xref: /linux/drivers/gpu/drm/amd/amdgpu/amdgpu_gmc.c (revision 4327db89f5e02458001b9c296a961265b8613395)
1 /*
2  * Copyright 2018 Advanced Micro Devices, Inc.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 
27 #include <linux/io-64-nonatomic-lo-hi.h>
28 #ifdef CONFIG_X86
29 #include <asm/hypervisor.h>
30 #endif
31 
32 #include "amdgpu.h"
33 #include "amdgpu_gmc.h"
34 #include "amdgpu_ras.h"
35 #include "amdgpu_reset.h"
36 #include "amdgpu_xgmi.h"
37 
38 #include <drm/drm_drv.h>
39 #include <drm/ttm/ttm_tt.h>
40 
41 static const u64 four_gb = 0x100000000ULL;
42 
amdgpu_gmc_is_pdb0_enabled(struct amdgpu_device * adev)43 bool amdgpu_gmc_is_pdb0_enabled(struct amdgpu_device *adev)
44 {
45 	return adev->gmc.xgmi.connected_to_cpu || amdgpu_virt_xgmi_migrate_enabled(adev);
46 }
47 
48 /**
49  * amdgpu_gmc_pdb0_alloc - allocate vram for pdb0
50  *
51  * @adev: amdgpu_device pointer
52  *
53  * Allocate video memory for pdb0 and map it for CPU access
54  * Returns 0 for success, error for failure.
55  */
amdgpu_gmc_pdb0_alloc(struct amdgpu_device * adev)56 int amdgpu_gmc_pdb0_alloc(struct amdgpu_device *adev)
57 {
58 	int r;
59 	struct amdgpu_bo_param bp;
60 	u64 vram_size = adev->gmc.xgmi.node_segment_size * adev->gmc.xgmi.num_physical_nodes;
61 	uint32_t pde0_page_shift = adev->gmc.vmid0_page_table_block_size + 21;
62 	uint32_t npdes = (vram_size + (1ULL << pde0_page_shift) - 1) >> pde0_page_shift;
63 
64 	memset(&bp, 0, sizeof(bp));
65 	bp.size = PAGE_ALIGN((npdes + 1) * 8);
66 	bp.byte_align = PAGE_SIZE;
67 	bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
68 	bp.flags = AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED |
69 		AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS;
70 	bp.type = ttm_bo_type_kernel;
71 	bp.resv = NULL;
72 	bp.bo_ptr_size = sizeof(struct amdgpu_bo);
73 
74 	r = amdgpu_bo_create(adev, &bp, &adev->gmc.pdb0_bo);
75 	if (r)
76 		return r;
77 
78 	r = amdgpu_bo_reserve(adev->gmc.pdb0_bo, false);
79 	if (unlikely(r != 0))
80 		goto bo_reserve_failure;
81 
82 	r = amdgpu_bo_pin(adev->gmc.pdb0_bo, AMDGPU_GEM_DOMAIN_VRAM);
83 	if (r)
84 		goto bo_pin_failure;
85 	r = amdgpu_bo_kmap(adev->gmc.pdb0_bo, &adev->gmc.ptr_pdb0);
86 	if (r)
87 		goto bo_kmap_failure;
88 
89 	amdgpu_bo_unreserve(adev->gmc.pdb0_bo);
90 	return 0;
91 
92 bo_kmap_failure:
93 	amdgpu_bo_unpin(adev->gmc.pdb0_bo);
94 bo_pin_failure:
95 	amdgpu_bo_unreserve(adev->gmc.pdb0_bo);
96 bo_reserve_failure:
97 	amdgpu_bo_unref(&adev->gmc.pdb0_bo);
98 	return r;
99 }
100 
101 /**
102  * amdgpu_gmc_get_pde_for_bo - get the PDE for a BO
103  *
104  * @bo: the BO to get the PDE for
105  * @level: the level in the PD hirarchy
106  * @addr: resulting addr
107  * @flags: resulting flags
108  *
109  * Get the address and flags to be used for a PDE (Page Directory Entry).
110  */
amdgpu_gmc_get_pde_for_bo(struct amdgpu_bo * bo,int level,uint64_t * addr,uint64_t * flags)111 void amdgpu_gmc_get_pde_for_bo(struct amdgpu_bo *bo, int level,
112 			       uint64_t *addr, uint64_t *flags)
113 {
114 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
115 
116 	switch (bo->tbo.resource->mem_type) {
117 	case TTM_PL_TT:
118 		*addr = bo->tbo.ttm->dma_address[0];
119 		break;
120 	case TTM_PL_VRAM:
121 		*addr = amdgpu_bo_gpu_offset(bo);
122 		break;
123 	default:
124 		*addr = 0;
125 		break;
126 	}
127 	*flags = amdgpu_ttm_tt_pde_flags(bo->tbo.ttm, bo->tbo.resource);
128 	amdgpu_gmc_get_vm_pde(adev, level, addr, flags);
129 }
130 
131 /*
132  * amdgpu_gmc_pd_addr - return the address of the root directory
133  */
amdgpu_gmc_pd_addr(struct amdgpu_bo * bo)134 uint64_t amdgpu_gmc_pd_addr(struct amdgpu_bo *bo)
135 {
136 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
137 	uint64_t pd_addr;
138 
139 	/* TODO: move that into ASIC specific code */
140 	if (adev->asic_type >= CHIP_VEGA10) {
141 		uint64_t flags = AMDGPU_PTE_VALID;
142 
143 		amdgpu_gmc_get_pde_for_bo(bo, -1, &pd_addr, &flags);
144 		pd_addr |= flags;
145 	} else {
146 		pd_addr = amdgpu_bo_gpu_offset(bo);
147 	}
148 	return pd_addr;
149 }
150 
151 /**
152  * amdgpu_gmc_set_pte_pde - update the page tables using CPU
153  *
154  * @adev: amdgpu_device pointer
155  * @cpu_pt_addr: cpu address of the page table
156  * @gpu_page_idx: entry in the page table to update
157  * @addr: dst addr to write into pte/pde
158  * @flags: access flags
159  *
160  * Update the page tables using CPU.
161  */
amdgpu_gmc_set_pte_pde(struct amdgpu_device * adev,void * cpu_pt_addr,uint32_t gpu_page_idx,uint64_t addr,uint64_t flags)162 int amdgpu_gmc_set_pte_pde(struct amdgpu_device *adev, void *cpu_pt_addr,
163 				uint32_t gpu_page_idx, uint64_t addr,
164 				uint64_t flags)
165 {
166 	void __iomem *ptr = (void *)cpu_pt_addr;
167 	uint64_t value;
168 
169 	/*
170 	 * The following is for PTE only. GART does not have PDEs.
171 	*/
172 	value = addr & 0x0000FFFFFFFFF000ULL;
173 	value |= flags;
174 	writeq(value, ptr + (gpu_page_idx * 8));
175 
176 	return 0;
177 }
178 
179 /**
180  * amdgpu_gmc_agp_addr - return the address in the AGP address space
181  *
182  * @bo: TTM BO which needs the address, must be in GTT domain
183  *
184  * Tries to figure out how to access the BO through the AGP aperture. Returns
185  * AMDGPU_BO_INVALID_OFFSET if that is not possible.
186  */
amdgpu_gmc_agp_addr(struct ttm_buffer_object * bo)187 uint64_t amdgpu_gmc_agp_addr(struct ttm_buffer_object *bo)
188 {
189 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
190 
191 	if (!bo->ttm)
192 		return AMDGPU_BO_INVALID_OFFSET;
193 
194 	if (bo->ttm->num_pages != 1 || bo->ttm->caching == ttm_cached)
195 		return AMDGPU_BO_INVALID_OFFSET;
196 
197 	if (bo->ttm->dma_address[0] + PAGE_SIZE >= adev->gmc.agp_size)
198 		return AMDGPU_BO_INVALID_OFFSET;
199 
200 	return adev->gmc.agp_start + bo->ttm->dma_address[0];
201 }
202 
203 /**
204  * amdgpu_gmc_vram_location - try to find VRAM location
205  *
206  * @adev: amdgpu device structure holding all necessary information
207  * @mc: memory controller structure holding memory information
208  * @base: base address at which to put VRAM
209  *
210  * Function will try to place VRAM at base address provided
211  * as parameter.
212  */
amdgpu_gmc_vram_location(struct amdgpu_device * adev,struct amdgpu_gmc * mc,u64 base)213 void amdgpu_gmc_vram_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc,
214 			      u64 base)
215 {
216 	uint64_t vis_limit = (uint64_t)amdgpu_vis_vram_limit << 20;
217 	uint64_t limit = (uint64_t)amdgpu_vram_limit << 20;
218 
219 	mc->vram_start = base;
220 	mc->vram_end = mc->vram_start + mc->mc_vram_size - 1;
221 	if (limit < mc->real_vram_size)
222 		mc->real_vram_size = limit;
223 
224 	if (vis_limit && vis_limit < mc->visible_vram_size)
225 		mc->visible_vram_size = vis_limit;
226 
227 	if (mc->real_vram_size < mc->visible_vram_size)
228 		mc->visible_vram_size = mc->real_vram_size;
229 
230 	if (mc->xgmi.num_physical_nodes == 0) {
231 		mc->fb_start = mc->vram_start;
232 		mc->fb_end = mc->vram_end;
233 	}
234 	dev_info(adev->dev, "VRAM: %lluM 0x%016llX - 0x%016llX (%lluM used)\n",
235 			mc->mc_vram_size >> 20, mc->vram_start,
236 			mc->vram_end, mc->real_vram_size >> 20);
237 }
238 
239 /** amdgpu_gmc_sysvm_location - place vram and gart in sysvm aperture
240  *
241  * @adev: amdgpu device structure holding all necessary information
242  * @mc: memory controller structure holding memory information
243  *
244  * This function is only used if use GART for FB translation. In such
245  * case, we use sysvm aperture (vmid0 page tables) for both vram
246  * and gart (aka system memory) access.
247  *
248  * GPUVM (and our organization of vmid0 page tables) require sysvm
249  * aperture to be placed at a location aligned with 8 times of native
250  * page size. For example, if vm_context0_cntl.page_table_block_size
251  * is 12, then native page size is 8G (2M*2^12), sysvm should start
252  * with a 64G aligned address. For simplicity, we just put sysvm at
253  * address 0. So vram start at address 0 and gart is right after vram.
254  */
amdgpu_gmc_sysvm_location(struct amdgpu_device * adev,struct amdgpu_gmc * mc)255 void amdgpu_gmc_sysvm_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc)
256 {
257 	u64 hive_vram_start = 0;
258 	u64 hive_vram_end = mc->xgmi.node_segment_size * mc->xgmi.num_physical_nodes - 1;
259 	mc->vram_start = mc->xgmi.node_segment_size * mc->xgmi.physical_node_id;
260 	mc->vram_end = mc->vram_start + mc->xgmi.node_segment_size - 1;
261 	/* node_segment_size may not 4GB aligned on SRIOV, align up is needed. */
262 	mc->gart_start = ALIGN(hive_vram_end + 1, four_gb);
263 	mc->gart_end = mc->gart_start + mc->gart_size - 1;
264 	if (amdgpu_virt_xgmi_migrate_enabled(adev)) {
265 		/* set mc->vram_start to 0 to switch the returned GPU address of
266 		 * amdgpu_bo_create_reserved() from FB aperture to GART aperture.
267 		 */
268 		mc->vram_start = 0;
269 		mc->vram_end = mc->vram_start + mc->mc_vram_size - 1;
270 		mc->visible_vram_size = min(mc->visible_vram_size, mc->real_vram_size);
271 	} else {
272 		mc->fb_start = hive_vram_start;
273 		mc->fb_end = hive_vram_end;
274 	}
275 	dev_info(adev->dev, "VRAM: %lluM 0x%016llX - 0x%016llX (%lluM used)\n",
276 			mc->mc_vram_size >> 20, mc->vram_start,
277 			mc->vram_end, mc->real_vram_size >> 20);
278 	dev_info(adev->dev, "GART: %lluM 0x%016llX - 0x%016llX\n",
279 			mc->gart_size >> 20, mc->gart_start, mc->gart_end);
280 }
281 
282 /**
283  * amdgpu_gmc_gart_location - try to find GART location
284  *
285  * @adev: amdgpu device structure holding all necessary information
286  * @mc: memory controller structure holding memory information
287  * @gart_placement: GART placement policy with respect to VRAM
288  *
289  * Function will try to place GART before or after VRAM.
290  * If GART size is bigger than space left then we ajust GART size.
291  * Thus function will never fails.
292  */
amdgpu_gmc_gart_location(struct amdgpu_device * adev,struct amdgpu_gmc * mc,enum amdgpu_gart_placement gart_placement)293 void amdgpu_gmc_gart_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc,
294 			      enum amdgpu_gart_placement gart_placement)
295 {
296 	u64 size_af, size_bf;
297 	/*To avoid the hole, limit the max mc address to AMDGPU_GMC_HOLE_START*/
298 	u64 max_mc_address = min(adev->gmc.mc_mask, AMDGPU_GMC_HOLE_START - 1);
299 
300 	/* VCE doesn't like it when BOs cross a 4GB segment, so align
301 	 * the GART base on a 4GB boundary as well.
302 	 */
303 	size_bf = mc->fb_start;
304 	size_af = max_mc_address + 1 - ALIGN(mc->fb_end + 1, four_gb);
305 
306 	if (mc->gart_size > max(size_bf, size_af)) {
307 		dev_warn(adev->dev, "limiting GART\n");
308 		mc->gart_size = max(size_bf, size_af);
309 	}
310 
311 	switch (gart_placement) {
312 	case AMDGPU_GART_PLACEMENT_HIGH:
313 		mc->gart_start = max_mc_address - mc->gart_size + 1;
314 		break;
315 	case AMDGPU_GART_PLACEMENT_LOW:
316 		mc->gart_start = 0;
317 		break;
318 	case AMDGPU_GART_PLACEMENT_BEST_FIT:
319 	default:
320 		if ((size_bf >= mc->gart_size && size_bf < size_af) ||
321 		    (size_af < mc->gart_size))
322 			mc->gart_start = 0;
323 		else
324 			mc->gart_start = max_mc_address - mc->gart_size + 1;
325 		break;
326 	}
327 
328 	mc->gart_start &= ~(four_gb - 1);
329 	mc->gart_end = mc->gart_start + mc->gart_size - 1;
330 	dev_info(adev->dev, "GART: %lluM 0x%016llX - 0x%016llX\n",
331 			mc->gart_size >> 20, mc->gart_start, mc->gart_end);
332 }
333 
334 /**
335  * amdgpu_gmc_agp_location - try to find AGP location
336  * @adev: amdgpu device structure holding all necessary information
337  * @mc: memory controller structure holding memory information
338  *
339  * Function will place try to find a place for the AGP BAR in the MC address
340  * space.
341  *
342  * AGP BAR will be assigned the largest available hole in the address space.
343  * Should be called after VRAM and GART locations are setup.
344  */
amdgpu_gmc_agp_location(struct amdgpu_device * adev,struct amdgpu_gmc * mc)345 void amdgpu_gmc_agp_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc)
346 {
347 	const uint64_t sixteen_gb = 1ULL << 34;
348 	const uint64_t sixteen_gb_mask = ~(sixteen_gb - 1);
349 	u64 size_af, size_bf;
350 
351 	if (mc->fb_start > mc->gart_start) {
352 		size_bf = (mc->fb_start & sixteen_gb_mask) -
353 			ALIGN(mc->gart_end + 1, sixteen_gb);
354 		size_af = mc->mc_mask + 1 - ALIGN(mc->fb_end + 1, sixteen_gb);
355 	} else {
356 		size_bf = mc->fb_start & sixteen_gb_mask;
357 		size_af = (mc->gart_start & sixteen_gb_mask) -
358 			ALIGN(mc->fb_end + 1, sixteen_gb);
359 	}
360 
361 	if (size_bf > size_af) {
362 		mc->agp_start = (mc->fb_start - size_bf) & sixteen_gb_mask;
363 		mc->agp_size = size_bf;
364 	} else {
365 		mc->agp_start = ALIGN(mc->fb_end + 1, sixteen_gb);
366 		mc->agp_size = size_af;
367 	}
368 
369 	mc->agp_end = mc->agp_start + mc->agp_size - 1;
370 	dev_info(adev->dev, "AGP: %lluM 0x%016llX - 0x%016llX\n",
371 			mc->agp_size >> 20, mc->agp_start, mc->agp_end);
372 }
373 
374 /**
375  * amdgpu_gmc_set_agp_default - Set the default AGP aperture value.
376  * @adev: amdgpu device structure holding all necessary information
377  * @mc: memory controller structure holding memory information
378  *
379  * To disable the AGP aperture, you need to set the start to a larger
380  * value than the end.  This function sets the default value which
381  * can then be overridden using amdgpu_gmc_agp_location() if you want
382  * to enable the AGP aperture on a specific chip.
383  *
384  */
amdgpu_gmc_set_agp_default(struct amdgpu_device * adev,struct amdgpu_gmc * mc)385 void amdgpu_gmc_set_agp_default(struct amdgpu_device *adev,
386 				struct amdgpu_gmc *mc)
387 {
388 	mc->agp_start = 0xffffffffffff;
389 	mc->agp_end = 0;
390 	mc->agp_size = 0;
391 }
392 
393 /**
394  * amdgpu_gmc_fault_key - get hask key from vm fault address and pasid
395  *
396  * @addr: 48 bit physical address, page aligned (36 significant bits)
397  * @pasid: 16 bit process address space identifier
398  */
amdgpu_gmc_fault_key(uint64_t addr,uint16_t pasid)399 static inline uint64_t amdgpu_gmc_fault_key(uint64_t addr, uint16_t pasid)
400 {
401 	return addr << 4 | pasid;
402 }
403 
404 /**
405  * amdgpu_gmc_filter_faults - filter VM faults
406  *
407  * @adev: amdgpu device structure
408  * @ih: interrupt ring that the fault received from
409  * @addr: address of the VM fault
410  * @pasid: PASID of the process causing the fault
411  * @timestamp: timestamp of the fault
412  *
413  * Returns:
414  * True if the fault was filtered and should not be processed further.
415  * False if the fault is a new one and needs to be handled.
416  */
amdgpu_gmc_filter_faults(struct amdgpu_device * adev,struct amdgpu_ih_ring * ih,uint64_t addr,uint16_t pasid,uint64_t timestamp)417 bool amdgpu_gmc_filter_faults(struct amdgpu_device *adev,
418 			      struct amdgpu_ih_ring *ih, uint64_t addr,
419 			      uint16_t pasid, uint64_t timestamp)
420 {
421 	struct amdgpu_gmc *gmc = &adev->gmc;
422 	uint64_t stamp, key = amdgpu_gmc_fault_key(addr, pasid);
423 	struct amdgpu_gmc_fault *fault;
424 	uint32_t hash;
425 
426 	/* Stale retry fault if timestamp goes backward */
427 	if (amdgpu_ih_ts_after(timestamp, ih->processed_timestamp))
428 		return true;
429 
430 	/* If we don't have space left in the ring buffer return immediately */
431 	stamp = max(timestamp, AMDGPU_GMC_FAULT_TIMEOUT + 1) -
432 		AMDGPU_GMC_FAULT_TIMEOUT;
433 	if (gmc->fault_ring[gmc->last_fault].timestamp >= stamp)
434 		return true;
435 
436 	/* Try to find the fault in the hash */
437 	hash = hash_64(key, AMDGPU_GMC_FAULT_HASH_ORDER);
438 	fault = &gmc->fault_ring[gmc->fault_hash[hash].idx];
439 	while (fault->timestamp >= stamp) {
440 		uint64_t tmp;
441 
442 		if (atomic64_read(&fault->key) == key) {
443 			/*
444 			 * if we get a fault which is already present in
445 			 * the fault_ring and the timestamp of
446 			 * the fault is after the expired timestamp,
447 			 * then this is a new fault that needs to be added
448 			 * into the fault ring.
449 			 */
450 			if (fault->timestamp_expiry != 0 &&
451 			    amdgpu_ih_ts_after(fault->timestamp_expiry,
452 					       timestamp))
453 				break;
454 			else
455 				return true;
456 		}
457 
458 		tmp = fault->timestamp;
459 		fault = &gmc->fault_ring[fault->next];
460 
461 		/* Check if the entry was reused */
462 		if (fault->timestamp >= tmp)
463 			break;
464 	}
465 
466 	/* Add the fault to the ring */
467 	fault = &gmc->fault_ring[gmc->last_fault];
468 	atomic64_set(&fault->key, key);
469 	fault->timestamp = timestamp;
470 
471 	/* And update the hash */
472 	fault->next = gmc->fault_hash[hash].idx;
473 	gmc->fault_hash[hash].idx = gmc->last_fault++;
474 	return false;
475 }
476 
477 /**
478  * amdgpu_gmc_filter_faults_remove - remove address from VM faults filter
479  *
480  * @adev: amdgpu device structure
481  * @addr: address of the VM fault
482  * @pasid: PASID of the process causing the fault
483  *
484  * Remove the address from fault filter, then future vm fault on this address
485  * will pass to retry fault handler to recover.
486  */
amdgpu_gmc_filter_faults_remove(struct amdgpu_device * adev,uint64_t addr,uint16_t pasid)487 void amdgpu_gmc_filter_faults_remove(struct amdgpu_device *adev, uint64_t addr,
488 				     uint16_t pasid)
489 {
490 	struct amdgpu_gmc *gmc = &adev->gmc;
491 	uint64_t key = amdgpu_gmc_fault_key(addr, pasid);
492 	struct amdgpu_ih_ring *ih;
493 	struct amdgpu_gmc_fault *fault;
494 	uint32_t last_wptr;
495 	uint64_t last_ts;
496 	uint32_t hash;
497 	uint64_t tmp;
498 
499 	if (adev->irq.retry_cam_enabled)
500 		return;
501 	else if (adev->irq.ih1.ring_size)
502 		ih = &adev->irq.ih1;
503 	else if (adev->irq.ih_soft.enabled)
504 		ih = &adev->irq.ih_soft;
505 	else
506 		return;
507 
508 	/* Get the WPTR of the last entry in IH ring */
509 	last_wptr = amdgpu_ih_get_wptr(adev, ih);
510 	/* Order wptr with ring data. */
511 	rmb();
512 	/* Get the timetamp of the last entry in IH ring */
513 	last_ts = amdgpu_ih_decode_iv_ts(adev, ih, last_wptr, -1);
514 
515 	hash = hash_64(key, AMDGPU_GMC_FAULT_HASH_ORDER);
516 	fault = &gmc->fault_ring[gmc->fault_hash[hash].idx];
517 	do {
518 		if (atomic64_read(&fault->key) == key) {
519 			/*
520 			 * Update the timestamp when this fault
521 			 * expired.
522 			 */
523 			fault->timestamp_expiry = last_ts;
524 			break;
525 		}
526 
527 		tmp = fault->timestamp;
528 		fault = &gmc->fault_ring[fault->next];
529 	} while (fault->timestamp < tmp);
530 }
531 
amdgpu_gmc_ras_sw_init(struct amdgpu_device * adev)532 int amdgpu_gmc_ras_sw_init(struct amdgpu_device *adev)
533 {
534 	int r;
535 
536 	/* umc ras block */
537 	r = amdgpu_umc_ras_sw_init(adev);
538 	if (r)
539 		return r;
540 
541 	/* mmhub ras block */
542 	r = amdgpu_mmhub_ras_sw_init(adev);
543 	if (r)
544 		return r;
545 
546 	/* hdp ras block */
547 	r = amdgpu_hdp_ras_sw_init(adev);
548 	if (r)
549 		return r;
550 
551 	/* mca.x ras block */
552 	r = amdgpu_mca_mp0_ras_sw_init(adev);
553 	if (r)
554 		return r;
555 
556 	r = amdgpu_mca_mp1_ras_sw_init(adev);
557 	if (r)
558 		return r;
559 
560 	r = amdgpu_mca_mpio_ras_sw_init(adev);
561 	if (r)
562 		return r;
563 
564 	/* xgmi ras block */
565 	r = amdgpu_xgmi_ras_sw_init(adev);
566 	if (r)
567 		return r;
568 
569 	return 0;
570 }
571 
amdgpu_gmc_ras_late_init(struct amdgpu_device * adev)572 int amdgpu_gmc_ras_late_init(struct amdgpu_device *adev)
573 {
574 	return 0;
575 }
576 
amdgpu_gmc_ras_fini(struct amdgpu_device * adev)577 void amdgpu_gmc_ras_fini(struct amdgpu_device *adev)
578 {
579 
580 }
581 
582 	/*
583 	 * The latest engine allocation on gfx9/10 is:
584 	 * Engine 2, 3: firmware
585 	 * Engine 0, 1, 4~16: amdgpu ring,
586 	 *                    subject to change when ring number changes
587 	 * Engine 17: Gart flushes
588 	 */
589 #define AMDGPU_VMHUB_INV_ENG_BITMAP		0x1FFF3
590 
amdgpu_gmc_allocate_vm_inv_eng(struct amdgpu_device * adev)591 int amdgpu_gmc_allocate_vm_inv_eng(struct amdgpu_device *adev)
592 {
593 	struct amdgpu_ring *ring;
594 	unsigned vm_inv_engs[AMDGPU_MAX_VMHUBS] = {0};
595 	unsigned i;
596 	unsigned vmhub, inv_eng;
597 	struct amdgpu_ring *shared_ring;
598 
599 	/* init the vm inv eng for all vmhubs */
600 	for_each_set_bit(i, adev->vmhubs_mask, AMDGPU_MAX_VMHUBS) {
601 		vm_inv_engs[i] = AMDGPU_VMHUB_INV_ENG_BITMAP;
602 		/* reserve engine 5 for firmware */
603 		if (adev->enable_mes)
604 			vm_inv_engs[i] &= ~(1 << 5);
605 		/* reserve engine 6 for uni mes */
606 		if (adev->enable_uni_mes)
607 			vm_inv_engs[i] &= ~(1 << 6);
608 		/* reserve mmhub engine 3 for firmware */
609 		if (adev->enable_umsch_mm)
610 			vm_inv_engs[i] &= ~(1 << 3);
611 	}
612 
613 	for (i = 0; i < adev->num_rings; ++i) {
614 		ring = adev->rings[i];
615 		vmhub = ring->vm_hub;
616 
617 		if (ring == &adev->mes.ring[0] ||
618 		    ring == &adev->mes.ring[1] ||
619 		    ring == &adev->umsch_mm.ring ||
620 		    ring == &adev->cper.ring_buf)
621 			continue;
622 
623 		/* Skip if the ring is a shared ring */
624 		if (amdgpu_sdma_is_shared_inv_eng(adev, ring))
625 			continue;
626 
627 		inv_eng = ffs(vm_inv_engs[vmhub]);
628 		if (!inv_eng) {
629 			dev_err(adev->dev, "no VM inv eng for ring %s\n",
630 				ring->name);
631 			return -EINVAL;
632 		}
633 
634 		ring->vm_inv_eng = inv_eng - 1;
635 		vm_inv_engs[vmhub] &= ~(1 << ring->vm_inv_eng);
636 
637 		dev_info(adev->dev, "ring %s uses VM inv eng %u on hub %u\n",
638 			 ring->name, ring->vm_inv_eng, ring->vm_hub);
639 		/* SDMA has a special packet which allows it to use the same
640 		 * invalidation engine for all the rings in one instance.
641 		 * Therefore, we do not allocate a separate VM invalidation engine
642 		 * for SDMA page rings. Instead, they share the VM invalidation
643 		 * engine with the SDMA gfx ring. This change ensures efficient
644 		 * resource management and avoids the issue of insufficient VM
645 		 * invalidation engines.
646 		 */
647 		shared_ring = amdgpu_sdma_get_shared_ring(adev, ring);
648 		if (shared_ring) {
649 			shared_ring->vm_inv_eng = ring->vm_inv_eng;
650 			dev_info(adev->dev, "ring %s shares VM invalidation engine %u with ring %s on hub %u\n",
651 					ring->name, ring->vm_inv_eng, shared_ring->name, ring->vm_hub);
652 			continue;
653 		}
654 	}
655 
656 	return 0;
657 }
658 
amdgpu_gmc_flush_gpu_tlb(struct amdgpu_device * adev,uint32_t vmid,uint32_t vmhub,uint32_t flush_type)659 void amdgpu_gmc_flush_gpu_tlb(struct amdgpu_device *adev, uint32_t vmid,
660 			      uint32_t vmhub, uint32_t flush_type)
661 {
662 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
663 	struct amdgpu_vmhub *hub = &adev->vmhub[vmhub];
664 	struct dma_fence *fence;
665 	struct amdgpu_job *job;
666 	int r;
667 
668 	if (!hub->sdma_invalidation_workaround || vmid ||
669 	    !adev->mman.buffer_funcs_enabled || !adev->ib_pool_ready ||
670 	    !ring->sched.ready) {
671 		/*
672 		 * A GPU reset should flush all TLBs anyway, so no need to do
673 		 * this while one is ongoing.
674 		 */
675 		if (!down_read_trylock(&adev->reset_domain->sem))
676 			return;
677 
678 		if (adev->gmc.flush_tlb_needs_extra_type_2)
679 			adev->gmc.gmc_funcs->flush_gpu_tlb(adev, vmid,
680 							   vmhub, 2);
681 
682 		if (adev->gmc.flush_tlb_needs_extra_type_0 && flush_type == 2)
683 			adev->gmc.gmc_funcs->flush_gpu_tlb(adev, vmid,
684 							   vmhub, 0);
685 
686 		adev->gmc.gmc_funcs->flush_gpu_tlb(adev, vmid, vmhub,
687 						   flush_type);
688 		up_read(&adev->reset_domain->sem);
689 		return;
690 	}
691 
692 	/* The SDMA on Navi 1x has a bug which can theoretically result in memory
693 	 * corruption if an invalidation happens at the same time as an VA
694 	 * translation. Avoid this by doing the invalidation from the SDMA
695 	 * itself at least for GART.
696 	 */
697 	mutex_lock(&adev->mman.gtt_window_lock);
698 	r = amdgpu_job_alloc_with_ib(ring->adev, &adev->mman.high_pr,
699 				     AMDGPU_FENCE_OWNER_UNDEFINED,
700 				     16 * 4, AMDGPU_IB_POOL_IMMEDIATE,
701 				     &job, AMDGPU_KERNEL_JOB_ID_FLUSH_GPU_TLB);
702 	if (r)
703 		goto error_alloc;
704 
705 	job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo);
706 	job->vm_needs_flush = true;
707 	job->ibs->ptr[job->ibs->length_dw++] = ring->funcs->nop;
708 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
709 	fence = amdgpu_job_submit(job);
710 	mutex_unlock(&adev->mman.gtt_window_lock);
711 
712 	dma_fence_wait(fence, false);
713 	dma_fence_put(fence);
714 
715 	return;
716 
717 error_alloc:
718 	mutex_unlock(&adev->mman.gtt_window_lock);
719 	dev_err(adev->dev, "Error flushing GPU TLB using the SDMA (%d)!\n", r);
720 }
721 
amdgpu_gmc_flush_gpu_tlb_pasid(struct amdgpu_device * adev,uint16_t pasid,uint32_t flush_type,bool all_hub,uint32_t inst)722 int amdgpu_gmc_flush_gpu_tlb_pasid(struct amdgpu_device *adev, uint16_t pasid,
723 				   uint32_t flush_type, bool all_hub,
724 				   uint32_t inst)
725 {
726 	struct amdgpu_ring *ring = &adev->gfx.kiq[inst].ring;
727 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[inst];
728 	unsigned int ndw;
729 	int r, cnt = 0;
730 	uint32_t seq;
731 
732 	/*
733 	 * A GPU reset should flush all TLBs anyway, so no need to do
734 	 * this while one is ongoing.
735 	 */
736 	if (!down_read_trylock(&adev->reset_domain->sem))
737 		return 0;
738 
739 	if (!adev->gmc.flush_pasid_uses_kiq || !ring->sched.ready) {
740 
741 		if (!adev->gmc.gmc_funcs->flush_gpu_tlb_pasid) {
742 			r = 0;
743 			goto error_unlock_reset;
744 		}
745 
746 		if (adev->gmc.flush_tlb_needs_extra_type_2)
747 			adev->gmc.gmc_funcs->flush_gpu_tlb_pasid(adev, pasid,
748 								 2, all_hub,
749 								 inst);
750 
751 		if (adev->gmc.flush_tlb_needs_extra_type_0 && flush_type == 2)
752 			adev->gmc.gmc_funcs->flush_gpu_tlb_pasid(adev, pasid,
753 								 0, all_hub,
754 								 inst);
755 
756 		adev->gmc.gmc_funcs->flush_gpu_tlb_pasid(adev, pasid,
757 							 flush_type, all_hub,
758 							 inst);
759 		r = 0;
760 	} else {
761 		/* 2 dwords flush + 8 dwords fence */
762 		ndw = kiq->pmf->invalidate_tlbs_size + 8;
763 
764 		if (adev->gmc.flush_tlb_needs_extra_type_2)
765 			ndw += kiq->pmf->invalidate_tlbs_size;
766 
767 		if (adev->gmc.flush_tlb_needs_extra_type_0)
768 			ndw += kiq->pmf->invalidate_tlbs_size;
769 
770 		spin_lock(&adev->gfx.kiq[inst].ring_lock);
771 		r = amdgpu_ring_alloc(ring, ndw);
772 		if (r) {
773 			spin_unlock(&adev->gfx.kiq[inst].ring_lock);
774 			goto error_unlock_reset;
775 		}
776 		if (adev->gmc.flush_tlb_needs_extra_type_2)
777 			kiq->pmf->kiq_invalidate_tlbs(ring, pasid, 2, all_hub);
778 
779 		if (flush_type == 2 && adev->gmc.flush_tlb_needs_extra_type_0)
780 			kiq->pmf->kiq_invalidate_tlbs(ring, pasid, 0, all_hub);
781 
782 		kiq->pmf->kiq_invalidate_tlbs(ring, pasid, flush_type, all_hub);
783 		r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT);
784 		if (r) {
785 			amdgpu_ring_undo(ring);
786 			spin_unlock(&adev->gfx.kiq[inst].ring_lock);
787 			goto error_unlock_reset;
788 		}
789 
790 		amdgpu_ring_commit(ring);
791 		spin_unlock(&adev->gfx.kiq[inst].ring_lock);
792 
793 		r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
794 
795 		might_sleep();
796 		while (r < 1 && cnt++ < MAX_KIQ_REG_TRY &&
797 		       !amdgpu_reset_pending(adev->reset_domain)) {
798 			msleep(MAX_KIQ_REG_BAILOUT_INTERVAL);
799 			r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
800 		}
801 
802 		if (cnt > MAX_KIQ_REG_TRY) {
803 			dev_err(adev->dev, "timeout waiting for kiq fence\n");
804 			r = -ETIME;
805 		} else
806 			r = 0;
807 	}
808 
809 error_unlock_reset:
810 	up_read(&adev->reset_domain->sem);
811 	return r;
812 }
813 
amdgpu_gmc_fw_reg_write_reg_wait(struct amdgpu_device * adev,uint32_t reg0,uint32_t reg1,uint32_t ref,uint32_t mask,uint32_t xcc_inst)814 void amdgpu_gmc_fw_reg_write_reg_wait(struct amdgpu_device *adev,
815 				      uint32_t reg0, uint32_t reg1,
816 				      uint32_t ref, uint32_t mask,
817 				      uint32_t xcc_inst)
818 {
819 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_inst];
820 	struct amdgpu_ring *ring = &kiq->ring;
821 	signed long r, cnt = 0;
822 	unsigned long flags;
823 	uint32_t seq;
824 
825 	if (adev->mes.ring[0].sched.ready) {
826 		amdgpu_mes_reg_write_reg_wait(adev, reg0, reg1,
827 					      ref, mask);
828 		return;
829 	}
830 
831 	spin_lock_irqsave(&kiq->ring_lock, flags);
832 	amdgpu_ring_alloc(ring, 32);
833 	amdgpu_ring_emit_reg_write_reg_wait(ring, reg0, reg1,
834 					    ref, mask);
835 	r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT);
836 	if (r)
837 		goto failed_undo;
838 
839 	amdgpu_ring_commit(ring);
840 	spin_unlock_irqrestore(&kiq->ring_lock, flags);
841 
842 	r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
843 
844 	/* don't wait anymore for IRQ context */
845 	if (r < 1 && in_interrupt())
846 		goto failed_kiq;
847 
848 	might_sleep();
849 	while (r < 1 && cnt++ < MAX_KIQ_REG_TRY &&
850 	       !amdgpu_reset_pending(adev->reset_domain)) {
851 
852 		msleep(MAX_KIQ_REG_BAILOUT_INTERVAL);
853 		r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
854 	}
855 
856 	if (cnt > MAX_KIQ_REG_TRY)
857 		goto failed_kiq;
858 
859 	return;
860 
861 failed_undo:
862 	amdgpu_ring_undo(ring);
863 	spin_unlock_irqrestore(&kiq->ring_lock, flags);
864 failed_kiq:
865 	dev_err(adev->dev, "failed to write reg %x wait reg %x\n", reg0, reg1);
866 }
867 
868 /**
869  * amdgpu_gmc_tmz_set -- check and set if a device supports TMZ
870  * @adev: amdgpu_device pointer
871  *
872  * Check and set if an the device @adev supports Trusted Memory
873  * Zones (TMZ).
874  */
amdgpu_gmc_tmz_set(struct amdgpu_device * adev)875 void amdgpu_gmc_tmz_set(struct amdgpu_device *adev)
876 {
877 	switch (amdgpu_ip_version(adev, GC_HWIP, 0)) {
878 	/* RAVEN */
879 	case IP_VERSION(9, 2, 2):
880 	case IP_VERSION(9, 1, 0):
881 	/* RENOIR looks like RAVEN */
882 	case IP_VERSION(9, 3, 0):
883 	/* GC 10.3.7 */
884 	case IP_VERSION(10, 3, 7):
885 	/* GC 11.0.1 */
886 	case IP_VERSION(11, 0, 1):
887 		if (amdgpu_tmz == 0) {
888 			adev->gmc.tmz_enabled = false;
889 			dev_info(adev->dev,
890 				 "Trusted Memory Zone (TMZ) feature disabled (cmd line)\n");
891 		} else {
892 			adev->gmc.tmz_enabled = true;
893 			dev_info(adev->dev,
894 				 "Trusted Memory Zone (TMZ) feature enabled\n");
895 		}
896 		break;
897 	case IP_VERSION(10, 1, 10):
898 	case IP_VERSION(10, 1, 1):
899 	case IP_VERSION(10, 1, 2):
900 	case IP_VERSION(10, 1, 3):
901 	case IP_VERSION(10, 3, 0):
902 	case IP_VERSION(10, 3, 2):
903 	case IP_VERSION(10, 3, 4):
904 	case IP_VERSION(10, 3, 5):
905 	case IP_VERSION(10, 3, 6):
906 	/* VANGOGH */
907 	case IP_VERSION(10, 3, 1):
908 	/* YELLOW_CARP*/
909 	case IP_VERSION(10, 3, 3):
910 	case IP_VERSION(11, 0, 4):
911 	case IP_VERSION(11, 5, 0):
912 	case IP_VERSION(11, 5, 1):
913 	case IP_VERSION(11, 5, 2):
914 	case IP_VERSION(11, 5, 3):
915 		/* Don't enable it by default yet.
916 		 */
917 		if (amdgpu_tmz < 1) {
918 			adev->gmc.tmz_enabled = false;
919 			dev_info(adev->dev,
920 				 "Trusted Memory Zone (TMZ) feature disabled as experimental (default)\n");
921 		} else {
922 			adev->gmc.tmz_enabled = true;
923 			dev_info(adev->dev,
924 				 "Trusted Memory Zone (TMZ) feature enabled as experimental (cmd line)\n");
925 		}
926 		break;
927 	default:
928 		adev->gmc.tmz_enabled = false;
929 		dev_info(adev->dev,
930 			 "Trusted Memory Zone (TMZ) feature not supported\n");
931 		break;
932 	}
933 }
934 
935 /**
936  * amdgpu_gmc_noretry_set -- set per asic noretry defaults
937  * @adev: amdgpu_device pointer
938  *
939  * Set a per asic default for the no-retry parameter.
940  *
941  */
amdgpu_gmc_noretry_set(struct amdgpu_device * adev)942 void amdgpu_gmc_noretry_set(struct amdgpu_device *adev)
943 {
944 	struct amdgpu_gmc *gmc = &adev->gmc;
945 	uint32_t gc_ver = amdgpu_ip_version(adev, GC_HWIP, 0);
946 	bool noretry_default = (gc_ver == IP_VERSION(9, 0, 1) ||
947 				gc_ver == IP_VERSION(9, 4, 0) ||
948 				gc_ver == IP_VERSION(9, 4, 1) ||
949 				gc_ver == IP_VERSION(9, 4, 2) ||
950 				gc_ver == IP_VERSION(9, 4, 3) ||
951 				gc_ver == IP_VERSION(9, 4, 4) ||
952 				gc_ver == IP_VERSION(9, 5, 0) ||
953 				gc_ver >= IP_VERSION(10, 3, 0));
954 
955 	if (!amdgpu_sriov_xnack_support(adev))
956 		gmc->noretry = 1;
957 	else
958 		gmc->noretry = (amdgpu_noretry == -1) ? noretry_default : amdgpu_noretry;
959 }
960 
amdgpu_gmc_set_vm_fault_masks(struct amdgpu_device * adev,int hub_type,bool enable)961 void amdgpu_gmc_set_vm_fault_masks(struct amdgpu_device *adev, int hub_type,
962 				   bool enable)
963 {
964 	struct amdgpu_vmhub *hub;
965 	u32 tmp, reg, i;
966 
967 	hub = &adev->vmhub[hub_type];
968 	for (i = 0; i < 16; i++) {
969 		reg = hub->vm_context0_cntl + hub->ctx_distance * i;
970 
971 		tmp = (hub_type == AMDGPU_GFXHUB(0)) ?
972 			RREG32_SOC15_IP(GC, reg) :
973 			RREG32_SOC15_IP(MMHUB, reg);
974 
975 		if (enable)
976 			tmp |= hub->vm_cntx_cntl_vm_fault;
977 		else
978 			tmp &= ~hub->vm_cntx_cntl_vm_fault;
979 
980 		(hub_type == AMDGPU_GFXHUB(0)) ?
981 			WREG32_SOC15_IP(GC, reg, tmp) :
982 			WREG32_SOC15_IP(MMHUB, reg, tmp);
983 	}
984 }
985 
amdgpu_gmc_get_vbios_allocations(struct amdgpu_device * adev)986 void amdgpu_gmc_get_vbios_allocations(struct amdgpu_device *adev)
987 {
988 	unsigned size;
989 
990 	/*
991 	 * Some ASICs need to reserve a region of video memory to avoid access
992 	 * from driver
993 	 */
994 	adev->mman.stolen_reserved_offset = 0;
995 	adev->mman.stolen_reserved_size = 0;
996 
997 	/*
998 	 * TODO:
999 	 * Currently there is a bug where some memory client outside
1000 	 * of the driver writes to first 8M of VRAM on S3 resume,
1001 	 * this overrides GART which by default gets placed in first 8M and
1002 	 * causes VM_FAULTS once GTT is accessed.
1003 	 * Keep the stolen memory reservation until the while this is not solved.
1004 	 */
1005 	switch (adev->asic_type) {
1006 	case CHIP_VEGA10:
1007 		adev->mman.keep_stolen_vga_memory = true;
1008 		/*
1009 		 * VEGA10 SRIOV VF with MS_HYPERV host needs some firmware reserved area.
1010 		 */
1011 #ifdef CONFIG_X86
1012 		if (amdgpu_sriov_vf(adev) && hypervisor_is_type(X86_HYPER_MS_HYPERV)) {
1013 			adev->mman.stolen_reserved_offset = 0x500000;
1014 			adev->mman.stolen_reserved_size = 0x200000;
1015 		}
1016 #endif
1017 		break;
1018 	case CHIP_RAVEN:
1019 	case CHIP_RENOIR:
1020 		adev->mman.keep_stolen_vga_memory = true;
1021 		break;
1022 	default:
1023 		adev->mman.keep_stolen_vga_memory = false;
1024 		break;
1025 	}
1026 
1027 	if (amdgpu_sriov_vf(adev) ||
1028 	    !amdgpu_device_has_display_hardware(adev)) {
1029 		size = 0;
1030 	} else {
1031 		size = amdgpu_gmc_get_vbios_fb_size(adev);
1032 
1033 		if (adev->mman.keep_stolen_vga_memory)
1034 			size = max(size, (unsigned)AMDGPU_VBIOS_VGA_ALLOCATION);
1035 	}
1036 
1037 	/* set to 0 if the pre-OS buffer uses up most of vram */
1038 	if ((adev->gmc.real_vram_size - size) < (8 * 1024 * 1024))
1039 		size = 0;
1040 
1041 	if (size > AMDGPU_VBIOS_VGA_ALLOCATION) {
1042 		adev->mman.stolen_vga_size = AMDGPU_VBIOS_VGA_ALLOCATION;
1043 		adev->mman.stolen_extended_size = size - adev->mman.stolen_vga_size;
1044 	} else {
1045 		adev->mman.stolen_vga_size = size;
1046 		adev->mman.stolen_extended_size = 0;
1047 	}
1048 }
1049 
1050 /**
1051  * amdgpu_gmc_init_pdb0 - initialize PDB0
1052  *
1053  * @adev: amdgpu_device pointer
1054  *
1055  * This function is only used when GART page table is used
1056  * for FB address translatioin. In such a case, we construct
1057  * a 2-level system VM page table: PDB0->PTB, to cover both
1058  * VRAM of the hive and system memory.
1059  *
1060  * PDB0 is static, initialized once on driver initialization.
1061  * The first n entries of PDB0 are used as PTE by setting
1062  * P bit to 1, pointing to VRAM. The n+1'th entry points
1063  * to a big PTB covering system memory.
1064  *
1065  */
amdgpu_gmc_init_pdb0(struct amdgpu_device * adev)1066 void amdgpu_gmc_init_pdb0(struct amdgpu_device *adev)
1067 {
1068 	int i;
1069 	uint64_t flags = adev->gart.gart_pte_flags; //TODO it is UC. explore NC/RW?
1070 	/* Each PDE0 (used as PTE) covers (2^vmid0_page_table_block_size)*2M
1071 	 */
1072 	u64 vram_size = adev->gmc.xgmi.node_segment_size * adev->gmc.xgmi.num_physical_nodes;
1073 	u64 pde0_page_size = (1ULL<<adev->gmc.vmid0_page_table_block_size)<<21;
1074 	u64 vram_addr, vram_end;
1075 	u64 gart_ptb_gpu_pa = amdgpu_gmc_vram_pa(adev, adev->gart.bo);
1076 	int idx;
1077 
1078 	if (!drm_dev_enter(adev_to_drm(adev), &idx))
1079 		return;
1080 
1081 	flags |= AMDGPU_PTE_VALID | AMDGPU_PTE_READABLE;
1082 	flags |= AMDGPU_PTE_WRITEABLE;
1083 	flags |= AMDGPU_PTE_SNOOPED;
1084 	flags |= AMDGPU_PTE_FRAG((adev->gmc.vmid0_page_table_block_size + 9*1));
1085 	flags |= AMDGPU_PDE_PTE_FLAG(adev);
1086 
1087 	vram_addr = adev->vm_manager.vram_base_offset;
1088 	if (!amdgpu_virt_xgmi_migrate_enabled(adev))
1089 		vram_addr -= adev->gmc.xgmi.physical_node_id * adev->gmc.xgmi.node_segment_size;
1090 	vram_end = vram_addr + vram_size;
1091 
1092 	/* The first n PDE0 entries are used as PTE,
1093 	 * pointing to vram
1094 	 */
1095 	for (i = 0; vram_addr < vram_end; i++, vram_addr += pde0_page_size)
1096 		amdgpu_gmc_set_pte_pde(adev, adev->gmc.ptr_pdb0, i, vram_addr, flags);
1097 
1098 	/* The n+1'th PDE0 entry points to a huge
1099 	 * PTB who has more than 512 entries each
1100 	 * pointing to a 4K system page
1101 	 */
1102 	flags = AMDGPU_PTE_VALID;
1103 	flags |= AMDGPU_PTE_SNOOPED | AMDGPU_PDE_BFS_FLAG(adev, 0);
1104 	/* Requires gart_ptb_gpu_pa to be 4K aligned */
1105 	amdgpu_gmc_set_pte_pde(adev, adev->gmc.ptr_pdb0, i, gart_ptb_gpu_pa, flags);
1106 	drm_dev_exit(idx);
1107 }
1108 
1109 /**
1110  * amdgpu_gmc_vram_mc2pa - calculate vram buffer's physical address from MC
1111  * address
1112  *
1113  * @adev: amdgpu_device pointer
1114  * @mc_addr: MC address of buffer
1115  */
amdgpu_gmc_vram_mc2pa(struct amdgpu_device * adev,uint64_t mc_addr)1116 uint64_t amdgpu_gmc_vram_mc2pa(struct amdgpu_device *adev, uint64_t mc_addr)
1117 {
1118 	return mc_addr - adev->gmc.vram_start + adev->vm_manager.vram_base_offset;
1119 }
1120 
1121 /**
1122  * amdgpu_gmc_vram_pa - calculate vram buffer object's physical address from
1123  * GPU's view
1124  *
1125  * @adev: amdgpu_device pointer
1126  * @bo: amdgpu buffer object
1127  */
amdgpu_gmc_vram_pa(struct amdgpu_device * adev,struct amdgpu_bo * bo)1128 uint64_t amdgpu_gmc_vram_pa(struct amdgpu_device *adev, struct amdgpu_bo *bo)
1129 {
1130 	return amdgpu_gmc_vram_mc2pa(adev, amdgpu_bo_gpu_offset(bo));
1131 }
1132 
amdgpu_gmc_vram_checking(struct amdgpu_device * adev)1133 int amdgpu_gmc_vram_checking(struct amdgpu_device *adev)
1134 {
1135 	struct amdgpu_bo *vram_bo = NULL;
1136 	uint64_t vram_gpu = 0;
1137 	void *vram_ptr = NULL;
1138 
1139 	int ret, size = 0x100000;
1140 	uint8_t cptr[10];
1141 
1142 	ret = amdgpu_bo_create_kernel(adev, size, PAGE_SIZE,
1143 				AMDGPU_GEM_DOMAIN_VRAM,
1144 				&vram_bo,
1145 				&vram_gpu,
1146 				&vram_ptr);
1147 	if (ret)
1148 		return ret;
1149 
1150 	memset(vram_ptr, 0x86, size);
1151 	memset(cptr, 0x86, 10);
1152 
1153 	/**
1154 	 * Check the start, the mid, and the end of the memory if the content of
1155 	 * each byte is the pattern "0x86". If yes, we suppose the vram bo is
1156 	 * workable.
1157 	 *
1158 	 * Note: If check the each byte of whole 1M bo, it will cost too many
1159 	 * seconds, so here, we just pick up three parts for emulation.
1160 	 */
1161 	ret = memcmp(vram_ptr, cptr, 10);
1162 	if (ret) {
1163 		ret = -EIO;
1164 		goto release_buffer;
1165 	}
1166 
1167 	ret = memcmp(vram_ptr + (size / 2), cptr, 10);
1168 	if (ret) {
1169 		ret = -EIO;
1170 		goto release_buffer;
1171 	}
1172 
1173 	ret = memcmp(vram_ptr + size - 10, cptr, 10);
1174 	if (ret) {
1175 		ret = -EIO;
1176 		goto release_buffer;
1177 	}
1178 
1179 release_buffer:
1180 	amdgpu_bo_free_kernel(&vram_bo, &vram_gpu,
1181 			&vram_ptr);
1182 
1183 	return ret;
1184 }
1185 
1186 static const char *nps_desc[] = {
1187 	[AMDGPU_NPS1_PARTITION_MODE] = "NPS1",
1188 	[AMDGPU_NPS2_PARTITION_MODE] = "NPS2",
1189 	[AMDGPU_NPS3_PARTITION_MODE] = "NPS3",
1190 	[AMDGPU_NPS4_PARTITION_MODE] = "NPS4",
1191 	[AMDGPU_NPS6_PARTITION_MODE] = "NPS6",
1192 	[AMDGPU_NPS8_PARTITION_MODE] = "NPS8",
1193 };
1194 
available_memory_partition_show(struct device * dev,struct device_attribute * addr,char * buf)1195 static ssize_t available_memory_partition_show(struct device *dev,
1196 					       struct device_attribute *addr,
1197 					       char *buf)
1198 {
1199 	struct drm_device *ddev = dev_get_drvdata(dev);
1200 	struct amdgpu_device *adev = drm_to_adev(ddev);
1201 	int size = 0, mode;
1202 	char *sep = "";
1203 
1204 	for_each_inst(mode, adev->gmc.supported_nps_modes) {
1205 		size += sysfs_emit_at(buf, size, "%s%s", sep, nps_desc[mode]);
1206 		sep = ", ";
1207 	}
1208 	size += sysfs_emit_at(buf, size, "\n");
1209 
1210 	return size;
1211 }
1212 
current_memory_partition_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1213 static ssize_t current_memory_partition_store(struct device *dev,
1214 					      struct device_attribute *attr,
1215 					      const char *buf, size_t count)
1216 {
1217 	struct drm_device *ddev = dev_get_drvdata(dev);
1218 	struct amdgpu_device *adev = drm_to_adev(ddev);
1219 	enum amdgpu_memory_partition mode;
1220 	struct amdgpu_hive_info *hive;
1221 	int i;
1222 
1223 	mode = UNKNOWN_MEMORY_PARTITION_MODE;
1224 	for_each_inst(i, adev->gmc.supported_nps_modes) {
1225 		if (!strncasecmp(nps_desc[i], buf, strlen(nps_desc[i]))) {
1226 			mode = i;
1227 			break;
1228 		}
1229 	}
1230 
1231 	if (mode == UNKNOWN_MEMORY_PARTITION_MODE)
1232 		return -EINVAL;
1233 
1234 	if (mode == adev->gmc.gmc_funcs->query_mem_partition_mode(adev)) {
1235 		dev_info(
1236 			adev->dev,
1237 			"requested NPS mode is same as current NPS mode, skipping\n");
1238 		return count;
1239 	}
1240 
1241 	/* If device is part of hive, all devices in the hive should request the
1242 	 * same mode. Hence store the requested mode in hive.
1243 	 */
1244 	hive = amdgpu_get_xgmi_hive(adev);
1245 	if (hive) {
1246 		atomic_set(&hive->requested_nps_mode, mode);
1247 		amdgpu_put_xgmi_hive(hive);
1248 	} else {
1249 		adev->gmc.requested_nps_mode = mode;
1250 	}
1251 
1252 	dev_info(
1253 		adev->dev,
1254 		"NPS mode change requested, please remove and reload the driver\n");
1255 
1256 	return count;
1257 }
1258 
current_memory_partition_show(struct device * dev,struct device_attribute * addr,char * buf)1259 static ssize_t current_memory_partition_show(
1260 	struct device *dev, struct device_attribute *addr, char *buf)
1261 {
1262 	struct drm_device *ddev = dev_get_drvdata(dev);
1263 	struct amdgpu_device *adev = drm_to_adev(ddev);
1264 	enum amdgpu_memory_partition mode;
1265 
1266 	/* Only minimal precaution taken to reject requests while in reset */
1267 	if (amdgpu_in_reset(adev))
1268 		return -EPERM;
1269 
1270 	mode = adev->gmc.gmc_funcs->query_mem_partition_mode(adev);
1271 	if ((mode >= ARRAY_SIZE(nps_desc)) ||
1272 	    (BIT(mode) & AMDGPU_ALL_NPS_MASK) != BIT(mode))
1273 		return sysfs_emit(buf, "UNKNOWN\n");
1274 
1275 	return sysfs_emit(buf, "%s\n", nps_desc[mode]);
1276 }
1277 
1278 static DEVICE_ATTR_RW(current_memory_partition);
1279 static DEVICE_ATTR_RO(available_memory_partition);
1280 
amdgpu_gmc_sysfs_init(struct amdgpu_device * adev)1281 int amdgpu_gmc_sysfs_init(struct amdgpu_device *adev)
1282 {
1283 	bool nps_switch_support;
1284 	int r = 0;
1285 
1286 	if (!adev->gmc.gmc_funcs->query_mem_partition_mode)
1287 		return 0;
1288 
1289 	nps_switch_support = (hweight32(adev->gmc.supported_nps_modes &
1290 					AMDGPU_ALL_NPS_MASK) > 1);
1291 	if (!nps_switch_support)
1292 		dev_attr_current_memory_partition.attr.mode &=
1293 			~(S_IWUSR | S_IWGRP | S_IWOTH);
1294 	else
1295 		r = device_create_file(adev->dev,
1296 				       &dev_attr_available_memory_partition);
1297 
1298 	if (r)
1299 		return r;
1300 
1301 	return device_create_file(adev->dev,
1302 				  &dev_attr_current_memory_partition);
1303 }
1304 
amdgpu_gmc_sysfs_fini(struct amdgpu_device * adev)1305 void amdgpu_gmc_sysfs_fini(struct amdgpu_device *adev)
1306 {
1307 	if (!adev->gmc.gmc_funcs->query_mem_partition_mode)
1308 		return;
1309 
1310 	device_remove_file(adev->dev, &dev_attr_current_memory_partition);
1311 	device_remove_file(adev->dev, &dev_attr_available_memory_partition);
1312 }
1313 
amdgpu_gmc_get_nps_memranges(struct amdgpu_device * adev,struct amdgpu_mem_partition_info * mem_ranges,uint8_t * exp_ranges)1314 int amdgpu_gmc_get_nps_memranges(struct amdgpu_device *adev,
1315 				 struct amdgpu_mem_partition_info *mem_ranges,
1316 				 uint8_t *exp_ranges)
1317 {
1318 	struct amdgpu_gmc_memrange *ranges;
1319 	int range_cnt, ret, i, j;
1320 	uint32_t nps_type;
1321 	bool refresh;
1322 
1323 	if (!mem_ranges || !exp_ranges)
1324 		return -EINVAL;
1325 
1326 	refresh = (adev->init_lvl->level != AMDGPU_INIT_LEVEL_MINIMAL_XGMI) &&
1327 		  (adev->gmc.reset_flags & AMDGPU_GMC_INIT_RESET_NPS);
1328 	ret = amdgpu_discovery_get_nps_info(adev, &nps_type, &ranges,
1329 					    &range_cnt, refresh);
1330 
1331 	if (ret)
1332 		return ret;
1333 
1334 	/* TODO: For now, expect ranges and partition count to be the same.
1335 	 * Adjust if there are holes expected in any NPS domain.
1336 	 */
1337 	if (*exp_ranges && (range_cnt != *exp_ranges)) {
1338 		dev_warn(
1339 			adev->dev,
1340 			"NPS config mismatch - expected ranges: %d discovery - nps mode: %d, nps ranges: %d",
1341 			*exp_ranges, nps_type, range_cnt);
1342 		ret = -EINVAL;
1343 		goto err;
1344 	}
1345 
1346 	for (i = 0; i < range_cnt; ++i) {
1347 		if (ranges[i].base_address >= ranges[i].limit_address) {
1348 			dev_warn(
1349 				adev->dev,
1350 				"Invalid NPS range - nps mode: %d, range[%d]: base: %llx limit: %llx",
1351 				nps_type, i, ranges[i].base_address,
1352 				ranges[i].limit_address);
1353 			ret = -EINVAL;
1354 			goto err;
1355 		}
1356 
1357 		/* Check for overlaps, not expecting any now */
1358 		for (j = i - 1; j >= 0; j--) {
1359 			if (max(ranges[j].base_address,
1360 				ranges[i].base_address) <=
1361 			    min(ranges[j].limit_address,
1362 				ranges[i].limit_address)) {
1363 				dev_warn(
1364 					adev->dev,
1365 					"overlapping ranges detected [ %llx - %llx ] | [%llx - %llx]",
1366 					ranges[j].base_address,
1367 					ranges[j].limit_address,
1368 					ranges[i].base_address,
1369 					ranges[i].limit_address);
1370 				ret = -EINVAL;
1371 				goto err;
1372 			}
1373 		}
1374 
1375 		mem_ranges[i].range.fpfn =
1376 			(ranges[i].base_address -
1377 			 adev->vm_manager.vram_base_offset) >>
1378 			AMDGPU_GPU_PAGE_SHIFT;
1379 		mem_ranges[i].range.lpfn =
1380 			(ranges[i].limit_address -
1381 			 adev->vm_manager.vram_base_offset) >>
1382 			AMDGPU_GPU_PAGE_SHIFT;
1383 		mem_ranges[i].size =
1384 			ranges[i].limit_address - ranges[i].base_address + 1;
1385 	}
1386 
1387 	if (!*exp_ranges)
1388 		*exp_ranges = range_cnt;
1389 err:
1390 	kfree(ranges);
1391 
1392 	return ret;
1393 }
1394 
amdgpu_gmc_request_memory_partition(struct amdgpu_device * adev,int nps_mode)1395 int amdgpu_gmc_request_memory_partition(struct amdgpu_device *adev,
1396 					int nps_mode)
1397 {
1398 	/* Not supported on VF devices and APUs */
1399 	if (amdgpu_sriov_vf(adev) || (adev->flags & AMD_IS_APU))
1400 		return -EOPNOTSUPP;
1401 
1402 	if (!adev->psp.funcs) {
1403 		dev_err(adev->dev,
1404 			"PSP interface not available for nps mode change request");
1405 		return -EINVAL;
1406 	}
1407 
1408 	return psp_memory_partition(&adev->psp, nps_mode);
1409 }
1410 
amdgpu_gmc_need_nps_switch_req(struct amdgpu_device * adev,int req_nps_mode,int cur_nps_mode)1411 static inline bool amdgpu_gmc_need_nps_switch_req(struct amdgpu_device *adev,
1412 						  int req_nps_mode,
1413 						  int cur_nps_mode)
1414 {
1415 	return (((BIT(req_nps_mode) & adev->gmc.supported_nps_modes) ==
1416 			BIT(req_nps_mode)) &&
1417 		req_nps_mode != cur_nps_mode);
1418 }
1419 
amdgpu_gmc_prepare_nps_mode_change(struct amdgpu_device * adev)1420 void amdgpu_gmc_prepare_nps_mode_change(struct amdgpu_device *adev)
1421 {
1422 	int req_nps_mode, cur_nps_mode, r;
1423 	struct amdgpu_hive_info *hive;
1424 
1425 	if (amdgpu_sriov_vf(adev) || !adev->gmc.supported_nps_modes ||
1426 	    !adev->gmc.gmc_funcs->request_mem_partition_mode)
1427 		return;
1428 
1429 	cur_nps_mode = adev->gmc.gmc_funcs->query_mem_partition_mode(adev);
1430 	hive = amdgpu_get_xgmi_hive(adev);
1431 	if (hive) {
1432 		req_nps_mode = atomic_read(&hive->requested_nps_mode);
1433 		if (!amdgpu_gmc_need_nps_switch_req(adev, req_nps_mode,
1434 						    cur_nps_mode)) {
1435 			amdgpu_put_xgmi_hive(hive);
1436 			return;
1437 		}
1438 		r = amdgpu_xgmi_request_nps_change(adev, hive, req_nps_mode);
1439 		amdgpu_put_xgmi_hive(hive);
1440 		goto out;
1441 	}
1442 
1443 	req_nps_mode = adev->gmc.requested_nps_mode;
1444 	if (!amdgpu_gmc_need_nps_switch_req(adev, req_nps_mode, cur_nps_mode))
1445 		return;
1446 
1447 	/* even if this fails, we should let driver unload w/o blocking */
1448 	r = adev->gmc.gmc_funcs->request_mem_partition_mode(adev, req_nps_mode);
1449 out:
1450 	if (r)
1451 		dev_err(adev->dev, "NPS mode change request failed\n");
1452 	else
1453 		dev_info(
1454 			adev->dev,
1455 			"NPS mode change request done, reload driver to complete the change\n");
1456 }
1457 
amdgpu_gmc_need_reset_on_init(struct amdgpu_device * adev)1458 bool amdgpu_gmc_need_reset_on_init(struct amdgpu_device *adev)
1459 {
1460 	if (adev->gmc.gmc_funcs->need_reset_on_init)
1461 		return adev->gmc.gmc_funcs->need_reset_on_init(adev);
1462 
1463 	return false;
1464 }
1465 
1466 enum amdgpu_memory_partition
amdgpu_gmc_get_vf_memory_partition(struct amdgpu_device * adev)1467 amdgpu_gmc_get_vf_memory_partition(struct amdgpu_device *adev)
1468 {
1469 	switch (adev->gmc.num_mem_partitions) {
1470 	case 0:
1471 		return UNKNOWN_MEMORY_PARTITION_MODE;
1472 	case 1:
1473 		return AMDGPU_NPS1_PARTITION_MODE;
1474 	case 2:
1475 		return AMDGPU_NPS2_PARTITION_MODE;
1476 	case 4:
1477 		return AMDGPU_NPS4_PARTITION_MODE;
1478 	case 8:
1479 		return AMDGPU_NPS8_PARTITION_MODE;
1480 	default:
1481 		return AMDGPU_NPS1_PARTITION_MODE;
1482 	}
1483 }
1484 
1485 enum amdgpu_memory_partition
amdgpu_gmc_get_memory_partition(struct amdgpu_device * adev,u32 * supp_modes)1486 amdgpu_gmc_get_memory_partition(struct amdgpu_device *adev, u32 *supp_modes)
1487 {
1488 	enum amdgpu_memory_partition mode = UNKNOWN_MEMORY_PARTITION_MODE;
1489 
1490 	if (adev->nbio.funcs &&
1491 	    adev->nbio.funcs->get_memory_partition_mode)
1492 		mode = adev->nbio.funcs->get_memory_partition_mode(adev,
1493 								   supp_modes);
1494 	else
1495 		dev_warn(adev->dev, "memory partition mode query is not supported\n");
1496 
1497 	return mode;
1498 }
1499 
1500 enum amdgpu_memory_partition
amdgpu_gmc_query_memory_partition(struct amdgpu_device * adev)1501 amdgpu_gmc_query_memory_partition(struct amdgpu_device *adev)
1502 {
1503 	if (amdgpu_sriov_vf(adev))
1504 		return amdgpu_gmc_get_vf_memory_partition(adev);
1505 	else
1506 		return amdgpu_gmc_get_memory_partition(adev, NULL);
1507 }
1508 
amdgpu_gmc_validate_partition_info(struct amdgpu_device * adev)1509 static bool amdgpu_gmc_validate_partition_info(struct amdgpu_device *adev)
1510 {
1511 	enum amdgpu_memory_partition mode;
1512 	u32 supp_modes;
1513 	bool valid;
1514 
1515 	mode = amdgpu_gmc_get_memory_partition(adev, &supp_modes);
1516 
1517 	/* Mode detected by hardware not present in supported modes */
1518 	if ((mode != UNKNOWN_MEMORY_PARTITION_MODE) &&
1519 	    !(BIT(mode - 1) & supp_modes))
1520 		return false;
1521 
1522 	switch (mode) {
1523 	case UNKNOWN_MEMORY_PARTITION_MODE:
1524 	case AMDGPU_NPS1_PARTITION_MODE:
1525 		valid = (adev->gmc.num_mem_partitions == 1);
1526 		break;
1527 	case AMDGPU_NPS2_PARTITION_MODE:
1528 		valid = (adev->gmc.num_mem_partitions == 2);
1529 		break;
1530 	case AMDGPU_NPS4_PARTITION_MODE:
1531 		valid = (adev->gmc.num_mem_partitions == 3 ||
1532 			 adev->gmc.num_mem_partitions == 4);
1533 		break;
1534 	case AMDGPU_NPS8_PARTITION_MODE:
1535 		valid = (adev->gmc.num_mem_partitions == 8);
1536 		break;
1537 	default:
1538 		valid = false;
1539 	}
1540 
1541 	return valid;
1542 }
1543 
amdgpu_gmc_is_node_present(int * node_ids,int num_ids,int nid)1544 static bool amdgpu_gmc_is_node_present(int *node_ids, int num_ids, int nid)
1545 {
1546 	int i;
1547 
1548 	/* Check if node with id 'nid' is present in 'node_ids' array */
1549 	for (i = 0; i < num_ids; ++i)
1550 		if (node_ids[i] == nid)
1551 			return true;
1552 
1553 	return false;
1554 }
1555 
1556 static void
amdgpu_gmc_init_acpi_mem_ranges(struct amdgpu_device * adev,struct amdgpu_mem_partition_info * mem_ranges)1557 amdgpu_gmc_init_acpi_mem_ranges(struct amdgpu_device *adev,
1558 				struct amdgpu_mem_partition_info *mem_ranges)
1559 {
1560 	struct amdgpu_numa_info numa_info;
1561 	int node_ids[AMDGPU_MAX_MEM_RANGES];
1562 	int num_ranges = 0, ret;
1563 	int num_xcc, xcc_id;
1564 	uint32_t xcc_mask;
1565 
1566 	num_xcc = NUM_XCC(adev->gfx.xcc_mask);
1567 	xcc_mask = (1U << num_xcc) - 1;
1568 
1569 	for_each_inst(xcc_id, xcc_mask)	{
1570 		ret = amdgpu_acpi_get_mem_info(adev, xcc_id, &numa_info);
1571 		if (ret)
1572 			continue;
1573 
1574 		if (numa_info.nid == NUMA_NO_NODE) {
1575 			mem_ranges[0].size = numa_info.size;
1576 			mem_ranges[0].numa.node = numa_info.nid;
1577 			num_ranges = 1;
1578 			break;
1579 		}
1580 
1581 		if (amdgpu_gmc_is_node_present(node_ids, num_ranges,
1582 					     numa_info.nid))
1583 			continue;
1584 
1585 		node_ids[num_ranges] = numa_info.nid;
1586 		mem_ranges[num_ranges].numa.node = numa_info.nid;
1587 		mem_ranges[num_ranges].size = numa_info.size;
1588 		++num_ranges;
1589 	}
1590 
1591 	adev->gmc.num_mem_partitions = num_ranges;
1592 }
1593 
amdgpu_gmc_init_sw_mem_ranges(struct amdgpu_device * adev,struct amdgpu_mem_partition_info * mem_ranges)1594 void amdgpu_gmc_init_sw_mem_ranges(struct amdgpu_device *adev,
1595 				   struct amdgpu_mem_partition_info *mem_ranges)
1596 {
1597 	enum amdgpu_memory_partition mode;
1598 	u32 start_addr = 0, size;
1599 	int i, r, l;
1600 
1601 	mode = amdgpu_gmc_query_memory_partition(adev);
1602 
1603 	switch (mode) {
1604 	case UNKNOWN_MEMORY_PARTITION_MODE:
1605 		adev->gmc.num_mem_partitions = 0;
1606 		break;
1607 	case AMDGPU_NPS1_PARTITION_MODE:
1608 		adev->gmc.num_mem_partitions = 1;
1609 		break;
1610 	case AMDGPU_NPS2_PARTITION_MODE:
1611 		adev->gmc.num_mem_partitions = 2;
1612 		break;
1613 	case AMDGPU_NPS4_PARTITION_MODE:
1614 		if (adev->flags & AMD_IS_APU)
1615 			adev->gmc.num_mem_partitions = 3;
1616 		else
1617 			adev->gmc.num_mem_partitions = 4;
1618 		break;
1619 	case AMDGPU_NPS8_PARTITION_MODE:
1620 		adev->gmc.num_mem_partitions = 8;
1621 		break;
1622 	default:
1623 		adev->gmc.num_mem_partitions = 1;
1624 		break;
1625 	}
1626 
1627 	/* Use NPS range info, if populated */
1628 	r = amdgpu_gmc_get_nps_memranges(adev, mem_ranges,
1629 					 &adev->gmc.num_mem_partitions);
1630 	if (!r) {
1631 		l = 0;
1632 		for (i = 1; i < adev->gmc.num_mem_partitions; ++i) {
1633 			if (mem_ranges[i].range.lpfn >
1634 			    mem_ranges[i - 1].range.lpfn)
1635 				l = i;
1636 		}
1637 
1638 	} else {
1639 		if (!adev->gmc.num_mem_partitions) {
1640 			dev_warn(adev->dev,
1641 				 "Not able to detect NPS mode, fall back to NPS1\n");
1642 			adev->gmc.num_mem_partitions = 1;
1643 		}
1644 		/* Fallback to sw based calculation */
1645 		size = (adev->gmc.real_vram_size + SZ_16M) >> AMDGPU_GPU_PAGE_SHIFT;
1646 		size /= adev->gmc.num_mem_partitions;
1647 
1648 		for (i = 0; i < adev->gmc.num_mem_partitions; ++i) {
1649 			mem_ranges[i].range.fpfn = start_addr;
1650 			mem_ranges[i].size =
1651 				((u64)size << AMDGPU_GPU_PAGE_SHIFT);
1652 			mem_ranges[i].range.lpfn = start_addr + size - 1;
1653 			start_addr += size;
1654 		}
1655 
1656 		l = adev->gmc.num_mem_partitions - 1;
1657 	}
1658 
1659 	/* Adjust the last one */
1660 	mem_ranges[l].range.lpfn =
1661 		(adev->gmc.real_vram_size >> AMDGPU_GPU_PAGE_SHIFT) - 1;
1662 	mem_ranges[l].size =
1663 		adev->gmc.real_vram_size -
1664 		((u64)mem_ranges[l].range.fpfn << AMDGPU_GPU_PAGE_SHIFT);
1665 }
1666 
amdgpu_gmc_init_mem_ranges(struct amdgpu_device * adev)1667 int amdgpu_gmc_init_mem_ranges(struct amdgpu_device *adev)
1668 {
1669 	bool valid;
1670 
1671 	adev->gmc.mem_partitions = kcalloc(AMDGPU_MAX_MEM_RANGES,
1672 					   sizeof(struct amdgpu_mem_partition_info),
1673 					   GFP_KERNEL);
1674 	if (!adev->gmc.mem_partitions)
1675 		return -ENOMEM;
1676 
1677 	if (adev->gmc.is_app_apu)
1678 		amdgpu_gmc_init_acpi_mem_ranges(adev, adev->gmc.mem_partitions);
1679 	else
1680 		amdgpu_gmc_init_sw_mem_ranges(adev, adev->gmc.mem_partitions);
1681 
1682 	if (amdgpu_sriov_vf(adev))
1683 		valid = true;
1684 	else
1685 		valid = amdgpu_gmc_validate_partition_info(adev);
1686 	if (!valid) {
1687 		/* TODO: handle invalid case */
1688 		dev_warn(adev->dev,
1689 			 "Mem ranges not matching with hardware config\n");
1690 	}
1691 
1692 	return 0;
1693 }
1694