1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Nuvoton NPCM7xx I2C Controller driver
4 *
5 * Copyright (C) 2020 Nuvoton Technologies tali.perry@nuvoton.com
6 */
7 #include <linux/bitfield.h>
8 #include <linux/clk.h>
9 #include <linux/debugfs.h>
10 #include <linux/errno.h>
11 #include <linux/i2c.h>
12 #include <linux/interrupt.h>
13 #include <linux/iopoll.h>
14 #include <linux/irq.h>
15 #include <linux/jiffies.h>
16 #include <linux/kernel.h>
17 #include <linux/mfd/syscon.h>
18 #include <linux/module.h>
19 #include <linux/of.h>
20 #include <linux/platform_device.h>
21 #include <linux/regmap.h>
22
23 enum i2c_mode {
24 I2C_MASTER,
25 I2C_SLAVE,
26 };
27
28 /*
29 * External I2C Interface driver xfer indication values, which indicate status
30 * of the bus.
31 */
32 enum i2c_state_ind {
33 I2C_NO_STATUS_IND = 0,
34 I2C_SLAVE_RCV_IND,
35 I2C_SLAVE_XMIT_IND,
36 I2C_SLAVE_XMIT_MISSING_DATA_IND,
37 I2C_SLAVE_RESTART_IND,
38 I2C_SLAVE_DONE_IND,
39 I2C_MASTER_DONE_IND,
40 I2C_NACK_IND,
41 I2C_BUS_ERR_IND,
42 I2C_WAKE_UP_IND,
43 I2C_BLOCK_BYTES_ERR_IND,
44 I2C_SLAVE_RCV_MISSING_DATA_IND,
45 };
46
47 /*
48 * Operation type values (used to define the operation currently running)
49 * module is interrupt driven, on each interrupt the current operation is
50 * checked to see if the module is currently reading or writing.
51 */
52 enum i2c_oper {
53 I2C_NO_OPER = 0,
54 I2C_WRITE_OPER,
55 I2C_READ_OPER,
56 };
57
58 /* I2C Bank (module had 2 banks of registers) */
59 enum i2c_bank {
60 I2C_BANK_0 = 0,
61 I2C_BANK_1,
62 };
63
64 /* Internal I2C states values (for the I2C module state machine). */
65 enum i2c_state {
66 I2C_DISABLE = 0,
67 I2C_IDLE,
68 I2C_MASTER_START,
69 I2C_SLAVE_MATCH,
70 I2C_OPER_STARTED,
71 I2C_STOP_PENDING,
72 };
73
74 #if IS_ENABLED(CONFIG_I2C_SLAVE)
75 /* Module supports setting multiple own slave addresses */
76 enum i2c_addr {
77 I2C_SLAVE_ADDR1 = 0,
78 I2C_SLAVE_ADDR2,
79 I2C_SLAVE_ADDR3,
80 I2C_SLAVE_ADDR4,
81 I2C_SLAVE_ADDR5,
82 I2C_SLAVE_ADDR6,
83 I2C_SLAVE_ADDR7,
84 I2C_SLAVE_ADDR8,
85 I2C_SLAVE_ADDR9,
86 I2C_SLAVE_ADDR10,
87 I2C_GC_ADDR,
88 I2C_ARP_ADDR,
89 };
90 #endif
91
92 /* init register and default value required to enable module */
93 #define NPCM_I2CSEGCTL 0xE4
94
95 /* Common regs */
96 #define NPCM_I2CSDA 0x00
97 #define NPCM_I2CST 0x02
98 #define NPCM_I2CCST 0x04
99 #define NPCM_I2CCTL1 0x06
100 #define NPCM_I2CADDR1 0x08
101 #define NPCM_I2CCTL2 0x0A
102 #define NPCM_I2CADDR2 0x0C
103 #define NPCM_I2CCTL3 0x0E
104 #define NPCM_I2CCST2 0x18
105 #define NPCM_I2CCST3 0x19
106 #define I2C_VER 0x1F
107
108 /* BANK 0 regs */
109 #define NPCM_I2CADDR3 0x10
110 #define NPCM_I2CADDR7 0x11
111 #define NPCM_I2CADDR4 0x12
112 #define NPCM_I2CADDR8 0x13
113 #define NPCM_I2CADDR5 0x14
114 #define NPCM_I2CADDR9 0x15
115 #define NPCM_I2CADDR6 0x16
116 #define NPCM_I2CADDR10 0x17
117 #define NPCM_I2CCTL4 0x1A
118 #define NPCM_I2CCTL5 0x1B
119 #define NPCM_I2CSCLLT 0x1C /* SCL Low Time */
120 #define NPCM_I2CFIF_CTL 0x1D /* FIFO Control */
121 #define NPCM_I2CSCLHT 0x1E /* SCL High Time */
122
123 /* BANK 1 regs */
124 #define NPCM_I2CFIF_CTS 0x10 /* Both FIFOs Control and Status */
125 #define NPCM_I2CTXF_CTL 0x12 /* Tx-FIFO Control */
126 #define NPCM_I2CT_OUT 0x14 /* Bus T.O. */
127 #define NPCM_I2CPEC 0x16 /* PEC Data */
128 #define NPCM_I2CTXF_STS 0x1A /* Tx-FIFO Status */
129 #define NPCM_I2CRXF_STS 0x1C /* Rx-FIFO Status */
130 #define NPCM_I2CRXF_CTL 0x1E /* Rx-FIFO Control */
131
132 #if IS_ENABLED(CONFIG_I2C_SLAVE)
133 /*
134 * npcm_i2caddr array:
135 * The module supports having multiple own slave addresses.
136 * Since the addr regs are sprinkled all over the address space,
137 * use this array to get the address or each register.
138 */
139 #define I2C_NUM_OWN_ADDR 10
140 #define I2C_NUM_OWN_ADDR_SUPPORTED 2
141
142 static const int npcm_i2caddr[I2C_NUM_OWN_ADDR] = {
143 NPCM_I2CADDR1, NPCM_I2CADDR2, NPCM_I2CADDR3, NPCM_I2CADDR4,
144 NPCM_I2CADDR5, NPCM_I2CADDR6, NPCM_I2CADDR7, NPCM_I2CADDR8,
145 NPCM_I2CADDR9, NPCM_I2CADDR10,
146 };
147 #endif
148
149 /* NPCM_I2CST reg fields */
150 #define NPCM_I2CST_XMIT BIT(0) /* Transmit mode */
151 #define NPCM_I2CST_MASTER BIT(1) /* Master mode */
152 #define NPCM_I2CST_NMATCH BIT(2) /* New match */
153 #define NPCM_I2CST_STASTR BIT(3) /* Stall after start */
154 #define NPCM_I2CST_NEGACK BIT(4) /* Negative ACK */
155 #define NPCM_I2CST_BER BIT(5) /* Bus error */
156 #define NPCM_I2CST_SDAST BIT(6) /* SDA status */
157 #define NPCM_I2CST_SLVSTP BIT(7) /* Slave stop */
158
159 /* NPCM_I2CCST reg fields */
160 #define NPCM_I2CCST_BUSY BIT(0) /* Busy */
161 #define NPCM_I2CCST_BB BIT(1) /* Bus busy */
162 #define NPCM_I2CCST_MATCH BIT(2) /* Address match */
163 #define NPCM_I2CCST_GCMATCH BIT(3) /* Global call match */
164 #define NPCM_I2CCST_TSDA BIT(4) /* Test SDA line */
165 #define NPCM_I2CCST_TGSCL BIT(5) /* Toggle SCL line */
166 #define NPCM_I2CCST_MATCHAF BIT(6) /* Match address field */
167 #define NPCM_I2CCST_ARPMATCH BIT(7) /* ARP address match */
168
169 /* NPCM_I2CCTL1 reg fields */
170 #define NPCM_I2CCTL1_START BIT(0) /* Generate start condition */
171 #define NPCM_I2CCTL1_STOP BIT(1) /* Generate stop condition */
172 #define NPCM_I2CCTL1_INTEN BIT(2) /* Interrupt enable */
173 #define NPCM_I2CCTL1_EOBINTE BIT(3)
174 #define NPCM_I2CCTL1_ACK BIT(4)
175 #define NPCM_I2CCTL1_GCMEN BIT(5) /* Global call match enable */
176 #define NPCM_I2CCTL1_NMINTE BIT(6) /* New match interrupt enable */
177 #define NPCM_I2CCTL1_STASTRE BIT(7) /* Stall after start enable */
178
179 /* RW1S fields (inside a RW reg): */
180 #define NPCM_I2CCTL1_RWS \
181 (NPCM_I2CCTL1_START | NPCM_I2CCTL1_STOP | NPCM_I2CCTL1_ACK)
182
183 /* npcm_i2caddr reg fields */
184 #define NPCM_I2CADDR_A GENMASK(6, 0) /* Address */
185 #define NPCM_I2CADDR_SAEN BIT(7) /* Slave address enable */
186
187 /* NPCM_I2CCTL2 reg fields */
188 #define I2CCTL2_ENABLE BIT(0) /* Module enable */
189 #define I2CCTL2_SCLFRQ6_0 GENMASK(7, 1) /* Bits 0:6 of frequency divisor */
190
191 /* NPCM_I2CCTL3 reg fields */
192 #define I2CCTL3_SCLFRQ8_7 GENMASK(1, 0) /* Bits 7:8 of frequency divisor */
193 #define I2CCTL3_ARPMEN BIT(2) /* ARP match enable */
194 #define I2CCTL3_IDL_START BIT(3)
195 #define I2CCTL3_400K_MODE BIT(4)
196 #define I2CCTL3_BNK_SEL BIT(5)
197 #define I2CCTL3_SDA_LVL BIT(6)
198 #define I2CCTL3_SCL_LVL BIT(7)
199
200 /* NPCM_I2CCST2 reg fields */
201 #define NPCM_I2CCST2_MATCHA1F BIT(0)
202 #define NPCM_I2CCST2_MATCHA2F BIT(1)
203 #define NPCM_I2CCST2_MATCHA3F BIT(2)
204 #define NPCM_I2CCST2_MATCHA4F BIT(3)
205 #define NPCM_I2CCST2_MATCHA5F BIT(4)
206 #define NPCM_I2CCST2_MATCHA6F BIT(5)
207 #define NPCM_I2CCST2_MATCHA7F BIT(5)
208 #define NPCM_I2CCST2_INTSTS BIT(7)
209
210 /* NPCM_I2CCST3 reg fields */
211 #define NPCM_I2CCST3_MATCHA8F BIT(0)
212 #define NPCM_I2CCST3_MATCHA9F BIT(1)
213 #define NPCM_I2CCST3_MATCHA10F BIT(2)
214 #define NPCM_I2CCST3_EO_BUSY BIT(7)
215
216 /* NPCM_I2CCTL4 reg fields */
217 #define I2CCTL4_HLDT GENMASK(5, 0)
218 #define I2CCTL4_LVL_WE BIT(7)
219
220 /* NPCM_I2CCTL5 reg fields */
221 #define I2CCTL5_DBNCT GENMASK(3, 0)
222
223 /* NPCM_I2CFIF_CTS reg fields */
224 #define NPCM_I2CFIF_CTS_RXF_TXE BIT(1)
225 #define NPCM_I2CFIF_CTS_RFTE_IE BIT(3)
226 #define NPCM_I2CFIF_CTS_CLR_FIFO BIT(6)
227 #define NPCM_I2CFIF_CTS_SLVRSTR BIT(7)
228
229 /* NPCM_I2CTXF_CTL reg field */
230 #define NPCM_I2CTXF_CTL_THR_TXIE BIT(6)
231
232 /* NPCM_I2CT_OUT reg fields */
233 #define NPCM_I2CT_OUT_TO_CKDIV GENMASK(5, 0)
234 #define NPCM_I2CT_OUT_T_OUTIE BIT(6)
235 #define NPCM_I2CT_OUT_T_OUTST BIT(7)
236
237 /* NPCM_I2CTXF_STS reg fields */
238 #define NPCM_I2CTXF_STS_TX_THST BIT(6)
239
240 /* NPCM_I2CRXF_STS reg fields */
241 #define NPCM_I2CRXF_STS_RX_THST BIT(6)
242
243 /* NPCM_I2CFIF_CTL reg fields */
244 #define NPCM_I2CFIF_CTL_FIFO_EN BIT(4)
245
246 /* NPCM_I2CRXF_CTL reg fields */
247 #define NPCM_I2CRXF_CTL_THR_RXIE BIT(6)
248
249 #define MAX_I2C_HW_FIFO_SIZE 32
250
251 /* I2C_VER reg fields */
252 #define I2C_VER_VERSION GENMASK(6, 0)
253 #define I2C_VER_FIFO_EN BIT(7)
254
255 /* stall/stuck timeout in us */
256 #define DEFAULT_STALL_COUNT 25
257
258 /* SCLFRQ field position */
259 #define SCLFRQ_0_TO_6 GENMASK(6, 0)
260 #define SCLFRQ_7_TO_8 GENMASK(8, 7)
261
262 /* supported clk settings. values in Hz. */
263 #define I2C_FREQ_MIN_HZ 10000
264 #define I2C_FREQ_MAX_HZ I2C_MAX_FAST_MODE_PLUS_FREQ
265
266 struct smb_timing_t {
267 u32 core_clk;
268 u8 hldt;
269 u8 dbcnt;
270 u16 sclfrq;
271 u8 scllt;
272 u8 sclht;
273 bool fast_mode;
274 };
275
276 static struct smb_timing_t smb_timing_100khz[] = {
277 {
278 .core_clk = 100000000, .hldt = 0x2A, .dbcnt = 0x4,
279 .sclfrq = 0xFB, .scllt = 0x0, .sclht = 0x0,
280 .fast_mode = false,
281 },
282 {
283 .core_clk = 62500000, .hldt = 0x2A, .dbcnt = 0x1,
284 .sclfrq = 0x9D, .scllt = 0x0, .sclht = 0x0,
285 .fast_mode = false,
286 },
287 {
288 .core_clk = 50000000, .hldt = 0x2A, .dbcnt = 0x1,
289 .sclfrq = 0x7E, .scllt = 0x0, .sclht = 0x0,
290 .fast_mode = false,
291 },
292 {
293 .core_clk = 48000000, .hldt = 0x2A, .dbcnt = 0x1,
294 .sclfrq = 0x79, .scllt = 0x0, .sclht = 0x0,
295 .fast_mode = false,
296 },
297 {
298 .core_clk = 40000000, .hldt = 0x2A, .dbcnt = 0x1,
299 .sclfrq = 0x65, .scllt = 0x0, .sclht = 0x0,
300 .fast_mode = false,
301 },
302 {
303 .core_clk = 30000000, .hldt = 0x2A, .dbcnt = 0x1,
304 .sclfrq = 0x4C, .scllt = 0x0, .sclht = 0x0,
305 .fast_mode = false,
306 },
307 {
308 .core_clk = 29000000, .hldt = 0x2A, .dbcnt = 0x1,
309 .sclfrq = 0x49, .scllt = 0x0, .sclht = 0x0,
310 .fast_mode = false,
311 },
312 {
313 .core_clk = 26000000, .hldt = 0x2A, .dbcnt = 0x1,
314 .sclfrq = 0x42, .scllt = 0x0, .sclht = 0x0,
315 .fast_mode = false,
316 },
317 {
318 .core_clk = 25000000, .hldt = 0x2A, .dbcnt = 0x1,
319 .sclfrq = 0x3F, .scllt = 0x0, .sclht = 0x0,
320 .fast_mode = false,
321 },
322 {
323 .core_clk = 24000000, .hldt = 0x2A, .dbcnt = 0x1,
324 .sclfrq = 0x3D, .scllt = 0x0, .sclht = 0x0,
325 .fast_mode = false,
326 },
327 {
328 .core_clk = 20000000, .hldt = 0x2A, .dbcnt = 0x1,
329 .sclfrq = 0x33, .scllt = 0x0, .sclht = 0x0,
330 .fast_mode = false,
331 },
332 {
333 .core_clk = 16180000, .hldt = 0x2A, .dbcnt = 0x1,
334 .sclfrq = 0x29, .scllt = 0x0, .sclht = 0x0,
335 .fast_mode = false,
336 },
337 {
338 .core_clk = 15000000, .hldt = 0x23, .dbcnt = 0x1,
339 .sclfrq = 0x26, .scllt = 0x0, .sclht = 0x0,
340 .fast_mode = false,
341 },
342 {
343 .core_clk = 13000000, .hldt = 0x1D, .dbcnt = 0x1,
344 .sclfrq = 0x21, .scllt = 0x0, .sclht = 0x0,
345 .fast_mode = false,
346 },
347 {
348 .core_clk = 12000000, .hldt = 0x1B, .dbcnt = 0x1,
349 .sclfrq = 0x1F, .scllt = 0x0, .sclht = 0x0,
350 .fast_mode = false,
351 },
352 {
353 .core_clk = 10000000, .hldt = 0x18, .dbcnt = 0x1,
354 .sclfrq = 0x1A, .scllt = 0x0, .sclht = 0x0,
355 .fast_mode = false,
356 },
357 {
358 .core_clk = 9000000, .hldt = 0x16, .dbcnt = 0x1,
359 .sclfrq = 0x17, .scllt = 0x0, .sclht = 0x0,
360 .fast_mode = false,
361 },
362 {
363 .core_clk = 8090000, .hldt = 0x14, .dbcnt = 0x1,
364 .sclfrq = 0x15, .scllt = 0x0, .sclht = 0x0,
365 .fast_mode = false,
366 },
367 {
368 .core_clk = 7500000, .hldt = 0x7, .dbcnt = 0x1,
369 .sclfrq = 0x13, .scllt = 0x0, .sclht = 0x0,
370 .fast_mode = false,
371 },
372 {
373 .core_clk = 6500000, .hldt = 0xE, .dbcnt = 0x1,
374 .sclfrq = 0x11, .scllt = 0x0, .sclht = 0x0,
375 .fast_mode = false,
376 },
377 {
378 .core_clk = 4000000, .hldt = 0x9, .dbcnt = 0x1,
379 .sclfrq = 0xB, .scllt = 0x0, .sclht = 0x0,
380 .fast_mode = false,
381 },
382 };
383
384 static struct smb_timing_t smb_timing_400khz[] = {
385 {
386 .core_clk = 100000000, .hldt = 0x2A, .dbcnt = 0x3,
387 .sclfrq = 0x0, .scllt = 0x47, .sclht = 0x35,
388 .fast_mode = true,
389 },
390 {
391 .core_clk = 62500000, .hldt = 0x2A, .dbcnt = 0x2,
392 .sclfrq = 0x0, .scllt = 0x2C, .sclht = 0x22,
393 .fast_mode = true,
394 },
395 {
396 .core_clk = 50000000, .hldt = 0x21, .dbcnt = 0x1,
397 .sclfrq = 0x0, .scllt = 0x24, .sclht = 0x1B,
398 .fast_mode = true,
399 },
400 {
401 .core_clk = 48000000, .hldt = 0x1E, .dbcnt = 0x1,
402 .sclfrq = 0x0, .scllt = 0x24, .sclht = 0x19,
403 .fast_mode = true,
404 },
405 {
406 .core_clk = 40000000, .hldt = 0x1B, .dbcnt = 0x1,
407 .sclfrq = 0x0, .scllt = 0x1E, .sclht = 0x14,
408 .fast_mode = true,
409 },
410 {
411 .core_clk = 33000000, .hldt = 0x15, .dbcnt = 0x1,
412 .sclfrq = 0x0, .scllt = 0x19, .sclht = 0x11,
413 .fast_mode = true,
414 },
415 {
416 .core_clk = 30000000, .hldt = 0x15, .dbcnt = 0x1,
417 .sclfrq = 0x0, .scllt = 0x19, .sclht = 0xD,
418 .fast_mode = true,
419 },
420 {
421 .core_clk = 29000000, .hldt = 0x11, .dbcnt = 0x1,
422 .sclfrq = 0x0, .scllt = 0x15, .sclht = 0x10,
423 .fast_mode = true,
424 },
425 {
426 .core_clk = 26000000, .hldt = 0x10, .dbcnt = 0x1,
427 .sclfrq = 0x0, .scllt = 0x13, .sclht = 0xE,
428 .fast_mode = true,
429 },
430 {
431 .core_clk = 25000000, .hldt = 0xF, .dbcnt = 0x1,
432 .sclfrq = 0x0, .scllt = 0x13, .sclht = 0xD,
433 .fast_mode = true,
434 },
435 {
436 .core_clk = 24000000, .hldt = 0xD, .dbcnt = 0x1,
437 .sclfrq = 0x0, .scllt = 0x12, .sclht = 0xD,
438 .fast_mode = true,
439 },
440 {
441 .core_clk = 20000000, .hldt = 0xB, .dbcnt = 0x1,
442 .sclfrq = 0x0, .scllt = 0xF, .sclht = 0xA,
443 .fast_mode = true,
444 },
445 {
446 .core_clk = 16180000, .hldt = 0xA, .dbcnt = 0x1,
447 .sclfrq = 0x0, .scllt = 0xC, .sclht = 0x9,
448 .fast_mode = true,
449 },
450 {
451 .core_clk = 15000000, .hldt = 0x9, .dbcnt = 0x1,
452 .sclfrq = 0x0, .scllt = 0xB, .sclht = 0x8,
453 .fast_mode = true,
454 },
455 {
456 .core_clk = 13000000, .hldt = 0x7, .dbcnt = 0x1,
457 .sclfrq = 0x0, .scllt = 0xA, .sclht = 0x7,
458 .fast_mode = true,
459 },
460 {
461 .core_clk = 12000000, .hldt = 0x7, .dbcnt = 0x1,
462 .sclfrq = 0x0, .scllt = 0xA, .sclht = 0x6,
463 .fast_mode = true,
464 },
465 {
466 .core_clk = 10000000, .hldt = 0x6, .dbcnt = 0x1,
467 .sclfrq = 0x0, .scllt = 0x8, .sclht = 0x5,
468 .fast_mode = true,
469 },
470 };
471
472 static struct smb_timing_t smb_timing_1000khz[] = {
473 {
474 .core_clk = 100000000, .hldt = 0x15, .dbcnt = 0x4,
475 .sclfrq = 0x0, .scllt = 0x1C, .sclht = 0x15,
476 .fast_mode = true,
477 },
478 {
479 .core_clk = 62500000, .hldt = 0xF, .dbcnt = 0x3,
480 .sclfrq = 0x0, .scllt = 0x11, .sclht = 0xE,
481 .fast_mode = true,
482 },
483 {
484 .core_clk = 50000000, .hldt = 0xA, .dbcnt = 0x2,
485 .sclfrq = 0x0, .scllt = 0xE, .sclht = 0xB,
486 .fast_mode = true,
487 },
488 {
489 .core_clk = 48000000, .hldt = 0x9, .dbcnt = 0x2,
490 .sclfrq = 0x0, .scllt = 0xD, .sclht = 0xB,
491 .fast_mode = true,
492 },
493 {
494 .core_clk = 41000000, .hldt = 0x9, .dbcnt = 0x2,
495 .sclfrq = 0x0, .scllt = 0xC, .sclht = 0x9,
496 .fast_mode = true,
497 },
498 {
499 .core_clk = 40000000, .hldt = 0x8, .dbcnt = 0x2,
500 .sclfrq = 0x0, .scllt = 0xB, .sclht = 0x9,
501 .fast_mode = true,
502 },
503 {
504 .core_clk = 33000000, .hldt = 0x7, .dbcnt = 0x1,
505 .sclfrq = 0x0, .scllt = 0xA, .sclht = 0x7,
506 .fast_mode = true,
507 },
508 {
509 .core_clk = 25000000, .hldt = 0x4, .dbcnt = 0x1,
510 .sclfrq = 0x0, .scllt = 0x7, .sclht = 0x6,
511 .fast_mode = true,
512 },
513 {
514 .core_clk = 24000000, .hldt = 0x7, .dbcnt = 0x1,
515 .sclfrq = 0x0, .scllt = 0x8, .sclht = 0x5,
516 .fast_mode = true,
517 },
518 {
519 .core_clk = 20000000, .hldt = 0x4, .dbcnt = 0x1,
520 .sclfrq = 0x0, .scllt = 0x6, .sclht = 0x4,
521 .fast_mode = true,
522 },
523 };
524
525 struct npcm_i2c_data {
526 u8 fifo_size;
527 u32 segctl_init_val;
528 u8 txf_sts_tx_bytes;
529 u8 rxf_sts_rx_bytes;
530 u8 rxf_ctl_last_pec;
531 };
532
533 static const struct npcm_i2c_data npxm7xx_i2c_data = {
534 .fifo_size = 16,
535 .segctl_init_val = 0x0333F000,
536 .txf_sts_tx_bytes = GENMASK(4, 0),
537 .rxf_sts_rx_bytes = GENMASK(4, 0),
538 .rxf_ctl_last_pec = BIT(5),
539 };
540
541 static const struct npcm_i2c_data npxm8xx_i2c_data = {
542 .fifo_size = 32,
543 .segctl_init_val = 0x9333F000,
544 .txf_sts_tx_bytes = GENMASK(5, 0),
545 .rxf_sts_rx_bytes = GENMASK(5, 0),
546 .rxf_ctl_last_pec = BIT(7),
547 };
548
549 /* Status of one I2C module */
550 struct npcm_i2c {
551 struct i2c_adapter adap;
552 struct device *dev;
553 unsigned char __iomem *reg;
554 const struct npcm_i2c_data *data;
555 spinlock_t lock; /* IRQ synchronization */
556 struct completion cmd_complete;
557 int cmd_err;
558 struct i2c_msg *msgs;
559 int msgs_num;
560 int num;
561 u32 apb_clk;
562 struct i2c_bus_recovery_info rinfo;
563 enum i2c_state state;
564 enum i2c_oper operation;
565 enum i2c_mode master_or_slave;
566 enum i2c_state_ind stop_ind;
567 u8 dest_addr;
568 u8 *rd_buf;
569 u16 rd_size;
570 u16 rd_ind;
571 u8 *wr_buf;
572 u16 wr_size;
573 u16 wr_ind;
574 bool fifo_use;
575 u16 PEC_mask; /* PEC bit mask per slave address */
576 bool PEC_use;
577 bool read_block_use;
578 unsigned long int_time_stamp;
579 unsigned long bus_freq; /* in Hz */
580 #if IS_ENABLED(CONFIG_I2C_SLAVE)
581 u8 own_slave_addr;
582 struct i2c_client *slave;
583 int slv_rd_size;
584 int slv_rd_ind;
585 int slv_wr_size;
586 int slv_wr_ind;
587 u8 slv_rd_buf[MAX_I2C_HW_FIFO_SIZE];
588 u8 slv_wr_buf[MAX_I2C_HW_FIFO_SIZE];
589 #endif
590 u64 ber_cnt;
591 u64 rec_succ_cnt;
592 u64 rec_fail_cnt;
593 u64 nack_cnt;
594 u64 timeout_cnt;
595 u64 tx_complete_cnt;
596 bool ber_state; /* Indicate the bus error state */
597 };
598
npcm_i2c_select_bank(struct npcm_i2c * bus,enum i2c_bank bank)599 static inline void npcm_i2c_select_bank(struct npcm_i2c *bus,
600 enum i2c_bank bank)
601 {
602 u8 i2cctl3 = ioread8(bus->reg + NPCM_I2CCTL3);
603
604 if (bank == I2C_BANK_0)
605 i2cctl3 = i2cctl3 & ~I2CCTL3_BNK_SEL;
606 else
607 i2cctl3 = i2cctl3 | I2CCTL3_BNK_SEL;
608 iowrite8(i2cctl3, bus->reg + NPCM_I2CCTL3);
609 }
610
npcm_i2c_init_params(struct npcm_i2c * bus)611 static void npcm_i2c_init_params(struct npcm_i2c *bus)
612 {
613 bus->stop_ind = I2C_NO_STATUS_IND;
614 bus->rd_size = 0;
615 bus->wr_size = 0;
616 bus->rd_ind = 0;
617 bus->wr_ind = 0;
618 bus->read_block_use = false;
619 bus->int_time_stamp = 0;
620 bus->PEC_use = false;
621 bus->PEC_mask = 0;
622 #if IS_ENABLED(CONFIG_I2C_SLAVE)
623 if (bus->slave)
624 bus->master_or_slave = I2C_SLAVE;
625 #endif
626 }
627
npcm_i2c_wr_byte(struct npcm_i2c * bus,u8 data)628 static inline void npcm_i2c_wr_byte(struct npcm_i2c *bus, u8 data)
629 {
630 iowrite8(data, bus->reg + NPCM_I2CSDA);
631 }
632
npcm_i2c_rd_byte(struct npcm_i2c * bus)633 static inline u8 npcm_i2c_rd_byte(struct npcm_i2c *bus)
634 {
635 return ioread8(bus->reg + NPCM_I2CSDA);
636 }
637
npcm_i2c_get_SCL(struct i2c_adapter * _adap)638 static int npcm_i2c_get_SCL(struct i2c_adapter *_adap)
639 {
640 struct npcm_i2c *bus = container_of(_adap, struct npcm_i2c, adap);
641
642 return !!(I2CCTL3_SCL_LVL & ioread8(bus->reg + NPCM_I2CCTL3));
643 }
644
npcm_i2c_get_SDA(struct i2c_adapter * _adap)645 static int npcm_i2c_get_SDA(struct i2c_adapter *_adap)
646 {
647 struct npcm_i2c *bus = container_of(_adap, struct npcm_i2c, adap);
648
649 return !!(I2CCTL3_SDA_LVL & ioread8(bus->reg + NPCM_I2CCTL3));
650 }
651
npcm_i2c_get_index(struct npcm_i2c * bus)652 static inline u16 npcm_i2c_get_index(struct npcm_i2c *bus)
653 {
654 if (bus->operation == I2C_READ_OPER)
655 return bus->rd_ind;
656 if (bus->operation == I2C_WRITE_OPER)
657 return bus->wr_ind;
658 return 0;
659 }
660
661 /* quick protocol (just address) */
npcm_i2c_is_quick(struct npcm_i2c * bus)662 static inline bool npcm_i2c_is_quick(struct npcm_i2c *bus)
663 {
664 return bus->wr_size == 0 && bus->rd_size == 0;
665 }
666
npcm_i2c_disable(struct npcm_i2c * bus)667 static void npcm_i2c_disable(struct npcm_i2c *bus)
668 {
669 u8 i2cctl2;
670
671 #if IS_ENABLED(CONFIG_I2C_SLAVE)
672 int i;
673
674 /* Slave addresses removal */
675 for (i = I2C_SLAVE_ADDR1; i < I2C_NUM_OWN_ADDR_SUPPORTED; i++)
676 iowrite8(0, bus->reg + npcm_i2caddr[i]);
677
678 #endif
679 /* Disable module */
680 i2cctl2 = ioread8(bus->reg + NPCM_I2CCTL2);
681 i2cctl2 = i2cctl2 & ~I2CCTL2_ENABLE;
682 iowrite8(i2cctl2, bus->reg + NPCM_I2CCTL2);
683
684 bus->state = I2C_DISABLE;
685 }
686
npcm_i2c_enable(struct npcm_i2c * bus)687 static void npcm_i2c_enable(struct npcm_i2c *bus)
688 {
689 u8 i2cctl2 = ioread8(bus->reg + NPCM_I2CCTL2);
690
691 i2cctl2 = i2cctl2 | I2CCTL2_ENABLE;
692 iowrite8(i2cctl2, bus->reg + NPCM_I2CCTL2);
693 bus->state = I2C_IDLE;
694 }
695
696 /* enable\disable end of busy (EOB) interrupts */
npcm_i2c_eob_int(struct npcm_i2c * bus,bool enable)697 static inline void npcm_i2c_eob_int(struct npcm_i2c *bus, bool enable)
698 {
699 u8 val;
700
701 /* Clear EO_BUSY pending bit: */
702 val = ioread8(bus->reg + NPCM_I2CCST3);
703 val = val | NPCM_I2CCST3_EO_BUSY;
704 iowrite8(val, bus->reg + NPCM_I2CCST3);
705
706 val = ioread8(bus->reg + NPCM_I2CCTL1);
707 val &= ~NPCM_I2CCTL1_RWS;
708 if (enable)
709 val |= NPCM_I2CCTL1_EOBINTE;
710 else
711 val &= ~NPCM_I2CCTL1_EOBINTE;
712 iowrite8(val, bus->reg + NPCM_I2CCTL1);
713 }
714
npcm_i2c_tx_fifo_empty(struct npcm_i2c * bus)715 static inline bool npcm_i2c_tx_fifo_empty(struct npcm_i2c *bus)
716 {
717 u8 tx_fifo_sts;
718
719 tx_fifo_sts = ioread8(bus->reg + NPCM_I2CTXF_STS);
720 /* check if TX FIFO is not empty */
721 if ((tx_fifo_sts & bus->data->txf_sts_tx_bytes) == 0)
722 return false;
723
724 /* check if TX FIFO status bit is set: */
725 return !!FIELD_GET(NPCM_I2CTXF_STS_TX_THST, tx_fifo_sts);
726 }
727
npcm_i2c_rx_fifo_full(struct npcm_i2c * bus)728 static inline bool npcm_i2c_rx_fifo_full(struct npcm_i2c *bus)
729 {
730 u8 rx_fifo_sts;
731
732 rx_fifo_sts = ioread8(bus->reg + NPCM_I2CRXF_STS);
733 /* check if RX FIFO is not empty: */
734 if ((rx_fifo_sts & bus->data->rxf_sts_rx_bytes) == 0)
735 return false;
736
737 /* check if rx fifo full status is set: */
738 return !!FIELD_GET(NPCM_I2CRXF_STS_RX_THST, rx_fifo_sts);
739 }
740
npcm_i2c_clear_fifo_int(struct npcm_i2c * bus)741 static inline void npcm_i2c_clear_fifo_int(struct npcm_i2c *bus)
742 {
743 u8 val;
744
745 val = ioread8(bus->reg + NPCM_I2CFIF_CTS);
746 val = (val & NPCM_I2CFIF_CTS_SLVRSTR) | NPCM_I2CFIF_CTS_RXF_TXE;
747 iowrite8(val, bus->reg + NPCM_I2CFIF_CTS);
748 }
749
npcm_i2c_clear_tx_fifo(struct npcm_i2c * bus)750 static inline void npcm_i2c_clear_tx_fifo(struct npcm_i2c *bus)
751 {
752 u8 val;
753
754 val = ioread8(bus->reg + NPCM_I2CTXF_STS);
755 val = val | NPCM_I2CTXF_STS_TX_THST;
756 iowrite8(val, bus->reg + NPCM_I2CTXF_STS);
757 }
758
npcm_i2c_clear_rx_fifo(struct npcm_i2c * bus)759 static inline void npcm_i2c_clear_rx_fifo(struct npcm_i2c *bus)
760 {
761 u8 val;
762
763 val = ioread8(bus->reg + NPCM_I2CRXF_STS);
764 val = val | NPCM_I2CRXF_STS_RX_THST;
765 iowrite8(val, bus->reg + NPCM_I2CRXF_STS);
766 }
767
npcm_i2c_int_enable(struct npcm_i2c * bus,bool enable)768 static void npcm_i2c_int_enable(struct npcm_i2c *bus, bool enable)
769 {
770 u8 val;
771
772 val = ioread8(bus->reg + NPCM_I2CCTL1);
773 val &= ~NPCM_I2CCTL1_RWS;
774 if (enable)
775 val |= NPCM_I2CCTL1_INTEN;
776 else
777 val &= ~NPCM_I2CCTL1_INTEN;
778 iowrite8(val, bus->reg + NPCM_I2CCTL1);
779 }
780
npcm_i2c_master_start(struct npcm_i2c * bus)781 static inline void npcm_i2c_master_start(struct npcm_i2c *bus)
782 {
783 u8 val;
784
785 val = ioread8(bus->reg + NPCM_I2CCTL1);
786 val &= ~(NPCM_I2CCTL1_STOP | NPCM_I2CCTL1_ACK);
787 val |= NPCM_I2CCTL1_START;
788 iowrite8(val, bus->reg + NPCM_I2CCTL1);
789 }
790
npcm_i2c_master_stop(struct npcm_i2c * bus)791 static inline void npcm_i2c_master_stop(struct npcm_i2c *bus)
792 {
793 u8 val;
794
795 /*
796 * override HW issue: I2C may fail to supply stop condition in Master
797 * Write operation.
798 * Need to delay at least 5 us from the last int, before issueing a stop
799 */
800 udelay(10); /* function called from interrupt, can't sleep */
801 val = ioread8(bus->reg + NPCM_I2CCTL1);
802 val &= ~(NPCM_I2CCTL1_START | NPCM_I2CCTL1_ACK);
803 val |= NPCM_I2CCTL1_STOP;
804 iowrite8(val, bus->reg + NPCM_I2CCTL1);
805
806 if (!bus->fifo_use)
807 return;
808
809 npcm_i2c_select_bank(bus, I2C_BANK_1);
810
811 if (bus->operation == I2C_READ_OPER)
812 npcm_i2c_clear_rx_fifo(bus);
813 else
814 npcm_i2c_clear_tx_fifo(bus);
815 npcm_i2c_clear_fifo_int(bus);
816 iowrite8(0, bus->reg + NPCM_I2CTXF_CTL);
817 }
818
npcm_i2c_stall_after_start(struct npcm_i2c * bus,bool stall)819 static inline void npcm_i2c_stall_after_start(struct npcm_i2c *bus, bool stall)
820 {
821 u8 val;
822
823 val = ioread8(bus->reg + NPCM_I2CCTL1);
824 val &= ~NPCM_I2CCTL1_RWS;
825 if (stall)
826 val |= NPCM_I2CCTL1_STASTRE;
827 else
828 val &= ~NPCM_I2CCTL1_STASTRE;
829 iowrite8(val, bus->reg + NPCM_I2CCTL1);
830 }
831
npcm_i2c_nack(struct npcm_i2c * bus)832 static inline void npcm_i2c_nack(struct npcm_i2c *bus)
833 {
834 u8 val;
835
836 val = ioread8(bus->reg + NPCM_I2CCTL1);
837 val &= ~(NPCM_I2CCTL1_STOP | NPCM_I2CCTL1_START);
838 val |= NPCM_I2CCTL1_ACK;
839 iowrite8(val, bus->reg + NPCM_I2CCTL1);
840 }
841
npcm_i2c_clear_master_status(struct npcm_i2c * bus)842 static inline void npcm_i2c_clear_master_status(struct npcm_i2c *bus)
843 {
844 u8 val;
845
846 /* Clear NEGACK, STASTR and BER bits */
847 val = NPCM_I2CST_BER | NPCM_I2CST_NEGACK | NPCM_I2CST_STASTR;
848 iowrite8(val, bus->reg + NPCM_I2CST);
849 }
850
851 #if IS_ENABLED(CONFIG_I2C_SLAVE)
npcm_i2c_slave_int_enable(struct npcm_i2c * bus,bool enable)852 static void npcm_i2c_slave_int_enable(struct npcm_i2c *bus, bool enable)
853 {
854 u8 i2cctl1;
855
856 /* enable interrupt on slave match: */
857 i2cctl1 = ioread8(bus->reg + NPCM_I2CCTL1);
858 i2cctl1 &= ~NPCM_I2CCTL1_RWS;
859 if (enable)
860 i2cctl1 |= NPCM_I2CCTL1_NMINTE;
861 else
862 i2cctl1 &= ~NPCM_I2CCTL1_NMINTE;
863 iowrite8(i2cctl1, bus->reg + NPCM_I2CCTL1);
864 }
865
npcm_i2c_slave_enable(struct npcm_i2c * bus,enum i2c_addr addr_type,u8 addr,bool enable)866 static int npcm_i2c_slave_enable(struct npcm_i2c *bus, enum i2c_addr addr_type,
867 u8 addr, bool enable)
868 {
869 u8 i2cctl1;
870 u8 i2cctl3;
871 u8 sa_reg;
872
873 sa_reg = (addr & 0x7F) | FIELD_PREP(NPCM_I2CADDR_SAEN, enable);
874 if (addr_type == I2C_GC_ADDR) {
875 i2cctl1 = ioread8(bus->reg + NPCM_I2CCTL1);
876 if (enable)
877 i2cctl1 |= NPCM_I2CCTL1_GCMEN;
878 else
879 i2cctl1 &= ~NPCM_I2CCTL1_GCMEN;
880 iowrite8(i2cctl1, bus->reg + NPCM_I2CCTL1);
881 return 0;
882 } else if (addr_type == I2C_ARP_ADDR) {
883 i2cctl3 = ioread8(bus->reg + NPCM_I2CCTL3);
884 if (enable)
885 i2cctl3 |= I2CCTL3_ARPMEN;
886 else
887 i2cctl3 &= ~I2CCTL3_ARPMEN;
888 iowrite8(i2cctl3, bus->reg + NPCM_I2CCTL3);
889 return 0;
890 }
891 if (addr_type > I2C_SLAVE_ADDR2 && addr_type <= I2C_SLAVE_ADDR10)
892 dev_err(bus->dev, "try to enable more than 2 SA not supported\n");
893
894 if (addr_type >= I2C_ARP_ADDR)
895 return -EFAULT;
896
897 /* Set and enable the address */
898 iowrite8(sa_reg, bus->reg + npcm_i2caddr[addr_type]);
899 npcm_i2c_slave_int_enable(bus, enable);
900
901 return 0;
902 }
903 #endif
904
npcm_i2c_reset(struct npcm_i2c * bus)905 static void npcm_i2c_reset(struct npcm_i2c *bus)
906 {
907 /*
908 * Save I2CCTL1 relevant bits. It is being cleared when the module
909 * is disabled.
910 */
911 u8 i2cctl1;
912 #if IS_ENABLED(CONFIG_I2C_SLAVE)
913 u8 addr;
914 #endif
915
916 i2cctl1 = ioread8(bus->reg + NPCM_I2CCTL1);
917
918 npcm_i2c_disable(bus);
919 npcm_i2c_enable(bus);
920
921 /* Restore NPCM_I2CCTL1 Status */
922 i2cctl1 &= ~NPCM_I2CCTL1_RWS;
923 iowrite8(i2cctl1, bus->reg + NPCM_I2CCTL1);
924
925 /* Clear BB (BUS BUSY) bit */
926 iowrite8(NPCM_I2CCST_BB, bus->reg + NPCM_I2CCST);
927 iowrite8(0xFF, bus->reg + NPCM_I2CST);
928
929 /* Clear and disable EOB */
930 npcm_i2c_eob_int(bus, false);
931
932 /* Clear all fifo bits: */
933 iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO, bus->reg + NPCM_I2CFIF_CTS);
934
935 #if IS_ENABLED(CONFIG_I2C_SLAVE)
936 if (bus->slave) {
937 addr = bus->slave->addr;
938 npcm_i2c_slave_enable(bus, I2C_SLAVE_ADDR1, addr, true);
939 }
940 #endif
941
942 /* Clear status bits for spurious interrupts */
943 npcm_i2c_clear_master_status(bus);
944
945 bus->state = I2C_IDLE;
946 }
947
npcm_i2c_is_master(struct npcm_i2c * bus)948 static inline bool npcm_i2c_is_master(struct npcm_i2c *bus)
949 {
950 return !!FIELD_GET(NPCM_I2CST_MASTER, ioread8(bus->reg + NPCM_I2CST));
951 }
952
npcm_i2c_callback(struct npcm_i2c * bus,enum i2c_state_ind op_status,u16 info)953 static void npcm_i2c_callback(struct npcm_i2c *bus,
954 enum i2c_state_ind op_status, u16 info)
955 {
956 struct i2c_msg *msgs;
957 int msgs_num;
958 bool do_complete = false;
959
960 msgs = bus->msgs;
961 msgs_num = bus->msgs_num;
962 /*
963 * check that transaction was not timed-out, and msgs still
964 * holds a valid value.
965 */
966 if (!msgs)
967 return;
968
969 if (completion_done(&bus->cmd_complete))
970 return;
971
972 switch (op_status) {
973 case I2C_MASTER_DONE_IND:
974 bus->cmd_err = bus->msgs_num;
975 if (bus->tx_complete_cnt < ULLONG_MAX)
976 bus->tx_complete_cnt++;
977 fallthrough;
978 case I2C_BLOCK_BYTES_ERR_IND:
979 /* Master tx finished and all transmit bytes were sent */
980 if (bus->msgs) {
981 if (msgs[0].flags & I2C_M_RD)
982 msgs[0].len = info;
983 else if (msgs_num == 2 &&
984 msgs[1].flags & I2C_M_RD)
985 msgs[1].len = info;
986 }
987 do_complete = true;
988 break;
989 case I2C_NACK_IND:
990 /* MASTER transmit got a NACK before tx all bytes */
991 bus->cmd_err = -ENXIO;
992 do_complete = true;
993 break;
994 case I2C_BUS_ERR_IND:
995 /* Bus error */
996 bus->cmd_err = -EAGAIN;
997 do_complete = true;
998 break;
999 case I2C_WAKE_UP_IND:
1000 /* I2C wake up */
1001 break;
1002 default:
1003 break;
1004 }
1005
1006 bus->operation = I2C_NO_OPER;
1007 #if IS_ENABLED(CONFIG_I2C_SLAVE)
1008 if (bus->slave)
1009 bus->master_or_slave = I2C_SLAVE;
1010 #endif
1011 if (do_complete)
1012 complete(&bus->cmd_complete);
1013 }
1014
npcm_i2c_fifo_usage(struct npcm_i2c * bus)1015 static u8 npcm_i2c_fifo_usage(struct npcm_i2c *bus)
1016 {
1017 if (bus->operation == I2C_WRITE_OPER)
1018 return (bus->data->txf_sts_tx_bytes &
1019 ioread8(bus->reg + NPCM_I2CTXF_STS));
1020 if (bus->operation == I2C_READ_OPER)
1021 return (bus->data->rxf_sts_rx_bytes &
1022 ioread8(bus->reg + NPCM_I2CRXF_STS));
1023 return 0;
1024 }
1025
npcm_i2c_write_to_fifo_master(struct npcm_i2c * bus,u16 max_bytes)1026 static void npcm_i2c_write_to_fifo_master(struct npcm_i2c *bus, u16 max_bytes)
1027 {
1028 u8 size_free_fifo;
1029
1030 /*
1031 * Fill the FIFO, while the FIFO is not full and there are more bytes
1032 * to write
1033 */
1034 size_free_fifo = bus->data->fifo_size - npcm_i2c_fifo_usage(bus);
1035 while (max_bytes-- && size_free_fifo) {
1036 if (bus->wr_ind < bus->wr_size)
1037 npcm_i2c_wr_byte(bus, bus->wr_buf[bus->wr_ind++]);
1038 else
1039 npcm_i2c_wr_byte(bus, 0xFF);
1040 size_free_fifo = bus->data->fifo_size - npcm_i2c_fifo_usage(bus);
1041 }
1042 }
1043
1044 /*
1045 * npcm_i2c_set_fifo:
1046 * configure the FIFO before using it. If nread is -1 RX FIFO will not be
1047 * configured. same for nwrite
1048 */
npcm_i2c_set_fifo(struct npcm_i2c * bus,int nread,int nwrite)1049 static void npcm_i2c_set_fifo(struct npcm_i2c *bus, int nread, int nwrite)
1050 {
1051 u8 rxf_ctl = 0;
1052
1053 if (!bus->fifo_use)
1054 return;
1055 npcm_i2c_select_bank(bus, I2C_BANK_1);
1056 npcm_i2c_clear_tx_fifo(bus);
1057 npcm_i2c_clear_rx_fifo(bus);
1058
1059 /* configure RX FIFO */
1060 if (nread > 0) {
1061 rxf_ctl = min_t(int, nread, bus->data->fifo_size);
1062
1063 /* set LAST bit. if LAST is set next FIFO packet is nacked */
1064 if (nread <= bus->data->fifo_size)
1065 rxf_ctl |= bus->data->rxf_ctl_last_pec;
1066
1067 /*
1068 * if we are about to read the first byte in blk rd mode,
1069 * don't NACK it. If slave returns zero size HW can't NACK
1070 * it immediately, it will read extra byte and then NACK.
1071 */
1072 if (bus->rd_ind == 0 && bus->read_block_use) {
1073 /* set fifo to read one byte, no last: */
1074 rxf_ctl = 1;
1075 }
1076
1077 /* set fifo size: */
1078 iowrite8(rxf_ctl, bus->reg + NPCM_I2CRXF_CTL);
1079 }
1080
1081 /* configure TX FIFO */
1082 if (nwrite > 0) {
1083 if (nwrite > bus->data->fifo_size)
1084 /* data to send is more then FIFO size. */
1085 iowrite8(bus->data->fifo_size, bus->reg + NPCM_I2CTXF_CTL);
1086 else
1087 iowrite8(nwrite, bus->reg + NPCM_I2CTXF_CTL);
1088
1089 npcm_i2c_clear_tx_fifo(bus);
1090 }
1091 }
1092
npcm_i2c_read_fifo(struct npcm_i2c * bus,u8 bytes_in_fifo)1093 static void npcm_i2c_read_fifo(struct npcm_i2c *bus, u8 bytes_in_fifo)
1094 {
1095 u8 data;
1096
1097 while (bytes_in_fifo--) {
1098 data = npcm_i2c_rd_byte(bus);
1099 if (bus->rd_ind < bus->rd_size)
1100 bus->rd_buf[bus->rd_ind++] = data;
1101 }
1102 }
1103
npcm_i2c_master_abort(struct npcm_i2c * bus)1104 static void npcm_i2c_master_abort(struct npcm_i2c *bus)
1105 {
1106 /* Only current master is allowed to issue a stop condition */
1107 if (!npcm_i2c_is_master(bus))
1108 return;
1109
1110 npcm_i2c_eob_int(bus, true);
1111 npcm_i2c_master_stop(bus);
1112 npcm_i2c_clear_master_status(bus);
1113 }
1114
1115 #if IS_ENABLED(CONFIG_I2C_SLAVE)
npcm_i2c_get_slave_addr(struct npcm_i2c * bus,enum i2c_addr addr_type)1116 static u8 npcm_i2c_get_slave_addr(struct npcm_i2c *bus, enum i2c_addr addr_type)
1117 {
1118 if (addr_type > I2C_SLAVE_ADDR2 && addr_type <= I2C_SLAVE_ADDR10)
1119 dev_err(bus->dev, "get slave: try to use more than 2 SA not supported\n");
1120
1121 return ioread8(bus->reg + npcm_i2caddr[addr_type]);
1122 }
1123
npcm_i2c_remove_slave_addr(struct npcm_i2c * bus,u8 slave_add)1124 static int npcm_i2c_remove_slave_addr(struct npcm_i2c *bus, u8 slave_add)
1125 {
1126 int i;
1127
1128 /* Set the enable bit */
1129 slave_add |= 0x80;
1130
1131 for (i = I2C_SLAVE_ADDR1; i < I2C_NUM_OWN_ADDR_SUPPORTED; i++) {
1132 if (ioread8(bus->reg + npcm_i2caddr[i]) == slave_add)
1133 iowrite8(0, bus->reg + npcm_i2caddr[i]);
1134 }
1135
1136 return 0;
1137 }
1138
npcm_i2c_write_fifo_slave(struct npcm_i2c * bus,u16 max_bytes)1139 static void npcm_i2c_write_fifo_slave(struct npcm_i2c *bus, u16 max_bytes)
1140 {
1141 /*
1142 * Fill the FIFO, while the FIFO is not full and there are more bytes
1143 * to write
1144 */
1145 npcm_i2c_clear_fifo_int(bus);
1146 npcm_i2c_clear_tx_fifo(bus);
1147 iowrite8(0, bus->reg + NPCM_I2CTXF_CTL);
1148 while (max_bytes-- && bus->data->fifo_size != npcm_i2c_fifo_usage(bus)) {
1149 if (bus->slv_wr_size <= 0)
1150 break;
1151 bus->slv_wr_ind = bus->slv_wr_ind & (bus->data->fifo_size - 1);
1152 npcm_i2c_wr_byte(bus, bus->slv_wr_buf[bus->slv_wr_ind]);
1153 bus->slv_wr_ind++;
1154 bus->slv_wr_ind = bus->slv_wr_ind & (bus->data->fifo_size - 1);
1155 bus->slv_wr_size--;
1156 }
1157 }
1158
npcm_i2c_read_fifo_slave(struct npcm_i2c * bus,u8 bytes_in_fifo)1159 static void npcm_i2c_read_fifo_slave(struct npcm_i2c *bus, u8 bytes_in_fifo)
1160 {
1161 u8 data;
1162
1163 if (!bus->slave)
1164 return;
1165
1166 while (bytes_in_fifo--) {
1167 data = npcm_i2c_rd_byte(bus);
1168
1169 bus->slv_rd_ind = bus->slv_rd_ind & (bus->data->fifo_size - 1);
1170 bus->slv_rd_buf[bus->slv_rd_ind] = data;
1171 bus->slv_rd_ind++;
1172
1173 /* 1st byte is length in block protocol: */
1174 if (bus->slv_rd_ind == 1 && bus->read_block_use)
1175 bus->slv_rd_size = data + bus->PEC_use + 1;
1176 }
1177 }
1178
npcm_i2c_slave_get_wr_buf(struct npcm_i2c * bus)1179 static int npcm_i2c_slave_get_wr_buf(struct npcm_i2c *bus)
1180 {
1181 int i;
1182 u8 value;
1183 int ind;
1184 int ret = bus->slv_wr_ind;
1185
1186 /* fill a cyclic buffer */
1187 for (i = 0; i < bus->data->fifo_size; i++) {
1188 if (bus->slv_wr_size >= bus->data->fifo_size)
1189 break;
1190 if (bus->state == I2C_SLAVE_MATCH) {
1191 i2c_slave_event(bus->slave, I2C_SLAVE_READ_REQUESTED, &value);
1192 bus->state = I2C_OPER_STARTED;
1193 } else {
1194 i2c_slave_event(bus->slave, I2C_SLAVE_READ_PROCESSED, &value);
1195 }
1196 ind = (bus->slv_wr_ind + bus->slv_wr_size) & (bus->data->fifo_size - 1);
1197 bus->slv_wr_buf[ind] = value;
1198 bus->slv_wr_size++;
1199 }
1200 return bus->data->fifo_size - ret;
1201 }
1202
npcm_i2c_slave_send_rd_buf(struct npcm_i2c * bus)1203 static void npcm_i2c_slave_send_rd_buf(struct npcm_i2c *bus)
1204 {
1205 int i;
1206
1207 for (i = 0; i < bus->slv_rd_ind; i++)
1208 i2c_slave_event(bus->slave, I2C_SLAVE_WRITE_RECEIVED,
1209 &bus->slv_rd_buf[i]);
1210 /*
1211 * once we send bytes up, need to reset the counter of the wr buf
1212 * got data from master (new offset in device), ignore wr fifo:
1213 */
1214 if (bus->slv_rd_ind) {
1215 bus->slv_wr_size = 0;
1216 bus->slv_wr_ind = 0;
1217 }
1218
1219 bus->slv_rd_ind = 0;
1220 bus->slv_rd_size = bus->adap.quirks->max_read_len;
1221
1222 npcm_i2c_clear_fifo_int(bus);
1223 npcm_i2c_clear_rx_fifo(bus);
1224 }
1225
npcm_i2c_slave_receive(struct npcm_i2c * bus,u16 nread,u8 * read_data)1226 static void npcm_i2c_slave_receive(struct npcm_i2c *bus, u16 nread,
1227 u8 *read_data)
1228 {
1229 bus->state = I2C_OPER_STARTED;
1230 bus->operation = I2C_READ_OPER;
1231 bus->slv_rd_size = nread;
1232 bus->slv_rd_ind = 0;
1233
1234 iowrite8(0, bus->reg + NPCM_I2CTXF_CTL);
1235 iowrite8(bus->data->fifo_size, bus->reg + NPCM_I2CRXF_CTL);
1236 npcm_i2c_clear_tx_fifo(bus);
1237 npcm_i2c_clear_rx_fifo(bus);
1238 }
1239
npcm_i2c_slave_xmit(struct npcm_i2c * bus,u16 nwrite,u8 * write_data)1240 static void npcm_i2c_slave_xmit(struct npcm_i2c *bus, u16 nwrite,
1241 u8 *write_data)
1242 {
1243 if (nwrite == 0)
1244 return;
1245
1246 bus->operation = I2C_WRITE_OPER;
1247
1248 /* get the next buffer */
1249 npcm_i2c_slave_get_wr_buf(bus);
1250 npcm_i2c_write_fifo_slave(bus, nwrite);
1251 }
1252
1253 /*
1254 * npcm_i2c_slave_wr_buf_sync:
1255 * currently slave IF only supports single byte operations.
1256 * in order to utilize the npcm HW FIFO, the driver will ask for 16 bytes
1257 * at a time, pack them in buffer, and then transmit them all together
1258 * to the FIFO and onward to the bus.
1259 * NACK on read will be once reached to bus->adap->quirks->max_read_len.
1260 * sending a NACK wherever the backend requests for it is not supported.
1261 * the next two functions allow reading to local buffer before writing it all
1262 * to the HW FIFO.
1263 */
npcm_i2c_slave_wr_buf_sync(struct npcm_i2c * bus)1264 static void npcm_i2c_slave_wr_buf_sync(struct npcm_i2c *bus)
1265 {
1266 int left_in_fifo;
1267
1268 left_in_fifo = bus->data->txf_sts_tx_bytes &
1269 ioread8(bus->reg + NPCM_I2CTXF_STS);
1270
1271 /* fifo already full: */
1272 if (left_in_fifo >= bus->data->fifo_size ||
1273 bus->slv_wr_size >= bus->data->fifo_size)
1274 return;
1275
1276 /* update the wr fifo index back to the untransmitted bytes: */
1277 bus->slv_wr_ind = bus->slv_wr_ind - left_in_fifo;
1278 bus->slv_wr_size = bus->slv_wr_size + left_in_fifo;
1279
1280 if (bus->slv_wr_ind < 0)
1281 bus->slv_wr_ind += bus->data->fifo_size;
1282 }
1283
npcm_i2c_slave_rd_wr(struct npcm_i2c * bus)1284 static void npcm_i2c_slave_rd_wr(struct npcm_i2c *bus)
1285 {
1286 if (NPCM_I2CST_XMIT & ioread8(bus->reg + NPCM_I2CST)) {
1287 /*
1288 * Slave got an address match with direction bit 1 so it should
1289 * transmit data. Write till the master will NACK
1290 */
1291 bus->operation = I2C_WRITE_OPER;
1292 npcm_i2c_slave_xmit(bus, bus->adap.quirks->max_write_len,
1293 bus->slv_wr_buf);
1294 } else {
1295 /*
1296 * Slave got an address match with direction bit 0 so it should
1297 * receive data.
1298 * this module does not support saying no to bytes.
1299 * it will always ACK.
1300 */
1301 bus->operation = I2C_READ_OPER;
1302 npcm_i2c_read_fifo_slave(bus, npcm_i2c_fifo_usage(bus));
1303 bus->stop_ind = I2C_SLAVE_RCV_IND;
1304 npcm_i2c_slave_send_rd_buf(bus);
1305 npcm_i2c_slave_receive(bus, bus->adap.quirks->max_read_len,
1306 bus->slv_rd_buf);
1307 }
1308 }
1309
npcm_i2c_int_slave_handler(struct npcm_i2c * bus)1310 static irqreturn_t npcm_i2c_int_slave_handler(struct npcm_i2c *bus)
1311 {
1312 u8 val;
1313 irqreturn_t ret = IRQ_NONE;
1314 u8 i2cst = ioread8(bus->reg + NPCM_I2CST);
1315
1316 /* Slave: A NACK has occurred */
1317 if (NPCM_I2CST_NEGACK & i2cst) {
1318 bus->stop_ind = I2C_NACK_IND;
1319 npcm_i2c_slave_wr_buf_sync(bus);
1320 if (bus->fifo_use)
1321 /* clear the FIFO */
1322 iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO,
1323 bus->reg + NPCM_I2CFIF_CTS);
1324
1325 /* In slave write, NACK is OK, otherwise it is a problem */
1326 bus->stop_ind = I2C_NO_STATUS_IND;
1327 bus->operation = I2C_NO_OPER;
1328 bus->own_slave_addr = 0xFF;
1329
1330 /*
1331 * Slave has to wait for STOP to decide this is the end
1332 * of the transaction. tx is not yet considered as done
1333 */
1334 iowrite8(NPCM_I2CST_NEGACK, bus->reg + NPCM_I2CST);
1335
1336 ret = IRQ_HANDLED;
1337 }
1338
1339 /* Slave mode: a Bus Error (BER) has been identified */
1340 if (NPCM_I2CST_BER & i2cst) {
1341 /*
1342 * Check whether bus arbitration or Start or Stop during data
1343 * xfer bus arbitration problem should not result in recovery
1344 */
1345 bus->stop_ind = I2C_BUS_ERR_IND;
1346
1347 /* wait for bus busy before clear fifo */
1348 iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO, bus->reg + NPCM_I2CFIF_CTS);
1349
1350 bus->state = I2C_IDLE;
1351
1352 /*
1353 * in BER case we might get 2 interrupts: one for slave one for
1354 * master ( for a channel which is master\slave switching)
1355 */
1356 if (completion_done(&bus->cmd_complete) == false) {
1357 bus->cmd_err = -EIO;
1358 complete(&bus->cmd_complete);
1359 }
1360 bus->own_slave_addr = 0xFF;
1361 iowrite8(NPCM_I2CST_BER, bus->reg + NPCM_I2CST);
1362 ret = IRQ_HANDLED;
1363 }
1364
1365 /* A Slave Stop Condition has been identified */
1366 if (NPCM_I2CST_SLVSTP & i2cst) {
1367 u8 bytes_in_fifo = npcm_i2c_fifo_usage(bus);
1368
1369 bus->stop_ind = I2C_SLAVE_DONE_IND;
1370
1371 if (bus->operation == I2C_READ_OPER)
1372 npcm_i2c_read_fifo_slave(bus, bytes_in_fifo);
1373
1374 /* if the buffer is empty nothing will be sent */
1375 npcm_i2c_slave_send_rd_buf(bus);
1376
1377 /* Slave done transmitting or receiving */
1378 bus->stop_ind = I2C_NO_STATUS_IND;
1379
1380 /*
1381 * Note, just because we got here, it doesn't mean we through
1382 * away the wr buffer.
1383 * we keep it until the next received offset.
1384 */
1385 bus->operation = I2C_NO_OPER;
1386 bus->own_slave_addr = 0xFF;
1387 i2c_slave_event(bus->slave, I2C_SLAVE_STOP, 0);
1388 iowrite8(NPCM_I2CST_SLVSTP, bus->reg + NPCM_I2CST);
1389 if (bus->fifo_use) {
1390 npcm_i2c_clear_fifo_int(bus);
1391 npcm_i2c_clear_rx_fifo(bus);
1392 npcm_i2c_clear_tx_fifo(bus);
1393
1394 iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO,
1395 bus->reg + NPCM_I2CFIF_CTS);
1396 }
1397 bus->state = I2C_IDLE;
1398 ret = IRQ_HANDLED;
1399 }
1400
1401 /* restart condition occurred and Rx-FIFO was not empty */
1402 if (bus->fifo_use && FIELD_GET(NPCM_I2CFIF_CTS_SLVRSTR,
1403 ioread8(bus->reg + NPCM_I2CFIF_CTS))) {
1404 bus->stop_ind = I2C_SLAVE_RESTART_IND;
1405 bus->master_or_slave = I2C_SLAVE;
1406 if (bus->operation == I2C_READ_OPER)
1407 npcm_i2c_read_fifo_slave(bus, npcm_i2c_fifo_usage(bus));
1408 bus->operation = I2C_WRITE_OPER;
1409 iowrite8(0, bus->reg + NPCM_I2CRXF_CTL);
1410 val = NPCM_I2CFIF_CTS_CLR_FIFO | NPCM_I2CFIF_CTS_SLVRSTR |
1411 NPCM_I2CFIF_CTS_RXF_TXE;
1412 iowrite8(val, bus->reg + NPCM_I2CFIF_CTS);
1413 npcm_i2c_slave_rd_wr(bus);
1414 ret = IRQ_HANDLED;
1415 }
1416
1417 /* A Slave Address Match has been identified */
1418 if (NPCM_I2CST_NMATCH & i2cst) {
1419 u8 info = 0;
1420
1421 /* Address match automatically implies slave mode */
1422 bus->master_or_slave = I2C_SLAVE;
1423 npcm_i2c_clear_fifo_int(bus);
1424 npcm_i2c_clear_rx_fifo(bus);
1425 npcm_i2c_clear_tx_fifo(bus);
1426 iowrite8(0, bus->reg + NPCM_I2CTXF_CTL);
1427 iowrite8(bus->data->fifo_size, bus->reg + NPCM_I2CRXF_CTL);
1428 if (NPCM_I2CST_XMIT & i2cst) {
1429 bus->operation = I2C_WRITE_OPER;
1430 } else {
1431 i2c_slave_event(bus->slave, I2C_SLAVE_WRITE_REQUESTED,
1432 &info);
1433 bus->operation = I2C_READ_OPER;
1434 }
1435 if (bus->own_slave_addr == 0xFF) {
1436 /* Check which type of address match */
1437 val = ioread8(bus->reg + NPCM_I2CCST);
1438 if (NPCM_I2CCST_MATCH & val) {
1439 u16 addr;
1440 enum i2c_addr eaddr;
1441 u8 i2ccst2;
1442 u8 i2ccst3;
1443
1444 i2ccst3 = ioread8(bus->reg + NPCM_I2CCST3);
1445 i2ccst2 = ioread8(bus->reg + NPCM_I2CCST2);
1446
1447 /*
1448 * the i2c module can response to 10 own SA.
1449 * check which one was addressed by the master.
1450 * respond to the first one.
1451 */
1452 addr = ((i2ccst3 & 0x07) << 7) |
1453 (i2ccst2 & 0x7F);
1454 info = ffs(addr);
1455 eaddr = (enum i2c_addr)info;
1456 addr = npcm_i2c_get_slave_addr(bus, eaddr);
1457 addr &= 0x7F;
1458 bus->own_slave_addr = addr;
1459 if (bus->PEC_mask & BIT(info))
1460 bus->PEC_use = true;
1461 else
1462 bus->PEC_use = false;
1463 } else {
1464 if (NPCM_I2CCST_GCMATCH & val)
1465 bus->own_slave_addr = 0;
1466 if (NPCM_I2CCST_ARPMATCH & val)
1467 bus->own_slave_addr = 0x61;
1468 }
1469 } else {
1470 /*
1471 * Slave match can happen in two options:
1472 * 1. Start, SA, read (slave read without further ado)
1473 * 2. Start, SA, read, data, restart, SA, read, ...
1474 * (slave read in fragmented mode)
1475 * 3. Start, SA, write, data, restart, SA, read, ..
1476 * (regular write-read mode)
1477 */
1478 if ((bus->state == I2C_OPER_STARTED &&
1479 bus->operation == I2C_READ_OPER &&
1480 bus->stop_ind == I2C_SLAVE_XMIT_IND) ||
1481 bus->stop_ind == I2C_SLAVE_RCV_IND) {
1482 /* slave tx after slave rx w/o STOP */
1483 bus->stop_ind = I2C_SLAVE_RESTART_IND;
1484 }
1485 }
1486
1487 if (NPCM_I2CST_XMIT & i2cst)
1488 bus->stop_ind = I2C_SLAVE_XMIT_IND;
1489 else
1490 bus->stop_ind = I2C_SLAVE_RCV_IND;
1491 bus->state = I2C_SLAVE_MATCH;
1492 npcm_i2c_slave_rd_wr(bus);
1493 iowrite8(NPCM_I2CST_NMATCH, bus->reg + NPCM_I2CST);
1494 ret = IRQ_HANDLED;
1495 }
1496
1497 /* Slave SDA status is set - tx or rx */
1498 if ((NPCM_I2CST_SDAST & i2cst) ||
1499 (bus->fifo_use &&
1500 (npcm_i2c_tx_fifo_empty(bus) || npcm_i2c_rx_fifo_full(bus)))) {
1501 npcm_i2c_slave_rd_wr(bus);
1502 iowrite8(NPCM_I2CST_SDAST, bus->reg + NPCM_I2CST);
1503 ret = IRQ_HANDLED;
1504 } /* SDAST */
1505
1506 /*
1507 * If irq is not one of the above, make sure EOB is disabled and all
1508 * status bits are cleared.
1509 */
1510 if (ret == IRQ_NONE) {
1511 npcm_i2c_eob_int(bus, false);
1512 npcm_i2c_clear_master_status(bus);
1513 }
1514
1515 return IRQ_HANDLED;
1516 }
1517
npcm_i2c_reg_slave(struct i2c_client * client)1518 static int npcm_i2c_reg_slave(struct i2c_client *client)
1519 {
1520 unsigned long lock_flags;
1521 struct npcm_i2c *bus = i2c_get_adapdata(client->adapter);
1522
1523 bus->slave = client;
1524
1525 if (client->flags & I2C_CLIENT_TEN)
1526 return -EAFNOSUPPORT;
1527
1528 spin_lock_irqsave(&bus->lock, lock_flags);
1529
1530 npcm_i2c_init_params(bus);
1531 bus->slv_rd_size = 0;
1532 bus->slv_wr_size = 0;
1533 bus->slv_rd_ind = 0;
1534 bus->slv_wr_ind = 0;
1535 if (client->flags & I2C_CLIENT_PEC)
1536 bus->PEC_use = true;
1537
1538 dev_info(bus->dev, "i2c%d register slave SA=0x%x, PEC=%d\n", bus->num,
1539 client->addr, bus->PEC_use);
1540
1541 npcm_i2c_slave_enable(bus, I2C_SLAVE_ADDR1, client->addr, true);
1542 npcm_i2c_clear_fifo_int(bus);
1543 npcm_i2c_clear_rx_fifo(bus);
1544 npcm_i2c_clear_tx_fifo(bus);
1545 npcm_i2c_slave_int_enable(bus, true);
1546
1547 spin_unlock_irqrestore(&bus->lock, lock_flags);
1548 return 0;
1549 }
1550
npcm_i2c_unreg_slave(struct i2c_client * client)1551 static int npcm_i2c_unreg_slave(struct i2c_client *client)
1552 {
1553 struct npcm_i2c *bus = client->adapter->algo_data;
1554 unsigned long lock_flags;
1555
1556 spin_lock_irqsave(&bus->lock, lock_flags);
1557 if (!bus->slave) {
1558 spin_unlock_irqrestore(&bus->lock, lock_flags);
1559 return -EINVAL;
1560 }
1561 npcm_i2c_slave_int_enable(bus, false);
1562 npcm_i2c_remove_slave_addr(bus, client->addr);
1563 bus->slave = NULL;
1564 spin_unlock_irqrestore(&bus->lock, lock_flags);
1565 return 0;
1566 }
1567 #endif /* CONFIG_I2C_SLAVE */
1568
npcm_i2c_master_fifo_read(struct npcm_i2c * bus)1569 static void npcm_i2c_master_fifo_read(struct npcm_i2c *bus)
1570 {
1571 int rcount;
1572 int fifo_bytes;
1573 enum i2c_state_ind ind = I2C_MASTER_DONE_IND;
1574
1575 fifo_bytes = npcm_i2c_fifo_usage(bus);
1576 rcount = bus->rd_size - bus->rd_ind;
1577
1578 /*
1579 * In order not to change the RX_TRH during transaction (we found that
1580 * this might be problematic if it takes too much time to read the FIFO)
1581 * we read the data in the following way. If the number of bytes to
1582 * read == FIFO Size + C (where C < FIFO Size)then first read C bytes
1583 * and in the next int we read rest of the data.
1584 */
1585 if (rcount < (2 * bus->data->fifo_size) && rcount > bus->data->fifo_size)
1586 fifo_bytes = rcount - bus->data->fifo_size;
1587
1588 if (rcount <= fifo_bytes) {
1589 /* last bytes are about to be read - end of tx */
1590 bus->state = I2C_STOP_PENDING;
1591 bus->stop_ind = ind;
1592 npcm_i2c_eob_int(bus, true);
1593 /* Stop should be set before reading last byte. */
1594 npcm_i2c_master_stop(bus);
1595 npcm_i2c_read_fifo(bus, fifo_bytes);
1596 } else {
1597 npcm_i2c_read_fifo(bus, fifo_bytes);
1598 rcount = bus->rd_size - bus->rd_ind;
1599 npcm_i2c_set_fifo(bus, rcount, -1);
1600 }
1601 }
1602
npcm_i2c_irq_master_handler_write(struct npcm_i2c * bus)1603 static void npcm_i2c_irq_master_handler_write(struct npcm_i2c *bus)
1604 {
1605 u16 wcount;
1606
1607 if (bus->fifo_use)
1608 npcm_i2c_clear_tx_fifo(bus); /* clear the TX fifo status bit */
1609
1610 /* Master write operation - last byte handling */
1611 if (bus->wr_ind == bus->wr_size) {
1612 if (bus->fifo_use && npcm_i2c_fifo_usage(bus) > 0)
1613 /*
1614 * No more bytes to send (to add to the FIFO),
1615 * however the FIFO is not empty yet. It is
1616 * still in the middle of tx. Currently there's nothing
1617 * to do except for waiting to the end of the tx
1618 * We will get an int when the FIFO will get empty.
1619 */
1620 return;
1621
1622 if (bus->rd_size == 0) {
1623 /* all bytes have been written, in wr only operation */
1624 npcm_i2c_eob_int(bus, true);
1625 bus->state = I2C_STOP_PENDING;
1626 bus->stop_ind = I2C_MASTER_DONE_IND;
1627 npcm_i2c_master_stop(bus);
1628 /* Clear SDA Status bit (by writing dummy byte) */
1629 npcm_i2c_wr_byte(bus, 0xFF);
1630
1631 } else {
1632 /* last write-byte written on previous int - restart */
1633 npcm_i2c_set_fifo(bus, bus->rd_size, -1);
1634 /* Generate repeated start upon next write to SDA */
1635 npcm_i2c_master_start(bus);
1636
1637 /*
1638 * Receiving one byte only - stall after successful
1639 * completion of send address byte. If we NACK here, and
1640 * slave doesn't ACK the address, we might
1641 * unintentionally NACK the next multi-byte read.
1642 */
1643 if (bus->rd_size == 1)
1644 npcm_i2c_stall_after_start(bus, true);
1645
1646 /* Next int will occur on read */
1647 bus->operation = I2C_READ_OPER;
1648 /* send the slave address in read direction */
1649 npcm_i2c_wr_byte(bus, bus->dest_addr | 0x1);
1650 }
1651 } else {
1652 /* write next byte not last byte and not slave address */
1653 if (!bus->fifo_use || bus->wr_size == 1) {
1654 npcm_i2c_wr_byte(bus, bus->wr_buf[bus->wr_ind++]);
1655 } else {
1656 wcount = bus->wr_size - bus->wr_ind;
1657 npcm_i2c_set_fifo(bus, -1, wcount);
1658 if (wcount)
1659 npcm_i2c_write_to_fifo_master(bus, wcount);
1660 }
1661 }
1662 }
1663
npcm_i2c_irq_master_handler_read(struct npcm_i2c * bus)1664 static void npcm_i2c_irq_master_handler_read(struct npcm_i2c *bus)
1665 {
1666 u16 block_extra_bytes_size;
1667 u8 data;
1668
1669 /* added bytes to the packet: */
1670 block_extra_bytes_size = bus->read_block_use + bus->PEC_use;
1671
1672 /*
1673 * Perform master read, distinguishing between last byte and the rest of
1674 * the bytes. The last byte should be read when the clock is stopped
1675 */
1676 if (bus->rd_ind == 0) { /* first byte handling: */
1677 if (bus->read_block_use) {
1678 /* first byte in block protocol is the size: */
1679 data = npcm_i2c_rd_byte(bus);
1680 data = clamp_val(data, 1, I2C_SMBUS_BLOCK_MAX);
1681 bus->rd_size = data + block_extra_bytes_size;
1682 bus->rd_buf[bus->rd_ind++] = data;
1683
1684 /* clear RX FIFO interrupt status: */
1685 if (bus->fifo_use) {
1686 data = ioread8(bus->reg + NPCM_I2CFIF_CTS);
1687 data = data | NPCM_I2CFIF_CTS_RXF_TXE;
1688 iowrite8(data, bus->reg + NPCM_I2CFIF_CTS);
1689 }
1690
1691 npcm_i2c_set_fifo(bus, bus->rd_size - 1, -1);
1692 npcm_i2c_stall_after_start(bus, false);
1693 } else {
1694 npcm_i2c_clear_tx_fifo(bus);
1695 npcm_i2c_master_fifo_read(bus);
1696 }
1697 } else {
1698 if (bus->rd_size == block_extra_bytes_size &&
1699 bus->read_block_use) {
1700 bus->state = I2C_STOP_PENDING;
1701 bus->stop_ind = I2C_BLOCK_BYTES_ERR_IND;
1702 bus->cmd_err = -EIO;
1703 npcm_i2c_eob_int(bus, true);
1704 npcm_i2c_master_stop(bus);
1705 npcm_i2c_read_fifo(bus, npcm_i2c_fifo_usage(bus));
1706 } else {
1707 npcm_i2c_master_fifo_read(bus);
1708 }
1709 }
1710 }
1711
npcm_i2c_irq_handle_nmatch(struct npcm_i2c * bus)1712 static void npcm_i2c_irq_handle_nmatch(struct npcm_i2c *bus)
1713 {
1714 iowrite8(NPCM_I2CST_NMATCH, bus->reg + NPCM_I2CST);
1715 npcm_i2c_nack(bus);
1716 bus->stop_ind = I2C_BUS_ERR_IND;
1717 npcm_i2c_callback(bus, bus->stop_ind, npcm_i2c_get_index(bus));
1718 }
1719
1720 /* A NACK has occurred */
npcm_i2c_irq_handle_nack(struct npcm_i2c * bus)1721 static void npcm_i2c_irq_handle_nack(struct npcm_i2c *bus)
1722 {
1723 u8 val;
1724
1725 if (bus->nack_cnt < ULLONG_MAX)
1726 bus->nack_cnt++;
1727
1728 if (bus->fifo_use) {
1729 /*
1730 * if there are still untransmitted bytes in TX FIFO
1731 * reduce them from wr_ind
1732 */
1733 if (bus->operation == I2C_WRITE_OPER)
1734 bus->wr_ind -= npcm_i2c_fifo_usage(bus);
1735
1736 /* clear the FIFO */
1737 iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO, bus->reg + NPCM_I2CFIF_CTS);
1738 }
1739
1740 /* In master write operation, got unexpected NACK */
1741 bus->stop_ind = I2C_NACK_IND;
1742 /* Only current master is allowed to issue Stop Condition */
1743 if (npcm_i2c_is_master(bus)) {
1744 /* stopping in the middle */
1745 npcm_i2c_eob_int(bus, false);
1746 npcm_i2c_master_stop(bus);
1747
1748 /* Clear SDA Status bit (by reading dummy byte) */
1749 npcm_i2c_rd_byte(bus);
1750
1751 /*
1752 * The bus is released from stall only after the SW clears
1753 * NEGACK bit. Then a Stop condition is sent.
1754 */
1755 npcm_i2c_clear_master_status(bus);
1756 readx_poll_timeout_atomic(ioread8, bus->reg + NPCM_I2CCST, val,
1757 !(val & NPCM_I2CCST_BUSY), 10, 200);
1758 /* Verify no status bits are still set after bus is released */
1759 npcm_i2c_clear_master_status(bus);
1760 }
1761 bus->state = I2C_IDLE;
1762
1763 /*
1764 * In Master mode, NACK should be cleared only after STOP.
1765 * In such case, the bus is released from stall only after the
1766 * software clears NACK bit. Then a Stop condition is sent.
1767 */
1768 npcm_i2c_callback(bus, bus->stop_ind, bus->wr_ind);
1769 }
1770
1771 /* Master mode: a Bus Error has been identified */
npcm_i2c_irq_handle_ber(struct npcm_i2c * bus)1772 static void npcm_i2c_irq_handle_ber(struct npcm_i2c *bus)
1773 {
1774 if (bus->ber_cnt < ULLONG_MAX)
1775 bus->ber_cnt++;
1776 bus->stop_ind = I2C_BUS_ERR_IND;
1777 if (npcm_i2c_is_master(bus)) {
1778 npcm_i2c_master_abort(bus);
1779 } else {
1780 bus->ber_state = true;
1781 npcm_i2c_clear_master_status(bus);
1782
1783 /* Clear BB (BUS BUSY) bit */
1784 iowrite8(NPCM_I2CCST_BB, bus->reg + NPCM_I2CCST);
1785
1786 bus->cmd_err = -EAGAIN;
1787 npcm_i2c_callback(bus, bus->stop_ind, npcm_i2c_get_index(bus));
1788 }
1789 bus->state = I2C_IDLE;
1790 }
1791
1792 /* EOB: a master End Of Busy (meaning STOP completed) */
npcm_i2c_irq_handle_eob(struct npcm_i2c * bus)1793 static void npcm_i2c_irq_handle_eob(struct npcm_i2c *bus)
1794 {
1795 npcm_i2c_eob_int(bus, false);
1796 bus->state = I2C_IDLE;
1797 npcm_i2c_callback(bus, bus->stop_ind, bus->rd_ind);
1798 }
1799
1800 /* Address sent and requested stall occurred (Master mode) */
npcm_i2c_irq_handle_stall_after_start(struct npcm_i2c * bus)1801 static void npcm_i2c_irq_handle_stall_after_start(struct npcm_i2c *bus)
1802 {
1803 if (npcm_i2c_is_quick(bus)) {
1804 bus->state = I2C_STOP_PENDING;
1805 bus->stop_ind = I2C_MASTER_DONE_IND;
1806 npcm_i2c_eob_int(bus, true);
1807 npcm_i2c_master_stop(bus);
1808 } else if ((bus->rd_size == 1) && !bus->read_block_use) {
1809 /*
1810 * Receiving one byte only - set NACK after ensuring
1811 * slave ACKed the address byte.
1812 */
1813 npcm_i2c_nack(bus);
1814 }
1815
1816 /* Reset stall-after-address-byte */
1817 npcm_i2c_stall_after_start(bus, false);
1818
1819 /* Clear stall only after setting STOP */
1820 iowrite8(NPCM_I2CST_STASTR, bus->reg + NPCM_I2CST);
1821 }
1822
1823 /* SDA status is set - TX or RX, master */
npcm_i2c_irq_handle_sda(struct npcm_i2c * bus,u8 i2cst)1824 static void npcm_i2c_irq_handle_sda(struct npcm_i2c *bus, u8 i2cst)
1825 {
1826 u8 fif_cts;
1827
1828 if (!npcm_i2c_is_master(bus))
1829 return;
1830
1831 if (bus->state == I2C_IDLE) {
1832 bus->stop_ind = I2C_WAKE_UP_IND;
1833
1834 if (npcm_i2c_is_quick(bus) || bus->read_block_use)
1835 /*
1836 * Need to stall after successful
1837 * completion of sending address byte
1838 */
1839 npcm_i2c_stall_after_start(bus, true);
1840 else
1841 npcm_i2c_stall_after_start(bus, false);
1842
1843 /*
1844 * Receiving one byte only - stall after successful completion
1845 * of sending address byte If we NACK here, and slave doesn't
1846 * ACK the address, we might unintentionally NACK the next
1847 * multi-byte read
1848 */
1849 if (bus->wr_size == 0 && bus->rd_size == 1)
1850 npcm_i2c_stall_after_start(bus, true);
1851
1852 /* Initiate I2C master tx */
1853
1854 /* select bank 1 for FIFO regs */
1855 npcm_i2c_select_bank(bus, I2C_BANK_1);
1856
1857 fif_cts = ioread8(bus->reg + NPCM_I2CFIF_CTS);
1858 fif_cts = fif_cts & ~NPCM_I2CFIF_CTS_SLVRSTR;
1859
1860 /* clear FIFO and relevant status bits. */
1861 fif_cts = fif_cts | NPCM_I2CFIF_CTS_CLR_FIFO;
1862 iowrite8(fif_cts, bus->reg + NPCM_I2CFIF_CTS);
1863
1864 /* re-enable */
1865 fif_cts = fif_cts | NPCM_I2CFIF_CTS_RXF_TXE;
1866 iowrite8(fif_cts, bus->reg + NPCM_I2CFIF_CTS);
1867
1868 /*
1869 * Configure the FIFO threshold:
1870 * according to the needed # of bytes to read.
1871 * Note: due to HW limitation can't config the rx fifo before it
1872 * got and ACK on the restart. LAST bit will not be reset unless
1873 * RX completed. It will stay set on the next tx.
1874 */
1875 if (bus->wr_size)
1876 npcm_i2c_set_fifo(bus, -1, bus->wr_size);
1877 else
1878 npcm_i2c_set_fifo(bus, bus->rd_size, -1);
1879
1880 bus->state = I2C_OPER_STARTED;
1881
1882 if (npcm_i2c_is_quick(bus) || bus->wr_size)
1883 npcm_i2c_wr_byte(bus, bus->dest_addr);
1884 else
1885 npcm_i2c_wr_byte(bus, bus->dest_addr | BIT(0));
1886 /* SDA interrupt, after start\restart */
1887 } else {
1888 if (bus->operation == I2C_WRITE_OPER)
1889 npcm_i2c_irq_master_handler_write(bus);
1890 else if (bus->operation == I2C_READ_OPER)
1891 npcm_i2c_irq_master_handler_read(bus);
1892 }
1893 }
1894
npcm_i2c_int_master_handler(struct npcm_i2c * bus)1895 static int npcm_i2c_int_master_handler(struct npcm_i2c *bus)
1896 {
1897 u8 i2cst;
1898 int ret = -EIO;
1899
1900 i2cst = ioread8(bus->reg + NPCM_I2CST);
1901
1902 if (FIELD_GET(NPCM_I2CST_NMATCH, i2cst)) {
1903 npcm_i2c_irq_handle_nmatch(bus);
1904 return 0;
1905 }
1906 /* A NACK has occurred */
1907 if (FIELD_GET(NPCM_I2CST_NEGACK, i2cst)) {
1908 npcm_i2c_irq_handle_nack(bus);
1909 return 0;
1910 }
1911
1912 /* Master mode: a Bus Error has been identified */
1913 if (FIELD_GET(NPCM_I2CST_BER, i2cst)) {
1914 npcm_i2c_irq_handle_ber(bus);
1915 return 0;
1916 }
1917
1918 /* EOB: a master End Of Busy (meaning STOP completed) */
1919 if ((FIELD_GET(NPCM_I2CCTL1_EOBINTE,
1920 ioread8(bus->reg + NPCM_I2CCTL1)) == 1) &&
1921 (FIELD_GET(NPCM_I2CCST3_EO_BUSY,
1922 ioread8(bus->reg + NPCM_I2CCST3)))) {
1923 npcm_i2c_irq_handle_eob(bus);
1924 #if IS_ENABLED(CONFIG_I2C_SLAVE)
1925 /* reenable slave if it was enabled */
1926 if (bus->slave)
1927 iowrite8(bus->slave->addr | NPCM_I2CADDR_SAEN,
1928 bus->reg + NPCM_I2CADDR1);
1929 #endif
1930 return 0;
1931 }
1932
1933 /* Address sent and requested stall occurred (Master mode) */
1934 if (FIELD_GET(NPCM_I2CST_STASTR, i2cst)) {
1935 npcm_i2c_irq_handle_stall_after_start(bus);
1936 ret = 0;
1937 }
1938
1939 /* SDA status is set - TX or RX, master */
1940 if (FIELD_GET(NPCM_I2CST_SDAST, i2cst) ||
1941 (bus->fifo_use &&
1942 (npcm_i2c_tx_fifo_empty(bus) || npcm_i2c_rx_fifo_full(bus)))) {
1943 npcm_i2c_irq_handle_sda(bus, i2cst);
1944 ret = 0;
1945 }
1946
1947 return ret;
1948 }
1949
1950 /* recovery using TGCLK functionality of the module */
npcm_i2c_recovery_tgclk(struct i2c_adapter * _adap)1951 static int npcm_i2c_recovery_tgclk(struct i2c_adapter *_adap)
1952 {
1953 u8 val;
1954 u8 fif_cts;
1955 bool done = false;
1956 int status = -ENOTRECOVERABLE;
1957 struct npcm_i2c *bus = container_of(_adap, struct npcm_i2c, adap);
1958 /* Allow 3 bytes (27 toggles) to be read from the slave: */
1959 int iter = 27;
1960
1961 if ((npcm_i2c_get_SDA(_adap) == 1) && (npcm_i2c_get_SCL(_adap) == 1)) {
1962 dev_dbg(bus->dev, "bus%d-0x%x recovery skipped, bus not stuck",
1963 bus->num, bus->dest_addr);
1964 npcm_i2c_reset(bus);
1965 bus->ber_state = false;
1966 return 0;
1967 }
1968
1969 npcm_i2c_int_enable(bus, false);
1970 npcm_i2c_disable(bus);
1971 npcm_i2c_enable(bus);
1972 iowrite8(NPCM_I2CCST_BB, bus->reg + NPCM_I2CCST);
1973 npcm_i2c_clear_tx_fifo(bus);
1974 npcm_i2c_clear_rx_fifo(bus);
1975 iowrite8(0, bus->reg + NPCM_I2CRXF_CTL);
1976 iowrite8(0, bus->reg + NPCM_I2CTXF_CTL);
1977 npcm_i2c_stall_after_start(bus, false);
1978
1979 /* select bank 1 for FIFO regs */
1980 npcm_i2c_select_bank(bus, I2C_BANK_1);
1981
1982 /* clear FIFO and relevant status bits. */
1983 fif_cts = ioread8(bus->reg + NPCM_I2CFIF_CTS);
1984 fif_cts &= ~NPCM_I2CFIF_CTS_SLVRSTR;
1985 fif_cts |= NPCM_I2CFIF_CTS_CLR_FIFO;
1986 iowrite8(fif_cts, bus->reg + NPCM_I2CFIF_CTS);
1987 npcm_i2c_set_fifo(bus, -1, 0);
1988
1989 /* Repeat the following sequence until SDA is released */
1990 do {
1991 /* Issue a single SCL toggle */
1992 iowrite8(NPCM_I2CCST_TGSCL, bus->reg + NPCM_I2CCST);
1993 usleep_range(20, 30);
1994 /* If SDA line is inactive (high), stop */
1995 if (npcm_i2c_get_SDA(_adap)) {
1996 done = true;
1997 status = 0;
1998 }
1999 } while (!done && iter--);
2000
2001 /* If SDA line is released: send start-addr-stop, to re-sync. */
2002 if (npcm_i2c_get_SDA(_adap)) {
2003 /* Send an address byte in write direction: */
2004 npcm_i2c_wr_byte(bus, bus->dest_addr);
2005 npcm_i2c_master_start(bus);
2006 /* Wait until START condition is sent */
2007 status = readx_poll_timeout(npcm_i2c_get_SCL, _adap, val, !val,
2008 20, 200);
2009 /* If START condition was sent */
2010 if (npcm_i2c_is_master(bus) > 0) {
2011 usleep_range(20, 30);
2012 npcm_i2c_master_stop(bus);
2013 usleep_range(200, 500);
2014 }
2015 }
2016 npcm_i2c_reset(bus);
2017 npcm_i2c_int_enable(bus, true);
2018
2019 if ((npcm_i2c_get_SDA(_adap) == 1) && (npcm_i2c_get_SCL(_adap) == 1))
2020 status = 0;
2021 else
2022 status = -ENOTRECOVERABLE;
2023 if (status) {
2024 if (bus->rec_fail_cnt < ULLONG_MAX)
2025 bus->rec_fail_cnt++;
2026 } else {
2027 if (bus->rec_succ_cnt < ULLONG_MAX)
2028 bus->rec_succ_cnt++;
2029 }
2030 bus->ber_state = false;
2031 return status;
2032 }
2033
2034 /* recovery using bit banging functionality of the module */
npcm_i2c_recovery_init(struct i2c_adapter * _adap)2035 static void npcm_i2c_recovery_init(struct i2c_adapter *_adap)
2036 {
2037 struct npcm_i2c *bus = container_of(_adap, struct npcm_i2c, adap);
2038 struct i2c_bus_recovery_info *rinfo = &bus->rinfo;
2039
2040 rinfo->recover_bus = npcm_i2c_recovery_tgclk;
2041
2042 /*
2043 * npcm i2c HW allows direct reading of SCL and SDA.
2044 * However, it does not support setting SCL and SDA directly.
2045 * The recovery function can toggle SCL when SDA is low (but not set)
2046 * Getter functions used internally, and can be used externally.
2047 */
2048 rinfo->get_scl = npcm_i2c_get_SCL;
2049 rinfo->get_sda = npcm_i2c_get_SDA;
2050 _adap->bus_recovery_info = rinfo;
2051 }
2052
2053 /* SCLFRQ min/max field values */
2054 #define SCLFRQ_MIN 10
2055 #define SCLFRQ_MAX 511
2056 #define clk_coef(freq, mul) DIV_ROUND_UP((freq) * (mul), 1000000)
2057
2058 /*
2059 * npcm_i2c_init_clk: init HW timing parameters.
2060 * NPCM7XX i2c module timing parameters are dependent on module core clk (APB)
2061 * and bus frequency.
2062 * 100kHz bus requires tSCL = 4 * SCLFRQ * tCLK. LT and HT are symmetric.
2063 * 400kHz bus requires asymmetric HT and LT. A different equation is recommended
2064 * by the HW designer, given core clock range (equations in comments below).
2065 *
2066 */
npcm_i2c_init_clk(struct npcm_i2c * bus,u32 bus_freq_hz)2067 static int npcm_i2c_init_clk(struct npcm_i2c *bus, u32 bus_freq_hz)
2068 {
2069 struct smb_timing_t *smb_timing;
2070 u8 scl_table_cnt = 0, table_size = 0;
2071 u8 fast_mode = 0;
2072
2073 bus->bus_freq = bus_freq_hz;
2074
2075 switch (bus_freq_hz) {
2076 case I2C_MAX_STANDARD_MODE_FREQ:
2077 smb_timing = smb_timing_100khz;
2078 table_size = ARRAY_SIZE(smb_timing_100khz);
2079 break;
2080 case I2C_MAX_FAST_MODE_FREQ:
2081 smb_timing = smb_timing_400khz;
2082 table_size = ARRAY_SIZE(smb_timing_400khz);
2083 fast_mode = I2CCTL3_400K_MODE;
2084 break;
2085 case I2C_MAX_FAST_MODE_PLUS_FREQ:
2086 smb_timing = smb_timing_1000khz;
2087 table_size = ARRAY_SIZE(smb_timing_1000khz);
2088 fast_mode = I2CCTL3_400K_MODE;
2089 break;
2090 default:
2091 return -EINVAL;
2092 }
2093
2094 for (scl_table_cnt = 0; scl_table_cnt < table_size; scl_table_cnt++)
2095 if (bus->apb_clk >= smb_timing[scl_table_cnt].core_clk)
2096 break;
2097
2098 if (scl_table_cnt == table_size)
2099 return -EINVAL;
2100
2101 /* write sclfrq value. bits [6:0] are in I2CCTL2 reg */
2102 iowrite8(FIELD_PREP(I2CCTL2_SCLFRQ6_0, smb_timing[scl_table_cnt].sclfrq & 0x7F),
2103 bus->reg + NPCM_I2CCTL2);
2104
2105 /* bits [8:7] are in I2CCTL3 reg */
2106 iowrite8(FIELD_PREP(I2CCTL3_SCLFRQ8_7, (smb_timing[scl_table_cnt].sclfrq >> 7) & 0x3) |
2107 fast_mode,
2108 bus->reg + NPCM_I2CCTL3);
2109
2110 /* Select Bank 0 to access NPCM_I2CCTL4/NPCM_I2CCTL5 */
2111 npcm_i2c_select_bank(bus, I2C_BANK_0);
2112
2113 if (bus_freq_hz >= I2C_MAX_FAST_MODE_FREQ) {
2114 /*
2115 * Set SCL Low/High Time:
2116 * k1 = 2 * SCLLT7-0 -> Low Time = k1 / 2
2117 * k2 = 2 * SCLLT7-0 -> High Time = k2 / 2
2118 */
2119 iowrite8(smb_timing[scl_table_cnt].scllt, bus->reg + NPCM_I2CSCLLT);
2120 iowrite8(smb_timing[scl_table_cnt].sclht, bus->reg + NPCM_I2CSCLHT);
2121
2122 iowrite8(smb_timing[scl_table_cnt].dbcnt, bus->reg + NPCM_I2CCTL5);
2123 }
2124
2125 iowrite8(smb_timing[scl_table_cnt].hldt, bus->reg + NPCM_I2CCTL4);
2126
2127 /* Return to Bank 1, and stay there by default: */
2128 npcm_i2c_select_bank(bus, I2C_BANK_1);
2129
2130 return 0;
2131 }
2132
npcm_i2c_init_module(struct npcm_i2c * bus,enum i2c_mode mode,u32 bus_freq_hz)2133 static int npcm_i2c_init_module(struct npcm_i2c *bus, enum i2c_mode mode,
2134 u32 bus_freq_hz)
2135 {
2136 u8 val;
2137 int ret;
2138
2139 /* Check whether module already enabled or frequency is out of bounds */
2140 if ((bus->state != I2C_DISABLE && bus->state != I2C_IDLE) ||
2141 bus_freq_hz < I2C_FREQ_MIN_HZ || bus_freq_hz > I2C_FREQ_MAX_HZ)
2142 return -EINVAL;
2143
2144 npcm_i2c_int_enable(bus, false);
2145 npcm_i2c_disable(bus);
2146
2147 /* Configure FIFO mode : */
2148 if (FIELD_GET(I2C_VER_FIFO_EN, ioread8(bus->reg + I2C_VER))) {
2149 bus->fifo_use = true;
2150 npcm_i2c_select_bank(bus, I2C_BANK_0);
2151 val = ioread8(bus->reg + NPCM_I2CFIF_CTL);
2152 val |= NPCM_I2CFIF_CTL_FIFO_EN;
2153 iowrite8(val, bus->reg + NPCM_I2CFIF_CTL);
2154 npcm_i2c_select_bank(bus, I2C_BANK_1);
2155 } else {
2156 bus->fifo_use = false;
2157 }
2158
2159 /* Configure I2C module clock frequency */
2160 ret = npcm_i2c_init_clk(bus, bus_freq_hz);
2161 if (ret) {
2162 dev_err(bus->dev, "npcm_i2c_init_clk failed\n");
2163 return ret;
2164 }
2165
2166 /* Enable module (before configuring CTL1) */
2167 npcm_i2c_enable(bus);
2168 bus->state = I2C_IDLE;
2169 val = ioread8(bus->reg + NPCM_I2CCTL1);
2170 val = (val | NPCM_I2CCTL1_NMINTE) & ~NPCM_I2CCTL1_RWS;
2171 iowrite8(val, bus->reg + NPCM_I2CCTL1);
2172
2173 npcm_i2c_reset(bus);
2174
2175 /* Check HW is OK: SDA and SCL should be high at this point. */
2176 if ((npcm_i2c_get_SDA(&bus->adap) == 0) || (npcm_i2c_get_SCL(&bus->adap) == 0)) {
2177 dev_warn(bus->dev, " I2C%d SDA=%d SCL=%d, attempting to recover\n", bus->num,
2178 npcm_i2c_get_SDA(&bus->adap), npcm_i2c_get_SCL(&bus->adap));
2179 if (npcm_i2c_recovery_tgclk(&bus->adap)) {
2180 dev_err(bus->dev, "I2C%d init fail: SDA=%d SCL=%d\n",
2181 bus->num, npcm_i2c_get_SDA(&bus->adap),
2182 npcm_i2c_get_SCL(&bus->adap));
2183 return -ENXIO;
2184 }
2185 }
2186
2187 npcm_i2c_int_enable(bus, true);
2188 return 0;
2189 }
2190
__npcm_i2c_init(struct npcm_i2c * bus,struct platform_device * pdev)2191 static int __npcm_i2c_init(struct npcm_i2c *bus, struct platform_device *pdev)
2192 {
2193 u32 clk_freq_hz;
2194 int ret;
2195
2196 /* Initialize the internal data structures */
2197 bus->state = I2C_DISABLE;
2198 bus->master_or_slave = I2C_SLAVE;
2199 bus->int_time_stamp = 0;
2200 #if IS_ENABLED(CONFIG_I2C_SLAVE)
2201 bus->slave = NULL;
2202 #endif
2203
2204 ret = device_property_read_u32(&pdev->dev, "clock-frequency",
2205 &clk_freq_hz);
2206 if (ret) {
2207 dev_info(&pdev->dev, "Could not read clock-frequency property");
2208 clk_freq_hz = I2C_MAX_STANDARD_MODE_FREQ;
2209 }
2210
2211 ret = npcm_i2c_init_module(bus, I2C_MASTER, clk_freq_hz);
2212 if (ret) {
2213 dev_err(&pdev->dev, "npcm_i2c_init_module failed\n");
2214 return ret;
2215 }
2216
2217 return 0;
2218 }
2219
npcm_i2c_bus_irq(int irq,void * dev_id)2220 static irqreturn_t npcm_i2c_bus_irq(int irq, void *dev_id)
2221 {
2222 struct npcm_i2c *bus = dev_id;
2223
2224 if (npcm_i2c_is_master(bus))
2225 bus->master_or_slave = I2C_MASTER;
2226
2227 if (bus->master_or_slave == I2C_MASTER) {
2228 bus->int_time_stamp = jiffies;
2229 if (!npcm_i2c_int_master_handler(bus))
2230 return IRQ_HANDLED;
2231 }
2232 #if IS_ENABLED(CONFIG_I2C_SLAVE)
2233 if (bus->slave) {
2234 bus->master_or_slave = I2C_SLAVE;
2235 if (npcm_i2c_int_slave_handler(bus))
2236 return IRQ_HANDLED;
2237 }
2238 #endif
2239 /* Clear status bits for spurious interrupts */
2240 npcm_i2c_clear_master_status(bus);
2241
2242 return IRQ_HANDLED;
2243 }
2244
npcm_i2c_master_start_xmit(struct npcm_i2c * bus,u16 nwrite,u16 nread,u8 * write_data,u8 * read_data,bool use_PEC,bool use_read_block)2245 static bool npcm_i2c_master_start_xmit(struct npcm_i2c *bus,
2246 u16 nwrite, u16 nread,
2247 u8 *write_data, u8 *read_data,
2248 bool use_PEC, bool use_read_block)
2249 {
2250 if (bus->state != I2C_IDLE) {
2251 bus->cmd_err = -EBUSY;
2252 return false;
2253 }
2254 bus->wr_buf = write_data;
2255 bus->wr_size = nwrite;
2256 bus->wr_ind = 0;
2257 bus->rd_buf = read_data;
2258 bus->rd_size = nread;
2259 bus->rd_ind = 0;
2260 bus->PEC_use = 0;
2261
2262 /* for tx PEC is appended to buffer from i2c IF. PEC flag is ignored */
2263 if (nread)
2264 bus->PEC_use = use_PEC;
2265
2266 bus->read_block_use = use_read_block;
2267 if (nread && !nwrite)
2268 bus->operation = I2C_READ_OPER;
2269 else
2270 bus->operation = I2C_WRITE_OPER;
2271 if (bus->fifo_use) {
2272 u8 i2cfif_cts;
2273
2274 npcm_i2c_select_bank(bus, I2C_BANK_1);
2275 /* clear FIFO and relevant status bits. */
2276 i2cfif_cts = ioread8(bus->reg + NPCM_I2CFIF_CTS);
2277 i2cfif_cts &= ~NPCM_I2CFIF_CTS_SLVRSTR;
2278 i2cfif_cts |= NPCM_I2CFIF_CTS_CLR_FIFO;
2279 iowrite8(i2cfif_cts, bus->reg + NPCM_I2CFIF_CTS);
2280 }
2281
2282 bus->state = I2C_IDLE;
2283 npcm_i2c_stall_after_start(bus, true);
2284 npcm_i2c_master_start(bus);
2285 return true;
2286 }
2287
npcm_i2c_master_xfer(struct i2c_adapter * adap,struct i2c_msg * msgs,int num)2288 static int npcm_i2c_master_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs,
2289 int num)
2290 {
2291 struct npcm_i2c *bus = container_of(adap, struct npcm_i2c, adap);
2292 struct i2c_msg *msg0, *msg1;
2293 unsigned long time_left, flags;
2294 u16 nwrite, nread;
2295 u8 *write_data, *read_data;
2296 unsigned long timeout;
2297 bool read_block = false;
2298 bool read_PEC = false;
2299 u8 bus_busy;
2300 unsigned long timeout_usec;
2301
2302 if (bus->state == I2C_DISABLE) {
2303 dev_err(bus->dev, "I2C%d module is disabled", bus->num);
2304 return -EINVAL;
2305 }
2306
2307 msg0 = &msgs[0];
2308 if (msg0->flags & I2C_M_RD) { /* read */
2309 nwrite = 0;
2310 write_data = NULL;
2311 read_data = msg0->buf;
2312 if (msg0->flags & I2C_M_RECV_LEN) {
2313 nread = 1;
2314 read_block = true;
2315 if (msg0->flags & I2C_CLIENT_PEC)
2316 read_PEC = true;
2317 } else {
2318 nread = msg0->len;
2319 }
2320 } else { /* write */
2321 nwrite = msg0->len;
2322 write_data = msg0->buf;
2323 nread = 0;
2324 read_data = NULL;
2325 if (num == 2) {
2326 msg1 = &msgs[1];
2327 read_data = msg1->buf;
2328 if (msg1->flags & I2C_M_RECV_LEN) {
2329 nread = 1;
2330 read_block = true;
2331 if (msg1->flags & I2C_CLIENT_PEC)
2332 read_PEC = true;
2333 } else {
2334 nread = msg1->len;
2335 read_block = false;
2336 }
2337 }
2338 }
2339
2340 if (nwrite >= 32 * 1024 || nread >= 32 * 1024) {
2341 dev_err(bus->dev, "i2c%d buffer too big\n", bus->num);
2342 return -EINVAL;
2343 }
2344
2345 time_left = jiffies + bus->adap.timeout / bus->adap.retries + 1;
2346 do {
2347 /*
2348 * we must clear slave address immediately when the bus is not
2349 * busy, so we spinlock it, but we don't keep the lock for the
2350 * entire while since it is too long.
2351 */
2352 spin_lock_irqsave(&bus->lock, flags);
2353 bus_busy = ioread8(bus->reg + NPCM_I2CCST) & NPCM_I2CCST_BB;
2354 #if IS_ENABLED(CONFIG_I2C_SLAVE)
2355 if (!bus_busy && bus->slave)
2356 iowrite8((bus->slave->addr & 0x7F),
2357 bus->reg + NPCM_I2CADDR1);
2358 #endif
2359 spin_unlock_irqrestore(&bus->lock, flags);
2360
2361 } while (time_is_after_jiffies(time_left) && bus_busy);
2362
2363 /*
2364 * Store the address early in a global position to ensure it is
2365 * accessible for a potential call to i2c_recover_bus().
2366 *
2367 * Since the transfer might be a read operation, remove the I2C_M_RD flag
2368 * from the bus->dest_addr for the i2c_recover_bus() call later.
2369 *
2370 * The i2c_recover_bus() uses the address in a write direction to recover
2371 * the i2c bus if some error condition occurs.
2372 *
2373 * Remove the I2C_M_RD flag from the address since npcm_i2c_master_start_xmit()
2374 * handles the read/write operation internally.
2375 */
2376 bus->dest_addr = i2c_8bit_addr_from_msg(msg0) & ~I2C_M_RD;
2377
2378 /*
2379 * Check the BER (bus error) state, when ber_state is true, it means that the module
2380 * detects the bus error which is caused by some factor like that the electricity
2381 * noise occurs on the bus. Under this condition, the module is reset and the bus
2382 * gets recovered.
2383 *
2384 * While ber_state is false, the module reset and bus recovery also get done as the
2385 * bus is busy.
2386 */
2387 if (bus_busy || bus->ber_state) {
2388 iowrite8(NPCM_I2CCST_BB, bus->reg + NPCM_I2CCST);
2389 npcm_i2c_reset(bus);
2390 i2c_recover_bus(adap);
2391 return -EAGAIN;
2392 }
2393
2394 npcm_i2c_init_params(bus);
2395 bus->msgs = msgs;
2396 bus->msgs_num = num;
2397 bus->cmd_err = 0;
2398 bus->read_block_use = read_block;
2399
2400 reinit_completion(&bus->cmd_complete);
2401
2402 npcm_i2c_int_enable(bus, true);
2403
2404 if (npcm_i2c_master_start_xmit(bus, nwrite, nread,
2405 write_data, read_data, read_PEC,
2406 read_block)) {
2407 /*
2408 * Adaptive TimeOut: estimated time in usec + 100% margin:
2409 * 2: double the timeout for clock stretching case
2410 * 9: bits per transaction (including the ack/nack)
2411 */
2412 timeout_usec = (2 * 9 * USEC_PER_SEC / bus->bus_freq) * (2 + nread + nwrite);
2413 timeout = max_t(unsigned long, bus->adap.timeout / bus->adap.retries,
2414 usecs_to_jiffies(timeout_usec));
2415 time_left = wait_for_completion_timeout(&bus->cmd_complete,
2416 timeout);
2417
2418 if (time_left == 0) {
2419 if (bus->timeout_cnt < ULLONG_MAX)
2420 bus->timeout_cnt++;
2421 if (bus->master_or_slave == I2C_MASTER) {
2422 i2c_recover_bus(adap);
2423 bus->cmd_err = -EIO;
2424 bus->state = I2C_IDLE;
2425 }
2426 }
2427 }
2428
2429 /* if there was BER, check if need to recover the bus: */
2430 if (bus->cmd_err == -EAGAIN)
2431 bus->cmd_err = i2c_recover_bus(adap);
2432
2433 /*
2434 * After any type of error, check if LAST bit is still set,
2435 * due to a HW issue.
2436 * It cannot be cleared without resetting the module.
2437 */
2438 else if (bus->cmd_err &&
2439 (bus->data->rxf_ctl_last_pec & ioread8(bus->reg + NPCM_I2CRXF_CTL)))
2440 npcm_i2c_reset(bus);
2441
2442 /* After any xfer, successful or not, stall and EOB must be disabled */
2443 npcm_i2c_stall_after_start(bus, false);
2444 npcm_i2c_eob_int(bus, false);
2445
2446 #if IS_ENABLED(CONFIG_I2C_SLAVE)
2447 /* reenable slave if it was enabled */
2448 if (bus->slave)
2449 iowrite8((bus->slave->addr & 0x7F) | NPCM_I2CADDR_SAEN,
2450 bus->reg + NPCM_I2CADDR1);
2451 #else
2452 npcm_i2c_int_enable(bus, false);
2453 #endif
2454 return bus->cmd_err;
2455 }
2456
npcm_i2c_functionality(struct i2c_adapter * adap)2457 static u32 npcm_i2c_functionality(struct i2c_adapter *adap)
2458 {
2459 return I2C_FUNC_I2C |
2460 I2C_FUNC_SMBUS_EMUL |
2461 I2C_FUNC_SMBUS_BLOCK_DATA |
2462 I2C_FUNC_SMBUS_PEC |
2463 I2C_FUNC_SLAVE;
2464 }
2465
2466 static const struct i2c_adapter_quirks npcm_i2c_quirks = {
2467 .max_read_len = 32768,
2468 .max_write_len = 32768,
2469 .flags = I2C_AQ_COMB_WRITE_THEN_READ,
2470 };
2471
2472 static const struct i2c_algorithm npcm_i2c_algo = {
2473 .xfer = npcm_i2c_master_xfer,
2474 .functionality = npcm_i2c_functionality,
2475 #if IS_ENABLED(CONFIG_I2C_SLAVE)
2476 .reg_slave = npcm_i2c_reg_slave,
2477 .unreg_slave = npcm_i2c_unreg_slave,
2478 #endif
2479 };
2480
npcm_i2c_init_debugfs(struct platform_device * pdev,struct npcm_i2c * bus)2481 static void npcm_i2c_init_debugfs(struct platform_device *pdev,
2482 struct npcm_i2c *bus)
2483 {
2484 debugfs_create_u64("ber_cnt", 0444, bus->adap.debugfs, &bus->ber_cnt);
2485 debugfs_create_u64("nack_cnt", 0444, bus->adap.debugfs, &bus->nack_cnt);
2486 debugfs_create_u64("rec_succ_cnt", 0444, bus->adap.debugfs, &bus->rec_succ_cnt);
2487 debugfs_create_u64("rec_fail_cnt", 0444, bus->adap.debugfs, &bus->rec_fail_cnt);
2488 debugfs_create_u64("timeout_cnt", 0444, bus->adap.debugfs, &bus->timeout_cnt);
2489 debugfs_create_u64("tx_complete_cnt", 0444, bus->adap.debugfs, &bus->tx_complete_cnt);
2490 }
2491
npcm_i2c_probe_bus(struct platform_device * pdev)2492 static int npcm_i2c_probe_bus(struct platform_device *pdev)
2493 {
2494 struct device_node *np = pdev->dev.of_node;
2495 static struct regmap *gcr_regmap;
2496 struct device *dev = &pdev->dev;
2497 struct i2c_adapter *adap;
2498 struct npcm_i2c *bus;
2499 struct clk *i2c_clk;
2500 int irq;
2501 int ret;
2502
2503 bus = devm_kzalloc(&pdev->dev, sizeof(*bus), GFP_KERNEL);
2504 if (!bus)
2505 return -ENOMEM;
2506
2507 bus->dev = &pdev->dev;
2508
2509 bus->data = of_device_get_match_data(dev);
2510 if (!bus->data) {
2511 dev_err(dev, "OF data missing\n");
2512 return -EINVAL;
2513 }
2514
2515 bus->num = of_alias_get_id(pdev->dev.of_node, "i2c");
2516 /* core clk must be acquired to calculate module timing settings */
2517 i2c_clk = devm_clk_get(&pdev->dev, NULL);
2518 if (IS_ERR(i2c_clk))
2519 return PTR_ERR(i2c_clk);
2520 bus->apb_clk = clk_get_rate(i2c_clk);
2521
2522 gcr_regmap = syscon_regmap_lookup_by_phandle(np, "nuvoton,sys-mgr");
2523 if (IS_ERR(gcr_regmap))
2524 gcr_regmap = syscon_regmap_lookup_by_compatible("nuvoton,npcm750-gcr");
2525
2526 if (IS_ERR(gcr_regmap))
2527 return PTR_ERR(gcr_regmap);
2528 regmap_write(gcr_regmap, NPCM_I2CSEGCTL, bus->data->segctl_init_val);
2529
2530 bus->reg = devm_platform_ioremap_resource(pdev, 0);
2531 if (IS_ERR(bus->reg))
2532 return PTR_ERR(bus->reg);
2533
2534 spin_lock_init(&bus->lock);
2535 init_completion(&bus->cmd_complete);
2536
2537 adap = &bus->adap;
2538 adap->owner = THIS_MODULE;
2539 adap->retries = 3;
2540 /*
2541 * The users want to connect a lot of masters on the same bus.
2542 * This timeout is used to determine the time it takes to take bus ownership.
2543 * The transactions are very long, so waiting 35ms is not enough.
2544 */
2545 adap->timeout = 2 * HZ;
2546 adap->algo = &npcm_i2c_algo;
2547 adap->quirks = &npcm_i2c_quirks;
2548 adap->algo_data = bus;
2549 adap->dev.parent = &pdev->dev;
2550 adap->dev.of_node = pdev->dev.of_node;
2551 adap->nr = pdev->id;
2552
2553 irq = platform_get_irq(pdev, 0);
2554 if (irq < 0)
2555 return irq;
2556
2557 /*
2558 * Disable the interrupt to avoid the interrupt handler being triggered
2559 * incorrectly by the asynchronous interrupt status since the machine
2560 * might do a warm reset during the last smbus/i2c transfer session.
2561 */
2562 npcm_i2c_int_enable(bus, false);
2563
2564 ret = devm_request_irq(bus->dev, irq, npcm_i2c_bus_irq, 0,
2565 dev_name(bus->dev), bus);
2566 if (ret)
2567 return ret;
2568
2569 ret = __npcm_i2c_init(bus, pdev);
2570 if (ret)
2571 return ret;
2572
2573 npcm_i2c_recovery_init(adap);
2574
2575 i2c_set_adapdata(adap, bus);
2576
2577 snprintf(bus->adap.name, sizeof(bus->adap.name), "npcm_i2c_%d",
2578 bus->num);
2579 ret = i2c_add_numbered_adapter(&bus->adap);
2580 if (ret)
2581 return ret;
2582
2583 platform_set_drvdata(pdev, bus);
2584 npcm_i2c_init_debugfs(pdev, bus);
2585 return 0;
2586 }
2587
npcm_i2c_remove_bus(struct platform_device * pdev)2588 static void npcm_i2c_remove_bus(struct platform_device *pdev)
2589 {
2590 unsigned long lock_flags;
2591 struct npcm_i2c *bus = platform_get_drvdata(pdev);
2592
2593 spin_lock_irqsave(&bus->lock, lock_flags);
2594 npcm_i2c_disable(bus);
2595 spin_unlock_irqrestore(&bus->lock, lock_flags);
2596 i2c_del_adapter(&bus->adap);
2597 }
2598
2599 static const struct of_device_id npcm_i2c_bus_of_table[] = {
2600 { .compatible = "nuvoton,npcm750-i2c", .data = &npxm7xx_i2c_data },
2601 { .compatible = "nuvoton,npcm845-i2c", .data = &npxm8xx_i2c_data },
2602 {}
2603 };
2604 MODULE_DEVICE_TABLE(of, npcm_i2c_bus_of_table);
2605
2606 static struct platform_driver npcm_i2c_bus_driver = {
2607 .probe = npcm_i2c_probe_bus,
2608 .remove = npcm_i2c_remove_bus,
2609 .driver = {
2610 .name = "nuvoton-i2c",
2611 .of_match_table = npcm_i2c_bus_of_table,
2612 }
2613 };
2614
2615 module_platform_driver(npcm_i2c_bus_driver);
2616
2617 MODULE_AUTHOR("Avi Fishman <avi.fishman@gmail.com>");
2618 MODULE_AUTHOR("Tali Perry <tali.perry@nuvoton.com>");
2619 MODULE_AUTHOR("Tyrone Ting <kfting@nuvoton.com>");
2620 MODULE_DESCRIPTION("Nuvoton I2C Bus Driver");
2621 MODULE_LICENSE("GPL v2");
2622