1 /*
2 * Copyright 2018 Advanced Micro Devices, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sub license, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19 * USE OR OTHER DEALINGS IN THE SOFTWARE.
20 *
21 * The above copyright notice and this permission notice (including the
22 * next paragraph) shall be included in all copies or substantial portions
23 * of the Software.
24 *
25 */
26
27 #include <linux/io-64-nonatomic-lo-hi.h>
28 #ifdef CONFIG_X86
29 #include <asm/hypervisor.h>
30 #endif
31
32 #include "amdgpu.h"
33 #include "amdgpu_gmc.h"
34 #include "amdgpu_ras.h"
35 #include "amdgpu_reset.h"
36 #include "amdgpu_xgmi.h"
37
38 #include <drm/drm_drv.h>
39 #include <drm/ttm/ttm_tt.h>
40
41 static const u64 four_gb = 0x100000000ULL;
42
amdgpu_gmc_is_pdb0_enabled(struct amdgpu_device * adev)43 bool amdgpu_gmc_is_pdb0_enabled(struct amdgpu_device *adev)
44 {
45 return adev->gmc.xgmi.connected_to_cpu || amdgpu_virt_xgmi_migrate_enabled(adev);
46 }
47
48 /**
49 * amdgpu_gmc_pdb0_alloc - allocate vram for pdb0
50 *
51 * @adev: amdgpu_device pointer
52 *
53 * Allocate video memory for pdb0 and map it for CPU access
54 * Returns 0 for success, error for failure.
55 */
amdgpu_gmc_pdb0_alloc(struct amdgpu_device * adev)56 int amdgpu_gmc_pdb0_alloc(struct amdgpu_device *adev)
57 {
58 int r;
59 struct amdgpu_bo_param bp;
60 u64 vram_size = adev->gmc.xgmi.node_segment_size * adev->gmc.xgmi.num_physical_nodes;
61 uint32_t pde0_page_shift = adev->gmc.vmid0_page_table_block_size + 21;
62 uint32_t npdes = (vram_size + (1ULL << pde0_page_shift) - 1) >> pde0_page_shift;
63
64 memset(&bp, 0, sizeof(bp));
65 bp.size = PAGE_ALIGN((npdes + 1) * 8);
66 bp.byte_align = PAGE_SIZE;
67 bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
68 bp.flags = AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED |
69 AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS;
70 bp.type = ttm_bo_type_kernel;
71 bp.resv = NULL;
72 bp.bo_ptr_size = sizeof(struct amdgpu_bo);
73
74 r = amdgpu_bo_create(adev, &bp, &adev->gmc.pdb0_bo);
75 if (r)
76 return r;
77
78 r = amdgpu_bo_reserve(adev->gmc.pdb0_bo, false);
79 if (unlikely(r != 0))
80 goto bo_reserve_failure;
81
82 r = amdgpu_bo_pin(adev->gmc.pdb0_bo, AMDGPU_GEM_DOMAIN_VRAM);
83 if (r)
84 goto bo_pin_failure;
85 r = amdgpu_bo_kmap(adev->gmc.pdb0_bo, &adev->gmc.ptr_pdb0);
86 if (r)
87 goto bo_kmap_failure;
88
89 amdgpu_bo_unreserve(adev->gmc.pdb0_bo);
90 return 0;
91
92 bo_kmap_failure:
93 amdgpu_bo_unpin(adev->gmc.pdb0_bo);
94 bo_pin_failure:
95 amdgpu_bo_unreserve(adev->gmc.pdb0_bo);
96 bo_reserve_failure:
97 amdgpu_bo_unref(&adev->gmc.pdb0_bo);
98 return r;
99 }
100
101 /**
102 * amdgpu_gmc_get_pde_for_bo - get the PDE for a BO
103 *
104 * @bo: the BO to get the PDE for
105 * @level: the level in the PD hirarchy
106 * @addr: resulting addr
107 * @flags: resulting flags
108 *
109 * Get the address and flags to be used for a PDE (Page Directory Entry).
110 */
amdgpu_gmc_get_pde_for_bo(struct amdgpu_bo * bo,int level,uint64_t * addr,uint64_t * flags)111 void amdgpu_gmc_get_pde_for_bo(struct amdgpu_bo *bo, int level,
112 uint64_t *addr, uint64_t *flags)
113 {
114 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
115
116 switch (bo->tbo.resource->mem_type) {
117 case TTM_PL_TT:
118 *addr = bo->tbo.ttm->dma_address[0];
119 break;
120 case TTM_PL_VRAM:
121 *addr = amdgpu_bo_gpu_offset(bo);
122 break;
123 default:
124 *addr = 0;
125 break;
126 }
127 *flags = amdgpu_ttm_tt_pde_flags(bo->tbo.ttm, bo->tbo.resource);
128 amdgpu_gmc_get_vm_pde(adev, level, addr, flags);
129 }
130
131 /*
132 * amdgpu_gmc_pd_addr - return the address of the root directory
133 */
amdgpu_gmc_pd_addr(struct amdgpu_bo * bo)134 uint64_t amdgpu_gmc_pd_addr(struct amdgpu_bo *bo)
135 {
136 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
137 uint64_t pd_addr;
138
139 /* TODO: move that into ASIC specific code */
140 if (adev->asic_type >= CHIP_VEGA10) {
141 uint64_t flags = AMDGPU_PTE_VALID;
142
143 amdgpu_gmc_get_pde_for_bo(bo, -1, &pd_addr, &flags);
144 pd_addr |= flags;
145 } else {
146 pd_addr = amdgpu_bo_gpu_offset(bo);
147 }
148 return pd_addr;
149 }
150
151 /**
152 * amdgpu_gmc_set_pte_pde - update the page tables using CPU
153 *
154 * @adev: amdgpu_device pointer
155 * @cpu_pt_addr: cpu address of the page table
156 * @gpu_page_idx: entry in the page table to update
157 * @addr: dst addr to write into pte/pde
158 * @flags: access flags
159 *
160 * Update the page tables using CPU.
161 */
amdgpu_gmc_set_pte_pde(struct amdgpu_device * adev,void * cpu_pt_addr,uint32_t gpu_page_idx,uint64_t addr,uint64_t flags)162 int amdgpu_gmc_set_pte_pde(struct amdgpu_device *adev, void *cpu_pt_addr,
163 uint32_t gpu_page_idx, uint64_t addr,
164 uint64_t flags)
165 {
166 void __iomem *ptr = (void *)cpu_pt_addr;
167 uint64_t value;
168
169 /*
170 * The following is for PTE only. GART does not have PDEs.
171 */
172 value = addr & 0x0000FFFFFFFFF000ULL;
173 value |= flags;
174 writeq(value, ptr + (gpu_page_idx * 8));
175
176 return 0;
177 }
178
179 /**
180 * amdgpu_gmc_agp_addr - return the address in the AGP address space
181 *
182 * @bo: TTM BO which needs the address, must be in GTT domain
183 *
184 * Tries to figure out how to access the BO through the AGP aperture. Returns
185 * AMDGPU_BO_INVALID_OFFSET if that is not possible.
186 */
amdgpu_gmc_agp_addr(struct ttm_buffer_object * bo)187 uint64_t amdgpu_gmc_agp_addr(struct ttm_buffer_object *bo)
188 {
189 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
190
191 if (!bo->ttm)
192 return AMDGPU_BO_INVALID_OFFSET;
193
194 if (bo->ttm->num_pages != 1 || bo->ttm->caching == ttm_cached)
195 return AMDGPU_BO_INVALID_OFFSET;
196
197 if (bo->ttm->dma_address[0] + PAGE_SIZE >= adev->gmc.agp_size)
198 return AMDGPU_BO_INVALID_OFFSET;
199
200 return adev->gmc.agp_start + bo->ttm->dma_address[0];
201 }
202
203 /**
204 * amdgpu_gmc_vram_location - try to find VRAM location
205 *
206 * @adev: amdgpu device structure holding all necessary information
207 * @mc: memory controller structure holding memory information
208 * @base: base address at which to put VRAM
209 *
210 * Function will try to place VRAM at base address provided
211 * as parameter.
212 */
amdgpu_gmc_vram_location(struct amdgpu_device * adev,struct amdgpu_gmc * mc,u64 base)213 void amdgpu_gmc_vram_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc,
214 u64 base)
215 {
216 uint64_t vis_limit = (uint64_t)amdgpu_vis_vram_limit << 20;
217 uint64_t limit = (uint64_t)amdgpu_vram_limit << 20;
218
219 mc->vram_start = base;
220 mc->vram_end = mc->vram_start + mc->mc_vram_size - 1;
221 if (limit < mc->real_vram_size)
222 mc->real_vram_size = limit;
223
224 if (vis_limit && vis_limit < mc->visible_vram_size)
225 mc->visible_vram_size = vis_limit;
226
227 if (mc->real_vram_size < mc->visible_vram_size)
228 mc->visible_vram_size = mc->real_vram_size;
229
230 if (mc->xgmi.num_physical_nodes == 0) {
231 mc->fb_start = mc->vram_start;
232 mc->fb_end = mc->vram_end;
233 }
234 dev_info(adev->dev, "VRAM: %lluM 0x%016llX - 0x%016llX (%lluM used)\n",
235 mc->mc_vram_size >> 20, mc->vram_start,
236 mc->vram_end, mc->real_vram_size >> 20);
237 }
238
239 /** amdgpu_gmc_sysvm_location - place vram and gart in sysvm aperture
240 *
241 * @adev: amdgpu device structure holding all necessary information
242 * @mc: memory controller structure holding memory information
243 *
244 * This function is only used if use GART for FB translation. In such
245 * case, we use sysvm aperture (vmid0 page tables) for both vram
246 * and gart (aka system memory) access.
247 *
248 * GPUVM (and our organization of vmid0 page tables) require sysvm
249 * aperture to be placed at a location aligned with 8 times of native
250 * page size. For example, if vm_context0_cntl.page_table_block_size
251 * is 12, then native page size is 8G (2M*2^12), sysvm should start
252 * with a 64G aligned address. For simplicity, we just put sysvm at
253 * address 0. So vram start at address 0 and gart is right after vram.
254 */
amdgpu_gmc_sysvm_location(struct amdgpu_device * adev,struct amdgpu_gmc * mc)255 void amdgpu_gmc_sysvm_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc)
256 {
257 u64 hive_vram_start = 0;
258 u64 hive_vram_end = mc->xgmi.node_segment_size * mc->xgmi.num_physical_nodes - 1;
259 mc->vram_start = mc->xgmi.node_segment_size * mc->xgmi.physical_node_id;
260 mc->vram_end = mc->vram_start + mc->xgmi.node_segment_size - 1;
261 /* node_segment_size may not 4GB aligned on SRIOV, align up is needed. */
262 mc->gart_start = ALIGN(hive_vram_end + 1, four_gb);
263 mc->gart_end = mc->gart_start + mc->gart_size - 1;
264 if (amdgpu_virt_xgmi_migrate_enabled(adev)) {
265 /* set mc->vram_start to 0 to switch the returned GPU address of
266 * amdgpu_bo_create_reserved() from FB aperture to GART aperture.
267 */
268 mc->vram_start = 0;
269 mc->vram_end = mc->vram_start + mc->mc_vram_size - 1;
270 mc->visible_vram_size = min(mc->visible_vram_size, mc->real_vram_size);
271 } else {
272 mc->fb_start = hive_vram_start;
273 mc->fb_end = hive_vram_end;
274 }
275 dev_info(adev->dev, "VRAM: %lluM 0x%016llX - 0x%016llX (%lluM used)\n",
276 mc->mc_vram_size >> 20, mc->vram_start,
277 mc->vram_end, mc->real_vram_size >> 20);
278 dev_info(adev->dev, "GART: %lluM 0x%016llX - 0x%016llX\n",
279 mc->gart_size >> 20, mc->gart_start, mc->gart_end);
280 }
281
282 /**
283 * amdgpu_gmc_gart_location - try to find GART location
284 *
285 * @adev: amdgpu device structure holding all necessary information
286 * @mc: memory controller structure holding memory information
287 * @gart_placement: GART placement policy with respect to VRAM
288 *
289 * Function will try to place GART before or after VRAM.
290 * If GART size is bigger than space left then we ajust GART size.
291 * Thus function will never fails.
292 */
amdgpu_gmc_gart_location(struct amdgpu_device * adev,struct amdgpu_gmc * mc,enum amdgpu_gart_placement gart_placement)293 void amdgpu_gmc_gart_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc,
294 enum amdgpu_gart_placement gart_placement)
295 {
296 u64 size_af, size_bf;
297 /*To avoid the hole, limit the max mc address to AMDGPU_GMC_HOLE_START*/
298 u64 max_mc_address = min(adev->gmc.mc_mask, AMDGPU_GMC_HOLE_START - 1);
299
300 /* VCE doesn't like it when BOs cross a 4GB segment, so align
301 * the GART base on a 4GB boundary as well.
302 */
303 size_bf = mc->fb_start;
304 size_af = max_mc_address + 1 - ALIGN(mc->fb_end + 1, four_gb);
305
306 if (mc->gart_size > max(size_bf, size_af)) {
307 dev_warn(adev->dev, "limiting GART\n");
308 mc->gart_size = max(size_bf, size_af);
309 }
310
311 switch (gart_placement) {
312 case AMDGPU_GART_PLACEMENT_HIGH:
313 mc->gart_start = max_mc_address - mc->gart_size + 1;
314 break;
315 case AMDGPU_GART_PLACEMENT_LOW:
316 mc->gart_start = 0;
317 break;
318 case AMDGPU_GART_PLACEMENT_BEST_FIT:
319 default:
320 if ((size_bf >= mc->gart_size && size_bf < size_af) ||
321 (size_af < mc->gart_size))
322 mc->gart_start = 0;
323 else
324 mc->gart_start = max_mc_address - mc->gart_size + 1;
325 break;
326 }
327
328 mc->gart_start &= ~(four_gb - 1);
329 mc->gart_end = mc->gart_start + mc->gart_size - 1;
330 dev_info(adev->dev, "GART: %lluM 0x%016llX - 0x%016llX\n",
331 mc->gart_size >> 20, mc->gart_start, mc->gart_end);
332 }
333
334 /**
335 * amdgpu_gmc_agp_location - try to find AGP location
336 * @adev: amdgpu device structure holding all necessary information
337 * @mc: memory controller structure holding memory information
338 *
339 * Function will place try to find a place for the AGP BAR in the MC address
340 * space.
341 *
342 * AGP BAR will be assigned the largest available hole in the address space.
343 * Should be called after VRAM and GART locations are setup.
344 */
amdgpu_gmc_agp_location(struct amdgpu_device * adev,struct amdgpu_gmc * mc)345 void amdgpu_gmc_agp_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc)
346 {
347 const uint64_t sixteen_gb = 1ULL << 34;
348 const uint64_t sixteen_gb_mask = ~(sixteen_gb - 1);
349 u64 size_af, size_bf;
350
351 if (mc->fb_start > mc->gart_start) {
352 size_bf = (mc->fb_start & sixteen_gb_mask) -
353 ALIGN(mc->gart_end + 1, sixteen_gb);
354 size_af = mc->mc_mask + 1 - ALIGN(mc->fb_end + 1, sixteen_gb);
355 } else {
356 size_bf = mc->fb_start & sixteen_gb_mask;
357 size_af = (mc->gart_start & sixteen_gb_mask) -
358 ALIGN(mc->fb_end + 1, sixteen_gb);
359 }
360
361 if (size_bf > size_af) {
362 mc->agp_start = (mc->fb_start - size_bf) & sixteen_gb_mask;
363 mc->agp_size = size_bf;
364 } else {
365 mc->agp_start = ALIGN(mc->fb_end + 1, sixteen_gb);
366 mc->agp_size = size_af;
367 }
368
369 mc->agp_end = mc->agp_start + mc->agp_size - 1;
370 dev_info(adev->dev, "AGP: %lluM 0x%016llX - 0x%016llX\n",
371 mc->agp_size >> 20, mc->agp_start, mc->agp_end);
372 }
373
374 /**
375 * amdgpu_gmc_set_agp_default - Set the default AGP aperture value.
376 * @adev: amdgpu device structure holding all necessary information
377 * @mc: memory controller structure holding memory information
378 *
379 * To disable the AGP aperture, you need to set the start to a larger
380 * value than the end. This function sets the default value which
381 * can then be overridden using amdgpu_gmc_agp_location() if you want
382 * to enable the AGP aperture on a specific chip.
383 *
384 */
amdgpu_gmc_set_agp_default(struct amdgpu_device * adev,struct amdgpu_gmc * mc)385 void amdgpu_gmc_set_agp_default(struct amdgpu_device *adev,
386 struct amdgpu_gmc *mc)
387 {
388 mc->agp_start = 0xffffffffffff;
389 mc->agp_end = 0;
390 mc->agp_size = 0;
391 }
392
393 /**
394 * amdgpu_gmc_fault_key - get hask key from vm fault address and pasid
395 *
396 * @addr: 48 bit physical address, page aligned (36 significant bits)
397 * @pasid: 16 bit process address space identifier
398 */
amdgpu_gmc_fault_key(uint64_t addr,uint16_t pasid)399 static inline uint64_t amdgpu_gmc_fault_key(uint64_t addr, uint16_t pasid)
400 {
401 return addr << 4 | pasid;
402 }
403
404 /**
405 * amdgpu_gmc_filter_faults - filter VM faults
406 *
407 * @adev: amdgpu device structure
408 * @ih: interrupt ring that the fault received from
409 * @addr: address of the VM fault
410 * @pasid: PASID of the process causing the fault
411 * @timestamp: timestamp of the fault
412 *
413 * Returns:
414 * True if the fault was filtered and should not be processed further.
415 * False if the fault is a new one and needs to be handled.
416 */
amdgpu_gmc_filter_faults(struct amdgpu_device * adev,struct amdgpu_ih_ring * ih,uint64_t addr,uint16_t pasid,uint64_t timestamp)417 bool amdgpu_gmc_filter_faults(struct amdgpu_device *adev,
418 struct amdgpu_ih_ring *ih, uint64_t addr,
419 uint16_t pasid, uint64_t timestamp)
420 {
421 struct amdgpu_gmc *gmc = &adev->gmc;
422 uint64_t stamp, key = amdgpu_gmc_fault_key(addr, pasid);
423 struct amdgpu_gmc_fault *fault;
424 uint32_t hash;
425
426 /* Stale retry fault if timestamp goes backward */
427 if (amdgpu_ih_ts_after(timestamp, ih->processed_timestamp))
428 return true;
429
430 /* If we don't have space left in the ring buffer return immediately */
431 stamp = max(timestamp, AMDGPU_GMC_FAULT_TIMEOUT + 1) -
432 AMDGPU_GMC_FAULT_TIMEOUT;
433 if (gmc->fault_ring[gmc->last_fault].timestamp >= stamp)
434 return true;
435
436 /* Try to find the fault in the hash */
437 hash = hash_64(key, AMDGPU_GMC_FAULT_HASH_ORDER);
438 fault = &gmc->fault_ring[gmc->fault_hash[hash].idx];
439 while (fault->timestamp >= stamp) {
440 uint64_t tmp;
441
442 if (atomic64_read(&fault->key) == key) {
443 /*
444 * if we get a fault which is already present in
445 * the fault_ring and the timestamp of
446 * the fault is after the expired timestamp,
447 * then this is a new fault that needs to be added
448 * into the fault ring.
449 */
450 if (fault->timestamp_expiry != 0 &&
451 amdgpu_ih_ts_after(fault->timestamp_expiry,
452 timestamp))
453 break;
454 else
455 return true;
456 }
457
458 tmp = fault->timestamp;
459 fault = &gmc->fault_ring[fault->next];
460
461 /* Check if the entry was reused */
462 if (fault->timestamp >= tmp)
463 break;
464 }
465
466 /* Add the fault to the ring */
467 fault = &gmc->fault_ring[gmc->last_fault];
468 atomic64_set(&fault->key, key);
469 fault->timestamp = timestamp;
470
471 /* And update the hash */
472 fault->next = gmc->fault_hash[hash].idx;
473 gmc->fault_hash[hash].idx = gmc->last_fault++;
474 return false;
475 }
476
477 /**
478 * amdgpu_gmc_filter_faults_remove - remove address from VM faults filter
479 *
480 * @adev: amdgpu device structure
481 * @addr: address of the VM fault
482 * @pasid: PASID of the process causing the fault
483 *
484 * Remove the address from fault filter, then future vm fault on this address
485 * will pass to retry fault handler to recover.
486 */
amdgpu_gmc_filter_faults_remove(struct amdgpu_device * adev,uint64_t addr,uint16_t pasid)487 void amdgpu_gmc_filter_faults_remove(struct amdgpu_device *adev, uint64_t addr,
488 uint16_t pasid)
489 {
490 struct amdgpu_gmc *gmc = &adev->gmc;
491 uint64_t key = amdgpu_gmc_fault_key(addr, pasid);
492 struct amdgpu_ih_ring *ih;
493 struct amdgpu_gmc_fault *fault;
494 uint32_t last_wptr;
495 uint64_t last_ts;
496 uint32_t hash;
497 uint64_t tmp;
498
499 if (adev->irq.retry_cam_enabled)
500 return;
501 else if (adev->irq.ih1.ring_size)
502 ih = &adev->irq.ih1;
503 else if (adev->irq.ih_soft.enabled)
504 ih = &adev->irq.ih_soft;
505 else
506 return;
507
508 /* Get the WPTR of the last entry in IH ring */
509 last_wptr = amdgpu_ih_get_wptr(adev, ih);
510 /* Order wptr with ring data. */
511 rmb();
512 /* Get the timetamp of the last entry in IH ring */
513 last_ts = amdgpu_ih_decode_iv_ts(adev, ih, last_wptr, -1);
514
515 hash = hash_64(key, AMDGPU_GMC_FAULT_HASH_ORDER);
516 fault = &gmc->fault_ring[gmc->fault_hash[hash].idx];
517 do {
518 if (atomic64_read(&fault->key) == key) {
519 /*
520 * Update the timestamp when this fault
521 * expired.
522 */
523 fault->timestamp_expiry = last_ts;
524 break;
525 }
526
527 tmp = fault->timestamp;
528 fault = &gmc->fault_ring[fault->next];
529 } while (fault->timestamp < tmp);
530 }
531
amdgpu_gmc_ras_sw_init(struct amdgpu_device * adev)532 int amdgpu_gmc_ras_sw_init(struct amdgpu_device *adev)
533 {
534 int r;
535
536 /* umc ras block */
537 r = amdgpu_umc_ras_sw_init(adev);
538 if (r)
539 return r;
540
541 /* mmhub ras block */
542 r = amdgpu_mmhub_ras_sw_init(adev);
543 if (r)
544 return r;
545
546 /* hdp ras block */
547 r = amdgpu_hdp_ras_sw_init(adev);
548 if (r)
549 return r;
550
551 /* mca.x ras block */
552 r = amdgpu_mca_mp0_ras_sw_init(adev);
553 if (r)
554 return r;
555
556 r = amdgpu_mca_mp1_ras_sw_init(adev);
557 if (r)
558 return r;
559
560 r = amdgpu_mca_mpio_ras_sw_init(adev);
561 if (r)
562 return r;
563
564 /* xgmi ras block */
565 r = amdgpu_xgmi_ras_sw_init(adev);
566 if (r)
567 return r;
568
569 return 0;
570 }
571
amdgpu_gmc_ras_late_init(struct amdgpu_device * adev)572 int amdgpu_gmc_ras_late_init(struct amdgpu_device *adev)
573 {
574 return 0;
575 }
576
amdgpu_gmc_ras_fini(struct amdgpu_device * adev)577 void amdgpu_gmc_ras_fini(struct amdgpu_device *adev)
578 {
579
580 }
581
582 /*
583 * The latest engine allocation on gfx9/10 is:
584 * Engine 2, 3: firmware
585 * Engine 0, 1, 4~16: amdgpu ring,
586 * subject to change when ring number changes
587 * Engine 17: Gart flushes
588 */
589 #define AMDGPU_VMHUB_INV_ENG_BITMAP 0x1FFF3
590
amdgpu_gmc_allocate_vm_inv_eng(struct amdgpu_device * adev)591 int amdgpu_gmc_allocate_vm_inv_eng(struct amdgpu_device *adev)
592 {
593 struct amdgpu_ring *ring;
594 unsigned vm_inv_engs[AMDGPU_MAX_VMHUBS] = {0};
595 unsigned i;
596 unsigned vmhub, inv_eng;
597 struct amdgpu_ring *shared_ring;
598
599 /* init the vm inv eng for all vmhubs */
600 for_each_set_bit(i, adev->vmhubs_mask, AMDGPU_MAX_VMHUBS) {
601 vm_inv_engs[i] = AMDGPU_VMHUB_INV_ENG_BITMAP;
602 /* reserve engine 5 for firmware */
603 if (adev->enable_mes)
604 vm_inv_engs[i] &= ~(1 << 5);
605 /* reserve engine 6 for uni mes */
606 if (adev->enable_uni_mes)
607 vm_inv_engs[i] &= ~(1 << 6);
608 /* reserve mmhub engine 3 for firmware */
609 if (adev->enable_umsch_mm)
610 vm_inv_engs[i] &= ~(1 << 3);
611 }
612
613 for (i = 0; i < adev->num_rings; ++i) {
614 ring = adev->rings[i];
615 vmhub = ring->vm_hub;
616
617 if (ring == &adev->mes.ring[0] ||
618 ring == &adev->mes.ring[1] ||
619 ring == &adev->umsch_mm.ring ||
620 ring == &adev->cper.ring_buf)
621 continue;
622
623 /* Skip if the ring is a shared ring */
624 if (amdgpu_sdma_is_shared_inv_eng(adev, ring))
625 continue;
626
627 inv_eng = ffs(vm_inv_engs[vmhub]);
628 if (!inv_eng) {
629 dev_err(adev->dev, "no VM inv eng for ring %s\n",
630 ring->name);
631 return -EINVAL;
632 }
633
634 ring->vm_inv_eng = inv_eng - 1;
635 vm_inv_engs[vmhub] &= ~(1 << ring->vm_inv_eng);
636
637 dev_info(adev->dev, "ring %s uses VM inv eng %u on hub %u\n",
638 ring->name, ring->vm_inv_eng, ring->vm_hub);
639 /* SDMA has a special packet which allows it to use the same
640 * invalidation engine for all the rings in one instance.
641 * Therefore, we do not allocate a separate VM invalidation engine
642 * for SDMA page rings. Instead, they share the VM invalidation
643 * engine with the SDMA gfx ring. This change ensures efficient
644 * resource management and avoids the issue of insufficient VM
645 * invalidation engines.
646 */
647 shared_ring = amdgpu_sdma_get_shared_ring(adev, ring);
648 if (shared_ring) {
649 shared_ring->vm_inv_eng = ring->vm_inv_eng;
650 dev_info(adev->dev, "ring %s shares VM invalidation engine %u with ring %s on hub %u\n",
651 ring->name, ring->vm_inv_eng, shared_ring->name, ring->vm_hub);
652 continue;
653 }
654 }
655
656 return 0;
657 }
658
amdgpu_gmc_flush_gpu_tlb(struct amdgpu_device * adev,uint32_t vmid,uint32_t vmhub,uint32_t flush_type)659 void amdgpu_gmc_flush_gpu_tlb(struct amdgpu_device *adev, uint32_t vmid,
660 uint32_t vmhub, uint32_t flush_type)
661 {
662 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
663 struct amdgpu_vmhub *hub = &adev->vmhub[vmhub];
664 struct dma_fence *fence;
665 struct amdgpu_job *job;
666 int r;
667
668 if (!hub->sdma_invalidation_workaround || vmid ||
669 !adev->mman.buffer_funcs_enabled || !adev->ib_pool_ready ||
670 !ring->sched.ready) {
671 /*
672 * A GPU reset should flush all TLBs anyway, so no need to do
673 * this while one is ongoing.
674 */
675 if (!down_read_trylock(&adev->reset_domain->sem))
676 return;
677
678 if (adev->gmc.flush_tlb_needs_extra_type_2)
679 adev->gmc.gmc_funcs->flush_gpu_tlb(adev, vmid,
680 vmhub, 2);
681
682 if (adev->gmc.flush_tlb_needs_extra_type_0 && flush_type == 2)
683 adev->gmc.gmc_funcs->flush_gpu_tlb(adev, vmid,
684 vmhub, 0);
685
686 adev->gmc.gmc_funcs->flush_gpu_tlb(adev, vmid, vmhub,
687 flush_type);
688 up_read(&adev->reset_domain->sem);
689 return;
690 }
691
692 /* The SDMA on Navi 1x has a bug which can theoretically result in memory
693 * corruption if an invalidation happens at the same time as an VA
694 * translation. Avoid this by doing the invalidation from the SDMA
695 * itself at least for GART.
696 */
697 mutex_lock(&adev->mman.gtt_window_lock);
698 r = amdgpu_job_alloc_with_ib(ring->adev, &adev->mman.high_pr,
699 AMDGPU_FENCE_OWNER_UNDEFINED,
700 16 * 4, AMDGPU_IB_POOL_IMMEDIATE,
701 &job, AMDGPU_KERNEL_JOB_ID_FLUSH_GPU_TLB);
702 if (r)
703 goto error_alloc;
704
705 job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo);
706 job->vm_needs_flush = true;
707 job->ibs->ptr[job->ibs->length_dw++] = ring->funcs->nop;
708 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
709 fence = amdgpu_job_submit(job);
710 mutex_unlock(&adev->mman.gtt_window_lock);
711
712 dma_fence_wait(fence, false);
713 dma_fence_put(fence);
714
715 return;
716
717 error_alloc:
718 mutex_unlock(&adev->mman.gtt_window_lock);
719 dev_err(adev->dev, "Error flushing GPU TLB using the SDMA (%d)!\n", r);
720 }
721
amdgpu_gmc_flush_gpu_tlb_pasid(struct amdgpu_device * adev,uint16_t pasid,uint32_t flush_type,bool all_hub,uint32_t inst)722 int amdgpu_gmc_flush_gpu_tlb_pasid(struct amdgpu_device *adev, uint16_t pasid,
723 uint32_t flush_type, bool all_hub,
724 uint32_t inst)
725 {
726 struct amdgpu_ring *ring = &adev->gfx.kiq[inst].ring;
727 struct amdgpu_kiq *kiq = &adev->gfx.kiq[inst];
728 unsigned int ndw;
729 int r, cnt = 0;
730 uint32_t seq;
731
732 /*
733 * A GPU reset should flush all TLBs anyway, so no need to do
734 * this while one is ongoing.
735 */
736 if (!down_read_trylock(&adev->reset_domain->sem))
737 return 0;
738
739 if (!adev->gmc.flush_pasid_uses_kiq || !ring->sched.ready) {
740
741 if (!adev->gmc.gmc_funcs->flush_gpu_tlb_pasid) {
742 r = 0;
743 goto error_unlock_reset;
744 }
745
746 if (adev->gmc.flush_tlb_needs_extra_type_2)
747 adev->gmc.gmc_funcs->flush_gpu_tlb_pasid(adev, pasid,
748 2, all_hub,
749 inst);
750
751 if (adev->gmc.flush_tlb_needs_extra_type_0 && flush_type == 2)
752 adev->gmc.gmc_funcs->flush_gpu_tlb_pasid(adev, pasid,
753 0, all_hub,
754 inst);
755
756 adev->gmc.gmc_funcs->flush_gpu_tlb_pasid(adev, pasid,
757 flush_type, all_hub,
758 inst);
759 r = 0;
760 } else {
761 /* 2 dwords flush + 8 dwords fence */
762 ndw = kiq->pmf->invalidate_tlbs_size + 8;
763
764 if (adev->gmc.flush_tlb_needs_extra_type_2)
765 ndw += kiq->pmf->invalidate_tlbs_size;
766
767 if (adev->gmc.flush_tlb_needs_extra_type_0)
768 ndw += kiq->pmf->invalidate_tlbs_size;
769
770 spin_lock(&adev->gfx.kiq[inst].ring_lock);
771 r = amdgpu_ring_alloc(ring, ndw);
772 if (r) {
773 spin_unlock(&adev->gfx.kiq[inst].ring_lock);
774 goto error_unlock_reset;
775 }
776 if (adev->gmc.flush_tlb_needs_extra_type_2)
777 kiq->pmf->kiq_invalidate_tlbs(ring, pasid, 2, all_hub);
778
779 if (flush_type == 2 && adev->gmc.flush_tlb_needs_extra_type_0)
780 kiq->pmf->kiq_invalidate_tlbs(ring, pasid, 0, all_hub);
781
782 kiq->pmf->kiq_invalidate_tlbs(ring, pasid, flush_type, all_hub);
783 r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT);
784 if (r) {
785 amdgpu_ring_undo(ring);
786 spin_unlock(&adev->gfx.kiq[inst].ring_lock);
787 goto error_unlock_reset;
788 }
789
790 amdgpu_ring_commit(ring);
791 spin_unlock(&adev->gfx.kiq[inst].ring_lock);
792
793 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
794
795 might_sleep();
796 while (r < 1 && cnt++ < MAX_KIQ_REG_TRY &&
797 !amdgpu_reset_pending(adev->reset_domain)) {
798 msleep(MAX_KIQ_REG_BAILOUT_INTERVAL);
799 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
800 }
801
802 if (cnt > MAX_KIQ_REG_TRY) {
803 dev_err(adev->dev, "timeout waiting for kiq fence\n");
804 r = -ETIME;
805 } else
806 r = 0;
807 }
808
809 error_unlock_reset:
810 up_read(&adev->reset_domain->sem);
811 return r;
812 }
813
amdgpu_gmc_fw_reg_write_reg_wait(struct amdgpu_device * adev,uint32_t reg0,uint32_t reg1,uint32_t ref,uint32_t mask,uint32_t xcc_inst)814 void amdgpu_gmc_fw_reg_write_reg_wait(struct amdgpu_device *adev,
815 uint32_t reg0, uint32_t reg1,
816 uint32_t ref, uint32_t mask,
817 uint32_t xcc_inst)
818 {
819 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_inst];
820 struct amdgpu_ring *ring = &kiq->ring;
821 signed long r, cnt = 0;
822 unsigned long flags;
823 uint32_t seq;
824
825 if (adev->mes.ring[0].sched.ready) {
826 amdgpu_mes_reg_write_reg_wait(adev, reg0, reg1,
827 ref, mask);
828 return;
829 }
830
831 spin_lock_irqsave(&kiq->ring_lock, flags);
832 amdgpu_ring_alloc(ring, 32);
833 amdgpu_ring_emit_reg_write_reg_wait(ring, reg0, reg1,
834 ref, mask);
835 r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT);
836 if (r)
837 goto failed_undo;
838
839 amdgpu_ring_commit(ring);
840 spin_unlock_irqrestore(&kiq->ring_lock, flags);
841
842 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
843
844 /* don't wait anymore for IRQ context */
845 if (r < 1 && in_interrupt())
846 goto failed_kiq;
847
848 might_sleep();
849 while (r < 1 && cnt++ < MAX_KIQ_REG_TRY &&
850 !amdgpu_reset_pending(adev->reset_domain)) {
851
852 msleep(MAX_KIQ_REG_BAILOUT_INTERVAL);
853 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
854 }
855
856 if (cnt > MAX_KIQ_REG_TRY)
857 goto failed_kiq;
858
859 return;
860
861 failed_undo:
862 amdgpu_ring_undo(ring);
863 spin_unlock_irqrestore(&kiq->ring_lock, flags);
864 failed_kiq:
865 dev_err(adev->dev, "failed to write reg %x wait reg %x\n", reg0, reg1);
866 }
867
868 /**
869 * amdgpu_gmc_tmz_set -- check and set if a device supports TMZ
870 * @adev: amdgpu_device pointer
871 *
872 * Check and set if an the device @adev supports Trusted Memory
873 * Zones (TMZ).
874 */
amdgpu_gmc_tmz_set(struct amdgpu_device * adev)875 void amdgpu_gmc_tmz_set(struct amdgpu_device *adev)
876 {
877 switch (amdgpu_ip_version(adev, GC_HWIP, 0)) {
878 /* RAVEN */
879 case IP_VERSION(9, 2, 2):
880 case IP_VERSION(9, 1, 0):
881 /* RENOIR looks like RAVEN */
882 case IP_VERSION(9, 3, 0):
883 /* GC 10.3.7 */
884 case IP_VERSION(10, 3, 7):
885 /* GC 11.0.1 */
886 case IP_VERSION(11, 0, 1):
887 if (amdgpu_tmz == 0) {
888 adev->gmc.tmz_enabled = false;
889 dev_info(adev->dev,
890 "Trusted Memory Zone (TMZ) feature disabled (cmd line)\n");
891 } else {
892 adev->gmc.tmz_enabled = true;
893 dev_info(adev->dev,
894 "Trusted Memory Zone (TMZ) feature enabled\n");
895 }
896 break;
897 case IP_VERSION(10, 1, 10):
898 case IP_VERSION(10, 1, 1):
899 case IP_VERSION(10, 1, 2):
900 case IP_VERSION(10, 1, 3):
901 case IP_VERSION(10, 3, 0):
902 case IP_VERSION(10, 3, 2):
903 case IP_VERSION(10, 3, 4):
904 case IP_VERSION(10, 3, 5):
905 case IP_VERSION(10, 3, 6):
906 /* VANGOGH */
907 case IP_VERSION(10, 3, 1):
908 /* YELLOW_CARP*/
909 case IP_VERSION(10, 3, 3):
910 case IP_VERSION(11, 0, 4):
911 case IP_VERSION(11, 5, 0):
912 case IP_VERSION(11, 5, 1):
913 case IP_VERSION(11, 5, 2):
914 case IP_VERSION(11, 5, 3):
915 /* Don't enable it by default yet.
916 */
917 if (amdgpu_tmz < 1) {
918 adev->gmc.tmz_enabled = false;
919 dev_info(adev->dev,
920 "Trusted Memory Zone (TMZ) feature disabled as experimental (default)\n");
921 } else {
922 adev->gmc.tmz_enabled = true;
923 dev_info(adev->dev,
924 "Trusted Memory Zone (TMZ) feature enabled as experimental (cmd line)\n");
925 }
926 break;
927 default:
928 adev->gmc.tmz_enabled = false;
929 dev_info(adev->dev,
930 "Trusted Memory Zone (TMZ) feature not supported\n");
931 break;
932 }
933 }
934
935 /**
936 * amdgpu_gmc_noretry_set -- set per asic noretry defaults
937 * @adev: amdgpu_device pointer
938 *
939 * Set a per asic default for the no-retry parameter.
940 *
941 */
amdgpu_gmc_noretry_set(struct amdgpu_device * adev)942 void amdgpu_gmc_noretry_set(struct amdgpu_device *adev)
943 {
944 struct amdgpu_gmc *gmc = &adev->gmc;
945 uint32_t gc_ver = amdgpu_ip_version(adev, GC_HWIP, 0);
946 bool noretry_default = (gc_ver == IP_VERSION(9, 0, 1) ||
947 gc_ver == IP_VERSION(9, 4, 0) ||
948 gc_ver == IP_VERSION(9, 4, 1) ||
949 gc_ver == IP_VERSION(9, 4, 2) ||
950 gc_ver == IP_VERSION(9, 4, 3) ||
951 gc_ver == IP_VERSION(9, 4, 4) ||
952 gc_ver == IP_VERSION(9, 5, 0) ||
953 gc_ver >= IP_VERSION(10, 3, 0));
954
955 if (!amdgpu_sriov_xnack_support(adev))
956 gmc->noretry = 1;
957 else
958 gmc->noretry = (amdgpu_noretry == -1) ? noretry_default : amdgpu_noretry;
959 }
960
amdgpu_gmc_set_vm_fault_masks(struct amdgpu_device * adev,int hub_type,bool enable)961 void amdgpu_gmc_set_vm_fault_masks(struct amdgpu_device *adev, int hub_type,
962 bool enable)
963 {
964 struct amdgpu_vmhub *hub;
965 u32 tmp, reg, i;
966
967 hub = &adev->vmhub[hub_type];
968 for (i = 0; i < 16; i++) {
969 reg = hub->vm_context0_cntl + hub->ctx_distance * i;
970
971 tmp = (hub_type == AMDGPU_GFXHUB(0)) ?
972 RREG32_SOC15_IP(GC, reg) :
973 RREG32_SOC15_IP(MMHUB, reg);
974
975 if (enable)
976 tmp |= hub->vm_cntx_cntl_vm_fault;
977 else
978 tmp &= ~hub->vm_cntx_cntl_vm_fault;
979
980 (hub_type == AMDGPU_GFXHUB(0)) ?
981 WREG32_SOC15_IP(GC, reg, tmp) :
982 WREG32_SOC15_IP(MMHUB, reg, tmp);
983 }
984 }
985
amdgpu_gmc_get_vbios_allocations(struct amdgpu_device * adev)986 void amdgpu_gmc_get_vbios_allocations(struct amdgpu_device *adev)
987 {
988 unsigned size;
989
990 /*
991 * Some ASICs need to reserve a region of video memory to avoid access
992 * from driver
993 */
994 adev->mman.stolen_reserved_offset = 0;
995 adev->mman.stolen_reserved_size = 0;
996
997 /*
998 * TODO:
999 * Currently there is a bug where some memory client outside
1000 * of the driver writes to first 8M of VRAM on S3 resume,
1001 * this overrides GART which by default gets placed in first 8M and
1002 * causes VM_FAULTS once GTT is accessed.
1003 * Keep the stolen memory reservation until the while this is not solved.
1004 */
1005 switch (adev->asic_type) {
1006 case CHIP_VEGA10:
1007 adev->mman.keep_stolen_vga_memory = true;
1008 /*
1009 * VEGA10 SRIOV VF with MS_HYPERV host needs some firmware reserved area.
1010 */
1011 #ifdef CONFIG_X86
1012 if (amdgpu_sriov_vf(adev) && hypervisor_is_type(X86_HYPER_MS_HYPERV)) {
1013 adev->mman.stolen_reserved_offset = 0x500000;
1014 adev->mman.stolen_reserved_size = 0x200000;
1015 }
1016 #endif
1017 break;
1018 case CHIP_RAVEN:
1019 case CHIP_RENOIR:
1020 adev->mman.keep_stolen_vga_memory = true;
1021 break;
1022 default:
1023 adev->mman.keep_stolen_vga_memory = false;
1024 break;
1025 }
1026
1027 if (amdgpu_sriov_vf(adev) ||
1028 !amdgpu_device_has_display_hardware(adev)) {
1029 size = 0;
1030 } else {
1031 size = amdgpu_gmc_get_vbios_fb_size(adev);
1032
1033 if (adev->mman.keep_stolen_vga_memory)
1034 size = max(size, (unsigned)AMDGPU_VBIOS_VGA_ALLOCATION);
1035 }
1036
1037 /* set to 0 if the pre-OS buffer uses up most of vram */
1038 if ((adev->gmc.real_vram_size - size) < (8 * 1024 * 1024))
1039 size = 0;
1040
1041 if (size > AMDGPU_VBIOS_VGA_ALLOCATION) {
1042 adev->mman.stolen_vga_size = AMDGPU_VBIOS_VGA_ALLOCATION;
1043 adev->mman.stolen_extended_size = size - adev->mman.stolen_vga_size;
1044 } else {
1045 adev->mman.stolen_vga_size = size;
1046 adev->mman.stolen_extended_size = 0;
1047 }
1048 }
1049
1050 /**
1051 * amdgpu_gmc_init_pdb0 - initialize PDB0
1052 *
1053 * @adev: amdgpu_device pointer
1054 *
1055 * This function is only used when GART page table is used
1056 * for FB address translatioin. In such a case, we construct
1057 * a 2-level system VM page table: PDB0->PTB, to cover both
1058 * VRAM of the hive and system memory.
1059 *
1060 * PDB0 is static, initialized once on driver initialization.
1061 * The first n entries of PDB0 are used as PTE by setting
1062 * P bit to 1, pointing to VRAM. The n+1'th entry points
1063 * to a big PTB covering system memory.
1064 *
1065 */
amdgpu_gmc_init_pdb0(struct amdgpu_device * adev)1066 void amdgpu_gmc_init_pdb0(struct amdgpu_device *adev)
1067 {
1068 int i;
1069 uint64_t flags = adev->gart.gart_pte_flags; //TODO it is UC. explore NC/RW?
1070 /* Each PDE0 (used as PTE) covers (2^vmid0_page_table_block_size)*2M
1071 */
1072 u64 vram_size = adev->gmc.xgmi.node_segment_size * adev->gmc.xgmi.num_physical_nodes;
1073 u64 pde0_page_size = (1ULL<<adev->gmc.vmid0_page_table_block_size)<<21;
1074 u64 vram_addr, vram_end;
1075 u64 gart_ptb_gpu_pa = amdgpu_gmc_vram_pa(adev, adev->gart.bo);
1076 int idx;
1077
1078 if (!drm_dev_enter(adev_to_drm(adev), &idx))
1079 return;
1080
1081 flags |= AMDGPU_PTE_VALID | AMDGPU_PTE_READABLE;
1082 flags |= AMDGPU_PTE_WRITEABLE;
1083 flags |= AMDGPU_PTE_SNOOPED;
1084 flags |= AMDGPU_PTE_FRAG((adev->gmc.vmid0_page_table_block_size + 9*1));
1085 flags |= AMDGPU_PDE_PTE_FLAG(adev);
1086
1087 vram_addr = adev->vm_manager.vram_base_offset;
1088 if (!amdgpu_virt_xgmi_migrate_enabled(adev))
1089 vram_addr -= adev->gmc.xgmi.physical_node_id * adev->gmc.xgmi.node_segment_size;
1090 vram_end = vram_addr + vram_size;
1091
1092 /* The first n PDE0 entries are used as PTE,
1093 * pointing to vram
1094 */
1095 for (i = 0; vram_addr < vram_end; i++, vram_addr += pde0_page_size)
1096 amdgpu_gmc_set_pte_pde(adev, adev->gmc.ptr_pdb0, i, vram_addr, flags);
1097
1098 /* The n+1'th PDE0 entry points to a huge
1099 * PTB who has more than 512 entries each
1100 * pointing to a 4K system page
1101 */
1102 flags = AMDGPU_PTE_VALID;
1103 flags |= AMDGPU_PTE_SNOOPED | AMDGPU_PDE_BFS_FLAG(adev, 0);
1104 /* Requires gart_ptb_gpu_pa to be 4K aligned */
1105 amdgpu_gmc_set_pte_pde(adev, adev->gmc.ptr_pdb0, i, gart_ptb_gpu_pa, flags);
1106 drm_dev_exit(idx);
1107 }
1108
1109 /**
1110 * amdgpu_gmc_vram_mc2pa - calculate vram buffer's physical address from MC
1111 * address
1112 *
1113 * @adev: amdgpu_device pointer
1114 * @mc_addr: MC address of buffer
1115 */
amdgpu_gmc_vram_mc2pa(struct amdgpu_device * adev,uint64_t mc_addr)1116 uint64_t amdgpu_gmc_vram_mc2pa(struct amdgpu_device *adev, uint64_t mc_addr)
1117 {
1118 return mc_addr - adev->gmc.vram_start + adev->vm_manager.vram_base_offset;
1119 }
1120
1121 /**
1122 * amdgpu_gmc_vram_pa - calculate vram buffer object's physical address from
1123 * GPU's view
1124 *
1125 * @adev: amdgpu_device pointer
1126 * @bo: amdgpu buffer object
1127 */
amdgpu_gmc_vram_pa(struct amdgpu_device * adev,struct amdgpu_bo * bo)1128 uint64_t amdgpu_gmc_vram_pa(struct amdgpu_device *adev, struct amdgpu_bo *bo)
1129 {
1130 return amdgpu_gmc_vram_mc2pa(adev, amdgpu_bo_gpu_offset(bo));
1131 }
1132
amdgpu_gmc_vram_checking(struct amdgpu_device * adev)1133 int amdgpu_gmc_vram_checking(struct amdgpu_device *adev)
1134 {
1135 struct amdgpu_bo *vram_bo = NULL;
1136 uint64_t vram_gpu = 0;
1137 void *vram_ptr = NULL;
1138
1139 int ret, size = 0x100000;
1140 uint8_t cptr[10];
1141
1142 ret = amdgpu_bo_create_kernel(adev, size, PAGE_SIZE,
1143 AMDGPU_GEM_DOMAIN_VRAM,
1144 &vram_bo,
1145 &vram_gpu,
1146 &vram_ptr);
1147 if (ret)
1148 return ret;
1149
1150 memset(vram_ptr, 0x86, size);
1151 memset(cptr, 0x86, 10);
1152
1153 /**
1154 * Check the start, the mid, and the end of the memory if the content of
1155 * each byte is the pattern "0x86". If yes, we suppose the vram bo is
1156 * workable.
1157 *
1158 * Note: If check the each byte of whole 1M bo, it will cost too many
1159 * seconds, so here, we just pick up three parts for emulation.
1160 */
1161 ret = memcmp(vram_ptr, cptr, 10);
1162 if (ret) {
1163 ret = -EIO;
1164 goto release_buffer;
1165 }
1166
1167 ret = memcmp(vram_ptr + (size / 2), cptr, 10);
1168 if (ret) {
1169 ret = -EIO;
1170 goto release_buffer;
1171 }
1172
1173 ret = memcmp(vram_ptr + size - 10, cptr, 10);
1174 if (ret) {
1175 ret = -EIO;
1176 goto release_buffer;
1177 }
1178
1179 release_buffer:
1180 amdgpu_bo_free_kernel(&vram_bo, &vram_gpu,
1181 &vram_ptr);
1182
1183 return ret;
1184 }
1185
1186 static const char *nps_desc[] = {
1187 [AMDGPU_NPS1_PARTITION_MODE] = "NPS1",
1188 [AMDGPU_NPS2_PARTITION_MODE] = "NPS2",
1189 [AMDGPU_NPS3_PARTITION_MODE] = "NPS3",
1190 [AMDGPU_NPS4_PARTITION_MODE] = "NPS4",
1191 [AMDGPU_NPS6_PARTITION_MODE] = "NPS6",
1192 [AMDGPU_NPS8_PARTITION_MODE] = "NPS8",
1193 };
1194
available_memory_partition_show(struct device * dev,struct device_attribute * addr,char * buf)1195 static ssize_t available_memory_partition_show(struct device *dev,
1196 struct device_attribute *addr,
1197 char *buf)
1198 {
1199 struct drm_device *ddev = dev_get_drvdata(dev);
1200 struct amdgpu_device *adev = drm_to_adev(ddev);
1201 int size = 0, mode;
1202 char *sep = "";
1203
1204 for_each_inst(mode, adev->gmc.supported_nps_modes) {
1205 size += sysfs_emit_at(buf, size, "%s%s", sep, nps_desc[mode]);
1206 sep = ", ";
1207 }
1208 size += sysfs_emit_at(buf, size, "\n");
1209
1210 return size;
1211 }
1212
current_memory_partition_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1213 static ssize_t current_memory_partition_store(struct device *dev,
1214 struct device_attribute *attr,
1215 const char *buf, size_t count)
1216 {
1217 struct drm_device *ddev = dev_get_drvdata(dev);
1218 struct amdgpu_device *adev = drm_to_adev(ddev);
1219 enum amdgpu_memory_partition mode;
1220 struct amdgpu_hive_info *hive;
1221 int i;
1222
1223 mode = UNKNOWN_MEMORY_PARTITION_MODE;
1224 for_each_inst(i, adev->gmc.supported_nps_modes) {
1225 if (!strncasecmp(nps_desc[i], buf, strlen(nps_desc[i]))) {
1226 mode = i;
1227 break;
1228 }
1229 }
1230
1231 if (mode == UNKNOWN_MEMORY_PARTITION_MODE)
1232 return -EINVAL;
1233
1234 if (mode == adev->gmc.gmc_funcs->query_mem_partition_mode(adev)) {
1235 dev_info(
1236 adev->dev,
1237 "requested NPS mode is same as current NPS mode, skipping\n");
1238 return count;
1239 }
1240
1241 /* If device is part of hive, all devices in the hive should request the
1242 * same mode. Hence store the requested mode in hive.
1243 */
1244 hive = amdgpu_get_xgmi_hive(adev);
1245 if (hive) {
1246 atomic_set(&hive->requested_nps_mode, mode);
1247 amdgpu_put_xgmi_hive(hive);
1248 } else {
1249 adev->gmc.requested_nps_mode = mode;
1250 }
1251
1252 dev_info(
1253 adev->dev,
1254 "NPS mode change requested, please remove and reload the driver\n");
1255
1256 return count;
1257 }
1258
current_memory_partition_show(struct device * dev,struct device_attribute * addr,char * buf)1259 static ssize_t current_memory_partition_show(
1260 struct device *dev, struct device_attribute *addr, char *buf)
1261 {
1262 struct drm_device *ddev = dev_get_drvdata(dev);
1263 struct amdgpu_device *adev = drm_to_adev(ddev);
1264 enum amdgpu_memory_partition mode;
1265
1266 /* Only minimal precaution taken to reject requests while in reset */
1267 if (amdgpu_in_reset(adev))
1268 return -EPERM;
1269
1270 mode = adev->gmc.gmc_funcs->query_mem_partition_mode(adev);
1271 if ((mode >= ARRAY_SIZE(nps_desc)) ||
1272 (BIT(mode) & AMDGPU_ALL_NPS_MASK) != BIT(mode))
1273 return sysfs_emit(buf, "UNKNOWN\n");
1274
1275 return sysfs_emit(buf, "%s\n", nps_desc[mode]);
1276 }
1277
1278 static DEVICE_ATTR_RW(current_memory_partition);
1279 static DEVICE_ATTR_RO(available_memory_partition);
1280
amdgpu_gmc_sysfs_init(struct amdgpu_device * adev)1281 int amdgpu_gmc_sysfs_init(struct amdgpu_device *adev)
1282 {
1283 bool nps_switch_support;
1284 int r = 0;
1285
1286 if (!adev->gmc.gmc_funcs->query_mem_partition_mode)
1287 return 0;
1288
1289 nps_switch_support = (hweight32(adev->gmc.supported_nps_modes &
1290 AMDGPU_ALL_NPS_MASK) > 1);
1291 if (!nps_switch_support)
1292 dev_attr_current_memory_partition.attr.mode &=
1293 ~(S_IWUSR | S_IWGRP | S_IWOTH);
1294 else
1295 r = device_create_file(adev->dev,
1296 &dev_attr_available_memory_partition);
1297
1298 if (r)
1299 return r;
1300
1301 return device_create_file(adev->dev,
1302 &dev_attr_current_memory_partition);
1303 }
1304
amdgpu_gmc_sysfs_fini(struct amdgpu_device * adev)1305 void amdgpu_gmc_sysfs_fini(struct amdgpu_device *adev)
1306 {
1307 if (!adev->gmc.gmc_funcs->query_mem_partition_mode)
1308 return;
1309
1310 device_remove_file(adev->dev, &dev_attr_current_memory_partition);
1311 device_remove_file(adev->dev, &dev_attr_available_memory_partition);
1312 }
1313
amdgpu_gmc_get_nps_memranges(struct amdgpu_device * adev,struct amdgpu_mem_partition_info * mem_ranges,uint8_t * exp_ranges)1314 int amdgpu_gmc_get_nps_memranges(struct amdgpu_device *adev,
1315 struct amdgpu_mem_partition_info *mem_ranges,
1316 uint8_t *exp_ranges)
1317 {
1318 struct amdgpu_gmc_memrange *ranges;
1319 int range_cnt, ret, i, j;
1320 uint32_t nps_type;
1321 bool refresh;
1322
1323 if (!mem_ranges || !exp_ranges)
1324 return -EINVAL;
1325
1326 refresh = (adev->init_lvl->level != AMDGPU_INIT_LEVEL_MINIMAL_XGMI) &&
1327 (adev->gmc.reset_flags & AMDGPU_GMC_INIT_RESET_NPS);
1328 ret = amdgpu_discovery_get_nps_info(adev, &nps_type, &ranges,
1329 &range_cnt, refresh);
1330
1331 if (ret)
1332 return ret;
1333
1334 /* TODO: For now, expect ranges and partition count to be the same.
1335 * Adjust if there are holes expected in any NPS domain.
1336 */
1337 if (*exp_ranges && (range_cnt != *exp_ranges)) {
1338 dev_warn(
1339 adev->dev,
1340 "NPS config mismatch - expected ranges: %d discovery - nps mode: %d, nps ranges: %d",
1341 *exp_ranges, nps_type, range_cnt);
1342 ret = -EINVAL;
1343 goto err;
1344 }
1345
1346 for (i = 0; i < range_cnt; ++i) {
1347 if (ranges[i].base_address >= ranges[i].limit_address) {
1348 dev_warn(
1349 adev->dev,
1350 "Invalid NPS range - nps mode: %d, range[%d]: base: %llx limit: %llx",
1351 nps_type, i, ranges[i].base_address,
1352 ranges[i].limit_address);
1353 ret = -EINVAL;
1354 goto err;
1355 }
1356
1357 /* Check for overlaps, not expecting any now */
1358 for (j = i - 1; j >= 0; j--) {
1359 if (max(ranges[j].base_address,
1360 ranges[i].base_address) <=
1361 min(ranges[j].limit_address,
1362 ranges[i].limit_address)) {
1363 dev_warn(
1364 adev->dev,
1365 "overlapping ranges detected [ %llx - %llx ] | [%llx - %llx]",
1366 ranges[j].base_address,
1367 ranges[j].limit_address,
1368 ranges[i].base_address,
1369 ranges[i].limit_address);
1370 ret = -EINVAL;
1371 goto err;
1372 }
1373 }
1374
1375 mem_ranges[i].range.fpfn =
1376 (ranges[i].base_address -
1377 adev->vm_manager.vram_base_offset) >>
1378 AMDGPU_GPU_PAGE_SHIFT;
1379 mem_ranges[i].range.lpfn =
1380 (ranges[i].limit_address -
1381 adev->vm_manager.vram_base_offset) >>
1382 AMDGPU_GPU_PAGE_SHIFT;
1383 mem_ranges[i].size =
1384 ranges[i].limit_address - ranges[i].base_address + 1;
1385 }
1386
1387 if (!*exp_ranges)
1388 *exp_ranges = range_cnt;
1389 err:
1390 kfree(ranges);
1391
1392 return ret;
1393 }
1394
amdgpu_gmc_request_memory_partition(struct amdgpu_device * adev,int nps_mode)1395 int amdgpu_gmc_request_memory_partition(struct amdgpu_device *adev,
1396 int nps_mode)
1397 {
1398 /* Not supported on VF devices and APUs */
1399 if (amdgpu_sriov_vf(adev) || (adev->flags & AMD_IS_APU))
1400 return -EOPNOTSUPP;
1401
1402 if (!adev->psp.funcs) {
1403 dev_err(adev->dev,
1404 "PSP interface not available for nps mode change request");
1405 return -EINVAL;
1406 }
1407
1408 return psp_memory_partition(&adev->psp, nps_mode);
1409 }
1410
amdgpu_gmc_need_nps_switch_req(struct amdgpu_device * adev,int req_nps_mode,int cur_nps_mode)1411 static inline bool amdgpu_gmc_need_nps_switch_req(struct amdgpu_device *adev,
1412 int req_nps_mode,
1413 int cur_nps_mode)
1414 {
1415 return (((BIT(req_nps_mode) & adev->gmc.supported_nps_modes) ==
1416 BIT(req_nps_mode)) &&
1417 req_nps_mode != cur_nps_mode);
1418 }
1419
amdgpu_gmc_prepare_nps_mode_change(struct amdgpu_device * adev)1420 void amdgpu_gmc_prepare_nps_mode_change(struct amdgpu_device *adev)
1421 {
1422 int req_nps_mode, cur_nps_mode, r;
1423 struct amdgpu_hive_info *hive;
1424
1425 if (amdgpu_sriov_vf(adev) || !adev->gmc.supported_nps_modes ||
1426 !adev->gmc.gmc_funcs->request_mem_partition_mode)
1427 return;
1428
1429 cur_nps_mode = adev->gmc.gmc_funcs->query_mem_partition_mode(adev);
1430 hive = amdgpu_get_xgmi_hive(adev);
1431 if (hive) {
1432 req_nps_mode = atomic_read(&hive->requested_nps_mode);
1433 if (!amdgpu_gmc_need_nps_switch_req(adev, req_nps_mode,
1434 cur_nps_mode)) {
1435 amdgpu_put_xgmi_hive(hive);
1436 return;
1437 }
1438 r = amdgpu_xgmi_request_nps_change(adev, hive, req_nps_mode);
1439 amdgpu_put_xgmi_hive(hive);
1440 goto out;
1441 }
1442
1443 req_nps_mode = adev->gmc.requested_nps_mode;
1444 if (!amdgpu_gmc_need_nps_switch_req(adev, req_nps_mode, cur_nps_mode))
1445 return;
1446
1447 /* even if this fails, we should let driver unload w/o blocking */
1448 r = adev->gmc.gmc_funcs->request_mem_partition_mode(adev, req_nps_mode);
1449 out:
1450 if (r)
1451 dev_err(adev->dev, "NPS mode change request failed\n");
1452 else
1453 dev_info(
1454 adev->dev,
1455 "NPS mode change request done, reload driver to complete the change\n");
1456 }
1457
amdgpu_gmc_need_reset_on_init(struct amdgpu_device * adev)1458 bool amdgpu_gmc_need_reset_on_init(struct amdgpu_device *adev)
1459 {
1460 if (adev->gmc.gmc_funcs->need_reset_on_init)
1461 return adev->gmc.gmc_funcs->need_reset_on_init(adev);
1462
1463 return false;
1464 }
1465
1466 enum amdgpu_memory_partition
amdgpu_gmc_get_vf_memory_partition(struct amdgpu_device * adev)1467 amdgpu_gmc_get_vf_memory_partition(struct amdgpu_device *adev)
1468 {
1469 switch (adev->gmc.num_mem_partitions) {
1470 case 0:
1471 return UNKNOWN_MEMORY_PARTITION_MODE;
1472 case 1:
1473 return AMDGPU_NPS1_PARTITION_MODE;
1474 case 2:
1475 return AMDGPU_NPS2_PARTITION_MODE;
1476 case 4:
1477 return AMDGPU_NPS4_PARTITION_MODE;
1478 case 8:
1479 return AMDGPU_NPS8_PARTITION_MODE;
1480 default:
1481 return AMDGPU_NPS1_PARTITION_MODE;
1482 }
1483 }
1484
1485 enum amdgpu_memory_partition
amdgpu_gmc_get_memory_partition(struct amdgpu_device * adev,u32 * supp_modes)1486 amdgpu_gmc_get_memory_partition(struct amdgpu_device *adev, u32 *supp_modes)
1487 {
1488 enum amdgpu_memory_partition mode = UNKNOWN_MEMORY_PARTITION_MODE;
1489
1490 if (adev->nbio.funcs &&
1491 adev->nbio.funcs->get_memory_partition_mode)
1492 mode = adev->nbio.funcs->get_memory_partition_mode(adev,
1493 supp_modes);
1494 else
1495 dev_warn(adev->dev, "memory partition mode query is not supported\n");
1496
1497 return mode;
1498 }
1499
1500 enum amdgpu_memory_partition
amdgpu_gmc_query_memory_partition(struct amdgpu_device * adev)1501 amdgpu_gmc_query_memory_partition(struct amdgpu_device *adev)
1502 {
1503 if (amdgpu_sriov_vf(adev))
1504 return amdgpu_gmc_get_vf_memory_partition(adev);
1505 else
1506 return amdgpu_gmc_get_memory_partition(adev, NULL);
1507 }
1508
amdgpu_gmc_validate_partition_info(struct amdgpu_device * adev)1509 static bool amdgpu_gmc_validate_partition_info(struct amdgpu_device *adev)
1510 {
1511 enum amdgpu_memory_partition mode;
1512 u32 supp_modes;
1513 bool valid;
1514
1515 mode = amdgpu_gmc_get_memory_partition(adev, &supp_modes);
1516
1517 /* Mode detected by hardware not present in supported modes */
1518 if ((mode != UNKNOWN_MEMORY_PARTITION_MODE) &&
1519 !(BIT(mode - 1) & supp_modes))
1520 return false;
1521
1522 switch (mode) {
1523 case UNKNOWN_MEMORY_PARTITION_MODE:
1524 case AMDGPU_NPS1_PARTITION_MODE:
1525 valid = (adev->gmc.num_mem_partitions == 1);
1526 break;
1527 case AMDGPU_NPS2_PARTITION_MODE:
1528 valid = (adev->gmc.num_mem_partitions == 2);
1529 break;
1530 case AMDGPU_NPS4_PARTITION_MODE:
1531 valid = (adev->gmc.num_mem_partitions == 3 ||
1532 adev->gmc.num_mem_partitions == 4);
1533 break;
1534 case AMDGPU_NPS8_PARTITION_MODE:
1535 valid = (adev->gmc.num_mem_partitions == 8);
1536 break;
1537 default:
1538 valid = false;
1539 }
1540
1541 return valid;
1542 }
1543
amdgpu_gmc_is_node_present(int * node_ids,int num_ids,int nid)1544 static bool amdgpu_gmc_is_node_present(int *node_ids, int num_ids, int nid)
1545 {
1546 int i;
1547
1548 /* Check if node with id 'nid' is present in 'node_ids' array */
1549 for (i = 0; i < num_ids; ++i)
1550 if (node_ids[i] == nid)
1551 return true;
1552
1553 return false;
1554 }
1555
1556 static void
amdgpu_gmc_init_acpi_mem_ranges(struct amdgpu_device * adev,struct amdgpu_mem_partition_info * mem_ranges)1557 amdgpu_gmc_init_acpi_mem_ranges(struct amdgpu_device *adev,
1558 struct amdgpu_mem_partition_info *mem_ranges)
1559 {
1560 struct amdgpu_numa_info numa_info;
1561 int node_ids[AMDGPU_MAX_MEM_RANGES];
1562 int num_ranges = 0, ret;
1563 int num_xcc, xcc_id;
1564 uint32_t xcc_mask;
1565
1566 num_xcc = NUM_XCC(adev->gfx.xcc_mask);
1567 xcc_mask = (1U << num_xcc) - 1;
1568
1569 for_each_inst(xcc_id, xcc_mask) {
1570 ret = amdgpu_acpi_get_mem_info(adev, xcc_id, &numa_info);
1571 if (ret)
1572 continue;
1573
1574 if (numa_info.nid == NUMA_NO_NODE) {
1575 mem_ranges[0].size = numa_info.size;
1576 mem_ranges[0].numa.node = numa_info.nid;
1577 num_ranges = 1;
1578 break;
1579 }
1580
1581 if (amdgpu_gmc_is_node_present(node_ids, num_ranges,
1582 numa_info.nid))
1583 continue;
1584
1585 node_ids[num_ranges] = numa_info.nid;
1586 mem_ranges[num_ranges].numa.node = numa_info.nid;
1587 mem_ranges[num_ranges].size = numa_info.size;
1588 ++num_ranges;
1589 }
1590
1591 adev->gmc.num_mem_partitions = num_ranges;
1592 }
1593
amdgpu_gmc_init_sw_mem_ranges(struct amdgpu_device * adev,struct amdgpu_mem_partition_info * mem_ranges)1594 void amdgpu_gmc_init_sw_mem_ranges(struct amdgpu_device *adev,
1595 struct amdgpu_mem_partition_info *mem_ranges)
1596 {
1597 enum amdgpu_memory_partition mode;
1598 u32 start_addr = 0, size;
1599 int i, r, l;
1600
1601 mode = amdgpu_gmc_query_memory_partition(adev);
1602
1603 switch (mode) {
1604 case UNKNOWN_MEMORY_PARTITION_MODE:
1605 adev->gmc.num_mem_partitions = 0;
1606 break;
1607 case AMDGPU_NPS1_PARTITION_MODE:
1608 adev->gmc.num_mem_partitions = 1;
1609 break;
1610 case AMDGPU_NPS2_PARTITION_MODE:
1611 adev->gmc.num_mem_partitions = 2;
1612 break;
1613 case AMDGPU_NPS4_PARTITION_MODE:
1614 if (adev->flags & AMD_IS_APU)
1615 adev->gmc.num_mem_partitions = 3;
1616 else
1617 adev->gmc.num_mem_partitions = 4;
1618 break;
1619 case AMDGPU_NPS8_PARTITION_MODE:
1620 adev->gmc.num_mem_partitions = 8;
1621 break;
1622 default:
1623 adev->gmc.num_mem_partitions = 1;
1624 break;
1625 }
1626
1627 /* Use NPS range info, if populated */
1628 r = amdgpu_gmc_get_nps_memranges(adev, mem_ranges,
1629 &adev->gmc.num_mem_partitions);
1630 if (!r) {
1631 l = 0;
1632 for (i = 1; i < adev->gmc.num_mem_partitions; ++i) {
1633 if (mem_ranges[i].range.lpfn >
1634 mem_ranges[i - 1].range.lpfn)
1635 l = i;
1636 }
1637
1638 } else {
1639 if (!adev->gmc.num_mem_partitions) {
1640 dev_warn(adev->dev,
1641 "Not able to detect NPS mode, fall back to NPS1\n");
1642 adev->gmc.num_mem_partitions = 1;
1643 }
1644 /* Fallback to sw based calculation */
1645 size = (adev->gmc.real_vram_size + SZ_16M) >> AMDGPU_GPU_PAGE_SHIFT;
1646 size /= adev->gmc.num_mem_partitions;
1647
1648 for (i = 0; i < adev->gmc.num_mem_partitions; ++i) {
1649 mem_ranges[i].range.fpfn = start_addr;
1650 mem_ranges[i].size =
1651 ((u64)size << AMDGPU_GPU_PAGE_SHIFT);
1652 mem_ranges[i].range.lpfn = start_addr + size - 1;
1653 start_addr += size;
1654 }
1655
1656 l = adev->gmc.num_mem_partitions - 1;
1657 }
1658
1659 /* Adjust the last one */
1660 mem_ranges[l].range.lpfn =
1661 (adev->gmc.real_vram_size >> AMDGPU_GPU_PAGE_SHIFT) - 1;
1662 mem_ranges[l].size =
1663 adev->gmc.real_vram_size -
1664 ((u64)mem_ranges[l].range.fpfn << AMDGPU_GPU_PAGE_SHIFT);
1665 }
1666
amdgpu_gmc_init_mem_ranges(struct amdgpu_device * adev)1667 int amdgpu_gmc_init_mem_ranges(struct amdgpu_device *adev)
1668 {
1669 bool valid;
1670
1671 adev->gmc.mem_partitions = kcalloc(AMDGPU_MAX_MEM_RANGES,
1672 sizeof(struct amdgpu_mem_partition_info),
1673 GFP_KERNEL);
1674 if (!adev->gmc.mem_partitions)
1675 return -ENOMEM;
1676
1677 if (adev->gmc.is_app_apu)
1678 amdgpu_gmc_init_acpi_mem_ranges(adev, adev->gmc.mem_partitions);
1679 else
1680 amdgpu_gmc_init_sw_mem_ranges(adev, adev->gmc.mem_partitions);
1681
1682 if (amdgpu_sriov_vf(adev))
1683 valid = true;
1684 else
1685 valid = amdgpu_gmc_validate_partition_info(adev);
1686 if (!valid) {
1687 /* TODO: handle invalid case */
1688 dev_warn(adev->dev,
1689 "Mem ranges not matching with hardware config\n");
1690 }
1691
1692 return 0;
1693 }
1694