCE(pwq->flush_color != -1);
3957 
3958 			if (pwq->nr_in_flight[flush_color]) {
3959 				pwq->flush_color = flush_color;
3960 				atomic_inc(&wq->nr_pwqs_to_flush);
3961 				wait = true;
3962 			}
3963 		}
3964 
3965 		if (work_color >= 0) {
3966 			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
3967 			pwq->work_color = work_color;
3968 		}
3969 
3970 	}
3971 
3972 	if (current_pool)
3973 		raw_spin_unlock_irq(&current_pool->lock);
3974 
3975 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
3976 		complete(&wq->first_flusher->done);
3977 
3978 	return wait;
3979 }
3980 
3981 static void touch_wq_lockdep_map(struct workqueue_struct *wq)
3982 {
3983 #ifdef CONFIG_LOCKDEP
3984 	if (unlikely(!wq->lockdep_map))
3985 		return;
3986 
3987 	if (wq->flags & WQ_BH)
3988 		local_bh_disable();
3989 
3990 	lock_map_acquire(wq->lockdep_map);
3991 	lock_map_release(wq->lockdep_map);
3992 
3993 	if (wq->flags & WQ_BH)
3994 		local_bh_enable();
3995 #endif
3996 }
3997 
3998 static void touch_work_lockdep_map(struct work_struct *work,
3999 				   struct workqueue_struct *wq)
4000 {
4001 #ifdef CONFIG_LOCKDEP
4002 	if (wq->flags & WQ_BH)
4003 		local_bh_disable();
4004 
4005 	lock_map_acquire(&work->lockdep_map);
4006 	lock_map_release(&work->lockdep_map);
4007 
4008 	if (wq->flags & WQ_BH)
4009 		local_bh_enable();
4010 #endif
4011 }
4012 
4013 /**
4014  * __flush_workqueue - ensure that any scheduled work has run to completion.
4015  * @wq: workqueue to flush
4016  *
4017  * This function sleeps until all work items which were queued on entry
4018  * have finished execution, but it is not livelocked by new incoming ones.
4019  */
4020 void __flush_workqueue(struct workqueue_struct *wq)
4021 {
4022 	struct wq_flusher this_flusher = {
4023 		.list = LIST_HEAD_INIT(this_flusher.list),
4024 		.flush_color = -1,
4025 		.done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, (*wq->lockdep_map)),
4026 	};
4027 	int next_color;
4028 
4029 	if (WARN_ON(!wq_online))
4030 		return;
4031 
4032 	touch_wq_lockdep_map(wq);
4033 
4034 	mutex_lock(&wq->mutex);
4035 
4036 	/*
4037 	 * Start-to-wait phase
4038 	 */
4039 	next_color = work_next_color(wq->work_color);
4040 
4041 	if (next_color != wq->flush_color) {
4042 		/*
4043 		 * Color space is not full.  The current work_color
4044 		 * becomes our flush_color and work_color is advanced
4045 		 * by one.
4046 		 */
4047 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
4048 		this_flusher.flush_color = wq->work_color;
4049 		wq->work_color = next_color;
4050 
4051 		if (!wq->first_flusher) {
4052 			/* no flush in progress, become the first flusher */
4053 			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
4054 
4055 			wq->first_flusher = &this_flusher;
4056 
4057 			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
4058 						       wq->work_color)) {
4059 				/* nothing to flush, done */
4060 				wq->flush_color = next_color;
4061 				wq->first_flusher = NULL;
4062 				goto out_unlock;
4063 			}
4064 		} else {
4065 			/* wait in queue */
4066 			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
4067 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
4068 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
4069 		}
4070 	} else {
4071 		/*
4072 		 * Oops, color space is full, wait on overflow queue.
4073 		 * The next flush completion will assign us
4074 		 * flush_color and transfer to flusher_queue.
4075 		 */
4076 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
4077 	}
4078 
4079 	check_flush_dependency(wq, NULL, false);
4080 
4081 	mutex_unlock(&wq->mutex);
4082 
4083 	wait_for_completion(&this_flusher.done);
4084 
4085 	/*
4086 	 * Wake-up-and-cascade phase
4087 	 *
4088 	 * First flushers are responsible for cascading flushes and
4089 	 * handling overflow.  Non-first flushers can simply return.
4090 	 */
4091 	if (READ_ONCE(wq->first_flusher) != &this_flusher)
4092 		return;
4093 
4094 	mutex_lock(&wq->mutex);
4095 
4096 	/* we might have raced, check again with mutex held */
4097 	if (wq->first_flusher != &this_flusher)
4098 		goto out_unlock;
4099 
4100 	WRITE_ONCE(wq->first_flusher, NULL);
4101 
4102 	WARN_ON_ONCE(!list_empty(&this_flusher.list));
4103 	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
4104 
4105 	while (true) {
4106 		struct wq_flusher *next, *tmp;
4107 
4108 		/* complete all the flushers sharing the current flush color */
4109 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
4110 			if (next->flush_color != wq->flush_color)
4111 				break;
4112 			list_del_init(&next->list);
4113 			complete(&next->done);
4114 		}
4115 
4116 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
4117 			     wq->flush_color != work_next_color(wq->work_color));
4118 
4119 		/* this flush_color is finished, advance by one */
4120 		wq->flush_color = work_next_color(wq->flush_color);
4121 
4122 		/* one color has been freed, handle overflow queue */
4123 		if (!list_empty(&wq->flusher_overflow)) {
4124 			/*
4125 			 * Assign the same color to all overflowed
4126 			 * flushers, advance work_color and append to
4127 			 * flusher_queue.  This is the start-to-wait
4128 			 * phase for these overflowed flushers.
4129 			 */
4130 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
4131 				tmp->flush_color = wq->work_color;
4132 
4133 			wq->work_color = work_next_color(wq->work_color);
4134 
4135 			list_splice_tail_init(&wq->flusher_overflow,
4136 					      &wq->flusher_queue);
4137 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
4138 		}
4139 
4140 		if (list_empty(&wq->flusher_queue)) {
4141 			WARN_ON_ONCE(wq->flush_color != wq->work_color);
4142 			break;
4143 		}
4144 
4145 		/*
4146 		 * Need to flush more colors.  Make the next flusher
4147 		 * the new first flusher and arm pwqs.
4148 		 */
4149 		WARN_ON_ONCE(wq->flush_color == wq->work_color);
4150 		WARN_ON_ONCE(wq->flush_color != next->flush_color);
4151 
4152 		list_del_init(&next->list);
4153 		wq->first_flusher = next;
4154 
4155 		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
4156 			break;
4157 
4158 		/*
4159 		 * Meh... this color is already done, clear first
4160 		 * flusher and repeat cascading.
4161 		 */
4162 		wq->first_flusher = NULL;
4163 	}
4164 
4165 out_unlock:
4166 	mutex_unlock(&wq->mutex);
4167 }
4168 EXPORT_SYMBOL(__flush_workqueue);
4169 
4170 /**
4171  * drain_workqueue - drain a workqueue
4172  * @wq: workqueue to drain
4173  *
4174  * Wait until the workqueue becomes empty.  While draining is in progress,
4175  * only chain queueing is allowed.  IOW, only currently pending or running
4176  * work items on @wq can queue further work items on it.  @wq is flushed
4177  * repeatedly until it becomes empty.  The number of flushing is determined
4178  * by the depth of chaining and should be relatively short.  Whine if it
4179  * takes too long.
4180  */
4181 void drain_workqueue(struct workqueue_struct *wq)
4182 {
4183 	unsigned int flush_cnt = 0;
4184 	struct pool_workqueue *pwq;
4185 
4186 	/*
4187 	 * __queue_work() needs to test whether there are drainers, is much
4188 	 * hotter than drain_workqueue() and already looks at @wq->flags.
4189 	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
4190 	 */
4191 	mutex_lock(&wq->mutex);
4192 	if (!wq->nr_drainers++)
4193 		wq->flags |= __WQ_DRAINING;
4194 	mutex_unlock(&wq->mutex);
4195 reflush:
4196 	__flush_workqueue(wq);
4197 
4198 	mutex_lock(&wq->mutex);
4199 
4200 	for_each_pwq(pwq, wq) {
4201 		bool drained;
4202 
4203 		raw_spin_lock_irq(&pwq->pool->lock);
4204 		drained = pwq_is_empty(pwq);
4205 		raw_spin_unlock_irq(&pwq->pool->lock);
4206 
4207 		if (drained)
4208 			continue;
4209 
4210 		if (++flush_cnt == 10 ||
4211 		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
4212 			pr_warn("workqueue %s: %s() isn't complete after %u tries\n",
4213 				wq->name, __func__, flush_cnt);
4214 
4215 		mutex_unlock(&wq->mutex);
4216 		goto reflush;
4217 	}
4218 
4219 	if (!--wq->nr_drainers)
4220 		wq->flags &= ~__WQ_DRAINING;
4221 	mutex_unlock(&wq->mutex);
4222 }
4223 EXPORT_SYMBOL_GPL(drain_workqueue);
4224 
4225 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
4226 			     bool from_cancel)
4227 {
4228 	struct worker *worker = NULL;
4229 	struct worker_pool *pool;
4230 	struct pool_workqueue *pwq;
4231 	struct workqueue_struct *wq;
4232 
4233 	rcu_read_lock();
4234 	pool = get_work_pool(work);
4235 	if (!pool) {
4236 		rcu_read_unlock();
4237 		return false;
4238 	}
4239 
4240 	raw_spin_lock_irq(&pool->lock);
4241 	/* see the comment in try_to_grab_pending() with the same code */
4242 	pwq = get_work_pwq(work);
4243 	if (pwq) {
4244 		if (unlikely(pwq->pool != pool))
4245 			goto already_gone;
4246 	} else {
4247 		worker = find_worker_executing_work(pool, work);
4248 		if (!worker)
4249 			goto already_gone;
4250 		pwq = worker->current_pwq;
4251 	}
4252 
4253 	wq = pwq->wq;
4254 	check_flush_dependency(wq, work, from_cancel);
4255 
4256 	insert_wq_barrier(pwq, barr, work, worker);
4257 	raw_spin_unlock_irq(&pool->lock);
4258 
4259 	touch_work_lockdep_map(work, wq);
4260 
4261 	/*
4262 	 * Force a lock recursion deadlock when using flush_work() inside a
4263 	 * single-threaded or rescuer equipped workqueue.
4264 	 *
4265 	 * For single threaded workqueues the deadlock happens when the work
4266 	 * is after the work issuing the flush_work(). For rescuer equipped
4267 	 * workqueues the deadlock happens when the rescuer stalls, blocking
4268 	 * forward progress.
4269 	 */
4270 	if (!from_cancel && (wq->saved_max_active == 1 || wq->rescuer))
4271 		touch_wq_lockdep_map(wq);
4272 
4273 	rcu_read_unlock();
4274 	return true;
4275 already_gone:
4276 	raw_spin_unlock_irq(&pool->lock);
4277 	rcu_read_unlock();
4278 	return false;
4279 }
4280 
4281 static bool __flush_work(struct work_struct *work, bool from_cancel)
4282 {
4283 	struct wq_barrier barr;
4284 
4285 	if (WARN_ON(!wq_online))
4286 		return false;
4287 
4288 	if (WARN_ON(!work->func))
4289 		return false;
4290 
4291 	if (!start_flush_work(work, &barr, from_cancel))
4292 		return false;
4293 
4294 	/*
4295 	 * start_flush_work() returned %true. If @from_cancel is set, we know
4296 	 * that @work must have been executing during start_flush_work() and
4297 	 * can't currently be queued. Its data must contain OFFQ bits. If @work
4298 	 * was queued on a BH workqueue, we also know that it was running in the
4299 	 * BH context and thus can be busy-waited.
4300 	 */
4301 	if (from_cancel) {
4302 		unsigned long data = *work_data_bits(work);
4303 
4304 		if (!WARN_ON_ONCE(data & WORK_STRUCT_PWQ) &&
4305 		    (data & WORK_OFFQ_BH)) {
4306 			/*
4307 			 * On RT, prevent a live lock when %current preempted
4308 			 * soft interrupt processing by blocking on lock which
4309 			 * is owned by the thread invoking the callback.
4310 			 */
4311 			while (!try_wait_for_completion(&barr.done)) {
4312 				if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
4313 					struct worker_pool *pool;
4314 
4315 					guard(rcu)();
4316 					pool = get_work_pool(work);
4317 					if (pool)
4318 						workqueue_callback_cancel_wait_running(pool);
4319 				} else {
4320 					cpu_relax();
4321 				}
4322 			}
4323 			goto out_destroy;
4324 		}
4325 	}
4326 
4327 	wait_for_completion(&barr.done);
4328 
4329 out_destroy:
4330 	destroy_work_on_stack(&barr.work);
4331 	return true;
4332 }
4333 
4334 /**
4335  * flush_work - wait for a work to finish executing the last queueing instance
4336  * @work: the work to flush
4337  *
4338  * Wait until @work has finished execution.  @work is guaranteed to be idle
4339  * on return if it hasn't been requeued since flush started.
4340  *
4341  * Return:
4342  * %true if flush_work() waited for the work to finish execution,
4343  * %false if it was already idle.
4344  */
4345 bool flush_work(struct work_struct *work)
4346 {
4347 	might_sleep();
4348 	return __flush_work(work, false);
4349 }
4350 EXPORT_SYMBOL_GPL(flush_work);
4351 
4352 /**
4353  * flush_delayed_work - wait for a dwork to finish executing the last queueing
4354  * @dwork: the delayed work to flush
4355  *
4356  * Delayed timer is cancelled and the pending work is queued for
4357  * immediate execution.  Like flush_work(), this function only
4358  * considers the last queueing instance of @dwork.
4359  *
4360  * Return:
4361  * %true if flush_work() waited for the work to finish execution,
4362  * %false if it was already idle.
4363  */
4364 bool flush_delayed_work(struct delayed_work *dwork)
4365 {
4366 	local_irq_disable();
4367 	if (timer_delete_sync(&dwork->timer))
4368 		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
4369 	local_irq_enable();
4370 	return flush_work(&dwork->work);
4371 }
4372 EXPORT_SYMBOL(flush_delayed_work);
4373 
4374 /**
4375  * flush_rcu_work - wait for a rwork to finish executing the last queueing
4376  * @rwork: the rcu work to flush
4377  *
4378  * Return:
4379  * %true if flush_rcu_work() waited for the work to finish execution,
4380  * %false if it was already idle.
4381  */
4382 bool flush_rcu_work(struct rcu_work *rwork)
4383 {
4384 	if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
4385 		rcu_barrier();
4386 		flush_work(&rwork->work);
4387 		return true;
4388 	} else {
4389 		return flush_work(&rwork->work);
4390 	}
4391 }
4392 EXPORT_SYMBOL(flush_rcu_work);
4393 
4394 static void work_offqd_disable(struct work_offq_data *offqd)
4395 {
4396 	const unsigned long max = (1lu << WORK_OFFQ_DISABLE_BITS) - 1;
4397 
4398 	if (likely(offqd->disable < max))
4399 		offqd->disable++;
4400 	else
4401 		WARN_ONCE(true, "workqueue: work disable count overflowed\n");
4402 }
4403 
4404 static void work_offqd_enable(struct work_offq_data *offqd)
4405 {
4406 	if (likely(offqd->disable > 0))
4407 		offqd->disable--;
4408 	else
4409 		WARN_ONCE(true, "workqueue: work disable count underflowed\n");
4410 }
4411 
4412 static bool __cancel_work(struct work_struct *work, u32 cflags)
4413 {
4414 	struct work_offq_data offqd;
4415 	unsigned long irq_flags;
4416 	int ret;
4417 
4418 	ret = work_grab_pending(work, cflags, &irq_flags);
4419 
4420 	work_offqd_unpack(&offqd, *work_data_bits(work));
4421 
4422 	if (cflags & WORK_CANCEL_DISABLE)
4423 		work_offqd_disable(&offqd);
4424 
4425 	set_work_pool_and_clear_pending(work, offqd.pool_id,
4426 					work_offqd_pack_flags(&offqd));
4427 	local_irq_restore(irq_flags);
4428 	return ret;
4429 }
4430 
4431 static bool __cancel_work_sync(struct work_struct *work, u32 cflags)
4432 {
4433 	bool ret;
4434 
4435 	ret = __cancel_work(work, cflags | WORK_CANCEL_DISABLE);
4436 
4437 	if (*work_data_bits(work) & WORK_OFFQ_BH)
4438 		WARN_ON_ONCE(in_hardirq());
4439 	else
4440 		might_sleep();
4441 
4442 	/*
4443 	 * Skip __flush_work() during early boot when we know that @work isn't
4444 	 * executing. This allows canceling during early boot.
4445 	 */
4446 	if (wq_online)
4447 		__flush_work(work, true);
4448 
4449 	if (!(cflags & WORK_CANCEL_DISABLE))
4450 		enable_work(work);
4451 
4452 	return ret;
4453 }
4454 
4455 /*
4456  * See cancel_delayed_work()
4457  */
4458 bool cancel_work(struct work_struct *work)
4459 {
4460 	return __cancel_work(work, 0);
4461 }
4462 EXPORT_SYMBOL(cancel_work);
4463 
4464 /**
4465  * cancel_work_sync - cancel a work and wait for it to finish
4466  * @work: the work to cancel
4467  *
4468  * Cancel @work and wait for its execution to finish. This function can be used
4469  * even if the work re-queues itself or migrates to another workqueue. On return
4470  * from this function, @work is guaranteed to be not pending or executing on any
4471  * CPU as long as there aren't racing enqueues.
4472  *
4473  * cancel_work_sync(&delayed_work->work) must not be used for delayed_work's.
4474  * Use cancel_delayed_work_sync() instead.
4475  *
4476  * Must be called from a sleepable context if @work was last queued on a non-BH
4477  * workqueue. Can also be called from non-hardirq atomic contexts including BH
4478  * if @work was last queued on a BH workqueue.
4479  *
4480  * Returns %true if @work was pending, %false otherwise.
4481  */
4482 bool cancel_work_sync(struct work_struct *work)
4483 {
4484 	return __cancel_work_sync(work, 0);
4485 }
4486 EXPORT_SYMBOL_GPL(cancel_work_sync);
4487 
4488 /**
4489  * cancel_delayed_work - cancel a delayed work
4490  * @dwork: delayed_work to cancel
4491  *
4492  * Kill off a pending delayed_work.
4493  *
4494  * Return: %true if @dwork was pending and canceled; %false if it wasn't
4495  * pending.
4496  *
4497  * Note:
4498  * The work callback function may still be running on return, unless
4499  * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
4500  * use cancel_delayed_work_sync() to wait on it.
4501  *
4502  * This function is safe to call from any context including IRQ handler.
4503  */
4504 bool cancel_delayed_work(struct delayed_work *dwork)
4505 {
4506 	return __cancel_work(&dwork->work, WORK_CANCEL_DELAYED);
4507 }
4508 EXPORT_SYMBOL(cancel_delayed_work);
4509 
4510 /**
4511  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
4512  * @dwork: the delayed work cancel
4513  *
4514  * This is cancel_work_sync() for delayed works.
4515  *
4516  * Return:
4517  * %true if @dwork was pending, %false otherwise.
4518  */
4519 bool cancel_delayed_work_sync(struct delayed_work *dwork)
4520 {
4521 	return __cancel_work_sync(&dwork->work, WORK_CANCEL_DELAYED);
4522 }
4523 EXPORT_SYMBOL(cancel_delayed_work_sync);
4524 
4525 /**
4526  * disable_work - Disable and cancel a work item
4527  * @work: work item to disable
4528  *
4529  * Disable @work by incrementing its disable count and cancel it if currently
4530  * pending. As long as the disable count is non-zero, any attempt to queue @work
4531  * will fail and return %false. The maximum supported disable depth is 2 to the
4532  * power of %WORK_OFFQ_DISABLE_BITS, currently 65536.
4533  *
4534  * Can be called from any context. Returns %true if @work was pending, %false
4535  * otherwise.
4536  */
4537 bool disable_work(struct work_struct *work)
4538 {
4539 	return __cancel_work(work, WORK_CANCEL_DISABLE);
4540 }
4541 EXPORT_SYMBOL_GPL(disable_work);
4542 
4543 /**
4544  * disable_work_sync - Disable, cancel and drain a work item
4545  * @work: work item to disable
4546  *
4547  * Similar to disable_work() but also wait for @work to finish if currently
4548  * executing.
4549  *
4550  * Must be called from a sleepable context if @work was last queued on a non-BH
4551  * workqueue. Can also be called from non-hardirq atomic contexts including BH
4552  * if @work was last queued on a BH workqueue.
4553  *
4554  * Returns %true if @work was pending, %false otherwise.
4555  */
4556 bool disable_work_sync(struct work_struct *work)
4557 {
4558 	return __cancel_work_sync(work, WORK_CANCEL_DISABLE);
4559 }
4560 EXPORT_SYMBOL_GPL(disable_work_sync);
4561 
4562 /**
4563  * enable_work - Enable a work item
4564  * @work: work item to enable
4565  *
4566  * Undo disable_work[_sync]() by decrementing @work's disable count. @work can
4567  * only be queued if its disable count is 0.
4568  *
4569  * Can be called from any context. Returns %true if the disable count reached 0.
4570  * Otherwise, %false.
4571  */
4572 bool enable_work(struct work_struct *work)
4573 {
4574 	struct work_offq_data offqd;
4575 	unsigned long irq_flags;
4576 
4577 	work_grab_pending(work, 0, &irq_flags);
4578 
4579 	work_offqd_unpack(&offqd, *work_data_bits(work));
4580 	work_offqd_enable(&offqd);
4581 	set_work_pool_and_clear_pending(work, offqd.pool_id,
4582 					work_offqd_pack_flags(&offqd));
4583 	local_irq_restore(irq_flags);
4584 
4585 	return !offqd.disable;
4586 }
4587 EXPORT_SYMBOL_GPL(enable_work);
4588 
4589 /**
4590  * disable_delayed_work - Disable and cancel a delayed work item
4591  * @dwork: delayed work item to disable
4592  *
4593  * disable_work() for delayed work items.
4594  */
4595 bool disable_delayed_work(struct delayed_work *dwork)
4596 {
4597 	return __cancel_work(&dwork->work,
4598 			     WORK_CANCEL_DELAYED | WORK_CANCEL_DISABLE);
4599 }
4600 EXPORT_SYMBOL_GPL(disable_delayed_work);
4601 
4602 /**
4603  * disable_delayed_work_sync - Disable, cancel and drain a delayed work item
4604  * @dwork: delayed work item to disable
4605  *
4606  * disable_work_sync() for delayed work items.
4607  */
4608 bool disable_delayed_work_sync(struct delayed_work *dwork)
4609 {
4610 	return __cancel_work_sync(&dwork->work,
4611 				  WORK_CANCEL_DELAYED | WORK_CANCEL_DISABLE);
4612 }
4613 EXPORT_SYMBOL_GPL(disable_delayed_work_sync);
4614 
4615 /**
4616  * enable_delayed_work - Enable a delayed work item
4617  * @dwork: delayed work item to enable
4618  *
4619  * enable_work() for delayed work items.
4620  */
4621 bool enable_delayed_work(struct delayed_work *dwork)
4622 {
4623 	return enable_work(&dwork->work);
4624 }
4625 EXPORT_SYMBOL_GPL(enable_delayed_work);
4626 
4627 /**
4628  * schedule_on_each_cpu - execute a function synchronously on each online CPU
4629  * @func: the function to call
4630  *
4631  * schedule_on_each_cpu() executes @func on each online CPU using the
4632  * system workqueue and blocks until all CPUs have completed.
4633  * schedule_on_each_cpu() is very slow.
4634  *
4635  * Return:
4636  * 0 on success, -errno on failure.
4637  */
4638 int schedule_on_each_cpu(work_func_t func)
4639 {
4640 	int cpu;
4641 	struct work_struct __percpu *works;
4642 
4643 	works = alloc_percpu(struct work_struct);
4644 	if (!works)
4645 		return -ENOMEM;
4646 
4647 	cpus_read_lock();
4648 
4649 	for_each_online_cpu(cpu) {
4650 		struct work_struct *work = per_cpu_ptr(works, cpu);
4651 
4652 		INIT_WORK(work, func);
4653 		schedule_work_on(cpu, work);
4654 	}
4655 
4656 	for_each_online_cpu(cpu)
4657 		flush_work(per_cpu_ptr(works, cpu));
4658 
4659 	cpus_read_unlock();
4660 	free_percpu(works);
4661 	return 0;
4662 }
4663 
4664 /**
4665  * execute_in_process_context - reliably execute the routine with user context
4666  * @fn:		the function to execute
4667  * @ew:		guaranteed storage for the execute work structure (must
4668  *		be available when the work executes)
4669  *
4670  * Executes the function immediately if process context is available,
4671  * otherwise schedules the function for delayed execution.
4672  *
4673  * Return:	0 - function was executed
4674  *		1 - function was scheduled for execution
4675  */
4676 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
4677 {
4678 	if (!in_interrupt()) {
4679 		fn(&ew->work);
4680 		return 0;
4681 	}
4682 
4683 	INIT_WORK(&ew->work, fn);
4684 	schedule_work(&ew->work);
4685 
4686 	return 1;
4687 }
4688 EXPORT_SYMBOL_GPL(execute_in_process_context);
4689 
4690 /**
4691  * free_workqueue_attrs - free a workqueue_attrs
4692  * @attrs: workqueue_attrs to free
4693  *
4694  * Undo alloc_workqueue_attrs().
4695  */
4696 void free_workqueue_attrs(struct workqueue_attrs *attrs)
4697 {
4698 	if (attrs) {
4699 		free_cpumask_var(attrs->cpumask);
4700 		free_cpumask_var(attrs->__pod_cpumask);
4701 		kfree(attrs);
4702 	}
4703 }
4704 
4705 /**
4706  * alloc_workqueue_attrs - allocate a workqueue_attrs
4707  *
4708  * Allocate a new workqueue_attrs, initialize with default settings and
4709  * return it.
4710  *
4711  * Return: The allocated new workqueue_attr on success. %NULL on failure.
4712  */
4713 struct workqueue_attrs *alloc_workqueue_attrs_noprof(void)
4714 {
4715 	struct workqueue_attrs *attrs;
4716 
4717 	attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
4718 	if (!attrs)
4719 		goto fail;
4720 	if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
4721 		goto fail;
4722 	if (!alloc_cpumask_var(&attrs->__pod_cpumask, GFP_KERNEL))
4723 		goto fail;
4724 
4725 	cpumask_copy(attrs->cpumask, cpu_possible_mask);
4726 	attrs->affn_scope = WQ_AFFN_DFL;
4727 	return attrs;
4728 fail:
4729 	free_workqueue_attrs(attrs);
4730 	return NULL;
4731 }
4732 
4733 static void copy_workqueue_attrs(struct workqueue_attrs *to,
4734 				 const struct workqueue_attrs *from)
4735 {
4736 	to->nice = from->nice;
4737 	cpumask_copy(to->cpumask, from->cpumask);
4738 	cpumask_copy(to->__pod_cpumask, from->__pod_cpumask);
4739 	to->affn_strict = from->affn_strict;
4740 
4741 	/*
4742 	 * Unlike hash and equality test, copying shouldn't ignore wq-only
4743 	 * fields as copying is used for both pool and wq attrs. Instead,
4744 	 * get_unbound_pool() explicitly clears the fields.
4745 	 */
4746 	to->affn_scope = from->affn_scope;
4747 	to->ordered = from->ordered;
4748 }
4749 
4750 /*
4751  * Some attrs fields are workqueue-only. Clear them for worker_pool's. See the
4752  * comments in 'struct workqueue_attrs' definition.
4753  */
4754 static void wqattrs_clear_for_pool(struct workqueue_attrs *attrs)
4755 {
4756 	attrs->affn_scope = WQ_AFFN_NR_TYPES;
4757 	attrs->ordered = false;
4758 	if (attrs->affn_strict)
4759 		cpumask_copy(attrs->cpumask, cpu_possible_mask);
4760 }
4761 
4762 /* hash value of the content of @attr */
4763 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
4764 {
4765 	u32 hash = 0;
4766 
4767 	hash = jhash_1word(attrs->nice, hash);
4768 	hash = jhash_1word(attrs->affn_strict, hash);
4769 	hash = jhash(cpumask_bits(attrs->__pod_cpumask),
4770 		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
4771 	if (!attrs->affn_strict)
4772 		hash = jhash(cpumask_bits(attrs->cpumask),
4773 			     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
4774 	return hash;
4775 }
4776 
4777 /* content equality test */
4778 static bool wqattrs_equal(const struct workqueue_attrs *a,
4779 			  const struct workqueue_attrs *b)
4780 {
4781 	if (a->nice != b->nice)
4782 		return false;
4783 	if (a->affn_strict != b->affn_strict)
4784 		return false;
4785 	if (!cpumask_equal(a->__pod_cpumask, b->__pod_cpumask))
4786 		return false;
4787 	if (!a->affn_strict && !cpumask_equal(a->cpumask, b->cpumask))
4788 		return false;
4789 	return true;
4790 }
4791 
4792 /* Update @attrs with actually available CPUs */
4793 static void wqattrs_actualize_cpumask(struct workqueue_attrs *attrs,
4794 				      const cpumask_t *unbound_cpumask)
4795 {
4796 	/*
4797 	 * Calculate the effective CPU mask of @attrs given @unbound_cpumask. If
4798 	 * @attrs->cpumask doesn't overlap with @unbound_cpumask, we fallback to
4799 	 * @unbound_cpumask.
4800 	 */
4801 	cpumask_and(attrs->cpumask, attrs->cpumask, unbound_cpumask);
4802 	if (unlikely(cpumask_empty(attrs->cpumask)))
4803 		cpumask_copy(attrs->cpumask, unbound_cpumask);
4804 }
4805 
4806 /* find wq_pod_type to use for @attrs */
4807 static const struct wq_pod_type *
4808 wqattrs_pod_type(const struct workqueue_attrs *attrs)
4809 {
4810 	enum wq_affn_scope scope;
4811 	struct wq_pod_type *pt;
4812 
4813 	/* to synchronize access to wq_affn_dfl */
4814 	lockdep_assert_held(&wq_pool_mutex);
4815 
4816 	if (attrs->affn_scope == WQ_AFFN_DFL)
4817 		scope = wq_affn_dfl;
4818 	else
4819 		scope = attrs->affn_scope;
4820 
4821 	pt = &wq_pod_types[scope];
4822 
4823 	if (!WARN_ON_ONCE(attrs->affn_scope == WQ_AFFN_NR_TYPES) &&
4824 	    likely(pt->nr_pods))
4825 		return pt;
4826 
4827 	/*
4828 	 * Before workqueue_init_topology(), only SYSTEM is available which is
4829 	 * initialized in workqueue_init_early().
4830 	 */
4831 	pt = &wq_pod_types[WQ_AFFN_SYSTEM];
4832 	BUG_ON(!pt->nr_pods);
4833 	return pt;
4834 }
4835 
4836 /**
4837  * init_worker_pool - initialize a newly zalloc'd worker_pool
4838  * @pool: worker_pool to initialize
4839  *
4840  * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
4841  *
4842  * Return: 0 on success, -errno on failure.  Even on failure, all fields
4843  * inside @pool proper are initialized and put_unbound_pool() can be called
4844  * on @pool safely to release it.
4845  */
4846 static int init_worker_pool(struct worker_pool *pool)
4847 {
4848 	raw_spin_lock_init(&pool->lock);
4849 	pool->id = -1;
4850 	pool->cpu = -1;
4851 	pool->node = NUMA_NO_NODE;
4852 	pool->flags |= POOL_DISASSOCIATED;
4853 	pool->watchdog_ts = jiffies;
4854 	INIT_LIST_HEAD(&pool->worklist);
4855 	INIT_LIST_HEAD(&pool->idle_list);
4856 	hash_init(pool->busy_hash);
4857 
4858 	timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
4859 	INIT_WORK(&pool->idle_cull_work, idle_cull_fn);
4860 
4861 	timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
4862 
4863 	INIT_LIST_HEAD(&pool->workers);
4864 
4865 	ida_init(&pool->worker_ida);
4866 	INIT_HLIST_NODE(&pool->hash_node);
4867 	pool->refcnt = 1;
4868 #ifdef CONFIG_PREEMPT_RT
4869 	spin_lock_init(&pool->cb_lock);
4870 #endif
4871 
4872 	/* shouldn't fail above this point */
4873 	pool->attrs = alloc_workqueue_attrs();
4874 	if (!pool->attrs)
4875 		return -ENOMEM;
4876 
4877 	wqattrs_clear_for_pool(pool->attrs);
4878 
4879 	return 0;
4880 }
4881 
4882 #ifdef CONFIG_LOCKDEP
4883 static void wq_init_lockdep(struct workqueue_struct *wq)
4884 {
4885 	char *lock_name;
4886 
4887 	lockdep_register_key(&wq->key);
4888 	lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
4889 	if (!lock_name)
4890 		lock_name = wq->name;
4891 
4892 	wq->lock_name = lock_name;
4893 	wq->lockdep_map = &wq->__lockdep_map;
4894 	lockdep_init_map(wq->lockdep_map, lock_name, &wq->key, 0);
4895 }
4896 
4897 static void wq_unregister_lockdep(struct workqueue_struct *wq)
4898 {
4899 	if (wq->lockdep_map != &wq->__lockdep_map)
4900 		return;
4901 
4902 	lockdep_unregister_key(&wq->key);
4903 }
4904 
4905 static void wq_free_lockdep(struct workqueue_struct *wq)
4906 {
4907 	if (wq->lockdep_map != &wq->__lockdep_map)
4908 		return;
4909 
4910 	if (wq->lock_name != wq->name)
4911 		kfree(wq->lock_name);
4912 }
4913 #else
4914 static void wq_init_lockdep(struct workqueue_struct *wq)
4915 {
4916 }
4917 
4918 static void wq_unregister_lockdep(struct workqueue_struct *wq)
4919 {
4920 }
4921 
4922 static void wq_free_lockdep(struct workqueue_struct *wq)
4923 {
4924 }
4925 #endif
4926 
4927 static void free_node_nr_active(struct wq_node_nr_active **nna_ar)
4928 {
4929 	int node;
4930 
4931 	for_each_node(node) {
4932 		kfree(nna_ar[node]);
4933 		nna_ar[node] = NULL;
4934 	}
4935 
4936 	kfree(nna_ar[nr_node_ids]);
4937 	nna_ar[nr_node_ids] = NULL;
4938 }
4939 
4940 static void init_node_nr_active(struct wq_node_nr_active *nna)
4941 {
4942 	nna->max = WQ_DFL_MIN_ACTIVE;
4943 	atomic_set(&nna->nr, 0);
4944 	raw_spin_lock_init(&nna->lock);
4945 	INIT_LIST_HEAD(&nna->pending_pwqs);
4946 }
4947 
4948 /*
4949  * Each node's nr_active counter will be accessed mostly from its own node and
4950  * should be allocated in the node.
4951  */
4952 static int alloc_node_nr_active(struct wq_node_nr_active **nna_ar)
4953 {
4954 	struct wq_node_nr_active *nna;
4955 	int node;
4956 
4957 	for_each_node(node) {
4958 		nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, node);
4959 		if (!nna)
4960 			goto err_free;
4961 		init_node_nr_active(nna);
4962 		nna_ar[node] = nna;
4963 	}
4964 
4965 	/* [nr_node_ids] is used as the fallback */
4966 	nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, NUMA_NO_NODE);
4967 	if (!nna)
4968 		goto err_free;
4969 	init_node_nr_active(nna);
4970 	nna_ar[nr_node_ids] = nna;
4971 
4972 	return 0;
4973 
4974 err_free:
4975 	free_node_nr_active(nna_ar);
4976 	return -ENOMEM;
4977 }
4978 
4979 static void rcu_free_wq(struct rcu_head *rcu)
4980 {
4981 	struct workqueue_struct *wq =
4982 		container_of(rcu, struct workqueue_struct, rcu);
4983 
4984 	if (wq->flags & WQ_UNBOUND)
4985 		free_node_nr_active(wq->node_nr_active);
4986 
4987 	wq_free_lockdep(wq);
4988 	free_percpu(wq->cpu_pwq);
4989 	free_workqueue_attrs(wq->unbound_attrs);
4990 	kfree(wq);
4991 }
4992 
4993 static void rcu_free_pool(struct rcu_head *rcu)
4994 {
4995 	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
4996 
4997 	ida_destroy(&pool->worker_ida);
4998 	free_workqueue_attrs(pool->attrs);
4999 	kfree(pool);
5000 }
5001 
5002 /**
5003  * put_unbound_pool - put a worker_pool
5004  * @pool: worker_pool to put
5005  *
5006  * Put @pool.  If its refcnt reaches zero, it gets destroyed in RCU
5007  * safe manner.  get_unbound_pool() calls this function on its failure path
5008  * and this function should be able to release pools which went through,
5009  * successfully or not, init_worker_pool().
5010  *
5011  * Should be called with wq_pool_mutex held.
5012  */
5013 static void put_unbound_pool(struct worker_pool *pool)
5014 {
5015 	struct worker *worker;
5016 	LIST_HEAD(cull_list);
5017 
5018 	lockdep_assert_held(&wq_pool_mutex);
5019 
5020 	if (--pool->refcnt)
5021 		return;
5022 
5023 	/* sanity checks */
5024 	if (WARN_ON(!(pool->cpu < 0)) ||
5025 	    WARN_ON(!list_empty(&pool->worklist)))
5026 		return;
5027 
5028 	/* release id and unhash */
5029 	if (pool->id >= 0)
5030 		idr_remove(&worker_pool_idr, pool->id);
5031 	hash_del(&pool->hash_node);
5032 
5033 	/*
5034 	 * Become the manager and destroy all workers.  This prevents
5035 	 * @pool's workers from blocking on attach_mutex.  We're the last
5036 	 * manager and @pool gets freed with the flag set.
5037 	 *
5038 	 * Having a concurrent manager is quite unlikely to happen as we can
5039 	 * only get here with
5040 	 *   pwq->refcnt == pool->refcnt == 0
5041 	 * which implies no work queued to the pool, which implies no worker can
5042 	 * become the manager. However a worker could have taken the role of
5043 	 * manager before the refcnts dropped to 0, since maybe_create_worker()
5044 	 * drops pool->lock
5045 	 */
5046 	while (true) {
5047 		rcuwait_wait_event(&manager_wait,
5048 				   !(pool->flags & POOL_MANAGER_ACTIVE),
5049 				   TASK_UNINTERRUPTIBLE);
5050 
5051 		mutex_lock(&wq_pool_attach_mutex);
5052 		raw_spin_lock_irq(&pool->lock);
5053 		if (!(pool->flags & POOL_MANAGER_ACTIVE)) {
5054 			pool->flags |= POOL_MANAGER_ACTIVE;
5055 			break;
5056 		}
5057 		raw_spin_unlock_irq(&pool->lock);
5058 		mutex_unlock(&wq_pool_attach_mutex);
5059 	}
5060 
5061 	while ((worker = first_idle_worker(pool)))
5062 		set_worker_dying(worker, &cull_list);
5063 	WARN_ON(pool->nr_workers || pool->nr_idle);
5064 	raw_spin_unlock_irq(&pool->lock);
5065 
5066 	detach_dying_workers(&cull_list);
5067 
5068 	mutex_unlock(&wq_pool_attach_mutex);
5069 
5070 	reap_dying_workers(&cull_list);
5071 
5072 	/* shut down the timers */
5073 	timer_delete_sync(&pool->idle_timer);
5074 	cancel_work_sync(&pool->idle_cull_work);
5075 	timer_delete_sync(&pool->mayday_timer);
5076 
5077 	/* RCU protected to allow dereferences from get_work_pool() */
5078 	call_rcu(&pool->rcu, rcu_free_pool);
5079 }
5080 
5081 /**
5082  * get_unbound_pool - get a worker_pool with the specified attributes
5083  * @attrs: the attributes of the worker_pool to get
5084  *
5085  * Obtain a worker_pool which has the same attributes as @attrs, bump the
5086  * reference count and return it.  If there already is a matching
5087  * worker_pool, it will be used; otherwise, this function attempts to
5088  * create a new one.
5089  *
5090  * Should be called with wq_pool_mutex held.
5091  *
5092  * Return: On success, a worker_pool with the same attributes as @attrs.
5093  * On failure, %NULL.
5094  */
5095 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
5096 {
5097 	struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_NUMA];
5098 	u32 hash = wqattrs_hash(attrs);
5099 	struct worker_pool *pool;
5100 	int pod, node = NUMA_NO_NODE;
5101 
5102 	lockdep_assert_held(&wq_pool_mutex);
5103 
5104 	/* do we already have a matching pool? */
5105 	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
5106 		if (wqattrs_equal(pool->attrs, attrs)) {
5107 			pool->refcnt++;
5108 			return pool;
5109 		}
5110 	}
5111 
5112 	/* If __pod_cpumask is contained inside a NUMA pod, that's our node */
5113 	for (pod = 0; pod < pt->nr_pods; pod++) {
5114 		if (cpumask_subset(attrs->__pod_cpumask, pt->pod_cpus[pod])) {
5115 			node = pt->pod_node[pod];
5116 			break;
5117 		}
5118 	}
5119 
5120 	/* nope, create a new one */
5121 	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, node);
5122 	if (!pool || init_worker_pool(pool) < 0)
5123 		goto fail;
5124 
5125 	pool->node = node;
5126 	copy_workqueue_attrs(pool->attrs, attrs);
5127 	wqattrs_clear_for_pool(pool->attrs);
5128 
5129 	if (worker_pool_assign_id(pool) < 0)
5130 		goto fail;
5131 
5132 	/* create and start the initial worker */
5133 	if (wq_online && !create_worker(pool))
5134 		goto fail;
5135 
5136 	/* install */
5137 	hash_add(unbound_pool_hash, &pool->hash_node, hash);
5138 
5139 	return pool;
5140 fail:
5141 	if (pool)
5142 		put_unbound_pool(pool);
5143 	return NULL;
5144 }
5145 
5146 /*
5147  * Scheduled on pwq_release_worker by put_pwq() when an unbound pwq hits zero
5148  * refcnt and needs to be destroyed.
5149  */
5150 static void pwq_release_workfn(struct kthread_work *work)
5151 {
5152 	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
5153 						  release_work);
5154 	struct workqueue_struct *wq = pwq->wq;
5155 	struct worker_pool *pool = pwq->pool;
5156 	bool is_last = false;
5157 
5158 	/*
5159 	 * When @pwq is not linked, it doesn't hold any reference to the
5160 	 * @wq, and @wq is invalid to access.
5161 	 */
5162 	if (!list_empty(&pwq->pwqs_node)) {
5163 		mutex_lock(&wq->mutex);
5164 		list_del_rcu(&pwq->pwqs_node);
5165 		is_last = list_empty(&wq->pwqs);
5166 
5167 		/*
5168 		 * For ordered workqueue with a plugged dfl_pwq, restart it now.
5169 		 */
5170 		if (!is_last && (wq->flags & __WQ_ORDERED))
5171 			unplug_oldest_pwq(wq);
5172 
5173 		mutex_unlock(&wq->mutex);
5174 	}
5175 
5176 	if (wq->flags & WQ_UNBOUND) {
5177 		mutex_lock(&wq_pool_mutex);
5178 		put_unbound_pool(pool);
5179 		mutex_unlock(&wq_pool_mutex);
5180 	}
5181 
5182 	if (!list_empty(&pwq->pending_node)) {
5183 		struct wq_node_nr_active *nna =
5184 			wq_node_nr_active(pwq->wq, pwq->pool->node);
5185 
5186 		raw_spin_lock_irq(&nna->lock);
5187 		list_del_init(&pwq->pending_node);
5188 		raw_spin_unlock_irq(&nna->lock);
5189 	}
5190 
5191 	kfree_rcu(pwq, rcu);
5192 
5193 	/*
5194 	 * If we're the last pwq going away, @wq is already dead and no one
5195 	 * is gonna access it anymore.  Schedule RCU free.
5196 	 */
5197 	if (is_last) {
5198 		wq_unregister_lockdep(wq);
5199 		call_rcu(&wq->rcu, rcu_free_wq);
5200 	}
5201 }
5202 
5203 /* initialize newly allocated @pwq which is associated with @wq and @pool */
5204 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
5205 		     struct worker_pool *pool)
5206 {
5207 	BUG_ON((unsigned long)pwq & ~WORK_STRUCT_PWQ_MASK);
5208 
5209 	memset(pwq, 0, sizeof(*pwq));
5210 
5211 	pwq->pool = pool;
5212 	pwq->wq = wq;
5213 	pwq->flush_color = -1;
5214 	pwq->refcnt = 1;
5215 	INIT_LIST_HEAD(&pwq->inactive_works);
5216 	INIT_LIST_HEAD(&pwq->pending_node);
5217 	INIT_LIST_HEAD(&pwq->pwqs_node);
5218 	INIT_LIST_HEAD(&pwq->mayday_node);
5219 	kthread_init_work(&pwq->release_work, pwq_release_workfn);
5220 
5221 	/*
5222 	 * Set the dummy cursor work with valid function and get_work_pwq().
5223 	 *
5224 	 * The cursor work should only be in the pwq->pool->worklist, and
5225 	 * should not be treated as a processable work item.
5226 	 *
5227 	 * WORK_STRUCT_PENDING and WORK_STRUCT_INACTIVE just make it less
5228 	 * surprise for kernel debugging tools and reviewers.
5229 	 */
5230 	INIT_WORK(&pwq->mayday_cursor, mayday_cursor_func);
5231 	atomic_long_set(&pwq->mayday_cursor.data, (unsigned long)pwq |
5232 			WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | WORK_STRUCT_INACTIVE);
5233 }
5234 
5235 /* sync @pwq with the current state of its associated wq and link it */
5236 static void link_pwq(struct pool_workqueue *pwq)
5237 {
5238 	struct workqueue_struct *wq = pwq->wq;
5239 
5240 	lockdep_assert_held(&wq->mutex);
5241 
5242 	/* may be called multiple times, ignore if already linked */
5243 	if (!list_empty(&pwq->pwqs_node))
5244 		return;
5245 
5246 	/* set the matching work_color */
5247 	pwq->work_color = wq->work_color;
5248 
5249 	/* link in @pwq */
5250 	list_add_tail_rcu(&pwq->pwqs_node, &wq->pwqs);
5251 }
5252 
5253 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
5254 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
5255 					const struct workqueue_attrs *attrs)
5256 {
5257 	struct worker_pool *pool;
5258 	struct pool_workqueue *pwq;
5259 
5260 	lockdep_assert_held(&wq_pool_mutex);
5261 
5262 	pool = get_unbound_pool(attrs);
5263 	if (!pool)
5264 		return NULL;
5265 
5266 	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
5267 	if (!pwq) {
5268 		put_unbound_pool(pool);
5269 		return NULL;
5270 	}
5271 
5272 	init_pwq(pwq, wq, pool);
5273 	return pwq;
5274 }
5275 
5276 static void apply_wqattrs_lock(void)
5277 {
5278 	mutex_lock(&wq_pool_mutex);
5279 }
5280 
5281 static void apply_wqattrs_unlock(void)
5282 {
5283 	mutex_unlock(&wq_pool_mutex);
5284 }
5285 
5286 /**
5287  * wq_calc_pod_cpumask - calculate a wq_attrs' cpumask for a pod
5288  * @attrs: the wq_attrs of the default pwq of the target workqueue
5289  * @cpu: the target CPU
5290  *
5291  * Calculate the cpumask a workqueue with @attrs should use on @pod.
5292  * The result is stored in @attrs->__pod_cpumask.
5293  *
5294  * If pod affinity is not enabled, @attrs->cpumask is always used. If enabled
5295  * and @pod has online CPUs requested by @attrs, the returned cpumask is the
5296  * intersection of the possible CPUs of @pod and @attrs->cpumask.
5297  *
5298  * The caller is responsible for ensuring that the cpumask of @pod stays stable.
5299  */
5300 static void wq_calc_pod_cpumask(struct workqueue_attrs *attrs, int cpu)
5301 {
5302 	const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
5303 	int pod = pt->cpu_pod[cpu];
5304 
5305 	/* calculate possible CPUs in @pod that @attrs wants */
5306 	cpumask_and(attrs->__pod_cpumask, pt->pod_cpus[pod], attrs->cpumask);
5307 	/* does @pod have any online CPUs @attrs wants? */
5308 	if (!cpumask_intersects(attrs->__pod_cpumask, wq_online_cpumask)) {
5309 		cpumask_copy(attrs->__pod_cpumask, attrs->cpumask);
5310 		return;
5311 	}
5312 }
5313 
5314 /* install @pwq into @wq and return the old pwq, @cpu < 0 for dfl_pwq */
5315 static struct pool_workqueue *install_unbound_pwq(struct workqueue_struct *wq,
5316 					int cpu, struct pool_workqueue *pwq)
5317 {
5318 	struct pool_workqueue __rcu **slot = unbound_pwq_slot(wq, cpu);
5319 	struct pool_workqueue *old_pwq;
5320 
5321 	lockdep_assert_held(&wq_pool_mutex);
5322 	lockdep_assert_held(&wq->mutex);
5323 
5324 	/* link_pwq() can handle duplicate calls */
5325 	link_pwq(pwq);
5326 
5327 	old_pwq = rcu_access_pointer(*slot);
5328 	rcu_assign_pointer(*slot, pwq);
5329 	return old_pwq;
5330 }
5331 
5332 /* context to store the prepared attrs & pwqs before applying */
5333 struct apply_wqattrs_ctx {
5334 	struct workqueue_struct	*wq;		/* target workqueue */
5335 	struct workqueue_attrs	*attrs;		/* attrs to apply */
5336 	struct list_head	list;		/* queued for batching commit */
5337 	struct pool_workqueue	*dfl_pwq;
5338 	struct pool_workqueue	*pwq_tbl[];
5339 };
5340 
5341 /* free the resources after success or abort */
5342 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
5343 {
5344 	if (ctx) {
5345 		int cpu;
5346 
5347 		for_each_possible_cpu(cpu)
5348 			put_pwq_unlocked(ctx->pwq_tbl[cpu]);
5349 		put_pwq_unlocked(ctx->dfl_pwq);
5350 
5351 		free_workqueue_attrs(ctx->attrs);
5352 
5353 		kfree(ctx);
5354 	}
5355 }
5356 
5357 /* allocate the attrs and pwqs for later installation */
5358 static struct apply_wqattrs_ctx *
5359 apply_wqattrs_prepare(struct workqueue_struct *wq,
5360 		      const struct workqueue_attrs *attrs,
5361 		      const cpumask_var_t unbound_cpumask)
5362 {
5363 	struct apply_wqattrs_ctx *ctx;
5364 	struct workqueue_attrs *new_attrs;
5365 	int cpu;
5366 
5367 	lockdep_assert_held(&wq_pool_mutex);
5368 
5369 	if (WARN_ON(attrs->affn_scope < 0 ||
5370 		    attrs->affn_scope >= WQ_AFFN_NR_TYPES))
5371 		return ERR_PTR(-EINVAL);
5372 
5373 	ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_cpu_ids), GFP_KERNEL);
5374 
5375 	new_attrs = alloc_workqueue_attrs();
5376 	if (!ctx || !new_attrs)
5377 		goto out_free;
5378 
5379 	/*
5380 	 * If something goes wrong during CPU up/down, we'll fall back to
5381 	 * the default pwq covering whole @attrs->cpumask.  Always create
5382 	 * it even if we don't use it immediately.
5383 	 */
5384 	copy_workqueue_attrs(new_attrs, attrs);
5385 	wqattrs_actualize_cpumask(new_attrs, unbound_cpumask);
5386 	cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask);
5387 	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
5388 	if (!ctx->dfl_pwq)
5389 		goto out_free;
5390 
5391 	for_each_possible_cpu(cpu) {
5392 		if (new_attrs->ordered) {
5393 			ctx->dfl_pwq->refcnt++;
5394 			ctx->pwq_tbl[cpu] = ctx->dfl_pwq;
5395 		} else {
5396 			wq_calc_pod_cpumask(new_attrs, cpu);
5397 			ctx->pwq_tbl[cpu] = alloc_unbound_pwq(wq, new_attrs);
5398 			if (!ctx->pwq_tbl[cpu])
5399 				goto out_free;
5400 		}
5401 	}
5402 
5403 	/* save the user configured attrs and sanitize it. */
5404 	copy_workqueue_attrs(new_attrs, attrs);
5405 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
5406 	cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask);
5407 	ctx->attrs = new_attrs;
5408 
5409 	/*
5410 	 * For initialized ordered workqueues, there should only be one pwq
5411 	 * (dfl_pwq). Set the plugged flag of ctx->dfl_pwq to suspend execution
5412 	 * of newly queued work items until execution of older work items in
5413 	 * the old pwq's have completed.
5414 	 */
5415 	if ((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs))
5416 		ctx->dfl_pwq->plugged = true;
5417 
5418 	ctx->wq = wq;
5419 	return ctx;
5420 
5421 out_free:
5422 	free_workqueue_attrs(new_attrs);
5423 	apply_wqattrs_cleanup(ctx);
5424 	return ERR_PTR(-ENOMEM);
5425 }
5426 
5427 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
5428 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
5429 {
5430 	int cpu;
5431 
5432 	/* all pwqs have been created successfully, let's install'em */
5433 	mutex_lock(&ctx->wq->mutex);
5434 
5435 	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
5436 
5437 	/* save the previous pwqs and install the new ones */
5438 	for_each_possible_cpu(cpu)
5439 		ctx->pwq_tbl[cpu] = install_unbound_pwq(ctx->wq, cpu,
5440 							ctx->pwq_tbl[cpu]);
5441 	ctx->dfl_pwq = install_unbound_pwq(ctx->wq, -1, ctx->dfl_pwq);
5442 
5443 	/* update node_nr_active->max */
5444 	wq_update_node_max_active(ctx->wq, -1);
5445 
5446 	mutex_unlock(&ctx->wq->mutex);
5447 }
5448 
5449 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
5450 					const struct workqueue_attrs *attrs)
5451 {
5452 	struct apply_wqattrs_ctx *ctx;
5453 
5454 	/* only unbound workqueues can change attributes */
5455 	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
5456 		return -EINVAL;
5457 
5458 	ctx = apply_wqattrs_prepare(wq, attrs, wq_unbound_cpumask);
5459 	if (IS_ERR(ctx))
5460 		return PTR_ERR(ctx);
5461 
5462 	/* the ctx has been prepared successfully, let's commit it */
5463 	apply_wqattrs_commit(ctx);
5464 	apply_wqattrs_cleanup(ctx);
5465 
5466 	return 0;
5467 }
5468 
5469 /**
5470  * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
5471  * @wq: the target workqueue
5472  * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
5473  *
5474  * Apply @attrs to an unbound workqueue @wq. Unless disabled, this function maps
5475  * a separate pwq to each CPU pod with possibles CPUs in @attrs->cpumask so that
5476  * work items are affine to the pod it was issued on. Older pwqs are released as
5477  * in-flight work items finish. Note that a work item which repeatedly requeues
5478  * itself back-to-back will stay on its current pwq.
5479  *
5480  * Performs GFP_KERNEL allocations.
5481  *
5482  * Return: 0 on success and -errno on failure.
5483  */
5484 int apply_workqueue_attrs(struct workqueue_struct *wq,
5485 			  const struct workqueue_attrs *attrs)
5486 {
5487 	int ret;
5488 
5489 	mutex_lock(&wq_pool_mutex);
5490 	ret = apply_workqueue_attrs_locked(wq, attrs);
5491 	mutex_unlock(&wq_pool_mutex);
5492 
5493 	return ret;
5494 }
5495 
5496 /**
5497  * unbound_wq_update_pwq - update a pwq slot for CPU hot[un]plug
5498  * @wq: the target workqueue
5499  * @cpu: the CPU to update the pwq slot for
5500  *
5501  * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
5502  * %CPU_DOWN_FAILED.  @cpu is in the same pod of the CPU being hot[un]plugged.
5503  *
5504  *
5505  * If pod affinity can't be adjusted due to memory allocation failure, it falls
5506  * back to @wq->dfl_pwq which may not be optimal but is always correct.
5507  *
5508  * Note that when the last allowed CPU of a pod goes offline for a workqueue
5509  * with a cpumask spanning multiple pods, the workers which were already
5510  * executing the work items for the workqueue will lose their CPU affinity and
5511  * may execute on any CPU. This is similar to how per-cpu workqueues behave on
5512  * CPU_DOWN. If a workqueue user wants strict affinity, it's the user's
5513  * responsibility to flush the work item from CPU_DOWN_PREPARE.
5514  */
5515 static void unbound_wq_update_pwq(struct workqueue_struct *wq, int cpu)
5516 {
5517 	struct pool_workqueue *old_pwq = NULL, *pwq;
5518 	struct workqueue_attrs *target_attrs;
5519 
5520 	lockdep_assert_held(&wq_pool_mutex);
5521 
5522 	if (!(wq->flags & WQ_UNBOUND) || wq->unbound_attrs->ordered)
5523 		return;
5524 
5525 	/*
5526 	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
5527 	 * Let's use a preallocated one.  The following buf is protected by
5528 	 * CPU hotplug exclusion.
5529 	 */
5530 	target_attrs = unbound_wq_update_pwq_attrs_buf;
5531 
5532 	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
5533 	wqattrs_actualize_cpumask(target_attrs, wq_unbound_cpumask);
5534 
5535 	/* nothing to do if the target cpumask matches the current pwq */
5536 	wq_calc_pod_cpumask(target_attrs, cpu);
5537 	if (wqattrs_equal(target_attrs, unbound_pwq(wq, cpu)->pool->attrs))
5538 		return;
5539 
5540 	/* create a new pwq */
5541 	pwq = alloc_unbound_pwq(wq, target_attrs);
5542 	if (!pwq) {
5543 		pr_warn("workqueue: allocation failed while updating CPU pod affinity of \"%s\"\n",
5544 			wq->name);
5545 		goto use_dfl_pwq;
5546 	}
5547 
5548 	/* Install the new pwq. */
5549 	mutex_lock(&wq->mutex);
5550 	old_pwq = install_unbound_pwq(wq, cpu, pwq);
5551 	goto out_unlock;
5552 
5553 use_dfl_pwq:
5554 	mutex_lock(&wq->mutex);
5555 	pwq = unbound_pwq(wq, -1);
5556 	raw_spin_lock_irq(&pwq->pool->lock);
5557 	get_pwq(pwq);
5558 	raw_spin_unlock_irq(&pwq->pool->lock);
5559 	old_pwq = install_unbound_pwq(wq, cpu, pwq);
5560 out_unlock:
5561 	mutex_unlock(&wq->mutex);
5562 	put_pwq_unlocked(old_pwq);
5563 }
5564 
5565 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
5566 {
5567 	bool highpri = wq->flags & WQ_HIGHPRI;
5568 	int cpu, ret;
5569 
5570 	lockdep_assert_held(&wq_pool_mutex);
5571 
5572 	wq->cpu_pwq = alloc_percpu(struct pool_workqueue *);
5573 	if (!wq->cpu_pwq)
5574 		goto enomem;
5575 
5576 	if (!(wq->flags & WQ_UNBOUND)) {
5577 		struct worker_pool __percpu *pools;
5578 
5579 		if (wq->flags & WQ_BH)
5580 			pools = bh_worker_pools;
5581 		else
5582 			pools = cpu_worker_pools;
5583 
5584 		for_each_possible_cpu(cpu) {
5585 			struct pool_workqueue **pwq_p;
5586 			struct worker_pool *pool;
5587 
5588 			pool = &(per_cpu_ptr(pools, cpu)[highpri]);
5589 			pwq_p = per_cpu_ptr(wq->cpu_pwq, cpu);
5590 
5591 			*pwq_p = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL,
5592 						       pool->node);
5593 			if (!*pwq_p)
5594 				goto enomem;
5595 
5596 			init_pwq(*pwq_p, wq, pool);
5597 
5598 			mutex_lock(&wq->mutex);
5599 			link_pwq(*pwq_p);
5600 			mutex_unlock(&wq->mutex);
5601 		}
5602 		return 0;
5603 	}
5604 
5605 	if (wq->flags & __WQ_ORDERED) {
5606 		struct pool_workqueue *dfl_pwq;
5607 
5608 		ret = apply_workqueue_attrs_locked(wq, ordered_wq_attrs[highpri]);
5609 		/* there should only be single pwq for ordering guarantee */
5610 		dfl_pwq = rcu_access_pointer(wq->dfl_pwq);
5611 		WARN(!ret && (wq->pwqs.next != &dfl_pwq->pwqs_node ||
5612 			      wq->pwqs.prev != &dfl_pwq->pwqs_node),
5613 		     "ordering guarantee broken for workqueue %s\n", wq->name);
5614 	} else {
5615 		ret = apply_workqueue_attrs_locked(wq, unbound_std_wq_attrs[highpri]);
5616 	}
5617 
5618 	return ret;
5619 
5620 enomem:
5621 	if (wq->cpu_pwq) {
5622 		for_each_possible_cpu(cpu) {
5623 			struct pool_workqueue *pwq = *per_cpu_ptr(wq->cpu_pwq, cpu);
5624 
5625 			if (pwq)
5626 				kmem_cache_free(pwq_cache, pwq);
5627 		}
5628 		free_percpu(wq->cpu_pwq);
5629 		wq->cpu_pwq = NULL;
5630 	}
5631 	return -ENOMEM;
5632 }
5633 
5634 static int wq_clamp_max_active(int max_active, unsigned int flags,
5635 			       const char *name)
5636 {
5637 	if (max_active < 1 || max_active > WQ_MAX_ACTIVE)
5638 		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
5639 			max_active, name, 1, WQ_MAX_ACTIVE);
5640 
5641 	return clamp_val(max_active, 1, WQ_MAX_ACTIVE);
5642 }
5643 
5644 /*
5645  * Workqueues which may be used during memory reclaim should have a rescuer
5646  * to guarantee forward progress.
5647  */
5648 static int init_rescuer(struct workqueue_struct *wq)
5649 {
5650 	struct worker *rescuer;
5651 	char id_buf[WORKER_ID_LEN];
5652 	int ret;
5653 
5654 	lockdep_assert_held(&wq_pool_mutex);
5655 
5656 	if (!(wq->flags & WQ_MEM_RECLAIM))
5657 		return 0;
5658 
5659 	rescuer = alloc_worker(NUMA_NO_NODE);
5660 	if (!rescuer) {
5661 		pr_err("workqueue: Failed to allocate a rescuer for wq \"%s\"\n",
5662 		       wq->name);
5663 		return -ENOMEM;
5664 	}
5665 
5666 	rescuer->rescue_wq = wq;
5667 	format_worker_id(id_buf, sizeof(id_buf), rescuer, NULL);
5668 
5669 	rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", id_buf);
5670 	if (IS_ERR(rescuer->task)) {
5671 		ret = PTR_ERR(rescuer->task);
5672 		pr_err("workqueue: Failed to create a rescuer kthread for wq \"%s\": %pe",
5673 		       wq->name, ERR_PTR(ret));
5674 		kfree(rescuer);
5675 		return ret;
5676 	}
5677 
5678 	wq->rescuer = rescuer;
5679 
5680 	/* initial cpumask is consistent with the detached rescuer and unbind_worker() */
5681 	if (cpumask_intersects(wq_unbound_cpumask, cpu_active_mask))
5682 		kthread_bind_mask(rescuer->task, wq_unbound_cpumask);
5683 	else
5684 		kthread_bind_mask(rescuer->task, cpu_possible_mask);
5685 
5686 	wake_up_process(rescuer->task);
5687 
5688 	return 0;
5689 }
5690 
5691 /**
5692  * wq_adjust_max_active - update a wq's max_active to the current setting
5693  * @wq: target workqueue
5694  *
5695  * If @wq isn't freezing, set @wq->max_active to the saved_max_active and
5696  * activate inactive work items accordingly. If @wq is freezing, clear
5697  * @wq->max_active to zero.
5698  */
5699 static void wq_adjust_max_active(struct workqueue_struct *wq)
5700 {
5701 	bool activated;
5702 	int new_max, new_min;
5703 
5704 	lockdep_assert_held(&wq->mutex);
5705 
5706 	if ((wq->flags & WQ_FREEZABLE) && workqueue_freezing) {
5707 		new_max = 0;
5708 		new_min = 0;
5709 	} else {
5710 		new_max = wq->saved_max_active;
5711 		new_min = wq->saved_min_active;
5712 	}
5713 
5714 	if (wq->max_active == new_max && wq->min_active == new_min)
5715 		return;
5716 
5717 	/*
5718 	 * Update @wq->max/min_active and then kick inactive work items if more
5719 	 * active work items are allowed. This doesn't break work item ordering
5720 	 * because new work items are always queued behind existing inactive
5721 	 * work items if there are any.
5722 	 */
5723 	WRITE_ONCE(wq->max_active, new_max);
5724 	WRITE_ONCE(wq->min_active, new_min);
5725 
5726 	if (wq->flags & WQ_UNBOUND)
5727 		wq_update_node_max_active(wq, -1);
5728 
5729 	if (new_max == 0)
5730 		return;
5731 
5732 	/*
5733 	 * Round-robin through pwq's activating the first inactive work item
5734 	 * until max_active is filled.
5735 	 */
5736 	do {
5737 		struct pool_workqueue *pwq;
5738 
5739 		activated = false;
5740 		for_each_pwq(pwq, wq) {
5741 			unsigned long irq_flags;
5742 
5743 			/* can be called during early boot w/ irq disabled */
5744 			raw_spin_lock_irqsave(&pwq->pool->lock, irq_flags);
5745 			if (pwq_activate_first_inactive(pwq, true)) {
5746 				activated = true;
5747 				kick_pool(pwq->pool);
5748 			}
5749 			raw_spin_unlock_irqrestore(&pwq->pool->lock, irq_flags);
5750 		}
5751 	} while (activated);
5752 }
5753 
5754 __printf(1, 0)
5755 static struct workqueue_struct *__alloc_workqueue(const char *fmt,
5756 						  unsigned int flags,
5757 						  int max_active, va_list args)
5758 {
5759 	struct workqueue_struct *wq;
5760 	size_t wq_size;
5761 	int name_len;
5762 
5763 	if (flags & WQ_BH) {
5764 		if (WARN_ON_ONCE(flags & ~__WQ_BH_ALLOWS))
5765 			return NULL;
5766 		if (WARN_ON_ONCE(max_active))
5767 			return NULL;
5768 	}
5769 
5770 	/* see the comment above the definition of WQ_POWER_EFFICIENT */
5771 	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
5772 		flags |= WQ_UNBOUND;
5773 
5774 	/* allocate wq and format name */
5775 	if (flags & WQ_UNBOUND)
5776 		wq_size = struct_size(wq, node_nr_active, nr_node_ids + 1);
5777 	else
5778 		wq_size = sizeof(*wq);
5779 
5780 	wq = kzalloc_noprof(wq_size, GFP_KERNEL);
5781 	if (!wq)
5782 		return NULL;
5783 
5784 	if (flags & WQ_UNBOUND) {
5785 		wq->unbound_attrs = alloc_workqueue_attrs_noprof();
5786 		if (!wq->unbound_attrs)
5787 			goto err_free_wq;
5788 	}
5789 
5790 	name_len = vsnprintf(wq->name, sizeof(wq->name), fmt, args);
5791 
5792 	if (name_len >= WQ_NAME_LEN)
5793 		pr_warn_once("workqueue: name exceeds WQ_NAME_LEN. Truncating to: %s\n",
5794 			     wq->name);
5795 
5796 	if (flags & WQ_BH) {
5797 		/*
5798 		 * BH workqueues always share a single execution context per CPU
5799 		 * and don't impose any max_active limit.
5800 		 */
5801 		max_active = INT_MAX;
5802 	} else {
5803 		max_active = max_active ?: WQ_DFL_ACTIVE;
5804 		max_active = wq_clamp_max_active(max_active, flags, wq->name);
5805 	}
5806 
5807 	/* init wq */
5808 	wq->flags = flags;
5809 	wq->max_active = max_active;
5810 	wq->min_active = min(max_active, WQ_DFL_MIN_ACTIVE);
5811 	wq->saved_max_active = wq->max_active;
5812 	wq->saved_min_active = wq->min_active;
5813 	mutex_init(&wq->mutex);
5814 	atomic_set(&wq->nr_pwqs_to_flush, 0);
5815 	INIT_LIST_HEAD(&wq->pwqs);
5816 	INIT_LIST_HEAD(&wq->flusher_queue);
5817 	INIT_LIST_HEAD(&wq->flusher_overflow);
5818 	INIT_LIST_HEAD(&wq->maydays);
5819 
5820 	INIT_LIST_HEAD(&wq->list);
5821 
5822 	if (flags & WQ_UNBOUND) {
5823 		if (alloc_node_nr_active(wq->node_nr_active) < 0)
5824 			goto err_free_wq;
5825 	}
5826 
5827 	/*
5828 	 * wq_pool_mutex protects the workqueues list, allocations of PWQs,
5829 	 * and the global freeze state.
5830 	 */
5831 	apply_wqattrs_lock();
5832 
5833 	if (alloc_and_link_pwqs(wq) < 0)
5834 		goto err_unlock_free_node_nr_active;
5835 
5836 	mutex_lock(&wq->mutex);
5837 	wq_adjust_max_active(wq);
5838 	mutex_unlock(&wq->mutex);
5839 
5840 	list_add_tail_rcu(&wq->list, &workqueues);
5841 
5842 	if (wq_online && init_rescuer(wq) < 0)
5843 		goto err_unlock_destroy;
5844 
5845 	apply_wqattrs_unlock();
5846 
5847 	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
5848 		goto err_destroy;
5849 
5850 	return wq;
5851 
5852 err_unlock_free_node_nr_active:
5853 	apply_wqattrs_unlock();
5854 	/*
5855 	 * Failed alloc_and_link_pwqs() may leave pending pwq->release_work,
5856 	 * flushing the pwq_release_worker ensures that the pwq_release_workfn()
5857 	 * completes before calling kfree(wq).
5858 	 */
5859 	if (wq->flags & WQ_UNBOUND) {
5860 		kthread_flush_worker(pwq_release_worker);
5861 		free_node_nr_active(wq->node_nr_active);
5862 	}
5863 err_free_wq:
5864 	free_workqueue_attrs(wq->unbound_attrs);
5865 	kfree(wq);
5866 	return NULL;
5867 err_unlock_destroy:
5868 	apply_wqattrs_unlock();
5869 err_destroy:
5870 	destroy_workqueue(wq);
5871 	return NULL;
5872 }
5873 
5874 __printf(1, 4)
5875 struct workqueue_struct *alloc_workqueue_noprof(const char *fmt,
5876 						unsigned int flags,
5877 						int max_active, ...)
5878 {
5879 	struct workqueue_struct *wq;
5880 	va_list args;
5881 
5882 	va_start(args, max_active);
5883 	wq = __alloc_workqueue(fmt, flags, max_active, args);
5884 	va_end(args);
5885 	if (!wq)
5886 		return NULL;
5887 
5888 	wq_init_lockdep(wq);
5889 
5890 	return wq;
5891 }
5892 EXPORT_SYMBOL_GPL(alloc_workqueue_noprof);
5893 
5894 #ifdef CONFIG_LOCKDEP
5895 __printf(1, 5)
5896 struct workqueue_struct *
5897 alloc_workqueue_lockdep_map(const char *fmt, unsigned int flags,
5898 			    int max_active, struct lockdep_map *lockdep_map, ...)
5899 {
5900 	struct workqueue_struct *wq;
5901 	va_list args;
5902 
5903 	va_start(args, lockdep_map);
5904 	wq = __alloc_workqueue(fmt, flags, max_active, args);
5905 	va_end(args);
5906 	if (!wq)
5907 		return NULL;
5908 
5909 	wq->lockdep_map = lockdep_map;
5910 
5911 	return wq;
5912 }
5913 EXPORT_SYMBOL_GPL(alloc_workqueue_lockdep_map);
5914 #endif
5915 
5916 static bool pwq_busy(struct pool_workqueue *pwq)
5917 {
5918 	int i;
5919 
5920 	for (i = 0; i < WORK_NR_COLORS; i++)
5921 		if (pwq->nr_in_flight[i])
5922 			return true;
5923 
5924 	if ((pwq != rcu_access_pointer(pwq->wq->dfl_pwq)) && (pwq->refcnt > 1))
5925 		return true;
5926 	if (!pwq_is_empty(pwq))
5927 		return true;
5928 
5929 	return false;
5930 }
5931 
5932 /**
5933  * destroy_workqueue - safely terminate a workqueue
5934  * @wq: target workqueue
5935  *
5936  * Safely destroy a workqueue. All work currently pending will be done first.
5937  *
5938  * This function does NOT guarantee that non-pending work that has been
5939  * submitted with queue_delayed_work() and similar functions will be done
5940  * before destroying the workqueue. The fundamental problem is that, currently,
5941  * the workqueue has no way of accessing non-pending delayed_work. delayed_work
5942  * is only linked on the timer-side. All delayed_work must, therefore, be
5943  * canceled before calling this function.
5944  *
5945  * TODO: It would be better if the problem described above wouldn't exist and
5946  * destroy_workqueue() would cleanly cancel all pending and non-pending
5947  * delayed_work.
5948  */
5949 void destroy_workqueue(struct workqueue_struct *wq)
5950 {
5951 	struct pool_workqueue *pwq;
5952 	int cpu;
5953 
5954 	/*
5955 	 * Remove it from sysfs first so that sanity check failure doesn't
5956 	 * lead to sysfs name conflicts.
5957 	 */
5958 	workqueue_sysfs_unregister(wq);
5959 
5960 	/* mark the workqueue destruction is in progress */
5961 	mutex_lock(&wq->mutex);
5962 	wq->flags |= __WQ_DESTROYING;
5963 	mutex_unlock(&wq->mutex);
5964 
5965 	/* drain it before proceeding with destruction */
5966 	drain_workqueue(wq);
5967 
5968 	/* kill rescuer, if sanity checks fail, leave it w/o rescuer */
5969 	if (wq->rescuer) {
5970 		/* rescuer will empty maydays list before exiting */
5971 		kthread_stop(wq->rescuer->task);
5972 		kfree(wq->rescuer);
5973 		wq->rescuer = NULL;
5974 	}
5975 
5976 	/*
5977 	 * Sanity checks - grab all the locks so that we wait for all
5978 	 * in-flight operations which may do put_pwq().
5979 	 */
5980 	mutex_lock(&wq_pool_mutex);
5981 	mutex_lock(&wq->mutex);
5982 	for_each_pwq(pwq, wq) {
5983 		raw_spin_lock_irq(&pwq->pool->lock);
5984 		if (WARN_ON(pwq_busy(pwq))) {
5985 			pr_warn("%s: %s has the following busy pwq\n",
5986 				__func__, wq->name);
5987 			show_pwq(pwq);
5988 			raw_spin_unlock_irq(&pwq->pool->lock);
5989 			mutex_unlock(&wq->mutex);
5990 			mutex_unlock(&wq_pool_mutex);
5991 			show_one_workqueue(wq);
5992 			return;
5993 		}
5994 		raw_spin_unlock_irq(&pwq->pool->lock);
5995 	}
5996 	mutex_unlock(&wq->mutex);
5997 
5998 	/*
5999 	 * wq list is used to freeze wq, remove from list after
6000 	 * flushing is complete in case freeze races us.
6001 	 */
6002 	list_del_rcu(&wq->list);
6003 	mutex_unlock(&wq_pool_mutex);
6004 
6005 	/*
6006 	 * We're the sole accessor of @wq. Directly access cpu_pwq and dfl_pwq
6007 	 * to put the base refs. @wq will be auto-destroyed from the last
6008 	 * pwq_put. RCU read lock prevents @wq from going away from under us.
6009 	 */
6010 	rcu_read_lock();
6011 
6012 	for_each_possible_cpu(cpu) {
6013 		put_pwq_unlocked(unbound_pwq(wq, cpu));
6014 		RCU_INIT_POINTER(*unbound_pwq_slot(wq, cpu), NULL);
6015 	}
6016 
6017 	put_pwq_unlocked(unbound_pwq(wq, -1));
6018 	RCU_INIT_POINTER(*unbound_pwq_slot(wq, -1), NULL);
6019 
6020 	rcu_read_unlock();
6021 }
6022 EXPORT_SYMBOL_GPL(destroy_workqueue);
6023 
6024 /**
6025  * workqueue_set_max_active - adjust max_active of a workqueue
6026  * @wq: target workqueue
6027  * @max_active: new max_active value.
6028  *
6029  * Set max_active of @wq to @max_active. See the alloc_workqueue() function
6030  * comment.
6031  *
6032  * CONTEXT:
6033  * Don't call from IRQ context.
6034  */
6035 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
6036 {
6037 	/* max_active doesn't mean anything for BH workqueues */
6038 	if (WARN_ON(wq->flags & WQ_BH))
6039 		return;
6040 	/* disallow meddling with max_active for ordered workqueues */
6041 	if (WARN_ON(wq->flags & __WQ_ORDERED))
6042 		return;
6043 
6044 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
6045 
6046 	mutex_lock(&wq->mutex);
6047 
6048 	wq->saved_max_active = max_active;
6049 	if (wq->flags & WQ_UNBOUND)
6050 		wq->saved_min_active = min(wq->saved_min_active, max_active);
6051 
6052 	wq_adjust_max_active(wq);
6053 
6054 	mutex_unlock(&wq->mutex);
6055 }
6056 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
6057 
6058 /**
6059  * workqueue_set_min_active - adjust min_active of an unbound workqueue
6060  * @wq: target unbound workqueue
6061  * @min_active: new min_active value
6062  *
6063  * Set min_active of an unbound workqueue. Unlike other types of workqueues, an
6064  * unbound workqueue is not guaranteed to be able to process max_active
6065  * interdependent work items. Instead, an unbound workqueue is guaranteed to be
6066  * able to process min_active number of interdependent work items which is
6067  * %WQ_DFL_MIN_ACTIVE by default.
6068  *
6069  * Use this function to adjust the min_active value between 0 and the current
6070  * max_active.
6071  */
6072 void workqueue_set_min_active(struct workqueue_struct *wq, int min_active)
6073 {
6074 	/* min_active is only meaningful for non-ordered unbound workqueues */
6075 	if (WARN_ON((wq->flags & (WQ_BH | WQ_UNBOUND | __WQ_ORDERED)) !=
6076 		    WQ_UNBOUND))
6077 		return;
6078 
6079 	mutex_lock(&wq->mutex);
6080 	wq->saved_min_active = clamp(min_active, 0, wq->saved_max_active);
6081 	wq_adjust_max_active(wq);
6082 	mutex_unlock(&wq->mutex);
6083 }
6084 
6085 /**
6086  * current_work - retrieve %current task's work struct
6087  *
6088  * Determine if %current task is a workqueue worker and what it's working on.
6089  * Useful to find out the context that the %current task is running in.
6090  *
6091  * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
6092  */
6093 struct work_struct *current_work(void)
6094 {
6095 	struct worker *worker = current_wq_worker();
6096 
6097 	return worker ? worker->current_work : NULL;
6098 }
6099 EXPORT_SYMBOL(current_work);
6100 
6101 /**
6102  * current_is_workqueue_rescuer - is %current workqueue rescuer?
6103  *
6104  * Determine whether %current is a workqueue rescuer.  Can be used from
6105  * work functions to determine whether it's being run off the rescuer task.
6106  *
6107  * Return: %true if %current is a workqueue rescuer. %false otherwise.
6108  */
6109 bool current_is_workqueue_rescuer(void)
6110 {
6111 	struct worker *worker = current_wq_worker();
6112 
6113 	return worker && worker->rescue_wq;
6114 }
6115 
6116 /**
6117  * workqueue_congested - test whether a workqueue is congested
6118  * @cpu: CPU in question
6119  * @wq: target workqueue
6120  *
6121  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
6122  * no synchronization around this function and the test result is
6123  * unreliable and only useful as advisory hints or for debugging.
6124  *
6125  * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
6126  *
6127  * With the exception of ordered workqueues, all workqueues have per-cpu
6128  * pool_workqueues, each with its own congested state. A workqueue being
6129  * congested on one CPU doesn't mean that the workqueue is contested on any
6130  * other CPUs.
6131  *
6132  * Return:
6133  * %true if congested, %false otherwise.
6134  */
6135 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
6136 {
6137 	struct pool_workqueue *pwq;
6138 	bool ret;
6139 
6140 	preempt_disable();
6141 
6142 	if (cpu == WORK_CPU_UNBOUND)
6143 		cpu = smp_processor_id();
6144 
6145 	pwq = *per_cpu_ptr(wq->cpu_pwq, cpu);
6146 	ret = !list_empty(&pwq->inactive_works);
6147 
6148 	preempt_enable();
6149 
6150 	return ret;
6151 }
6152 EXPORT_SYMBOL_GPL(workqueue_congested);
6153 
6154 /**
6155  * work_busy - test whether a work is currently pending or running
6156  * @work: the work to be tested
6157  *
6158  * Test whether @work is currently pending or running.  There is no
6159  * synchronization around this function and the test result is
6160  * unreliable and only useful as advisory hints or for debugging.
6161  *
6162  * Return:
6163  * OR'd bitmask of WORK_BUSY_* bits.
6164  */
6165 unsigned int work_busy(struct work_struct *work)
6166 {
6167 	struct worker_pool *pool;
6168 	unsigned long irq_flags;
6169 	unsigned int ret = 0;
6170 
6171 	if (work_pending(work))
6172 		ret |= WORK_BUSY_PENDING;
6173 
6174 	rcu_read_lock();
6175 	pool = get_work_pool(work);
6176 	if (pool) {
6177 		raw_spin_lock_irqsave(&pool->lock, irq_flags);
6178 		if (find_worker_executing_work(pool, work))
6179 			ret |= WORK_BUSY_RUNNING;
6180 		raw_spin_unlock_irqrestore(&pool->lock, irq_flags);
6181 	}
6182 	rcu_read_unlock();
6183 
6184 	return ret;
6185 }
6186 EXPORT_SYMBOL_GPL(work_busy);
6187 
6188 /**
6189  * set_worker_desc - set description for the current work item
6190  * @fmt: printf-style format string
6191  * @...: arguments for the format string
6192  *
6193  * This function can be called by a running work function to describe what
6194  * the work item is about.  If the worker task gets dumped, this
6195  * information will be printed out together to help debugging.  The
6196  * description can be at most WORKER_DESC_LEN including the trailing '\0'.
6197  */
6198 void set_worker_desc(const char *fmt, ...)
6199 {
6200 	struct worker *worker = current_wq_worker();
6201 	va_list args;
6202 
6203 	if (worker) {
6204 		va_start(args, fmt);
6205 		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
6206 		va_end(args);
6207 	}
6208 }
6209 EXPORT_SYMBOL_GPL(set_worker_desc);
6210 
6211 /**
6212  * print_worker_info - print out worker information and description
6213  * @log_lvl: the log level to use when printing
6214  * @task: target task
6215  *
6216  * If @task is a worker and currently executing a work item, print out the
6217  * name of the workqueue being serviced and worker description set with
6218  * set_worker_desc() by the currently executing work item.
6219  *
6220  * This function can be safely called on any task as long as the
6221  * task_struct itself is accessible.  While safe, this function isn't
6222  * synchronized and may print out mixups or garbages of limited length.
6223  */
6224 void print_worker_info(const char *log_lvl, struct task_struct *task)
6225 {
6226 	work_func_t *fn = NULL;
6227 	char name[WQ_NAME_LEN] = { };
6228 	char desc[WORKER_DESC_LEN] = { };
6229 	struct pool_workqueue *pwq = NULL;
6230 	struct workqueue_struct *wq = NULL;
6231 	struct worker *worker;
6232 
6233 	if (!(task->flags & PF_WQ_WORKER))
6234 		return;
6235 
6236 	/*
6237 	 * This function is called without any synchronization and @task
6238 	 * could be in any state.  Be careful with dereferences.
6239 	 */
6240 	worker = kthread_probe_data(task);
6241 
6242 	/*
6243 	 * Carefully copy the associated workqueue's workfn, name and desc.
6244 	 * Keep the original last '\0' in case the original is garbage.
6245 	 */
6246 	copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
6247 	copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
6248 	copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
6249 	copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
6250 	copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
6251 
6252 	if (fn || name[0] || desc[0]) {
6253 		printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
6254 		if (strcmp(name, desc))
6255 			pr_cont(" (%s)", desc);
6256 		pr_cont("\n");
6257 	}
6258 }
6259 
6260 static void pr_cont_pool_info(struct worker_pool *pool)
6261 {
6262 	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
6263 	if (pool->node != NUMA_NO_NODE)
6264 		pr_cont(" node=%d", pool->node);
6265 	pr_cont(" flags=0x%x", pool->flags);
6266 	if (pool->flags & POOL_BH)
6267 		pr_cont(" bh%s",
6268 			pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : "");
6269 	else
6270 		pr_cont(" nice=%d", pool->attrs->nice);
6271 }
6272 
6273 static void pr_cont_worker_id(struct worker *worker)
6274 {
6275 	struct worker_pool *pool = worker->pool;
6276 
6277 	if (pool->flags & WQ_BH)
6278 		pr_cont("bh%s",
6279 			pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : "");
6280 	else
6281 		pr_cont("%d%s", task_pid_nr(worker->task),
6282 			worker->rescue_wq ? "(RESCUER)" : "");
6283 }
6284 
6285 struct pr_cont_work_struct {
6286 	bool comma;
6287 	work_func_t func;
6288 	long ctr;
6289 };
6290 
6291 static void pr_cont_work_flush(bool comma, work_func_t func, struct pr_cont_work_struct *pcwsp)
6292 {
6293 	if (!pcwsp->ctr)
6294 		goto out_record;
6295 	if (func == pcwsp->func) {
6296 		pcwsp->ctr++;
6297 		return;
6298 	}
6299 	if (pcwsp->ctr == 1)
6300 		pr_cont("%s %ps", pcwsp->comma ? "," : "", pcwsp->func);
6301 	else
6302 		pr_cont("%s %ld*%ps", pcwsp->comma ? "," : "", pcwsp->ctr, pcwsp->func);
6303 	pcwsp->ctr = 0;
6304 out_record:
6305 	if ((long)func == -1L)
6306 		return;
6307 	pcwsp->comma = comma;
6308 	pcwsp->func = func;
6309 	pcwsp->ctr = 1;
6310 }
6311 
6312 static void pr_cont_work(bool comma, struct work_struct *work, struct pr_cont_work_struct *pcwsp)
6313 {
6314 	if (work->func == wq_barrier_func) {
6315 		struct wq_barrier *barr;
6316 
6317 		barr = container_of(work, struct wq_barrier, work);
6318 
6319 		pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
6320 		pr_cont("%s BAR(%d)", comma ? "," : "",
6321 			task_pid_nr(barr->task));
6322 	} else {
6323 		if (!comma)
6324 			pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
6325 		pr_cont_work_flush(comma, work->func, pcwsp);
6326 	}
6327 }
6328 
6329 static void show_pwq(struct pool_workqueue *pwq)
6330 {
6331 	struct pr_cont_work_struct pcws = { .ctr = 0, };
6332 	struct worker_pool *pool = pwq->pool;
6333 	struct work_struct *work;
6334 	struct worker *worker;
6335 	bool has_in_flight = false, has_pending = false;
6336 	int bkt;
6337 
6338 	pr_info("  pwq %d:", pool->id);
6339 	pr_cont_pool_info(pool);
6340 
6341 	pr_cont(" active=%d refcnt=%d%s\n",
6342 		pwq->nr_active, pwq->refcnt,
6343 		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
6344 
6345 	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
6346 		if (worker->current_pwq == pwq) {
6347 			has_in_flight = true;
6348 			break;
6349 		}
6350 	}
6351 	if (has_in_flight) {
6352 		bool comma = false;
6353 
6354 		pr_info("    in-flight:");
6355 		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
6356 			if (worker->current_pwq != pwq)
6357 				continue;
6358 
6359 			pr_cont(" %s", comma ? "," : "");
6360 			pr_cont_worker_id(worker);
6361 			pr_cont(":%ps", worker->current_func);
6362 			list_for_each_entry(work, &worker->scheduled, entry)
6363 				pr_cont_work(false, work, &pcws);
6364 			pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
6365 			comma = true;
6366 		}
6367 		pr_cont("\n");
6368 	}
6369 
6370 	list_for_each_entry(work, &pool->worklist, entry) {
6371 		if (get_work_pwq(work) == pwq) {
6372 			has_pending = true;
6373 			break;
6374 		}
6375 	}
6376 	if (has_pending) {
6377 		bool comma = false;
6378 
6379 		pr_info("    pending:");
6380 		list_for_each_entry(work, &pool->worklist, entry) {
6381 			if (get_work_pwq(work) != pwq)
6382 				continue;
6383 
6384 			pr_cont_work(comma, work, &pcws);
6385 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
6386 		}
6387 		pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
6388 		pr_cont("\n");
6389 	}
6390 
6391 	if (!list_empty(&pwq->inactive_works)) {
6392 		bool comma = false;
6393 
6394 		pr_info("    inactive:");
6395 		list_for_each_entry(work, &pwq->inactive_works, entry) {
6396 			pr_cont_work(comma, work, &pcws);
6397 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
6398 		}
6399 		pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
6400 		pr_cont("\n");
6401 	}
6402 }
6403 
6404 /**
6405  * show_one_workqueue - dump state of specified workqueue
6406  * @wq: workqueue whose state will be printed
6407  */
6408 void show_one_workqueue(struct workqueue_struct *wq)
6409 {
6410 	struct pool_workqueue *pwq;
6411 	bool idle = true;
6412 	unsigned long irq_flags;
6413 
6414 	for_each_pwq(pwq, wq) {
6415 		if (!pwq_is_empty(pwq)) {
6416 			idle = false;
6417 			break;
6418 		}
6419 	}
6420 	if (idle) /* Nothing to print for idle workqueue */
6421 		return;
6422 
6423 	pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
6424 
6425 	for_each_pwq(pwq, wq) {
6426 		raw_spin_lock_irqsave(&pwq->pool->lock, irq_flags);
6427 		if (!pwq_is_empty(pwq)) {
6428 			/*
6429 			 * Defer printing to avoid deadlocks in console
6430 			 * drivers that queue work while holding locks
6431 			 * also taken in their write paths.
6432 			 */
6433 			printk_deferred_enter();
6434 			show_pwq(pwq);
6435 			printk_deferred_exit();
6436 		}
6437 		raw_spin_unlock_irqrestore(&pwq->pool->lock, irq_flags);
6438 		/*
6439 		 * We could be printing a lot from atomic context, e.g.
6440 		 * sysrq-t -> show_all_workqueues(). Avoid triggering
6441 		 * hard lockup.
6442 		 */
6443 		touch_nmi_watchdog();
6444 	}
6445 
6446 }
6447 
6448 /**
6449  * show_one_worker_pool - dump state of specified worker pool
6450  * @pool: worker pool whose state will be printed
6451  */
6452 static void show_one_worker_pool(struct worker_pool *pool)
6453 {
6454 	struct worker *worker;
6455 	bool first = true;
6456 	unsigned long irq_flags;
6457 	unsigned long hung = 0;
6458 
6459 	raw_spin_lock_irqsave(&pool->lock, irq_flags);
6460 	if (pool->nr_workers == pool->nr_idle)
6461 		goto next_pool;
6462 
6463 	/* How long the first pending work is waiting for a worker. */
6464 	if (!list_empty(&pool->worklist))
6465 		hung = jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000;
6466 
6467 	/*
6468 	 * Defer printing to avoid deadlocks in console drivers that
6469 	 * queue work while holding locks also taken in their write
6470 	 * paths.
6471 	 */
6472 	printk_deferred_enter();
6473 	pr_info("pool %d:", pool->id);
6474 	pr_cont_pool_info(pool);
6475 	pr_cont(" hung=%lus workers=%d", hung, pool->nr_workers);
6476 	if (pool->manager)
6477 		pr_cont(" manager: %d",
6478 			task_pid_nr(pool->manager->task));
6479 	list_for_each_entry(worker, &pool->idle_list, entry) {
6480 		pr_cont(" %s", first ? "idle: " : "");
6481 		pr_cont_worker_id(worker);
6482 		first = false;
6483 	}
6484 	pr_cont("\n");
6485 	printk_deferred_exit();
6486 next_pool:
6487 	raw_spin_unlock_irqrestore(&pool->lock, irq_flags);
6488 	/*
6489 	 * We could be printing a lot from atomic context, e.g.
6490 	 * sysrq-t -> show_all_workqueues(). Avoid triggering
6491 	 * hard lockup.
6492 	 */
6493 	touch_nmi_watchdog();
6494 
6495 }
6496 
6497 /**
6498  * show_all_workqueues - dump workqueue state
6499  *
6500  * Called from a sysrq handler and prints out all busy workqueues and pools.
6501  */
6502 void show_all_workqueues(void)
6503 {
6504 	struct workqueue_struct *wq;
6505 	struct worker_pool *pool;
6506 	int pi;
6507 
6508 	rcu_read_lock();
6509 
6510 	pr_info("Showing busy workqueues and worker pools:\n");
6511 
6512 	list_for_each_entry_rcu(wq, &workqueues, list)
6513 		show_one_workqueue(wq);
6514 
6515 	for_each_pool(pool, pi)
6516 		show_one_worker_pool(pool);
6517 
6518 	rcu_read_unlock();
6519 }
6520 
6521 /**
6522  * show_freezable_workqueues - dump freezable workqueue state
6523  *
6524  * Called from try_to_freeze_tasks() and prints out all freezable workqueues
6525  * still busy.
6526  */
6527 void show_freezable_workqueues(void)
6528 {
6529 	struct workqueue_struct *wq;
6530 
6531 	rcu_read_lock();
6532 
6533 	pr_info("Showing freezable workqueues that are still busy:\n");
6534 
6535 	list_for_each_entry_rcu(wq, &workqueues, list) {
6536 		if (!(wq->flags & WQ_FREEZABLE))
6537 			continue;
6538 		show_one_workqueue(wq);
6539 	}
6540 
6541 	rcu_read_unlock();
6542 }
6543 
6544 /* used to show worker information through /proc/PID/{comm,stat,status} */
6545 void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
6546 {
6547 	/* stabilize PF_WQ_WORKER and worker pool association */
6548 	mutex_lock(&wq_pool_attach_mutex);
6549 
6550 	if (task->flags & PF_WQ_WORKER) {
6551 		struct worker *worker = kthread_data(task);
6552 		struct worker_pool *pool = worker->pool;
6553 		int off;
6554 
6555 		off = format_worker_id(buf, size, worker, pool);
6556 
6557 		if (pool) {
6558 			raw_spin_lock_irq(&pool->lock);
6559 			/*
6560 			 * ->desc tracks information (wq name or
6561 			 * set_worker_desc()) for the latest execution.  If
6562 			 * current, prepend '+', otherwise '-'.
6563 			 */
6564 			if (worker->desc[0] != '\0') {
6565 				if (worker->current_work)
6566 					scnprintf(buf + off, size - off, "+%s",
6567 						  worker->desc);
6568 				else
6569 					scnprintf(buf + off, size - off, "-%s",
6570 						  worker->desc);
6571 			}
6572 			raw_spin_unlock_irq(&pool->lock);
6573 		}
6574 	} else {
6575 		strscpy(buf, task->comm, size);
6576 	}
6577 
6578 	mutex_unlock(&wq_pool_attach_mutex);
6579 }
6580 
6581 #ifdef CONFIG_SMP
6582 
6583 /*
6584  * CPU hotplug.
6585  *
6586  * There are two challenges in supporting CPU hotplug.  Firstly, there
6587  * are a lot of assumptions on strong associations among work, pwq and
6588  * pool which make migrating pending and scheduled works very
6589  * difficult to implement without impacting hot paths.  Secondly,
6590  * worker pools serve mix of short, long and very long running works making
6591  * blocked draining impractical.
6592  *
6593  * This is solved by allowing the pools to be disassociated from the CPU
6594  * running as an unbound one and allowing it to be reattached later if the
6595  * cpu comes back online.
6596  */
6597 
6598 static void unbind_workers(int cpu)
6599 {
6600 	struct worker_pool *pool;
6601 	struct worker *worker;
6602 
6603 	for_each_cpu_worker_pool(pool, cpu) {
6604 		mutex_lock(&wq_pool_attach_mutex);
6605 		raw_spin_lock_irq(&pool->lock);
6606 
6607 		/*
6608 		 * We've blocked all attach/detach operations. Make all workers
6609 		 * unbound and set DISASSOCIATED.  Before this, all workers
6610 		 * must be on the cpu.  After this, they may become diasporas.
6611 		 * And the preemption disabled section in their sched callbacks
6612 		 * are guaranteed to see WORKER_UNBOUND since the code here
6613 		 * is on the same cpu.
6614 		 */
6615 		for_each_pool_worker(worker, pool)
6616 			worker->flags |= WORKER_UNBOUND;
6617 
6618 		pool->flags |= POOL_DISASSOCIATED;
6619 
6620 		/*
6621 		 * The handling of nr_running in sched callbacks are disabled
6622 		 * now.  Zap nr_running.  After this, nr_running stays zero and
6623 		 * need_more_worker() and keep_working() are always true as
6624 		 * long as the worklist is not empty.  This pool now behaves as
6625 		 * an unbound (in terms of concurrency management) pool which
6626 		 * are served by workers tied to the pool.
6627 		 */
6628 		pool->nr_running = 0;
6629 
6630 		/*
6631 		 * With concurrency management just turned off, a busy
6632 		 * worker blocking could lead to lengthy stalls.  Kick off
6633 		 * unbound chain execution of currently pending work items.
6634 		 */
6635 		kick_pool(pool);
6636 
6637 		raw_spin_unlock_irq(&pool->lock);
6638 
6639 		for_each_pool_worker(worker, pool)
6640 			unbind_worker(worker);
6641 
6642 		mutex_unlock(&wq_pool_attach_mutex);
6643 	}
6644 }
6645 
6646 /**
6647  * rebind_workers - rebind all workers of a pool to the associated CPU
6648  * @pool: pool of interest
6649  *
6650  * @pool->cpu is coming online.  Rebind all workers to the CPU.
6651  */
6652 static void rebind_workers(struct worker_pool *pool)
6653 {
6654 	struct worker *worker;
6655 
6656 	lockdep_assert_held(&wq_pool_attach_mutex);
6657 
6658 	/*
6659 	 * Restore CPU affinity of all workers.  As all idle workers should
6660 	 * be on the run-queue of the associated CPU before any local
6661 	 * wake-ups for concurrency management happen, restore CPU affinity
6662 	 * of all workers first and then clear UNBOUND.  As we're called
6663 	 * from CPU_ONLINE, the following shouldn't fail.
6664 	 */
6665 	for_each_pool_worker(worker, pool) {
6666 		kthread_set_per_cpu(worker->task, pool->cpu);
6667 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
6668 						  pool_allowed_cpus(pool)) < 0);
6669 	}
6670 
6671 	raw_spin_lock_irq(&pool->lock);
6672 
6673 	pool->flags &= ~POOL_DISASSOCIATED;
6674 
6675 	for_each_pool_worker(worker, pool) {
6676 		unsigned int worker_flags = worker->flags;
6677 
6678 		/*
6679 		 * We want to clear UNBOUND but can't directly call
6680 		 * worker_clr_flags() or adjust nr_running.  Atomically
6681 		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
6682 		 * @worker will clear REBOUND using worker_clr_flags() when
6683 		 * it initiates the next execution cycle thus restoring
6684 		 * concurrency management.  Note that when or whether
6685 		 * @worker clears REBOUND doesn't affect correctness.
6686 		 *
6687 		 * WRITE_ONCE() is necessary because @worker->flags may be
6688 		 * tested without holding any lock in
6689 		 * wq_worker_running().  Without it, NOT_RUNNING test may
6690 		 * fail incorrectly leading to premature concurrency
6691 		 * management operations.
6692 		 */
6693 		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
6694 		worker_flags |= WORKER_REBOUND;
6695 		worker_flags &= ~WORKER_UNBOUND;
6696 		WRITE_ONCE(worker->flags, worker_flags);
6697 	}
6698 
6699 	raw_spin_unlock_irq(&pool->lock);
6700 }
6701 
6702 /**
6703  * restore_unbound_workers_cpumask - restore cpumask of unbound workers
6704  * @pool: unbound pool of interest
6705  * @cpu: the CPU which is coming up
6706  *
6707  * An unbound pool may end up with a cpumask which doesn't have any online
6708  * CPUs.  When a worker of such pool get scheduled, the scheduler resets
6709  * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
6710  * online CPU before, cpus_allowed of all its workers should be restored.
6711  */
6712 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
6713 {
6714 	static cpumask_t cpumask;
6715 	struct worker *worker;
6716 
6717 	lockdep_assert_held(&wq_pool_attach_mutex);
6718 
6719 	/* is @cpu allowed for @pool? */
6720 	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
6721 		return;
6722 
6723 	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
6724 
6725 	/* as we're called from CPU_ONLINE, the following shouldn't fail */
6726 	for_each_pool_worker(worker, pool)
6727 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
6728 }
6729 
6730 int workqueue_prepare_cpu(unsigned int cpu)
6731 {
6732 	struct worker_pool *pool;
6733 
6734 	for_each_cpu_worker_pool(pool, cpu) {
6735 		if (pool->nr_workers)
6736 			continue;
6737 		if (!create_worker(pool))
6738 			return -ENOMEM;
6739 	}
6740 	return 0;
6741 }
6742 
6743 int workqueue_online_cpu(unsigned int cpu)
6744 {
6745 	struct worker_pool *pool;
6746 	struct workqueue_struct *wq;
6747 	int pi;
6748 
6749 	mutex_lock(&wq_pool_mutex);
6750 
6751 	cpumask_set_cpu(cpu, wq_online_cpumask);
6752 
6753 	for_each_pool(pool, pi) {
6754 		/* BH pools aren't affected by hotplug */
6755 		if (pool->flags & POOL_BH)
6756 			continue;
6757 
6758 		mutex_lock(&wq_pool_attach_mutex);
6759 		if (pool->cpu == cpu)
6760 			rebind_workers(pool);
6761 		else if (pool->cpu < 0)
6762 			restore_unbound_workers_cpumask(pool, cpu);
6763 		mutex_unlock(&wq_pool_attach_mutex);
6764 	}
6765 
6766 	/* update pod affinity of unbound workqueues */
6767 	list_for_each_entry(wq, &workqueues, list) {
6768 		struct workqueue_attrs *attrs = wq->unbound_attrs;
6769 
6770 		if (attrs) {
6771 			const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
6772 			int tcpu;
6773 
6774 			for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
6775 				unbound_wq_update_pwq(wq, tcpu);
6776 
6777 			mutex_lock(&wq->mutex);
6778 			wq_update_node_max_active(wq, -1);
6779 			mutex_unlock(&wq->mutex);
6780 		}
6781 	}
6782 
6783 	mutex_unlock(&wq_pool_mutex);
6784 	return 0;
6785 }
6786 
6787 int workqueue_offline_cpu(unsigned int cpu)
6788 {
6789 	struct workqueue_struct *wq;
6790 
6791 	/* unbinding per-cpu workers should happen on the local CPU */
6792 	if (WARN_ON(cpu != smp_processor_id()))
6793 		return -1;
6794 
6795 	unbind_workers(cpu);
6796 
6797 	/* update pod affinity of unbound workqueues */
6798 	mutex_lock(&wq_pool_mutex);
6799 
6800 	cpumask_clear_cpu(cpu, wq_online_cpumask);
6801 
6802 	list_for_each_entry(wq, &workqueues, list) {
6803 		struct workqueue_attrs *attrs = wq->unbound_attrs;
6804 
6805 		if (attrs) {
6806 			const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
6807 			int tcpu;
6808 
6809 			for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
6810 				unbound_wq_update_pwq(wq, tcpu);
6811 
6812 			mutex_lock(&wq->mutex);
6813 			wq_update_node_max_active(wq, cpu);
6814 			mutex_unlock(&wq->mutex);
6815 		}
6816 	}
6817 	mutex_unlock(&wq_pool_mutex);
6818 
6819 	return 0;
6820 }
6821 
6822 struct work_for_cpu {
6823 	struct work_struct work;
6824 	long (*fn)(void *);
6825 	void *arg;
6826 	long ret;
6827 };
6828 
6829 static void work_for_cpu_fn(struct work_struct *work)
6830 {
6831 	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
6832 
6833 	wfc->ret = wfc->fn(wfc->arg);
6834 }
6835 
6836 /**
6837  * work_on_cpu_key - run a function in thread context on a particular cpu
6838  * @cpu: the cpu to run on
6839  * @fn: the function to run
6840  * @arg: the function arg
6841  * @key: The lock class key for lock debugging purposes
6842  *
6843  * It is up to the caller to ensure that the cpu doesn't go offline.
6844  * The caller must not hold any locks which would prevent @fn from completing.
6845  *
6846  * Return: The value @fn returns.
6847  */
6848 long work_on_cpu_key(int cpu, long (*fn)(void *),
6849 		     void *arg, struct lock_class_key *key)
6850 {
6851 	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
6852 
6853 	INIT_WORK_ONSTACK_KEY(&wfc.work, work_for_cpu_fn, key);
6854 	schedule_work_on(cpu, &wfc.work);
6855 	flush_work(&wfc.work);
6856 	destroy_work_on_stack(&wfc.work);
6857 	return wfc.ret;
6858 }
6859 EXPORT_SYMBOL_GPL(work_on_cpu_key);
6860 #endif /* CONFIG_SMP */
6861 
6862 #ifdef CONFIG_FREEZER
6863 
6864 /**
6865  * freeze_workqueues_begin - begin freezing workqueues
6866  *
6867  * Start freezing workqueues.  After this function returns, all freezable
6868  * workqueues will queue new works to their inactive_works list instead of
6869  * pool->worklist.
6870  *
6871  * CONTEXT:
6872  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
6873  */
6874 void freeze_workqueues_begin(void)
6875 {
6876 	struct workqueue_struct *wq;
6877 
6878 	mutex_lock(&wq_pool_mutex);
6879 
6880 	WARN_ON_ONCE(workqueue_freezing);
6881 	workqueue_freezing = true;
6882 
6883 	list_for_each_entry(wq, &workqueues, list) {
6884 		mutex_lock(&wq->mutex);
6885 		wq_adjust_max_active(wq);
6886 		mutex_unlock(&wq->mutex);
6887 	}
6888 
6889 	mutex_unlock(&wq_pool_mutex);
6890 }
6891 
6892 /**
6893  * freeze_workqueues_busy - are freezable workqueues still busy?
6894  *
6895  * Check whether freezing is complete.  This function must be called
6896  * between freeze_workqueues_begin() and thaw_workqueues().
6897  *
6898  * CONTEXT:
6899  * Grabs and releases wq_pool_mutex.
6900  *
6901  * Return:
6902  * %true if some freezable workqueues are still busy.  %false if freezing
6903  * is complete.
6904  */
6905 bool freeze_workqueues_busy(void)
6906 {
6907 	bool busy = false;
6908 	struct workqueue_struct *wq;
6909 	struct pool_workqueue *pwq;
6910 
6911 	mutex_lock(&wq_pool_mutex);
6912 
6913 	WARN_ON_ONCE(!workqueue_freezing);
6914 
6915 	list_for_each_entry(wq, &workqueues, list) {
6916 		if (!(wq->flags & WQ_FREEZABLE))
6917 			continue;
6918 		/*
6919 		 * nr_active is monotonically decreasing.  It's safe
6920 		 * to peek without lock.
6921 		 */
6922 		rcu_read_lock();
6923 		for_each_pwq(pwq, wq) {
6924 			WARN_ON_ONCE(pwq->nr_active < 0);
6925 			if (pwq->nr_active) {
6926 				busy = true;
6927 				rcu_read_unlock();
6928 				goto out_unlock;
6929 			}
6930 		}
6931 		rcu_read_unlock();
6932 	}
6933 out_unlock:
6934 	mutex_unlock(&wq_pool_mutex);
6935 	return busy;
6936 }
6937 
6938 /**
6939  * thaw_workqueues - thaw workqueues
6940  *
6941  * Thaw workqueues.  Normal queueing is restored and all collected
6942  * frozen works are transferred to their respective pool worklists.
6943  *
6944  * CONTEXT:
6945  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
6946  */
6947 void thaw_workqueues(void)
6948 {
6949 	struct workqueue_struct *wq;
6950 
6951 	mutex_lock(&wq_pool_mutex);
6952 
6953 	if (!workqueue_freezing)
6954 		goto out_unlock;
6955 
6956 	workqueue_freezing = false;
6957 
6958 	/* restore max_active and repopulate worklist */
6959 	list_for_each_entry(wq, &workqueues, list) {
6960 		mutex_lock(&wq->mutex);
6961 		wq_adjust_max_active(wq);
6962 		mutex_unlock(&wq->mutex);
6963 	}
6964 
6965 out_unlock:
6966 	mutex_unlock(&wq_pool_mutex);
6967 }
6968 #endif /* CONFIG_FREEZER */
6969 
6970 static int workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask)
6971 {
6972 	LIST_HEAD(ctxs);
6973 	int ret = 0;
6974 	struct workqueue_struct *wq;
6975 	struct apply_wqattrs_ctx *ctx, *n;
6976 
6977 	lockdep_assert_held(&wq_pool_mutex);
6978 
6979 	list_for_each_entry(wq, &workqueues, list) {
6980 		if (!(wq->flags & WQ_UNBOUND) || (wq->flags & __WQ_DESTROYING))
6981 			continue;
6982 
6983 		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs, unbound_cpumask);
6984 		if (IS_ERR(ctx)) {
6985 			ret = PTR_ERR(ctx);
6986 			break;
6987 		}
6988 
6989 		list_add_tail(&ctx->list, &ctxs);
6990 	}
6991 
6992 	list_for_each_entry_safe(ctx, n, &ctxs, list) {
6993 		if (!ret)
6994 			apply_wqattrs_commit(ctx);
6995 		apply_wqattrs_cleanup(ctx);
6996 	}
6997 
6998 	if (!ret) {
6999 		int cpu;
7000 		struct worker_pool *pool;
7001 		struct worker *worker;
7002 
7003 		mutex_lock(&wq_pool_attach_mutex);
7004 		cpumask_copy(wq_unbound_cpumask, unbound_cpumask);
7005 		/* rescuer needs to respect cpumask changes when it is not attached */
7006 		list_for_each_entry(wq, &workqueues, list) {
7007 			if (wq->rescuer && !wq->rescuer->pool)
7008 				unbind_worker(wq->rescuer);
7009 		}
7010 		/* DISASSOCIATED worker needs to respect wq_unbound_cpumask */
7011 		for_each_possible_cpu(cpu) {
7012 			for_each_cpu_worker_pool(pool, cpu) {
7013 				if (!(pool->flags & POOL_DISASSOCIATED))
7014 					continue;
7015 				for_each_pool_worker(worker, pool)
7016 					unbind_worker(worker);
7017 			}
7018 		}
7019 		mutex_unlock(&wq_pool_attach_mutex);
7020 	}
7021 	return ret;
7022 }
7023 
7024 /**
7025  * workqueue_unbound_housekeeping_update - Propagate housekeeping cpumask update
7026  * @hk: the new housekeeping cpumask
7027  *
7028  * Update the unbound workqueue cpumask on top of the new housekeeping cpumask such
7029  * that the effective unbound affinity is the intersection of the new housekeeping
7030  * with the requested affinity set via nohz_full=/isolcpus= or sysfs.
7031  *
7032  * Return: 0 on success and -errno on failure.
7033  */
7034 int workqueue_unbound_housekeeping_update(const struct cpumask *hk)
7035 {
7036 	cpumask_var_t cpumask;
7037 	int ret = 0;
7038 
7039 	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
7040 		return -ENOMEM;
7041 
7042 	mutex_lock(&wq_pool_mutex);
7043 
7044 	/*
7045 	 * If the operation fails, it will fall back to
7046 	 * wq_requested_unbound_cpumask which is initially set to
7047 	 * (HK_TYPE_WQ ∩ HK_TYPE_DOMAIN) house keeping mask and rewritten
7048 	 * by any subsequent write to workqueue/cpumask sysfs file.
7049 	 */
7050 	if (!cpumask_and(cpumask, wq_requested_unbound_cpumask, hk))
7051 		cpumask_copy(cpumask, wq_requested_unbound_cpumask);
7052 	if (!cpumask_equal(cpumask, wq_unbound_cpumask))
7053 		ret = workqueue_apply_unbound_cpumask(cpumask);
7054 
7055 	/* Save the current isolated cpumask & export it via sysfs */
7056 	if (!ret)
7057 		cpumask_andnot(wq_isolated_cpumask, cpu_possible_mask, hk);
7058 
7059 	mutex_unlock(&wq_pool_mutex);
7060 	free_cpumask_var(cpumask);
7061 	return ret;
7062 }
7063 
7064 static int parse_affn_scope(const char *val)
7065 {
7066 	int i;
7067 
7068 	for (i = 0; i < ARRAY_SIZE(wq_affn_names); i++) {
7069 		if (!strncasecmp(val, wq_affn_names[i], strlen(wq_affn_names[i])))
7070 			return i;
7071 	}
7072 	return -EINVAL;
7073 }
7074 
7075 static int wq_affn_dfl_set(const char *val, const struct kernel_param *kp)
7076 {
7077 	struct workqueue_struct *wq;
7078 	int affn, cpu;
7079 
7080 	affn = parse_affn_scope(val);
7081 	if (affn < 0)
7082 		return affn;
7083 	if (affn == WQ_AFFN_DFL)
7084 		return -EINVAL;
7085 
7086 	cpus_read_lock();
7087 	mutex_lock(&wq_pool_mutex);
7088 
7089 	wq_affn_dfl = affn;
7090 
7091 	list_for_each_entry(wq, &workqueues, list) {
7092 		for_each_online_cpu(cpu)
7093 			unbound_wq_update_pwq(wq, cpu);
7094 	}
7095 
7096 	mutex_unlock(&wq_pool_mutex);
7097 	cpus_read_unlock();
7098 
7099 	return 0;
7100 }
7101 
7102 static int wq_affn_dfl_get(char *buffer, const struct kernel_param *kp)
7103 {
7104 	return scnprintf(buffer, PAGE_SIZE, "%s\n", wq_affn_names[wq_affn_dfl]);
7105 }
7106 
7107 static const struct kernel_param_ops wq_affn_dfl_ops = {
7108 	.set	= wq_affn_dfl_set,
7109 	.get	= wq_affn_dfl_get,
7110 };
7111 
7112 module_param_cb(default_affinity_scope, &wq_affn_dfl_ops, NULL, 0644);
7113 
7114 #ifdef CONFIG_SYSFS
7115 /*
7116  * Workqueues with WQ_SYSFS flag set is visible to userland via
7117  * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
7118  * following attributes.
7119  *
7120  *  per_cpu		RO bool	: whether the workqueue is per-cpu or unbound
7121  *  max_active		RW int	: maximum number of in-flight work items
7122  *
7123  * Unbound workqueues have the following extra attributes.
7124  *
7125  *  nice		RW int	: nice value of the workers
7126  *  cpumask		RW mask	: bitmask of allowed CPUs for the workers
7127  *  affinity_scope	RW str  : worker CPU affinity scope (cache, numa, none)
7128  *  affinity_strict	RW bool : worker CPU affinity is strict
7129  */
7130 struct wq_device {
7131 	struct workqueue_struct		*wq;
7132 	struct device			dev;
7133 };
7134 
7135 static struct workqueue_struct *dev_to_wq(struct device *dev)
7136 {
7137 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
7138 
7139 	return wq_dev->wq;
7140 }
7141 
7142 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
7143 			    char *buf)
7144 {
7145 	struct workqueue_struct *wq = dev_to_wq(dev);
7146 
7147 	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
7148 }
7149 static DEVICE_ATTR_RO(per_cpu);
7150 
7151 static ssize_t max_active_show(struct device *dev,
7152 			       struct device_attribute *attr, char *buf)
7153 {
7154 	struct workqueue_struct *wq = dev_to_wq(dev);
7155 
7156 	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
7157 }
7158 
7159 static ssize_t max_active_store(struct device *dev,
7160 				struct device_attribute *attr, const char *buf,
7161 				size_t count)
7162 {
7163 	struct workqueue_struct *wq = dev_to_wq(dev);
7164 	int val;
7165 
7166 	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
7167 		return -EINVAL;
7168 
7169 	workqueue_set_max_active(wq, val);
7170 	return count;
7171 }
7172 static DEVICE_ATTR_RW(max_active);
7173 
7174 static struct attribute *wq_sysfs_attrs[] = {
7175 	&dev_attr_per_cpu.attr,
7176 	&dev_attr_max_active.attr,
7177 	NULL,
7178 };
7179 ATTRIBUTE_GROUPS(wq_sysfs);
7180 
7181 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
7182 			    char *buf)
7183 {
7184 	struct workqueue_struct *wq = dev_to_wq(dev);
7185 	int written;
7186 
7187 	mutex_lock(&wq->mutex);
7188 	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
7189 	mutex_unlock(&wq->mutex);
7190 
7191 	return written;
7192 }
7193 
7194 /* prepare workqueue_attrs for sysfs store operations */
7195 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
7196 {
7197 	struct workqueue_attrs *attrs;
7198 
7199 	lockdep_assert_held(&wq_pool_mutex);
7200 
7201 	attrs = alloc_workqueue_attrs();
7202 	if (!attrs)
7203 		return NULL;
7204 
7205 	copy_workqueue_attrs(attrs, wq->unbound_attrs);
7206 	return attrs;
7207 }
7208 
7209 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
7210 			     const char *buf, size_t count)
7211 {
7212 	struct workqueue_struct *wq = dev_to_wq(dev);
7213 	struct workqueue_attrs *attrs;
7214 	int ret = -ENOMEM;
7215 
7216 	apply_wqattrs_lock();
7217 
7218 	attrs = wq_sysfs_prep_attrs(wq);
7219 	if (!attrs)
7220 		goto out_unlock;
7221 
7222 	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
7223 	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
7224 		ret = apply_workqueue_attrs_locked(wq, attrs);
7225 	else
7226 		ret = -EINVAL;
7227 
7228 out_unlock:
7229 	apply_wqattrs_unlock();
7230 	free_workqueue_attrs(attrs);
7231 	return ret ?: count;
7232 }
7233 
7234 static ssize_t wq_cpumask_show(struct device *dev,
7235 			       struct device_attribute *attr, char *buf)
7236 {
7237 	struct workqueue_struct *wq = dev_to_wq(dev);
7238 	int written;
7239 
7240 	mutex_lock(&wq->mutex);
7241 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
7242 			    cpumask_pr_args(wq->unbound_attrs->cpumask));
7243 	mutex_unlock(&wq->mutex);
7244 	return written;
7245 }
7246 
7247 static ssize_t wq_cpumask_store(struct device *dev,
7248 				struct device_attribute *attr,
7249 				const char *buf, size_t count)
7250 {
7251 	struct workqueue_struct *wq = dev_to_wq(dev);
7252 	struct workqueue_attrs *attrs;
7253 	int ret = -ENOMEM;
7254 
7255 	apply_wqattrs_lock();
7256 
7257 	attrs = wq_sysfs_prep_attrs(wq);
7258 	if (!attrs)
7259 		goto out_unlock;
7260 
7261 	ret = cpumask_parse(buf, attrs->cpumask);
7262 	if (!ret)
7263 		ret = apply_workqueue_attrs_locked(wq, attrs);
7264 
7265 out_unlock:
7266 	apply_wqattrs_unlock();
7267 	free_workqueue_attrs(attrs);
7268 	return ret ?: count;
7269 }
7270 
7271 static ssize_t wq_affn_scope_show(struct device *dev,
7272 				  struct device_attribute *attr, char *buf)
7273 {
7274 	struct workqueue_struct *wq = dev_to_wq(dev);
7275 	int written;
7276 
7277 	mutex_lock(&wq->mutex);
7278 	if (wq->unbound_attrs->affn_scope == WQ_AFFN_DFL)
7279 		written = scnprintf(buf, PAGE_SIZE, "%s (%s)\n",
7280 				    wq_affn_names[WQ_AFFN_DFL],
7281 				    wq_affn_names[wq_affn_dfl]);
7282 	else
7283 		written = scnprintf(buf, PAGE_SIZE, "%s\n",
7284 				    wq_affn_names[wq->unbound_attrs->affn_scope]);
7285 	mutex_unlock(&wq->mutex);
7286 
7287 	return written;
7288 }
7289 
7290 static ssize_t wq_affn_scope_store(struct device *dev,
7291 				   struct device_attribute *attr,
7292 				   const char *buf, size_t count)
7293 {
7294 	struct workqueue_struct *wq = dev_to_wq(dev);
7295 	struct workqueue_attrs *attrs;
7296 	int affn, ret = -ENOMEM;
7297 
7298 	affn = parse_affn_scope(buf);
7299 	if (affn < 0)
7300 		return affn;
7301 
7302 	apply_wqattrs_lock();
7303 	attrs = wq_sysfs_prep_attrs(wq);
7304 	if (attrs) {
7305 		attrs->affn_scope = affn;
7306 		ret = apply_workqueue_attrs_locked(wq, attrs);
7307 	}
7308 	apply_wqattrs_unlock();
7309 	free_workqueue_attrs(attrs);
7310 	return ret ?: count;
7311 }
7312 
7313 static ssize_t wq_affinity_strict_show(struct device *dev,
7314 				       struct device_attribute *attr, char *buf)
7315 {
7316 	struct workqueue_struct *wq = dev_to_wq(dev);
7317 
7318 	return scnprintf(buf, PAGE_SIZE, "%d\n",
7319 			 wq->unbound_attrs->affn_strict);
7320 }
7321 
7322 static ssize_t wq_affinity_strict_store(struct device *dev,
7323 					struct device_attribute *attr,
7324 					const char *buf, size_t count)
7325 {
7326 	struct workqueue_struct *wq = dev_to_wq(dev);
7327 	struct workqueue_attrs *attrs;
7328 	int v, ret = -ENOMEM;
7329 
7330 	if (sscanf(buf, "%d", &v) != 1)
7331 		return -EINVAL;
7332 
7333 	apply_wqattrs_lock();
7334 	attrs = wq_sysfs_prep_attrs(wq);
7335 	if (attrs) {
7336 		attrs->affn_strict = (bool)v;
7337 		ret = apply_workqueue_attrs_locked(wq, attrs);
7338 	}
7339 	apply_wqattrs_unlock();
7340 	free_workqueue_attrs(attrs);
7341 	return ret ?: count;
7342 }
7343 
7344 static struct device_attribute wq_sysfs_unbound_attrs[] = {
7345 	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
7346 	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
7347 	__ATTR(affinity_scope, 0644, wq_affn_scope_show, wq_affn_scope_store),
7348 	__ATTR(affinity_strict, 0644, wq_affinity_strict_show, wq_affinity_strict_store),
7349 	__ATTR_NULL,
7350 };
7351 
7352 static const struct bus_type wq_subsys = {
7353 	.name				= "workqueue",
7354 	.dev_groups			= wq_sysfs_groups,
7355 };
7356 
7357 /**
7358  *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
7359  *  @cpumask: the cpumask to set
7360  *
7361  *  The low-level workqueues cpumask is a global cpumask that limits
7362  *  the affinity of all unbound workqueues.  This function check the @cpumask
7363  *  and apply it to all unbound workqueues and updates all pwqs of them.
7364  *
7365  *  Return:	0	- Success
7366  *		-EINVAL	- Invalid @cpumask
7367  *		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
7368  */
7369 static int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
7370 {
7371 	int ret = -EINVAL;
7372 
7373 	/*
7374 	 * Not excluding isolated cpus on purpose.
7375 	 * If the user wishes to include them, we allow that.
7376 	 */
7377 	cpumask_and(cpumask, cpumask, cpu_possible_mask);
7378 	if (!cpumask_empty(cpumask)) {
7379 		ret = 0;
7380 		apply_wqattrs_lock();
7381 		if (!cpumask_equal(cpumask, wq_unbound_cpumask))
7382 			ret = workqueue_apply_unbound_cpumask(cpumask);
7383 		if (!ret)
7384 			cpumask_copy(wq_requested_unbound_cpumask, cpumask);
7385 		apply_wqattrs_unlock();
7386 	}
7387 
7388 	return ret;
7389 }
7390 
7391 static ssize_t __wq_cpumask_show(struct device *dev,
7392 		struct device_attribute *attr, char *buf, cpumask_var_t mask)
7393 {
7394 	int written;
7395 
7396 	mutex_lock(&wq_pool_mutex);
7397 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n", cpumask_pr_args(mask));
7398 	mutex_unlock(&wq_pool_mutex);
7399 
7400 	return written;
7401 }
7402 
7403 static ssize_t cpumask_requested_show(struct device *dev,
7404 		struct device_attribute *attr, char *buf)
7405 {
7406 	return __wq_cpumask_show(dev, attr, buf, wq_requested_unbound_cpumask);
7407 }
7408 static DEVICE_ATTR_RO(cpumask_requested);
7409 
7410 static ssize_t cpumask_isolated_show(struct device *dev,
7411 		struct device_attribute *attr, char *buf)
7412 {
7413 	return __wq_cpumask_show(dev, attr, buf, wq_isolated_cpumask);
7414 }
7415 static DEVICE_ATTR_RO(cpumask_isolated);
7416 
7417 static ssize_t cpumask_show(struct device *dev,
7418 		struct device_attribute *attr, char *buf)
7419 {
7420 	return __wq_cpumask_show(dev, attr, buf, wq_unbound_cpumask);
7421 }
7422 
7423 static ssize_t cpumask_store(struct device *dev,
7424 		struct device_attribute *attr, const char *buf, size_t count)
7425 {
7426 	cpumask_var_t cpumask;
7427 	int ret;
7428 
7429 	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
7430 		return -ENOMEM;
7431 
7432 	ret = cpumask_parse(buf, cpumask);
7433 	if (!ret)
7434 		ret = workqueue_set_unbound_cpumask(cpumask);
7435 
7436 	free_cpumask_var(cpumask);
7437 	return ret ? ret : count;
7438 }
7439 static DEVICE_ATTR_RW(cpumask);
7440 
7441 static struct attribute *wq_sysfs_cpumask_attrs[] = {
7442 	&dev_attr_cpumask.attr,
7443 	&dev_attr_cpumask_requested.attr,
7444 	&dev_attr_cpumask_isolated.attr,
7445 	NULL,
7446 };
7447 ATTRIBUTE_GROUPS(wq_sysfs_cpumask);
7448 
7449 static int __init wq_sysfs_init(void)
7450 {
7451 	return subsys_virtual_register(&wq_subsys, wq_sysfs_cpumask_groups);
7452 }
7453 core_initcall(wq_sysfs_init);
7454 
7455 static void wq_device_release(struct device *dev)
7456 {
7457 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
7458 
7459 	kfree(wq_dev);
7460 }
7461 
7462 /**
7463  * workqueue_sysfs_register - make a workqueue visible in sysfs
7464  * @wq: the workqueue to register
7465  *
7466  * Expose @wq in sysfs under /sys/bus/workqueue/devices.
7467  * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
7468  * which is the preferred method.
7469  *
7470  * Workqueue user should use this function directly iff it wants to apply
7471  * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
7472  * apply_workqueue_attrs() may race against userland updating the
7473  * attributes.
7474  *
7475  * Return: 0 on success, -errno on failure.
7476  */
7477 int workqueue_sysfs_register(struct workqueue_struct *wq)
7478 {
7479 	struct wq_device *wq_dev;
7480 	int ret;
7481 
7482 	/*
7483 	 * Adjusting max_active breaks ordering guarantee.  Disallow exposing
7484 	 * ordered workqueues.
7485 	 */
7486 	if (WARN_ON(wq->flags & __WQ_ORDERED))
7487 		return -EINVAL;
7488 
7489 	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
7490 	if (!wq_dev)
7491 		return -ENOMEM;
7492 
7493 	wq_dev->wq = wq;
7494 	wq_dev->dev.bus = &wq_subsys;
7495 	wq_dev->dev.release = wq_device_release;
7496 	dev_set_name(&wq_dev->dev, "%s", wq->name);
7497 
7498 	/*
7499 	 * unbound_attrs are created separately.  Suppress uevent until
7500 	 * everything is ready.
7501 	 */
7502 	dev_set_uevent_suppress(&wq_dev->dev, true);
7503 
7504 	ret = device_register(&wq_dev->dev);
7505 	if (ret) {
7506 		put_device(&wq_dev->dev);
7507 		wq->wq_dev = NULL;
7508 		return ret;
7509 	}
7510 
7511 	if (wq->flags & WQ_UNBOUND) {
7512 		struct device_attribute *attr;
7513 
7514 		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
7515 			ret = device_create_file(&wq_dev->dev, attr);
7516 			if (ret) {
7517 				device_unregister(&wq_dev->dev);
7518 				wq->wq_dev = NULL;
7519 				return ret;
7520 			}
7521 		}
7522 	}
7523 
7524 	dev_set_uevent_suppress(&wq_dev->dev, false);
7525 	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
7526 	return 0;
7527 }
7528 
7529 /**
7530  * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
7531  * @wq: the workqueue to unregister
7532  *
7533  * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
7534  */
7535 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
7536 {
7537 	struct wq_device *wq_dev = wq->wq_dev;
7538 
7539 	if (!wq->wq_dev)
7540 		return;
7541 
7542 	wq->wq_dev = NULL;
7543 	device_unregister(&wq_dev->dev);
7544 }
7545 #else	/* CONFIG_SYSFS */
7546 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
7547 #endif	/* CONFIG_SYSFS */
7548 
7549 /*
7550  * Workqueue watchdog.
7551  *
7552  * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
7553  * flush dependency, a concurrency managed work item which stays RUNNING
7554  * indefinitely.  Workqueue stalls can be very difficult to debug as the
7555  * usual warning mechanisms don't trigger and internal workqueue state is
7556  * largely opaque.
7557  *
7558  * Workqueue watchdog monitors all worker pools periodically and dumps
7559  * state if some pools failed to make forward progress for a while where
7560  * forward progress is defined as the first item on ->worklist changing.
7561  *
7562  * This mechanism is controlled through the kernel parameter
7563  * "workqueue.watchdog_thresh" which can be updated at runtime through the
7564  * corresponding sysfs parameter file.
7565  */
7566 #ifdef CONFIG_WQ_WATCHDOG
7567 
7568 static unsigned long wq_watchdog_thresh = 30;
7569 static struct timer_list wq_watchdog_timer;
7570 
7571 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
7572 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
7573 
7574 static unsigned int wq_panic_on_stall = CONFIG_BOOTPARAM_WQ_STALL_PANIC;
7575 module_param_named(panic_on_stall, wq_panic_on_stall, uint, 0644);
7576 
7577 static unsigned int wq_panic_on_stall_time;
7578 module_param_named(panic_on_stall_time, wq_panic_on_stall_time, uint, 0644);
7579 MODULE_PARM_DESC(panic_on_stall_time, "Panic if stall exceeds this many seconds (0=disabled)");
7580 
7581 /*
7582  * Show workers that might prevent the processing of pending work items.
7583  * The only candidates are CPU-bound workers in the running state.
7584  * Pending work items should be handled by another idle worker
7585  * in all other situations.
7586  */
7587 static void show_cpu_pool_hog(struct worker_pool *pool)
7588 {
7589 	struct worker *worker;
7590 	unsigned long irq_flags;
7591 	int bkt;
7592 
7593 	raw_spin_lock_irqsave(&pool->lock, irq_flags);
7594 
7595 	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
7596 		if (task_is_running(worker->task)) {
7597 			/*
7598 			 * Defer printing to avoid deadlocks in console
7599 			 * drivers that queue work while holding locks
7600 			 * also taken in their write paths.
7601 			 */
7602 			printk_deferred_enter();
7603 
7604 			pr_info("pool %d:\n", pool->id);
7605 			sched_show_task(worker->task);
7606 
7607 			printk_deferred_exit();
7608 		}
7609 	}
7610 
7611 	raw_spin_unlock_irqrestore(&pool->lock, irq_flags);
7612 }
7613 
7614 static void show_cpu_pools_hogs(void)
7615 {
7616 	struct worker_pool *pool;
7617 	int pi;
7618 
7619 	pr_info("Showing backtraces of running workers in stalled CPU-bound worker pools:\n");
7620 
7621 	rcu_read_lock();
7622 
7623 	for_each_pool(pool, pi) {
7624 		if (pool->cpu_stall)
7625 			show_cpu_pool_hog(pool);
7626 
7627 	}
7628 
7629 	rcu_read_unlock();
7630 }
7631 
7632 /*
7633  * It triggers a panic in two scenarios: when the total number of stalls
7634  * exceeds a threshold, and when a stall lasts longer than
7635  * wq_panic_on_stall_time
7636  */
7637 static void panic_on_wq_watchdog(unsigned int stall_time_sec)
7638 {
7639 	static unsigned int wq_stall;
7640 
7641 	if (wq_panic_on_stall) {
7642 		wq_stall++;
7643 		if (wq_stall >= wq_panic_on_stall)
7644 			panic("workqueue: %u stall(s) exceeded threshold %u\n",
7645 			      wq_stall, wq_panic_on_stall);
7646 	}
7647 
7648 	if (wq_panic_on_stall_time && stall_time_sec >= wq_panic_on_stall_time)
7649 		panic("workqueue: stall lasted %us, exceeding threshold %us\n",
7650 		      stall_time_sec, wq_panic_on_stall_time);
7651 }
7652 
7653 static void wq_watchdog_reset_touched(void)
7654 {
7655 	int cpu;
7656 
7657 	wq_watchdog_touched = jiffies;
7658 	for_each_possible_cpu(cpu)
7659 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
7660 }
7661 
7662 static void wq_watchdog_timer_fn(struct timer_list *unused)
7663 {
7664 	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
7665 	unsigned int max_stall_time = 0;
7666 	bool lockup_detected = false;
7667 	bool cpu_pool_stall = false;
7668 	unsigned long now = jiffies;
7669 	struct worker_pool *pool;
7670 	unsigned int stall_time;
7671 	int pi;
7672 
7673 	if (!thresh)
7674 		return;
7675 
7676 	for_each_pool(pool, pi) {
7677 		unsigned long pool_ts, touched, ts;
7678 
7679 		pool->cpu_stall = false;
7680 		if (list_empty(&pool->worklist))
7681 			continue;
7682 
7683 		/*
7684 		 * If a virtual machine is stopped by the host it can look to
7685 		 * the watchdog like a stall.
7686 		 */
7687 		kvm_check_and_clear_guest_paused();
7688 
7689 		/* get the latest of pool and touched timestamps */
7690 		if (pool->cpu >= 0)
7691 			touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu));
7692 		else
7693 			touched = READ_ONCE(wq_watchdog_touched);
7694 		pool_ts = READ_ONCE(pool->watchdog_ts);
7695 
7696 		if (time_after(pool_ts, touched))
7697 			ts = pool_ts;
7698 		else
7699 			ts = touched;
7700 
7701 		/* did we stall? */
7702 		if (time_after(now, ts + thresh)) {
7703 			lockup_detected = true;
7704 			stall_time = jiffies_to_msecs(now - pool_ts) / 1000;
7705 			max_stall_time = max(max_stall_time, stall_time);
7706 			if (pool->cpu >= 0 && !(pool->flags & POOL_BH)) {
7707 				pool->cpu_stall = true;
7708 				cpu_pool_stall = true;
7709 			}
7710 			pr_emerg("BUG: workqueue lockup - pool");
7711 			pr_cont_pool_info(pool);
7712 			pr_cont(" stuck for %us!\n", stall_time);
7713 		}
7714 
7715 
7716 	}
7717 
7718 	if (lockup_detected)
7719 		show_all_workqueues();
7720 
7721 	if (cpu_pool_stall)
7722 		show_cpu_pools_hogs();
7723 
7724 	if (lockup_detected)
7725 		panic_on_wq_watchdog(max_stall_time);
7726 
7727 	wq_watchdog_reset_touched();
7728 	mod_timer(&wq_watchdog_timer, jiffies + thresh);
7729 }
7730 
7731 notrace void wq_watchdog_touch(int cpu)
7732 {
7733 	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
7734 	unsigned long touch_ts = READ_ONCE(wq_watchdog_touched);
7735 	unsigned long now = jiffies;
7736 
7737 	if (cpu >= 0)
7738 		per_cpu(wq_watchdog_touched_cpu, cpu) = now;
7739 	else
7740 		WARN_ONCE(1, "%s should be called with valid CPU", __func__);
7741 
7742 	/* Don't unnecessarily store to global cacheline */
7743 	if (time_after(now, touch_ts + thresh / 4))
7744 		WRITE_ONCE(wq_watchdog_touched, jiffies);
7745 }
7746 
7747 static void wq_watchdog_set_thresh(unsigned long thresh)
7748 {
7749 	wq_watchdog_thresh = 0;
7750 	timer_delete_sync(&wq_watchdog_timer);
7751 
7752 	if (thresh) {
7753 		wq_watchdog_thresh = thresh;
7754 		wq_watchdog_reset_touched();
7755 		mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
7756 	}
7757 }
7758 
7759 static int wq_watchdog_param_set_thresh(const char *val,
7760 					const struct kernel_param *kp)
7761 {
7762 	unsigned long thresh;
7763 	int ret;
7764 
7765 	ret = kstrtoul(val, 0, &thresh);
7766 	if (ret)
7767 		return ret;
7768 
7769 	if (system_percpu_wq)
7770 		wq_watchdog_set_thresh(thresh);
7771 	else
7772 		wq_watchdog_thresh = thresh;
7773 
7774 	return 0;
7775 }
7776 
7777 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
7778 	.set	= wq_watchdog_param_set_thresh,
7779 	.get	= param_get_ulong,
7780 };
7781 
7782 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
7783 		0644);
7784 
7785 static void wq_watchdog_init(void)
7786 {
7787 	timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
7788 	wq_watchdog_set_thresh(wq_watchdog_thresh);
7789 }
7790 
7791 #else	/* CONFIG_WQ_WATCHDOG */
7792 
7793 static inline void wq_watchdog_init(void) { }
7794 
7795 #endif	/* CONFIG_WQ_WATCHDOG */
7796 
7797 static void bh_pool_kick_normal(struct irq_work *irq_work)
7798 {
7799 	raise_softirq_irqoff(TASKLET_SOFTIRQ);
7800 }
7801 
7802 static void bh_pool_kick_highpri(struct irq_work *irq_work)
7803 {
7804 	raise_softirq_irqoff(HI_SOFTIRQ);
7805 }
7806 
7807 static void __init restrict_unbound_cpumask(const char *name, const struct cpumask *mask)
7808 {
7809 	if (!cpumask_intersects(wq_unbound_cpumask, mask)) {
7810 		pr_warn("workqueue: Restricting unbound_cpumask (%*pb) with %s (%*pb) leaves no CPU, ignoring\n",
7811 			cpumask_pr_args(wq_unbound_cpumask), name, cpumask_pr_args(mask));
7812 		return;
7813 	}
7814 
7815 	cpumask_and(wq_unbound_cpumask, wq_unbound_cpumask, mask);
7816 }
7817 
7818 static void __init init_cpu_worker_pool(struct worker_pool *pool, int cpu, int nice)
7819 {
7820 	BUG_ON(init_worker_pool(pool));
7821 	pool->cpu = cpu;
7822 	cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7823 	cpumask_copy(pool->attrs->__pod_cpumask, cpumask_of(cpu));
7824 	pool->attrs->nice = nice;
7825 	pool->attrs->affn_strict = true;
7826 	pool->node = cpu_to_node(cpu);
7827 
7828 	/* alloc pool ID */
7829 	mutex_lock(&wq_pool_mutex);
7830 	BUG_ON(worker_pool_assign_id(pool));
7831 	mutex_unlock(&wq_pool_mutex);
7832 }
7833 
7834 /**
7835  * workqueue_init_early - early init for workqueue subsystem
7836  *
7837  * This is the first step of three-staged workqueue subsystem initialization and
7838  * invoked as soon as the bare basics - memory allocation, cpumasks and idr are
7839  * up. It sets up all the data structures and system workqueues and allows early
7840  * boot code to create workqueues and queue/cancel work items. Actual work item
7841  * execution starts only after kthreads can be created and scheduled right
7842  * before early initcalls.
7843  */
7844 void __init workqueue_init_early(void)
7845 {
7846 	struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_SYSTEM];
7847 	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
7848 	void (*irq_work_fns[2])(struct irq_work *) = { bh_pool_kick_normal,
7849 						       bh_pool_kick_highpri };
7850 	int i, cpu;
7851 
7852 	BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
7853 
7854 	BUG_ON(!alloc_cpumask_var(&wq_online_cpumask, GFP_KERNEL));
7855 	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
7856 	BUG_ON(!alloc_cpumask_var(&wq_requested_unbound_cpumask, GFP_KERNEL));
7857 	BUG_ON(!zalloc_cpumask_var(&wq_isolated_cpumask, GFP_KERNEL));
7858 
7859 	cpumask_copy(wq_online_cpumask, cpu_online_mask);
7860 	cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);
7861 	restrict_unbound_cpumask("HK_TYPE_WQ", housekeeping_cpumask(HK_TYPE_WQ));
7862 	restrict_unbound_cpumask("HK_TYPE_DOMAIN", housekeeping_cpumask(HK_TYPE_DOMAIN));
7863 	if (!cpumask_empty(&wq_cmdline_cpumask))
7864 		restrict_unbound_cpumask("workqueue.unbound_cpus", &wq_cmdline_cpumask);
7865 
7866 	cpumask_copy(wq_requested_unbound_cpumask, wq_unbound_cpumask);
7867 	cpumask_andnot(wq_isolated_cpumask, cpu_possible_mask,
7868 						housekeeping_cpumask(HK_TYPE_DOMAIN));
7869 	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
7870 
7871 	unbound_wq_update_pwq_attrs_buf = alloc_workqueue_attrs();
7872 	BUG_ON(!unbound_wq_update_pwq_attrs_buf);
7873 
7874 	/*
7875 	 * If nohz_full is enabled, set power efficient workqueue as unbound.
7876 	 * This allows workqueue items to be moved to HK CPUs.
7877 	 */
7878 	if (housekeeping_enabled(HK_TYPE_TICK))
7879 		wq_power_efficient = true;
7880 
7881 	/* initialize WQ_AFFN_SYSTEM pods */
7882 	pt->pod_cpus = kcalloc(1, sizeof(pt->pod_cpus[0]), GFP_KERNEL);
7883 	pt->pod_node = kcalloc(1, sizeof(pt->pod_node[0]), GFP_KERNEL);
7884 	pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL);
7885 	BUG_ON(!pt->pod_cpus || !pt->pod_node || !pt->cpu_pod);
7886 
7887 	BUG_ON(!zalloc_cpumask_var_node(&pt->pod_cpus[0], GFP_KERNEL, NUMA_NO_NODE));
7888 
7889 	pt->nr_pods = 1;
7890 	cpumask_copy(pt->pod_cpus[0], cpu_possible_mask);
7891 	pt->pod_node[0] = NUMA_NO_NODE;
7892 	pt->cpu_pod[0] = 0;
7893 
7894 	/* initialize BH and CPU pools */
7895 	for_each_possible_cpu(cpu) {
7896 		struct worker_pool *pool;
7897 
7898 		i = 0;
7899 		for_each_bh_worker_pool(pool, cpu) {
7900 			init_cpu_worker_pool(pool, cpu, std_nice[i]);
7901 			pool->flags |= POOL_BH;
7902 			init_irq_work(bh_pool_irq_work(pool), irq_work_fns[i]);
7903 			i++;
7904 		}
7905 
7906 		i = 0;
7907 		for_each_cpu_worker_pool(pool, cpu)
7908 			init_cpu_worker_pool(pool, cpu, std_nice[i++]);
7909 	}
7910 
7911 	/* create default unbound and ordered wq attrs */
7912 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
7913 		struct workqueue_attrs *attrs;
7914 
7915 		BUG_ON(!(attrs = alloc_workqueue_attrs()));
7916 		attrs->nice = std_nice[i];
7917 		unbound_std_wq_attrs[i] = attrs;
7918 
7919 		/*
7920 		 * An ordered wq should have only one pwq as ordering is
7921 		 * guaranteed by max_active which is enforced by pwqs.
7922 		 */
7923 		BUG_ON(!(attrs = alloc_workqueue_attrs()));
7924 		attrs->nice = std_nice[i];
7925 		attrs->ordered = true;
7926 		ordered_wq_attrs[i] = attrs;
7927 	}
7928 
7929 	system_wq = alloc_workqueue("events", WQ_PERCPU, 0);
7930 	system_percpu_wq = alloc_workqueue("events", WQ_PERCPU, 0);
7931 	system_highpri_wq = alloc_workqueue("events_highpri",
7932 					    WQ_HIGHPRI | WQ_PERCPU, 0);
7933 	system_long_wq = alloc_workqueue("events_long", WQ_PERCPU, 0);
7934 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, WQ_MAX_ACTIVE);
7935 	system_dfl_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, WQ_MAX_ACTIVE);
7936 	system_freezable_wq = alloc_workqueue("events_freezable",
7937 					      WQ_FREEZABLE | WQ_PERCPU, 0);
7938 	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
7939 					      WQ_POWER_EFFICIENT | WQ_PERCPU, 0);
7940 	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_pwr_efficient",
7941 					      WQ_FREEZABLE | WQ_POWER_EFFICIENT | WQ_PERCPU, 0);
7942 	system_bh_wq = alloc_workqueue("events_bh", WQ_BH | WQ_PERCPU, 0);
7943 	system_bh_highpri_wq = alloc_workqueue("events_bh_highpri",
7944 					       WQ_BH | WQ_HIGHPRI | WQ_PERCPU, 0);
7945 	BUG_ON(!system_wq || !system_percpu_wq|| !system_highpri_wq || !system_long_wq ||
7946 	       !system_unbound_wq || !system_freezable_wq || !system_dfl_wq ||
7947 	       !system_power_efficient_wq ||
7948 	       !system_freezable_power_efficient_wq ||
7949 	       !system_bh_wq || !system_bh_highpri_wq);
7950 }
7951 
7952 static void __init wq_cpu_intensive_thresh_init(void)
7953 {
7954 	unsigned long thresh;
7955 	unsigned long bogo;
7956 
7957 	pwq_release_worker = kthread_run_worker(0, "pool_workqueue_release");
7958 	BUG_ON(IS_ERR(pwq_release_worker));
7959 
7960 	/* if the user set it to a specific value, keep it */
7961 	if (wq_cpu_intensive_thresh_us != ULONG_MAX)
7962 		return;
7963 
7964 	/*
7965 	 * The default of 10ms is derived from the fact that most modern (as of
7966 	 * 2023) processors can do a lot in 10ms and that it's just below what
7967 	 * most consider human-perceivable. However, the kernel also runs on a
7968 	 * lot slower CPUs including microcontrollers where the threshold is way
7969 	 * too low.
7970 	 *
7971 	 * Let's scale up the threshold upto 1 second if BogoMips is below 4000.
7972 	 * This is by no means accurate but it doesn't have to be. The mechanism
7973 	 * is still useful even when the threshold is fully scaled up. Also, as
7974 	 * the reports would usually be applicable to everyone, some machines
7975 	 * operating on longer thresholds won't significantly diminish their
7976 	 * usefulness.
7977 	 */
7978 	thresh = 10 * USEC_PER_MSEC;
7979 
7980 	/* see init/calibrate.c for lpj -> BogoMIPS calculation */
7981 	bogo = max_t(unsigned long, loops_per_jiffy / 500000 * HZ, 1);
7982 	if (bogo < 4000)
7983 		thresh = min_t(unsigned long, thresh * 4000 / bogo, USEC_PER_SEC);
7984 
7985 	pr_debug("wq_cpu_intensive_thresh: lpj=%lu BogoMIPS=%lu thresh_us=%lu\n",
7986 		 loops_per_jiffy, bogo, thresh);
7987 
7988 	wq_cpu_intensive_thresh_us = thresh;
7989 }
7990 
7991 /**
7992  * workqueue_init - bring workqueue subsystem fully online
7993  *
7994  * This is the second step of three-staged workqueue subsystem initialization
7995  * and invoked as soon as kthreads can be created and scheduled. Workqueues have
7996  * been created and work items queued on them, but there are no kworkers
7997  * executing the work items yet. Populate the worker pools with the initial
7998  * workers and enable future kworker creations.
7999  */
8000 void __init workqueue_init(void)
8001 {
8002 	struct workqueue_struct *wq;
8003 	struct worker_pool *pool;
8004 	int cpu, bkt;
8005 
8006 	wq_cpu_intensive_thresh_init();
8007 
8008 	mutex_lock(&wq_pool_mutex);
8009 
8010 	/*
8011 	 * Per-cpu pools created earlier could be missing node hint. Fix them
8012 	 * up. Also, create a rescuer for workqueues that requested it.
8013 	 */
8014 	for_each_possible_cpu(cpu) {
8015 		for_each_bh_worker_pool(pool, cpu)
8016 			pool->node = cpu_to_node(cpu);
8017 		for_each_cpu_worker_pool(pool, cpu)
8018 			pool->node = cpu_to_node(cpu);
8019 	}
8020 
8021 	list_for_each_entry(wq, &workqueues, list) {
8022 		WARN(init_rescuer(wq),
8023 		     "workqueue: failed to create early rescuer for %s",
8024 		     wq->name);
8025 	}
8026 
8027 	mutex_unlock(&wq_pool_mutex);
8028 
8029 	/*
8030 	 * Create the initial workers. A BH pool has one pseudo worker that
8031 	 * represents the shared BH execution context and thus doesn't get
8032 	 * affected by hotplug events. Create the BH pseudo workers for all
8033 	 * possible CPUs here.
8034 	 */
8035 	for_each_possible_cpu(cpu)
8036 		for_each_bh_worker_pool(pool, cpu)
8037 			BUG_ON(!create_worker(pool));
8038 
8039 	for_each_online_cpu(cpu) {
8040 		for_each_cpu_worker_pool(pool, cpu) {
8041 			pool->flags &= ~POOL_DISASSOCIATED;
8042 			BUG_ON(!create_worker(pool));
8043 		}
8044 	}
8045 
8046 	hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
8047 		BUG_ON(!create_worker(pool));
8048 
8049 	wq_online = true;
8050 	wq_watchdog_init();
8051 }
8052 
8053 /*
8054  * Initialize @pt by first initializing @pt->cpu_pod[] with pod IDs according to
8055  * @cpu_shares_pod(). Each subset of CPUs that share a pod is assigned a unique
8056  * and consecutive pod ID. The rest of @pt is initialized accordingly.
8057  */
8058 static void __init init_pod_type(struct wq_pod_type *pt,
8059 				 bool (*cpus_share_pod)(int, int))
8060 {
8061 	int cur, pre, cpu, pod;
8062 
8063 	pt->nr_pods = 0;
8064 
8065 	/* init @pt->cpu_pod[] according to @cpus_share_pod() */
8066 	pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL);
8067 	BUG_ON(!pt->cpu_pod);
8068 
8069 	for_each_possible_cpu(cur) {
8070 		for_each_possible_cpu(pre) {
8071 			if (pre >= cur) {
8072 				pt->cpu_pod[cur] = pt->nr_pods++;
8073 				break;
8074 			}
8075 			if (cpus_share_pod(cur, pre)) {
8076 				pt->cpu_pod[cur] = pt->cpu_pod[pre];
8077 				break;
8078 			}
8079 		}
8080 	}
8081 
8082 	/* init the rest to match @pt->cpu_pod[] */
8083 	pt->pod_cpus = kcalloc(pt->nr_pods, sizeof(pt->pod_cpus[0]), GFP_KERNEL);
8084 	pt->pod_node = kcalloc(pt->nr_pods, sizeof(pt->pod_node[0]), GFP_KERNEL);
8085 	BUG_ON(!pt->pod_cpus || !pt->pod_node);
8086 
8087 	for (pod = 0; pod < pt->nr_pods; pod++)
8088 		BUG_ON(!zalloc_cpumask_var(&pt->pod_cpus[pod], GFP_KERNEL));
8089 
8090 	for_each_possible_cpu(cpu) {
8091 		cpumask_set_cpu(cpu, pt->pod_cpus[pt->cpu_pod[cpu]]);
8092 		pt->pod_node[pt->cpu_pod[cpu]] = cpu_to_node(cpu);
8093 	}
8094 }
8095 
8096 static bool __init cpus_dont_share(int cpu0, int cpu1)
8097 {
8098 	return false;
8099 }
8100 
8101 static bool __init cpus_share_smt(int cpu0, int cpu1)
8102 {
8103 #ifdef CONFIG_SCHED_SMT
8104 	return cpumask_test_cpu(cpu0, cpu_smt_mask(cpu1));
8105 #else
8106 	return false;
8107 #endif
8108 }
8109 
8110 static bool __init cpus_share_numa(int cpu0, int cpu1)
8111 {
8112 	return cpu_to_node(cpu0) == cpu_to_node(cpu1);
8113 }
8114 
8115 /**
8116  * workqueue_init_topology - initialize CPU pods for unbound workqueues
8117  *
8118  * This is the third step of three-staged workqueue subsystem initialization and
8119  * invoked after SMP and topology information are fully initialized. It
8120  * initializes the unbound CPU pods accordingly.
8121  */
8122 void __init workqueue_init_topology(void)
8123 {
8124 	struct workqueue_struct *wq;
8125 	int cpu;
8126 
8127 	init_pod_type(&wq_pod_types[WQ_AFFN_CPU], cpus_dont_share);
8128 	init_pod_type(&wq_pod_types[WQ_AFFN_SMT], cpus_share_smt);
8129 	init_pod_type(&wq_pod_types[WQ_AFFN_CACHE], cpus_share_cache);
8130 	init_pod_type(&wq_pod_types[WQ_AFFN_NUMA], cpus_share_numa);
8131 
8132 	wq_topo_initialized = true;
8133 
8134 	mutex_lock(&wq_pool_mutex);
8135 
8136 	/*
8137 	 * Workqueues allocated earlier would have all CPUs sharing the default
8138 	 * worker pool. Explicitly call unbound_wq_update_pwq() on all workqueue
8139 	 * and CPU combinations to apply per-pod sharing.
8140 	 */
8141 	list_for_each_entry(wq, &workqueues, list) {
8142 		for_each_online_cpu(cpu)
8143 			unbound_wq_update_pwq(wq, cpu);
8144 		if (wq->flags & WQ_UNBOUND) {
8145 			mutex_lock(&wq->mutex);
8146 			wq_update_node_max_active(wq, -1);
8147 			mutex_unlock(&wq->mutex);
8148 		}
8149 	}
8150 
8151 	mutex_unlock(&wq_pool_mutex);
8152 }
8153 
8154 void __warn_flushing_systemwide_wq(void)
8155 {
8156 	pr_warn("WARNING: Flushing system-wide workqueues will be prohibited in near future.\n");
8157 	dump_stack();
8158 }
8159 EXPORT_SYMBOL(__warn_flushing_systemwide_wq);
8160 
8161 static int __init workqueue_unbound_cpus_setup(char *str)
8162 {
8163 	if (cpulist_parse(str, &wq_cmdline_cpumask) < 0) {
8164 		cpumask_clear(&wq_cmdline_cpumask);
8165 		pr_warn("workqueue.unbound_cpus: incorrect CPU range, using default\n");
8166 	}
8167 
8168 	return 1;
8169 }
8170 __setup("workqueue.unbound_cpus=", workqueue_unbound_cpus_setup);
8171