xref: /linux/mm/nommu.c (revision 8804d970fab45726b3c7cd7f240b31122aa94219)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/nommu.c
4  *
5  *  Replacement code for mm functions to support CPU's that don't
6  *  have any form of memory management unit (thus no virtual memory).
7  *
8  *  See Documentation/admin-guide/mm/nommu-mmap.rst
9  *
10  *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
11  *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
12  *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
13  *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
14  *  Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
15  */
16 
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 
19 #include <linux/export.h>
20 #include <linux/mm.h>
21 #include <linux/sched/mm.h>
22 #include <linux/mman.h>
23 #include <linux/swap.h>
24 #include <linux/file.h>
25 #include <linux/highmem.h>
26 #include <linux/pagemap.h>
27 #include <linux/slab.h>
28 #include <linux/vmalloc.h>
29 #include <linux/backing-dev.h>
30 #include <linux/compiler.h>
31 #include <linux/mount.h>
32 #include <linux/personality.h>
33 #include <linux/security.h>
34 #include <linux/syscalls.h>
35 #include <linux/audit.h>
36 #include <linux/printk.h>
37 
38 #include <linux/uaccess.h>
39 #include <linux/uio.h>
40 #include <asm/tlb.h>
41 #include <asm/tlbflush.h>
42 #include <asm/mmu_context.h>
43 #include "internal.h"
44 
45 unsigned long highest_memmap_pfn;
46 int heap_stack_gap = 0;
47 
48 atomic_long_t mmap_pages_allocated;
49 
50 
51 /* list of mapped, potentially shareable regions */
52 static struct kmem_cache *vm_region_jar;
53 struct rb_root nommu_region_tree = RB_ROOT;
54 DECLARE_RWSEM(nommu_region_sem);
55 
56 const struct vm_operations_struct generic_file_vm_ops = {
57 };
58 
59 /*
60  * Return the total memory allocated for this pointer, not
61  * just what the caller asked for.
62  *
63  * Doesn't have to be accurate, i.e. may have races.
64  */
kobjsize(const void * objp)65 unsigned int kobjsize(const void *objp)
66 {
67 	struct folio *folio;
68 
69 	/*
70 	 * If the object we have should not have ksize performed on it,
71 	 * return size of 0
72 	 */
73 	if (!objp || !virt_addr_valid(objp))
74 		return 0;
75 
76 	folio = virt_to_folio(objp);
77 
78 	/*
79 	 * If the allocator sets PageSlab, we know the pointer came from
80 	 * kmalloc().
81 	 */
82 	if (folio_test_slab(folio))
83 		return ksize(objp);
84 
85 	/*
86 	 * If it's not a large folio, see if we have a matching VMA
87 	 * region. This test is intentionally done in reverse order,
88 	 * so if there's no VMA, we still fall through and hand back
89 	 * PAGE_SIZE for 0-order folios.
90 	 */
91 	if (!folio_test_large(folio)) {
92 		struct vm_area_struct *vma;
93 
94 		vma = find_vma(current->mm, (unsigned long)objp);
95 		if (vma)
96 			return vma->vm_end - vma->vm_start;
97 	}
98 
99 	/*
100 	 * The ksize() function is only guaranteed to work for pointers
101 	 * returned by kmalloc(). So handle arbitrary pointers here.
102 	 */
103 	return folio_size(folio);
104 }
105 
vfree(const void * addr)106 void vfree(const void *addr)
107 {
108 	kfree(addr);
109 }
110 EXPORT_SYMBOL(vfree);
111 
__vmalloc_noprof(unsigned long size,gfp_t gfp_mask)112 void *__vmalloc_noprof(unsigned long size, gfp_t gfp_mask)
113 {
114 	/*
115 	 *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
116 	 * returns only a logical address.
117 	 */
118 	return kmalloc_noprof(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
119 }
120 EXPORT_SYMBOL(__vmalloc_noprof);
121 
vrealloc_node_align_noprof(const void * p,size_t size,unsigned long align,gfp_t flags,int node)122 void *vrealloc_node_align_noprof(const void *p, size_t size, unsigned long align,
123 				 gfp_t flags, int node)
124 {
125 	return krealloc_noprof(p, size, (flags | __GFP_COMP) & ~__GFP_HIGHMEM);
126 }
127 
__vmalloc_node_range_noprof(unsigned long size,unsigned long align,unsigned long start,unsigned long end,gfp_t gfp_mask,pgprot_t prot,unsigned long vm_flags,int node,const void * caller)128 void *__vmalloc_node_range_noprof(unsigned long size, unsigned long align,
129 		unsigned long start, unsigned long end, gfp_t gfp_mask,
130 		pgprot_t prot, unsigned long vm_flags, int node,
131 		const void *caller)
132 {
133 	return __vmalloc_noprof(size, gfp_mask);
134 }
135 
__vmalloc_node_noprof(unsigned long size,unsigned long align,gfp_t gfp_mask,int node,const void * caller)136 void *__vmalloc_node_noprof(unsigned long size, unsigned long align, gfp_t gfp_mask,
137 		int node, const void *caller)
138 {
139 	return __vmalloc_noprof(size, gfp_mask);
140 }
141 
__vmalloc_user_flags(unsigned long size,gfp_t flags)142 static void *__vmalloc_user_flags(unsigned long size, gfp_t flags)
143 {
144 	void *ret;
145 
146 	ret = __vmalloc(size, flags);
147 	if (ret) {
148 		struct vm_area_struct *vma;
149 
150 		mmap_write_lock(current->mm);
151 		vma = find_vma(current->mm, (unsigned long)ret);
152 		if (vma)
153 			vm_flags_set(vma, VM_USERMAP);
154 		mmap_write_unlock(current->mm);
155 	}
156 
157 	return ret;
158 }
159 
vmalloc_user_noprof(unsigned long size)160 void *vmalloc_user_noprof(unsigned long size)
161 {
162 	return __vmalloc_user_flags(size, GFP_KERNEL | __GFP_ZERO);
163 }
164 EXPORT_SYMBOL(vmalloc_user_noprof);
165 
vmalloc_to_page(const void * addr)166 struct page *vmalloc_to_page(const void *addr)
167 {
168 	return virt_to_page(addr);
169 }
170 EXPORT_SYMBOL(vmalloc_to_page);
171 
vmalloc_to_pfn(const void * addr)172 unsigned long vmalloc_to_pfn(const void *addr)
173 {
174 	return page_to_pfn(virt_to_page(addr));
175 }
176 EXPORT_SYMBOL(vmalloc_to_pfn);
177 
vread_iter(struct iov_iter * iter,const char * addr,size_t count)178 long vread_iter(struct iov_iter *iter, const char *addr, size_t count)
179 {
180 	/* Don't allow overflow */
181 	if ((unsigned long) addr + count < count)
182 		count = -(unsigned long) addr;
183 
184 	return copy_to_iter(addr, count, iter);
185 }
186 
187 /*
188  *	vmalloc  -  allocate virtually contiguous memory
189  *
190  *	@size:		allocation size
191  *
192  *	Allocate enough pages to cover @size from the page level
193  *	allocator and map them into contiguous kernel virtual space.
194  *
195  *	For tight control over page level allocator and protection flags
196  *	use __vmalloc() instead.
197  */
vmalloc_noprof(unsigned long size)198 void *vmalloc_noprof(unsigned long size)
199 {
200 	return __vmalloc_noprof(size, GFP_KERNEL);
201 }
202 EXPORT_SYMBOL(vmalloc_noprof);
203 
204 /*
205  *	vmalloc_huge_node  -  allocate virtually contiguous memory, on a node
206  *
207  *	@size:		allocation size
208  *	@gfp_mask:	flags for the page level allocator
209  *	@node:          node to use for allocation or NUMA_NO_NODE
210  *
211  *	Allocate enough pages to cover @size from the page level
212  *	allocator and map them into contiguous kernel virtual space.
213  *
214  *	Due to NOMMU implications the node argument and HUGE page attribute is
215  *	ignored.
216  */
vmalloc_huge_node_noprof(unsigned long size,gfp_t gfp_mask,int node)217 void *vmalloc_huge_node_noprof(unsigned long size, gfp_t gfp_mask, int node)
218 {
219 	return __vmalloc_noprof(size, gfp_mask);
220 }
221 
222 /*
223  *	vzalloc - allocate virtually contiguous memory with zero fill
224  *
225  *	@size:		allocation size
226  *
227  *	Allocate enough pages to cover @size from the page level
228  *	allocator and map them into contiguous kernel virtual space.
229  *	The memory allocated is set to zero.
230  *
231  *	For tight control over page level allocator and protection flags
232  *	use __vmalloc() instead.
233  */
vzalloc_noprof(unsigned long size)234 void *vzalloc_noprof(unsigned long size)
235 {
236 	return __vmalloc_noprof(size, GFP_KERNEL | __GFP_ZERO);
237 }
238 EXPORT_SYMBOL(vzalloc_noprof);
239 
240 /**
241  * vmalloc_node - allocate memory on a specific node
242  * @size:	allocation size
243  * @node:	numa node
244  *
245  * Allocate enough pages to cover @size from the page level
246  * allocator and map them into contiguous kernel virtual space.
247  *
248  * For tight control over page level allocator and protection flags
249  * use __vmalloc() instead.
250  */
vmalloc_node_noprof(unsigned long size,int node)251 void *vmalloc_node_noprof(unsigned long size, int node)
252 {
253 	return vmalloc_noprof(size);
254 }
255 EXPORT_SYMBOL(vmalloc_node_noprof);
256 
257 /**
258  * vzalloc_node - allocate memory on a specific node with zero fill
259  * @size:	allocation size
260  * @node:	numa node
261  *
262  * Allocate enough pages to cover @size from the page level
263  * allocator and map them into contiguous kernel virtual space.
264  * The memory allocated is set to zero.
265  *
266  * For tight control over page level allocator and protection flags
267  * use __vmalloc() instead.
268  */
vzalloc_node_noprof(unsigned long size,int node)269 void *vzalloc_node_noprof(unsigned long size, int node)
270 {
271 	return vzalloc_noprof(size);
272 }
273 EXPORT_SYMBOL(vzalloc_node_noprof);
274 
275 /**
276  * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
277  *	@size:		allocation size
278  *
279  *	Allocate enough 32bit PA addressable pages to cover @size from the
280  *	page level allocator and map them into contiguous kernel virtual space.
281  */
vmalloc_32_noprof(unsigned long size)282 void *vmalloc_32_noprof(unsigned long size)
283 {
284 	return __vmalloc_noprof(size, GFP_KERNEL);
285 }
286 EXPORT_SYMBOL(vmalloc_32_noprof);
287 
288 /**
289  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
290  *	@size:		allocation size
291  *
292  * The resulting memory area is 32bit addressable and zeroed so it can be
293  * mapped to userspace without leaking data.
294  *
295  * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
296  * remap_vmalloc_range() are permissible.
297  */
vmalloc_32_user_noprof(unsigned long size)298 void *vmalloc_32_user_noprof(unsigned long size)
299 {
300 	/*
301 	 * We'll have to sort out the ZONE_DMA bits for 64-bit,
302 	 * but for now this can simply use vmalloc_user() directly.
303 	 */
304 	return vmalloc_user_noprof(size);
305 }
306 EXPORT_SYMBOL(vmalloc_32_user_noprof);
307 
vmap(struct page ** pages,unsigned int count,unsigned long flags,pgprot_t prot)308 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
309 {
310 	BUG();
311 	return NULL;
312 }
313 EXPORT_SYMBOL(vmap);
314 
vunmap(const void * addr)315 void vunmap(const void *addr)
316 {
317 	BUG();
318 }
319 EXPORT_SYMBOL(vunmap);
320 
vm_map_ram(struct page ** pages,unsigned int count,int node)321 void *vm_map_ram(struct page **pages, unsigned int count, int node)
322 {
323 	BUG();
324 	return NULL;
325 }
326 EXPORT_SYMBOL(vm_map_ram);
327 
vm_unmap_ram(const void * mem,unsigned int count)328 void vm_unmap_ram(const void *mem, unsigned int count)
329 {
330 	BUG();
331 }
332 EXPORT_SYMBOL(vm_unmap_ram);
333 
vm_unmap_aliases(void)334 void vm_unmap_aliases(void)
335 {
336 }
337 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
338 
free_vm_area(struct vm_struct * area)339 void free_vm_area(struct vm_struct *area)
340 {
341 	BUG();
342 }
343 EXPORT_SYMBOL_GPL(free_vm_area);
344 
vm_insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page)345 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
346 		   struct page *page)
347 {
348 	return -EINVAL;
349 }
350 EXPORT_SYMBOL(vm_insert_page);
351 
vm_insert_pages(struct vm_area_struct * vma,unsigned long addr,struct page ** pages,unsigned long * num)352 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
353 			struct page **pages, unsigned long *num)
354 {
355 	return -EINVAL;
356 }
357 EXPORT_SYMBOL(vm_insert_pages);
358 
vm_map_pages(struct vm_area_struct * vma,struct page ** pages,unsigned long num)359 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
360 			unsigned long num)
361 {
362 	return -EINVAL;
363 }
364 EXPORT_SYMBOL(vm_map_pages);
365 
vm_map_pages_zero(struct vm_area_struct * vma,struct page ** pages,unsigned long num)366 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
367 				unsigned long num)
368 {
369 	return -EINVAL;
370 }
371 EXPORT_SYMBOL(vm_map_pages_zero);
372 
373 /*
374  *  sys_brk() for the most part doesn't need the global kernel
375  *  lock, except when an application is doing something nasty
376  *  like trying to un-brk an area that has already been mapped
377  *  to a regular file.  in this case, the unmapping will need
378  *  to invoke file system routines that need the global lock.
379  */
SYSCALL_DEFINE1(brk,unsigned long,brk)380 SYSCALL_DEFINE1(brk, unsigned long, brk)
381 {
382 	struct mm_struct *mm = current->mm;
383 
384 	if (brk < mm->start_brk || brk > mm->context.end_brk)
385 		return mm->brk;
386 
387 	if (mm->brk == brk)
388 		return mm->brk;
389 
390 	/*
391 	 * Always allow shrinking brk
392 	 */
393 	if (brk <= mm->brk) {
394 		mm->brk = brk;
395 		return brk;
396 	}
397 
398 	/*
399 	 * Ok, looks good - let it rip.
400 	 */
401 	flush_icache_user_range(mm->brk, brk);
402 	return mm->brk = brk;
403 }
404 
405 static int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
406 
407 static const struct ctl_table nommu_table[] = {
408 	{
409 		.procname	= "nr_trim_pages",
410 		.data		= &sysctl_nr_trim_pages,
411 		.maxlen		= sizeof(sysctl_nr_trim_pages),
412 		.mode		= 0644,
413 		.proc_handler	= proc_dointvec_minmax,
414 		.extra1		= SYSCTL_ZERO,
415 	},
416 };
417 
418 /*
419  * initialise the percpu counter for VM and region record slabs, initialise VMA
420  * state.
421  */
mmap_init(void)422 void __init mmap_init(void)
423 {
424 	int ret;
425 
426 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
427 	VM_BUG_ON(ret);
428 	vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT);
429 	register_sysctl_init("vm", nommu_table);
430 	vma_state_init();
431 }
432 
433 /*
434  * validate the region tree
435  * - the caller must hold the region lock
436  */
437 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
validate_nommu_regions(void)438 static noinline void validate_nommu_regions(void)
439 {
440 	struct vm_region *region, *last;
441 	struct rb_node *p, *lastp;
442 
443 	lastp = rb_first(&nommu_region_tree);
444 	if (!lastp)
445 		return;
446 
447 	last = rb_entry(lastp, struct vm_region, vm_rb);
448 	BUG_ON(last->vm_end <= last->vm_start);
449 	BUG_ON(last->vm_top < last->vm_end);
450 
451 	while ((p = rb_next(lastp))) {
452 		region = rb_entry(p, struct vm_region, vm_rb);
453 		last = rb_entry(lastp, struct vm_region, vm_rb);
454 
455 		BUG_ON(region->vm_end <= region->vm_start);
456 		BUG_ON(region->vm_top < region->vm_end);
457 		BUG_ON(region->vm_start < last->vm_top);
458 
459 		lastp = p;
460 	}
461 }
462 #else
validate_nommu_regions(void)463 static void validate_nommu_regions(void)
464 {
465 }
466 #endif
467 
468 /*
469  * add a region into the global tree
470  */
add_nommu_region(struct vm_region * region)471 static void add_nommu_region(struct vm_region *region)
472 {
473 	struct vm_region *pregion;
474 	struct rb_node **p, *parent;
475 
476 	validate_nommu_regions();
477 
478 	parent = NULL;
479 	p = &nommu_region_tree.rb_node;
480 	while (*p) {
481 		parent = *p;
482 		pregion = rb_entry(parent, struct vm_region, vm_rb);
483 		if (region->vm_start < pregion->vm_start)
484 			p = &(*p)->rb_left;
485 		else if (region->vm_start > pregion->vm_start)
486 			p = &(*p)->rb_right;
487 		else if (pregion == region)
488 			return;
489 		else
490 			BUG();
491 	}
492 
493 	rb_link_node(&region->vm_rb, parent, p);
494 	rb_insert_color(&region->vm_rb, &nommu_region_tree);
495 
496 	validate_nommu_regions();
497 }
498 
499 /*
500  * delete a region from the global tree
501  */
delete_nommu_region(struct vm_region * region)502 static void delete_nommu_region(struct vm_region *region)
503 {
504 	BUG_ON(!nommu_region_tree.rb_node);
505 
506 	validate_nommu_regions();
507 	rb_erase(&region->vm_rb, &nommu_region_tree);
508 	validate_nommu_regions();
509 }
510 
511 /*
512  * free a contiguous series of pages
513  */
free_page_series(unsigned long from,unsigned long to)514 static void free_page_series(unsigned long from, unsigned long to)
515 {
516 	for (; from < to; from += PAGE_SIZE) {
517 		struct page *page = virt_to_page((void *)from);
518 
519 		atomic_long_dec(&mmap_pages_allocated);
520 		put_page(page);
521 	}
522 }
523 
524 /*
525  * release a reference to a region
526  * - the caller must hold the region semaphore for writing, which this releases
527  * - the region may not have been added to the tree yet, in which case vm_top
528  *   will equal vm_start
529  */
__put_nommu_region(struct vm_region * region)530 static void __put_nommu_region(struct vm_region *region)
531 	__releases(nommu_region_sem)
532 {
533 	BUG_ON(!nommu_region_tree.rb_node);
534 
535 	if (--region->vm_usage == 0) {
536 		if (region->vm_top > region->vm_start)
537 			delete_nommu_region(region);
538 		up_write(&nommu_region_sem);
539 
540 		if (region->vm_file)
541 			fput(region->vm_file);
542 
543 		/* IO memory and memory shared directly out of the pagecache
544 		 * from ramfs/tmpfs mustn't be released here */
545 		if (region->vm_flags & VM_MAPPED_COPY)
546 			free_page_series(region->vm_start, region->vm_top);
547 		kmem_cache_free(vm_region_jar, region);
548 	} else {
549 		up_write(&nommu_region_sem);
550 	}
551 }
552 
553 /*
554  * release a reference to a region
555  */
put_nommu_region(struct vm_region * region)556 static void put_nommu_region(struct vm_region *region)
557 {
558 	down_write(&nommu_region_sem);
559 	__put_nommu_region(region);
560 }
561 
setup_vma_to_mm(struct vm_area_struct * vma,struct mm_struct * mm)562 static void setup_vma_to_mm(struct vm_area_struct *vma, struct mm_struct *mm)
563 {
564 	vma->vm_mm = mm;
565 
566 	/* add the VMA to the mapping */
567 	if (vma->vm_file) {
568 		struct address_space *mapping = vma->vm_file->f_mapping;
569 
570 		i_mmap_lock_write(mapping);
571 		flush_dcache_mmap_lock(mapping);
572 		vma_interval_tree_insert(vma, &mapping->i_mmap);
573 		flush_dcache_mmap_unlock(mapping);
574 		i_mmap_unlock_write(mapping);
575 	}
576 }
577 
cleanup_vma_from_mm(struct vm_area_struct * vma)578 static void cleanup_vma_from_mm(struct vm_area_struct *vma)
579 {
580 	vma->vm_mm->map_count--;
581 	/* remove the VMA from the mapping */
582 	if (vma->vm_file) {
583 		struct address_space *mapping;
584 		mapping = vma->vm_file->f_mapping;
585 
586 		i_mmap_lock_write(mapping);
587 		flush_dcache_mmap_lock(mapping);
588 		vma_interval_tree_remove(vma, &mapping->i_mmap);
589 		flush_dcache_mmap_unlock(mapping);
590 		i_mmap_unlock_write(mapping);
591 	}
592 }
593 
594 /*
595  * delete a VMA from its owning mm_struct and address space
596  */
delete_vma_from_mm(struct vm_area_struct * vma)597 static int delete_vma_from_mm(struct vm_area_struct *vma)
598 {
599 	VMA_ITERATOR(vmi, vma->vm_mm, vma->vm_start);
600 
601 	vma_iter_config(&vmi, vma->vm_start, vma->vm_end);
602 	if (vma_iter_prealloc(&vmi, NULL)) {
603 		pr_warn("Allocation of vma tree for process %d failed\n",
604 		       current->pid);
605 		return -ENOMEM;
606 	}
607 	cleanup_vma_from_mm(vma);
608 
609 	/* remove from the MM's tree and list */
610 	vma_iter_clear(&vmi);
611 	return 0;
612 }
613 /*
614  * destroy a VMA record
615  */
delete_vma(struct mm_struct * mm,struct vm_area_struct * vma)616 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
617 {
618 	vma_close(vma);
619 	if (vma->vm_file)
620 		fput(vma->vm_file);
621 	put_nommu_region(vma->vm_region);
622 	vm_area_free(vma);
623 }
624 
find_vma_intersection(struct mm_struct * mm,unsigned long start_addr,unsigned long end_addr)625 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
626 					     unsigned long start_addr,
627 					     unsigned long end_addr)
628 {
629 	unsigned long index = start_addr;
630 
631 	mmap_assert_locked(mm);
632 	return mt_find(&mm->mm_mt, &index, end_addr - 1);
633 }
634 EXPORT_SYMBOL(find_vma_intersection);
635 
636 /*
637  * look up the first VMA in which addr resides, NULL if none
638  * - should be called with mm->mmap_lock at least held readlocked
639  */
find_vma(struct mm_struct * mm,unsigned long addr)640 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
641 {
642 	VMA_ITERATOR(vmi, mm, addr);
643 
644 	return vma_iter_load(&vmi);
645 }
646 EXPORT_SYMBOL(find_vma);
647 
648 /*
649  * expand a stack to a given address
650  * - not supported under NOMMU conditions
651  */
expand_stack_locked(struct vm_area_struct * vma,unsigned long addr)652 int expand_stack_locked(struct vm_area_struct *vma, unsigned long addr)
653 {
654 	return -ENOMEM;
655 }
656 
expand_stack(struct mm_struct * mm,unsigned long addr)657 struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr)
658 {
659 	mmap_read_unlock(mm);
660 	return NULL;
661 }
662 
663 /*
664  * look up the first VMA exactly that exactly matches addr
665  * - should be called with mm->mmap_lock at least held readlocked
666  */
find_vma_exact(struct mm_struct * mm,unsigned long addr,unsigned long len)667 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
668 					     unsigned long addr,
669 					     unsigned long len)
670 {
671 	struct vm_area_struct *vma;
672 	unsigned long end = addr + len;
673 	VMA_ITERATOR(vmi, mm, addr);
674 
675 	vma = vma_iter_load(&vmi);
676 	if (!vma)
677 		return NULL;
678 	if (vma->vm_start != addr)
679 		return NULL;
680 	if (vma->vm_end != end)
681 		return NULL;
682 
683 	return vma;
684 }
685 
686 /*
687  * determine whether a mapping should be permitted and, if so, what sort of
688  * mapping we're capable of supporting
689  */
validate_mmap_request(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,unsigned long pgoff,unsigned long * _capabilities)690 static int validate_mmap_request(struct file *file,
691 				 unsigned long addr,
692 				 unsigned long len,
693 				 unsigned long prot,
694 				 unsigned long flags,
695 				 unsigned long pgoff,
696 				 unsigned long *_capabilities)
697 {
698 	unsigned long capabilities, rlen;
699 	int ret;
700 
701 	/* do the simple checks first */
702 	if (flags & MAP_FIXED)
703 		return -EINVAL;
704 
705 	if ((flags & MAP_TYPE) != MAP_PRIVATE &&
706 	    (flags & MAP_TYPE) != MAP_SHARED)
707 		return -EINVAL;
708 
709 	if (!len)
710 		return -EINVAL;
711 
712 	/* Careful about overflows.. */
713 	rlen = PAGE_ALIGN(len);
714 	if (!rlen || rlen > TASK_SIZE)
715 		return -ENOMEM;
716 
717 	/* offset overflow? */
718 	if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
719 		return -EOVERFLOW;
720 
721 	if (file) {
722 		/* files must support mmap */
723 		if (!can_mmap_file(file))
724 			return -ENODEV;
725 
726 		/* work out if what we've got could possibly be shared
727 		 * - we support chardevs that provide their own "memory"
728 		 * - we support files/blockdevs that are memory backed
729 		 */
730 		if (file->f_op->mmap_capabilities) {
731 			capabilities = file->f_op->mmap_capabilities(file);
732 		} else {
733 			/* no explicit capabilities set, so assume some
734 			 * defaults */
735 			switch (file_inode(file)->i_mode & S_IFMT) {
736 			case S_IFREG:
737 			case S_IFBLK:
738 				capabilities = NOMMU_MAP_COPY;
739 				break;
740 
741 			case S_IFCHR:
742 				capabilities =
743 					NOMMU_MAP_DIRECT |
744 					NOMMU_MAP_READ |
745 					NOMMU_MAP_WRITE;
746 				break;
747 
748 			default:
749 				return -EINVAL;
750 			}
751 		}
752 
753 		/* eliminate any capabilities that we can't support on this
754 		 * device */
755 		if (!file->f_op->get_unmapped_area)
756 			capabilities &= ~NOMMU_MAP_DIRECT;
757 		if (!(file->f_mode & FMODE_CAN_READ))
758 			capabilities &= ~NOMMU_MAP_COPY;
759 
760 		/* The file shall have been opened with read permission. */
761 		if (!(file->f_mode & FMODE_READ))
762 			return -EACCES;
763 
764 		if (flags & MAP_SHARED) {
765 			/* do checks for writing, appending and locking */
766 			if ((prot & PROT_WRITE) &&
767 			    !(file->f_mode & FMODE_WRITE))
768 				return -EACCES;
769 
770 			if (IS_APPEND(file_inode(file)) &&
771 			    (file->f_mode & FMODE_WRITE))
772 				return -EACCES;
773 
774 			if (!(capabilities & NOMMU_MAP_DIRECT))
775 				return -ENODEV;
776 
777 			/* we mustn't privatise shared mappings */
778 			capabilities &= ~NOMMU_MAP_COPY;
779 		} else {
780 			/* we're going to read the file into private memory we
781 			 * allocate */
782 			if (!(capabilities & NOMMU_MAP_COPY))
783 				return -ENODEV;
784 
785 			/* we don't permit a private writable mapping to be
786 			 * shared with the backing device */
787 			if (prot & PROT_WRITE)
788 				capabilities &= ~NOMMU_MAP_DIRECT;
789 		}
790 
791 		if (capabilities & NOMMU_MAP_DIRECT) {
792 			if (((prot & PROT_READ)  && !(capabilities & NOMMU_MAP_READ))  ||
793 			    ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
794 			    ((prot & PROT_EXEC)  && !(capabilities & NOMMU_MAP_EXEC))
795 			    ) {
796 				capabilities &= ~NOMMU_MAP_DIRECT;
797 				if (flags & MAP_SHARED) {
798 					pr_warn("MAP_SHARED not completely supported on !MMU\n");
799 					return -EINVAL;
800 				}
801 			}
802 		}
803 
804 		/* handle executable mappings and implied executable
805 		 * mappings */
806 		if (path_noexec(&file->f_path)) {
807 			if (prot & PROT_EXEC)
808 				return -EPERM;
809 		} else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
810 			/* handle implication of PROT_EXEC by PROT_READ */
811 			if (current->personality & READ_IMPLIES_EXEC) {
812 				if (capabilities & NOMMU_MAP_EXEC)
813 					prot |= PROT_EXEC;
814 			}
815 		} else if ((prot & PROT_READ) &&
816 			 (prot & PROT_EXEC) &&
817 			 !(capabilities & NOMMU_MAP_EXEC)
818 			 ) {
819 			/* backing file is not executable, try to copy */
820 			capabilities &= ~NOMMU_MAP_DIRECT;
821 		}
822 	} else {
823 		/* anonymous mappings are always memory backed and can be
824 		 * privately mapped
825 		 */
826 		capabilities = NOMMU_MAP_COPY;
827 
828 		/* handle PROT_EXEC implication by PROT_READ */
829 		if ((prot & PROT_READ) &&
830 		    (current->personality & READ_IMPLIES_EXEC))
831 			prot |= PROT_EXEC;
832 	}
833 
834 	/* allow the security API to have its say */
835 	ret = security_mmap_addr(addr);
836 	if (ret < 0)
837 		return ret;
838 
839 	/* looks okay */
840 	*_capabilities = capabilities;
841 	return 0;
842 }
843 
844 /*
845  * we've determined that we can make the mapping, now translate what we
846  * now know into VMA flags
847  */
determine_vm_flags(struct file * file,unsigned long prot,unsigned long flags,unsigned long capabilities)848 static vm_flags_t determine_vm_flags(struct file *file,
849 		unsigned long prot,
850 		unsigned long flags,
851 		unsigned long capabilities)
852 {
853 	vm_flags_t vm_flags;
854 
855 	vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(file, flags);
856 
857 	if (!file) {
858 		/*
859 		 * MAP_ANONYMOUS. MAP_SHARED is mapped to MAP_PRIVATE, because
860 		 * there is no fork().
861 		 */
862 		vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
863 	} else if (flags & MAP_PRIVATE) {
864 		/* MAP_PRIVATE file mapping */
865 		if (capabilities & NOMMU_MAP_DIRECT)
866 			vm_flags |= (capabilities & NOMMU_VMFLAGS);
867 		else
868 			vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
869 
870 		if (!(prot & PROT_WRITE) && !current->ptrace)
871 			/*
872 			 * R/O private file mapping which cannot be used to
873 			 * modify memory, especially also not via active ptrace
874 			 * (e.g., set breakpoints) or later by upgrading
875 			 * permissions (no mprotect()). We can try overlaying
876 			 * the file mapping, which will work e.g., on chardevs,
877 			 * ramfs/tmpfs/shmfs and romfs/cramf.
878 			 */
879 			vm_flags |= VM_MAYOVERLAY;
880 	} else {
881 		/* MAP_SHARED file mapping: NOMMU_MAP_DIRECT is set. */
882 		vm_flags |= VM_SHARED | VM_MAYSHARE |
883 			    (capabilities & NOMMU_VMFLAGS);
884 	}
885 
886 	return vm_flags;
887 }
888 
889 /*
890  * set up a shared mapping on a file (the driver or filesystem provides and
891  * pins the storage)
892  */
do_mmap_shared_file(struct vm_area_struct * vma)893 static int do_mmap_shared_file(struct vm_area_struct *vma)
894 {
895 	int ret;
896 
897 	ret = mmap_file(vma->vm_file, vma);
898 	if (ret == 0) {
899 		vma->vm_region->vm_top = vma->vm_region->vm_end;
900 		return 0;
901 	}
902 	if (ret != -ENOSYS)
903 		return ret;
904 
905 	/* getting -ENOSYS indicates that direct mmap isn't possible (as
906 	 * opposed to tried but failed) so we can only give a suitable error as
907 	 * it's not possible to make a private copy if MAP_SHARED was given */
908 	return -ENODEV;
909 }
910 
911 /*
912  * set up a private mapping or an anonymous shared mapping
913  */
do_mmap_private(struct vm_area_struct * vma,struct vm_region * region,unsigned long len,unsigned long capabilities)914 static int do_mmap_private(struct vm_area_struct *vma,
915 			   struct vm_region *region,
916 			   unsigned long len,
917 			   unsigned long capabilities)
918 {
919 	unsigned long total, point;
920 	void *base;
921 	int ret, order;
922 
923 	/*
924 	 * Invoke the file's mapping function so that it can keep track of
925 	 * shared mappings on devices or memory. VM_MAYOVERLAY will be set if
926 	 * it may attempt to share, which will make is_nommu_shared_mapping()
927 	 * happy.
928 	 */
929 	if (capabilities & NOMMU_MAP_DIRECT) {
930 		ret = mmap_file(vma->vm_file, vma);
931 		/* shouldn't return success if we're not sharing */
932 		if (WARN_ON_ONCE(!is_nommu_shared_mapping(vma->vm_flags)))
933 			ret = -ENOSYS;
934 		if (ret == 0) {
935 			vma->vm_region->vm_top = vma->vm_region->vm_end;
936 			return 0;
937 		}
938 		if (ret != -ENOSYS)
939 			return ret;
940 
941 		/* getting an ENOSYS error indicates that direct mmap isn't
942 		 * possible (as opposed to tried but failed) so we'll try to
943 		 * make a private copy of the data and map that instead */
944 	}
945 
946 
947 	/* allocate some memory to hold the mapping
948 	 * - note that this may not return a page-aligned address if the object
949 	 *   we're allocating is smaller than a page
950 	 */
951 	order = get_order(len);
952 	total = 1 << order;
953 	point = len >> PAGE_SHIFT;
954 
955 	/* we don't want to allocate a power-of-2 sized page set */
956 	if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages)
957 		total = point;
958 
959 	base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
960 	if (!base)
961 		goto enomem;
962 
963 	atomic_long_add(total, &mmap_pages_allocated);
964 
965 	vm_flags_set(vma, VM_MAPPED_COPY);
966 	region->vm_flags = vma->vm_flags;
967 	region->vm_start = (unsigned long) base;
968 	region->vm_end   = region->vm_start + len;
969 	region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
970 
971 	vma->vm_start = region->vm_start;
972 	vma->vm_end   = region->vm_start + len;
973 
974 	if (vma->vm_file) {
975 		/* read the contents of a file into the copy */
976 		loff_t fpos;
977 
978 		fpos = vma->vm_pgoff;
979 		fpos <<= PAGE_SHIFT;
980 
981 		ret = kernel_read(vma->vm_file, base, len, &fpos);
982 		if (ret < 0)
983 			goto error_free;
984 
985 		/* clear the last little bit */
986 		if (ret < len)
987 			memset(base + ret, 0, len - ret);
988 
989 	} else {
990 		vma_set_anonymous(vma);
991 	}
992 
993 	return 0;
994 
995 error_free:
996 	free_page_series(region->vm_start, region->vm_top);
997 	region->vm_start = vma->vm_start = 0;
998 	region->vm_end   = vma->vm_end = 0;
999 	region->vm_top   = 0;
1000 	return ret;
1001 
1002 enomem:
1003 	pr_err("Allocation of length %lu from process %d (%s) failed\n",
1004 	       len, current->pid, current->comm);
1005 	show_mem();
1006 	return -ENOMEM;
1007 }
1008 
1009 /*
1010  * handle mapping creation for uClinux
1011  */
do_mmap(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,vm_flags_t vm_flags,unsigned long pgoff,unsigned long * populate,struct list_head * uf)1012 unsigned long do_mmap(struct file *file,
1013 			unsigned long addr,
1014 			unsigned long len,
1015 			unsigned long prot,
1016 			unsigned long flags,
1017 			vm_flags_t vm_flags,
1018 			unsigned long pgoff,
1019 			unsigned long *populate,
1020 			struct list_head *uf)
1021 {
1022 	struct vm_area_struct *vma;
1023 	struct vm_region *region;
1024 	struct rb_node *rb;
1025 	unsigned long capabilities, result;
1026 	int ret;
1027 	VMA_ITERATOR(vmi, current->mm, 0);
1028 
1029 	*populate = 0;
1030 
1031 	/* decide whether we should attempt the mapping, and if so what sort of
1032 	 * mapping */
1033 	ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1034 				    &capabilities);
1035 	if (ret < 0)
1036 		return ret;
1037 
1038 	/* we ignore the address hint */
1039 	addr = 0;
1040 	len = PAGE_ALIGN(len);
1041 
1042 	/* we've determined that we can make the mapping, now translate what we
1043 	 * now know into VMA flags */
1044 	vm_flags |= determine_vm_flags(file, prot, flags, capabilities);
1045 
1046 
1047 	/* we're going to need to record the mapping */
1048 	region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1049 	if (!region)
1050 		goto error_getting_region;
1051 
1052 	vma = vm_area_alloc(current->mm);
1053 	if (!vma)
1054 		goto error_getting_vma;
1055 
1056 	region->vm_usage = 1;
1057 	region->vm_flags = vm_flags;
1058 	region->vm_pgoff = pgoff;
1059 
1060 	vm_flags_init(vma, vm_flags);
1061 	vma->vm_pgoff = pgoff;
1062 
1063 	if (file) {
1064 		region->vm_file = get_file(file);
1065 		vma->vm_file = get_file(file);
1066 	}
1067 
1068 	down_write(&nommu_region_sem);
1069 
1070 	/* if we want to share, we need to check for regions created by other
1071 	 * mmap() calls that overlap with our proposed mapping
1072 	 * - we can only share with a superset match on most regular files
1073 	 * - shared mappings on character devices and memory backed files are
1074 	 *   permitted to overlap inexactly as far as we are concerned for in
1075 	 *   these cases, sharing is handled in the driver or filesystem rather
1076 	 *   than here
1077 	 */
1078 	if (is_nommu_shared_mapping(vm_flags)) {
1079 		struct vm_region *pregion;
1080 		unsigned long pglen, rpglen, pgend, rpgend, start;
1081 
1082 		pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1083 		pgend = pgoff + pglen;
1084 
1085 		for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1086 			pregion = rb_entry(rb, struct vm_region, vm_rb);
1087 
1088 			if (!is_nommu_shared_mapping(pregion->vm_flags))
1089 				continue;
1090 
1091 			/* search for overlapping mappings on the same file */
1092 			if (file_inode(pregion->vm_file) !=
1093 			    file_inode(file))
1094 				continue;
1095 
1096 			if (pregion->vm_pgoff >= pgend)
1097 				continue;
1098 
1099 			rpglen = pregion->vm_end - pregion->vm_start;
1100 			rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1101 			rpgend = pregion->vm_pgoff + rpglen;
1102 			if (pgoff >= rpgend)
1103 				continue;
1104 
1105 			/* handle inexactly overlapping matches between
1106 			 * mappings */
1107 			if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1108 			    !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1109 				/* new mapping is not a subset of the region */
1110 				if (!(capabilities & NOMMU_MAP_DIRECT))
1111 					goto sharing_violation;
1112 				continue;
1113 			}
1114 
1115 			/* we've found a region we can share */
1116 			pregion->vm_usage++;
1117 			vma->vm_region = pregion;
1118 			start = pregion->vm_start;
1119 			start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1120 			vma->vm_start = start;
1121 			vma->vm_end = start + len;
1122 
1123 			if (pregion->vm_flags & VM_MAPPED_COPY)
1124 				vm_flags_set(vma, VM_MAPPED_COPY);
1125 			else {
1126 				ret = do_mmap_shared_file(vma);
1127 				if (ret < 0) {
1128 					vma->vm_region = NULL;
1129 					vma->vm_start = 0;
1130 					vma->vm_end = 0;
1131 					pregion->vm_usage--;
1132 					pregion = NULL;
1133 					goto error_just_free;
1134 				}
1135 			}
1136 			fput(region->vm_file);
1137 			kmem_cache_free(vm_region_jar, region);
1138 			region = pregion;
1139 			result = start;
1140 			goto share;
1141 		}
1142 
1143 		/* obtain the address at which to make a shared mapping
1144 		 * - this is the hook for quasi-memory character devices to
1145 		 *   tell us the location of a shared mapping
1146 		 */
1147 		if (capabilities & NOMMU_MAP_DIRECT) {
1148 			addr = file->f_op->get_unmapped_area(file, addr, len,
1149 							     pgoff, flags);
1150 			if (IS_ERR_VALUE(addr)) {
1151 				ret = addr;
1152 				if (ret != -ENOSYS)
1153 					goto error_just_free;
1154 
1155 				/* the driver refused to tell us where to site
1156 				 * the mapping so we'll have to attempt to copy
1157 				 * it */
1158 				ret = -ENODEV;
1159 				if (!(capabilities & NOMMU_MAP_COPY))
1160 					goto error_just_free;
1161 
1162 				capabilities &= ~NOMMU_MAP_DIRECT;
1163 			} else {
1164 				vma->vm_start = region->vm_start = addr;
1165 				vma->vm_end = region->vm_end = addr + len;
1166 			}
1167 		}
1168 	}
1169 
1170 	vma->vm_region = region;
1171 
1172 	/* set up the mapping
1173 	 * - the region is filled in if NOMMU_MAP_DIRECT is still set
1174 	 */
1175 	if (file && vma->vm_flags & VM_SHARED)
1176 		ret = do_mmap_shared_file(vma);
1177 	else
1178 		ret = do_mmap_private(vma, region, len, capabilities);
1179 	if (ret < 0)
1180 		goto error_just_free;
1181 	add_nommu_region(region);
1182 
1183 	/* clear anonymous mappings that don't ask for uninitialized data */
1184 	if (!vma->vm_file &&
1185 	    (!IS_ENABLED(CONFIG_MMAP_ALLOW_UNINITIALIZED) ||
1186 	     !(flags & MAP_UNINITIALIZED)))
1187 		memset((void *)region->vm_start, 0,
1188 		       region->vm_end - region->vm_start);
1189 
1190 	/* okay... we have a mapping; now we have to register it */
1191 	result = vma->vm_start;
1192 
1193 	current->mm->total_vm += len >> PAGE_SHIFT;
1194 
1195 share:
1196 	BUG_ON(!vma->vm_region);
1197 	vma_iter_config(&vmi, vma->vm_start, vma->vm_end);
1198 	if (vma_iter_prealloc(&vmi, vma))
1199 		goto error_just_free;
1200 
1201 	setup_vma_to_mm(vma, current->mm);
1202 	current->mm->map_count++;
1203 	/* add the VMA to the tree */
1204 	vma_iter_store_new(&vmi, vma);
1205 
1206 	/* we flush the region from the icache only when the first executable
1207 	 * mapping of it is made  */
1208 	if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1209 		flush_icache_user_range(region->vm_start, region->vm_end);
1210 		region->vm_icache_flushed = true;
1211 	}
1212 
1213 	up_write(&nommu_region_sem);
1214 
1215 	return result;
1216 
1217 error_just_free:
1218 	up_write(&nommu_region_sem);
1219 error:
1220 	vma_iter_free(&vmi);
1221 	if (region->vm_file)
1222 		fput(region->vm_file);
1223 	kmem_cache_free(vm_region_jar, region);
1224 	if (vma->vm_file)
1225 		fput(vma->vm_file);
1226 	vm_area_free(vma);
1227 	return ret;
1228 
1229 sharing_violation:
1230 	up_write(&nommu_region_sem);
1231 	pr_warn("Attempt to share mismatched mappings\n");
1232 	ret = -EINVAL;
1233 	goto error;
1234 
1235 error_getting_vma:
1236 	kmem_cache_free(vm_region_jar, region);
1237 	pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
1238 			len, current->pid);
1239 	show_mem();
1240 	return -ENOMEM;
1241 
1242 error_getting_region:
1243 	pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
1244 			len, current->pid);
1245 	show_mem();
1246 	return -ENOMEM;
1247 }
1248 
ksys_mmap_pgoff(unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,unsigned long fd,unsigned long pgoff)1249 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1250 			      unsigned long prot, unsigned long flags,
1251 			      unsigned long fd, unsigned long pgoff)
1252 {
1253 	struct file *file = NULL;
1254 	unsigned long retval = -EBADF;
1255 
1256 	audit_mmap_fd(fd, flags);
1257 	if (!(flags & MAP_ANONYMOUS)) {
1258 		file = fget(fd);
1259 		if (!file)
1260 			goto out;
1261 	}
1262 
1263 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1264 
1265 	if (file)
1266 		fput(file);
1267 out:
1268 	return retval;
1269 }
1270 
SYSCALL_DEFINE6(mmap_pgoff,unsigned long,addr,unsigned long,len,unsigned long,prot,unsigned long,flags,unsigned long,fd,unsigned long,pgoff)1271 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1272 		unsigned long, prot, unsigned long, flags,
1273 		unsigned long, fd, unsigned long, pgoff)
1274 {
1275 	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1276 }
1277 
1278 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1279 struct mmap_arg_struct {
1280 	unsigned long addr;
1281 	unsigned long len;
1282 	unsigned long prot;
1283 	unsigned long flags;
1284 	unsigned long fd;
1285 	unsigned long offset;
1286 };
1287 
SYSCALL_DEFINE1(old_mmap,struct mmap_arg_struct __user *,arg)1288 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1289 {
1290 	struct mmap_arg_struct a;
1291 
1292 	if (copy_from_user(&a, arg, sizeof(a)))
1293 		return -EFAULT;
1294 	if (offset_in_page(a.offset))
1295 		return -EINVAL;
1296 
1297 	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1298 			       a.offset >> PAGE_SHIFT);
1299 }
1300 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1301 
1302 /*
1303  * split a vma into two pieces at address 'addr', a new vma is allocated either
1304  * for the first part or the tail.
1305  */
split_vma(struct vma_iterator * vmi,struct vm_area_struct * vma,unsigned long addr,int new_below)1306 static int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
1307 		     unsigned long addr, int new_below)
1308 {
1309 	struct vm_area_struct *new;
1310 	struct vm_region *region;
1311 	unsigned long npages;
1312 	struct mm_struct *mm;
1313 
1314 	/* we're only permitted to split anonymous regions (these should have
1315 	 * only a single usage on the region) */
1316 	if (vma->vm_file)
1317 		return -ENOMEM;
1318 
1319 	mm = vma->vm_mm;
1320 	if (mm->map_count >= sysctl_max_map_count)
1321 		return -ENOMEM;
1322 
1323 	region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1324 	if (!region)
1325 		return -ENOMEM;
1326 
1327 	new = vm_area_dup(vma);
1328 	if (!new)
1329 		goto err_vma_dup;
1330 
1331 	/* most fields are the same, copy all, and then fixup */
1332 	*region = *vma->vm_region;
1333 	new->vm_region = region;
1334 
1335 	npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1336 
1337 	if (new_below) {
1338 		region->vm_top = region->vm_end = new->vm_end = addr;
1339 	} else {
1340 		region->vm_start = new->vm_start = addr;
1341 		region->vm_pgoff = new->vm_pgoff += npages;
1342 	}
1343 
1344 	vma_iter_config(vmi, new->vm_start, new->vm_end);
1345 	if (vma_iter_prealloc(vmi, vma)) {
1346 		pr_warn("Allocation of vma tree for process %d failed\n",
1347 			current->pid);
1348 		goto err_vmi_preallocate;
1349 	}
1350 
1351 	if (new->vm_ops && new->vm_ops->open)
1352 		new->vm_ops->open(new);
1353 
1354 	down_write(&nommu_region_sem);
1355 	delete_nommu_region(vma->vm_region);
1356 	if (new_below) {
1357 		vma->vm_region->vm_start = vma->vm_start = addr;
1358 		vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1359 	} else {
1360 		vma->vm_region->vm_end = vma->vm_end = addr;
1361 		vma->vm_region->vm_top = addr;
1362 	}
1363 	add_nommu_region(vma->vm_region);
1364 	add_nommu_region(new->vm_region);
1365 	up_write(&nommu_region_sem);
1366 
1367 	setup_vma_to_mm(vma, mm);
1368 	setup_vma_to_mm(new, mm);
1369 	vma_iter_store_new(vmi, new);
1370 	mm->map_count++;
1371 	return 0;
1372 
1373 err_vmi_preallocate:
1374 	vm_area_free(new);
1375 err_vma_dup:
1376 	kmem_cache_free(vm_region_jar, region);
1377 	return -ENOMEM;
1378 }
1379 
1380 /*
1381  * shrink a VMA by removing the specified chunk from either the beginning or
1382  * the end
1383  */
vmi_shrink_vma(struct vma_iterator * vmi,struct vm_area_struct * vma,unsigned long from,unsigned long to)1384 static int vmi_shrink_vma(struct vma_iterator *vmi,
1385 		      struct vm_area_struct *vma,
1386 		      unsigned long from, unsigned long to)
1387 {
1388 	struct vm_region *region;
1389 
1390 	/* adjust the VMA's pointers, which may reposition it in the MM's tree
1391 	 * and list */
1392 	if (from > vma->vm_start) {
1393 		if (vma_iter_clear_gfp(vmi, from, vma->vm_end, GFP_KERNEL))
1394 			return -ENOMEM;
1395 		vma->vm_end = from;
1396 	} else {
1397 		if (vma_iter_clear_gfp(vmi, vma->vm_start, to, GFP_KERNEL))
1398 			return -ENOMEM;
1399 		vma->vm_start = to;
1400 	}
1401 
1402 	/* cut the backing region down to size */
1403 	region = vma->vm_region;
1404 	BUG_ON(region->vm_usage != 1);
1405 
1406 	down_write(&nommu_region_sem);
1407 	delete_nommu_region(region);
1408 	if (from > region->vm_start) {
1409 		to = region->vm_top;
1410 		region->vm_top = region->vm_end = from;
1411 	} else {
1412 		region->vm_start = to;
1413 	}
1414 	add_nommu_region(region);
1415 	up_write(&nommu_region_sem);
1416 
1417 	free_page_series(from, to);
1418 	return 0;
1419 }
1420 
1421 /*
1422  * release a mapping
1423  * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1424  *   VMA, though it need not cover the whole VMA
1425  */
do_munmap(struct mm_struct * mm,unsigned long start,size_t len,struct list_head * uf)1426 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf)
1427 {
1428 	VMA_ITERATOR(vmi, mm, start);
1429 	struct vm_area_struct *vma;
1430 	unsigned long end;
1431 	int ret = 0;
1432 
1433 	len = PAGE_ALIGN(len);
1434 	if (len == 0)
1435 		return -EINVAL;
1436 
1437 	end = start + len;
1438 
1439 	/* find the first potentially overlapping VMA */
1440 	vma = vma_find(&vmi, end);
1441 	if (!vma) {
1442 		static int limit;
1443 		if (limit < 5) {
1444 			pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
1445 					current->pid, current->comm,
1446 					start, start + len - 1);
1447 			limit++;
1448 		}
1449 		return -EINVAL;
1450 	}
1451 
1452 	/* we're allowed to split an anonymous VMA but not a file-backed one */
1453 	if (vma->vm_file) {
1454 		do {
1455 			if (start > vma->vm_start)
1456 				return -EINVAL;
1457 			if (end == vma->vm_end)
1458 				goto erase_whole_vma;
1459 			vma = vma_find(&vmi, end);
1460 		} while (vma);
1461 		return -EINVAL;
1462 	} else {
1463 		/* the chunk must be a subset of the VMA found */
1464 		if (start == vma->vm_start && end == vma->vm_end)
1465 			goto erase_whole_vma;
1466 		if (start < vma->vm_start || end > vma->vm_end)
1467 			return -EINVAL;
1468 		if (offset_in_page(start))
1469 			return -EINVAL;
1470 		if (end != vma->vm_end && offset_in_page(end))
1471 			return -EINVAL;
1472 		if (start != vma->vm_start && end != vma->vm_end) {
1473 			ret = split_vma(&vmi, vma, start, 1);
1474 			if (ret < 0)
1475 				return ret;
1476 		}
1477 		return vmi_shrink_vma(&vmi, vma, start, end);
1478 	}
1479 
1480 erase_whole_vma:
1481 	if (delete_vma_from_mm(vma))
1482 		ret = -ENOMEM;
1483 	else
1484 		delete_vma(mm, vma);
1485 	return ret;
1486 }
1487 
vm_munmap(unsigned long addr,size_t len)1488 int vm_munmap(unsigned long addr, size_t len)
1489 {
1490 	struct mm_struct *mm = current->mm;
1491 	int ret;
1492 
1493 	mmap_write_lock(mm);
1494 	ret = do_munmap(mm, addr, len, NULL);
1495 	mmap_write_unlock(mm);
1496 	return ret;
1497 }
1498 EXPORT_SYMBOL(vm_munmap);
1499 
SYSCALL_DEFINE2(munmap,unsigned long,addr,size_t,len)1500 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1501 {
1502 	return vm_munmap(addr, len);
1503 }
1504 
1505 /*
1506  * release all the mappings made in a process's VM space
1507  */
exit_mmap(struct mm_struct * mm)1508 void exit_mmap(struct mm_struct *mm)
1509 {
1510 	VMA_ITERATOR(vmi, mm, 0);
1511 	struct vm_area_struct *vma;
1512 
1513 	if (!mm)
1514 		return;
1515 
1516 	mm->total_vm = 0;
1517 
1518 	/*
1519 	 * Lock the mm to avoid assert complaining even though this is the only
1520 	 * user of the mm
1521 	 */
1522 	mmap_write_lock(mm);
1523 	for_each_vma(vmi, vma) {
1524 		cleanup_vma_from_mm(vma);
1525 		delete_vma(mm, vma);
1526 		cond_resched();
1527 	}
1528 	__mt_destroy(&mm->mm_mt);
1529 	mmap_write_unlock(mm);
1530 }
1531 
1532 /*
1533  * expand (or shrink) an existing mapping, potentially moving it at the same
1534  * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1535  *
1536  * under NOMMU conditions, we only permit changing a mapping's size, and only
1537  * as long as it stays within the region allocated by do_mmap_private() and the
1538  * block is not shareable
1539  *
1540  * MREMAP_FIXED is not supported under NOMMU conditions
1541  */
do_mremap(unsigned long addr,unsigned long old_len,unsigned long new_len,unsigned long flags,unsigned long new_addr)1542 static unsigned long do_mremap(unsigned long addr,
1543 			unsigned long old_len, unsigned long new_len,
1544 			unsigned long flags, unsigned long new_addr)
1545 {
1546 	struct vm_area_struct *vma;
1547 
1548 	/* insanity checks first */
1549 	old_len = PAGE_ALIGN(old_len);
1550 	new_len = PAGE_ALIGN(new_len);
1551 	if (old_len == 0 || new_len == 0)
1552 		return (unsigned long) -EINVAL;
1553 
1554 	if (offset_in_page(addr))
1555 		return -EINVAL;
1556 
1557 	if (flags & MREMAP_FIXED && new_addr != addr)
1558 		return (unsigned long) -EINVAL;
1559 
1560 	vma = find_vma_exact(current->mm, addr, old_len);
1561 	if (!vma)
1562 		return (unsigned long) -EINVAL;
1563 
1564 	if (vma->vm_end != vma->vm_start + old_len)
1565 		return (unsigned long) -EFAULT;
1566 
1567 	if (is_nommu_shared_mapping(vma->vm_flags))
1568 		return (unsigned long) -EPERM;
1569 
1570 	if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1571 		return (unsigned long) -ENOMEM;
1572 
1573 	/* all checks complete - do it */
1574 	vma->vm_end = vma->vm_start + new_len;
1575 	return vma->vm_start;
1576 }
1577 
SYSCALL_DEFINE5(mremap,unsigned long,addr,unsigned long,old_len,unsigned long,new_len,unsigned long,flags,unsigned long,new_addr)1578 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1579 		unsigned long, new_len, unsigned long, flags,
1580 		unsigned long, new_addr)
1581 {
1582 	unsigned long ret;
1583 
1584 	mmap_write_lock(current->mm);
1585 	ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1586 	mmap_write_unlock(current->mm);
1587 	return ret;
1588 }
1589 
remap_pfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)1590 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1591 		unsigned long pfn, unsigned long size, pgprot_t prot)
1592 {
1593 	if (addr != (pfn << PAGE_SHIFT))
1594 		return -EINVAL;
1595 
1596 	vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
1597 	return 0;
1598 }
1599 EXPORT_SYMBOL(remap_pfn_range);
1600 
vm_iomap_memory(struct vm_area_struct * vma,phys_addr_t start,unsigned long len)1601 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1602 {
1603 	unsigned long pfn = start >> PAGE_SHIFT;
1604 	unsigned long vm_len = vma->vm_end - vma->vm_start;
1605 
1606 	pfn += vma->vm_pgoff;
1607 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1608 }
1609 EXPORT_SYMBOL(vm_iomap_memory);
1610 
remap_vmalloc_range(struct vm_area_struct * vma,void * addr,unsigned long pgoff)1611 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1612 			unsigned long pgoff)
1613 {
1614 	unsigned int size = vma->vm_end - vma->vm_start;
1615 
1616 	if (!(vma->vm_flags & VM_USERMAP))
1617 		return -EINVAL;
1618 
1619 	vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1620 	vma->vm_end = vma->vm_start + size;
1621 
1622 	return 0;
1623 }
1624 EXPORT_SYMBOL(remap_vmalloc_range);
1625 
filemap_fault(struct vm_fault * vmf)1626 vm_fault_t filemap_fault(struct vm_fault *vmf)
1627 {
1628 	BUG();
1629 	return 0;
1630 }
1631 EXPORT_SYMBOL(filemap_fault);
1632 
filemap_map_pages(struct vm_fault * vmf,pgoff_t start_pgoff,pgoff_t end_pgoff)1633 vm_fault_t filemap_map_pages(struct vm_fault *vmf,
1634 		pgoff_t start_pgoff, pgoff_t end_pgoff)
1635 {
1636 	BUG();
1637 	return 0;
1638 }
1639 EXPORT_SYMBOL(filemap_map_pages);
1640 
__access_remote_vm(struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)1641 static int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
1642 			      void *buf, int len, unsigned int gup_flags)
1643 {
1644 	struct vm_area_struct *vma;
1645 	int write = gup_flags & FOLL_WRITE;
1646 
1647 	if (mmap_read_lock_killable(mm))
1648 		return 0;
1649 
1650 	/* the access must start within one of the target process's mappings */
1651 	vma = find_vma(mm, addr);
1652 	if (vma) {
1653 		/* don't overrun this mapping */
1654 		if (addr + len >= vma->vm_end)
1655 			len = vma->vm_end - addr;
1656 
1657 		/* only read or write mappings where it is permitted */
1658 		if (write && vma->vm_flags & VM_MAYWRITE)
1659 			copy_to_user_page(vma, NULL, addr,
1660 					 (void *) addr, buf, len);
1661 		else if (!write && vma->vm_flags & VM_MAYREAD)
1662 			copy_from_user_page(vma, NULL, addr,
1663 					    buf, (void *) addr, len);
1664 		else
1665 			len = 0;
1666 	} else {
1667 		len = 0;
1668 	}
1669 
1670 	mmap_read_unlock(mm);
1671 
1672 	return len;
1673 }
1674 
1675 /**
1676  * access_remote_vm - access another process' address space
1677  * @mm:		the mm_struct of the target address space
1678  * @addr:	start address to access
1679  * @buf:	source or destination buffer
1680  * @len:	number of bytes to transfer
1681  * @gup_flags:	flags modifying lookup behaviour
1682  *
1683  * The caller must hold a reference on @mm.
1684  */
access_remote_vm(struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)1685 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1686 		void *buf, int len, unsigned int gup_flags)
1687 {
1688 	return __access_remote_vm(mm, addr, buf, len, gup_flags);
1689 }
1690 
1691 /*
1692  * Access another process' address space.
1693  * - source/target buffer must be kernel space
1694  */
access_process_vm(struct task_struct * tsk,unsigned long addr,void * buf,int len,unsigned int gup_flags)1695 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1696 		unsigned int gup_flags)
1697 {
1698 	struct mm_struct *mm;
1699 
1700 	if (addr + len < addr)
1701 		return 0;
1702 
1703 	mm = get_task_mm(tsk);
1704 	if (!mm)
1705 		return 0;
1706 
1707 	len = __access_remote_vm(mm, addr, buf, len, gup_flags);
1708 
1709 	mmput(mm);
1710 	return len;
1711 }
1712 EXPORT_SYMBOL_GPL(access_process_vm);
1713 
1714 #ifdef CONFIG_BPF_SYSCALL
1715 /*
1716  * Copy a string from another process's address space as given in mm.
1717  * If there is any error return -EFAULT.
1718  */
__copy_remote_vm_str(struct mm_struct * mm,unsigned long addr,void * buf,int len)1719 static int __copy_remote_vm_str(struct mm_struct *mm, unsigned long addr,
1720 				void *buf, int len)
1721 {
1722 	unsigned long addr_end;
1723 	struct vm_area_struct *vma;
1724 	int ret = -EFAULT;
1725 
1726 	*(char *)buf = '\0';
1727 
1728 	if (mmap_read_lock_killable(mm))
1729 		return ret;
1730 
1731 	/* the access must start within one of the target process's mappings */
1732 	vma = find_vma(mm, addr);
1733 	if (!vma)
1734 		goto out;
1735 
1736 	if (check_add_overflow(addr, len, &addr_end))
1737 		goto out;
1738 
1739 	/* don't overrun this mapping */
1740 	if (addr_end > vma->vm_end)
1741 		len = vma->vm_end - addr;
1742 
1743 	/* only read mappings where it is permitted */
1744 	if (vma->vm_flags & VM_MAYREAD) {
1745 		ret = strscpy(buf, (char *)addr, len);
1746 		if (ret < 0)
1747 			ret = len - 1;
1748 	}
1749 
1750 out:
1751 	mmap_read_unlock(mm);
1752 	return ret;
1753 }
1754 
1755 /**
1756  * copy_remote_vm_str - copy a string from another process's address space.
1757  * @tsk:	the task of the target address space
1758  * @addr:	start address to read from
1759  * @buf:	destination buffer
1760  * @len:	number of bytes to copy
1761  * @gup_flags:	flags modifying lookup behaviour (unused)
1762  *
1763  * The caller must hold a reference on @mm.
1764  *
1765  * Return: number of bytes copied from @addr (source) to @buf (destination);
1766  * not including the trailing NUL. Always guaranteed to leave NUL-terminated
1767  * buffer. On any error, return -EFAULT.
1768  */
copy_remote_vm_str(struct task_struct * tsk,unsigned long addr,void * buf,int len,unsigned int gup_flags)1769 int copy_remote_vm_str(struct task_struct *tsk, unsigned long addr,
1770 		       void *buf, int len, unsigned int gup_flags)
1771 {
1772 	struct mm_struct *mm;
1773 	int ret;
1774 
1775 	if (unlikely(len == 0))
1776 		return 0;
1777 
1778 	mm = get_task_mm(tsk);
1779 	if (!mm) {
1780 		*(char *)buf = '\0';
1781 		return -EFAULT;
1782 	}
1783 
1784 	ret = __copy_remote_vm_str(mm, addr, buf, len);
1785 
1786 	mmput(mm);
1787 
1788 	return ret;
1789 }
1790 EXPORT_SYMBOL_GPL(copy_remote_vm_str);
1791 #endif /* CONFIG_BPF_SYSCALL */
1792 
1793 /**
1794  * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
1795  * @inode: The inode to check
1796  * @size: The current filesize of the inode
1797  * @newsize: The proposed filesize of the inode
1798  *
1799  * Check the shared mappings on an inode on behalf of a shrinking truncate to
1800  * make sure that any outstanding VMAs aren't broken and then shrink the
1801  * vm_regions that extend beyond so that do_mmap() doesn't
1802  * automatically grant mappings that are too large.
1803  */
nommu_shrink_inode_mappings(struct inode * inode,size_t size,size_t newsize)1804 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
1805 				size_t newsize)
1806 {
1807 	struct vm_area_struct *vma;
1808 	struct vm_region *region;
1809 	pgoff_t low, high;
1810 	size_t r_size, r_top;
1811 
1812 	low = newsize >> PAGE_SHIFT;
1813 	high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1814 
1815 	down_write(&nommu_region_sem);
1816 	i_mmap_lock_read(inode->i_mapping);
1817 
1818 	/* search for VMAs that fall within the dead zone */
1819 	vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
1820 		/* found one - only interested if it's shared out of the page
1821 		 * cache */
1822 		if (vma->vm_flags & VM_SHARED) {
1823 			i_mmap_unlock_read(inode->i_mapping);
1824 			up_write(&nommu_region_sem);
1825 			return -ETXTBSY; /* not quite true, but near enough */
1826 		}
1827 	}
1828 
1829 	/* reduce any regions that overlap the dead zone - if in existence,
1830 	 * these will be pointed to by VMAs that don't overlap the dead zone
1831 	 *
1832 	 * we don't check for any regions that start beyond the EOF as there
1833 	 * shouldn't be any
1834 	 */
1835 	vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
1836 		if (!(vma->vm_flags & VM_SHARED))
1837 			continue;
1838 
1839 		region = vma->vm_region;
1840 		r_size = region->vm_top - region->vm_start;
1841 		r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
1842 
1843 		if (r_top > newsize) {
1844 			region->vm_top -= r_top - newsize;
1845 			if (region->vm_end > region->vm_top)
1846 				region->vm_end = region->vm_top;
1847 		}
1848 	}
1849 
1850 	i_mmap_unlock_read(inode->i_mapping);
1851 	up_write(&nommu_region_sem);
1852 	return 0;
1853 }
1854 
1855 /*
1856  * Initialise sysctl_user_reserve_kbytes.
1857  *
1858  * This is intended to prevent a user from starting a single memory hogging
1859  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1860  * mode.
1861  *
1862  * The default value is min(3% of free memory, 128MB)
1863  * 128MB is enough to recover with sshd/login, bash, and top/kill.
1864  */
init_user_reserve(void)1865 static int __meminit init_user_reserve(void)
1866 {
1867 	unsigned long free_kbytes;
1868 
1869 	free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
1870 
1871 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
1872 	return 0;
1873 }
1874 subsys_initcall(init_user_reserve);
1875 
1876 /*
1877  * Initialise sysctl_admin_reserve_kbytes.
1878  *
1879  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1880  * to log in and kill a memory hogging process.
1881  *
1882  * Systems with more than 256MB will reserve 8MB, enough to recover
1883  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1884  * only reserve 3% of free pages by default.
1885  */
init_admin_reserve(void)1886 static int __meminit init_admin_reserve(void)
1887 {
1888 	unsigned long free_kbytes;
1889 
1890 	free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
1891 
1892 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
1893 	return 0;
1894 }
1895 subsys_initcall(init_admin_reserve);
1896 
dup_mmap(struct mm_struct * mm,struct mm_struct * oldmm)1897 int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
1898 {
1899 	mmap_write_lock(oldmm);
1900 	dup_mm_exe_file(mm, oldmm);
1901 	mmap_write_unlock(oldmm);
1902 	return 0;
1903 }
1904