xref: /linux/fs/btrfs/relocation.c (revision f3827213abae9291b7525b05e6fd29b1f0536ce6)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2009 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/pagemap.h>
8 #include <linux/writeback.h>
9 #include <linux/blkdev.h>
10 #include <linux/rbtree.h>
11 #include <linux/slab.h>
12 #include <linux/error-injection.h>
13 #include "ctree.h"
14 #include "disk-io.h"
15 #include "transaction.h"
16 #include "volumes.h"
17 #include "locking.h"
18 #include "btrfs_inode.h"
19 #include "async-thread.h"
20 #include "free-space-cache.h"
21 #include "qgroup.h"
22 #include "print-tree.h"
23 #include "delalloc-space.h"
24 #include "block-group.h"
25 #include "backref.h"
26 #include "misc.h"
27 #include "subpage.h"
28 #include "zoned.h"
29 #include "inode-item.h"
30 #include "space-info.h"
31 #include "fs.h"
32 #include "accessors.h"
33 #include "extent-tree.h"
34 #include "root-tree.h"
35 #include "file-item.h"
36 #include "relocation.h"
37 #include "super.h"
38 #include "tree-checker.h"
39 #include "raid-stripe-tree.h"
40 
41 /*
42  * Relocation overview
43  *
44  * [What does relocation do]
45  *
46  * The objective of relocation is to relocate all extents of the target block
47  * group to other block groups.
48  * This is utilized by resize (shrink only), profile converting, compacting
49  * space, or balance routine to spread chunks over devices.
50  *
51  * 		Before		|		After
52  * ------------------------------------------------------------------
53  *  BG A: 10 data extents	| BG A: deleted
54  *  BG B:  2 data extents	| BG B: 10 data extents (2 old + 8 relocated)
55  *  BG C:  1 extents		| BG C:  3 data extents (1 old + 2 relocated)
56  *
57  * [How does relocation work]
58  *
59  * 1.   Mark the target block group read-only
60  *      New extents won't be allocated from the target block group.
61  *
62  * 2.1  Record each extent in the target block group
63  *      To build a proper map of extents to be relocated.
64  *
65  * 2.2  Build data reloc tree and reloc trees
66  *      Data reloc tree will contain an inode, recording all newly relocated
67  *      data extents.
68  *      There will be only one data reloc tree for one data block group.
69  *
70  *      Reloc tree will be a special snapshot of its source tree, containing
71  *      relocated tree blocks.
72  *      Each tree referring to a tree block in target block group will get its
73  *      reloc tree built.
74  *
75  * 2.3  Swap source tree with its corresponding reloc tree
76  *      Each involved tree only refers to new extents after swap.
77  *
78  * 3.   Cleanup reloc trees and data reloc tree.
79  *      As old extents in the target block group are still referenced by reloc
80  *      trees, we need to clean them up before really freeing the target block
81  *      group.
82  *
83  * The main complexity is in steps 2.2 and 2.3.
84  *
85  * The entry point of relocation is relocate_block_group() function.
86  */
87 
88 #define RELOCATION_RESERVED_NODES	256
89 /*
90  * map address of tree root to tree
91  */
92 struct mapping_node {
93 	union {
94 		/* Use rb_simple_node for search/insert */
95 		struct {
96 			struct rb_node rb_node;
97 			u64 bytenr;
98 		};
99 
100 		struct rb_simple_node simple_node;
101 	};
102 	void *data;
103 };
104 
105 struct mapping_tree {
106 	struct rb_root rb_root;
107 	spinlock_t lock;
108 };
109 
110 /*
111  * present a tree block to process
112  */
113 struct tree_block {
114 	union {
115 		/* Use rb_simple_node for search/insert */
116 		struct {
117 			struct rb_node rb_node;
118 			u64 bytenr;
119 		};
120 
121 		struct rb_simple_node simple_node;
122 	};
123 	u64 owner;
124 	struct btrfs_key key;
125 	u8 level;
126 	bool key_ready;
127 };
128 
129 #define MAX_EXTENTS 128
130 
131 struct file_extent_cluster {
132 	u64 start;
133 	u64 end;
134 	u64 boundary[MAX_EXTENTS];
135 	unsigned int nr;
136 	u64 owning_root;
137 };
138 
139 /* Stages of data relocation. */
140 enum reloc_stage {
141 	MOVE_DATA_EXTENTS,
142 	UPDATE_DATA_PTRS
143 };
144 
145 struct reloc_control {
146 	/* block group to relocate */
147 	struct btrfs_block_group *block_group;
148 	/* extent tree */
149 	struct btrfs_root *extent_root;
150 	/* inode for moving data */
151 	struct inode *data_inode;
152 
153 	struct btrfs_block_rsv *block_rsv;
154 
155 	struct btrfs_backref_cache backref_cache;
156 
157 	struct file_extent_cluster cluster;
158 	/* tree blocks have been processed */
159 	struct extent_io_tree processed_blocks;
160 	/* map start of tree root to corresponding reloc tree */
161 	struct mapping_tree reloc_root_tree;
162 	/* list of reloc trees */
163 	struct list_head reloc_roots;
164 	/* list of subvolume trees that get relocated */
165 	struct list_head dirty_subvol_roots;
166 	/* size of metadata reservation for merging reloc trees */
167 	u64 merging_rsv_size;
168 	/* size of relocated tree nodes */
169 	u64 nodes_relocated;
170 	/* reserved size for block group relocation*/
171 	u64 reserved_bytes;
172 
173 	u64 search_start;
174 	u64 extents_found;
175 
176 	enum reloc_stage stage;
177 	bool create_reloc_tree;
178 	bool merge_reloc_tree;
179 	bool found_file_extent;
180 };
181 
mark_block_processed(struct reloc_control * rc,struct btrfs_backref_node * node)182 static void mark_block_processed(struct reloc_control *rc,
183 				 struct btrfs_backref_node *node)
184 {
185 	u32 blocksize;
186 
187 	if (node->level == 0 ||
188 	    in_range(node->bytenr, rc->block_group->start,
189 		     rc->block_group->length)) {
190 		blocksize = rc->extent_root->fs_info->nodesize;
191 		btrfs_set_extent_bit(&rc->processed_blocks, node->bytenr,
192 				     node->bytenr + blocksize - 1, EXTENT_DIRTY,
193 				     NULL);
194 	}
195 	node->processed = 1;
196 }
197 
198 /*
199  * walk up backref nodes until reach node presents tree root
200  */
walk_up_backref(struct btrfs_backref_node * node,struct btrfs_backref_edge * edges[],int * index)201 static struct btrfs_backref_node *walk_up_backref(
202 		struct btrfs_backref_node *node,
203 		struct btrfs_backref_edge *edges[], int *index)
204 {
205 	struct btrfs_backref_edge *edge;
206 	int idx = *index;
207 
208 	while (!list_empty(&node->upper)) {
209 		edge = list_first_entry(&node->upper, struct btrfs_backref_edge,
210 					list[LOWER]);
211 		edges[idx++] = edge;
212 		node = edge->node[UPPER];
213 	}
214 	BUG_ON(node->detached);
215 	*index = idx;
216 	return node;
217 }
218 
219 /*
220  * walk down backref nodes to find start of next reference path
221  */
walk_down_backref(struct btrfs_backref_edge * edges[],int * index)222 static struct btrfs_backref_node *walk_down_backref(
223 		struct btrfs_backref_edge *edges[], int *index)
224 {
225 	struct btrfs_backref_edge *edge;
226 	struct btrfs_backref_node *lower;
227 	int idx = *index;
228 
229 	while (idx > 0) {
230 		edge = edges[idx - 1];
231 		lower = edge->node[LOWER];
232 		if (list_is_last(&edge->list[LOWER], &lower->upper)) {
233 			idx--;
234 			continue;
235 		}
236 		edge = list_first_entry(&edge->list[LOWER], struct btrfs_backref_edge,
237 					list[LOWER]);
238 		edges[idx - 1] = edge;
239 		*index = idx;
240 		return edge->node[UPPER];
241 	}
242 	*index = 0;
243 	return NULL;
244 }
245 
reloc_root_is_dead(const struct btrfs_root * root)246 static bool reloc_root_is_dead(const struct btrfs_root *root)
247 {
248 	/*
249 	 * Pair with set_bit/clear_bit in clean_dirty_subvols and
250 	 * btrfs_update_reloc_root. We need to see the updated bit before
251 	 * trying to access reloc_root
252 	 */
253 	smp_rmb();
254 	if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state))
255 		return true;
256 	return false;
257 }
258 
259 /*
260  * Check if this subvolume tree has valid reloc tree.
261  *
262  * Reloc tree after swap is considered dead, thus not considered as valid.
263  * This is enough for most callers, as they don't distinguish dead reloc root
264  * from no reloc root.  But btrfs_should_ignore_reloc_root() below is a
265  * special case.
266  */
have_reloc_root(const struct btrfs_root * root)267 static bool have_reloc_root(const struct btrfs_root *root)
268 {
269 	if (reloc_root_is_dead(root))
270 		return false;
271 	if (!root->reloc_root)
272 		return false;
273 	return true;
274 }
275 
btrfs_should_ignore_reloc_root(const struct btrfs_root * root)276 bool btrfs_should_ignore_reloc_root(const struct btrfs_root *root)
277 {
278 	struct btrfs_root *reloc_root;
279 
280 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
281 		return false;
282 
283 	/* This root has been merged with its reloc tree, we can ignore it */
284 	if (reloc_root_is_dead(root))
285 		return true;
286 
287 	reloc_root = root->reloc_root;
288 	if (!reloc_root)
289 		return false;
290 
291 	if (btrfs_header_generation(reloc_root->commit_root) ==
292 	    root->fs_info->running_transaction->transid)
293 		return false;
294 	/*
295 	 * If there is reloc tree and it was created in previous transaction
296 	 * backref lookup can find the reloc tree, so backref node for the fs
297 	 * tree root is useless for relocation.
298 	 */
299 	return true;
300 }
301 
302 /*
303  * find reloc tree by address of tree root
304  */
find_reloc_root(struct btrfs_fs_info * fs_info,u64 bytenr)305 struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, u64 bytenr)
306 {
307 	struct reloc_control *rc = fs_info->reloc_ctl;
308 	struct rb_node *rb_node;
309 	struct mapping_node *node;
310 	struct btrfs_root *root = NULL;
311 
312 	ASSERT(rc);
313 	spin_lock(&rc->reloc_root_tree.lock);
314 	rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, bytenr);
315 	if (rb_node) {
316 		node = rb_entry(rb_node, struct mapping_node, rb_node);
317 		root = node->data;
318 	}
319 	spin_unlock(&rc->reloc_root_tree.lock);
320 	return btrfs_grab_root(root);
321 }
322 
323 /*
324  * For useless nodes, do two major clean ups:
325  *
326  * - Cleanup the children edges and nodes
327  *   If child node is also orphan (no parent) during cleanup, then the child
328  *   node will also be cleaned up.
329  *
330  * - Freeing up leaves (level 0), keeps nodes detached
331  *   For nodes, the node is still cached as "detached"
332  *
333  * Return false if @node is not in the @useless_nodes list.
334  * Return true if @node is in the @useless_nodes list.
335  */
handle_useless_nodes(struct reloc_control * rc,struct btrfs_backref_node * node)336 static bool handle_useless_nodes(struct reloc_control *rc,
337 				 struct btrfs_backref_node *node)
338 {
339 	struct btrfs_backref_cache *cache = &rc->backref_cache;
340 	struct list_head *useless_node = &cache->useless_node;
341 	bool ret = false;
342 
343 	while (!list_empty(useless_node)) {
344 		struct btrfs_backref_node *cur;
345 
346 		cur = list_first_entry(useless_node, struct btrfs_backref_node,
347 				 list);
348 		list_del_init(&cur->list);
349 
350 		/* Only tree root nodes can be added to @useless_nodes */
351 		ASSERT(list_empty(&cur->upper));
352 
353 		if (cur == node)
354 			ret = true;
355 
356 		/* Cleanup the lower edges */
357 		while (!list_empty(&cur->lower)) {
358 			struct btrfs_backref_edge *edge;
359 			struct btrfs_backref_node *lower;
360 
361 			edge = list_first_entry(&cur->lower, struct btrfs_backref_edge,
362 						list[UPPER]);
363 			list_del(&edge->list[UPPER]);
364 			list_del(&edge->list[LOWER]);
365 			lower = edge->node[LOWER];
366 			btrfs_backref_free_edge(cache, edge);
367 
368 			/* Child node is also orphan, queue for cleanup */
369 			if (list_empty(&lower->upper))
370 				list_add(&lower->list, useless_node);
371 		}
372 		/* Mark this block processed for relocation */
373 		mark_block_processed(rc, cur);
374 
375 		/*
376 		 * Backref nodes for tree leaves are deleted from the cache.
377 		 * Backref nodes for upper level tree blocks are left in the
378 		 * cache to avoid unnecessary backref lookup.
379 		 */
380 		if (cur->level > 0) {
381 			cur->detached = 1;
382 		} else {
383 			rb_erase(&cur->rb_node, &cache->rb_root);
384 			btrfs_backref_free_node(cache, cur);
385 		}
386 	}
387 	return ret;
388 }
389 
390 /*
391  * Build backref tree for a given tree block. Root of the backref tree
392  * corresponds the tree block, leaves of the backref tree correspond roots of
393  * b-trees that reference the tree block.
394  *
395  * The basic idea of this function is check backrefs of a given block to find
396  * upper level blocks that reference the block, and then check backrefs of
397  * these upper level blocks recursively. The recursion stops when tree root is
398  * reached or backrefs for the block is cached.
399  *
400  * NOTE: if we find that backrefs for a block are cached, we know backrefs for
401  * all upper level blocks that directly/indirectly reference the block are also
402  * cached.
403  */
build_backref_tree(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_key * node_key,int level,u64 bytenr)404 static noinline_for_stack struct btrfs_backref_node *build_backref_tree(
405 			struct btrfs_trans_handle *trans,
406 			struct reloc_control *rc, struct btrfs_key *node_key,
407 			int level, u64 bytenr)
408 {
409 	struct btrfs_backref_iter *iter;
410 	struct btrfs_backref_cache *cache = &rc->backref_cache;
411 	/* For searching parent of TREE_BLOCK_REF */
412 	struct btrfs_path *path;
413 	struct btrfs_backref_node *cur;
414 	struct btrfs_backref_node *node = NULL;
415 	struct btrfs_backref_edge *edge;
416 	int ret;
417 
418 	iter = btrfs_backref_iter_alloc(rc->extent_root->fs_info);
419 	if (!iter)
420 		return ERR_PTR(-ENOMEM);
421 	path = btrfs_alloc_path();
422 	if (!path) {
423 		ret = -ENOMEM;
424 		goto out;
425 	}
426 
427 	node = btrfs_backref_alloc_node(cache, bytenr, level);
428 	if (!node) {
429 		ret = -ENOMEM;
430 		goto out;
431 	}
432 
433 	cur = node;
434 
435 	/* Breadth-first search to build backref cache */
436 	do {
437 		ret = btrfs_backref_add_tree_node(trans, cache, path, iter,
438 						  node_key, cur);
439 		if (ret < 0)
440 			goto out;
441 
442 		edge = list_first_entry_or_null(&cache->pending_edge,
443 				struct btrfs_backref_edge, list[UPPER]);
444 		/*
445 		 * The pending list isn't empty, take the first block to
446 		 * process
447 		 */
448 		if (edge) {
449 			list_del_init(&edge->list[UPPER]);
450 			cur = edge->node[UPPER];
451 		}
452 	} while (edge);
453 
454 	/* Finish the upper linkage of newly added edges/nodes */
455 	ret = btrfs_backref_finish_upper_links(cache, node);
456 	if (ret < 0)
457 		goto out;
458 
459 	if (handle_useless_nodes(rc, node))
460 		node = NULL;
461 out:
462 	btrfs_free_path(iter->path);
463 	kfree(iter);
464 	btrfs_free_path(path);
465 	if (ret) {
466 		btrfs_backref_error_cleanup(cache, node);
467 		return ERR_PTR(ret);
468 	}
469 	ASSERT(!node || !node->detached);
470 	ASSERT(list_empty(&cache->useless_node) &&
471 	       list_empty(&cache->pending_edge));
472 	return node;
473 }
474 
475 /*
476  * helper to add 'address of tree root -> reloc tree' mapping
477  */
__add_reloc_root(struct btrfs_root * root)478 static int __add_reloc_root(struct btrfs_root *root)
479 {
480 	struct btrfs_fs_info *fs_info = root->fs_info;
481 	struct rb_node *rb_node;
482 	struct mapping_node *node;
483 	struct reloc_control *rc = fs_info->reloc_ctl;
484 
485 	node = kmalloc(sizeof(*node), GFP_NOFS);
486 	if (!node)
487 		return -ENOMEM;
488 
489 	node->bytenr = root->commit_root->start;
490 	node->data = root;
491 
492 	spin_lock(&rc->reloc_root_tree.lock);
493 	rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root, &node->simple_node);
494 	spin_unlock(&rc->reloc_root_tree.lock);
495 	if (rb_node) {
496 		btrfs_err(fs_info,
497 			    "Duplicate root found for start=%llu while inserting into relocation tree",
498 			    node->bytenr);
499 		return -EEXIST;
500 	}
501 
502 	list_add_tail(&root->root_list, &rc->reloc_roots);
503 	return 0;
504 }
505 
506 /*
507  * helper to delete the 'address of tree root -> reloc tree'
508  * mapping
509  */
__del_reloc_root(struct btrfs_root * root)510 static void __del_reloc_root(struct btrfs_root *root)
511 {
512 	struct btrfs_fs_info *fs_info = root->fs_info;
513 	struct rb_node *rb_node;
514 	struct mapping_node *node = NULL;
515 	struct reloc_control *rc = fs_info->reloc_ctl;
516 	bool put_ref = false;
517 
518 	if (rc && root->node) {
519 		spin_lock(&rc->reloc_root_tree.lock);
520 		rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
521 					   root->commit_root->start);
522 		if (rb_node) {
523 			node = rb_entry(rb_node, struct mapping_node, rb_node);
524 			rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
525 			RB_CLEAR_NODE(&node->rb_node);
526 		}
527 		spin_unlock(&rc->reloc_root_tree.lock);
528 		ASSERT(!node || (struct btrfs_root *)node->data == root);
529 	}
530 
531 	/*
532 	 * We only put the reloc root here if it's on the list.  There's a lot
533 	 * of places where the pattern is to splice the rc->reloc_roots, process
534 	 * the reloc roots, and then add the reloc root back onto
535 	 * rc->reloc_roots.  If we call __del_reloc_root while it's off of the
536 	 * list we don't want the reference being dropped, because the guy
537 	 * messing with the list is in charge of the reference.
538 	 */
539 	spin_lock(&fs_info->trans_lock);
540 	if (!list_empty(&root->root_list)) {
541 		put_ref = true;
542 		list_del_init(&root->root_list);
543 	}
544 	spin_unlock(&fs_info->trans_lock);
545 	if (put_ref)
546 		btrfs_put_root(root);
547 	kfree(node);
548 }
549 
550 /*
551  * helper to update the 'address of tree root -> reloc tree'
552  * mapping
553  */
__update_reloc_root(struct btrfs_root * root)554 static int __update_reloc_root(struct btrfs_root *root)
555 {
556 	struct btrfs_fs_info *fs_info = root->fs_info;
557 	struct rb_node *rb_node;
558 	struct mapping_node *node = NULL;
559 	struct reloc_control *rc = fs_info->reloc_ctl;
560 
561 	spin_lock(&rc->reloc_root_tree.lock);
562 	rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
563 				   root->commit_root->start);
564 	if (rb_node) {
565 		node = rb_entry(rb_node, struct mapping_node, rb_node);
566 		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
567 	}
568 	spin_unlock(&rc->reloc_root_tree.lock);
569 
570 	if (!node)
571 		return 0;
572 	BUG_ON((struct btrfs_root *)node->data != root);
573 
574 	spin_lock(&rc->reloc_root_tree.lock);
575 	node->bytenr = root->node->start;
576 	rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root, &node->simple_node);
577 	spin_unlock(&rc->reloc_root_tree.lock);
578 	if (rb_node)
579 		btrfs_backref_panic(fs_info, node->bytenr, -EEXIST);
580 	return 0;
581 }
582 
create_reloc_root(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 objectid)583 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
584 					struct btrfs_root *root, u64 objectid)
585 {
586 	struct btrfs_fs_info *fs_info = root->fs_info;
587 	struct btrfs_root *reloc_root;
588 	struct extent_buffer *eb;
589 	struct btrfs_root_item *root_item;
590 	struct btrfs_key root_key;
591 	int ret = 0;
592 	bool must_abort = false;
593 
594 	root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
595 	if (!root_item)
596 		return ERR_PTR(-ENOMEM);
597 
598 	root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
599 	root_key.type = BTRFS_ROOT_ITEM_KEY;
600 	root_key.offset = objectid;
601 
602 	if (btrfs_root_id(root) == objectid) {
603 		u64 commit_root_gen;
604 
605 		/*
606 		 * Relocation will wait for cleaner thread, and any half-dropped
607 		 * subvolume will be fully cleaned up at mount time.
608 		 * So here we shouldn't hit a subvolume with non-zero drop_progress.
609 		 *
610 		 * If this isn't the case, error out since it can make us attempt to
611 		 * drop references for extents that were already dropped before.
612 		 */
613 		if (unlikely(btrfs_disk_key_objectid(&root->root_item.drop_progress))) {
614 			struct btrfs_key cpu_key;
615 
616 			btrfs_disk_key_to_cpu(&cpu_key, &root->root_item.drop_progress);
617 			btrfs_err(fs_info,
618 	"cannot relocate partially dropped subvolume %llu, drop progress key (%llu %u %llu)",
619 				  objectid, cpu_key.objectid, cpu_key.type, cpu_key.offset);
620 			ret = -EUCLEAN;
621 			goto fail;
622 		}
623 
624 		/* called by btrfs_init_reloc_root */
625 		ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
626 				      BTRFS_TREE_RELOC_OBJECTID);
627 		if (ret)
628 			goto fail;
629 
630 		/*
631 		 * Set the last_snapshot field to the generation of the commit
632 		 * root - like this ctree.c:btrfs_block_can_be_shared() behaves
633 		 * correctly (returns true) when the relocation root is created
634 		 * either inside the critical section of a transaction commit
635 		 * (through transaction.c:qgroup_account_snapshot()) and when
636 		 * it's created before the transaction commit is started.
637 		 */
638 		commit_root_gen = btrfs_header_generation(root->commit_root);
639 		btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
640 	} else {
641 		/*
642 		 * called by btrfs_reloc_post_snapshot_hook.
643 		 * the source tree is a reloc tree, all tree blocks
644 		 * modified after it was created have RELOC flag
645 		 * set in their headers. so it's OK to not update
646 		 * the 'last_snapshot'.
647 		 */
648 		ret = btrfs_copy_root(trans, root, root->node, &eb,
649 				      BTRFS_TREE_RELOC_OBJECTID);
650 		if (ret)
651 			goto fail;
652 	}
653 
654 	/*
655 	 * We have changed references at this point, we must abort the
656 	 * transaction if anything fails.
657 	 */
658 	must_abort = true;
659 
660 	memcpy(root_item, &root->root_item, sizeof(*root_item));
661 	btrfs_set_root_bytenr(root_item, eb->start);
662 	btrfs_set_root_level(root_item, btrfs_header_level(eb));
663 	btrfs_set_root_generation(root_item, trans->transid);
664 
665 	if (btrfs_root_id(root) == objectid) {
666 		btrfs_set_root_refs(root_item, 0);
667 		memset(&root_item->drop_progress, 0,
668 		       sizeof(struct btrfs_disk_key));
669 		btrfs_set_root_drop_level(root_item, 0);
670 	}
671 
672 	btrfs_tree_unlock(eb);
673 	free_extent_buffer(eb);
674 
675 	ret = btrfs_insert_root(trans, fs_info->tree_root,
676 				&root_key, root_item);
677 	if (ret)
678 		goto fail;
679 
680 	kfree(root_item);
681 
682 	reloc_root = btrfs_read_tree_root(fs_info->tree_root, &root_key);
683 	if (IS_ERR(reloc_root)) {
684 		ret = PTR_ERR(reloc_root);
685 		goto abort;
686 	}
687 	set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
688 	btrfs_set_root_last_trans(reloc_root, trans->transid);
689 	return reloc_root;
690 fail:
691 	kfree(root_item);
692 abort:
693 	if (must_abort)
694 		btrfs_abort_transaction(trans, ret);
695 	return ERR_PTR(ret);
696 }
697 
698 /*
699  * create reloc tree for a given fs tree. reloc tree is just a
700  * snapshot of the fs tree with special root objectid.
701  *
702  * The reloc_root comes out of here with two references, one for
703  * root->reloc_root, and another for being on the rc->reloc_roots list.
704  */
btrfs_init_reloc_root(struct btrfs_trans_handle * trans,struct btrfs_root * root)705 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
706 			  struct btrfs_root *root)
707 {
708 	struct btrfs_fs_info *fs_info = root->fs_info;
709 	struct btrfs_root *reloc_root;
710 	struct reloc_control *rc = fs_info->reloc_ctl;
711 	struct btrfs_block_rsv *rsv;
712 	int clear_rsv = 0;
713 	int ret;
714 
715 	if (!rc)
716 		return 0;
717 
718 	/*
719 	 * The subvolume has reloc tree but the swap is finished, no need to
720 	 * create/update the dead reloc tree
721 	 */
722 	if (reloc_root_is_dead(root))
723 		return 0;
724 
725 	/*
726 	 * This is subtle but important.  We do not do
727 	 * record_root_in_transaction for reloc roots, instead we record their
728 	 * corresponding fs root, and then here we update the last trans for the
729 	 * reloc root.  This means that we have to do this for the entire life
730 	 * of the reloc root, regardless of which stage of the relocation we are
731 	 * in.
732 	 */
733 	if (root->reloc_root) {
734 		reloc_root = root->reloc_root;
735 		btrfs_set_root_last_trans(reloc_root, trans->transid);
736 		return 0;
737 	}
738 
739 	/*
740 	 * We are merging reloc roots, we do not need new reloc trees.  Also
741 	 * reloc trees never need their own reloc tree.
742 	 */
743 	if (!rc->create_reloc_tree || btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID)
744 		return 0;
745 
746 	if (!trans->reloc_reserved) {
747 		rsv = trans->block_rsv;
748 		trans->block_rsv = rc->block_rsv;
749 		clear_rsv = 1;
750 	}
751 	reloc_root = create_reloc_root(trans, root, btrfs_root_id(root));
752 	if (clear_rsv)
753 		trans->block_rsv = rsv;
754 	if (IS_ERR(reloc_root))
755 		return PTR_ERR(reloc_root);
756 
757 	ret = __add_reloc_root(reloc_root);
758 	ASSERT(ret != -EEXIST);
759 	if (ret) {
760 		/* Pairs with create_reloc_root */
761 		btrfs_put_root(reloc_root);
762 		return ret;
763 	}
764 	root->reloc_root = btrfs_grab_root(reloc_root);
765 	return 0;
766 }
767 
768 /*
769  * update root item of reloc tree
770  */
btrfs_update_reloc_root(struct btrfs_trans_handle * trans,struct btrfs_root * root)771 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
772 			    struct btrfs_root *root)
773 {
774 	struct btrfs_fs_info *fs_info = root->fs_info;
775 	struct btrfs_root *reloc_root;
776 	struct btrfs_root_item *root_item;
777 	int ret;
778 
779 	if (!have_reloc_root(root))
780 		return 0;
781 
782 	reloc_root = root->reloc_root;
783 	root_item = &reloc_root->root_item;
784 
785 	/*
786 	 * We are probably ok here, but __del_reloc_root() will drop its ref of
787 	 * the root.  We have the ref for root->reloc_root, but just in case
788 	 * hold it while we update the reloc root.
789 	 */
790 	btrfs_grab_root(reloc_root);
791 
792 	/* root->reloc_root will stay until current relocation finished */
793 	if (fs_info->reloc_ctl && fs_info->reloc_ctl->merge_reloc_tree &&
794 	    btrfs_root_refs(root_item) == 0) {
795 		set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
796 		/*
797 		 * Mark the tree as dead before we change reloc_root so
798 		 * have_reloc_root will not touch it from now on.
799 		 */
800 		smp_wmb();
801 		__del_reloc_root(reloc_root);
802 	}
803 
804 	if (reloc_root->commit_root != reloc_root->node) {
805 		__update_reloc_root(reloc_root);
806 		btrfs_set_root_node(root_item, reloc_root->node);
807 		free_extent_buffer(reloc_root->commit_root);
808 		reloc_root->commit_root = btrfs_root_node(reloc_root);
809 	}
810 
811 	ret = btrfs_update_root(trans, fs_info->tree_root,
812 				&reloc_root->root_key, root_item);
813 	btrfs_put_root(reloc_root);
814 	return ret;
815 }
816 
817 /*
818  * get new location of data
819  */
get_new_location(struct inode * reloc_inode,u64 * new_bytenr,u64 bytenr,u64 num_bytes)820 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
821 			    u64 bytenr, u64 num_bytes)
822 {
823 	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
824 	BTRFS_PATH_AUTO_FREE(path);
825 	struct btrfs_file_extent_item *fi;
826 	struct extent_buffer *leaf;
827 	int ret;
828 
829 	path = btrfs_alloc_path();
830 	if (!path)
831 		return -ENOMEM;
832 
833 	bytenr -= BTRFS_I(reloc_inode)->reloc_block_group_start;
834 	ret = btrfs_lookup_file_extent(NULL, root, path,
835 			btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0);
836 	if (ret < 0)
837 		return ret;
838 	if (ret > 0)
839 		return -ENOENT;
840 
841 	leaf = path->nodes[0];
842 	fi = btrfs_item_ptr(leaf, path->slots[0],
843 			    struct btrfs_file_extent_item);
844 
845 	BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
846 	       btrfs_file_extent_compression(leaf, fi) ||
847 	       btrfs_file_extent_encryption(leaf, fi) ||
848 	       btrfs_file_extent_other_encoding(leaf, fi));
849 
850 	if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi))
851 		return -EINVAL;
852 
853 	*new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
854 	return 0;
855 }
856 
857 /*
858  * update file extent items in the tree leaf to point to
859  * the new locations.
860  */
861 static noinline_for_stack
replace_file_extents(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_root * root,struct extent_buffer * leaf)862 int replace_file_extents(struct btrfs_trans_handle *trans,
863 			 struct reloc_control *rc,
864 			 struct btrfs_root *root,
865 			 struct extent_buffer *leaf)
866 {
867 	struct btrfs_fs_info *fs_info = root->fs_info;
868 	struct btrfs_key key;
869 	struct btrfs_file_extent_item *fi;
870 	struct btrfs_inode *inode = NULL;
871 	u64 parent;
872 	u64 bytenr;
873 	u64 new_bytenr = 0;
874 	u64 num_bytes;
875 	u64 end;
876 	u32 nritems;
877 	u32 i;
878 	int ret = 0;
879 	int first = 1;
880 
881 	if (rc->stage != UPDATE_DATA_PTRS)
882 		return 0;
883 
884 	/* reloc trees always use full backref */
885 	if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID)
886 		parent = leaf->start;
887 	else
888 		parent = 0;
889 
890 	nritems = btrfs_header_nritems(leaf);
891 	for (i = 0; i < nritems; i++) {
892 		struct btrfs_ref ref = { 0 };
893 
894 		cond_resched();
895 		btrfs_item_key_to_cpu(leaf, &key, i);
896 		if (key.type != BTRFS_EXTENT_DATA_KEY)
897 			continue;
898 		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
899 		if (btrfs_file_extent_type(leaf, fi) ==
900 		    BTRFS_FILE_EXTENT_INLINE)
901 			continue;
902 		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
903 		num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
904 		if (bytenr == 0)
905 			continue;
906 		if (!in_range(bytenr, rc->block_group->start,
907 			      rc->block_group->length))
908 			continue;
909 
910 		/*
911 		 * if we are modifying block in fs tree, wait for read_folio
912 		 * to complete and drop the extent cache
913 		 */
914 		if (btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID) {
915 			if (first) {
916 				inode = btrfs_find_first_inode(root, key.objectid);
917 				first = 0;
918 			} else if (inode && btrfs_ino(inode) < key.objectid) {
919 				btrfs_add_delayed_iput(inode);
920 				inode = btrfs_find_first_inode(root, key.objectid);
921 			}
922 			if (inode && btrfs_ino(inode) == key.objectid) {
923 				struct extent_state *cached_state = NULL;
924 
925 				end = key.offset +
926 				      btrfs_file_extent_num_bytes(leaf, fi);
927 				WARN_ON(!IS_ALIGNED(key.offset,
928 						    fs_info->sectorsize));
929 				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
930 				end--;
931 				/* Take mmap lock to serialize with reflinks. */
932 				if (!down_read_trylock(&inode->i_mmap_lock))
933 					continue;
934 				ret = btrfs_try_lock_extent(&inode->io_tree, key.offset,
935 							    end, &cached_state);
936 				if (!ret) {
937 					up_read(&inode->i_mmap_lock);
938 					continue;
939 				}
940 
941 				btrfs_drop_extent_map_range(inode, key.offset, end, true);
942 				btrfs_unlock_extent(&inode->io_tree, key.offset, end,
943 						    &cached_state);
944 				up_read(&inode->i_mmap_lock);
945 			}
946 		}
947 
948 		ret = get_new_location(rc->data_inode, &new_bytenr,
949 				       bytenr, num_bytes);
950 		if (ret) {
951 			/*
952 			 * Don't have to abort since we've not changed anything
953 			 * in the file extent yet.
954 			 */
955 			break;
956 		}
957 
958 		btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
959 
960 		key.offset -= btrfs_file_extent_offset(leaf, fi);
961 		ref.action = BTRFS_ADD_DELAYED_REF;
962 		ref.bytenr = new_bytenr;
963 		ref.num_bytes = num_bytes;
964 		ref.parent = parent;
965 		ref.owning_root = btrfs_root_id(root);
966 		ref.ref_root = btrfs_header_owner(leaf);
967 		btrfs_init_data_ref(&ref, key.objectid, key.offset,
968 				    btrfs_root_id(root), false);
969 		ret = btrfs_inc_extent_ref(trans, &ref);
970 		if (unlikely(ret)) {
971 			btrfs_abort_transaction(trans, ret);
972 			break;
973 		}
974 
975 		ref.action = BTRFS_DROP_DELAYED_REF;
976 		ref.bytenr = bytenr;
977 		ref.num_bytes = num_bytes;
978 		ref.parent = parent;
979 		ref.owning_root = btrfs_root_id(root);
980 		ref.ref_root = btrfs_header_owner(leaf);
981 		btrfs_init_data_ref(&ref, key.objectid, key.offset,
982 				    btrfs_root_id(root), false);
983 		ret = btrfs_free_extent(trans, &ref);
984 		if (unlikely(ret)) {
985 			btrfs_abort_transaction(trans, ret);
986 			break;
987 		}
988 	}
989 	if (inode)
990 		btrfs_add_delayed_iput(inode);
991 	return ret;
992 }
993 
memcmp_node_keys(const struct extent_buffer * eb,int slot,const struct btrfs_path * path,int level)994 static noinline_for_stack int memcmp_node_keys(const struct extent_buffer *eb,
995 					       int slot, const struct btrfs_path *path,
996 					       int level)
997 {
998 	struct btrfs_disk_key key1;
999 	struct btrfs_disk_key key2;
1000 	btrfs_node_key(eb, &key1, slot);
1001 	btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1002 	return memcmp(&key1, &key2, sizeof(key1));
1003 }
1004 
1005 /*
1006  * try to replace tree blocks in fs tree with the new blocks
1007  * in reloc tree. tree blocks haven't been modified since the
1008  * reloc tree was create can be replaced.
1009  *
1010  * if a block was replaced, level of the block + 1 is returned.
1011  * if no block got replaced, 0 is returned. if there are other
1012  * errors, a negative error number is returned.
1013  */
1014 static noinline_for_stack
replace_path(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_root * dest,struct btrfs_root * src,struct btrfs_path * path,struct btrfs_key * next_key,int lowest_level,int max_level)1015 int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc,
1016 		 struct btrfs_root *dest, struct btrfs_root *src,
1017 		 struct btrfs_path *path, struct btrfs_key *next_key,
1018 		 int lowest_level, int max_level)
1019 {
1020 	struct btrfs_fs_info *fs_info = dest->fs_info;
1021 	struct extent_buffer *eb;
1022 	struct extent_buffer *parent;
1023 	struct btrfs_ref ref = { 0 };
1024 	struct btrfs_key key;
1025 	u64 old_bytenr;
1026 	u64 new_bytenr;
1027 	u64 old_ptr_gen;
1028 	u64 new_ptr_gen;
1029 	u64 last_snapshot;
1030 	u32 blocksize;
1031 	int cow = 0;
1032 	int level;
1033 	int ret;
1034 	int slot;
1035 
1036 	ASSERT(btrfs_root_id(src) == BTRFS_TREE_RELOC_OBJECTID);
1037 	ASSERT(btrfs_root_id(dest) != BTRFS_TREE_RELOC_OBJECTID);
1038 
1039 	last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1040 again:
1041 	slot = path->slots[lowest_level];
1042 	btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1043 
1044 	eb = btrfs_lock_root_node(dest);
1045 	level = btrfs_header_level(eb);
1046 
1047 	if (level < lowest_level) {
1048 		btrfs_tree_unlock(eb);
1049 		free_extent_buffer(eb);
1050 		return 0;
1051 	}
1052 
1053 	if (cow) {
1054 		ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb,
1055 				      BTRFS_NESTING_COW);
1056 		if (ret) {
1057 			btrfs_tree_unlock(eb);
1058 			free_extent_buffer(eb);
1059 			return ret;
1060 		}
1061 	}
1062 
1063 	if (next_key) {
1064 		next_key->objectid = (u64)-1;
1065 		next_key->type = (u8)-1;
1066 		next_key->offset = (u64)-1;
1067 	}
1068 
1069 	parent = eb;
1070 	while (1) {
1071 		level = btrfs_header_level(parent);
1072 		ASSERT(level >= lowest_level);
1073 
1074 		ret = btrfs_bin_search(parent, 0, &key, &slot);
1075 		if (ret < 0)
1076 			break;
1077 		if (ret && slot > 0)
1078 			slot--;
1079 
1080 		if (next_key && slot + 1 < btrfs_header_nritems(parent))
1081 			btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1082 
1083 		old_bytenr = btrfs_node_blockptr(parent, slot);
1084 		blocksize = fs_info->nodesize;
1085 		old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1086 
1087 		if (level <= max_level) {
1088 			eb = path->nodes[level];
1089 			new_bytenr = btrfs_node_blockptr(eb,
1090 							path->slots[level]);
1091 			new_ptr_gen = btrfs_node_ptr_generation(eb,
1092 							path->slots[level]);
1093 		} else {
1094 			new_bytenr = 0;
1095 			new_ptr_gen = 0;
1096 		}
1097 
1098 		if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1099 			ret = level;
1100 			break;
1101 		}
1102 
1103 		if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1104 		    memcmp_node_keys(parent, slot, path, level)) {
1105 			if (level <= lowest_level) {
1106 				ret = 0;
1107 				break;
1108 			}
1109 
1110 			eb = btrfs_read_node_slot(parent, slot);
1111 			if (IS_ERR(eb)) {
1112 				ret = PTR_ERR(eb);
1113 				break;
1114 			}
1115 			btrfs_tree_lock(eb);
1116 			if (cow) {
1117 				ret = btrfs_cow_block(trans, dest, eb, parent,
1118 						      slot, &eb,
1119 						      BTRFS_NESTING_COW);
1120 				if (ret) {
1121 					btrfs_tree_unlock(eb);
1122 					free_extent_buffer(eb);
1123 					break;
1124 				}
1125 			}
1126 
1127 			btrfs_tree_unlock(parent);
1128 			free_extent_buffer(parent);
1129 
1130 			parent = eb;
1131 			continue;
1132 		}
1133 
1134 		if (!cow) {
1135 			btrfs_tree_unlock(parent);
1136 			free_extent_buffer(parent);
1137 			cow = 1;
1138 			goto again;
1139 		}
1140 
1141 		btrfs_node_key_to_cpu(path->nodes[level], &key,
1142 				      path->slots[level]);
1143 		btrfs_release_path(path);
1144 
1145 		path->lowest_level = level;
1146 		set_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &src->state);
1147 		ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1148 		clear_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &src->state);
1149 		path->lowest_level = 0;
1150 		if (ret) {
1151 			if (ret > 0)
1152 				ret = -ENOENT;
1153 			break;
1154 		}
1155 
1156 		/*
1157 		 * Info qgroup to trace both subtrees.
1158 		 *
1159 		 * We must trace both trees.
1160 		 * 1) Tree reloc subtree
1161 		 *    If not traced, we will leak data numbers
1162 		 * 2) Fs subtree
1163 		 *    If not traced, we will double count old data
1164 		 *
1165 		 * We don't scan the subtree right now, but only record
1166 		 * the swapped tree blocks.
1167 		 * The real subtree rescan is delayed until we have new
1168 		 * CoW on the subtree root node before transaction commit.
1169 		 */
1170 		ret = btrfs_qgroup_add_swapped_blocks(dest,
1171 				rc->block_group, parent, slot,
1172 				path->nodes[level], path->slots[level],
1173 				last_snapshot);
1174 		if (ret < 0)
1175 			break;
1176 		/*
1177 		 * swap blocks in fs tree and reloc tree.
1178 		 */
1179 		btrfs_set_node_blockptr(parent, slot, new_bytenr);
1180 		btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1181 
1182 		btrfs_set_node_blockptr(path->nodes[level],
1183 					path->slots[level], old_bytenr);
1184 		btrfs_set_node_ptr_generation(path->nodes[level],
1185 					      path->slots[level], old_ptr_gen);
1186 
1187 		ref.action = BTRFS_ADD_DELAYED_REF;
1188 		ref.bytenr = old_bytenr;
1189 		ref.num_bytes = blocksize;
1190 		ref.parent = path->nodes[level]->start;
1191 		ref.owning_root = btrfs_root_id(src);
1192 		ref.ref_root = btrfs_root_id(src);
1193 		btrfs_init_tree_ref(&ref, level - 1, 0, true);
1194 		ret = btrfs_inc_extent_ref(trans, &ref);
1195 		if (unlikely(ret)) {
1196 			btrfs_abort_transaction(trans, ret);
1197 			break;
1198 		}
1199 
1200 		ref.action = BTRFS_ADD_DELAYED_REF;
1201 		ref.bytenr = new_bytenr;
1202 		ref.num_bytes = blocksize;
1203 		ref.parent = 0;
1204 		ref.owning_root = btrfs_root_id(dest);
1205 		ref.ref_root = btrfs_root_id(dest);
1206 		btrfs_init_tree_ref(&ref, level - 1, 0, true);
1207 		ret = btrfs_inc_extent_ref(trans, &ref);
1208 		if (unlikely(ret)) {
1209 			btrfs_abort_transaction(trans, ret);
1210 			break;
1211 		}
1212 
1213 		/* We don't know the real owning_root, use 0. */
1214 		ref.action = BTRFS_DROP_DELAYED_REF;
1215 		ref.bytenr = new_bytenr;
1216 		ref.num_bytes = blocksize;
1217 		ref.parent = path->nodes[level]->start;
1218 		ref.owning_root = 0;
1219 		ref.ref_root = btrfs_root_id(src);
1220 		btrfs_init_tree_ref(&ref, level - 1, 0, true);
1221 		ret = btrfs_free_extent(trans, &ref);
1222 		if (unlikely(ret)) {
1223 			btrfs_abort_transaction(trans, ret);
1224 			break;
1225 		}
1226 
1227 		/* We don't know the real owning_root, use 0. */
1228 		ref.action = BTRFS_DROP_DELAYED_REF;
1229 		ref.bytenr = old_bytenr;
1230 		ref.num_bytes = blocksize;
1231 		ref.parent = 0;
1232 		ref.owning_root = 0;
1233 		ref.ref_root = btrfs_root_id(dest);
1234 		btrfs_init_tree_ref(&ref, level - 1, 0, true);
1235 		ret = btrfs_free_extent(trans, &ref);
1236 		if (unlikely(ret)) {
1237 			btrfs_abort_transaction(trans, ret);
1238 			break;
1239 		}
1240 
1241 		btrfs_unlock_up_safe(path, 0);
1242 
1243 		ret = level;
1244 		break;
1245 	}
1246 	btrfs_tree_unlock(parent);
1247 	free_extent_buffer(parent);
1248 	return ret;
1249 }
1250 
1251 /*
1252  * helper to find next relocated block in reloc tree
1253  */
1254 static noinline_for_stack
walk_up_reloc_tree(struct btrfs_root * root,struct btrfs_path * path,int * level)1255 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1256 		       int *level)
1257 {
1258 	struct extent_buffer *eb;
1259 	int i;
1260 	u64 last_snapshot;
1261 	u32 nritems;
1262 
1263 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1264 
1265 	for (i = 0; i < *level; i++) {
1266 		free_extent_buffer(path->nodes[i]);
1267 		path->nodes[i] = NULL;
1268 	}
1269 
1270 	for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1271 		eb = path->nodes[i];
1272 		nritems = btrfs_header_nritems(eb);
1273 		while (path->slots[i] + 1 < nritems) {
1274 			path->slots[i]++;
1275 			if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1276 			    last_snapshot)
1277 				continue;
1278 
1279 			*level = i;
1280 			return 0;
1281 		}
1282 		free_extent_buffer(path->nodes[i]);
1283 		path->nodes[i] = NULL;
1284 	}
1285 	return 1;
1286 }
1287 
1288 /*
1289  * walk down reloc tree to find relocated block of lowest level
1290  */
1291 static noinline_for_stack
walk_down_reloc_tree(struct btrfs_root * root,struct btrfs_path * path,int * level)1292 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1293 			 int *level)
1294 {
1295 	struct extent_buffer *eb = NULL;
1296 	int i;
1297 	u64 ptr_gen = 0;
1298 	u64 last_snapshot;
1299 	u32 nritems;
1300 
1301 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1302 
1303 	for (i = *level; i > 0; i--) {
1304 		eb = path->nodes[i];
1305 		nritems = btrfs_header_nritems(eb);
1306 		while (path->slots[i] < nritems) {
1307 			ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1308 			if (ptr_gen > last_snapshot)
1309 				break;
1310 			path->slots[i]++;
1311 		}
1312 		if (path->slots[i] >= nritems) {
1313 			if (i == *level)
1314 				break;
1315 			*level = i + 1;
1316 			return 0;
1317 		}
1318 		if (i == 1) {
1319 			*level = i;
1320 			return 0;
1321 		}
1322 
1323 		eb = btrfs_read_node_slot(eb, path->slots[i]);
1324 		if (IS_ERR(eb))
1325 			return PTR_ERR(eb);
1326 		BUG_ON(btrfs_header_level(eb) != i - 1);
1327 		path->nodes[i - 1] = eb;
1328 		path->slots[i - 1] = 0;
1329 	}
1330 	return 1;
1331 }
1332 
1333 /*
1334  * invalidate extent cache for file extents whose key in range of
1335  * [min_key, max_key)
1336  */
invalidate_extent_cache(struct btrfs_root * root,const struct btrfs_key * min_key,const struct btrfs_key * max_key)1337 static int invalidate_extent_cache(struct btrfs_root *root,
1338 				   const struct btrfs_key *min_key,
1339 				   const struct btrfs_key *max_key)
1340 {
1341 	struct btrfs_fs_info *fs_info = root->fs_info;
1342 	struct btrfs_inode *inode = NULL;
1343 	u64 objectid;
1344 	u64 start, end;
1345 	u64 ino;
1346 
1347 	objectid = min_key->objectid;
1348 	while (1) {
1349 		struct extent_state *cached_state = NULL;
1350 
1351 		cond_resched();
1352 		if (inode)
1353 			iput(&inode->vfs_inode);
1354 
1355 		if (objectid > max_key->objectid)
1356 			break;
1357 
1358 		inode = btrfs_find_first_inode(root, objectid);
1359 		if (!inode)
1360 			break;
1361 		ino = btrfs_ino(inode);
1362 
1363 		if (ino > max_key->objectid) {
1364 			iput(&inode->vfs_inode);
1365 			break;
1366 		}
1367 
1368 		objectid = ino + 1;
1369 		if (!S_ISREG(inode->vfs_inode.i_mode))
1370 			continue;
1371 
1372 		if (unlikely(min_key->objectid == ino)) {
1373 			if (min_key->type > BTRFS_EXTENT_DATA_KEY)
1374 				continue;
1375 			if (min_key->type < BTRFS_EXTENT_DATA_KEY)
1376 				start = 0;
1377 			else {
1378 				start = min_key->offset;
1379 				WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
1380 			}
1381 		} else {
1382 			start = 0;
1383 		}
1384 
1385 		if (unlikely(max_key->objectid == ino)) {
1386 			if (max_key->type < BTRFS_EXTENT_DATA_KEY)
1387 				continue;
1388 			if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
1389 				end = (u64)-1;
1390 			} else {
1391 				if (max_key->offset == 0)
1392 					continue;
1393 				end = max_key->offset;
1394 				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1395 				end--;
1396 			}
1397 		} else {
1398 			end = (u64)-1;
1399 		}
1400 
1401 		/* the lock_extent waits for read_folio to complete */
1402 		btrfs_lock_extent(&inode->io_tree, start, end, &cached_state);
1403 		btrfs_drop_extent_map_range(inode, start, end, true);
1404 		btrfs_unlock_extent(&inode->io_tree, start, end, &cached_state);
1405 	}
1406 	return 0;
1407 }
1408 
find_next_key(struct btrfs_path * path,int level,struct btrfs_key * key)1409 static int find_next_key(struct btrfs_path *path, int level,
1410 			 struct btrfs_key *key)
1411 
1412 {
1413 	while (level < BTRFS_MAX_LEVEL) {
1414 		if (!path->nodes[level])
1415 			break;
1416 		if (path->slots[level] + 1 <
1417 		    btrfs_header_nritems(path->nodes[level])) {
1418 			btrfs_node_key_to_cpu(path->nodes[level], key,
1419 					      path->slots[level] + 1);
1420 			return 0;
1421 		}
1422 		level++;
1423 	}
1424 	return 1;
1425 }
1426 
1427 /*
1428  * Insert current subvolume into reloc_control::dirty_subvol_roots
1429  */
insert_dirty_subvol(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_root * root)1430 static int insert_dirty_subvol(struct btrfs_trans_handle *trans,
1431 			       struct reloc_control *rc,
1432 			       struct btrfs_root *root)
1433 {
1434 	struct btrfs_root *reloc_root = root->reloc_root;
1435 	struct btrfs_root_item *reloc_root_item;
1436 	int ret;
1437 
1438 	/* @root must be a subvolume tree root with a valid reloc tree */
1439 	ASSERT(btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID);
1440 	ASSERT(reloc_root);
1441 
1442 	reloc_root_item = &reloc_root->root_item;
1443 	memset(&reloc_root_item->drop_progress, 0,
1444 		sizeof(reloc_root_item->drop_progress));
1445 	btrfs_set_root_drop_level(reloc_root_item, 0);
1446 	btrfs_set_root_refs(reloc_root_item, 0);
1447 	ret = btrfs_update_reloc_root(trans, root);
1448 	if (ret)
1449 		return ret;
1450 
1451 	if (list_empty(&root->reloc_dirty_list)) {
1452 		btrfs_grab_root(root);
1453 		list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots);
1454 	}
1455 
1456 	return 0;
1457 }
1458 
clean_dirty_subvols(struct reloc_control * rc)1459 static int clean_dirty_subvols(struct reloc_control *rc)
1460 {
1461 	struct btrfs_root *root;
1462 	struct btrfs_root *next;
1463 	int ret = 0;
1464 	int ret2;
1465 
1466 	list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots,
1467 				 reloc_dirty_list) {
1468 		if (btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID) {
1469 			/* Merged subvolume, cleanup its reloc root */
1470 			struct btrfs_root *reloc_root = root->reloc_root;
1471 
1472 			list_del_init(&root->reloc_dirty_list);
1473 			root->reloc_root = NULL;
1474 			/*
1475 			 * Need barrier to ensure clear_bit() only happens after
1476 			 * root->reloc_root = NULL. Pairs with have_reloc_root.
1477 			 */
1478 			smp_wmb();
1479 			clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
1480 			if (reloc_root) {
1481 				/*
1482 				 * btrfs_drop_snapshot drops our ref we hold for
1483 				 * ->reloc_root.  If it fails however we must
1484 				 * drop the ref ourselves.
1485 				 */
1486 				ret2 = btrfs_drop_snapshot(reloc_root, false, true);
1487 				if (ret2 < 0) {
1488 					btrfs_put_root(reloc_root);
1489 					if (!ret)
1490 						ret = ret2;
1491 				}
1492 			}
1493 			btrfs_put_root(root);
1494 		} else {
1495 			/* Orphan reloc tree, just clean it up */
1496 			ret2 = btrfs_drop_snapshot(root, false, true);
1497 			if (ret2 < 0) {
1498 				btrfs_put_root(root);
1499 				if (!ret)
1500 					ret = ret2;
1501 			}
1502 		}
1503 	}
1504 	return ret;
1505 }
1506 
1507 /*
1508  * merge the relocated tree blocks in reloc tree with corresponding
1509  * fs tree.
1510  */
merge_reloc_root(struct reloc_control * rc,struct btrfs_root * root)1511 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
1512 					       struct btrfs_root *root)
1513 {
1514 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1515 	struct btrfs_key key;
1516 	struct btrfs_key next_key;
1517 	struct btrfs_trans_handle *trans = NULL;
1518 	struct btrfs_root *reloc_root;
1519 	struct btrfs_root_item *root_item;
1520 	struct btrfs_path *path;
1521 	struct extent_buffer *leaf;
1522 	int reserve_level;
1523 	int level;
1524 	int max_level;
1525 	int replaced = 0;
1526 	int ret = 0;
1527 	u32 min_reserved;
1528 
1529 	path = btrfs_alloc_path();
1530 	if (!path)
1531 		return -ENOMEM;
1532 	path->reada = READA_FORWARD;
1533 
1534 	reloc_root = root->reloc_root;
1535 	root_item = &reloc_root->root_item;
1536 
1537 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
1538 		level = btrfs_root_level(root_item);
1539 		refcount_inc(&reloc_root->node->refs);
1540 		path->nodes[level] = reloc_root->node;
1541 		path->slots[level] = 0;
1542 	} else {
1543 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
1544 
1545 		level = btrfs_root_drop_level(root_item);
1546 		BUG_ON(level == 0);
1547 		path->lowest_level = level;
1548 		ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
1549 		path->lowest_level = 0;
1550 		if (ret < 0) {
1551 			btrfs_free_path(path);
1552 			return ret;
1553 		}
1554 
1555 		btrfs_node_key_to_cpu(path->nodes[level], &next_key,
1556 				      path->slots[level]);
1557 		WARN_ON(memcmp(&key, &next_key, sizeof(key)));
1558 
1559 		btrfs_unlock_up_safe(path, 0);
1560 	}
1561 
1562 	/*
1563 	 * In merge_reloc_root(), we modify the upper level pointer to swap the
1564 	 * tree blocks between reloc tree and subvolume tree.  Thus for tree
1565 	 * block COW, we COW at most from level 1 to root level for each tree.
1566 	 *
1567 	 * Thus the needed metadata size is at most root_level * nodesize,
1568 	 * and * 2 since we have two trees to COW.
1569 	 */
1570 	reserve_level = max_t(int, 1, btrfs_root_level(root_item));
1571 	min_reserved = fs_info->nodesize * reserve_level * 2;
1572 	memset(&next_key, 0, sizeof(next_key));
1573 
1574 	while (1) {
1575 		ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv,
1576 					     min_reserved,
1577 					     BTRFS_RESERVE_FLUSH_LIMIT);
1578 		if (ret)
1579 			goto out;
1580 		trans = btrfs_start_transaction(root, 0);
1581 		if (IS_ERR(trans)) {
1582 			ret = PTR_ERR(trans);
1583 			trans = NULL;
1584 			goto out;
1585 		}
1586 
1587 		/*
1588 		 * At this point we no longer have a reloc_control, so we can't
1589 		 * depend on btrfs_init_reloc_root to update our last_trans.
1590 		 *
1591 		 * But that's ok, we started the trans handle on our
1592 		 * corresponding fs_root, which means it's been added to the
1593 		 * dirty list.  At commit time we'll still call
1594 		 * btrfs_update_reloc_root() and update our root item
1595 		 * appropriately.
1596 		 */
1597 		btrfs_set_root_last_trans(reloc_root, trans->transid);
1598 		trans->block_rsv = rc->block_rsv;
1599 
1600 		replaced = 0;
1601 		max_level = level;
1602 
1603 		ret = walk_down_reloc_tree(reloc_root, path, &level);
1604 		if (ret < 0)
1605 			goto out;
1606 		if (ret > 0)
1607 			break;
1608 
1609 		if (!find_next_key(path, level, &key) &&
1610 		    btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
1611 			ret = 0;
1612 		} else {
1613 			ret = replace_path(trans, rc, root, reloc_root, path,
1614 					   &next_key, level, max_level);
1615 		}
1616 		if (ret < 0)
1617 			goto out;
1618 		if (ret > 0) {
1619 			level = ret;
1620 			btrfs_node_key_to_cpu(path->nodes[level], &key,
1621 					      path->slots[level]);
1622 			replaced = 1;
1623 		}
1624 
1625 		ret = walk_up_reloc_tree(reloc_root, path, &level);
1626 		if (ret > 0)
1627 			break;
1628 
1629 		BUG_ON(level == 0);
1630 		/*
1631 		 * save the merging progress in the drop_progress.
1632 		 * this is OK since root refs == 1 in this case.
1633 		 */
1634 		btrfs_node_key(path->nodes[level], &root_item->drop_progress,
1635 			       path->slots[level]);
1636 		btrfs_set_root_drop_level(root_item, level);
1637 
1638 		btrfs_end_transaction_throttle(trans);
1639 		trans = NULL;
1640 
1641 		btrfs_btree_balance_dirty(fs_info);
1642 
1643 		if (replaced && rc->stage == UPDATE_DATA_PTRS)
1644 			invalidate_extent_cache(root, &key, &next_key);
1645 	}
1646 
1647 	/*
1648 	 * handle the case only one block in the fs tree need to be
1649 	 * relocated and the block is tree root.
1650 	 */
1651 	leaf = btrfs_lock_root_node(root);
1652 	ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf,
1653 			      BTRFS_NESTING_COW);
1654 	btrfs_tree_unlock(leaf);
1655 	free_extent_buffer(leaf);
1656 out:
1657 	btrfs_free_path(path);
1658 
1659 	if (ret == 0) {
1660 		ret = insert_dirty_subvol(trans, rc, root);
1661 		if (ret)
1662 			btrfs_abort_transaction(trans, ret);
1663 	}
1664 
1665 	if (trans)
1666 		btrfs_end_transaction_throttle(trans);
1667 
1668 	btrfs_btree_balance_dirty(fs_info);
1669 
1670 	if (replaced && rc->stage == UPDATE_DATA_PTRS)
1671 		invalidate_extent_cache(root, &key, &next_key);
1672 
1673 	return ret;
1674 }
1675 
1676 static noinline_for_stack
prepare_to_merge(struct reloc_control * rc,int err)1677 int prepare_to_merge(struct reloc_control *rc, int err)
1678 {
1679 	struct btrfs_root *root = rc->extent_root;
1680 	struct btrfs_fs_info *fs_info = root->fs_info;
1681 	struct btrfs_root *reloc_root;
1682 	struct btrfs_trans_handle *trans;
1683 	LIST_HEAD(reloc_roots);
1684 	u64 num_bytes = 0;
1685 	int ret;
1686 
1687 	mutex_lock(&fs_info->reloc_mutex);
1688 	rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
1689 	rc->merging_rsv_size += rc->nodes_relocated * 2;
1690 	mutex_unlock(&fs_info->reloc_mutex);
1691 
1692 again:
1693 	if (!err) {
1694 		num_bytes = rc->merging_rsv_size;
1695 		ret = btrfs_block_rsv_add(fs_info, rc->block_rsv, num_bytes,
1696 					  BTRFS_RESERVE_FLUSH_ALL);
1697 		if (ret)
1698 			err = ret;
1699 	}
1700 
1701 	trans = btrfs_join_transaction(rc->extent_root);
1702 	if (IS_ERR(trans)) {
1703 		if (!err)
1704 			btrfs_block_rsv_release(fs_info, rc->block_rsv,
1705 						num_bytes, NULL);
1706 		return PTR_ERR(trans);
1707 	}
1708 
1709 	if (!err) {
1710 		if (num_bytes != rc->merging_rsv_size) {
1711 			btrfs_end_transaction(trans);
1712 			btrfs_block_rsv_release(fs_info, rc->block_rsv,
1713 						num_bytes, NULL);
1714 			goto again;
1715 		}
1716 	}
1717 
1718 	rc->merge_reloc_tree = true;
1719 
1720 	while (!list_empty(&rc->reloc_roots)) {
1721 		reloc_root = list_first_entry(&rc->reloc_roots,
1722 					      struct btrfs_root, root_list);
1723 		list_del_init(&reloc_root->root_list);
1724 
1725 		root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1726 				false);
1727 		if (IS_ERR(root)) {
1728 			/*
1729 			 * Even if we have an error we need this reloc root
1730 			 * back on our list so we can clean up properly.
1731 			 */
1732 			list_add(&reloc_root->root_list, &reloc_roots);
1733 			btrfs_abort_transaction(trans, (int)PTR_ERR(root));
1734 			if (!err)
1735 				err = PTR_ERR(root);
1736 			break;
1737 		}
1738 
1739 		if (unlikely(root->reloc_root != reloc_root)) {
1740 			if (root->reloc_root) {
1741 				btrfs_err(fs_info,
1742 "reloc tree mismatch, root %lld has reloc root key (%lld %u %llu) gen %llu, expect reloc root key (%lld %u %llu) gen %llu",
1743 					  btrfs_root_id(root),
1744 					  btrfs_root_id(root->reloc_root),
1745 					  root->reloc_root->root_key.type,
1746 					  root->reloc_root->root_key.offset,
1747 					  btrfs_root_generation(
1748 						  &root->reloc_root->root_item),
1749 					  btrfs_root_id(reloc_root),
1750 					  reloc_root->root_key.type,
1751 					  reloc_root->root_key.offset,
1752 					  btrfs_root_generation(
1753 						  &reloc_root->root_item));
1754 			} else {
1755 				btrfs_err(fs_info,
1756 "reloc tree mismatch, root %lld has no reloc root, expect reloc root key (%lld %u %llu) gen %llu",
1757 					  btrfs_root_id(root),
1758 					  btrfs_root_id(reloc_root),
1759 					  reloc_root->root_key.type,
1760 					  reloc_root->root_key.offset,
1761 					  btrfs_root_generation(
1762 						  &reloc_root->root_item));
1763 			}
1764 			list_add(&reloc_root->root_list, &reloc_roots);
1765 			btrfs_put_root(root);
1766 			btrfs_abort_transaction(trans, -EUCLEAN);
1767 			if (!err)
1768 				err = -EUCLEAN;
1769 			break;
1770 		}
1771 
1772 		/*
1773 		 * set reference count to 1, so btrfs_recover_relocation
1774 		 * knows it should resumes merging
1775 		 */
1776 		if (!err)
1777 			btrfs_set_root_refs(&reloc_root->root_item, 1);
1778 		ret = btrfs_update_reloc_root(trans, root);
1779 
1780 		/*
1781 		 * Even if we have an error we need this reloc root back on our
1782 		 * list so we can clean up properly.
1783 		 */
1784 		list_add(&reloc_root->root_list, &reloc_roots);
1785 		btrfs_put_root(root);
1786 
1787 		if (unlikely(ret)) {
1788 			btrfs_abort_transaction(trans, ret);
1789 			if (!err)
1790 				err = ret;
1791 			break;
1792 		}
1793 	}
1794 
1795 	list_splice(&reloc_roots, &rc->reloc_roots);
1796 
1797 	if (!err)
1798 		err = btrfs_commit_transaction(trans);
1799 	else
1800 		btrfs_end_transaction(trans);
1801 	return err;
1802 }
1803 
1804 static noinline_for_stack
free_reloc_roots(struct list_head * list)1805 void free_reloc_roots(struct list_head *list)
1806 {
1807 	struct btrfs_root *reloc_root, *tmp;
1808 
1809 	list_for_each_entry_safe(reloc_root, tmp, list, root_list)
1810 		__del_reloc_root(reloc_root);
1811 }
1812 
1813 static noinline_for_stack
merge_reloc_roots(struct reloc_control * rc)1814 void merge_reloc_roots(struct reloc_control *rc)
1815 {
1816 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1817 	struct btrfs_root *root;
1818 	struct btrfs_root *reloc_root;
1819 	LIST_HEAD(reloc_roots);
1820 	int found = 0;
1821 	int ret = 0;
1822 again:
1823 	root = rc->extent_root;
1824 
1825 	/*
1826 	 * this serializes us with btrfs_record_root_in_transaction,
1827 	 * we have to make sure nobody is in the middle of
1828 	 * adding their roots to the list while we are
1829 	 * doing this splice
1830 	 */
1831 	mutex_lock(&fs_info->reloc_mutex);
1832 	list_splice_init(&rc->reloc_roots, &reloc_roots);
1833 	mutex_unlock(&fs_info->reloc_mutex);
1834 
1835 	while (!list_empty(&reloc_roots)) {
1836 		found = 1;
1837 		reloc_root = list_first_entry(&reloc_roots, struct btrfs_root, root_list);
1838 
1839 		root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1840 					 false);
1841 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
1842 			if (WARN_ON(IS_ERR(root))) {
1843 				/*
1844 				 * For recovery we read the fs roots on mount,
1845 				 * and if we didn't find the root then we marked
1846 				 * the reloc root as a garbage root.  For normal
1847 				 * relocation obviously the root should exist in
1848 				 * memory.  However there's no reason we can't
1849 				 * handle the error properly here just in case.
1850 				 */
1851 				ret = PTR_ERR(root);
1852 				goto out;
1853 			}
1854 			if (WARN_ON(root->reloc_root != reloc_root)) {
1855 				/*
1856 				 * This can happen if on-disk metadata has some
1857 				 * corruption, e.g. bad reloc tree key offset.
1858 				 */
1859 				ret = -EINVAL;
1860 				goto out;
1861 			}
1862 			ret = merge_reloc_root(rc, root);
1863 			btrfs_put_root(root);
1864 			if (ret) {
1865 				if (list_empty(&reloc_root->root_list))
1866 					list_add_tail(&reloc_root->root_list,
1867 						      &reloc_roots);
1868 				goto out;
1869 			}
1870 		} else {
1871 			if (!IS_ERR(root)) {
1872 				if (root->reloc_root == reloc_root) {
1873 					root->reloc_root = NULL;
1874 					btrfs_put_root(reloc_root);
1875 				}
1876 				clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE,
1877 					  &root->state);
1878 				btrfs_put_root(root);
1879 			}
1880 
1881 			list_del_init(&reloc_root->root_list);
1882 			/* Don't forget to queue this reloc root for cleanup */
1883 			list_add_tail(&reloc_root->reloc_dirty_list,
1884 				      &rc->dirty_subvol_roots);
1885 		}
1886 	}
1887 
1888 	if (found) {
1889 		found = 0;
1890 		goto again;
1891 	}
1892 out:
1893 	if (ret) {
1894 		btrfs_handle_fs_error(fs_info, ret, NULL);
1895 		free_reloc_roots(&reloc_roots);
1896 
1897 		/* new reloc root may be added */
1898 		mutex_lock(&fs_info->reloc_mutex);
1899 		list_splice_init(&rc->reloc_roots, &reloc_roots);
1900 		mutex_unlock(&fs_info->reloc_mutex);
1901 		free_reloc_roots(&reloc_roots);
1902 	}
1903 
1904 	/*
1905 	 * We used to have
1906 	 *
1907 	 * BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
1908 	 *
1909 	 * here, but it's wrong.  If we fail to start the transaction in
1910 	 * prepare_to_merge() we will have only 0 ref reloc roots, none of which
1911 	 * have actually been removed from the reloc_root_tree rb tree.  This is
1912 	 * fine because we're bailing here, and we hold a reference on the root
1913 	 * for the list that holds it, so these roots will be cleaned up when we
1914 	 * do the reloc_dirty_list afterwards.  Meanwhile the root->reloc_root
1915 	 * will be cleaned up on unmount.
1916 	 *
1917 	 * The remaining nodes will be cleaned up by free_reloc_control.
1918 	 */
1919 }
1920 
free_block_list(struct rb_root * blocks)1921 static void free_block_list(struct rb_root *blocks)
1922 {
1923 	struct tree_block *block;
1924 	struct rb_node *rb_node;
1925 	while ((rb_node = rb_first(blocks))) {
1926 		block = rb_entry(rb_node, struct tree_block, rb_node);
1927 		rb_erase(rb_node, blocks);
1928 		kfree(block);
1929 	}
1930 }
1931 
record_reloc_root_in_trans(struct btrfs_trans_handle * trans,struct btrfs_root * reloc_root)1932 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
1933 				      struct btrfs_root *reloc_root)
1934 {
1935 	struct btrfs_fs_info *fs_info = reloc_root->fs_info;
1936 	struct btrfs_root *root;
1937 	int ret;
1938 
1939 	if (btrfs_get_root_last_trans(reloc_root) == trans->transid)
1940 		return 0;
1941 
1942 	root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, false);
1943 
1944 	/*
1945 	 * This should succeed, since we can't have a reloc root without having
1946 	 * already looked up the actual root and created the reloc root for this
1947 	 * root.
1948 	 *
1949 	 * However if there's some sort of corruption where we have a ref to a
1950 	 * reloc root without a corresponding root this could return ENOENT.
1951 	 */
1952 	if (IS_ERR(root)) {
1953 		DEBUG_WARN("error %ld reading root for reloc root", PTR_ERR(root));
1954 		return PTR_ERR(root);
1955 	}
1956 	if (unlikely(root->reloc_root != reloc_root)) {
1957 		DEBUG_WARN("unexpected reloc root found");
1958 		btrfs_err(fs_info,
1959 			  "root %llu has two reloc roots associated with it",
1960 			  reloc_root->root_key.offset);
1961 		btrfs_put_root(root);
1962 		return -EUCLEAN;
1963 	}
1964 	ret = btrfs_record_root_in_trans(trans, root);
1965 	btrfs_put_root(root);
1966 
1967 	return ret;
1968 }
1969 
1970 static noinline_for_stack
select_reloc_root(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_backref_node * node,struct btrfs_backref_edge * edges[])1971 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
1972 				     struct reloc_control *rc,
1973 				     struct btrfs_backref_node *node,
1974 				     struct btrfs_backref_edge *edges[])
1975 {
1976 	struct btrfs_backref_node *next;
1977 	struct btrfs_root *root;
1978 	int index = 0;
1979 	int ret;
1980 
1981 	next = walk_up_backref(node, edges, &index);
1982 	root = next->root;
1983 
1984 	/*
1985 	 * If there is no root, then our references for this block are
1986 	 * incomplete, as we should be able to walk all the way up to a block
1987 	 * that is owned by a root.
1988 	 *
1989 	 * This path is only for SHAREABLE roots, so if we come upon a
1990 	 * non-SHAREABLE root then we have backrefs that resolve improperly.
1991 	 *
1992 	 * Both of these cases indicate file system corruption, or a bug in the
1993 	 * backref walking code.
1994 	 */
1995 	if (unlikely(!root)) {
1996 		btrfs_err(trans->fs_info,
1997 			  "bytenr %llu doesn't have a backref path ending in a root",
1998 			  node->bytenr);
1999 		return ERR_PTR(-EUCLEAN);
2000 	}
2001 	if (unlikely(!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))) {
2002 		btrfs_err(trans->fs_info,
2003 			  "bytenr %llu has multiple refs with one ending in a non-shareable root",
2004 			  node->bytenr);
2005 		return ERR_PTR(-EUCLEAN);
2006 	}
2007 
2008 	if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) {
2009 		ret = record_reloc_root_in_trans(trans, root);
2010 		if (ret)
2011 			return ERR_PTR(ret);
2012 		goto found;
2013 	}
2014 
2015 	ret = btrfs_record_root_in_trans(trans, root);
2016 	if (ret)
2017 		return ERR_PTR(ret);
2018 	root = root->reloc_root;
2019 
2020 	/*
2021 	 * We could have raced with another thread which failed, so
2022 	 * root->reloc_root may not be set, return ENOENT in this case.
2023 	 */
2024 	if (!root)
2025 		return ERR_PTR(-ENOENT);
2026 
2027 	if (unlikely(next->new_bytenr)) {
2028 		/*
2029 		 * We just created the reloc root, so we shouldn't have
2030 		 * ->new_bytenr set yet. If it is then we have multiple roots
2031 		 *  pointing at the same bytenr which indicates corruption, or
2032 		 *  we've made a mistake in the backref walking code.
2033 		 */
2034 		ASSERT(next->new_bytenr == 0);
2035 		btrfs_err(trans->fs_info,
2036 			  "bytenr %llu possibly has multiple roots pointing at the same bytenr %llu",
2037 			  node->bytenr, next->bytenr);
2038 		return ERR_PTR(-EUCLEAN);
2039 	}
2040 
2041 	next->new_bytenr = root->node->start;
2042 	btrfs_put_root(next->root);
2043 	next->root = btrfs_grab_root(root);
2044 	ASSERT(next->root);
2045 	mark_block_processed(rc, next);
2046 found:
2047 	next = node;
2048 	/* setup backref node path for btrfs_reloc_cow_block */
2049 	while (1) {
2050 		rc->backref_cache.path[next->level] = next;
2051 		if (--index < 0)
2052 			break;
2053 		next = edges[index]->node[UPPER];
2054 	}
2055 	return root;
2056 }
2057 
2058 /*
2059  * Select a tree root for relocation.
2060  *
2061  * Return NULL if the block is not shareable. We should use do_relocation() in
2062  * this case.
2063  *
2064  * Return a tree root pointer if the block is shareable.
2065  * Return -ENOENT if the block is root of reloc tree.
2066  */
2067 static noinline_for_stack
select_one_root(struct btrfs_backref_node * node)2068 struct btrfs_root *select_one_root(struct btrfs_backref_node *node)
2069 {
2070 	struct btrfs_backref_node *next;
2071 	struct btrfs_root *root;
2072 	struct btrfs_root *fs_root = NULL;
2073 	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2074 	int index = 0;
2075 
2076 	next = node;
2077 	while (1) {
2078 		cond_resched();
2079 		next = walk_up_backref(next, edges, &index);
2080 		root = next->root;
2081 
2082 		/*
2083 		 * This can occur if we have incomplete extent refs leading all
2084 		 * the way up a particular path, in this case return -EUCLEAN.
2085 		 */
2086 		if (unlikely(!root))
2087 			return ERR_PTR(-EUCLEAN);
2088 
2089 		/* No other choice for non-shareable tree */
2090 		if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2091 			return root;
2092 
2093 		if (btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID)
2094 			fs_root = root;
2095 
2096 		if (next != node)
2097 			return NULL;
2098 
2099 		next = walk_down_backref(edges, &index);
2100 		if (!next || next->level <= node->level)
2101 			break;
2102 	}
2103 
2104 	if (!fs_root)
2105 		return ERR_PTR(-ENOENT);
2106 	return fs_root;
2107 }
2108 
calcu_metadata_size(struct reloc_control * rc,struct btrfs_backref_node * node)2109 static noinline_for_stack u64 calcu_metadata_size(struct reloc_control *rc,
2110 						  struct btrfs_backref_node *node)
2111 {
2112 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2113 	struct btrfs_backref_node *next = node;
2114 	struct btrfs_backref_edge *edge;
2115 	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2116 	u64 num_bytes = 0;
2117 	int index = 0;
2118 
2119 	BUG_ON(node->processed);
2120 
2121 	while (next) {
2122 		cond_resched();
2123 		while (1) {
2124 			if (next->processed)
2125 				break;
2126 
2127 			num_bytes += fs_info->nodesize;
2128 
2129 			if (list_empty(&next->upper))
2130 				break;
2131 
2132 			edge = list_first_entry(&next->upper, struct btrfs_backref_edge,
2133 						list[LOWER]);
2134 			edges[index++] = edge;
2135 			next = edge->node[UPPER];
2136 		}
2137 		next = walk_down_backref(edges, &index);
2138 	}
2139 	return num_bytes;
2140 }
2141 
refill_metadata_space(struct btrfs_trans_handle * trans,struct reloc_control * rc,u64 num_bytes)2142 static int refill_metadata_space(struct btrfs_trans_handle *trans,
2143 				 struct reloc_control *rc, u64 num_bytes)
2144 {
2145 	struct btrfs_fs_info *fs_info = trans->fs_info;
2146 	int ret;
2147 
2148 	trans->block_rsv = rc->block_rsv;
2149 	rc->reserved_bytes += num_bytes;
2150 
2151 	/*
2152 	 * We are under a transaction here so we can only do limited flushing.
2153 	 * If we get an enospc just kick back -EAGAIN so we know to drop the
2154 	 * transaction and try to refill when we can flush all the things.
2155 	 */
2156 	ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv, num_bytes,
2157 				     BTRFS_RESERVE_FLUSH_LIMIT);
2158 	if (ret) {
2159 		u64 tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
2160 
2161 		while (tmp <= rc->reserved_bytes)
2162 			tmp <<= 1;
2163 		/*
2164 		 * only one thread can access block_rsv at this point,
2165 		 * so we don't need hold lock to protect block_rsv.
2166 		 * we expand more reservation size here to allow enough
2167 		 * space for relocation and we will return earlier in
2168 		 * enospc case.
2169 		 */
2170 		rc->block_rsv->size = tmp + fs_info->nodesize *
2171 				      RELOCATION_RESERVED_NODES;
2172 		return -EAGAIN;
2173 	}
2174 
2175 	return 0;
2176 }
2177 
reserve_metadata_space(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_backref_node * node)2178 static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2179 				  struct reloc_control *rc,
2180 				  struct btrfs_backref_node *node)
2181 {
2182 	u64 num_bytes;
2183 
2184 	num_bytes = calcu_metadata_size(rc, node) * 2;
2185 	return refill_metadata_space(trans, rc, num_bytes);
2186 }
2187 
2188 /*
2189  * relocate a block tree, and then update pointers in upper level
2190  * blocks that reference the block to point to the new location.
2191  *
2192  * if called by link_to_upper, the block has already been relocated.
2193  * in that case this function just updates pointers.
2194  */
do_relocation(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_backref_node * node,struct btrfs_key * key,struct btrfs_path * path,int lowest)2195 static int do_relocation(struct btrfs_trans_handle *trans,
2196 			 struct reloc_control *rc,
2197 			 struct btrfs_backref_node *node,
2198 			 struct btrfs_key *key,
2199 			 struct btrfs_path *path, int lowest)
2200 {
2201 	struct btrfs_backref_node *upper;
2202 	struct btrfs_backref_edge *edge;
2203 	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2204 	struct btrfs_root *root;
2205 	struct extent_buffer *eb;
2206 	u32 blocksize;
2207 	u64 bytenr;
2208 	int slot;
2209 	int ret = 0;
2210 
2211 	/*
2212 	 * If we are lowest then this is the first time we're processing this
2213 	 * block, and thus shouldn't have an eb associated with it yet.
2214 	 */
2215 	ASSERT(!lowest || !node->eb);
2216 
2217 	path->lowest_level = node->level + 1;
2218 	rc->backref_cache.path[node->level] = node;
2219 	list_for_each_entry(edge, &node->upper, list[LOWER]) {
2220 		cond_resched();
2221 
2222 		upper = edge->node[UPPER];
2223 		root = select_reloc_root(trans, rc, upper, edges);
2224 		if (IS_ERR(root)) {
2225 			ret = PTR_ERR(root);
2226 			goto next;
2227 		}
2228 
2229 		if (upper->eb && !upper->locked) {
2230 			if (!lowest) {
2231 				ret = btrfs_bin_search(upper->eb, 0, key, &slot);
2232 				if (ret < 0)
2233 					goto next;
2234 				BUG_ON(ret);
2235 				bytenr = btrfs_node_blockptr(upper->eb, slot);
2236 				if (node->eb->start == bytenr)
2237 					goto next;
2238 			}
2239 			btrfs_backref_drop_node_buffer(upper);
2240 		}
2241 
2242 		if (!upper->eb) {
2243 			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2244 			if (ret) {
2245 				if (ret > 0)
2246 					ret = -ENOENT;
2247 
2248 				btrfs_release_path(path);
2249 				break;
2250 			}
2251 
2252 			if (!upper->eb) {
2253 				upper->eb = path->nodes[upper->level];
2254 				path->nodes[upper->level] = NULL;
2255 			} else {
2256 				BUG_ON(upper->eb != path->nodes[upper->level]);
2257 			}
2258 
2259 			upper->locked = 1;
2260 			path->locks[upper->level] = 0;
2261 
2262 			slot = path->slots[upper->level];
2263 			btrfs_release_path(path);
2264 		} else {
2265 			ret = btrfs_bin_search(upper->eb, 0, key, &slot);
2266 			if (ret < 0)
2267 				goto next;
2268 			BUG_ON(ret);
2269 		}
2270 
2271 		bytenr = btrfs_node_blockptr(upper->eb, slot);
2272 		if (lowest) {
2273 			if (unlikely(bytenr != node->bytenr)) {
2274 				btrfs_err(root->fs_info,
2275 		"lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
2276 					  bytenr, node->bytenr, slot,
2277 					  upper->eb->start);
2278 				ret = -EIO;
2279 				goto next;
2280 			}
2281 		} else {
2282 			if (node->eb->start == bytenr)
2283 				goto next;
2284 		}
2285 
2286 		blocksize = root->fs_info->nodesize;
2287 		eb = btrfs_read_node_slot(upper->eb, slot);
2288 		if (IS_ERR(eb)) {
2289 			ret = PTR_ERR(eb);
2290 			goto next;
2291 		}
2292 		btrfs_tree_lock(eb);
2293 
2294 		if (!node->eb) {
2295 			ret = btrfs_cow_block(trans, root, eb, upper->eb,
2296 					      slot, &eb, BTRFS_NESTING_COW);
2297 			btrfs_tree_unlock(eb);
2298 			free_extent_buffer(eb);
2299 			if (ret < 0)
2300 				goto next;
2301 			/*
2302 			 * We've just COWed this block, it should have updated
2303 			 * the correct backref node entry.
2304 			 */
2305 			ASSERT(node->eb == eb);
2306 		} else {
2307 			struct btrfs_ref ref = {
2308 				.action = BTRFS_ADD_DELAYED_REF,
2309 				.bytenr = node->eb->start,
2310 				.num_bytes = blocksize,
2311 				.parent = upper->eb->start,
2312 				.owning_root = btrfs_header_owner(upper->eb),
2313 				.ref_root = btrfs_header_owner(upper->eb),
2314 			};
2315 
2316 			btrfs_set_node_blockptr(upper->eb, slot,
2317 						node->eb->start);
2318 			btrfs_set_node_ptr_generation(upper->eb, slot,
2319 						      trans->transid);
2320 			btrfs_mark_buffer_dirty(trans, upper->eb);
2321 
2322 			btrfs_init_tree_ref(&ref, node->level,
2323 					    btrfs_root_id(root), false);
2324 			ret = btrfs_inc_extent_ref(trans, &ref);
2325 			if (!ret)
2326 				ret = btrfs_drop_subtree(trans, root, eb,
2327 							 upper->eb);
2328 			if (unlikely(ret))
2329 				btrfs_abort_transaction(trans, ret);
2330 		}
2331 next:
2332 		if (!upper->pending)
2333 			btrfs_backref_drop_node_buffer(upper);
2334 		else
2335 			btrfs_backref_unlock_node_buffer(upper);
2336 		if (ret)
2337 			break;
2338 	}
2339 
2340 	if (!ret && node->pending) {
2341 		btrfs_backref_drop_node_buffer(node);
2342 		list_del_init(&node->list);
2343 		node->pending = 0;
2344 	}
2345 
2346 	path->lowest_level = 0;
2347 
2348 	/*
2349 	 * We should have allocated all of our space in the block rsv and thus
2350 	 * shouldn't ENOSPC.
2351 	 */
2352 	ASSERT(ret != -ENOSPC);
2353 	return ret;
2354 }
2355 
link_to_upper(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_backref_node * node,struct btrfs_path * path)2356 static int link_to_upper(struct btrfs_trans_handle *trans,
2357 			 struct reloc_control *rc,
2358 			 struct btrfs_backref_node *node,
2359 			 struct btrfs_path *path)
2360 {
2361 	struct btrfs_key key;
2362 
2363 	btrfs_node_key_to_cpu(node->eb, &key, 0);
2364 	return do_relocation(trans, rc, node, &key, path, 0);
2365 }
2366 
finish_pending_nodes(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_path * path,int err)2367 static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2368 				struct reloc_control *rc,
2369 				struct btrfs_path *path, int err)
2370 {
2371 	LIST_HEAD(list);
2372 	struct btrfs_backref_cache *cache = &rc->backref_cache;
2373 	struct btrfs_backref_node *node;
2374 	int level;
2375 	int ret;
2376 
2377 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2378 		while (!list_empty(&cache->pending[level])) {
2379 			node = list_first_entry(&cache->pending[level],
2380 						struct btrfs_backref_node, list);
2381 			list_move_tail(&node->list, &list);
2382 			BUG_ON(!node->pending);
2383 
2384 			if (!err) {
2385 				ret = link_to_upper(trans, rc, node, path);
2386 				if (ret < 0)
2387 					err = ret;
2388 			}
2389 		}
2390 		list_splice_init(&list, &cache->pending[level]);
2391 	}
2392 	return err;
2393 }
2394 
2395 /*
2396  * mark a block and all blocks directly/indirectly reference the block
2397  * as processed.
2398  */
update_processed_blocks(struct reloc_control * rc,struct btrfs_backref_node * node)2399 static void update_processed_blocks(struct reloc_control *rc,
2400 				    struct btrfs_backref_node *node)
2401 {
2402 	struct btrfs_backref_node *next = node;
2403 	struct btrfs_backref_edge *edge;
2404 	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2405 	int index = 0;
2406 
2407 	while (next) {
2408 		cond_resched();
2409 		while (1) {
2410 			if (next->processed)
2411 				break;
2412 
2413 			mark_block_processed(rc, next);
2414 
2415 			if (list_empty(&next->upper))
2416 				break;
2417 
2418 			edge = list_first_entry(&next->upper, struct btrfs_backref_edge,
2419 						list[LOWER]);
2420 			edges[index++] = edge;
2421 			next = edge->node[UPPER];
2422 		}
2423 		next = walk_down_backref(edges, &index);
2424 	}
2425 }
2426 
tree_block_processed(u64 bytenr,struct reloc_control * rc)2427 static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
2428 {
2429 	u32 blocksize = rc->extent_root->fs_info->nodesize;
2430 
2431 	if (btrfs_test_range_bit(&rc->processed_blocks, bytenr,
2432 				 bytenr + blocksize - 1, EXTENT_DIRTY, NULL))
2433 		return 1;
2434 	return 0;
2435 }
2436 
get_tree_block_key(struct btrfs_fs_info * fs_info,struct tree_block * block)2437 static int get_tree_block_key(struct btrfs_fs_info *fs_info,
2438 			      struct tree_block *block)
2439 {
2440 	struct btrfs_tree_parent_check check = {
2441 		.level = block->level,
2442 		.owner_root = block->owner,
2443 		.transid = block->key.offset
2444 	};
2445 	struct extent_buffer *eb;
2446 
2447 	eb = read_tree_block(fs_info, block->bytenr, &check);
2448 	if (IS_ERR(eb))
2449 		return PTR_ERR(eb);
2450 	if (unlikely(!extent_buffer_uptodate(eb))) {
2451 		free_extent_buffer(eb);
2452 		return -EIO;
2453 	}
2454 	if (block->level == 0)
2455 		btrfs_item_key_to_cpu(eb, &block->key, 0);
2456 	else
2457 		btrfs_node_key_to_cpu(eb, &block->key, 0);
2458 	free_extent_buffer(eb);
2459 	block->key_ready = true;
2460 	return 0;
2461 }
2462 
2463 /*
2464  * helper function to relocate a tree block
2465  */
relocate_tree_block(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_backref_node * node,struct btrfs_key * key,struct btrfs_path * path)2466 static int relocate_tree_block(struct btrfs_trans_handle *trans,
2467 				struct reloc_control *rc,
2468 				struct btrfs_backref_node *node,
2469 				struct btrfs_key *key,
2470 				struct btrfs_path *path)
2471 {
2472 	struct btrfs_root *root;
2473 	int ret = 0;
2474 
2475 	if (!node)
2476 		return 0;
2477 
2478 	/*
2479 	 * If we fail here we want to drop our backref_node because we are going
2480 	 * to start over and regenerate the tree for it.
2481 	 */
2482 	ret = reserve_metadata_space(trans, rc, node);
2483 	if (ret)
2484 		goto out;
2485 
2486 	BUG_ON(node->processed);
2487 	root = select_one_root(node);
2488 	if (IS_ERR(root)) {
2489 		ret = PTR_ERR(root);
2490 
2491 		/* See explanation in select_one_root for the -EUCLEAN case. */
2492 		ASSERT(ret == -ENOENT);
2493 		if (ret == -ENOENT) {
2494 			ret = 0;
2495 			update_processed_blocks(rc, node);
2496 		}
2497 		goto out;
2498 	}
2499 
2500 	if (root) {
2501 		if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2502 			/*
2503 			 * This block was the root block of a root, and this is
2504 			 * the first time we're processing the block and thus it
2505 			 * should not have had the ->new_bytenr modified.
2506 			 *
2507 			 * However in the case of corruption we could have
2508 			 * multiple refs pointing to the same block improperly,
2509 			 * and thus we would trip over these checks.  ASSERT()
2510 			 * for the developer case, because it could indicate a
2511 			 * bug in the backref code, however error out for a
2512 			 * normal user in the case of corruption.
2513 			 */
2514 			ASSERT(node->new_bytenr == 0);
2515 			if (unlikely(node->new_bytenr)) {
2516 				btrfs_err(root->fs_info,
2517 				  "bytenr %llu has improper references to it",
2518 					  node->bytenr);
2519 				ret = -EUCLEAN;
2520 				goto out;
2521 			}
2522 			ret = btrfs_record_root_in_trans(trans, root);
2523 			if (ret)
2524 				goto out;
2525 			/*
2526 			 * Another thread could have failed, need to check if we
2527 			 * have reloc_root actually set.
2528 			 */
2529 			if (!root->reloc_root) {
2530 				ret = -ENOENT;
2531 				goto out;
2532 			}
2533 			root = root->reloc_root;
2534 			node->new_bytenr = root->node->start;
2535 			btrfs_put_root(node->root);
2536 			node->root = btrfs_grab_root(root);
2537 			ASSERT(node->root);
2538 		} else {
2539 			btrfs_err(root->fs_info,
2540 				  "bytenr %llu resolved to a non-shareable root",
2541 				  node->bytenr);
2542 			ret = -EUCLEAN;
2543 			goto out;
2544 		}
2545 		if (!ret)
2546 			update_processed_blocks(rc, node);
2547 	} else {
2548 		ret = do_relocation(trans, rc, node, key, path, 1);
2549 	}
2550 out:
2551 	if (ret || node->level == 0)
2552 		btrfs_backref_cleanup_node(&rc->backref_cache, node);
2553 	return ret;
2554 }
2555 
relocate_cowonly_block(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct tree_block * block,struct btrfs_path * path)2556 static int relocate_cowonly_block(struct btrfs_trans_handle *trans,
2557 				  struct reloc_control *rc, struct tree_block *block,
2558 				  struct btrfs_path *path)
2559 {
2560 	struct btrfs_fs_info *fs_info = trans->fs_info;
2561 	struct btrfs_root *root;
2562 	u64 num_bytes;
2563 	int nr_levels;
2564 	int ret;
2565 
2566 	root = btrfs_get_fs_root(fs_info, block->owner, true);
2567 	if (IS_ERR(root))
2568 		return PTR_ERR(root);
2569 
2570 	nr_levels = max(btrfs_header_level(root->node) - block->level, 0) + 1;
2571 
2572 	num_bytes = fs_info->nodesize * nr_levels;
2573 	ret = refill_metadata_space(trans, rc, num_bytes);
2574 	if (ret) {
2575 		btrfs_put_root(root);
2576 		return ret;
2577 	}
2578 	path->lowest_level = block->level;
2579 	if (root == root->fs_info->chunk_root)
2580 		btrfs_reserve_chunk_metadata(trans, false);
2581 
2582 	ret = btrfs_search_slot(trans, root, &block->key, path, 0, 1);
2583 	path->lowest_level = 0;
2584 	btrfs_release_path(path);
2585 
2586 	if (root == root->fs_info->chunk_root)
2587 		btrfs_trans_release_chunk_metadata(trans);
2588 	if (ret > 0)
2589 		ret = 0;
2590 	btrfs_put_root(root);
2591 
2592 	return ret;
2593 }
2594 
2595 /*
2596  * relocate a list of blocks
2597  */
2598 static noinline_for_stack
relocate_tree_blocks(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct rb_root * blocks)2599 int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2600 			 struct reloc_control *rc, struct rb_root *blocks)
2601 {
2602 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2603 	struct btrfs_backref_node *node;
2604 	struct btrfs_path *path;
2605 	struct tree_block *block;
2606 	struct tree_block *next;
2607 	int ret = 0;
2608 
2609 	path = btrfs_alloc_path();
2610 	if (!path) {
2611 		ret = -ENOMEM;
2612 		goto out_free_blocks;
2613 	}
2614 
2615 	/* Kick in readahead for tree blocks with missing keys */
2616 	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2617 		if (!block->key_ready)
2618 			btrfs_readahead_tree_block(fs_info, block->bytenr,
2619 						   block->owner, 0,
2620 						   block->level);
2621 	}
2622 
2623 	/* Get first keys */
2624 	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2625 		if (!block->key_ready) {
2626 			ret = get_tree_block_key(fs_info, block);
2627 			if (ret)
2628 				goto out_free_path;
2629 		}
2630 	}
2631 
2632 	/* Do tree relocation */
2633 	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2634 		/*
2635 		 * For COWonly blocks, or the data reloc tree, we only need to
2636 		 * COW down to the block, there's no need to generate a backref
2637 		 * tree.
2638 		 */
2639 		if (block->owner &&
2640 		    (!btrfs_is_fstree(block->owner) ||
2641 		     block->owner == BTRFS_DATA_RELOC_TREE_OBJECTID)) {
2642 			ret = relocate_cowonly_block(trans, rc, block, path);
2643 			if (ret)
2644 				break;
2645 			continue;
2646 		}
2647 
2648 		node = build_backref_tree(trans, rc, &block->key,
2649 					  block->level, block->bytenr);
2650 		if (IS_ERR(node)) {
2651 			ret = PTR_ERR(node);
2652 			goto out;
2653 		}
2654 
2655 		ret = relocate_tree_block(trans, rc, node, &block->key,
2656 					  path);
2657 		if (ret < 0)
2658 			break;
2659 	}
2660 out:
2661 	ret = finish_pending_nodes(trans, rc, path, ret);
2662 
2663 out_free_path:
2664 	btrfs_free_path(path);
2665 out_free_blocks:
2666 	free_block_list(blocks);
2667 	return ret;
2668 }
2669 
prealloc_file_extent_cluster(struct reloc_control * rc)2670 static noinline_for_stack int prealloc_file_extent_cluster(struct reloc_control *rc)
2671 {
2672 	const struct file_extent_cluster *cluster = &rc->cluster;
2673 	struct btrfs_inode *inode = BTRFS_I(rc->data_inode);
2674 	u64 alloc_hint = 0;
2675 	u64 start;
2676 	u64 end;
2677 	u64 offset = inode->reloc_block_group_start;
2678 	u64 num_bytes;
2679 	int nr;
2680 	int ret = 0;
2681 	u64 prealloc_start = cluster->start - offset;
2682 	u64 prealloc_end = cluster->end - offset;
2683 	u64 cur_offset = prealloc_start;
2684 
2685 	/*
2686 	 * For blocksize < folio size case (either bs < page size or large folios),
2687 	 * beyond i_size, all blocks are filled with zero.
2688 	 *
2689 	 * If the current cluster covers the above range, btrfs_do_readpage()
2690 	 * will skip the read, and relocate_one_folio() will later writeback
2691 	 * the padding zeros as new data, causing data corruption.
2692 	 *
2693 	 * Here we have to invalidate the cache covering our cluster.
2694 	 */
2695 	ret = filemap_invalidate_inode(&inode->vfs_inode, true, prealloc_start,
2696 				       prealloc_end);
2697 	if (ret < 0)
2698 		return ret;
2699 
2700 	BUG_ON(cluster->start != cluster->boundary[0]);
2701 	ret = btrfs_alloc_data_chunk_ondemand(inode,
2702 					      prealloc_end + 1 - prealloc_start);
2703 	if (ret)
2704 		return ret;
2705 
2706 	btrfs_inode_lock(inode, 0);
2707 	for (nr = 0; nr < cluster->nr; nr++) {
2708 		struct extent_state *cached_state = NULL;
2709 
2710 		start = cluster->boundary[nr] - offset;
2711 		if (nr + 1 < cluster->nr)
2712 			end = cluster->boundary[nr + 1] - 1 - offset;
2713 		else
2714 			end = cluster->end - offset;
2715 
2716 		btrfs_lock_extent(&inode->io_tree, start, end, &cached_state);
2717 		num_bytes = end + 1 - start;
2718 		ret = btrfs_prealloc_file_range(&inode->vfs_inode, 0, start,
2719 						num_bytes, num_bytes,
2720 						end + 1, &alloc_hint);
2721 		cur_offset = end + 1;
2722 		btrfs_unlock_extent(&inode->io_tree, start, end, &cached_state);
2723 		if (ret)
2724 			break;
2725 	}
2726 	btrfs_inode_unlock(inode, 0);
2727 
2728 	if (cur_offset < prealloc_end)
2729 		btrfs_free_reserved_data_space_noquota(inode,
2730 						       prealloc_end + 1 - cur_offset);
2731 	return ret;
2732 }
2733 
setup_relocation_extent_mapping(struct reloc_control * rc)2734 static noinline_for_stack int setup_relocation_extent_mapping(struct reloc_control *rc)
2735 {
2736 	struct btrfs_inode *inode = BTRFS_I(rc->data_inode);
2737 	struct extent_map *em;
2738 	struct extent_state *cached_state = NULL;
2739 	u64 offset = inode->reloc_block_group_start;
2740 	u64 start = rc->cluster.start - offset;
2741 	u64 end = rc->cluster.end - offset;
2742 	int ret = 0;
2743 
2744 	em = btrfs_alloc_extent_map();
2745 	if (!em)
2746 		return -ENOMEM;
2747 
2748 	em->start = start;
2749 	em->len = end + 1 - start;
2750 	em->disk_bytenr = rc->cluster.start;
2751 	em->disk_num_bytes = em->len;
2752 	em->ram_bytes = em->len;
2753 	em->flags |= EXTENT_FLAG_PINNED;
2754 
2755 	btrfs_lock_extent(&inode->io_tree, start, end, &cached_state);
2756 	ret = btrfs_replace_extent_map_range(inode, em, false);
2757 	btrfs_unlock_extent(&inode->io_tree, start, end, &cached_state);
2758 	btrfs_free_extent_map(em);
2759 
2760 	return ret;
2761 }
2762 
2763 /*
2764  * Allow error injection to test balance/relocation cancellation
2765  */
btrfs_should_cancel_balance(const struct btrfs_fs_info * fs_info)2766 noinline int btrfs_should_cancel_balance(const struct btrfs_fs_info *fs_info)
2767 {
2768 	return atomic_read(&fs_info->balance_cancel_req) ||
2769 		atomic_read(&fs_info->reloc_cancel_req) ||
2770 		fatal_signal_pending(current);
2771 }
2772 ALLOW_ERROR_INJECTION(btrfs_should_cancel_balance, TRUE);
2773 
get_cluster_boundary_end(const struct file_extent_cluster * cluster,int cluster_nr)2774 static u64 get_cluster_boundary_end(const struct file_extent_cluster *cluster,
2775 				    int cluster_nr)
2776 {
2777 	/* Last extent, use cluster end directly */
2778 	if (cluster_nr >= cluster->nr - 1)
2779 		return cluster->end;
2780 
2781 	/* Use next boundary start*/
2782 	return cluster->boundary[cluster_nr + 1] - 1;
2783 }
2784 
relocate_one_folio(struct reloc_control * rc,struct file_ra_state * ra,int * cluster_nr,u64 * file_offset_ret)2785 static int relocate_one_folio(struct reloc_control *rc,
2786 			      struct file_ra_state *ra,
2787 			      int *cluster_nr, u64 *file_offset_ret)
2788 {
2789 	const struct file_extent_cluster *cluster = &rc->cluster;
2790 	struct inode *inode = rc->data_inode;
2791 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2792 	const u64 orig_file_offset = *file_offset_ret;
2793 	u64 offset = BTRFS_I(inode)->reloc_block_group_start;
2794 	const pgoff_t last_index = (cluster->end - offset) >> PAGE_SHIFT;
2795 	const pgoff_t index = orig_file_offset >> PAGE_SHIFT;
2796 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
2797 	struct folio *folio;
2798 	u64 folio_start;
2799 	u64 folio_end;
2800 	u64 cur;
2801 	int ret;
2802 	const bool use_rst = btrfs_need_stripe_tree_update(fs_info, rc->block_group->flags);
2803 
2804 	ASSERT(index <= last_index);
2805 again:
2806 	folio = filemap_lock_folio(inode->i_mapping, index);
2807 	if (IS_ERR(folio)) {
2808 
2809 		/*
2810 		 * On relocation we're doing readahead on the relocation inode,
2811 		 * but if the filesystem is backed by a RAID stripe tree we can
2812 		 * get ENOENT (e.g. due to preallocated extents not being
2813 		 * mapped in the RST) from the lookup.
2814 		 *
2815 		 * But readahead doesn't handle the error and submits invalid
2816 		 * reads to the device, causing a assertion failures.
2817 		 */
2818 		if (!use_rst)
2819 			page_cache_sync_readahead(inode->i_mapping, ra, NULL,
2820 						  index, last_index + 1 - index);
2821 		folio = __filemap_get_folio(inode->i_mapping, index,
2822 					    FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
2823 					    mask);
2824 		if (IS_ERR(folio))
2825 			return PTR_ERR(folio);
2826 	}
2827 
2828 	if (folio_test_readahead(folio) && !use_rst)
2829 		page_cache_async_readahead(inode->i_mapping, ra, NULL,
2830 					   folio, last_index + 1 - index);
2831 
2832 	if (!folio_test_uptodate(folio)) {
2833 		btrfs_read_folio(NULL, folio);
2834 		folio_lock(folio);
2835 		if (unlikely(!folio_test_uptodate(folio))) {
2836 			ret = -EIO;
2837 			goto release_folio;
2838 		}
2839 		if (folio->mapping != inode->i_mapping) {
2840 			folio_unlock(folio);
2841 			folio_put(folio);
2842 			goto again;
2843 		}
2844 	}
2845 
2846 	/*
2847 	 * We could have lost folio private when we dropped the lock to read the
2848 	 * folio above, make sure we set_folio_extent_mapped() here so we have any
2849 	 * of the subpage blocksize stuff we need in place.
2850 	 */
2851 	ret = set_folio_extent_mapped(folio);
2852 	if (ret < 0)
2853 		goto release_folio;
2854 
2855 	folio_start = folio_pos(folio);
2856 	folio_end = folio_start + folio_size(folio) - 1;
2857 
2858 	/*
2859 	 * Start from the cluster, as for subpage case, the cluster can start
2860 	 * inside the folio.
2861 	 */
2862 	cur = max(folio_start, cluster->boundary[*cluster_nr] - offset);
2863 	while (cur <= folio_end) {
2864 		struct extent_state *cached_state = NULL;
2865 		u64 extent_start = cluster->boundary[*cluster_nr] - offset;
2866 		u64 extent_end = get_cluster_boundary_end(cluster,
2867 						*cluster_nr) - offset;
2868 		u64 clamped_start = max(folio_start, extent_start);
2869 		u64 clamped_end = min(folio_end, extent_end);
2870 		u32 clamped_len = clamped_end + 1 - clamped_start;
2871 
2872 		/* Reserve metadata for this range */
2873 		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
2874 						      clamped_len, clamped_len,
2875 						      false);
2876 		if (ret)
2877 			goto release_folio;
2878 
2879 		/* Mark the range delalloc and dirty for later writeback */
2880 		btrfs_lock_extent(&BTRFS_I(inode)->io_tree, clamped_start,
2881 				  clamped_end, &cached_state);
2882 		ret = btrfs_set_extent_delalloc(BTRFS_I(inode), clamped_start,
2883 						clamped_end, 0, &cached_state);
2884 		if (ret) {
2885 			btrfs_clear_extent_bit(&BTRFS_I(inode)->io_tree,
2886 					       clamped_start, clamped_end,
2887 					       EXTENT_LOCKED | EXTENT_BOUNDARY,
2888 					       &cached_state);
2889 			btrfs_delalloc_release_metadata(BTRFS_I(inode),
2890 							clamped_len, true);
2891 			btrfs_delalloc_release_extents(BTRFS_I(inode),
2892 						       clamped_len);
2893 			goto release_folio;
2894 		}
2895 		btrfs_folio_set_dirty(fs_info, folio, clamped_start, clamped_len);
2896 
2897 		/*
2898 		 * Set the boundary if it's inside the folio.
2899 		 * Data relocation requires the destination extents to have the
2900 		 * same size as the source.
2901 		 * EXTENT_BOUNDARY bit prevents current extent from being merged
2902 		 * with previous extent.
2903 		 */
2904 		if (in_range(cluster->boundary[*cluster_nr] - offset,
2905 			     folio_start, folio_size(folio))) {
2906 			u64 boundary_start = cluster->boundary[*cluster_nr] -
2907 						offset;
2908 			u64 boundary_end = boundary_start +
2909 					   fs_info->sectorsize - 1;
2910 
2911 			btrfs_set_extent_bit(&BTRFS_I(inode)->io_tree,
2912 					     boundary_start, boundary_end,
2913 					     EXTENT_BOUNDARY, NULL);
2914 		}
2915 		btrfs_unlock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end,
2916 				    &cached_state);
2917 		btrfs_delalloc_release_extents(BTRFS_I(inode), clamped_len);
2918 		cur += clamped_len;
2919 
2920 		/* Crossed extent end, go to next extent */
2921 		if (cur >= extent_end) {
2922 			(*cluster_nr)++;
2923 			/* Just finished the last extent of the cluster, exit. */
2924 			if (*cluster_nr >= cluster->nr)
2925 				break;
2926 		}
2927 	}
2928 	folio_unlock(folio);
2929 	folio_put(folio);
2930 
2931 	balance_dirty_pages_ratelimited(inode->i_mapping);
2932 	btrfs_throttle(fs_info);
2933 	if (btrfs_should_cancel_balance(fs_info))
2934 		ret = -ECANCELED;
2935 	*file_offset_ret = folio_end + 1;
2936 	return ret;
2937 
2938 release_folio:
2939 	folio_unlock(folio);
2940 	folio_put(folio);
2941 	return ret;
2942 }
2943 
relocate_file_extent_cluster(struct reloc_control * rc)2944 static int relocate_file_extent_cluster(struct reloc_control *rc)
2945 {
2946 	struct inode *inode = rc->data_inode;
2947 	const struct file_extent_cluster *cluster = &rc->cluster;
2948 	u64 offset = BTRFS_I(inode)->reloc_block_group_start;
2949 	u64 cur_file_offset = cluster->start - offset;
2950 	struct file_ra_state *ra;
2951 	int cluster_nr = 0;
2952 	int ret = 0;
2953 
2954 	if (!cluster->nr)
2955 		return 0;
2956 
2957 	ra = kzalloc(sizeof(*ra), GFP_NOFS);
2958 	if (!ra)
2959 		return -ENOMEM;
2960 
2961 	ret = prealloc_file_extent_cluster(rc);
2962 	if (ret)
2963 		goto out;
2964 
2965 	file_ra_state_init(ra, inode->i_mapping);
2966 
2967 	ret = setup_relocation_extent_mapping(rc);
2968 	if (ret)
2969 		goto out;
2970 
2971 	while (cur_file_offset < cluster->end - offset) {
2972 		ret = relocate_one_folio(rc, ra, &cluster_nr, &cur_file_offset);
2973 		if (ret)
2974 			break;
2975 	}
2976 	if (ret == 0)
2977 		WARN_ON(cluster_nr != cluster->nr);
2978 out:
2979 	kfree(ra);
2980 	return ret;
2981 }
2982 
relocate_data_extent(struct reloc_control * rc,const struct btrfs_key * extent_key)2983 static noinline_for_stack int relocate_data_extent(struct reloc_control *rc,
2984 					   const struct btrfs_key *extent_key)
2985 {
2986 	struct inode *inode = rc->data_inode;
2987 	struct file_extent_cluster *cluster = &rc->cluster;
2988 	int ret;
2989 	struct btrfs_root *root = BTRFS_I(inode)->root;
2990 
2991 	if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
2992 		ret = relocate_file_extent_cluster(rc);
2993 		if (ret)
2994 			return ret;
2995 		cluster->nr = 0;
2996 	}
2997 
2998 	/*
2999 	 * Under simple quotas, we set root->relocation_src_root when we find
3000 	 * the extent. If adjacent extents have different owners, we can't merge
3001 	 * them while relocating. Handle this by storing the owning root that
3002 	 * started a cluster and if we see an extent from a different root break
3003 	 * cluster formation (just like the above case of non-adjacent extents).
3004 	 *
3005 	 * Without simple quotas, relocation_src_root is always 0, so we should
3006 	 * never see a mismatch, and it should have no effect on relocation
3007 	 * clusters.
3008 	 */
3009 	if (cluster->nr > 0 && cluster->owning_root != root->relocation_src_root) {
3010 		u64 tmp = root->relocation_src_root;
3011 
3012 		/*
3013 		 * root->relocation_src_root is the state that actually affects
3014 		 * the preallocation we do here, so set it to the root owning
3015 		 * the cluster we need to relocate.
3016 		 */
3017 		root->relocation_src_root = cluster->owning_root;
3018 		ret = relocate_file_extent_cluster(rc);
3019 		if (ret)
3020 			return ret;
3021 		cluster->nr = 0;
3022 		/* And reset it back for the current extent's owning root. */
3023 		root->relocation_src_root = tmp;
3024 	}
3025 
3026 	if (!cluster->nr) {
3027 		cluster->start = extent_key->objectid;
3028 		cluster->owning_root = root->relocation_src_root;
3029 	}
3030 	else
3031 		BUG_ON(cluster->nr >= MAX_EXTENTS);
3032 	cluster->end = extent_key->objectid + extent_key->offset - 1;
3033 	cluster->boundary[cluster->nr] = extent_key->objectid;
3034 	cluster->nr++;
3035 
3036 	if (cluster->nr >= MAX_EXTENTS) {
3037 		ret = relocate_file_extent_cluster(rc);
3038 		if (ret)
3039 			return ret;
3040 		cluster->nr = 0;
3041 	}
3042 	return 0;
3043 }
3044 
3045 /*
3046  * helper to add a tree block to the list.
3047  * the major work is getting the generation and level of the block
3048  */
add_tree_block(struct reloc_control * rc,const struct btrfs_key * extent_key,struct btrfs_path * path,struct rb_root * blocks)3049 static int add_tree_block(struct reloc_control *rc,
3050 			  const struct btrfs_key *extent_key,
3051 			  struct btrfs_path *path,
3052 			  struct rb_root *blocks)
3053 {
3054 	struct extent_buffer *eb;
3055 	struct btrfs_extent_item *ei;
3056 	struct btrfs_tree_block_info *bi;
3057 	struct tree_block *block;
3058 	struct rb_node *rb_node;
3059 	u32 item_size;
3060 	int level = -1;
3061 	u64 generation;
3062 	u64 owner = 0;
3063 
3064 	eb =  path->nodes[0];
3065 	item_size = btrfs_item_size(eb, path->slots[0]);
3066 
3067 	if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
3068 	    item_size >= sizeof(*ei) + sizeof(*bi)) {
3069 		unsigned long ptr = 0, end;
3070 
3071 		ei = btrfs_item_ptr(eb, path->slots[0],
3072 				struct btrfs_extent_item);
3073 		end = (unsigned long)ei + item_size;
3074 		if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
3075 			bi = (struct btrfs_tree_block_info *)(ei + 1);
3076 			level = btrfs_tree_block_level(eb, bi);
3077 			ptr = (unsigned long)(bi + 1);
3078 		} else {
3079 			level = (int)extent_key->offset;
3080 			ptr = (unsigned long)(ei + 1);
3081 		}
3082 		generation = btrfs_extent_generation(eb, ei);
3083 
3084 		/*
3085 		 * We're reading random blocks without knowing their owner ahead
3086 		 * of time.  This is ok most of the time, as all reloc roots and
3087 		 * fs roots have the same lock type.  However normal trees do
3088 		 * not, and the only way to know ahead of time is to read the
3089 		 * inline ref offset.  We know it's an fs root if
3090 		 *
3091 		 * 1. There's more than one ref.
3092 		 * 2. There's a SHARED_DATA_REF_KEY set.
3093 		 * 3. FULL_BACKREF is set on the flags.
3094 		 *
3095 		 * Otherwise it's safe to assume that the ref offset == the
3096 		 * owner of this block, so we can use that when calling
3097 		 * read_tree_block.
3098 		 */
3099 		if (btrfs_extent_refs(eb, ei) == 1 &&
3100 		    !(btrfs_extent_flags(eb, ei) &
3101 		      BTRFS_BLOCK_FLAG_FULL_BACKREF) &&
3102 		    ptr < end) {
3103 			struct btrfs_extent_inline_ref *iref;
3104 			int type;
3105 
3106 			iref = (struct btrfs_extent_inline_ref *)ptr;
3107 			type = btrfs_get_extent_inline_ref_type(eb, iref,
3108 							BTRFS_REF_TYPE_BLOCK);
3109 			if (type == BTRFS_REF_TYPE_INVALID)
3110 				return -EINVAL;
3111 			if (type == BTRFS_TREE_BLOCK_REF_KEY)
3112 				owner = btrfs_extent_inline_ref_offset(eb, iref);
3113 		}
3114 	} else {
3115 		btrfs_print_leaf(eb);
3116 		btrfs_err(rc->block_group->fs_info,
3117 			  "unrecognized tree backref at tree block %llu slot %u",
3118 			  eb->start, path->slots[0]);
3119 		btrfs_release_path(path);
3120 		return -EUCLEAN;
3121 	}
3122 
3123 	btrfs_release_path(path);
3124 
3125 	BUG_ON(level == -1);
3126 
3127 	block = kmalloc(sizeof(*block), GFP_NOFS);
3128 	if (!block)
3129 		return -ENOMEM;
3130 
3131 	block->bytenr = extent_key->objectid;
3132 	block->key.objectid = rc->extent_root->fs_info->nodesize;
3133 	block->key.offset = generation;
3134 	block->level = level;
3135 	block->key_ready = false;
3136 	block->owner = owner;
3137 
3138 	rb_node = rb_simple_insert(blocks, &block->simple_node);
3139 	if (rb_node)
3140 		btrfs_backref_panic(rc->extent_root->fs_info, block->bytenr,
3141 				    -EEXIST);
3142 
3143 	return 0;
3144 }
3145 
3146 /*
3147  * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3148  */
__add_tree_block(struct reloc_control * rc,u64 bytenr,u32 blocksize,struct rb_root * blocks)3149 static int __add_tree_block(struct reloc_control *rc,
3150 			    u64 bytenr, u32 blocksize,
3151 			    struct rb_root *blocks)
3152 {
3153 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3154 	BTRFS_PATH_AUTO_FREE(path);
3155 	struct btrfs_key key;
3156 	int ret;
3157 	bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3158 
3159 	if (tree_block_processed(bytenr, rc))
3160 		return 0;
3161 
3162 	if (rb_simple_search(blocks, bytenr))
3163 		return 0;
3164 
3165 	path = btrfs_alloc_path();
3166 	if (!path)
3167 		return -ENOMEM;
3168 again:
3169 	key.objectid = bytenr;
3170 	if (skinny) {
3171 		key.type = BTRFS_METADATA_ITEM_KEY;
3172 		key.offset = (u64)-1;
3173 	} else {
3174 		key.type = BTRFS_EXTENT_ITEM_KEY;
3175 		key.offset = blocksize;
3176 	}
3177 
3178 	path->search_commit_root = 1;
3179 	path->skip_locking = 1;
3180 	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3181 	if (ret < 0)
3182 		return ret;
3183 
3184 	if (ret > 0 && skinny) {
3185 		if (path->slots[0]) {
3186 			path->slots[0]--;
3187 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3188 					      path->slots[0]);
3189 			if (key.objectid == bytenr &&
3190 			    (key.type == BTRFS_METADATA_ITEM_KEY ||
3191 			     (key.type == BTRFS_EXTENT_ITEM_KEY &&
3192 			      key.offset == blocksize)))
3193 				ret = 0;
3194 		}
3195 
3196 		if (ret) {
3197 			skinny = false;
3198 			btrfs_release_path(path);
3199 			goto again;
3200 		}
3201 	}
3202 	if (ret) {
3203 		ASSERT(ret == 1);
3204 		btrfs_print_leaf(path->nodes[0]);
3205 		btrfs_err(fs_info,
3206 	     "tree block extent item (%llu) is not found in extent tree",
3207 		     bytenr);
3208 		WARN_ON(1);
3209 		return -EINVAL;
3210 	}
3211 
3212 	return add_tree_block(rc, &key, path, blocks);
3213 }
3214 
delete_block_group_cache(struct btrfs_block_group * block_group,struct inode * inode,u64 ino)3215 static int delete_block_group_cache(struct btrfs_block_group *block_group,
3216 				    struct inode *inode,
3217 				    u64 ino)
3218 {
3219 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3220 	struct btrfs_root *root = fs_info->tree_root;
3221 	struct btrfs_trans_handle *trans;
3222 	struct btrfs_inode *btrfs_inode;
3223 	int ret = 0;
3224 
3225 	if (inode)
3226 		goto truncate;
3227 
3228 	btrfs_inode = btrfs_iget(ino, root);
3229 	if (IS_ERR(btrfs_inode))
3230 		return -ENOENT;
3231 	inode = &btrfs_inode->vfs_inode;
3232 
3233 truncate:
3234 	ret = btrfs_check_trunc_cache_free_space(fs_info,
3235 						 &fs_info->global_block_rsv);
3236 	if (ret)
3237 		goto out;
3238 
3239 	trans = btrfs_join_transaction(root);
3240 	if (IS_ERR(trans)) {
3241 		ret = PTR_ERR(trans);
3242 		goto out;
3243 	}
3244 
3245 	ret = btrfs_truncate_free_space_cache(trans, block_group, inode);
3246 
3247 	btrfs_end_transaction(trans);
3248 	btrfs_btree_balance_dirty(fs_info);
3249 out:
3250 	iput(inode);
3251 	return ret;
3252 }
3253 
3254 /*
3255  * Locate the free space cache EXTENT_DATA in root tree leaf and delete the
3256  * cache inode, to avoid free space cache data extent blocking data relocation.
3257  */
delete_v1_space_cache(struct extent_buffer * leaf,struct btrfs_block_group * block_group,u64 data_bytenr)3258 static int delete_v1_space_cache(struct extent_buffer *leaf,
3259 				 struct btrfs_block_group *block_group,
3260 				 u64 data_bytenr)
3261 {
3262 	u64 space_cache_ino;
3263 	struct btrfs_file_extent_item *ei;
3264 	struct btrfs_key key;
3265 	bool found = false;
3266 	int i;
3267 	int ret;
3268 
3269 	if (btrfs_header_owner(leaf) != BTRFS_ROOT_TREE_OBJECTID)
3270 		return 0;
3271 
3272 	for (i = 0; i < btrfs_header_nritems(leaf); i++) {
3273 		u8 type;
3274 
3275 		btrfs_item_key_to_cpu(leaf, &key, i);
3276 		if (key.type != BTRFS_EXTENT_DATA_KEY)
3277 			continue;
3278 		ei = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
3279 		type = btrfs_file_extent_type(leaf, ei);
3280 
3281 		if ((type == BTRFS_FILE_EXTENT_REG ||
3282 		     type == BTRFS_FILE_EXTENT_PREALLOC) &&
3283 		    btrfs_file_extent_disk_bytenr(leaf, ei) == data_bytenr) {
3284 			found = true;
3285 			space_cache_ino = key.objectid;
3286 			break;
3287 		}
3288 	}
3289 	if (!found)
3290 		return -ENOENT;
3291 	ret = delete_block_group_cache(block_group, NULL, space_cache_ino);
3292 	return ret;
3293 }
3294 
3295 /*
3296  * helper to find all tree blocks that reference a given data extent
3297  */
add_data_references(struct reloc_control * rc,const struct btrfs_key * extent_key,struct btrfs_path * path,struct rb_root * blocks)3298 static noinline_for_stack int add_data_references(struct reloc_control *rc,
3299 						  const struct btrfs_key *extent_key,
3300 						  struct btrfs_path *path,
3301 						  struct rb_root *blocks)
3302 {
3303 	struct btrfs_backref_walk_ctx ctx = { 0 };
3304 	struct ulist_iterator leaf_uiter;
3305 	struct ulist_node *ref_node = NULL;
3306 	const u32 blocksize = rc->extent_root->fs_info->nodesize;
3307 	int ret = 0;
3308 
3309 	btrfs_release_path(path);
3310 
3311 	ctx.bytenr = extent_key->objectid;
3312 	ctx.skip_inode_ref_list = true;
3313 	ctx.fs_info = rc->extent_root->fs_info;
3314 
3315 	ret = btrfs_find_all_leafs(&ctx);
3316 	if (ret < 0)
3317 		return ret;
3318 
3319 	ULIST_ITER_INIT(&leaf_uiter);
3320 	while ((ref_node = ulist_next(ctx.refs, &leaf_uiter))) {
3321 		struct btrfs_tree_parent_check check = { 0 };
3322 		struct extent_buffer *eb;
3323 
3324 		eb = read_tree_block(ctx.fs_info, ref_node->val, &check);
3325 		if (IS_ERR(eb)) {
3326 			ret = PTR_ERR(eb);
3327 			break;
3328 		}
3329 		ret = delete_v1_space_cache(eb, rc->block_group,
3330 					    extent_key->objectid);
3331 		free_extent_buffer(eb);
3332 		if (ret < 0)
3333 			break;
3334 		ret = __add_tree_block(rc, ref_node->val, blocksize, blocks);
3335 		if (ret < 0)
3336 			break;
3337 	}
3338 	if (ret < 0)
3339 		free_block_list(blocks);
3340 	ulist_free(ctx.refs);
3341 	return ret;
3342 }
3343 
3344 /*
3345  * helper to find next unprocessed extent
3346  */
3347 static noinline_for_stack
find_next_extent(struct reloc_control * rc,struct btrfs_path * path,struct btrfs_key * extent_key)3348 int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
3349 		     struct btrfs_key *extent_key)
3350 {
3351 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3352 	struct btrfs_key key;
3353 	struct extent_buffer *leaf;
3354 	u64 start, end, last;
3355 	int ret;
3356 
3357 	last = rc->block_group->start + rc->block_group->length;
3358 	while (1) {
3359 		bool block_found;
3360 
3361 		cond_resched();
3362 		if (rc->search_start >= last) {
3363 			ret = 1;
3364 			break;
3365 		}
3366 
3367 		key.objectid = rc->search_start;
3368 		key.type = BTRFS_EXTENT_ITEM_KEY;
3369 		key.offset = 0;
3370 
3371 		path->search_commit_root = 1;
3372 		path->skip_locking = 1;
3373 		ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3374 					0, 0);
3375 		if (ret < 0)
3376 			break;
3377 next:
3378 		leaf = path->nodes[0];
3379 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3380 			ret = btrfs_next_leaf(rc->extent_root, path);
3381 			if (ret != 0)
3382 				break;
3383 			leaf = path->nodes[0];
3384 		}
3385 
3386 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3387 		if (key.objectid >= last) {
3388 			ret = 1;
3389 			break;
3390 		}
3391 
3392 		if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3393 		    key.type != BTRFS_METADATA_ITEM_KEY) {
3394 			path->slots[0]++;
3395 			goto next;
3396 		}
3397 
3398 		if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3399 		    key.objectid + key.offset <= rc->search_start) {
3400 			path->slots[0]++;
3401 			goto next;
3402 		}
3403 
3404 		if (key.type == BTRFS_METADATA_ITEM_KEY &&
3405 		    key.objectid + fs_info->nodesize <=
3406 		    rc->search_start) {
3407 			path->slots[0]++;
3408 			goto next;
3409 		}
3410 
3411 		block_found = btrfs_find_first_extent_bit(&rc->processed_blocks,
3412 							  key.objectid, &start, &end,
3413 							  EXTENT_DIRTY, NULL);
3414 
3415 		if (block_found && start <= key.objectid) {
3416 			btrfs_release_path(path);
3417 			rc->search_start = end + 1;
3418 		} else {
3419 			if (key.type == BTRFS_EXTENT_ITEM_KEY)
3420 				rc->search_start = key.objectid + key.offset;
3421 			else
3422 				rc->search_start = key.objectid +
3423 					fs_info->nodesize;
3424 			memcpy(extent_key, &key, sizeof(key));
3425 			return 0;
3426 		}
3427 	}
3428 	btrfs_release_path(path);
3429 	return ret;
3430 }
3431 
set_reloc_control(struct reloc_control * rc)3432 static void set_reloc_control(struct reloc_control *rc)
3433 {
3434 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3435 
3436 	mutex_lock(&fs_info->reloc_mutex);
3437 	fs_info->reloc_ctl = rc;
3438 	mutex_unlock(&fs_info->reloc_mutex);
3439 }
3440 
unset_reloc_control(struct reloc_control * rc)3441 static void unset_reloc_control(struct reloc_control *rc)
3442 {
3443 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3444 
3445 	mutex_lock(&fs_info->reloc_mutex);
3446 	fs_info->reloc_ctl = NULL;
3447 	mutex_unlock(&fs_info->reloc_mutex);
3448 }
3449 
3450 static noinline_for_stack
prepare_to_relocate(struct reloc_control * rc)3451 int prepare_to_relocate(struct reloc_control *rc)
3452 {
3453 	struct btrfs_trans_handle *trans;
3454 	int ret;
3455 
3456 	rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
3457 					      BTRFS_BLOCK_RSV_TEMP);
3458 	if (!rc->block_rsv)
3459 		return -ENOMEM;
3460 
3461 	memset(&rc->cluster, 0, sizeof(rc->cluster));
3462 	rc->search_start = rc->block_group->start;
3463 	rc->extents_found = 0;
3464 	rc->nodes_relocated = 0;
3465 	rc->merging_rsv_size = 0;
3466 	rc->reserved_bytes = 0;
3467 	rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
3468 			      RELOCATION_RESERVED_NODES;
3469 	ret = btrfs_block_rsv_refill(rc->extent_root->fs_info,
3470 				     rc->block_rsv, rc->block_rsv->size,
3471 				     BTRFS_RESERVE_FLUSH_ALL);
3472 	if (ret)
3473 		return ret;
3474 
3475 	rc->create_reloc_tree = true;
3476 	set_reloc_control(rc);
3477 
3478 	trans = btrfs_join_transaction(rc->extent_root);
3479 	if (IS_ERR(trans)) {
3480 		unset_reloc_control(rc);
3481 		/*
3482 		 * extent tree is not a ref_cow tree and has no reloc_root to
3483 		 * cleanup.  And callers are responsible to free the above
3484 		 * block rsv.
3485 		 */
3486 		return PTR_ERR(trans);
3487 	}
3488 
3489 	ret = btrfs_commit_transaction(trans);
3490 	if (ret)
3491 		unset_reloc_control(rc);
3492 
3493 	return ret;
3494 }
3495 
relocate_block_group(struct reloc_control * rc)3496 static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3497 {
3498 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3499 	struct rb_root blocks = RB_ROOT;
3500 	struct btrfs_key key;
3501 	struct btrfs_trans_handle *trans = NULL;
3502 	BTRFS_PATH_AUTO_FREE(path);
3503 	struct btrfs_extent_item *ei;
3504 	u64 flags;
3505 	int ret;
3506 	int err = 0;
3507 	int progress = 0;
3508 
3509 	path = btrfs_alloc_path();
3510 	if (!path)
3511 		return -ENOMEM;
3512 	path->reada = READA_FORWARD;
3513 
3514 	ret = prepare_to_relocate(rc);
3515 	if (ret) {
3516 		err = ret;
3517 		goto out_free;
3518 	}
3519 
3520 	while (1) {
3521 		rc->reserved_bytes = 0;
3522 		ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv,
3523 					     rc->block_rsv->size,
3524 					     BTRFS_RESERVE_FLUSH_ALL);
3525 		if (ret) {
3526 			err = ret;
3527 			break;
3528 		}
3529 		progress++;
3530 		trans = btrfs_start_transaction(rc->extent_root, 0);
3531 		if (IS_ERR(trans)) {
3532 			err = PTR_ERR(trans);
3533 			trans = NULL;
3534 			break;
3535 		}
3536 restart:
3537 		if (rc->backref_cache.last_trans != trans->transid)
3538 			btrfs_backref_release_cache(&rc->backref_cache);
3539 		rc->backref_cache.last_trans = trans->transid;
3540 
3541 		ret = find_next_extent(rc, path, &key);
3542 		if (ret < 0)
3543 			err = ret;
3544 		if (ret != 0)
3545 			break;
3546 
3547 		rc->extents_found++;
3548 
3549 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3550 				    struct btrfs_extent_item);
3551 		flags = btrfs_extent_flags(path->nodes[0], ei);
3552 
3553 		/*
3554 		 * If we are relocating a simple quota owned extent item, we
3555 		 * need to note the owner on the reloc data root so that when
3556 		 * we allocate the replacement item, we can attribute it to the
3557 		 * correct eventual owner (rather than the reloc data root).
3558 		 */
3559 		if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE) {
3560 			struct btrfs_root *root = BTRFS_I(rc->data_inode)->root;
3561 			u64 owning_root_id = btrfs_get_extent_owner_root(fs_info,
3562 								 path->nodes[0],
3563 								 path->slots[0]);
3564 
3565 			root->relocation_src_root = owning_root_id;
3566 		}
3567 
3568 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
3569 			ret = add_tree_block(rc, &key, path, &blocks);
3570 		} else if (rc->stage == UPDATE_DATA_PTRS &&
3571 			   (flags & BTRFS_EXTENT_FLAG_DATA)) {
3572 			ret = add_data_references(rc, &key, path, &blocks);
3573 		} else {
3574 			btrfs_release_path(path);
3575 			ret = 0;
3576 		}
3577 		if (ret < 0) {
3578 			err = ret;
3579 			break;
3580 		}
3581 
3582 		if (!RB_EMPTY_ROOT(&blocks)) {
3583 			ret = relocate_tree_blocks(trans, rc, &blocks);
3584 			if (ret < 0) {
3585 				if (ret != -EAGAIN) {
3586 					err = ret;
3587 					break;
3588 				}
3589 				rc->extents_found--;
3590 				rc->search_start = key.objectid;
3591 			}
3592 		}
3593 
3594 		btrfs_end_transaction_throttle(trans);
3595 		btrfs_btree_balance_dirty(fs_info);
3596 		trans = NULL;
3597 
3598 		if (rc->stage == MOVE_DATA_EXTENTS &&
3599 		    (flags & BTRFS_EXTENT_FLAG_DATA)) {
3600 			rc->found_file_extent = true;
3601 			ret = relocate_data_extent(rc, &key);
3602 			if (ret < 0) {
3603 				err = ret;
3604 				break;
3605 			}
3606 		}
3607 		if (btrfs_should_cancel_balance(fs_info)) {
3608 			err = -ECANCELED;
3609 			break;
3610 		}
3611 	}
3612 	if (trans && progress && err == -ENOSPC) {
3613 		ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags);
3614 		if (ret == 1) {
3615 			err = 0;
3616 			progress = 0;
3617 			goto restart;
3618 		}
3619 	}
3620 
3621 	btrfs_release_path(path);
3622 	btrfs_clear_extent_bit(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY, NULL);
3623 
3624 	if (trans) {
3625 		btrfs_end_transaction_throttle(trans);
3626 		btrfs_btree_balance_dirty(fs_info);
3627 	}
3628 
3629 	if (!err) {
3630 		ret = relocate_file_extent_cluster(rc);
3631 		if (ret < 0)
3632 			err = ret;
3633 	}
3634 
3635 	rc->create_reloc_tree = false;
3636 	set_reloc_control(rc);
3637 
3638 	btrfs_backref_release_cache(&rc->backref_cache);
3639 	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3640 
3641 	/*
3642 	 * Even in the case when the relocation is cancelled, we should all go
3643 	 * through prepare_to_merge() and merge_reloc_roots().
3644 	 *
3645 	 * For error (including cancelled balance), prepare_to_merge() will
3646 	 * mark all reloc trees orphan, then queue them for cleanup in
3647 	 * merge_reloc_roots()
3648 	 */
3649 	err = prepare_to_merge(rc, err);
3650 
3651 	merge_reloc_roots(rc);
3652 
3653 	rc->merge_reloc_tree = false;
3654 	unset_reloc_control(rc);
3655 	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3656 
3657 	/* get rid of pinned extents */
3658 	trans = btrfs_join_transaction(rc->extent_root);
3659 	if (IS_ERR(trans)) {
3660 		err = PTR_ERR(trans);
3661 		goto out_free;
3662 	}
3663 	ret = btrfs_commit_transaction(trans);
3664 	if (ret && !err)
3665 		err = ret;
3666 out_free:
3667 	ret = clean_dirty_subvols(rc);
3668 	if (ret < 0 && !err)
3669 		err = ret;
3670 	btrfs_free_block_rsv(fs_info, rc->block_rsv);
3671 	return err;
3672 }
3673 
__insert_orphan_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 objectid)3674 static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
3675 				 struct btrfs_root *root, u64 objectid)
3676 {
3677 	BTRFS_PATH_AUTO_FREE(path);
3678 	struct btrfs_inode_item *item;
3679 	struct extent_buffer *leaf;
3680 	int ret;
3681 
3682 	path = btrfs_alloc_path();
3683 	if (!path)
3684 		return -ENOMEM;
3685 
3686 	ret = btrfs_insert_empty_inode(trans, root, path, objectid);
3687 	if (ret)
3688 		return ret;
3689 
3690 	leaf = path->nodes[0];
3691 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
3692 	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3693 	btrfs_set_inode_generation(leaf, item, 1);
3694 	btrfs_set_inode_size(leaf, item, 0);
3695 	btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
3696 	btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
3697 					  BTRFS_INODE_PREALLOC);
3698 	return 0;
3699 }
3700 
delete_orphan_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 objectid)3701 static void delete_orphan_inode(struct btrfs_trans_handle *trans,
3702 				struct btrfs_root *root, u64 objectid)
3703 {
3704 	BTRFS_PATH_AUTO_FREE(path);
3705 	struct btrfs_key key;
3706 	int ret = 0;
3707 
3708 	path = btrfs_alloc_path();
3709 	if (!path) {
3710 		ret = -ENOMEM;
3711 		goto out;
3712 	}
3713 
3714 	key.objectid = objectid;
3715 	key.type = BTRFS_INODE_ITEM_KEY;
3716 	key.offset = 0;
3717 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3718 	if (ret) {
3719 		if (ret > 0)
3720 			ret = -ENOENT;
3721 		goto out;
3722 	}
3723 	ret = btrfs_del_item(trans, root, path);
3724 out:
3725 	if (ret)
3726 		btrfs_abort_transaction(trans, ret);
3727 }
3728 
3729 /*
3730  * helper to create inode for data relocation.
3731  * the inode is in data relocation tree and its link count is 0
3732  */
create_reloc_inode(const struct btrfs_block_group * group)3733 static noinline_for_stack struct inode *create_reloc_inode(
3734 					const struct btrfs_block_group *group)
3735 {
3736 	struct btrfs_fs_info *fs_info = group->fs_info;
3737 	struct btrfs_inode *inode = NULL;
3738 	struct btrfs_trans_handle *trans;
3739 	struct btrfs_root *root;
3740 	u64 objectid;
3741 	int ret = 0;
3742 
3743 	root = btrfs_grab_root(fs_info->data_reloc_root);
3744 	trans = btrfs_start_transaction(root, 6);
3745 	if (IS_ERR(trans)) {
3746 		btrfs_put_root(root);
3747 		return ERR_CAST(trans);
3748 	}
3749 
3750 	ret = btrfs_get_free_objectid(root, &objectid);
3751 	if (ret)
3752 		goto out;
3753 
3754 	ret = __insert_orphan_inode(trans, root, objectid);
3755 	if (ret)
3756 		goto out;
3757 
3758 	inode = btrfs_iget(objectid, root);
3759 	if (IS_ERR(inode)) {
3760 		delete_orphan_inode(trans, root, objectid);
3761 		ret = PTR_ERR(inode);
3762 		inode = NULL;
3763 		goto out;
3764 	}
3765 	inode->reloc_block_group_start = group->start;
3766 
3767 	ret = btrfs_orphan_add(trans, inode);
3768 out:
3769 	btrfs_put_root(root);
3770 	btrfs_end_transaction(trans);
3771 	btrfs_btree_balance_dirty(fs_info);
3772 	if (ret) {
3773 		if (inode)
3774 			iput(&inode->vfs_inode);
3775 		return ERR_PTR(ret);
3776 	}
3777 	return &inode->vfs_inode;
3778 }
3779 
3780 /*
3781  * Mark start of chunk relocation that is cancellable. Check if the cancellation
3782  * has been requested meanwhile and don't start in that case.
3783  *
3784  * Return:
3785  *   0             success
3786  *   -EINPROGRESS  operation is already in progress, that's probably a bug
3787  *   -ECANCELED    cancellation request was set before the operation started
3788  */
reloc_chunk_start(struct btrfs_fs_info * fs_info)3789 static int reloc_chunk_start(struct btrfs_fs_info *fs_info)
3790 {
3791 	if (test_and_set_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) {
3792 		/* This should not happen */
3793 		btrfs_err(fs_info, "reloc already running, cannot start");
3794 		return -EINPROGRESS;
3795 	}
3796 
3797 	if (atomic_read(&fs_info->reloc_cancel_req) > 0) {
3798 		btrfs_info(fs_info, "chunk relocation canceled on start");
3799 		/*
3800 		 * On cancel, clear all requests but let the caller mark
3801 		 * the end after cleanup operations.
3802 		 */
3803 		atomic_set(&fs_info->reloc_cancel_req, 0);
3804 		return -ECANCELED;
3805 	}
3806 	return 0;
3807 }
3808 
3809 /*
3810  * Mark end of chunk relocation that is cancellable and wake any waiters.
3811  */
reloc_chunk_end(struct btrfs_fs_info * fs_info)3812 static void reloc_chunk_end(struct btrfs_fs_info *fs_info)
3813 {
3814 	/* Requested after start, clear bit first so any waiters can continue */
3815 	if (atomic_read(&fs_info->reloc_cancel_req) > 0)
3816 		btrfs_info(fs_info, "chunk relocation canceled during operation");
3817 	clear_and_wake_up_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags);
3818 	atomic_set(&fs_info->reloc_cancel_req, 0);
3819 }
3820 
alloc_reloc_control(struct btrfs_fs_info * fs_info)3821 static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
3822 {
3823 	struct reloc_control *rc;
3824 
3825 	rc = kzalloc(sizeof(*rc), GFP_NOFS);
3826 	if (!rc)
3827 		return NULL;
3828 
3829 	INIT_LIST_HEAD(&rc->reloc_roots);
3830 	INIT_LIST_HEAD(&rc->dirty_subvol_roots);
3831 	btrfs_backref_init_cache(fs_info, &rc->backref_cache, true);
3832 	rc->reloc_root_tree.rb_root = RB_ROOT;
3833 	spin_lock_init(&rc->reloc_root_tree.lock);
3834 	btrfs_extent_io_tree_init(fs_info, &rc->processed_blocks, IO_TREE_RELOC_BLOCKS);
3835 	return rc;
3836 }
3837 
free_reloc_control(struct reloc_control * rc)3838 static void free_reloc_control(struct reloc_control *rc)
3839 {
3840 	struct mapping_node *node, *tmp;
3841 
3842 	free_reloc_roots(&rc->reloc_roots);
3843 	rbtree_postorder_for_each_entry_safe(node, tmp,
3844 			&rc->reloc_root_tree.rb_root, rb_node)
3845 		kfree(node);
3846 
3847 	kfree(rc);
3848 }
3849 
3850 /*
3851  * Print the block group being relocated
3852  */
describe_relocation(struct btrfs_block_group * block_group)3853 static void describe_relocation(struct btrfs_block_group *block_group)
3854 {
3855 	char buf[128] = "NONE";
3856 
3857 	btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf));
3858 
3859 	btrfs_info(block_group->fs_info, "relocating block group %llu flags %s",
3860 		   block_group->start, buf);
3861 }
3862 
stage_to_string(enum reloc_stage stage)3863 static const char *stage_to_string(enum reloc_stage stage)
3864 {
3865 	if (stage == MOVE_DATA_EXTENTS)
3866 		return "move data extents";
3867 	if (stage == UPDATE_DATA_PTRS)
3868 		return "update data pointers";
3869 	return "unknown";
3870 }
3871 
3872 /*
3873  * function to relocate all extents in a block group.
3874  */
btrfs_relocate_block_group(struct btrfs_fs_info * fs_info,u64 group_start,bool verbose)3875 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start,
3876 			       bool verbose)
3877 {
3878 	struct btrfs_block_group *bg;
3879 	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, group_start);
3880 	struct reloc_control *rc;
3881 	struct inode *inode;
3882 	struct btrfs_path *path;
3883 	int ret;
3884 	int rw = 0;
3885 	int err = 0;
3886 
3887 	/*
3888 	 * This only gets set if we had a half-deleted snapshot on mount.  We
3889 	 * cannot allow relocation to start while we're still trying to clean up
3890 	 * these pending deletions.
3891 	 */
3892 	ret = wait_on_bit(&fs_info->flags, BTRFS_FS_UNFINISHED_DROPS, TASK_INTERRUPTIBLE);
3893 	if (ret)
3894 		return ret;
3895 
3896 	/* We may have been woken up by close_ctree, so bail if we're closing. */
3897 	if (btrfs_fs_closing(fs_info))
3898 		return -EINTR;
3899 
3900 	bg = btrfs_lookup_block_group(fs_info, group_start);
3901 	if (!bg)
3902 		return -ENOENT;
3903 
3904 	/*
3905 	 * Relocation of a data block group creates ordered extents.  Without
3906 	 * sb_start_write(), we can freeze the filesystem while unfinished
3907 	 * ordered extents are left. Such ordered extents can cause a deadlock
3908 	 * e.g. when syncfs() is waiting for their completion but they can't
3909 	 * finish because they block when joining a transaction, due to the
3910 	 * fact that the freeze locks are being held in write mode.
3911 	 */
3912 	if (bg->flags & BTRFS_BLOCK_GROUP_DATA)
3913 		ASSERT(sb_write_started(fs_info->sb));
3914 
3915 	if (btrfs_pinned_by_swapfile(fs_info, bg)) {
3916 		btrfs_put_block_group(bg);
3917 		return -ETXTBSY;
3918 	}
3919 
3920 	rc = alloc_reloc_control(fs_info);
3921 	if (!rc) {
3922 		btrfs_put_block_group(bg);
3923 		return -ENOMEM;
3924 	}
3925 
3926 	ret = reloc_chunk_start(fs_info);
3927 	if (ret < 0) {
3928 		err = ret;
3929 		goto out_put_bg;
3930 	}
3931 
3932 	rc->extent_root = extent_root;
3933 	rc->block_group = bg;
3934 
3935 	ret = btrfs_inc_block_group_ro(rc->block_group, true);
3936 	if (ret) {
3937 		err = ret;
3938 		goto out;
3939 	}
3940 	rw = 1;
3941 
3942 	path = btrfs_alloc_path();
3943 	if (!path) {
3944 		err = -ENOMEM;
3945 		goto out;
3946 	}
3947 
3948 	inode = lookup_free_space_inode(rc->block_group, path);
3949 	btrfs_free_path(path);
3950 
3951 	if (!IS_ERR(inode))
3952 		ret = delete_block_group_cache(rc->block_group, inode, 0);
3953 	else
3954 		ret = PTR_ERR(inode);
3955 
3956 	if (ret && ret != -ENOENT) {
3957 		err = ret;
3958 		goto out;
3959 	}
3960 
3961 	rc->data_inode = create_reloc_inode(rc->block_group);
3962 	if (IS_ERR(rc->data_inode)) {
3963 		err = PTR_ERR(rc->data_inode);
3964 		rc->data_inode = NULL;
3965 		goto out;
3966 	}
3967 
3968 	if (verbose)
3969 		describe_relocation(rc->block_group);
3970 
3971 	btrfs_wait_block_group_reservations(rc->block_group);
3972 	btrfs_wait_nocow_writers(rc->block_group);
3973 	btrfs_wait_ordered_roots(fs_info, U64_MAX, rc->block_group);
3974 
3975 	ret = btrfs_zone_finish(rc->block_group);
3976 	WARN_ON(ret && ret != -EAGAIN);
3977 
3978 	while (1) {
3979 		enum reloc_stage finishes_stage;
3980 
3981 		mutex_lock(&fs_info->cleaner_mutex);
3982 		ret = relocate_block_group(rc);
3983 		mutex_unlock(&fs_info->cleaner_mutex);
3984 		if (ret < 0)
3985 			err = ret;
3986 
3987 		finishes_stage = rc->stage;
3988 		/*
3989 		 * We may have gotten ENOSPC after we already dirtied some
3990 		 * extents.  If writeout happens while we're relocating a
3991 		 * different block group we could end up hitting the
3992 		 * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in
3993 		 * btrfs_reloc_cow_block.  Make sure we write everything out
3994 		 * properly so we don't trip over this problem, and then break
3995 		 * out of the loop if we hit an error.
3996 		 */
3997 		if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
3998 			ret = btrfs_wait_ordered_range(BTRFS_I(rc->data_inode), 0,
3999 						       (u64)-1);
4000 			if (ret)
4001 				err = ret;
4002 			invalidate_mapping_pages(rc->data_inode->i_mapping,
4003 						 0, -1);
4004 			rc->stage = UPDATE_DATA_PTRS;
4005 		}
4006 
4007 		if (err < 0)
4008 			goto out;
4009 
4010 		if (rc->extents_found == 0)
4011 			break;
4012 
4013 		if (verbose)
4014 			btrfs_info(fs_info, "found %llu extents, stage: %s",
4015 				   rc->extents_found,
4016 				   stage_to_string(finishes_stage));
4017 	}
4018 
4019 	WARN_ON(rc->block_group->pinned > 0);
4020 	WARN_ON(rc->block_group->reserved > 0);
4021 	WARN_ON(rc->block_group->used > 0);
4022 out:
4023 	if (err && rw)
4024 		btrfs_dec_block_group_ro(rc->block_group);
4025 	iput(rc->data_inode);
4026 out_put_bg:
4027 	btrfs_put_block_group(bg);
4028 	reloc_chunk_end(fs_info);
4029 	free_reloc_control(rc);
4030 	return err;
4031 }
4032 
mark_garbage_root(struct btrfs_root * root)4033 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4034 {
4035 	struct btrfs_fs_info *fs_info = root->fs_info;
4036 	struct btrfs_trans_handle *trans;
4037 	int ret, err;
4038 
4039 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
4040 	if (IS_ERR(trans))
4041 		return PTR_ERR(trans);
4042 
4043 	memset(&root->root_item.drop_progress, 0,
4044 		sizeof(root->root_item.drop_progress));
4045 	btrfs_set_root_drop_level(&root->root_item, 0);
4046 	btrfs_set_root_refs(&root->root_item, 0);
4047 	ret = btrfs_update_root(trans, fs_info->tree_root,
4048 				&root->root_key, &root->root_item);
4049 
4050 	err = btrfs_end_transaction(trans);
4051 	if (err)
4052 		return err;
4053 	return ret;
4054 }
4055 
4056 /*
4057  * recover relocation interrupted by system crash.
4058  *
4059  * this function resumes merging reloc trees with corresponding fs trees.
4060  * this is important for keeping the sharing of tree blocks
4061  */
btrfs_recover_relocation(struct btrfs_fs_info * fs_info)4062 int btrfs_recover_relocation(struct btrfs_fs_info *fs_info)
4063 {
4064 	LIST_HEAD(reloc_roots);
4065 	struct btrfs_key key;
4066 	struct btrfs_root *fs_root;
4067 	struct btrfs_root *reloc_root;
4068 	struct btrfs_path *path;
4069 	struct extent_buffer *leaf;
4070 	struct reloc_control *rc = NULL;
4071 	struct btrfs_trans_handle *trans;
4072 	int ret2;
4073 	int ret = 0;
4074 
4075 	path = btrfs_alloc_path();
4076 	if (!path)
4077 		return -ENOMEM;
4078 	path->reada = READA_BACK;
4079 
4080 	key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4081 	key.type = BTRFS_ROOT_ITEM_KEY;
4082 	key.offset = (u64)-1;
4083 
4084 	while (1) {
4085 		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
4086 					path, 0, 0);
4087 		if (ret < 0)
4088 			goto out;
4089 		if (ret > 0) {
4090 			if (path->slots[0] == 0)
4091 				break;
4092 			path->slots[0]--;
4093 		}
4094 		ret = 0;
4095 		leaf = path->nodes[0];
4096 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4097 		btrfs_release_path(path);
4098 
4099 		if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4100 		    key.type != BTRFS_ROOT_ITEM_KEY)
4101 			break;
4102 
4103 		reloc_root = btrfs_read_tree_root(fs_info->tree_root, &key);
4104 		if (IS_ERR(reloc_root)) {
4105 			ret = PTR_ERR(reloc_root);
4106 			goto out;
4107 		}
4108 
4109 		set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
4110 		list_add(&reloc_root->root_list, &reloc_roots);
4111 
4112 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4113 			fs_root = btrfs_get_fs_root(fs_info,
4114 					reloc_root->root_key.offset, false);
4115 			if (IS_ERR(fs_root)) {
4116 				ret = PTR_ERR(fs_root);
4117 				if (ret != -ENOENT)
4118 					goto out;
4119 				ret = mark_garbage_root(reloc_root);
4120 				if (ret < 0)
4121 					goto out;
4122 				ret = 0;
4123 			} else {
4124 				btrfs_put_root(fs_root);
4125 			}
4126 		}
4127 
4128 		if (key.offset == 0)
4129 			break;
4130 
4131 		key.offset--;
4132 	}
4133 	btrfs_release_path(path);
4134 
4135 	if (list_empty(&reloc_roots))
4136 		goto out;
4137 
4138 	rc = alloc_reloc_control(fs_info);
4139 	if (!rc) {
4140 		ret = -ENOMEM;
4141 		goto out;
4142 	}
4143 
4144 	ret = reloc_chunk_start(fs_info);
4145 	if (ret < 0)
4146 		goto out_end;
4147 
4148 	rc->extent_root = btrfs_extent_root(fs_info, 0);
4149 
4150 	set_reloc_control(rc);
4151 
4152 	trans = btrfs_join_transaction(rc->extent_root);
4153 	if (IS_ERR(trans)) {
4154 		ret = PTR_ERR(trans);
4155 		goto out_unset;
4156 	}
4157 
4158 	rc->merge_reloc_tree = true;
4159 
4160 	while (!list_empty(&reloc_roots)) {
4161 		reloc_root = list_first_entry(&reloc_roots, struct btrfs_root, root_list);
4162 		list_del(&reloc_root->root_list);
4163 
4164 		if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4165 			list_add_tail(&reloc_root->root_list,
4166 				      &rc->reloc_roots);
4167 			continue;
4168 		}
4169 
4170 		fs_root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
4171 					    false);
4172 		if (IS_ERR(fs_root)) {
4173 			ret = PTR_ERR(fs_root);
4174 			list_add_tail(&reloc_root->root_list, &reloc_roots);
4175 			btrfs_end_transaction(trans);
4176 			goto out_unset;
4177 		}
4178 
4179 		ret = __add_reloc_root(reloc_root);
4180 		ASSERT(ret != -EEXIST);
4181 		if (ret) {
4182 			list_add_tail(&reloc_root->root_list, &reloc_roots);
4183 			btrfs_put_root(fs_root);
4184 			btrfs_end_transaction(trans);
4185 			goto out_unset;
4186 		}
4187 		fs_root->reloc_root = btrfs_grab_root(reloc_root);
4188 		btrfs_put_root(fs_root);
4189 	}
4190 
4191 	ret = btrfs_commit_transaction(trans);
4192 	if (ret)
4193 		goto out_unset;
4194 
4195 	merge_reloc_roots(rc);
4196 
4197 	unset_reloc_control(rc);
4198 
4199 	trans = btrfs_join_transaction(rc->extent_root);
4200 	if (IS_ERR(trans)) {
4201 		ret = PTR_ERR(trans);
4202 		goto out_clean;
4203 	}
4204 	ret = btrfs_commit_transaction(trans);
4205 out_clean:
4206 	ret2 = clean_dirty_subvols(rc);
4207 	if (ret2 < 0 && !ret)
4208 		ret = ret2;
4209 out_unset:
4210 	unset_reloc_control(rc);
4211 out_end:
4212 	reloc_chunk_end(fs_info);
4213 	free_reloc_control(rc);
4214 out:
4215 	free_reloc_roots(&reloc_roots);
4216 
4217 	btrfs_free_path(path);
4218 
4219 	if (ret == 0) {
4220 		/* cleanup orphan inode in data relocation tree */
4221 		fs_root = btrfs_grab_root(fs_info->data_reloc_root);
4222 		ASSERT(fs_root);
4223 		ret = btrfs_orphan_cleanup(fs_root);
4224 		btrfs_put_root(fs_root);
4225 	}
4226 	return ret;
4227 }
4228 
4229 /*
4230  * helper to add ordered checksum for data relocation.
4231  *
4232  * cloning checksum properly handles the nodatasum extents.
4233  * it also saves CPU time to re-calculate the checksum.
4234  */
btrfs_reloc_clone_csums(struct btrfs_ordered_extent * ordered)4235 int btrfs_reloc_clone_csums(struct btrfs_ordered_extent *ordered)
4236 {
4237 	struct btrfs_inode *inode = ordered->inode;
4238 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
4239 	u64 disk_bytenr = ordered->file_offset + inode->reloc_block_group_start;
4240 	struct btrfs_root *csum_root = btrfs_csum_root(fs_info, disk_bytenr);
4241 	LIST_HEAD(list);
4242 	int ret;
4243 
4244 	ret = btrfs_lookup_csums_list(csum_root, disk_bytenr,
4245 				      disk_bytenr + ordered->num_bytes - 1,
4246 				      &list, false);
4247 	if (ret < 0) {
4248 		btrfs_mark_ordered_extent_error(ordered);
4249 		return ret;
4250 	}
4251 
4252 	while (!list_empty(&list)) {
4253 		struct btrfs_ordered_sum *sums =
4254 			list_first_entry(&list, struct btrfs_ordered_sum, list);
4255 
4256 		list_del_init(&sums->list);
4257 
4258 		/*
4259 		 * We need to offset the new_bytenr based on where the csum is.
4260 		 * We need to do this because we will read in entire prealloc
4261 		 * extents but we may have written to say the middle of the
4262 		 * prealloc extent, so we need to make sure the csum goes with
4263 		 * the right disk offset.
4264 		 *
4265 		 * We can do this because the data reloc inode refers strictly
4266 		 * to the on disk bytes, so we don't have to worry about
4267 		 * disk_len vs real len like with real inodes since it's all
4268 		 * disk length.
4269 		 */
4270 		sums->logical = ordered->disk_bytenr + sums->logical - disk_bytenr;
4271 		btrfs_add_ordered_sum(ordered, sums);
4272 	}
4273 
4274 	return 0;
4275 }
4276 
btrfs_reloc_cow_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,const struct extent_buffer * buf,struct extent_buffer * cow)4277 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4278 			  struct btrfs_root *root,
4279 			  const struct extent_buffer *buf,
4280 			  struct extent_buffer *cow)
4281 {
4282 	struct btrfs_fs_info *fs_info = root->fs_info;
4283 	struct reloc_control *rc;
4284 	struct btrfs_backref_node *node;
4285 	int first_cow = 0;
4286 	int level;
4287 	int ret = 0;
4288 
4289 	rc = fs_info->reloc_ctl;
4290 	if (!rc)
4291 		return 0;
4292 
4293 	BUG_ON(rc->stage == UPDATE_DATA_PTRS && btrfs_is_data_reloc_root(root));
4294 
4295 	level = btrfs_header_level(buf);
4296 	if (btrfs_header_generation(buf) <=
4297 	    btrfs_root_last_snapshot(&root->root_item))
4298 		first_cow = 1;
4299 
4300 	if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID && rc->create_reloc_tree) {
4301 		WARN_ON(!first_cow && level == 0);
4302 
4303 		node = rc->backref_cache.path[level];
4304 
4305 		/*
4306 		 * If node->bytenr != buf->start and node->new_bytenr !=
4307 		 * buf->start then we've got the wrong backref node for what we
4308 		 * expected to see here and the cache is incorrect.
4309 		 */
4310 		if (unlikely(node->bytenr != buf->start && node->new_bytenr != buf->start)) {
4311 			btrfs_err(fs_info,
4312 "bytenr %llu was found but our backref cache was expecting %llu or %llu",
4313 				  buf->start, node->bytenr, node->new_bytenr);
4314 			return -EUCLEAN;
4315 		}
4316 
4317 		btrfs_backref_drop_node_buffer(node);
4318 		refcount_inc(&cow->refs);
4319 		node->eb = cow;
4320 		node->new_bytenr = cow->start;
4321 
4322 		if (!node->pending) {
4323 			list_move_tail(&node->list,
4324 				       &rc->backref_cache.pending[level]);
4325 			node->pending = 1;
4326 		}
4327 
4328 		if (first_cow)
4329 			mark_block_processed(rc, node);
4330 
4331 		if (first_cow && level > 0)
4332 			rc->nodes_relocated += buf->len;
4333 	}
4334 
4335 	if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
4336 		ret = replace_file_extents(trans, rc, root, cow);
4337 	return ret;
4338 }
4339 
4340 /*
4341  * called before creating snapshot. it calculates metadata reservation
4342  * required for relocating tree blocks in the snapshot
4343  */
btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot * pending,u64 * bytes_to_reserve)4344 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
4345 			      u64 *bytes_to_reserve)
4346 {
4347 	struct btrfs_root *root = pending->root;
4348 	struct reloc_control *rc = root->fs_info->reloc_ctl;
4349 
4350 	if (!rc || !have_reloc_root(root))
4351 		return;
4352 
4353 	if (!rc->merge_reloc_tree)
4354 		return;
4355 
4356 	root = root->reloc_root;
4357 	BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4358 	/*
4359 	 * relocation is in the stage of merging trees. the space
4360 	 * used by merging a reloc tree is twice the size of
4361 	 * relocated tree nodes in the worst case. half for cowing
4362 	 * the reloc tree, half for cowing the fs tree. the space
4363 	 * used by cowing the reloc tree will be freed after the
4364 	 * tree is dropped. if we create snapshot, cowing the fs
4365 	 * tree may use more space than it frees. so we need
4366 	 * reserve extra space.
4367 	 */
4368 	*bytes_to_reserve += rc->nodes_relocated;
4369 }
4370 
4371 /*
4372  * called after snapshot is created. migrate block reservation
4373  * and create reloc root for the newly created snapshot
4374  *
4375  * This is similar to btrfs_init_reloc_root(), we come out of here with two
4376  * references held on the reloc_root, one for root->reloc_root and one for
4377  * rc->reloc_roots.
4378  */
btrfs_reloc_post_snapshot(struct btrfs_trans_handle * trans,struct btrfs_pending_snapshot * pending)4379 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4380 			       struct btrfs_pending_snapshot *pending)
4381 {
4382 	struct btrfs_root *root = pending->root;
4383 	struct btrfs_root *reloc_root;
4384 	struct btrfs_root *new_root;
4385 	struct reloc_control *rc = root->fs_info->reloc_ctl;
4386 	int ret;
4387 
4388 	if (!rc || !have_reloc_root(root))
4389 		return 0;
4390 
4391 	rc = root->fs_info->reloc_ctl;
4392 	rc->merging_rsv_size += rc->nodes_relocated;
4393 
4394 	if (rc->merge_reloc_tree) {
4395 		ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4396 					      rc->block_rsv,
4397 					      rc->nodes_relocated, true);
4398 		if (ret)
4399 			return ret;
4400 	}
4401 
4402 	new_root = pending->snap;
4403 	reloc_root = create_reloc_root(trans, root->reloc_root, btrfs_root_id(new_root));
4404 	if (IS_ERR(reloc_root))
4405 		return PTR_ERR(reloc_root);
4406 
4407 	ret = __add_reloc_root(reloc_root);
4408 	ASSERT(ret != -EEXIST);
4409 	if (ret) {
4410 		/* Pairs with create_reloc_root */
4411 		btrfs_put_root(reloc_root);
4412 		return ret;
4413 	}
4414 	new_root->reloc_root = btrfs_grab_root(reloc_root);
4415 	return 0;
4416 }
4417 
4418 /*
4419  * Get the current bytenr for the block group which is being relocated.
4420  *
4421  * Return U64_MAX if no running relocation.
4422  */
btrfs_get_reloc_bg_bytenr(const struct btrfs_fs_info * fs_info)4423 u64 btrfs_get_reloc_bg_bytenr(const struct btrfs_fs_info *fs_info)
4424 {
4425 	u64 logical = U64_MAX;
4426 
4427 	lockdep_assert_held(&fs_info->reloc_mutex);
4428 
4429 	if (fs_info->reloc_ctl && fs_info->reloc_ctl->block_group)
4430 		logical = fs_info->reloc_ctl->block_group->start;
4431 	return logical;
4432 }
4433