xref: /linux/tools/testing/shared/linux.c (revision 24d9e8b3c9c8a6f72c8b4c196a703e144928d919)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <stdlib.h>
3 #include <string.h>
4 #include <malloc.h>
5 #include <pthread.h>
6 #include <unistd.h>
7 #include <assert.h>
8 
9 #include <linux/gfp.h>
10 #include <linux/poison.h>
11 #include <linux/slab.h>
12 #include <linux/radix-tree.h>
13 #include <urcu/uatomic.h>
14 
15 int nr_allocated;
16 int preempt_count;
17 int test_verbose;
18 
19 void kmem_cache_set_callback(struct kmem_cache *cachep, void (*callback)(void *))
20 {
21 	cachep->callback = callback;
22 }
23 
24 void kmem_cache_set_private(struct kmem_cache *cachep, void *private)
25 {
26 	cachep->private = private;
27 }
28 
29 void kmem_cache_set_non_kernel(struct kmem_cache *cachep, unsigned int val)
30 {
31 	cachep->non_kernel = val;
32 }
33 
34 unsigned long kmem_cache_get_alloc(struct kmem_cache *cachep)
35 {
36 	return cachep->size * cachep->nr_allocated;
37 }
38 
39 unsigned long kmem_cache_nr_allocated(struct kmem_cache *cachep)
40 {
41 	return cachep->nr_allocated;
42 }
43 
44 unsigned long kmem_cache_nr_tallocated(struct kmem_cache *cachep)
45 {
46 	return cachep->nr_tallocated;
47 }
48 
49 void kmem_cache_zero_nr_tallocated(struct kmem_cache *cachep)
50 {
51 	cachep->nr_tallocated = 0;
52 }
53 
54 void *kmem_cache_alloc_lru(struct kmem_cache *cachep, struct list_lru *lru,
55 		int gfp)
56 {
57 	void *p;
58 
59 	if (cachep->exec_callback) {
60 		if (cachep->callback)
61 			cachep->callback(cachep->private);
62 		cachep->exec_callback = false;
63 	}
64 
65 	if (!(gfp & __GFP_DIRECT_RECLAIM)) {
66 		if (!cachep->non_kernel) {
67 			if (cachep->callback)
68 				cachep->exec_callback = true;
69 			return NULL;
70 		}
71 
72 		cachep->non_kernel--;
73 	}
74 
75 	pthread_mutex_lock(&cachep->lock);
76 	if (cachep->nr_objs) {
77 		struct radix_tree_node *node = cachep->objs;
78 		cachep->nr_objs--;
79 		cachep->objs = node->parent;
80 		pthread_mutex_unlock(&cachep->lock);
81 		node->parent = NULL;
82 		p = node;
83 	} else {
84 		pthread_mutex_unlock(&cachep->lock);
85 		if (cachep->align) {
86 			if (posix_memalign(&p, cachep->align, cachep->size) < 0)
87 				return NULL;
88 		} else {
89 			p = malloc(cachep->size);
90 		}
91 
92 		if (cachep->ctor)
93 			cachep->ctor(p);
94 		else if (gfp & __GFP_ZERO)
95 			memset(p, 0, cachep->size);
96 	}
97 
98 	uatomic_inc(&cachep->nr_allocated);
99 	uatomic_inc(&nr_allocated);
100 	uatomic_inc(&cachep->nr_tallocated);
101 	if (kmalloc_verbose)
102 		printf("Allocating %p from slab\n", p);
103 	return p;
104 }
105 
106 void __kmem_cache_free_locked(struct kmem_cache *cachep, void *objp)
107 {
108 	assert(objp);
109 	if (cachep->nr_objs > 10 || cachep->align) {
110 		memset(objp, POISON_FREE, cachep->size);
111 		free(objp);
112 	} else {
113 		struct radix_tree_node *node = objp;
114 		cachep->nr_objs++;
115 		node->parent = cachep->objs;
116 		cachep->objs = node;
117 	}
118 }
119 
120 void kmem_cache_free_locked(struct kmem_cache *cachep, void *objp)
121 {
122 	uatomic_dec(&nr_allocated);
123 	uatomic_dec(&cachep->nr_allocated);
124 	if (kmalloc_verbose)
125 		printf("Freeing %p to slab\n", objp);
126 	__kmem_cache_free_locked(cachep, objp);
127 }
128 
129 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
130 {
131 	pthread_mutex_lock(&cachep->lock);
132 	kmem_cache_free_locked(cachep, objp);
133 	pthread_mutex_unlock(&cachep->lock);
134 }
135 
136 void kmem_cache_free_bulk(struct kmem_cache *cachep, size_t size, void **list)
137 {
138 	if (kmalloc_verbose)
139 		pr_debug("Bulk free %p[0-%zu]\n", list, size - 1);
140 
141 	if (cachep->exec_callback) {
142 		if (cachep->callback)
143 			cachep->callback(cachep->private);
144 		cachep->exec_callback = false;
145 	}
146 
147 	pthread_mutex_lock(&cachep->lock);
148 	for (int i = 0; i < size; i++)
149 		kmem_cache_free_locked(cachep, list[i]);
150 	pthread_mutex_unlock(&cachep->lock);
151 }
152 
153 void kmem_cache_shrink(struct kmem_cache *cachep)
154 {
155 }
156 
157 int kmem_cache_alloc_bulk(struct kmem_cache *cachep, gfp_t gfp, size_t size,
158 			  void **p)
159 {
160 	size_t i;
161 
162 	if (kmalloc_verbose)
163 		pr_debug("Bulk alloc %zu\n", size);
164 
165 	pthread_mutex_lock(&cachep->lock);
166 	if (cachep->nr_objs >= size) {
167 		struct radix_tree_node *node;
168 
169 		for (i = 0; i < size; i++) {
170 			if (!(gfp & __GFP_DIRECT_RECLAIM)) {
171 				if (!cachep->non_kernel)
172 					break;
173 				cachep->non_kernel--;
174 			}
175 
176 			node = cachep->objs;
177 			cachep->nr_objs--;
178 			cachep->objs = node->parent;
179 			p[i] = node;
180 			node->parent = NULL;
181 		}
182 		pthread_mutex_unlock(&cachep->lock);
183 	} else {
184 		pthread_mutex_unlock(&cachep->lock);
185 		for (i = 0; i < size; i++) {
186 			if (!(gfp & __GFP_DIRECT_RECLAIM)) {
187 				if (!cachep->non_kernel)
188 					break;
189 				cachep->non_kernel--;
190 			}
191 
192 			if (cachep->align) {
193 				if (posix_memalign(&p[i], cachep->align,
194 					       cachep->size) < 0)
195 					break;
196 			} else {
197 				p[i] = malloc(cachep->size);
198 				if (!p[i])
199 					break;
200 			}
201 			if (cachep->ctor)
202 				cachep->ctor(p[i]);
203 			else if (gfp & __GFP_ZERO)
204 				memset(p[i], 0, cachep->size);
205 		}
206 	}
207 
208 	if (i < size) {
209 		size = i;
210 		pthread_mutex_lock(&cachep->lock);
211 		for (i = 0; i < size; i++)
212 			__kmem_cache_free_locked(cachep, p[i]);
213 		pthread_mutex_unlock(&cachep->lock);
214 		if (cachep->callback)
215 			cachep->exec_callback = true;
216 		return 0;
217 	}
218 
219 	for (i = 0; i < size; i++) {
220 		uatomic_inc(&nr_allocated);
221 		uatomic_inc(&cachep->nr_allocated);
222 		uatomic_inc(&cachep->nr_tallocated);
223 		if (kmalloc_verbose)
224 			printf("Allocating %p from slab\n", p[i]);
225 	}
226 
227 	return size;
228 }
229 
230 struct kmem_cache *
231 __kmem_cache_create_args(const char *name, unsigned int size,
232 			  struct kmem_cache_args *args,
233 			  unsigned int flags)
234 {
235 	struct kmem_cache *ret = malloc(sizeof(*ret));
236 
237 	pthread_mutex_init(&ret->lock, NULL);
238 	ret->size = size;
239 	ret->align = args->align;
240 	ret->sheaf_capacity = args->sheaf_capacity;
241 	ret->nr_objs = 0;
242 	ret->nr_allocated = 0;
243 	ret->nr_tallocated = 0;
244 	ret->objs = NULL;
245 	ret->ctor = args->ctor;
246 	ret->non_kernel = 0;
247 	ret->exec_callback = false;
248 	ret->callback = NULL;
249 	ret->private = NULL;
250 
251 	return ret;
252 }
253 
254 struct slab_sheaf *
255 kmem_cache_prefill_sheaf(struct kmem_cache *s, gfp_t gfp, unsigned int size)
256 {
257 	struct slab_sheaf *sheaf;
258 	unsigned int capacity;
259 
260 	if (s->exec_callback) {
261 		if (s->callback)
262 			s->callback(s->private);
263 		s->exec_callback = false;
264 	}
265 
266 	capacity = max(size, s->sheaf_capacity);
267 
268 	sheaf = calloc(1, sizeof(*sheaf) + sizeof(void *) * capacity);
269 	if (!sheaf)
270 		return NULL;
271 
272 	sheaf->cache = s;
273 	sheaf->capacity = capacity;
274 	sheaf->size = kmem_cache_alloc_bulk(s, gfp, size, sheaf->objects);
275 	if (!sheaf->size) {
276 		free(sheaf);
277 		return NULL;
278 	}
279 
280 	return sheaf;
281 }
282 
283 int kmem_cache_refill_sheaf(struct kmem_cache *s, gfp_t gfp,
284 		 struct slab_sheaf **sheafp, unsigned int size)
285 {
286 	struct slab_sheaf *sheaf = *sheafp;
287 	int refill;
288 
289 	if (sheaf->size >= size)
290 		return 0;
291 
292 	if (size > sheaf->capacity) {
293 		sheaf = kmem_cache_prefill_sheaf(s, gfp, size);
294 		if (!sheaf)
295 			return -ENOMEM;
296 
297 		kmem_cache_return_sheaf(s, gfp, *sheafp);
298 		*sheafp = sheaf;
299 		return 0;
300 	}
301 
302 	refill = kmem_cache_alloc_bulk(s, gfp, size - sheaf->size,
303 				       &sheaf->objects[sheaf->size]);
304 	if (!refill)
305 		return -ENOMEM;
306 
307 	sheaf->size += refill;
308 	return 0;
309 }
310 
311 void kmem_cache_return_sheaf(struct kmem_cache *s, gfp_t gfp,
312 		 struct slab_sheaf *sheaf)
313 {
314 	if (sheaf->size)
315 		kmem_cache_free_bulk(s, sheaf->size, &sheaf->objects[0]);
316 
317 	free(sheaf);
318 }
319 
320 void *
321 kmem_cache_alloc_from_sheaf(struct kmem_cache *s, gfp_t gfp,
322 		struct slab_sheaf *sheaf)
323 {
324 	void *obj;
325 
326 	if (sheaf->size == 0) {
327 		printf("Nothing left in sheaf!\n");
328 		return NULL;
329 	}
330 
331 	obj = sheaf->objects[--sheaf->size];
332 	sheaf->objects[sheaf->size] = NULL;
333 
334 	return obj;
335 }
336 
337 /*
338  * Test the test infrastructure for kem_cache_alloc/free and bulk counterparts.
339  */
340 void test_kmem_cache_bulk(void)
341 {
342 	int i;
343 	void *list[12];
344 	static struct kmem_cache *test_cache, *test_cache2;
345 
346 	/*
347 	 * Testing the bulk allocators without aligned kmem_cache to force the
348 	 * bulk alloc/free to reuse
349 	 */
350 	test_cache = kmem_cache_create("test_cache", 256, 0, SLAB_PANIC, NULL);
351 
352 	for (i = 0; i < 5; i++)
353 		list[i] = kmem_cache_alloc(test_cache, __GFP_DIRECT_RECLAIM);
354 
355 	for (i = 0; i < 5; i++)
356 		kmem_cache_free(test_cache, list[i]);
357 	assert(test_cache->nr_objs == 5);
358 
359 	kmem_cache_alloc_bulk(test_cache, __GFP_DIRECT_RECLAIM, 5, list);
360 	kmem_cache_free_bulk(test_cache, 5, list);
361 
362 	for (i = 0; i < 12 ; i++)
363 		list[i] = kmem_cache_alloc(test_cache, __GFP_DIRECT_RECLAIM);
364 
365 	for (i = 0; i < 12; i++)
366 		kmem_cache_free(test_cache, list[i]);
367 
368 	/* The last free will not be kept around */
369 	assert(test_cache->nr_objs == 11);
370 
371 	/* Aligned caches will immediately free */
372 	test_cache2 = kmem_cache_create("test_cache2", 128, 128, SLAB_PANIC, NULL);
373 
374 	kmem_cache_alloc_bulk(test_cache2, __GFP_DIRECT_RECLAIM, 10, list);
375 	kmem_cache_free_bulk(test_cache2, 10, list);
376 	assert(!test_cache2->nr_objs);
377 
378 
379 }
380