1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/nommu.c 4 * 5 * Replacement code for mm functions to support CPU's that don't 6 * have any form of memory management unit (thus no virtual memory). 7 * 8 * See Documentation/admin-guide/mm/nommu-mmap.rst 9 * 10 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com> 11 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com> 12 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org> 13 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com> 14 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org> 15 */ 16 17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 18 19 #include <linux/export.h> 20 #include <linux/mm.h> 21 #include <linux/sched/mm.h> 22 #include <linux/mman.h> 23 #include <linux/swap.h> 24 #include <linux/file.h> 25 #include <linux/highmem.h> 26 #include <linux/pagemap.h> 27 #include <linux/slab.h> 28 #include <linux/vmalloc.h> 29 #include <linux/backing-dev.h> 30 #include <linux/compiler.h> 31 #include <linux/mount.h> 32 #include <linux/personality.h> 33 #include <linux/security.h> 34 #include <linux/syscalls.h> 35 #include <linux/audit.h> 36 #include <linux/printk.h> 37 38 #include <linux/uaccess.h> 39 #include <linux/uio.h> 40 #include <asm/tlb.h> 41 #include <asm/tlbflush.h> 42 #include <asm/mmu_context.h> 43 #include "internal.h" 44 45 unsigned long highest_memmap_pfn; 46 int heap_stack_gap = 0; 47 48 atomic_long_t mmap_pages_allocated; 49 50 51 /* list of mapped, potentially shareable regions */ 52 static struct kmem_cache *vm_region_jar; 53 struct rb_root nommu_region_tree = RB_ROOT; 54 DECLARE_RWSEM(nommu_region_sem); 55 56 const struct vm_operations_struct generic_file_vm_ops = { 57 }; 58 59 /* 60 * Return the total memory allocated for this pointer, not 61 * just what the caller asked for. 62 * 63 * Doesn't have to be accurate, i.e. may have races. 64 */ 65 unsigned int kobjsize(const void *objp) 66 { 67 struct page *page; 68 69 /* 70 * If the object we have should not have ksize performed on it, 71 * return size of 0 72 */ 73 if (!objp || !virt_addr_valid(objp)) 74 return 0; 75 76 page = virt_to_head_page(objp); 77 78 /* 79 * If the allocator sets PageSlab, we know the pointer came from 80 * kmalloc(). 81 */ 82 if (PageSlab(page)) 83 return ksize(objp); 84 85 /* 86 * If it's not a compound page, see if we have a matching VMA 87 * region. This test is intentionally done in reverse order, 88 * so if there's no VMA, we still fall through and hand back 89 * PAGE_SIZE for 0-order pages. 90 */ 91 if (!PageCompound(page)) { 92 struct vm_area_struct *vma; 93 94 vma = find_vma(current->mm, (unsigned long)objp); 95 if (vma) 96 return vma->vm_end - vma->vm_start; 97 } 98 99 /* 100 * The ksize() function is only guaranteed to work for pointers 101 * returned by kmalloc(). So handle arbitrary pointers here. 102 */ 103 return page_size(page); 104 } 105 106 void vfree(const void *addr) 107 { 108 kfree(addr); 109 } 110 EXPORT_SYMBOL(vfree); 111 112 void *__vmalloc_noprof(unsigned long size, gfp_t gfp_mask) 113 { 114 /* 115 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc() 116 * returns only a logical address. 117 */ 118 return kmalloc_noprof(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM); 119 } 120 EXPORT_SYMBOL(__vmalloc_noprof); 121 122 void *vrealloc_noprof(const void *p, size_t size, gfp_t flags) 123 { 124 return krealloc_noprof(p, size, (flags | __GFP_COMP) & ~__GFP_HIGHMEM); 125 } 126 127 void *__vmalloc_node_range_noprof(unsigned long size, unsigned long align, 128 unsigned long start, unsigned long end, gfp_t gfp_mask, 129 pgprot_t prot, vm_flags_t vm_flags, int node, 130 const void *caller) 131 { 132 return __vmalloc_noprof(size, gfp_mask); 133 } 134 135 void *__vmalloc_node_noprof(unsigned long size, unsigned long align, gfp_t gfp_mask, 136 int node, const void *caller) 137 { 138 return __vmalloc_noprof(size, gfp_mask); 139 } 140 141 static void *__vmalloc_user_flags(unsigned long size, gfp_t flags) 142 { 143 void *ret; 144 145 ret = __vmalloc(size, flags); 146 if (ret) { 147 struct vm_area_struct *vma; 148 149 mmap_write_lock(current->mm); 150 vma = find_vma(current->mm, (unsigned long)ret); 151 if (vma) 152 vm_flags_set(vma, VM_USERMAP); 153 mmap_write_unlock(current->mm); 154 } 155 156 return ret; 157 } 158 159 void *vmalloc_user_noprof(unsigned long size) 160 { 161 return __vmalloc_user_flags(size, GFP_KERNEL | __GFP_ZERO); 162 } 163 EXPORT_SYMBOL(vmalloc_user_noprof); 164 165 struct page *vmalloc_to_page(const void *addr) 166 { 167 return virt_to_page(addr); 168 } 169 EXPORT_SYMBOL(vmalloc_to_page); 170 171 unsigned long vmalloc_to_pfn(const void *addr) 172 { 173 return page_to_pfn(virt_to_page(addr)); 174 } 175 EXPORT_SYMBOL(vmalloc_to_pfn); 176 177 long vread_iter(struct iov_iter *iter, const char *addr, size_t count) 178 { 179 /* Don't allow overflow */ 180 if ((unsigned long) addr + count < count) 181 count = -(unsigned long) addr; 182 183 return copy_to_iter(addr, count, iter); 184 } 185 186 /* 187 * vmalloc - allocate virtually contiguous memory 188 * 189 * @size: allocation size 190 * 191 * Allocate enough pages to cover @size from the page level 192 * allocator and map them into contiguous kernel virtual space. 193 * 194 * For tight control over page level allocator and protection flags 195 * use __vmalloc() instead. 196 */ 197 void *vmalloc_noprof(unsigned long size) 198 { 199 return __vmalloc_noprof(size, GFP_KERNEL); 200 } 201 EXPORT_SYMBOL(vmalloc_noprof); 202 203 /* 204 * vmalloc_huge_node - allocate virtually contiguous memory, on a node 205 * 206 * @size: allocation size 207 * @gfp_mask: flags for the page level allocator 208 * @node: node to use for allocation or NUMA_NO_NODE 209 * 210 * Allocate enough pages to cover @size from the page level 211 * allocator and map them into contiguous kernel virtual space. 212 * 213 * Due to NOMMU implications the node argument and HUGE page attribute is 214 * ignored. 215 */ 216 void *vmalloc_huge_node_noprof(unsigned long size, gfp_t gfp_mask, int node) 217 { 218 return __vmalloc_noprof(size, gfp_mask); 219 } 220 221 /* 222 * vzalloc - allocate virtually contiguous memory with zero fill 223 * 224 * @size: allocation size 225 * 226 * Allocate enough pages to cover @size from the page level 227 * allocator and map them into contiguous kernel virtual space. 228 * The memory allocated is set to zero. 229 * 230 * For tight control over page level allocator and protection flags 231 * use __vmalloc() instead. 232 */ 233 void *vzalloc_noprof(unsigned long size) 234 { 235 return __vmalloc_noprof(size, GFP_KERNEL | __GFP_ZERO); 236 } 237 EXPORT_SYMBOL(vzalloc_noprof); 238 239 /** 240 * vmalloc_node - allocate memory on a specific node 241 * @size: allocation size 242 * @node: numa node 243 * 244 * Allocate enough pages to cover @size from the page level 245 * allocator and map them into contiguous kernel virtual space. 246 * 247 * For tight control over page level allocator and protection flags 248 * use __vmalloc() instead. 249 */ 250 void *vmalloc_node_noprof(unsigned long size, int node) 251 { 252 return vmalloc_noprof(size); 253 } 254 EXPORT_SYMBOL(vmalloc_node_noprof); 255 256 /** 257 * vzalloc_node - allocate memory on a specific node with zero fill 258 * @size: allocation size 259 * @node: numa node 260 * 261 * Allocate enough pages to cover @size from the page level 262 * allocator and map them into contiguous kernel virtual space. 263 * The memory allocated is set to zero. 264 * 265 * For tight control over page level allocator and protection flags 266 * use __vmalloc() instead. 267 */ 268 void *vzalloc_node_noprof(unsigned long size, int node) 269 { 270 return vzalloc_noprof(size); 271 } 272 EXPORT_SYMBOL(vzalloc_node_noprof); 273 274 /** 275 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 276 * @size: allocation size 277 * 278 * Allocate enough 32bit PA addressable pages to cover @size from the 279 * page level allocator and map them into contiguous kernel virtual space. 280 */ 281 void *vmalloc_32_noprof(unsigned long size) 282 { 283 return __vmalloc_noprof(size, GFP_KERNEL); 284 } 285 EXPORT_SYMBOL(vmalloc_32_noprof); 286 287 /** 288 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 289 * @size: allocation size 290 * 291 * The resulting memory area is 32bit addressable and zeroed so it can be 292 * mapped to userspace without leaking data. 293 * 294 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to 295 * remap_vmalloc_range() are permissible. 296 */ 297 void *vmalloc_32_user_noprof(unsigned long size) 298 { 299 /* 300 * We'll have to sort out the ZONE_DMA bits for 64-bit, 301 * but for now this can simply use vmalloc_user() directly. 302 */ 303 return vmalloc_user_noprof(size); 304 } 305 EXPORT_SYMBOL(vmalloc_32_user_noprof); 306 307 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot) 308 { 309 BUG(); 310 return NULL; 311 } 312 EXPORT_SYMBOL(vmap); 313 314 void vunmap(const void *addr) 315 { 316 BUG(); 317 } 318 EXPORT_SYMBOL(vunmap); 319 320 void *vm_map_ram(struct page **pages, unsigned int count, int node) 321 { 322 BUG(); 323 return NULL; 324 } 325 EXPORT_SYMBOL(vm_map_ram); 326 327 void vm_unmap_ram(const void *mem, unsigned int count) 328 { 329 BUG(); 330 } 331 EXPORT_SYMBOL(vm_unmap_ram); 332 333 void vm_unmap_aliases(void) 334 { 335 } 336 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 337 338 void free_vm_area(struct vm_struct *area) 339 { 340 BUG(); 341 } 342 EXPORT_SYMBOL_GPL(free_vm_area); 343 344 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 345 struct page *page) 346 { 347 return -EINVAL; 348 } 349 EXPORT_SYMBOL(vm_insert_page); 350 351 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 352 struct page **pages, unsigned long *num) 353 { 354 return -EINVAL; 355 } 356 EXPORT_SYMBOL(vm_insert_pages); 357 358 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 359 unsigned long num) 360 { 361 return -EINVAL; 362 } 363 EXPORT_SYMBOL(vm_map_pages); 364 365 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 366 unsigned long num) 367 { 368 return -EINVAL; 369 } 370 EXPORT_SYMBOL(vm_map_pages_zero); 371 372 /* 373 * sys_brk() for the most part doesn't need the global kernel 374 * lock, except when an application is doing something nasty 375 * like trying to un-brk an area that has already been mapped 376 * to a regular file. in this case, the unmapping will need 377 * to invoke file system routines that need the global lock. 378 */ 379 SYSCALL_DEFINE1(brk, unsigned long, brk) 380 { 381 struct mm_struct *mm = current->mm; 382 383 if (brk < mm->start_brk || brk > mm->context.end_brk) 384 return mm->brk; 385 386 if (mm->brk == brk) 387 return mm->brk; 388 389 /* 390 * Always allow shrinking brk 391 */ 392 if (brk <= mm->brk) { 393 mm->brk = brk; 394 return brk; 395 } 396 397 /* 398 * Ok, looks good - let it rip. 399 */ 400 flush_icache_user_range(mm->brk, brk); 401 return mm->brk = brk; 402 } 403 404 static int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS; 405 406 static const struct ctl_table nommu_table[] = { 407 { 408 .procname = "nr_trim_pages", 409 .data = &sysctl_nr_trim_pages, 410 .maxlen = sizeof(sysctl_nr_trim_pages), 411 .mode = 0644, 412 .proc_handler = proc_dointvec_minmax, 413 .extra1 = SYSCTL_ZERO, 414 }, 415 }; 416 417 /* 418 * initialise the percpu counter for VM and region record slabs, initialise VMA 419 * state. 420 */ 421 void __init mmap_init(void) 422 { 423 int ret; 424 425 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL); 426 VM_BUG_ON(ret); 427 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT); 428 register_sysctl_init("vm", nommu_table); 429 vma_state_init(); 430 } 431 432 /* 433 * validate the region tree 434 * - the caller must hold the region lock 435 */ 436 #ifdef CONFIG_DEBUG_NOMMU_REGIONS 437 static noinline void validate_nommu_regions(void) 438 { 439 struct vm_region *region, *last; 440 struct rb_node *p, *lastp; 441 442 lastp = rb_first(&nommu_region_tree); 443 if (!lastp) 444 return; 445 446 last = rb_entry(lastp, struct vm_region, vm_rb); 447 BUG_ON(last->vm_end <= last->vm_start); 448 BUG_ON(last->vm_top < last->vm_end); 449 450 while ((p = rb_next(lastp))) { 451 region = rb_entry(p, struct vm_region, vm_rb); 452 last = rb_entry(lastp, struct vm_region, vm_rb); 453 454 BUG_ON(region->vm_end <= region->vm_start); 455 BUG_ON(region->vm_top < region->vm_end); 456 BUG_ON(region->vm_start < last->vm_top); 457 458 lastp = p; 459 } 460 } 461 #else 462 static void validate_nommu_regions(void) 463 { 464 } 465 #endif 466 467 /* 468 * add a region into the global tree 469 */ 470 static void add_nommu_region(struct vm_region *region) 471 { 472 struct vm_region *pregion; 473 struct rb_node **p, *parent; 474 475 validate_nommu_regions(); 476 477 parent = NULL; 478 p = &nommu_region_tree.rb_node; 479 while (*p) { 480 parent = *p; 481 pregion = rb_entry(parent, struct vm_region, vm_rb); 482 if (region->vm_start < pregion->vm_start) 483 p = &(*p)->rb_left; 484 else if (region->vm_start > pregion->vm_start) 485 p = &(*p)->rb_right; 486 else if (pregion == region) 487 return; 488 else 489 BUG(); 490 } 491 492 rb_link_node(®ion->vm_rb, parent, p); 493 rb_insert_color(®ion->vm_rb, &nommu_region_tree); 494 495 validate_nommu_regions(); 496 } 497 498 /* 499 * delete a region from the global tree 500 */ 501 static void delete_nommu_region(struct vm_region *region) 502 { 503 BUG_ON(!nommu_region_tree.rb_node); 504 505 validate_nommu_regions(); 506 rb_erase(®ion->vm_rb, &nommu_region_tree); 507 validate_nommu_regions(); 508 } 509 510 /* 511 * free a contiguous series of pages 512 */ 513 static void free_page_series(unsigned long from, unsigned long to) 514 { 515 for (; from < to; from += PAGE_SIZE) { 516 struct page *page = virt_to_page((void *)from); 517 518 atomic_long_dec(&mmap_pages_allocated); 519 put_page(page); 520 } 521 } 522 523 /* 524 * release a reference to a region 525 * - the caller must hold the region semaphore for writing, which this releases 526 * - the region may not have been added to the tree yet, in which case vm_top 527 * will equal vm_start 528 */ 529 static void __put_nommu_region(struct vm_region *region) 530 __releases(nommu_region_sem) 531 { 532 BUG_ON(!nommu_region_tree.rb_node); 533 534 if (--region->vm_usage == 0) { 535 if (region->vm_top > region->vm_start) 536 delete_nommu_region(region); 537 up_write(&nommu_region_sem); 538 539 if (region->vm_file) 540 fput(region->vm_file); 541 542 /* IO memory and memory shared directly out of the pagecache 543 * from ramfs/tmpfs mustn't be released here */ 544 if (region->vm_flags & VM_MAPPED_COPY) 545 free_page_series(region->vm_start, region->vm_top); 546 kmem_cache_free(vm_region_jar, region); 547 } else { 548 up_write(&nommu_region_sem); 549 } 550 } 551 552 /* 553 * release a reference to a region 554 */ 555 static void put_nommu_region(struct vm_region *region) 556 { 557 down_write(&nommu_region_sem); 558 __put_nommu_region(region); 559 } 560 561 static void setup_vma_to_mm(struct vm_area_struct *vma, struct mm_struct *mm) 562 { 563 vma->vm_mm = mm; 564 565 /* add the VMA to the mapping */ 566 if (vma->vm_file) { 567 struct address_space *mapping = vma->vm_file->f_mapping; 568 569 i_mmap_lock_write(mapping); 570 flush_dcache_mmap_lock(mapping); 571 vma_interval_tree_insert(vma, &mapping->i_mmap); 572 flush_dcache_mmap_unlock(mapping); 573 i_mmap_unlock_write(mapping); 574 } 575 } 576 577 static void cleanup_vma_from_mm(struct vm_area_struct *vma) 578 { 579 vma->vm_mm->map_count--; 580 /* remove the VMA from the mapping */ 581 if (vma->vm_file) { 582 struct address_space *mapping; 583 mapping = vma->vm_file->f_mapping; 584 585 i_mmap_lock_write(mapping); 586 flush_dcache_mmap_lock(mapping); 587 vma_interval_tree_remove(vma, &mapping->i_mmap); 588 flush_dcache_mmap_unlock(mapping); 589 i_mmap_unlock_write(mapping); 590 } 591 } 592 593 /* 594 * delete a VMA from its owning mm_struct and address space 595 */ 596 static int delete_vma_from_mm(struct vm_area_struct *vma) 597 { 598 VMA_ITERATOR(vmi, vma->vm_mm, vma->vm_start); 599 600 vma_iter_config(&vmi, vma->vm_start, vma->vm_end); 601 if (vma_iter_prealloc(&vmi, NULL)) { 602 pr_warn("Allocation of vma tree for process %d failed\n", 603 current->pid); 604 return -ENOMEM; 605 } 606 cleanup_vma_from_mm(vma); 607 608 /* remove from the MM's tree and list */ 609 vma_iter_clear(&vmi); 610 return 0; 611 } 612 /* 613 * destroy a VMA record 614 */ 615 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma) 616 { 617 vma_close(vma); 618 if (vma->vm_file) 619 fput(vma->vm_file); 620 put_nommu_region(vma->vm_region); 621 vm_area_free(vma); 622 } 623 624 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, 625 unsigned long start_addr, 626 unsigned long end_addr) 627 { 628 unsigned long index = start_addr; 629 630 mmap_assert_locked(mm); 631 return mt_find(&mm->mm_mt, &index, end_addr - 1); 632 } 633 EXPORT_SYMBOL(find_vma_intersection); 634 635 /* 636 * look up the first VMA in which addr resides, NULL if none 637 * - should be called with mm->mmap_lock at least held readlocked 638 */ 639 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 640 { 641 VMA_ITERATOR(vmi, mm, addr); 642 643 return vma_iter_load(&vmi); 644 } 645 EXPORT_SYMBOL(find_vma); 646 647 /* 648 * expand a stack to a given address 649 * - not supported under NOMMU conditions 650 */ 651 int expand_stack_locked(struct vm_area_struct *vma, unsigned long addr) 652 { 653 return -ENOMEM; 654 } 655 656 struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr) 657 { 658 mmap_read_unlock(mm); 659 return NULL; 660 } 661 662 /* 663 * look up the first VMA exactly that exactly matches addr 664 * - should be called with mm->mmap_lock at least held readlocked 665 */ 666 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm, 667 unsigned long addr, 668 unsigned long len) 669 { 670 struct vm_area_struct *vma; 671 unsigned long end = addr + len; 672 VMA_ITERATOR(vmi, mm, addr); 673 674 vma = vma_iter_load(&vmi); 675 if (!vma) 676 return NULL; 677 if (vma->vm_start != addr) 678 return NULL; 679 if (vma->vm_end != end) 680 return NULL; 681 682 return vma; 683 } 684 685 /* 686 * determine whether a mapping should be permitted and, if so, what sort of 687 * mapping we're capable of supporting 688 */ 689 static int validate_mmap_request(struct file *file, 690 unsigned long addr, 691 unsigned long len, 692 unsigned long prot, 693 unsigned long flags, 694 unsigned long pgoff, 695 unsigned long *_capabilities) 696 { 697 unsigned long capabilities, rlen; 698 int ret; 699 700 /* do the simple checks first */ 701 if (flags & MAP_FIXED) 702 return -EINVAL; 703 704 if ((flags & MAP_TYPE) != MAP_PRIVATE && 705 (flags & MAP_TYPE) != MAP_SHARED) 706 return -EINVAL; 707 708 if (!len) 709 return -EINVAL; 710 711 /* Careful about overflows.. */ 712 rlen = PAGE_ALIGN(len); 713 if (!rlen || rlen > TASK_SIZE) 714 return -ENOMEM; 715 716 /* offset overflow? */ 717 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff) 718 return -EOVERFLOW; 719 720 if (file) { 721 /* files must support mmap */ 722 if (!can_mmap_file(file)) 723 return -ENODEV; 724 725 /* work out if what we've got could possibly be shared 726 * - we support chardevs that provide their own "memory" 727 * - we support files/blockdevs that are memory backed 728 */ 729 if (file->f_op->mmap_capabilities) { 730 capabilities = file->f_op->mmap_capabilities(file); 731 } else { 732 /* no explicit capabilities set, so assume some 733 * defaults */ 734 switch (file_inode(file)->i_mode & S_IFMT) { 735 case S_IFREG: 736 case S_IFBLK: 737 capabilities = NOMMU_MAP_COPY; 738 break; 739 740 case S_IFCHR: 741 capabilities = 742 NOMMU_MAP_DIRECT | 743 NOMMU_MAP_READ | 744 NOMMU_MAP_WRITE; 745 break; 746 747 default: 748 return -EINVAL; 749 } 750 } 751 752 /* eliminate any capabilities that we can't support on this 753 * device */ 754 if (!file->f_op->get_unmapped_area) 755 capabilities &= ~NOMMU_MAP_DIRECT; 756 if (!(file->f_mode & FMODE_CAN_READ)) 757 capabilities &= ~NOMMU_MAP_COPY; 758 759 /* The file shall have been opened with read permission. */ 760 if (!(file->f_mode & FMODE_READ)) 761 return -EACCES; 762 763 if (flags & MAP_SHARED) { 764 /* do checks for writing, appending and locking */ 765 if ((prot & PROT_WRITE) && 766 !(file->f_mode & FMODE_WRITE)) 767 return -EACCES; 768 769 if (IS_APPEND(file_inode(file)) && 770 (file->f_mode & FMODE_WRITE)) 771 return -EACCES; 772 773 if (!(capabilities & NOMMU_MAP_DIRECT)) 774 return -ENODEV; 775 776 /* we mustn't privatise shared mappings */ 777 capabilities &= ~NOMMU_MAP_COPY; 778 } else { 779 /* we're going to read the file into private memory we 780 * allocate */ 781 if (!(capabilities & NOMMU_MAP_COPY)) 782 return -ENODEV; 783 784 /* we don't permit a private writable mapping to be 785 * shared with the backing device */ 786 if (prot & PROT_WRITE) 787 capabilities &= ~NOMMU_MAP_DIRECT; 788 } 789 790 if (capabilities & NOMMU_MAP_DIRECT) { 791 if (((prot & PROT_READ) && !(capabilities & NOMMU_MAP_READ)) || 792 ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) || 793 ((prot & PROT_EXEC) && !(capabilities & NOMMU_MAP_EXEC)) 794 ) { 795 capabilities &= ~NOMMU_MAP_DIRECT; 796 if (flags & MAP_SHARED) { 797 pr_warn("MAP_SHARED not completely supported on !MMU\n"); 798 return -EINVAL; 799 } 800 } 801 } 802 803 /* handle executable mappings and implied executable 804 * mappings */ 805 if (path_noexec(&file->f_path)) { 806 if (prot & PROT_EXEC) 807 return -EPERM; 808 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) { 809 /* handle implication of PROT_EXEC by PROT_READ */ 810 if (current->personality & READ_IMPLIES_EXEC) { 811 if (capabilities & NOMMU_MAP_EXEC) 812 prot |= PROT_EXEC; 813 } 814 } else if ((prot & PROT_READ) && 815 (prot & PROT_EXEC) && 816 !(capabilities & NOMMU_MAP_EXEC) 817 ) { 818 /* backing file is not executable, try to copy */ 819 capabilities &= ~NOMMU_MAP_DIRECT; 820 } 821 } else { 822 /* anonymous mappings are always memory backed and can be 823 * privately mapped 824 */ 825 capabilities = NOMMU_MAP_COPY; 826 827 /* handle PROT_EXEC implication by PROT_READ */ 828 if ((prot & PROT_READ) && 829 (current->personality & READ_IMPLIES_EXEC)) 830 prot |= PROT_EXEC; 831 } 832 833 /* allow the security API to have its say */ 834 ret = security_mmap_addr(addr); 835 if (ret < 0) 836 return ret; 837 838 /* looks okay */ 839 *_capabilities = capabilities; 840 return 0; 841 } 842 843 /* 844 * we've determined that we can make the mapping, now translate what we 845 * now know into VMA flags 846 */ 847 static vm_flags_t determine_vm_flags(struct file *file, 848 unsigned long prot, 849 unsigned long flags, 850 unsigned long capabilities) 851 { 852 vm_flags_t vm_flags; 853 854 vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(file, flags); 855 856 if (!file) { 857 /* 858 * MAP_ANONYMOUS. MAP_SHARED is mapped to MAP_PRIVATE, because 859 * there is no fork(). 860 */ 861 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 862 } else if (flags & MAP_PRIVATE) { 863 /* MAP_PRIVATE file mapping */ 864 if (capabilities & NOMMU_MAP_DIRECT) 865 vm_flags |= (capabilities & NOMMU_VMFLAGS); 866 else 867 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 868 869 if (!(prot & PROT_WRITE) && !current->ptrace) 870 /* 871 * R/O private file mapping which cannot be used to 872 * modify memory, especially also not via active ptrace 873 * (e.g., set breakpoints) or later by upgrading 874 * permissions (no mprotect()). We can try overlaying 875 * the file mapping, which will work e.g., on chardevs, 876 * ramfs/tmpfs/shmfs and romfs/cramf. 877 */ 878 vm_flags |= VM_MAYOVERLAY; 879 } else { 880 /* MAP_SHARED file mapping: NOMMU_MAP_DIRECT is set. */ 881 vm_flags |= VM_SHARED | VM_MAYSHARE | 882 (capabilities & NOMMU_VMFLAGS); 883 } 884 885 return vm_flags; 886 } 887 888 /* 889 * set up a shared mapping on a file (the driver or filesystem provides and 890 * pins the storage) 891 */ 892 static int do_mmap_shared_file(struct vm_area_struct *vma) 893 { 894 int ret; 895 896 ret = mmap_file(vma->vm_file, vma); 897 if (ret == 0) { 898 vma->vm_region->vm_top = vma->vm_region->vm_end; 899 return 0; 900 } 901 if (ret != -ENOSYS) 902 return ret; 903 904 /* getting -ENOSYS indicates that direct mmap isn't possible (as 905 * opposed to tried but failed) so we can only give a suitable error as 906 * it's not possible to make a private copy if MAP_SHARED was given */ 907 return -ENODEV; 908 } 909 910 /* 911 * set up a private mapping or an anonymous shared mapping 912 */ 913 static int do_mmap_private(struct vm_area_struct *vma, 914 struct vm_region *region, 915 unsigned long len, 916 unsigned long capabilities) 917 { 918 unsigned long total, point; 919 void *base; 920 int ret, order; 921 922 /* 923 * Invoke the file's mapping function so that it can keep track of 924 * shared mappings on devices or memory. VM_MAYOVERLAY will be set if 925 * it may attempt to share, which will make is_nommu_shared_mapping() 926 * happy. 927 */ 928 if (capabilities & NOMMU_MAP_DIRECT) { 929 ret = mmap_file(vma->vm_file, vma); 930 /* shouldn't return success if we're not sharing */ 931 if (WARN_ON_ONCE(!is_nommu_shared_mapping(vma->vm_flags))) 932 ret = -ENOSYS; 933 if (ret == 0) { 934 vma->vm_region->vm_top = vma->vm_region->vm_end; 935 return 0; 936 } 937 if (ret != -ENOSYS) 938 return ret; 939 940 /* getting an ENOSYS error indicates that direct mmap isn't 941 * possible (as opposed to tried but failed) so we'll try to 942 * make a private copy of the data and map that instead */ 943 } 944 945 946 /* allocate some memory to hold the mapping 947 * - note that this may not return a page-aligned address if the object 948 * we're allocating is smaller than a page 949 */ 950 order = get_order(len); 951 total = 1 << order; 952 point = len >> PAGE_SHIFT; 953 954 /* we don't want to allocate a power-of-2 sized page set */ 955 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) 956 total = point; 957 958 base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL); 959 if (!base) 960 goto enomem; 961 962 atomic_long_add(total, &mmap_pages_allocated); 963 964 vm_flags_set(vma, VM_MAPPED_COPY); 965 region->vm_flags = vma->vm_flags; 966 region->vm_start = (unsigned long) base; 967 region->vm_end = region->vm_start + len; 968 region->vm_top = region->vm_start + (total << PAGE_SHIFT); 969 970 vma->vm_start = region->vm_start; 971 vma->vm_end = region->vm_start + len; 972 973 if (vma->vm_file) { 974 /* read the contents of a file into the copy */ 975 loff_t fpos; 976 977 fpos = vma->vm_pgoff; 978 fpos <<= PAGE_SHIFT; 979 980 ret = kernel_read(vma->vm_file, base, len, &fpos); 981 if (ret < 0) 982 goto error_free; 983 984 /* clear the last little bit */ 985 if (ret < len) 986 memset(base + ret, 0, len - ret); 987 988 } else { 989 vma_set_anonymous(vma); 990 } 991 992 return 0; 993 994 error_free: 995 free_page_series(region->vm_start, region->vm_top); 996 region->vm_start = vma->vm_start = 0; 997 region->vm_end = vma->vm_end = 0; 998 region->vm_top = 0; 999 return ret; 1000 1001 enomem: 1002 pr_err("Allocation of length %lu from process %d (%s) failed\n", 1003 len, current->pid, current->comm); 1004 show_mem(); 1005 return -ENOMEM; 1006 } 1007 1008 /* 1009 * handle mapping creation for uClinux 1010 */ 1011 unsigned long do_mmap(struct file *file, 1012 unsigned long addr, 1013 unsigned long len, 1014 unsigned long prot, 1015 unsigned long flags, 1016 vm_flags_t vm_flags, 1017 unsigned long pgoff, 1018 unsigned long *populate, 1019 struct list_head *uf) 1020 { 1021 struct vm_area_struct *vma; 1022 struct vm_region *region; 1023 struct rb_node *rb; 1024 unsigned long capabilities, result; 1025 int ret; 1026 VMA_ITERATOR(vmi, current->mm, 0); 1027 1028 *populate = 0; 1029 1030 /* decide whether we should attempt the mapping, and if so what sort of 1031 * mapping */ 1032 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff, 1033 &capabilities); 1034 if (ret < 0) 1035 return ret; 1036 1037 /* we ignore the address hint */ 1038 addr = 0; 1039 len = PAGE_ALIGN(len); 1040 1041 /* we've determined that we can make the mapping, now translate what we 1042 * now know into VMA flags */ 1043 vm_flags |= determine_vm_flags(file, prot, flags, capabilities); 1044 1045 1046 /* we're going to need to record the mapping */ 1047 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL); 1048 if (!region) 1049 goto error_getting_region; 1050 1051 vma = vm_area_alloc(current->mm); 1052 if (!vma) 1053 goto error_getting_vma; 1054 1055 region->vm_usage = 1; 1056 region->vm_flags = vm_flags; 1057 region->vm_pgoff = pgoff; 1058 1059 vm_flags_init(vma, vm_flags); 1060 vma->vm_pgoff = pgoff; 1061 1062 if (file) { 1063 region->vm_file = get_file(file); 1064 vma->vm_file = get_file(file); 1065 } 1066 1067 down_write(&nommu_region_sem); 1068 1069 /* if we want to share, we need to check for regions created by other 1070 * mmap() calls that overlap with our proposed mapping 1071 * - we can only share with a superset match on most regular files 1072 * - shared mappings on character devices and memory backed files are 1073 * permitted to overlap inexactly as far as we are concerned for in 1074 * these cases, sharing is handled in the driver or filesystem rather 1075 * than here 1076 */ 1077 if (is_nommu_shared_mapping(vm_flags)) { 1078 struct vm_region *pregion; 1079 unsigned long pglen, rpglen, pgend, rpgend, start; 1080 1081 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1082 pgend = pgoff + pglen; 1083 1084 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) { 1085 pregion = rb_entry(rb, struct vm_region, vm_rb); 1086 1087 if (!is_nommu_shared_mapping(pregion->vm_flags)) 1088 continue; 1089 1090 /* search for overlapping mappings on the same file */ 1091 if (file_inode(pregion->vm_file) != 1092 file_inode(file)) 1093 continue; 1094 1095 if (pregion->vm_pgoff >= pgend) 1096 continue; 1097 1098 rpglen = pregion->vm_end - pregion->vm_start; 1099 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT; 1100 rpgend = pregion->vm_pgoff + rpglen; 1101 if (pgoff >= rpgend) 1102 continue; 1103 1104 /* handle inexactly overlapping matches between 1105 * mappings */ 1106 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) && 1107 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) { 1108 /* new mapping is not a subset of the region */ 1109 if (!(capabilities & NOMMU_MAP_DIRECT)) 1110 goto sharing_violation; 1111 continue; 1112 } 1113 1114 /* we've found a region we can share */ 1115 pregion->vm_usage++; 1116 vma->vm_region = pregion; 1117 start = pregion->vm_start; 1118 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT; 1119 vma->vm_start = start; 1120 vma->vm_end = start + len; 1121 1122 if (pregion->vm_flags & VM_MAPPED_COPY) 1123 vm_flags_set(vma, VM_MAPPED_COPY); 1124 else { 1125 ret = do_mmap_shared_file(vma); 1126 if (ret < 0) { 1127 vma->vm_region = NULL; 1128 vma->vm_start = 0; 1129 vma->vm_end = 0; 1130 pregion->vm_usage--; 1131 pregion = NULL; 1132 goto error_just_free; 1133 } 1134 } 1135 fput(region->vm_file); 1136 kmem_cache_free(vm_region_jar, region); 1137 region = pregion; 1138 result = start; 1139 goto share; 1140 } 1141 1142 /* obtain the address at which to make a shared mapping 1143 * - this is the hook for quasi-memory character devices to 1144 * tell us the location of a shared mapping 1145 */ 1146 if (capabilities & NOMMU_MAP_DIRECT) { 1147 addr = file->f_op->get_unmapped_area(file, addr, len, 1148 pgoff, flags); 1149 if (IS_ERR_VALUE(addr)) { 1150 ret = addr; 1151 if (ret != -ENOSYS) 1152 goto error_just_free; 1153 1154 /* the driver refused to tell us where to site 1155 * the mapping so we'll have to attempt to copy 1156 * it */ 1157 ret = -ENODEV; 1158 if (!(capabilities & NOMMU_MAP_COPY)) 1159 goto error_just_free; 1160 1161 capabilities &= ~NOMMU_MAP_DIRECT; 1162 } else { 1163 vma->vm_start = region->vm_start = addr; 1164 vma->vm_end = region->vm_end = addr + len; 1165 } 1166 } 1167 } 1168 1169 vma->vm_region = region; 1170 1171 /* set up the mapping 1172 * - the region is filled in if NOMMU_MAP_DIRECT is still set 1173 */ 1174 if (file && vma->vm_flags & VM_SHARED) 1175 ret = do_mmap_shared_file(vma); 1176 else 1177 ret = do_mmap_private(vma, region, len, capabilities); 1178 if (ret < 0) 1179 goto error_just_free; 1180 add_nommu_region(region); 1181 1182 /* clear anonymous mappings that don't ask for uninitialized data */ 1183 if (!vma->vm_file && 1184 (!IS_ENABLED(CONFIG_MMAP_ALLOW_UNINITIALIZED) || 1185 !(flags & MAP_UNINITIALIZED))) 1186 memset((void *)region->vm_start, 0, 1187 region->vm_end - region->vm_start); 1188 1189 /* okay... we have a mapping; now we have to register it */ 1190 result = vma->vm_start; 1191 1192 current->mm->total_vm += len >> PAGE_SHIFT; 1193 1194 share: 1195 BUG_ON(!vma->vm_region); 1196 vma_iter_config(&vmi, vma->vm_start, vma->vm_end); 1197 if (vma_iter_prealloc(&vmi, vma)) 1198 goto error_just_free; 1199 1200 setup_vma_to_mm(vma, current->mm); 1201 current->mm->map_count++; 1202 /* add the VMA to the tree */ 1203 vma_iter_store_new(&vmi, vma); 1204 1205 /* we flush the region from the icache only when the first executable 1206 * mapping of it is made */ 1207 if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) { 1208 flush_icache_user_range(region->vm_start, region->vm_end); 1209 region->vm_icache_flushed = true; 1210 } 1211 1212 up_write(&nommu_region_sem); 1213 1214 return result; 1215 1216 error_just_free: 1217 up_write(&nommu_region_sem); 1218 error: 1219 vma_iter_free(&vmi); 1220 if (region->vm_file) 1221 fput(region->vm_file); 1222 kmem_cache_free(vm_region_jar, region); 1223 if (vma->vm_file) 1224 fput(vma->vm_file); 1225 vm_area_free(vma); 1226 return ret; 1227 1228 sharing_violation: 1229 up_write(&nommu_region_sem); 1230 pr_warn("Attempt to share mismatched mappings\n"); 1231 ret = -EINVAL; 1232 goto error; 1233 1234 error_getting_vma: 1235 kmem_cache_free(vm_region_jar, region); 1236 pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n", 1237 len, current->pid); 1238 show_mem(); 1239 return -ENOMEM; 1240 1241 error_getting_region: 1242 pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n", 1243 len, current->pid); 1244 show_mem(); 1245 return -ENOMEM; 1246 } 1247 1248 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len, 1249 unsigned long prot, unsigned long flags, 1250 unsigned long fd, unsigned long pgoff) 1251 { 1252 struct file *file = NULL; 1253 unsigned long retval = -EBADF; 1254 1255 audit_mmap_fd(fd, flags); 1256 if (!(flags & MAP_ANONYMOUS)) { 1257 file = fget(fd); 1258 if (!file) 1259 goto out; 1260 } 1261 1262 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1263 1264 if (file) 1265 fput(file); 1266 out: 1267 return retval; 1268 } 1269 1270 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1271 unsigned long, prot, unsigned long, flags, 1272 unsigned long, fd, unsigned long, pgoff) 1273 { 1274 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff); 1275 } 1276 1277 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1278 struct mmap_arg_struct { 1279 unsigned long addr; 1280 unsigned long len; 1281 unsigned long prot; 1282 unsigned long flags; 1283 unsigned long fd; 1284 unsigned long offset; 1285 }; 1286 1287 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1288 { 1289 struct mmap_arg_struct a; 1290 1291 if (copy_from_user(&a, arg, sizeof(a))) 1292 return -EFAULT; 1293 if (offset_in_page(a.offset)) 1294 return -EINVAL; 1295 1296 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1297 a.offset >> PAGE_SHIFT); 1298 } 1299 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1300 1301 /* 1302 * split a vma into two pieces at address 'addr', a new vma is allocated either 1303 * for the first part or the tail. 1304 */ 1305 static int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma, 1306 unsigned long addr, int new_below) 1307 { 1308 struct vm_area_struct *new; 1309 struct vm_region *region; 1310 unsigned long npages; 1311 struct mm_struct *mm; 1312 1313 /* we're only permitted to split anonymous regions (these should have 1314 * only a single usage on the region) */ 1315 if (vma->vm_file) 1316 return -ENOMEM; 1317 1318 mm = vma->vm_mm; 1319 if (mm->map_count >= sysctl_max_map_count) 1320 return -ENOMEM; 1321 1322 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL); 1323 if (!region) 1324 return -ENOMEM; 1325 1326 new = vm_area_dup(vma); 1327 if (!new) 1328 goto err_vma_dup; 1329 1330 /* most fields are the same, copy all, and then fixup */ 1331 *region = *vma->vm_region; 1332 new->vm_region = region; 1333 1334 npages = (addr - vma->vm_start) >> PAGE_SHIFT; 1335 1336 if (new_below) { 1337 region->vm_top = region->vm_end = new->vm_end = addr; 1338 } else { 1339 region->vm_start = new->vm_start = addr; 1340 region->vm_pgoff = new->vm_pgoff += npages; 1341 } 1342 1343 vma_iter_config(vmi, new->vm_start, new->vm_end); 1344 if (vma_iter_prealloc(vmi, vma)) { 1345 pr_warn("Allocation of vma tree for process %d failed\n", 1346 current->pid); 1347 goto err_vmi_preallocate; 1348 } 1349 1350 if (new->vm_ops && new->vm_ops->open) 1351 new->vm_ops->open(new); 1352 1353 down_write(&nommu_region_sem); 1354 delete_nommu_region(vma->vm_region); 1355 if (new_below) { 1356 vma->vm_region->vm_start = vma->vm_start = addr; 1357 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages; 1358 } else { 1359 vma->vm_region->vm_end = vma->vm_end = addr; 1360 vma->vm_region->vm_top = addr; 1361 } 1362 add_nommu_region(vma->vm_region); 1363 add_nommu_region(new->vm_region); 1364 up_write(&nommu_region_sem); 1365 1366 setup_vma_to_mm(vma, mm); 1367 setup_vma_to_mm(new, mm); 1368 vma_iter_store_new(vmi, new); 1369 mm->map_count++; 1370 return 0; 1371 1372 err_vmi_preallocate: 1373 vm_area_free(new); 1374 err_vma_dup: 1375 kmem_cache_free(vm_region_jar, region); 1376 return -ENOMEM; 1377 } 1378 1379 /* 1380 * shrink a VMA by removing the specified chunk from either the beginning or 1381 * the end 1382 */ 1383 static int vmi_shrink_vma(struct vma_iterator *vmi, 1384 struct vm_area_struct *vma, 1385 unsigned long from, unsigned long to) 1386 { 1387 struct vm_region *region; 1388 1389 /* adjust the VMA's pointers, which may reposition it in the MM's tree 1390 * and list */ 1391 if (from > vma->vm_start) { 1392 if (vma_iter_clear_gfp(vmi, from, vma->vm_end, GFP_KERNEL)) 1393 return -ENOMEM; 1394 vma->vm_end = from; 1395 } else { 1396 if (vma_iter_clear_gfp(vmi, vma->vm_start, to, GFP_KERNEL)) 1397 return -ENOMEM; 1398 vma->vm_start = to; 1399 } 1400 1401 /* cut the backing region down to size */ 1402 region = vma->vm_region; 1403 BUG_ON(region->vm_usage != 1); 1404 1405 down_write(&nommu_region_sem); 1406 delete_nommu_region(region); 1407 if (from > region->vm_start) { 1408 to = region->vm_top; 1409 region->vm_top = region->vm_end = from; 1410 } else { 1411 region->vm_start = to; 1412 } 1413 add_nommu_region(region); 1414 up_write(&nommu_region_sem); 1415 1416 free_page_series(from, to); 1417 return 0; 1418 } 1419 1420 /* 1421 * release a mapping 1422 * - under NOMMU conditions the chunk to be unmapped must be backed by a single 1423 * VMA, though it need not cover the whole VMA 1424 */ 1425 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf) 1426 { 1427 VMA_ITERATOR(vmi, mm, start); 1428 struct vm_area_struct *vma; 1429 unsigned long end; 1430 int ret = 0; 1431 1432 len = PAGE_ALIGN(len); 1433 if (len == 0) 1434 return -EINVAL; 1435 1436 end = start + len; 1437 1438 /* find the first potentially overlapping VMA */ 1439 vma = vma_find(&vmi, end); 1440 if (!vma) { 1441 static int limit; 1442 if (limit < 5) { 1443 pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n", 1444 current->pid, current->comm, 1445 start, start + len - 1); 1446 limit++; 1447 } 1448 return -EINVAL; 1449 } 1450 1451 /* we're allowed to split an anonymous VMA but not a file-backed one */ 1452 if (vma->vm_file) { 1453 do { 1454 if (start > vma->vm_start) 1455 return -EINVAL; 1456 if (end == vma->vm_end) 1457 goto erase_whole_vma; 1458 vma = vma_find(&vmi, end); 1459 } while (vma); 1460 return -EINVAL; 1461 } else { 1462 /* the chunk must be a subset of the VMA found */ 1463 if (start == vma->vm_start && end == vma->vm_end) 1464 goto erase_whole_vma; 1465 if (start < vma->vm_start || end > vma->vm_end) 1466 return -EINVAL; 1467 if (offset_in_page(start)) 1468 return -EINVAL; 1469 if (end != vma->vm_end && offset_in_page(end)) 1470 return -EINVAL; 1471 if (start != vma->vm_start && end != vma->vm_end) { 1472 ret = split_vma(&vmi, vma, start, 1); 1473 if (ret < 0) 1474 return ret; 1475 } 1476 return vmi_shrink_vma(&vmi, vma, start, end); 1477 } 1478 1479 erase_whole_vma: 1480 if (delete_vma_from_mm(vma)) 1481 ret = -ENOMEM; 1482 else 1483 delete_vma(mm, vma); 1484 return ret; 1485 } 1486 1487 int vm_munmap(unsigned long addr, size_t len) 1488 { 1489 struct mm_struct *mm = current->mm; 1490 int ret; 1491 1492 mmap_write_lock(mm); 1493 ret = do_munmap(mm, addr, len, NULL); 1494 mmap_write_unlock(mm); 1495 return ret; 1496 } 1497 EXPORT_SYMBOL(vm_munmap); 1498 1499 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 1500 { 1501 return vm_munmap(addr, len); 1502 } 1503 1504 /* 1505 * release all the mappings made in a process's VM space 1506 */ 1507 void exit_mmap(struct mm_struct *mm) 1508 { 1509 VMA_ITERATOR(vmi, mm, 0); 1510 struct vm_area_struct *vma; 1511 1512 if (!mm) 1513 return; 1514 1515 mm->total_vm = 0; 1516 1517 /* 1518 * Lock the mm to avoid assert complaining even though this is the only 1519 * user of the mm 1520 */ 1521 mmap_write_lock(mm); 1522 for_each_vma(vmi, vma) { 1523 cleanup_vma_from_mm(vma); 1524 delete_vma(mm, vma); 1525 cond_resched(); 1526 } 1527 __mt_destroy(&mm->mm_mt); 1528 mmap_write_unlock(mm); 1529 } 1530 1531 /* 1532 * expand (or shrink) an existing mapping, potentially moving it at the same 1533 * time (controlled by the MREMAP_MAYMOVE flag and available VM space) 1534 * 1535 * under NOMMU conditions, we only permit changing a mapping's size, and only 1536 * as long as it stays within the region allocated by do_mmap_private() and the 1537 * block is not shareable 1538 * 1539 * MREMAP_FIXED is not supported under NOMMU conditions 1540 */ 1541 static unsigned long do_mremap(unsigned long addr, 1542 unsigned long old_len, unsigned long new_len, 1543 unsigned long flags, unsigned long new_addr) 1544 { 1545 struct vm_area_struct *vma; 1546 1547 /* insanity checks first */ 1548 old_len = PAGE_ALIGN(old_len); 1549 new_len = PAGE_ALIGN(new_len); 1550 if (old_len == 0 || new_len == 0) 1551 return (unsigned long) -EINVAL; 1552 1553 if (offset_in_page(addr)) 1554 return -EINVAL; 1555 1556 if (flags & MREMAP_FIXED && new_addr != addr) 1557 return (unsigned long) -EINVAL; 1558 1559 vma = find_vma_exact(current->mm, addr, old_len); 1560 if (!vma) 1561 return (unsigned long) -EINVAL; 1562 1563 if (vma->vm_end != vma->vm_start + old_len) 1564 return (unsigned long) -EFAULT; 1565 1566 if (is_nommu_shared_mapping(vma->vm_flags)) 1567 return (unsigned long) -EPERM; 1568 1569 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start) 1570 return (unsigned long) -ENOMEM; 1571 1572 /* all checks complete - do it */ 1573 vma->vm_end = vma->vm_start + new_len; 1574 return vma->vm_start; 1575 } 1576 1577 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len, 1578 unsigned long, new_len, unsigned long, flags, 1579 unsigned long, new_addr) 1580 { 1581 unsigned long ret; 1582 1583 mmap_write_lock(current->mm); 1584 ret = do_mremap(addr, old_len, new_len, flags, new_addr); 1585 mmap_write_unlock(current->mm); 1586 return ret; 1587 } 1588 1589 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1590 unsigned long pfn, unsigned long size, pgprot_t prot) 1591 { 1592 if (addr != (pfn << PAGE_SHIFT)) 1593 return -EINVAL; 1594 1595 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP); 1596 return 0; 1597 } 1598 EXPORT_SYMBOL(remap_pfn_range); 1599 1600 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 1601 { 1602 unsigned long pfn = start >> PAGE_SHIFT; 1603 unsigned long vm_len = vma->vm_end - vma->vm_start; 1604 1605 pfn += vma->vm_pgoff; 1606 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 1607 } 1608 EXPORT_SYMBOL(vm_iomap_memory); 1609 1610 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 1611 unsigned long pgoff) 1612 { 1613 unsigned int size = vma->vm_end - vma->vm_start; 1614 1615 if (!(vma->vm_flags & VM_USERMAP)) 1616 return -EINVAL; 1617 1618 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT)); 1619 vma->vm_end = vma->vm_start + size; 1620 1621 return 0; 1622 } 1623 EXPORT_SYMBOL(remap_vmalloc_range); 1624 1625 vm_fault_t filemap_fault(struct vm_fault *vmf) 1626 { 1627 BUG(); 1628 return 0; 1629 } 1630 EXPORT_SYMBOL(filemap_fault); 1631 1632 vm_fault_t filemap_map_pages(struct vm_fault *vmf, 1633 pgoff_t start_pgoff, pgoff_t end_pgoff) 1634 { 1635 BUG(); 1636 return 0; 1637 } 1638 EXPORT_SYMBOL(filemap_map_pages); 1639 1640 static int __access_remote_vm(struct mm_struct *mm, unsigned long addr, 1641 void *buf, int len, unsigned int gup_flags) 1642 { 1643 struct vm_area_struct *vma; 1644 int write = gup_flags & FOLL_WRITE; 1645 1646 if (mmap_read_lock_killable(mm)) 1647 return 0; 1648 1649 /* the access must start within one of the target process's mappings */ 1650 vma = find_vma(mm, addr); 1651 if (vma) { 1652 /* don't overrun this mapping */ 1653 if (addr + len >= vma->vm_end) 1654 len = vma->vm_end - addr; 1655 1656 /* only read or write mappings where it is permitted */ 1657 if (write && vma->vm_flags & VM_MAYWRITE) 1658 copy_to_user_page(vma, NULL, addr, 1659 (void *) addr, buf, len); 1660 else if (!write && vma->vm_flags & VM_MAYREAD) 1661 copy_from_user_page(vma, NULL, addr, 1662 buf, (void *) addr, len); 1663 else 1664 len = 0; 1665 } else { 1666 len = 0; 1667 } 1668 1669 mmap_read_unlock(mm); 1670 1671 return len; 1672 } 1673 1674 /** 1675 * access_remote_vm - access another process' address space 1676 * @mm: the mm_struct of the target address space 1677 * @addr: start address to access 1678 * @buf: source or destination buffer 1679 * @len: number of bytes to transfer 1680 * @gup_flags: flags modifying lookup behaviour 1681 * 1682 * The caller must hold a reference on @mm. 1683 */ 1684 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1685 void *buf, int len, unsigned int gup_flags) 1686 { 1687 return __access_remote_vm(mm, addr, buf, len, gup_flags); 1688 } 1689 1690 /* 1691 * Access another process' address space. 1692 * - source/target buffer must be kernel space 1693 */ 1694 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, 1695 unsigned int gup_flags) 1696 { 1697 struct mm_struct *mm; 1698 1699 if (addr + len < addr) 1700 return 0; 1701 1702 mm = get_task_mm(tsk); 1703 if (!mm) 1704 return 0; 1705 1706 len = __access_remote_vm(mm, addr, buf, len, gup_flags); 1707 1708 mmput(mm); 1709 return len; 1710 } 1711 EXPORT_SYMBOL_GPL(access_process_vm); 1712 1713 #ifdef CONFIG_BPF_SYSCALL 1714 /* 1715 * Copy a string from another process's address space as given in mm. 1716 * If there is any error return -EFAULT. 1717 */ 1718 static int __copy_remote_vm_str(struct mm_struct *mm, unsigned long addr, 1719 void *buf, int len) 1720 { 1721 unsigned long addr_end; 1722 struct vm_area_struct *vma; 1723 int ret = -EFAULT; 1724 1725 *(char *)buf = '\0'; 1726 1727 if (mmap_read_lock_killable(mm)) 1728 return ret; 1729 1730 /* the access must start within one of the target process's mappings */ 1731 vma = find_vma(mm, addr); 1732 if (!vma) 1733 goto out; 1734 1735 if (check_add_overflow(addr, len, &addr_end)) 1736 goto out; 1737 1738 /* don't overrun this mapping */ 1739 if (addr_end > vma->vm_end) 1740 len = vma->vm_end - addr; 1741 1742 /* only read mappings where it is permitted */ 1743 if (vma->vm_flags & VM_MAYREAD) { 1744 ret = strscpy(buf, (char *)addr, len); 1745 if (ret < 0) 1746 ret = len - 1; 1747 } 1748 1749 out: 1750 mmap_read_unlock(mm); 1751 return ret; 1752 } 1753 1754 /** 1755 * copy_remote_vm_str - copy a string from another process's address space. 1756 * @tsk: the task of the target address space 1757 * @addr: start address to read from 1758 * @buf: destination buffer 1759 * @len: number of bytes to copy 1760 * @gup_flags: flags modifying lookup behaviour (unused) 1761 * 1762 * The caller must hold a reference on @mm. 1763 * 1764 * Return: number of bytes copied from @addr (source) to @buf (destination); 1765 * not including the trailing NUL. Always guaranteed to leave NUL-terminated 1766 * buffer. On any error, return -EFAULT. 1767 */ 1768 int copy_remote_vm_str(struct task_struct *tsk, unsigned long addr, 1769 void *buf, int len, unsigned int gup_flags) 1770 { 1771 struct mm_struct *mm; 1772 int ret; 1773 1774 if (unlikely(len == 0)) 1775 return 0; 1776 1777 mm = get_task_mm(tsk); 1778 if (!mm) { 1779 *(char *)buf = '\0'; 1780 return -EFAULT; 1781 } 1782 1783 ret = __copy_remote_vm_str(mm, addr, buf, len); 1784 1785 mmput(mm); 1786 1787 return ret; 1788 } 1789 EXPORT_SYMBOL_GPL(copy_remote_vm_str); 1790 #endif /* CONFIG_BPF_SYSCALL */ 1791 1792 /** 1793 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode 1794 * @inode: The inode to check 1795 * @size: The current filesize of the inode 1796 * @newsize: The proposed filesize of the inode 1797 * 1798 * Check the shared mappings on an inode on behalf of a shrinking truncate to 1799 * make sure that any outstanding VMAs aren't broken and then shrink the 1800 * vm_regions that extend beyond so that do_mmap() doesn't 1801 * automatically grant mappings that are too large. 1802 */ 1803 int nommu_shrink_inode_mappings(struct inode *inode, size_t size, 1804 size_t newsize) 1805 { 1806 struct vm_area_struct *vma; 1807 struct vm_region *region; 1808 pgoff_t low, high; 1809 size_t r_size, r_top; 1810 1811 low = newsize >> PAGE_SHIFT; 1812 high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 1813 1814 down_write(&nommu_region_sem); 1815 i_mmap_lock_read(inode->i_mapping); 1816 1817 /* search for VMAs that fall within the dead zone */ 1818 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) { 1819 /* found one - only interested if it's shared out of the page 1820 * cache */ 1821 if (vma->vm_flags & VM_SHARED) { 1822 i_mmap_unlock_read(inode->i_mapping); 1823 up_write(&nommu_region_sem); 1824 return -ETXTBSY; /* not quite true, but near enough */ 1825 } 1826 } 1827 1828 /* reduce any regions that overlap the dead zone - if in existence, 1829 * these will be pointed to by VMAs that don't overlap the dead zone 1830 * 1831 * we don't check for any regions that start beyond the EOF as there 1832 * shouldn't be any 1833 */ 1834 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) { 1835 if (!(vma->vm_flags & VM_SHARED)) 1836 continue; 1837 1838 region = vma->vm_region; 1839 r_size = region->vm_top - region->vm_start; 1840 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size; 1841 1842 if (r_top > newsize) { 1843 region->vm_top -= r_top - newsize; 1844 if (region->vm_end > region->vm_top) 1845 region->vm_end = region->vm_top; 1846 } 1847 } 1848 1849 i_mmap_unlock_read(inode->i_mapping); 1850 up_write(&nommu_region_sem); 1851 return 0; 1852 } 1853 1854 /* 1855 * Initialise sysctl_user_reserve_kbytes. 1856 * 1857 * This is intended to prevent a user from starting a single memory hogging 1858 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER 1859 * mode. 1860 * 1861 * The default value is min(3% of free memory, 128MB) 1862 * 128MB is enough to recover with sshd/login, bash, and top/kill. 1863 */ 1864 static int __meminit init_user_reserve(void) 1865 { 1866 unsigned long free_kbytes; 1867 1868 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES)); 1869 1870 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17); 1871 return 0; 1872 } 1873 subsys_initcall(init_user_reserve); 1874 1875 /* 1876 * Initialise sysctl_admin_reserve_kbytes. 1877 * 1878 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin 1879 * to log in and kill a memory hogging process. 1880 * 1881 * Systems with more than 256MB will reserve 8MB, enough to recover 1882 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will 1883 * only reserve 3% of free pages by default. 1884 */ 1885 static int __meminit init_admin_reserve(void) 1886 { 1887 unsigned long free_kbytes; 1888 1889 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES)); 1890 1891 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13); 1892 return 0; 1893 } 1894 subsys_initcall(init_admin_reserve); 1895 1896 int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 1897 { 1898 mmap_write_lock(oldmm); 1899 dup_mm_exe_file(mm, oldmm); 1900 mmap_write_unlock(oldmm); 1901 return 0; 1902 } 1903