1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Block multiqueue core code
4 *
5 * Copyright (C) 2013-2014 Jens Axboe
6 * Copyright (C) 2013-2014 Christoph Hellwig
7 */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
29 #include <linux/blk-crypto.h>
30 #include <linux/part_stat.h>
31 #include <linux/sched/isolation.h>
32
33 #include <trace/events/block.h>
34
35 #include <linux/t10-pi.h>
36 #include "blk.h"
37 #include "blk-mq.h"
38 #include "blk-mq-debugfs.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43
44 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
45 static DEFINE_PER_CPU(call_single_data_t, blk_cpu_csd);
46 static DEFINE_MUTEX(blk_mq_cpuhp_lock);
47
48 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags);
49 static void blk_mq_request_bypass_insert(struct request *rq,
50 blk_insert_t flags);
51 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
52 struct list_head *list);
53 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
54 struct io_comp_batch *iob, unsigned int flags);
55
56 /*
57 * Check if any of the ctx, dispatch list or elevator
58 * have pending work in this hardware queue.
59 */
blk_mq_hctx_has_pending(struct blk_mq_hw_ctx * hctx)60 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
61 {
62 return !list_empty_careful(&hctx->dispatch) ||
63 sbitmap_any_bit_set(&hctx->ctx_map) ||
64 blk_mq_sched_has_work(hctx);
65 }
66
67 /*
68 * Mark this ctx as having pending work in this hardware queue
69 */
blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx)70 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
71 struct blk_mq_ctx *ctx)
72 {
73 const int bit = ctx->index_hw[hctx->type];
74
75 if (!sbitmap_test_bit(&hctx->ctx_map, bit))
76 sbitmap_set_bit(&hctx->ctx_map, bit);
77 }
78
blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx)79 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
80 struct blk_mq_ctx *ctx)
81 {
82 const int bit = ctx->index_hw[hctx->type];
83
84 sbitmap_clear_bit(&hctx->ctx_map, bit);
85 }
86
87 struct mq_inflight {
88 struct block_device *part;
89 unsigned int inflight[2];
90 };
91
blk_mq_check_inflight(struct request * rq,void * priv)92 static bool blk_mq_check_inflight(struct request *rq, void *priv)
93 {
94 struct mq_inflight *mi = priv;
95
96 if (rq->rq_flags & RQF_IO_STAT &&
97 (!bdev_is_partition(mi->part) || rq->part == mi->part) &&
98 blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
99 mi->inflight[rq_data_dir(rq)]++;
100
101 return true;
102 }
103
blk_mq_in_flight(struct request_queue * q,struct block_device * part)104 unsigned int blk_mq_in_flight(struct request_queue *q,
105 struct block_device *part)
106 {
107 struct mq_inflight mi = { .part = part };
108
109 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
110
111 return mi.inflight[0] + mi.inflight[1];
112 }
113
blk_mq_in_flight_rw(struct request_queue * q,struct block_device * part,unsigned int inflight[2])114 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
115 unsigned int inflight[2])
116 {
117 struct mq_inflight mi = { .part = part };
118
119 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
120 inflight[0] = mi.inflight[0];
121 inflight[1] = mi.inflight[1];
122 }
123
124 #ifdef CONFIG_LOCKDEP
blk_freeze_set_owner(struct request_queue * q,struct task_struct * owner)125 static bool blk_freeze_set_owner(struct request_queue *q,
126 struct task_struct *owner)
127 {
128 if (!owner)
129 return false;
130
131 if (!q->mq_freeze_depth) {
132 q->mq_freeze_owner = owner;
133 q->mq_freeze_owner_depth = 1;
134 q->mq_freeze_disk_dead = !q->disk ||
135 test_bit(GD_DEAD, &q->disk->state) ||
136 !blk_queue_registered(q);
137 q->mq_freeze_queue_dying = blk_queue_dying(q);
138 return true;
139 }
140
141 if (owner == q->mq_freeze_owner)
142 q->mq_freeze_owner_depth += 1;
143 return false;
144 }
145
146 /* verify the last unfreeze in owner context */
blk_unfreeze_check_owner(struct request_queue * q)147 static bool blk_unfreeze_check_owner(struct request_queue *q)
148 {
149 if (q->mq_freeze_owner != current)
150 return false;
151 if (--q->mq_freeze_owner_depth == 0) {
152 q->mq_freeze_owner = NULL;
153 return true;
154 }
155 return false;
156 }
157
158 #else
159
blk_freeze_set_owner(struct request_queue * q,struct task_struct * owner)160 static bool blk_freeze_set_owner(struct request_queue *q,
161 struct task_struct *owner)
162 {
163 return false;
164 }
165
blk_unfreeze_check_owner(struct request_queue * q)166 static bool blk_unfreeze_check_owner(struct request_queue *q)
167 {
168 return false;
169 }
170 #endif
171
__blk_freeze_queue_start(struct request_queue * q,struct task_struct * owner)172 bool __blk_freeze_queue_start(struct request_queue *q,
173 struct task_struct *owner)
174 {
175 bool freeze;
176
177 mutex_lock(&q->mq_freeze_lock);
178 freeze = blk_freeze_set_owner(q, owner);
179 if (++q->mq_freeze_depth == 1) {
180 percpu_ref_kill(&q->q_usage_counter);
181 mutex_unlock(&q->mq_freeze_lock);
182 if (queue_is_mq(q))
183 blk_mq_run_hw_queues(q, false);
184 } else {
185 mutex_unlock(&q->mq_freeze_lock);
186 }
187
188 return freeze;
189 }
190
blk_freeze_queue_start(struct request_queue * q)191 void blk_freeze_queue_start(struct request_queue *q)
192 {
193 if (__blk_freeze_queue_start(q, current))
194 blk_freeze_acquire_lock(q);
195 }
196 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
197
blk_mq_freeze_queue_wait(struct request_queue * q)198 void blk_mq_freeze_queue_wait(struct request_queue *q)
199 {
200 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
201 }
202 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
203
blk_mq_freeze_queue_wait_timeout(struct request_queue * q,unsigned long timeout)204 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
205 unsigned long timeout)
206 {
207 return wait_event_timeout(q->mq_freeze_wq,
208 percpu_ref_is_zero(&q->q_usage_counter),
209 timeout);
210 }
211 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
212
blk_mq_freeze_queue_nomemsave(struct request_queue * q)213 void blk_mq_freeze_queue_nomemsave(struct request_queue *q)
214 {
215 blk_freeze_queue_start(q);
216 blk_mq_freeze_queue_wait(q);
217 }
218 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_nomemsave);
219
__blk_mq_unfreeze_queue(struct request_queue * q,bool force_atomic)220 bool __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
221 {
222 bool unfreeze;
223
224 mutex_lock(&q->mq_freeze_lock);
225 if (force_atomic)
226 q->q_usage_counter.data->force_atomic = true;
227 q->mq_freeze_depth--;
228 WARN_ON_ONCE(q->mq_freeze_depth < 0);
229 if (!q->mq_freeze_depth) {
230 percpu_ref_resurrect(&q->q_usage_counter);
231 wake_up_all(&q->mq_freeze_wq);
232 }
233 unfreeze = blk_unfreeze_check_owner(q);
234 mutex_unlock(&q->mq_freeze_lock);
235
236 return unfreeze;
237 }
238
blk_mq_unfreeze_queue_nomemrestore(struct request_queue * q)239 void blk_mq_unfreeze_queue_nomemrestore(struct request_queue *q)
240 {
241 if (__blk_mq_unfreeze_queue(q, false))
242 blk_unfreeze_release_lock(q);
243 }
244 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue_nomemrestore);
245
246 /*
247 * non_owner variant of blk_freeze_queue_start
248 *
249 * Unlike blk_freeze_queue_start, the queue doesn't need to be unfrozen
250 * by the same task. This is fragile and should not be used if at all
251 * possible.
252 */
blk_freeze_queue_start_non_owner(struct request_queue * q)253 void blk_freeze_queue_start_non_owner(struct request_queue *q)
254 {
255 __blk_freeze_queue_start(q, NULL);
256 }
257 EXPORT_SYMBOL_GPL(blk_freeze_queue_start_non_owner);
258
259 /* non_owner variant of blk_mq_unfreeze_queue */
blk_mq_unfreeze_queue_non_owner(struct request_queue * q)260 void blk_mq_unfreeze_queue_non_owner(struct request_queue *q)
261 {
262 __blk_mq_unfreeze_queue(q, false);
263 }
264 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue_non_owner);
265
266 /*
267 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
268 * mpt3sas driver such that this function can be removed.
269 */
blk_mq_quiesce_queue_nowait(struct request_queue * q)270 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
271 {
272 unsigned long flags;
273
274 spin_lock_irqsave(&q->queue_lock, flags);
275 if (!q->quiesce_depth++)
276 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
277 spin_unlock_irqrestore(&q->queue_lock, flags);
278 }
279 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
280
281 /**
282 * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
283 * @set: tag_set to wait on
284 *
285 * Note: it is driver's responsibility for making sure that quiesce has
286 * been started on or more of the request_queues of the tag_set. This
287 * function only waits for the quiesce on those request_queues that had
288 * the quiesce flag set using blk_mq_quiesce_queue_nowait.
289 */
blk_mq_wait_quiesce_done(struct blk_mq_tag_set * set)290 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set)
291 {
292 if (set->flags & BLK_MQ_F_BLOCKING)
293 synchronize_srcu(set->srcu);
294 else
295 synchronize_rcu();
296 }
297 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
298
299 /**
300 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
301 * @q: request queue.
302 *
303 * Note: this function does not prevent that the struct request end_io()
304 * callback function is invoked. Once this function is returned, we make
305 * sure no dispatch can happen until the queue is unquiesced via
306 * blk_mq_unquiesce_queue().
307 */
blk_mq_quiesce_queue(struct request_queue * q)308 void blk_mq_quiesce_queue(struct request_queue *q)
309 {
310 blk_mq_quiesce_queue_nowait(q);
311 /* nothing to wait for non-mq queues */
312 if (queue_is_mq(q))
313 blk_mq_wait_quiesce_done(q->tag_set);
314 }
315 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
316
317 /*
318 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
319 * @q: request queue.
320 *
321 * This function recovers queue into the state before quiescing
322 * which is done by blk_mq_quiesce_queue.
323 */
blk_mq_unquiesce_queue(struct request_queue * q)324 void blk_mq_unquiesce_queue(struct request_queue *q)
325 {
326 unsigned long flags;
327 bool run_queue = false;
328
329 spin_lock_irqsave(&q->queue_lock, flags);
330 if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
331 ;
332 } else if (!--q->quiesce_depth) {
333 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
334 run_queue = true;
335 }
336 spin_unlock_irqrestore(&q->queue_lock, flags);
337
338 /* dispatch requests which are inserted during quiescing */
339 if (run_queue)
340 blk_mq_run_hw_queues(q, true);
341 }
342 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
343
blk_mq_quiesce_tagset(struct blk_mq_tag_set * set)344 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set)
345 {
346 struct request_queue *q;
347
348 mutex_lock(&set->tag_list_lock);
349 list_for_each_entry(q, &set->tag_list, tag_set_list) {
350 if (!blk_queue_skip_tagset_quiesce(q))
351 blk_mq_quiesce_queue_nowait(q);
352 }
353 mutex_unlock(&set->tag_list_lock);
354
355 blk_mq_wait_quiesce_done(set);
356 }
357 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset);
358
blk_mq_unquiesce_tagset(struct blk_mq_tag_set * set)359 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set)
360 {
361 struct request_queue *q;
362
363 mutex_lock(&set->tag_list_lock);
364 list_for_each_entry(q, &set->tag_list, tag_set_list) {
365 if (!blk_queue_skip_tagset_quiesce(q))
366 blk_mq_unquiesce_queue(q);
367 }
368 mutex_unlock(&set->tag_list_lock);
369 }
370 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset);
371
blk_mq_wake_waiters(struct request_queue * q)372 void blk_mq_wake_waiters(struct request_queue *q)
373 {
374 struct blk_mq_hw_ctx *hctx;
375 unsigned long i;
376
377 queue_for_each_hw_ctx(q, hctx, i)
378 if (blk_mq_hw_queue_mapped(hctx))
379 blk_mq_tag_wakeup_all(hctx->tags, true);
380 }
381
blk_rq_init(struct request_queue * q,struct request * rq)382 void blk_rq_init(struct request_queue *q, struct request *rq)
383 {
384 memset(rq, 0, sizeof(*rq));
385
386 INIT_LIST_HEAD(&rq->queuelist);
387 rq->q = q;
388 rq->__sector = (sector_t) -1;
389 INIT_HLIST_NODE(&rq->hash);
390 RB_CLEAR_NODE(&rq->rb_node);
391 rq->tag = BLK_MQ_NO_TAG;
392 rq->internal_tag = BLK_MQ_NO_TAG;
393 rq->start_time_ns = blk_time_get_ns();
394 blk_crypto_rq_set_defaults(rq);
395 }
396 EXPORT_SYMBOL(blk_rq_init);
397
398 /* Set start and alloc time when the allocated request is actually used */
blk_mq_rq_time_init(struct request * rq,u64 alloc_time_ns)399 static inline void blk_mq_rq_time_init(struct request *rq, u64 alloc_time_ns)
400 {
401 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
402 if (blk_queue_rq_alloc_time(rq->q))
403 rq->alloc_time_ns = alloc_time_ns;
404 else
405 rq->alloc_time_ns = 0;
406 #endif
407 }
408
blk_mq_rq_ctx_init(struct blk_mq_alloc_data * data,struct blk_mq_tags * tags,unsigned int tag)409 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
410 struct blk_mq_tags *tags, unsigned int tag)
411 {
412 struct blk_mq_ctx *ctx = data->ctx;
413 struct blk_mq_hw_ctx *hctx = data->hctx;
414 struct request_queue *q = data->q;
415 struct request *rq = tags->static_rqs[tag];
416
417 rq->q = q;
418 rq->mq_ctx = ctx;
419 rq->mq_hctx = hctx;
420 rq->cmd_flags = data->cmd_flags;
421
422 if (data->flags & BLK_MQ_REQ_PM)
423 data->rq_flags |= RQF_PM;
424 rq->rq_flags = data->rq_flags;
425
426 if (data->rq_flags & RQF_SCHED_TAGS) {
427 rq->tag = BLK_MQ_NO_TAG;
428 rq->internal_tag = tag;
429 } else {
430 rq->tag = tag;
431 rq->internal_tag = BLK_MQ_NO_TAG;
432 }
433 rq->timeout = 0;
434
435 rq->part = NULL;
436 rq->io_start_time_ns = 0;
437 rq->stats_sectors = 0;
438 rq->nr_phys_segments = 0;
439 rq->nr_integrity_segments = 0;
440 rq->end_io = NULL;
441 rq->end_io_data = NULL;
442
443 blk_crypto_rq_set_defaults(rq);
444 INIT_LIST_HEAD(&rq->queuelist);
445 /* tag was already set */
446 WRITE_ONCE(rq->deadline, 0);
447 req_ref_set(rq, 1);
448
449 if (rq->rq_flags & RQF_USE_SCHED) {
450 struct elevator_queue *e = data->q->elevator;
451
452 INIT_HLIST_NODE(&rq->hash);
453 RB_CLEAR_NODE(&rq->rb_node);
454
455 if (e->type->ops.prepare_request)
456 e->type->ops.prepare_request(rq);
457 }
458
459 return rq;
460 }
461
462 static inline struct request *
__blk_mq_alloc_requests_batch(struct blk_mq_alloc_data * data)463 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data)
464 {
465 unsigned int tag, tag_offset;
466 struct blk_mq_tags *tags;
467 struct request *rq;
468 unsigned long tag_mask;
469 int i, nr = 0;
470
471 tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
472 if (unlikely(!tag_mask))
473 return NULL;
474
475 tags = blk_mq_tags_from_data(data);
476 for (i = 0; tag_mask; i++) {
477 if (!(tag_mask & (1UL << i)))
478 continue;
479 tag = tag_offset + i;
480 prefetch(tags->static_rqs[tag]);
481 tag_mask &= ~(1UL << i);
482 rq = blk_mq_rq_ctx_init(data, tags, tag);
483 rq_list_add_head(data->cached_rqs, rq);
484 nr++;
485 }
486 if (!(data->rq_flags & RQF_SCHED_TAGS))
487 blk_mq_add_active_requests(data->hctx, nr);
488 /* caller already holds a reference, add for remainder */
489 percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
490 data->nr_tags -= nr;
491
492 return rq_list_pop(data->cached_rqs);
493 }
494
__blk_mq_alloc_requests(struct blk_mq_alloc_data * data)495 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
496 {
497 struct request_queue *q = data->q;
498 u64 alloc_time_ns = 0;
499 struct request *rq;
500 unsigned int tag;
501
502 /* alloc_time includes depth and tag waits */
503 if (blk_queue_rq_alloc_time(q))
504 alloc_time_ns = blk_time_get_ns();
505
506 if (data->cmd_flags & REQ_NOWAIT)
507 data->flags |= BLK_MQ_REQ_NOWAIT;
508
509 retry:
510 data->ctx = blk_mq_get_ctx(q);
511 data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
512
513 if (q->elevator) {
514 /*
515 * All requests use scheduler tags when an I/O scheduler is
516 * enabled for the queue.
517 */
518 data->rq_flags |= RQF_SCHED_TAGS;
519
520 /*
521 * Flush/passthrough requests are special and go directly to the
522 * dispatch list.
523 */
524 if ((data->cmd_flags & REQ_OP_MASK) != REQ_OP_FLUSH &&
525 !blk_op_is_passthrough(data->cmd_flags)) {
526 struct elevator_mq_ops *ops = &q->elevator->type->ops;
527
528 WARN_ON_ONCE(data->flags & BLK_MQ_REQ_RESERVED);
529
530 data->rq_flags |= RQF_USE_SCHED;
531 if (ops->limit_depth)
532 ops->limit_depth(data->cmd_flags, data);
533 }
534 } else {
535 blk_mq_tag_busy(data->hctx);
536 }
537
538 if (data->flags & BLK_MQ_REQ_RESERVED)
539 data->rq_flags |= RQF_RESV;
540
541 /*
542 * Try batched alloc if we want more than 1 tag.
543 */
544 if (data->nr_tags > 1) {
545 rq = __blk_mq_alloc_requests_batch(data);
546 if (rq) {
547 blk_mq_rq_time_init(rq, alloc_time_ns);
548 return rq;
549 }
550 data->nr_tags = 1;
551 }
552
553 /*
554 * Waiting allocations only fail because of an inactive hctx. In that
555 * case just retry the hctx assignment and tag allocation as CPU hotplug
556 * should have migrated us to an online CPU by now.
557 */
558 tag = blk_mq_get_tag(data);
559 if (tag == BLK_MQ_NO_TAG) {
560 if (data->flags & BLK_MQ_REQ_NOWAIT)
561 return NULL;
562 /*
563 * Give up the CPU and sleep for a random short time to
564 * ensure that thread using a realtime scheduling class
565 * are migrated off the CPU, and thus off the hctx that
566 * is going away.
567 */
568 msleep(3);
569 goto retry;
570 }
571
572 if (!(data->rq_flags & RQF_SCHED_TAGS))
573 blk_mq_inc_active_requests(data->hctx);
574 rq = blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag);
575 blk_mq_rq_time_init(rq, alloc_time_ns);
576 return rq;
577 }
578
blk_mq_rq_cache_fill(struct request_queue * q,struct blk_plug * plug,blk_opf_t opf,blk_mq_req_flags_t flags)579 static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
580 struct blk_plug *plug,
581 blk_opf_t opf,
582 blk_mq_req_flags_t flags)
583 {
584 struct blk_mq_alloc_data data = {
585 .q = q,
586 .flags = flags,
587 .cmd_flags = opf,
588 .nr_tags = plug->nr_ios,
589 .cached_rqs = &plug->cached_rqs,
590 };
591 struct request *rq;
592
593 if (blk_queue_enter(q, flags))
594 return NULL;
595
596 plug->nr_ios = 1;
597
598 rq = __blk_mq_alloc_requests(&data);
599 if (unlikely(!rq))
600 blk_queue_exit(q);
601 return rq;
602 }
603
blk_mq_alloc_cached_request(struct request_queue * q,blk_opf_t opf,blk_mq_req_flags_t flags)604 static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
605 blk_opf_t opf,
606 blk_mq_req_flags_t flags)
607 {
608 struct blk_plug *plug = current->plug;
609 struct request *rq;
610
611 if (!plug)
612 return NULL;
613
614 if (rq_list_empty(&plug->cached_rqs)) {
615 if (plug->nr_ios == 1)
616 return NULL;
617 rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
618 if (!rq)
619 return NULL;
620 } else {
621 rq = rq_list_peek(&plug->cached_rqs);
622 if (!rq || rq->q != q)
623 return NULL;
624
625 if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
626 return NULL;
627 if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
628 return NULL;
629
630 rq_list_pop(&plug->cached_rqs);
631 blk_mq_rq_time_init(rq, blk_time_get_ns());
632 }
633
634 rq->cmd_flags = opf;
635 INIT_LIST_HEAD(&rq->queuelist);
636 return rq;
637 }
638
blk_mq_alloc_request(struct request_queue * q,blk_opf_t opf,blk_mq_req_flags_t flags)639 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
640 blk_mq_req_flags_t flags)
641 {
642 struct request *rq;
643
644 rq = blk_mq_alloc_cached_request(q, opf, flags);
645 if (!rq) {
646 struct blk_mq_alloc_data data = {
647 .q = q,
648 .flags = flags,
649 .cmd_flags = opf,
650 .nr_tags = 1,
651 };
652 int ret;
653
654 ret = blk_queue_enter(q, flags);
655 if (ret)
656 return ERR_PTR(ret);
657
658 rq = __blk_mq_alloc_requests(&data);
659 if (!rq)
660 goto out_queue_exit;
661 }
662 rq->__data_len = 0;
663 rq->__sector = (sector_t) -1;
664 rq->bio = rq->biotail = NULL;
665 return rq;
666 out_queue_exit:
667 blk_queue_exit(q);
668 return ERR_PTR(-EWOULDBLOCK);
669 }
670 EXPORT_SYMBOL(blk_mq_alloc_request);
671
blk_mq_alloc_request_hctx(struct request_queue * q,blk_opf_t opf,blk_mq_req_flags_t flags,unsigned int hctx_idx)672 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
673 blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
674 {
675 struct blk_mq_alloc_data data = {
676 .q = q,
677 .flags = flags,
678 .cmd_flags = opf,
679 .nr_tags = 1,
680 };
681 u64 alloc_time_ns = 0;
682 struct request *rq;
683 unsigned int cpu;
684 unsigned int tag;
685 int ret;
686
687 /* alloc_time includes depth and tag waits */
688 if (blk_queue_rq_alloc_time(q))
689 alloc_time_ns = blk_time_get_ns();
690
691 /*
692 * If the tag allocator sleeps we could get an allocation for a
693 * different hardware context. No need to complicate the low level
694 * allocator for this for the rare use case of a command tied to
695 * a specific queue.
696 */
697 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) ||
698 WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED)))
699 return ERR_PTR(-EINVAL);
700
701 if (hctx_idx >= q->nr_hw_queues)
702 return ERR_PTR(-EIO);
703
704 ret = blk_queue_enter(q, flags);
705 if (ret)
706 return ERR_PTR(ret);
707
708 /*
709 * Check if the hardware context is actually mapped to anything.
710 * If not tell the caller that it should skip this queue.
711 */
712 ret = -EXDEV;
713 data.hctx = xa_load(&q->hctx_table, hctx_idx);
714 if (!blk_mq_hw_queue_mapped(data.hctx))
715 goto out_queue_exit;
716 cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
717 if (cpu >= nr_cpu_ids)
718 goto out_queue_exit;
719 data.ctx = __blk_mq_get_ctx(q, cpu);
720
721 if (q->elevator)
722 data.rq_flags |= RQF_SCHED_TAGS;
723 else
724 blk_mq_tag_busy(data.hctx);
725
726 if (flags & BLK_MQ_REQ_RESERVED)
727 data.rq_flags |= RQF_RESV;
728
729 ret = -EWOULDBLOCK;
730 tag = blk_mq_get_tag(&data);
731 if (tag == BLK_MQ_NO_TAG)
732 goto out_queue_exit;
733 if (!(data.rq_flags & RQF_SCHED_TAGS))
734 blk_mq_inc_active_requests(data.hctx);
735 rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag);
736 blk_mq_rq_time_init(rq, alloc_time_ns);
737 rq->__data_len = 0;
738 rq->__sector = (sector_t) -1;
739 rq->bio = rq->biotail = NULL;
740 return rq;
741
742 out_queue_exit:
743 blk_queue_exit(q);
744 return ERR_PTR(ret);
745 }
746 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
747
blk_mq_finish_request(struct request * rq)748 static void blk_mq_finish_request(struct request *rq)
749 {
750 struct request_queue *q = rq->q;
751
752 blk_zone_finish_request(rq);
753
754 if (rq->rq_flags & RQF_USE_SCHED) {
755 q->elevator->type->ops.finish_request(rq);
756 /*
757 * For postflush request that may need to be
758 * completed twice, we should clear this flag
759 * to avoid double finish_request() on the rq.
760 */
761 rq->rq_flags &= ~RQF_USE_SCHED;
762 }
763 }
764
__blk_mq_free_request(struct request * rq)765 static void __blk_mq_free_request(struct request *rq)
766 {
767 struct request_queue *q = rq->q;
768 struct blk_mq_ctx *ctx = rq->mq_ctx;
769 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
770 const int sched_tag = rq->internal_tag;
771
772 blk_crypto_free_request(rq);
773 blk_pm_mark_last_busy(rq);
774 rq->mq_hctx = NULL;
775
776 if (rq->tag != BLK_MQ_NO_TAG) {
777 blk_mq_dec_active_requests(hctx);
778 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
779 }
780 if (sched_tag != BLK_MQ_NO_TAG)
781 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
782 blk_mq_sched_restart(hctx);
783 blk_queue_exit(q);
784 }
785
blk_mq_free_request(struct request * rq)786 void blk_mq_free_request(struct request *rq)
787 {
788 struct request_queue *q = rq->q;
789
790 blk_mq_finish_request(rq);
791
792 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
793 laptop_io_completion(q->disk->bdi);
794
795 rq_qos_done(q, rq);
796
797 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
798 if (req_ref_put_and_test(rq))
799 __blk_mq_free_request(rq);
800 }
801 EXPORT_SYMBOL_GPL(blk_mq_free_request);
802
blk_mq_free_plug_rqs(struct blk_plug * plug)803 void blk_mq_free_plug_rqs(struct blk_plug *plug)
804 {
805 struct request *rq;
806
807 while ((rq = rq_list_pop(&plug->cached_rqs)) != NULL)
808 blk_mq_free_request(rq);
809 }
810
blk_dump_rq_flags(struct request * rq,char * msg)811 void blk_dump_rq_flags(struct request *rq, char *msg)
812 {
813 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
814 rq->q->disk ? rq->q->disk->disk_name : "?",
815 (__force unsigned long long) rq->cmd_flags);
816
817 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
818 (unsigned long long)blk_rq_pos(rq),
819 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
820 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
821 rq->bio, rq->biotail, blk_rq_bytes(rq));
822 }
823 EXPORT_SYMBOL(blk_dump_rq_flags);
824
blk_account_io_completion(struct request * req,unsigned int bytes)825 static void blk_account_io_completion(struct request *req, unsigned int bytes)
826 {
827 if (req->rq_flags & RQF_IO_STAT) {
828 const int sgrp = op_stat_group(req_op(req));
829
830 part_stat_lock();
831 part_stat_add(req->part, sectors[sgrp], bytes >> 9);
832 part_stat_unlock();
833 }
834 }
835
blk_print_req_error(struct request * req,blk_status_t status)836 static void blk_print_req_error(struct request *req, blk_status_t status)
837 {
838 printk_ratelimited(KERN_ERR
839 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
840 "phys_seg %u prio class %u\n",
841 blk_status_to_str(status),
842 req->q->disk ? req->q->disk->disk_name : "?",
843 blk_rq_pos(req), (__force u32)req_op(req),
844 blk_op_str(req_op(req)),
845 (__force u32)(req->cmd_flags & ~REQ_OP_MASK),
846 req->nr_phys_segments,
847 IOPRIO_PRIO_CLASS(req_get_ioprio(req)));
848 }
849
850 /*
851 * Fully end IO on a request. Does not support partial completions, or
852 * errors.
853 */
blk_complete_request(struct request * req)854 static void blk_complete_request(struct request *req)
855 {
856 const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
857 int total_bytes = blk_rq_bytes(req);
858 struct bio *bio = req->bio;
859
860 trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
861
862 if (!bio)
863 return;
864
865 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
866 blk_integrity_complete(req, total_bytes);
867
868 /*
869 * Upper layers may call blk_crypto_evict_key() anytime after the last
870 * bio_endio(). Therefore, the keyslot must be released before that.
871 */
872 blk_crypto_rq_put_keyslot(req);
873
874 blk_account_io_completion(req, total_bytes);
875
876 do {
877 struct bio *next = bio->bi_next;
878
879 /* Completion has already been traced */
880 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
881
882 blk_zone_update_request_bio(req, bio);
883
884 if (!is_flush)
885 bio_endio(bio);
886 bio = next;
887 } while (bio);
888
889 /*
890 * Reset counters so that the request stacking driver
891 * can find how many bytes remain in the request
892 * later.
893 */
894 if (!req->end_io) {
895 req->bio = NULL;
896 req->__data_len = 0;
897 }
898 }
899
900 /**
901 * blk_update_request - Complete multiple bytes without completing the request
902 * @req: the request being processed
903 * @error: block status code
904 * @nr_bytes: number of bytes to complete for @req
905 *
906 * Description:
907 * Ends I/O on a number of bytes attached to @req, but doesn't complete
908 * the request structure even if @req doesn't have leftover.
909 * If @req has leftover, sets it up for the next range of segments.
910 *
911 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
912 * %false return from this function.
913 *
914 * Note:
915 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
916 * except in the consistency check at the end of this function.
917 *
918 * Return:
919 * %false - this request doesn't have any more data
920 * %true - this request has more data
921 **/
blk_update_request(struct request * req,blk_status_t error,unsigned int nr_bytes)922 bool blk_update_request(struct request *req, blk_status_t error,
923 unsigned int nr_bytes)
924 {
925 bool is_flush = req->rq_flags & RQF_FLUSH_SEQ;
926 bool quiet = req->rq_flags & RQF_QUIET;
927 int total_bytes;
928
929 trace_block_rq_complete(req, error, nr_bytes);
930
931 if (!req->bio)
932 return false;
933
934 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
935 error == BLK_STS_OK)
936 blk_integrity_complete(req, nr_bytes);
937
938 /*
939 * Upper layers may call blk_crypto_evict_key() anytime after the last
940 * bio_endio(). Therefore, the keyslot must be released before that.
941 */
942 if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req))
943 __blk_crypto_rq_put_keyslot(req);
944
945 if (unlikely(error && !blk_rq_is_passthrough(req) && !quiet) &&
946 !test_bit(GD_DEAD, &req->q->disk->state)) {
947 blk_print_req_error(req, error);
948 trace_block_rq_error(req, error, nr_bytes);
949 }
950
951 blk_account_io_completion(req, nr_bytes);
952
953 total_bytes = 0;
954 while (req->bio) {
955 struct bio *bio = req->bio;
956 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
957
958 if (unlikely(error))
959 bio->bi_status = error;
960
961 if (bio_bytes == bio->bi_iter.bi_size) {
962 req->bio = bio->bi_next;
963 } else if (bio_is_zone_append(bio) && error == BLK_STS_OK) {
964 /*
965 * Partial zone append completions cannot be supported
966 * as the BIO fragments may end up not being written
967 * sequentially.
968 */
969 bio->bi_status = BLK_STS_IOERR;
970 }
971
972 /* Completion has already been traced */
973 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
974 if (unlikely(quiet))
975 bio_set_flag(bio, BIO_QUIET);
976
977 bio_advance(bio, bio_bytes);
978
979 /* Don't actually finish bio if it's part of flush sequence */
980 if (!bio->bi_iter.bi_size) {
981 blk_zone_update_request_bio(req, bio);
982 if (!is_flush)
983 bio_endio(bio);
984 }
985
986 total_bytes += bio_bytes;
987 nr_bytes -= bio_bytes;
988
989 if (!nr_bytes)
990 break;
991 }
992
993 /*
994 * completely done
995 */
996 if (!req->bio) {
997 /*
998 * Reset counters so that the request stacking driver
999 * can find how many bytes remain in the request
1000 * later.
1001 */
1002 req->__data_len = 0;
1003 return false;
1004 }
1005
1006 req->__data_len -= total_bytes;
1007
1008 /* update sector only for requests with clear definition of sector */
1009 if (!blk_rq_is_passthrough(req))
1010 req->__sector += total_bytes >> 9;
1011
1012 /* mixed attributes always follow the first bio */
1013 if (req->rq_flags & RQF_MIXED_MERGE) {
1014 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1015 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
1016 }
1017
1018 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
1019 /*
1020 * If total number of sectors is less than the first segment
1021 * size, something has gone terribly wrong.
1022 */
1023 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
1024 blk_dump_rq_flags(req, "request botched");
1025 req->__data_len = blk_rq_cur_bytes(req);
1026 }
1027
1028 /* recalculate the number of segments */
1029 req->nr_phys_segments = blk_recalc_rq_segments(req);
1030 }
1031
1032 return true;
1033 }
1034 EXPORT_SYMBOL_GPL(blk_update_request);
1035
blk_account_io_done(struct request * req,u64 now)1036 static inline void blk_account_io_done(struct request *req, u64 now)
1037 {
1038 trace_block_io_done(req);
1039
1040 /*
1041 * Account IO completion. flush_rq isn't accounted as a
1042 * normal IO on queueing nor completion. Accounting the
1043 * containing request is enough.
1044 */
1045 if ((req->rq_flags & (RQF_IO_STAT|RQF_FLUSH_SEQ)) == RQF_IO_STAT) {
1046 const int sgrp = op_stat_group(req_op(req));
1047
1048 part_stat_lock();
1049 update_io_ticks(req->part, jiffies, true);
1050 part_stat_inc(req->part, ios[sgrp]);
1051 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
1052 part_stat_local_dec(req->part,
1053 in_flight[op_is_write(req_op(req))]);
1054 part_stat_unlock();
1055 }
1056 }
1057
blk_rq_passthrough_stats(struct request * req)1058 static inline bool blk_rq_passthrough_stats(struct request *req)
1059 {
1060 struct bio *bio = req->bio;
1061
1062 if (!blk_queue_passthrough_stat(req->q))
1063 return false;
1064
1065 /* Requests without a bio do not transfer data. */
1066 if (!bio)
1067 return false;
1068
1069 /*
1070 * Stats are accumulated in the bdev, so must have one attached to a
1071 * bio to track stats. Most drivers do not set the bdev for passthrough
1072 * requests, but nvme is one that will set it.
1073 */
1074 if (!bio->bi_bdev)
1075 return false;
1076
1077 /*
1078 * We don't know what a passthrough command does, but we know the
1079 * payload size and data direction. Ensuring the size is aligned to the
1080 * block size filters out most commands with payloads that don't
1081 * represent sector access.
1082 */
1083 if (blk_rq_bytes(req) & (bdev_logical_block_size(bio->bi_bdev) - 1))
1084 return false;
1085 return true;
1086 }
1087
blk_account_io_start(struct request * req)1088 static inline void blk_account_io_start(struct request *req)
1089 {
1090 trace_block_io_start(req);
1091
1092 if (!blk_queue_io_stat(req->q))
1093 return;
1094 if (blk_rq_is_passthrough(req) && !blk_rq_passthrough_stats(req))
1095 return;
1096
1097 req->rq_flags |= RQF_IO_STAT;
1098 req->start_time_ns = blk_time_get_ns();
1099
1100 /*
1101 * All non-passthrough requests are created from a bio with one
1102 * exception: when a flush command that is part of a flush sequence
1103 * generated by the state machine in blk-flush.c is cloned onto the
1104 * lower device by dm-multipath we can get here without a bio.
1105 */
1106 if (req->bio)
1107 req->part = req->bio->bi_bdev;
1108 else
1109 req->part = req->q->disk->part0;
1110
1111 part_stat_lock();
1112 update_io_ticks(req->part, jiffies, false);
1113 part_stat_local_inc(req->part, in_flight[op_is_write(req_op(req))]);
1114 part_stat_unlock();
1115 }
1116
__blk_mq_end_request_acct(struct request * rq,u64 now)1117 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
1118 {
1119 if (rq->rq_flags & RQF_STATS)
1120 blk_stat_add(rq, now);
1121
1122 blk_mq_sched_completed_request(rq, now);
1123 blk_account_io_done(rq, now);
1124 }
1125
__blk_mq_end_request(struct request * rq,blk_status_t error)1126 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
1127 {
1128 if (blk_mq_need_time_stamp(rq))
1129 __blk_mq_end_request_acct(rq, blk_time_get_ns());
1130
1131 blk_mq_finish_request(rq);
1132
1133 if (rq->end_io) {
1134 rq_qos_done(rq->q, rq);
1135 if (rq->end_io(rq, error) == RQ_END_IO_FREE)
1136 blk_mq_free_request(rq);
1137 } else {
1138 blk_mq_free_request(rq);
1139 }
1140 }
1141 EXPORT_SYMBOL(__blk_mq_end_request);
1142
blk_mq_end_request(struct request * rq,blk_status_t error)1143 void blk_mq_end_request(struct request *rq, blk_status_t error)
1144 {
1145 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
1146 BUG();
1147 __blk_mq_end_request(rq, error);
1148 }
1149 EXPORT_SYMBOL(blk_mq_end_request);
1150
1151 #define TAG_COMP_BATCH 32
1152
blk_mq_flush_tag_batch(struct blk_mq_hw_ctx * hctx,int * tag_array,int nr_tags)1153 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
1154 int *tag_array, int nr_tags)
1155 {
1156 struct request_queue *q = hctx->queue;
1157
1158 blk_mq_sub_active_requests(hctx, nr_tags);
1159
1160 blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
1161 percpu_ref_put_many(&q->q_usage_counter, nr_tags);
1162 }
1163
blk_mq_end_request_batch(struct io_comp_batch * iob)1164 void blk_mq_end_request_batch(struct io_comp_batch *iob)
1165 {
1166 int tags[TAG_COMP_BATCH], nr_tags = 0;
1167 struct blk_mq_hw_ctx *cur_hctx = NULL;
1168 struct request *rq;
1169 u64 now = 0;
1170
1171 if (iob->need_ts)
1172 now = blk_time_get_ns();
1173
1174 while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
1175 prefetch(rq->bio);
1176 prefetch(rq->rq_next);
1177
1178 blk_complete_request(rq);
1179 if (iob->need_ts)
1180 __blk_mq_end_request_acct(rq, now);
1181
1182 blk_mq_finish_request(rq);
1183
1184 rq_qos_done(rq->q, rq);
1185
1186 /*
1187 * If end_io handler returns NONE, then it still has
1188 * ownership of the request.
1189 */
1190 if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE)
1191 continue;
1192
1193 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1194 if (!req_ref_put_and_test(rq))
1195 continue;
1196
1197 blk_crypto_free_request(rq);
1198 blk_pm_mark_last_busy(rq);
1199
1200 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1201 if (cur_hctx)
1202 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1203 nr_tags = 0;
1204 cur_hctx = rq->mq_hctx;
1205 }
1206 tags[nr_tags++] = rq->tag;
1207 }
1208
1209 if (nr_tags)
1210 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1211 }
1212 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1213
blk_complete_reqs(struct llist_head * list)1214 static void blk_complete_reqs(struct llist_head *list)
1215 {
1216 struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1217 struct request *rq, *next;
1218
1219 llist_for_each_entry_safe(rq, next, entry, ipi_list)
1220 rq->q->mq_ops->complete(rq);
1221 }
1222
blk_done_softirq(void)1223 static __latent_entropy void blk_done_softirq(void)
1224 {
1225 blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1226 }
1227
blk_softirq_cpu_dead(unsigned int cpu)1228 static int blk_softirq_cpu_dead(unsigned int cpu)
1229 {
1230 blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1231 return 0;
1232 }
1233
__blk_mq_complete_request_remote(void * data)1234 static void __blk_mq_complete_request_remote(void *data)
1235 {
1236 __raise_softirq_irqoff(BLOCK_SOFTIRQ);
1237 }
1238
blk_mq_complete_need_ipi(struct request * rq)1239 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1240 {
1241 int cpu = raw_smp_processor_id();
1242
1243 if (!IS_ENABLED(CONFIG_SMP) ||
1244 !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1245 return false;
1246 /*
1247 * With force threaded interrupts enabled, raising softirq from an SMP
1248 * function call will always result in waking the ksoftirqd thread.
1249 * This is probably worse than completing the request on a different
1250 * cache domain.
1251 */
1252 if (force_irqthreads())
1253 return false;
1254
1255 /* same CPU or cache domain and capacity? Complete locally */
1256 if (cpu == rq->mq_ctx->cpu ||
1257 (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1258 cpus_share_cache(cpu, rq->mq_ctx->cpu) &&
1259 cpus_equal_capacity(cpu, rq->mq_ctx->cpu)))
1260 return false;
1261
1262 /* don't try to IPI to an offline CPU */
1263 return cpu_online(rq->mq_ctx->cpu);
1264 }
1265
blk_mq_complete_send_ipi(struct request * rq)1266 static void blk_mq_complete_send_ipi(struct request *rq)
1267 {
1268 unsigned int cpu;
1269
1270 cpu = rq->mq_ctx->cpu;
1271 if (llist_add(&rq->ipi_list, &per_cpu(blk_cpu_done, cpu)))
1272 smp_call_function_single_async(cpu, &per_cpu(blk_cpu_csd, cpu));
1273 }
1274
blk_mq_raise_softirq(struct request * rq)1275 static void blk_mq_raise_softirq(struct request *rq)
1276 {
1277 struct llist_head *list;
1278
1279 preempt_disable();
1280 list = this_cpu_ptr(&blk_cpu_done);
1281 if (llist_add(&rq->ipi_list, list))
1282 raise_softirq(BLOCK_SOFTIRQ);
1283 preempt_enable();
1284 }
1285
blk_mq_complete_request_remote(struct request * rq)1286 bool blk_mq_complete_request_remote(struct request *rq)
1287 {
1288 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1289
1290 /*
1291 * For request which hctx has only one ctx mapping,
1292 * or a polled request, always complete locally,
1293 * it's pointless to redirect the completion.
1294 */
1295 if ((rq->mq_hctx->nr_ctx == 1 &&
1296 rq->mq_ctx->cpu == raw_smp_processor_id()) ||
1297 rq->cmd_flags & REQ_POLLED)
1298 return false;
1299
1300 if (blk_mq_complete_need_ipi(rq)) {
1301 blk_mq_complete_send_ipi(rq);
1302 return true;
1303 }
1304
1305 if (rq->q->nr_hw_queues == 1) {
1306 blk_mq_raise_softirq(rq);
1307 return true;
1308 }
1309 return false;
1310 }
1311 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1312
1313 /**
1314 * blk_mq_complete_request - end I/O on a request
1315 * @rq: the request being processed
1316 *
1317 * Description:
1318 * Complete a request by scheduling the ->complete_rq operation.
1319 **/
blk_mq_complete_request(struct request * rq)1320 void blk_mq_complete_request(struct request *rq)
1321 {
1322 if (!blk_mq_complete_request_remote(rq))
1323 rq->q->mq_ops->complete(rq);
1324 }
1325 EXPORT_SYMBOL(blk_mq_complete_request);
1326
1327 /**
1328 * blk_mq_start_request - Start processing a request
1329 * @rq: Pointer to request to be started
1330 *
1331 * Function used by device drivers to notify the block layer that a request
1332 * is going to be processed now, so blk layer can do proper initializations
1333 * such as starting the timeout timer.
1334 */
blk_mq_start_request(struct request * rq)1335 void blk_mq_start_request(struct request *rq)
1336 {
1337 struct request_queue *q = rq->q;
1338
1339 trace_block_rq_issue(rq);
1340
1341 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags) &&
1342 !blk_rq_is_passthrough(rq)) {
1343 rq->io_start_time_ns = blk_time_get_ns();
1344 rq->stats_sectors = blk_rq_sectors(rq);
1345 rq->rq_flags |= RQF_STATS;
1346 rq_qos_issue(q, rq);
1347 }
1348
1349 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1350
1351 blk_add_timer(rq);
1352 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1353 rq->mq_hctx->tags->rqs[rq->tag] = rq;
1354
1355 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1356 blk_integrity_prepare(rq);
1357
1358 if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1359 WRITE_ONCE(rq->bio->bi_cookie, rq->mq_hctx->queue_num);
1360 }
1361 EXPORT_SYMBOL(blk_mq_start_request);
1362
1363 /*
1364 * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1365 * queues. This is important for md arrays to benefit from merging
1366 * requests.
1367 */
blk_plug_max_rq_count(struct blk_plug * plug)1368 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1369 {
1370 if (plug->multiple_queues)
1371 return BLK_MAX_REQUEST_COUNT * 2;
1372 return BLK_MAX_REQUEST_COUNT;
1373 }
1374
blk_add_rq_to_plug(struct blk_plug * plug,struct request * rq)1375 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1376 {
1377 struct request *last = rq_list_peek(&plug->mq_list);
1378
1379 if (!plug->rq_count) {
1380 trace_block_plug(rq->q);
1381 } else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1382 (!blk_queue_nomerges(rq->q) &&
1383 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1384 blk_mq_flush_plug_list(plug, false);
1385 last = NULL;
1386 trace_block_plug(rq->q);
1387 }
1388
1389 if (!plug->multiple_queues && last && last->q != rq->q)
1390 plug->multiple_queues = true;
1391 /*
1392 * Any request allocated from sched tags can't be issued to
1393 * ->queue_rqs() directly
1394 */
1395 if (!plug->has_elevator && (rq->rq_flags & RQF_SCHED_TAGS))
1396 plug->has_elevator = true;
1397 rq_list_add_tail(&plug->mq_list, rq);
1398 plug->rq_count++;
1399 }
1400
1401 /**
1402 * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1403 * @rq: request to insert
1404 * @at_head: insert request at head or tail of queue
1405 *
1406 * Description:
1407 * Insert a fully prepared request at the back of the I/O scheduler queue
1408 * for execution. Don't wait for completion.
1409 *
1410 * Note:
1411 * This function will invoke @done directly if the queue is dead.
1412 */
blk_execute_rq_nowait(struct request * rq,bool at_head)1413 void blk_execute_rq_nowait(struct request *rq, bool at_head)
1414 {
1415 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1416
1417 WARN_ON(irqs_disabled());
1418 WARN_ON(!blk_rq_is_passthrough(rq));
1419
1420 blk_account_io_start(rq);
1421
1422 if (current->plug && !at_head) {
1423 blk_add_rq_to_plug(current->plug, rq);
1424 return;
1425 }
1426
1427 blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1428 blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
1429 }
1430 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1431
1432 struct blk_rq_wait {
1433 struct completion done;
1434 blk_status_t ret;
1435 };
1436
blk_end_sync_rq(struct request * rq,blk_status_t ret)1437 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
1438 {
1439 struct blk_rq_wait *wait = rq->end_io_data;
1440
1441 wait->ret = ret;
1442 complete(&wait->done);
1443 return RQ_END_IO_NONE;
1444 }
1445
blk_rq_is_poll(struct request * rq)1446 bool blk_rq_is_poll(struct request *rq)
1447 {
1448 if (!rq->mq_hctx)
1449 return false;
1450 if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1451 return false;
1452 return true;
1453 }
1454 EXPORT_SYMBOL_GPL(blk_rq_is_poll);
1455
blk_rq_poll_completion(struct request * rq,struct completion * wait)1456 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1457 {
1458 do {
1459 blk_hctx_poll(rq->q, rq->mq_hctx, NULL, 0);
1460 cond_resched();
1461 } while (!completion_done(wait));
1462 }
1463
1464 /**
1465 * blk_execute_rq - insert a request into queue for execution
1466 * @rq: request to insert
1467 * @at_head: insert request at head or tail of queue
1468 *
1469 * Description:
1470 * Insert a fully prepared request at the back of the I/O scheduler queue
1471 * for execution and wait for completion.
1472 * Return: The blk_status_t result provided to blk_mq_end_request().
1473 */
blk_execute_rq(struct request * rq,bool at_head)1474 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1475 {
1476 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1477 struct blk_rq_wait wait = {
1478 .done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1479 };
1480
1481 WARN_ON(irqs_disabled());
1482 WARN_ON(!blk_rq_is_passthrough(rq));
1483
1484 rq->end_io_data = &wait;
1485 rq->end_io = blk_end_sync_rq;
1486
1487 blk_account_io_start(rq);
1488 blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1489 blk_mq_run_hw_queue(hctx, false);
1490
1491 if (blk_rq_is_poll(rq))
1492 blk_rq_poll_completion(rq, &wait.done);
1493 else
1494 blk_wait_io(&wait.done);
1495
1496 return wait.ret;
1497 }
1498 EXPORT_SYMBOL(blk_execute_rq);
1499
__blk_mq_requeue_request(struct request * rq)1500 static void __blk_mq_requeue_request(struct request *rq)
1501 {
1502 struct request_queue *q = rq->q;
1503
1504 blk_mq_put_driver_tag(rq);
1505
1506 trace_block_rq_requeue(rq);
1507 rq_qos_requeue(q, rq);
1508
1509 if (blk_mq_request_started(rq)) {
1510 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1511 rq->rq_flags &= ~RQF_TIMED_OUT;
1512 }
1513 }
1514
blk_mq_requeue_request(struct request * rq,bool kick_requeue_list)1515 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1516 {
1517 struct request_queue *q = rq->q;
1518 unsigned long flags;
1519
1520 __blk_mq_requeue_request(rq);
1521
1522 /* this request will be re-inserted to io scheduler queue */
1523 blk_mq_sched_requeue_request(rq);
1524
1525 spin_lock_irqsave(&q->requeue_lock, flags);
1526 list_add_tail(&rq->queuelist, &q->requeue_list);
1527 spin_unlock_irqrestore(&q->requeue_lock, flags);
1528
1529 if (kick_requeue_list)
1530 blk_mq_kick_requeue_list(q);
1531 }
1532 EXPORT_SYMBOL(blk_mq_requeue_request);
1533
blk_mq_requeue_work(struct work_struct * work)1534 static void blk_mq_requeue_work(struct work_struct *work)
1535 {
1536 struct request_queue *q =
1537 container_of(work, struct request_queue, requeue_work.work);
1538 LIST_HEAD(rq_list);
1539 LIST_HEAD(flush_list);
1540 struct request *rq;
1541
1542 spin_lock_irq(&q->requeue_lock);
1543 list_splice_init(&q->requeue_list, &rq_list);
1544 list_splice_init(&q->flush_list, &flush_list);
1545 spin_unlock_irq(&q->requeue_lock);
1546
1547 while (!list_empty(&rq_list)) {
1548 rq = list_entry(rq_list.next, struct request, queuelist);
1549 list_del_init(&rq->queuelist);
1550 /*
1551 * If RQF_DONTPREP is set, the request has been started by the
1552 * driver already and might have driver-specific data allocated
1553 * already. Insert it into the hctx dispatch list to avoid
1554 * block layer merges for the request.
1555 */
1556 if (rq->rq_flags & RQF_DONTPREP)
1557 blk_mq_request_bypass_insert(rq, 0);
1558 else
1559 blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD);
1560 }
1561
1562 while (!list_empty(&flush_list)) {
1563 rq = list_entry(flush_list.next, struct request, queuelist);
1564 list_del_init(&rq->queuelist);
1565 blk_mq_insert_request(rq, 0);
1566 }
1567
1568 blk_mq_run_hw_queues(q, false);
1569 }
1570
blk_mq_kick_requeue_list(struct request_queue * q)1571 void blk_mq_kick_requeue_list(struct request_queue *q)
1572 {
1573 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1574 }
1575 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1576
blk_mq_delay_kick_requeue_list(struct request_queue * q,unsigned long msecs)1577 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1578 unsigned long msecs)
1579 {
1580 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1581 msecs_to_jiffies(msecs));
1582 }
1583 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1584
blk_is_flush_data_rq(struct request * rq)1585 static bool blk_is_flush_data_rq(struct request *rq)
1586 {
1587 return (rq->rq_flags & RQF_FLUSH_SEQ) && !is_flush_rq(rq);
1588 }
1589
blk_mq_rq_inflight(struct request * rq,void * priv)1590 static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1591 {
1592 /*
1593 * If we find a request that isn't idle we know the queue is busy
1594 * as it's checked in the iter.
1595 * Return false to stop the iteration.
1596 *
1597 * In case of queue quiesce, if one flush data request is completed,
1598 * don't count it as inflight given the flush sequence is suspended,
1599 * and the original flush data request is invisible to driver, just
1600 * like other pending requests because of quiesce
1601 */
1602 if (blk_mq_request_started(rq) && !(blk_queue_quiesced(rq->q) &&
1603 blk_is_flush_data_rq(rq) &&
1604 blk_mq_request_completed(rq))) {
1605 bool *busy = priv;
1606
1607 *busy = true;
1608 return false;
1609 }
1610
1611 return true;
1612 }
1613
blk_mq_queue_inflight(struct request_queue * q)1614 bool blk_mq_queue_inflight(struct request_queue *q)
1615 {
1616 bool busy = false;
1617
1618 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1619 return busy;
1620 }
1621 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1622
blk_mq_rq_timed_out(struct request * req)1623 static void blk_mq_rq_timed_out(struct request *req)
1624 {
1625 req->rq_flags |= RQF_TIMED_OUT;
1626 if (req->q->mq_ops->timeout) {
1627 enum blk_eh_timer_return ret;
1628
1629 ret = req->q->mq_ops->timeout(req);
1630 if (ret == BLK_EH_DONE)
1631 return;
1632 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1633 }
1634
1635 blk_add_timer(req);
1636 }
1637
1638 struct blk_expired_data {
1639 bool has_timedout_rq;
1640 unsigned long next;
1641 unsigned long timeout_start;
1642 };
1643
blk_mq_req_expired(struct request * rq,struct blk_expired_data * expired)1644 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired)
1645 {
1646 unsigned long deadline;
1647
1648 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1649 return false;
1650 if (rq->rq_flags & RQF_TIMED_OUT)
1651 return false;
1652
1653 deadline = READ_ONCE(rq->deadline);
1654 if (time_after_eq(expired->timeout_start, deadline))
1655 return true;
1656
1657 if (expired->next == 0)
1658 expired->next = deadline;
1659 else if (time_after(expired->next, deadline))
1660 expired->next = deadline;
1661 return false;
1662 }
1663
blk_mq_put_rq_ref(struct request * rq)1664 void blk_mq_put_rq_ref(struct request *rq)
1665 {
1666 if (is_flush_rq(rq)) {
1667 if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
1668 blk_mq_free_request(rq);
1669 } else if (req_ref_put_and_test(rq)) {
1670 __blk_mq_free_request(rq);
1671 }
1672 }
1673
blk_mq_check_expired(struct request * rq,void * priv)1674 static bool blk_mq_check_expired(struct request *rq, void *priv)
1675 {
1676 struct blk_expired_data *expired = priv;
1677
1678 /*
1679 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1680 * be reallocated underneath the timeout handler's processing, then
1681 * the expire check is reliable. If the request is not expired, then
1682 * it was completed and reallocated as a new request after returning
1683 * from blk_mq_check_expired().
1684 */
1685 if (blk_mq_req_expired(rq, expired)) {
1686 expired->has_timedout_rq = true;
1687 return false;
1688 }
1689 return true;
1690 }
1691
blk_mq_handle_expired(struct request * rq,void * priv)1692 static bool blk_mq_handle_expired(struct request *rq, void *priv)
1693 {
1694 struct blk_expired_data *expired = priv;
1695
1696 if (blk_mq_req_expired(rq, expired))
1697 blk_mq_rq_timed_out(rq);
1698 return true;
1699 }
1700
blk_mq_timeout_work(struct work_struct * work)1701 static void blk_mq_timeout_work(struct work_struct *work)
1702 {
1703 struct request_queue *q =
1704 container_of(work, struct request_queue, timeout_work);
1705 struct blk_expired_data expired = {
1706 .timeout_start = jiffies,
1707 };
1708 struct blk_mq_hw_ctx *hctx;
1709 unsigned long i;
1710
1711 /* A deadlock might occur if a request is stuck requiring a
1712 * timeout at the same time a queue freeze is waiting
1713 * completion, since the timeout code would not be able to
1714 * acquire the queue reference here.
1715 *
1716 * That's why we don't use blk_queue_enter here; instead, we use
1717 * percpu_ref_tryget directly, because we need to be able to
1718 * obtain a reference even in the short window between the queue
1719 * starting to freeze, by dropping the first reference in
1720 * blk_freeze_queue_start, and the moment the last request is
1721 * consumed, marked by the instant q_usage_counter reaches
1722 * zero.
1723 */
1724 if (!percpu_ref_tryget(&q->q_usage_counter))
1725 return;
1726
1727 /* check if there is any timed-out request */
1728 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired);
1729 if (expired.has_timedout_rq) {
1730 /*
1731 * Before walking tags, we must ensure any submit started
1732 * before the current time has finished. Since the submit
1733 * uses srcu or rcu, wait for a synchronization point to
1734 * ensure all running submits have finished
1735 */
1736 blk_mq_wait_quiesce_done(q->tag_set);
1737
1738 expired.next = 0;
1739 blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired);
1740 }
1741
1742 if (expired.next != 0) {
1743 mod_timer(&q->timeout, expired.next);
1744 } else {
1745 /*
1746 * Request timeouts are handled as a forward rolling timer. If
1747 * we end up here it means that no requests are pending and
1748 * also that no request has been pending for a while. Mark
1749 * each hctx as idle.
1750 */
1751 queue_for_each_hw_ctx(q, hctx, i) {
1752 /* the hctx may be unmapped, so check it here */
1753 if (blk_mq_hw_queue_mapped(hctx))
1754 blk_mq_tag_idle(hctx);
1755 }
1756 }
1757 blk_queue_exit(q);
1758 }
1759
1760 struct flush_busy_ctx_data {
1761 struct blk_mq_hw_ctx *hctx;
1762 struct list_head *list;
1763 };
1764
flush_busy_ctx(struct sbitmap * sb,unsigned int bitnr,void * data)1765 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1766 {
1767 struct flush_busy_ctx_data *flush_data = data;
1768 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1769 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1770 enum hctx_type type = hctx->type;
1771
1772 spin_lock(&ctx->lock);
1773 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1774 sbitmap_clear_bit(sb, bitnr);
1775 spin_unlock(&ctx->lock);
1776 return true;
1777 }
1778
1779 /*
1780 * Process software queues that have been marked busy, splicing them
1781 * to the for-dispatch
1782 */
blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx * hctx,struct list_head * list)1783 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1784 {
1785 struct flush_busy_ctx_data data = {
1786 .hctx = hctx,
1787 .list = list,
1788 };
1789
1790 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1791 }
1792
1793 struct dispatch_rq_data {
1794 struct blk_mq_hw_ctx *hctx;
1795 struct request *rq;
1796 };
1797
dispatch_rq_from_ctx(struct sbitmap * sb,unsigned int bitnr,void * data)1798 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1799 void *data)
1800 {
1801 struct dispatch_rq_data *dispatch_data = data;
1802 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1803 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1804 enum hctx_type type = hctx->type;
1805
1806 spin_lock(&ctx->lock);
1807 if (!list_empty(&ctx->rq_lists[type])) {
1808 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1809 list_del_init(&dispatch_data->rq->queuelist);
1810 if (list_empty(&ctx->rq_lists[type]))
1811 sbitmap_clear_bit(sb, bitnr);
1812 }
1813 spin_unlock(&ctx->lock);
1814
1815 return !dispatch_data->rq;
1816 }
1817
blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * start)1818 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1819 struct blk_mq_ctx *start)
1820 {
1821 unsigned off = start ? start->index_hw[hctx->type] : 0;
1822 struct dispatch_rq_data data = {
1823 .hctx = hctx,
1824 .rq = NULL,
1825 };
1826
1827 __sbitmap_for_each_set(&hctx->ctx_map, off,
1828 dispatch_rq_from_ctx, &data);
1829
1830 return data.rq;
1831 }
1832
__blk_mq_alloc_driver_tag(struct request * rq)1833 bool __blk_mq_alloc_driver_tag(struct request *rq)
1834 {
1835 struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1836 unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1837 int tag;
1838
1839 blk_mq_tag_busy(rq->mq_hctx);
1840
1841 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1842 bt = &rq->mq_hctx->tags->breserved_tags;
1843 tag_offset = 0;
1844 } else {
1845 if (!hctx_may_queue(rq->mq_hctx, bt))
1846 return false;
1847 }
1848
1849 tag = __sbitmap_queue_get(bt);
1850 if (tag == BLK_MQ_NO_TAG)
1851 return false;
1852
1853 rq->tag = tag + tag_offset;
1854 blk_mq_inc_active_requests(rq->mq_hctx);
1855 return true;
1856 }
1857
blk_mq_dispatch_wake(wait_queue_entry_t * wait,unsigned mode,int flags,void * key)1858 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1859 int flags, void *key)
1860 {
1861 struct blk_mq_hw_ctx *hctx;
1862
1863 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1864
1865 spin_lock(&hctx->dispatch_wait_lock);
1866 if (!list_empty(&wait->entry)) {
1867 struct sbitmap_queue *sbq;
1868
1869 list_del_init(&wait->entry);
1870 sbq = &hctx->tags->bitmap_tags;
1871 atomic_dec(&sbq->ws_active);
1872 }
1873 spin_unlock(&hctx->dispatch_wait_lock);
1874
1875 blk_mq_run_hw_queue(hctx, true);
1876 return 1;
1877 }
1878
1879 /*
1880 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1881 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1882 * restart. For both cases, take care to check the condition again after
1883 * marking us as waiting.
1884 */
blk_mq_mark_tag_wait(struct blk_mq_hw_ctx * hctx,struct request * rq)1885 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1886 struct request *rq)
1887 {
1888 struct sbitmap_queue *sbq;
1889 struct wait_queue_head *wq;
1890 wait_queue_entry_t *wait;
1891 bool ret;
1892
1893 if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1894 !(blk_mq_is_shared_tags(hctx->flags))) {
1895 blk_mq_sched_mark_restart_hctx(hctx);
1896
1897 /*
1898 * It's possible that a tag was freed in the window between the
1899 * allocation failure and adding the hardware queue to the wait
1900 * queue.
1901 *
1902 * Don't clear RESTART here, someone else could have set it.
1903 * At most this will cost an extra queue run.
1904 */
1905 return blk_mq_get_driver_tag(rq);
1906 }
1907
1908 wait = &hctx->dispatch_wait;
1909 if (!list_empty_careful(&wait->entry))
1910 return false;
1911
1912 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag))
1913 sbq = &hctx->tags->breserved_tags;
1914 else
1915 sbq = &hctx->tags->bitmap_tags;
1916 wq = &bt_wait_ptr(sbq, hctx)->wait;
1917
1918 spin_lock_irq(&wq->lock);
1919 spin_lock(&hctx->dispatch_wait_lock);
1920 if (!list_empty(&wait->entry)) {
1921 spin_unlock(&hctx->dispatch_wait_lock);
1922 spin_unlock_irq(&wq->lock);
1923 return false;
1924 }
1925
1926 atomic_inc(&sbq->ws_active);
1927 wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1928 __add_wait_queue(wq, wait);
1929
1930 /*
1931 * Add one explicit barrier since blk_mq_get_driver_tag() may
1932 * not imply barrier in case of failure.
1933 *
1934 * Order adding us to wait queue and allocating driver tag.
1935 *
1936 * The pair is the one implied in sbitmap_queue_wake_up() which
1937 * orders clearing sbitmap tag bits and waitqueue_active() in
1938 * __sbitmap_queue_wake_up(), since waitqueue_active() is lockless
1939 *
1940 * Otherwise, re-order of adding wait queue and getting driver tag
1941 * may cause __sbitmap_queue_wake_up() to wake up nothing because
1942 * the waitqueue_active() may not observe us in wait queue.
1943 */
1944 smp_mb();
1945
1946 /*
1947 * It's possible that a tag was freed in the window between the
1948 * allocation failure and adding the hardware queue to the wait
1949 * queue.
1950 */
1951 ret = blk_mq_get_driver_tag(rq);
1952 if (!ret) {
1953 spin_unlock(&hctx->dispatch_wait_lock);
1954 spin_unlock_irq(&wq->lock);
1955 return false;
1956 }
1957
1958 /*
1959 * We got a tag, remove ourselves from the wait queue to ensure
1960 * someone else gets the wakeup.
1961 */
1962 list_del_init(&wait->entry);
1963 atomic_dec(&sbq->ws_active);
1964 spin_unlock(&hctx->dispatch_wait_lock);
1965 spin_unlock_irq(&wq->lock);
1966
1967 return true;
1968 }
1969
1970 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8
1971 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4
1972 /*
1973 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1974 * - EWMA is one simple way to compute running average value
1975 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1976 * - take 4 as factor for avoiding to get too small(0) result, and this
1977 * factor doesn't matter because EWMA decreases exponentially
1978 */
blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx * hctx,bool busy)1979 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1980 {
1981 unsigned int ewma;
1982
1983 ewma = hctx->dispatch_busy;
1984
1985 if (!ewma && !busy)
1986 return;
1987
1988 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1989 if (busy)
1990 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1991 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1992
1993 hctx->dispatch_busy = ewma;
1994 }
1995
1996 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
1997
blk_mq_handle_dev_resource(struct request * rq,struct list_head * list)1998 static void blk_mq_handle_dev_resource(struct request *rq,
1999 struct list_head *list)
2000 {
2001 list_add(&rq->queuelist, list);
2002 __blk_mq_requeue_request(rq);
2003 }
2004
2005 enum prep_dispatch {
2006 PREP_DISPATCH_OK,
2007 PREP_DISPATCH_NO_TAG,
2008 PREP_DISPATCH_NO_BUDGET,
2009 };
2010
blk_mq_prep_dispatch_rq(struct request * rq,bool need_budget)2011 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
2012 bool need_budget)
2013 {
2014 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2015 int budget_token = -1;
2016
2017 if (need_budget) {
2018 budget_token = blk_mq_get_dispatch_budget(rq->q);
2019 if (budget_token < 0) {
2020 blk_mq_put_driver_tag(rq);
2021 return PREP_DISPATCH_NO_BUDGET;
2022 }
2023 blk_mq_set_rq_budget_token(rq, budget_token);
2024 }
2025
2026 if (!blk_mq_get_driver_tag(rq)) {
2027 /*
2028 * The initial allocation attempt failed, so we need to
2029 * rerun the hardware queue when a tag is freed. The
2030 * waitqueue takes care of that. If the queue is run
2031 * before we add this entry back on the dispatch list,
2032 * we'll re-run it below.
2033 */
2034 if (!blk_mq_mark_tag_wait(hctx, rq)) {
2035 /*
2036 * All budgets not got from this function will be put
2037 * together during handling partial dispatch
2038 */
2039 if (need_budget)
2040 blk_mq_put_dispatch_budget(rq->q, budget_token);
2041 return PREP_DISPATCH_NO_TAG;
2042 }
2043 }
2044
2045 return PREP_DISPATCH_OK;
2046 }
2047
2048 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
blk_mq_release_budgets(struct request_queue * q,struct list_head * list)2049 static void blk_mq_release_budgets(struct request_queue *q,
2050 struct list_head *list)
2051 {
2052 struct request *rq;
2053
2054 list_for_each_entry(rq, list, queuelist) {
2055 int budget_token = blk_mq_get_rq_budget_token(rq);
2056
2057 if (budget_token >= 0)
2058 blk_mq_put_dispatch_budget(q, budget_token);
2059 }
2060 }
2061
2062 /*
2063 * blk_mq_commit_rqs will notify driver using bd->last that there is no
2064 * more requests. (See comment in struct blk_mq_ops for commit_rqs for
2065 * details)
2066 * Attention, we should explicitly call this in unusual cases:
2067 * 1) did not queue everything initially scheduled to queue
2068 * 2) the last attempt to queue a request failed
2069 */
blk_mq_commit_rqs(struct blk_mq_hw_ctx * hctx,int queued,bool from_schedule)2070 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued,
2071 bool from_schedule)
2072 {
2073 if (hctx->queue->mq_ops->commit_rqs && queued) {
2074 trace_block_unplug(hctx->queue, queued, !from_schedule);
2075 hctx->queue->mq_ops->commit_rqs(hctx);
2076 }
2077 }
2078
2079 /*
2080 * Returns true if we did some work AND can potentially do more.
2081 */
blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx * hctx,struct list_head * list,unsigned int nr_budgets)2082 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
2083 unsigned int nr_budgets)
2084 {
2085 enum prep_dispatch prep;
2086 struct request_queue *q = hctx->queue;
2087 struct request *rq;
2088 int queued;
2089 blk_status_t ret = BLK_STS_OK;
2090 bool needs_resource = false;
2091
2092 if (list_empty(list))
2093 return false;
2094
2095 /*
2096 * Now process all the entries, sending them to the driver.
2097 */
2098 queued = 0;
2099 do {
2100 struct blk_mq_queue_data bd;
2101
2102 rq = list_first_entry(list, struct request, queuelist);
2103
2104 WARN_ON_ONCE(hctx != rq->mq_hctx);
2105 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
2106 if (prep != PREP_DISPATCH_OK)
2107 break;
2108
2109 list_del_init(&rq->queuelist);
2110
2111 bd.rq = rq;
2112 bd.last = list_empty(list);
2113
2114 /*
2115 * once the request is queued to lld, no need to cover the
2116 * budget any more
2117 */
2118 if (nr_budgets)
2119 nr_budgets--;
2120 ret = q->mq_ops->queue_rq(hctx, &bd);
2121 switch (ret) {
2122 case BLK_STS_OK:
2123 queued++;
2124 break;
2125 case BLK_STS_RESOURCE:
2126 needs_resource = true;
2127 fallthrough;
2128 case BLK_STS_DEV_RESOURCE:
2129 blk_mq_handle_dev_resource(rq, list);
2130 goto out;
2131 default:
2132 blk_mq_end_request(rq, ret);
2133 }
2134 } while (!list_empty(list));
2135 out:
2136 /* If we didn't flush the entire list, we could have told the driver
2137 * there was more coming, but that turned out to be a lie.
2138 */
2139 if (!list_empty(list) || ret != BLK_STS_OK)
2140 blk_mq_commit_rqs(hctx, queued, false);
2141
2142 /*
2143 * Any items that need requeuing? Stuff them into hctx->dispatch,
2144 * that is where we will continue on next queue run.
2145 */
2146 if (!list_empty(list)) {
2147 bool needs_restart;
2148 /* For non-shared tags, the RESTART check will suffice */
2149 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
2150 ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) ||
2151 blk_mq_is_shared_tags(hctx->flags));
2152
2153 if (nr_budgets)
2154 blk_mq_release_budgets(q, list);
2155
2156 spin_lock(&hctx->lock);
2157 list_splice_tail_init(list, &hctx->dispatch);
2158 spin_unlock(&hctx->lock);
2159
2160 /*
2161 * Order adding requests to hctx->dispatch and checking
2162 * SCHED_RESTART flag. The pair of this smp_mb() is the one
2163 * in blk_mq_sched_restart(). Avoid restart code path to
2164 * miss the new added requests to hctx->dispatch, meantime
2165 * SCHED_RESTART is observed here.
2166 */
2167 smp_mb();
2168
2169 /*
2170 * If SCHED_RESTART was set by the caller of this function and
2171 * it is no longer set that means that it was cleared by another
2172 * thread and hence that a queue rerun is needed.
2173 *
2174 * If 'no_tag' is set, that means that we failed getting
2175 * a driver tag with an I/O scheduler attached. If our dispatch
2176 * waitqueue is no longer active, ensure that we run the queue
2177 * AFTER adding our entries back to the list.
2178 *
2179 * If no I/O scheduler has been configured it is possible that
2180 * the hardware queue got stopped and restarted before requests
2181 * were pushed back onto the dispatch list. Rerun the queue to
2182 * avoid starvation. Notes:
2183 * - blk_mq_run_hw_queue() checks whether or not a queue has
2184 * been stopped before rerunning a queue.
2185 * - Some but not all block drivers stop a queue before
2186 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2187 * and dm-rq.
2188 *
2189 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2190 * bit is set, run queue after a delay to avoid IO stalls
2191 * that could otherwise occur if the queue is idle. We'll do
2192 * similar if we couldn't get budget or couldn't lock a zone
2193 * and SCHED_RESTART is set.
2194 */
2195 needs_restart = blk_mq_sched_needs_restart(hctx);
2196 if (prep == PREP_DISPATCH_NO_BUDGET)
2197 needs_resource = true;
2198 if (!needs_restart ||
2199 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2200 blk_mq_run_hw_queue(hctx, true);
2201 else if (needs_resource)
2202 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2203
2204 blk_mq_update_dispatch_busy(hctx, true);
2205 return false;
2206 }
2207
2208 blk_mq_update_dispatch_busy(hctx, false);
2209 return true;
2210 }
2211
blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx * hctx)2212 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2213 {
2214 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2215
2216 if (cpu >= nr_cpu_ids)
2217 cpu = cpumask_first(hctx->cpumask);
2218 return cpu;
2219 }
2220
2221 /*
2222 * ->next_cpu is always calculated from hctx->cpumask, so simply use
2223 * it for speeding up the check
2224 */
blk_mq_hctx_empty_cpumask(struct blk_mq_hw_ctx * hctx)2225 static bool blk_mq_hctx_empty_cpumask(struct blk_mq_hw_ctx *hctx)
2226 {
2227 return hctx->next_cpu >= nr_cpu_ids;
2228 }
2229
2230 /*
2231 * It'd be great if the workqueue API had a way to pass
2232 * in a mask and had some smarts for more clever placement.
2233 * For now we just round-robin here, switching for every
2234 * BLK_MQ_CPU_WORK_BATCH queued items.
2235 */
blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx * hctx)2236 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2237 {
2238 bool tried = false;
2239 int next_cpu = hctx->next_cpu;
2240
2241 /* Switch to unbound if no allowable CPUs in this hctx */
2242 if (hctx->queue->nr_hw_queues == 1 || blk_mq_hctx_empty_cpumask(hctx))
2243 return WORK_CPU_UNBOUND;
2244
2245 if (--hctx->next_cpu_batch <= 0) {
2246 select_cpu:
2247 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2248 cpu_online_mask);
2249 if (next_cpu >= nr_cpu_ids)
2250 next_cpu = blk_mq_first_mapped_cpu(hctx);
2251 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2252 }
2253
2254 /*
2255 * Do unbound schedule if we can't find a online CPU for this hctx,
2256 * and it should only happen in the path of handling CPU DEAD.
2257 */
2258 if (!cpu_online(next_cpu)) {
2259 if (!tried) {
2260 tried = true;
2261 goto select_cpu;
2262 }
2263
2264 /*
2265 * Make sure to re-select CPU next time once after CPUs
2266 * in hctx->cpumask become online again.
2267 */
2268 hctx->next_cpu = next_cpu;
2269 hctx->next_cpu_batch = 1;
2270 return WORK_CPU_UNBOUND;
2271 }
2272
2273 hctx->next_cpu = next_cpu;
2274 return next_cpu;
2275 }
2276
2277 /**
2278 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2279 * @hctx: Pointer to the hardware queue to run.
2280 * @msecs: Milliseconds of delay to wait before running the queue.
2281 *
2282 * Run a hardware queue asynchronously with a delay of @msecs.
2283 */
blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx * hctx,unsigned long msecs)2284 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2285 {
2286 if (unlikely(blk_mq_hctx_stopped(hctx)))
2287 return;
2288 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2289 msecs_to_jiffies(msecs));
2290 }
2291 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2292
blk_mq_hw_queue_need_run(struct blk_mq_hw_ctx * hctx)2293 static inline bool blk_mq_hw_queue_need_run(struct blk_mq_hw_ctx *hctx)
2294 {
2295 bool need_run;
2296
2297 /*
2298 * When queue is quiesced, we may be switching io scheduler, or
2299 * updating nr_hw_queues, or other things, and we can't run queue
2300 * any more, even blk_mq_hctx_has_pending() can't be called safely.
2301 *
2302 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2303 * quiesced.
2304 */
2305 __blk_mq_run_dispatch_ops(hctx->queue, false,
2306 need_run = !blk_queue_quiesced(hctx->queue) &&
2307 blk_mq_hctx_has_pending(hctx));
2308 return need_run;
2309 }
2310
2311 /**
2312 * blk_mq_run_hw_queue - Start to run a hardware queue.
2313 * @hctx: Pointer to the hardware queue to run.
2314 * @async: If we want to run the queue asynchronously.
2315 *
2316 * Check if the request queue is not in a quiesced state and if there are
2317 * pending requests to be sent. If this is true, run the queue to send requests
2318 * to hardware.
2319 */
blk_mq_run_hw_queue(struct blk_mq_hw_ctx * hctx,bool async)2320 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2321 {
2322 bool need_run;
2323
2324 /*
2325 * We can't run the queue inline with interrupts disabled.
2326 */
2327 WARN_ON_ONCE(!async && in_interrupt());
2328
2329 might_sleep_if(!async && hctx->flags & BLK_MQ_F_BLOCKING);
2330
2331 need_run = blk_mq_hw_queue_need_run(hctx);
2332 if (!need_run) {
2333 unsigned long flags;
2334
2335 /*
2336 * Synchronize with blk_mq_unquiesce_queue(), because we check
2337 * if hw queue is quiesced locklessly above, we need the use
2338 * ->queue_lock to make sure we see the up-to-date status to
2339 * not miss rerunning the hw queue.
2340 */
2341 spin_lock_irqsave(&hctx->queue->queue_lock, flags);
2342 need_run = blk_mq_hw_queue_need_run(hctx);
2343 spin_unlock_irqrestore(&hctx->queue->queue_lock, flags);
2344
2345 if (!need_run)
2346 return;
2347 }
2348
2349 if (async || !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2350 blk_mq_delay_run_hw_queue(hctx, 0);
2351 return;
2352 }
2353
2354 blk_mq_run_dispatch_ops(hctx->queue,
2355 blk_mq_sched_dispatch_requests(hctx));
2356 }
2357 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2358
2359 /*
2360 * Return prefered queue to dispatch from (if any) for non-mq aware IO
2361 * scheduler.
2362 */
blk_mq_get_sq_hctx(struct request_queue * q)2363 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2364 {
2365 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2366 /*
2367 * If the IO scheduler does not respect hardware queues when
2368 * dispatching, we just don't bother with multiple HW queues and
2369 * dispatch from hctx for the current CPU since running multiple queues
2370 * just causes lock contention inside the scheduler and pointless cache
2371 * bouncing.
2372 */
2373 struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2374
2375 if (!blk_mq_hctx_stopped(hctx))
2376 return hctx;
2377 return NULL;
2378 }
2379
2380 /**
2381 * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2382 * @q: Pointer to the request queue to run.
2383 * @async: If we want to run the queue asynchronously.
2384 */
blk_mq_run_hw_queues(struct request_queue * q,bool async)2385 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2386 {
2387 struct blk_mq_hw_ctx *hctx, *sq_hctx;
2388 unsigned long i;
2389
2390 sq_hctx = NULL;
2391 if (blk_queue_sq_sched(q))
2392 sq_hctx = blk_mq_get_sq_hctx(q);
2393 queue_for_each_hw_ctx(q, hctx, i) {
2394 if (blk_mq_hctx_stopped(hctx))
2395 continue;
2396 /*
2397 * Dispatch from this hctx either if there's no hctx preferred
2398 * by IO scheduler or if it has requests that bypass the
2399 * scheduler.
2400 */
2401 if (!sq_hctx || sq_hctx == hctx ||
2402 !list_empty_careful(&hctx->dispatch))
2403 blk_mq_run_hw_queue(hctx, async);
2404 }
2405 }
2406 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2407
2408 /**
2409 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2410 * @q: Pointer to the request queue to run.
2411 * @msecs: Milliseconds of delay to wait before running the queues.
2412 */
blk_mq_delay_run_hw_queues(struct request_queue * q,unsigned long msecs)2413 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2414 {
2415 struct blk_mq_hw_ctx *hctx, *sq_hctx;
2416 unsigned long i;
2417
2418 sq_hctx = NULL;
2419 if (blk_queue_sq_sched(q))
2420 sq_hctx = blk_mq_get_sq_hctx(q);
2421 queue_for_each_hw_ctx(q, hctx, i) {
2422 if (blk_mq_hctx_stopped(hctx))
2423 continue;
2424 /*
2425 * If there is already a run_work pending, leave the
2426 * pending delay untouched. Otherwise, a hctx can stall
2427 * if another hctx is re-delaying the other's work
2428 * before the work executes.
2429 */
2430 if (delayed_work_pending(&hctx->run_work))
2431 continue;
2432 /*
2433 * Dispatch from this hctx either if there's no hctx preferred
2434 * by IO scheduler or if it has requests that bypass the
2435 * scheduler.
2436 */
2437 if (!sq_hctx || sq_hctx == hctx ||
2438 !list_empty_careful(&hctx->dispatch))
2439 blk_mq_delay_run_hw_queue(hctx, msecs);
2440 }
2441 }
2442 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2443
2444 /*
2445 * This function is often used for pausing .queue_rq() by driver when
2446 * there isn't enough resource or some conditions aren't satisfied, and
2447 * BLK_STS_RESOURCE is usually returned.
2448 *
2449 * We do not guarantee that dispatch can be drained or blocked
2450 * after blk_mq_stop_hw_queue() returns. Please use
2451 * blk_mq_quiesce_queue() for that requirement.
2452 */
blk_mq_stop_hw_queue(struct blk_mq_hw_ctx * hctx)2453 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2454 {
2455 cancel_delayed_work(&hctx->run_work);
2456
2457 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2458 }
2459 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2460
2461 /*
2462 * This function is often used for pausing .queue_rq() by driver when
2463 * there isn't enough resource or some conditions aren't satisfied, and
2464 * BLK_STS_RESOURCE is usually returned.
2465 *
2466 * We do not guarantee that dispatch can be drained or blocked
2467 * after blk_mq_stop_hw_queues() returns. Please use
2468 * blk_mq_quiesce_queue() for that requirement.
2469 */
blk_mq_stop_hw_queues(struct request_queue * q)2470 void blk_mq_stop_hw_queues(struct request_queue *q)
2471 {
2472 struct blk_mq_hw_ctx *hctx;
2473 unsigned long i;
2474
2475 queue_for_each_hw_ctx(q, hctx, i)
2476 blk_mq_stop_hw_queue(hctx);
2477 }
2478 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2479
blk_mq_start_hw_queue(struct blk_mq_hw_ctx * hctx)2480 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2481 {
2482 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2483
2484 blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
2485 }
2486 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2487
blk_mq_start_hw_queues(struct request_queue * q)2488 void blk_mq_start_hw_queues(struct request_queue *q)
2489 {
2490 struct blk_mq_hw_ctx *hctx;
2491 unsigned long i;
2492
2493 queue_for_each_hw_ctx(q, hctx, i)
2494 blk_mq_start_hw_queue(hctx);
2495 }
2496 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2497
blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx * hctx,bool async)2498 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2499 {
2500 if (!blk_mq_hctx_stopped(hctx))
2501 return;
2502
2503 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2504 /*
2505 * Pairs with the smp_mb() in blk_mq_hctx_stopped() to order the
2506 * clearing of BLK_MQ_S_STOPPED above and the checking of dispatch
2507 * list in the subsequent routine.
2508 */
2509 smp_mb__after_atomic();
2510 blk_mq_run_hw_queue(hctx, async);
2511 }
2512 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2513
blk_mq_start_stopped_hw_queues(struct request_queue * q,bool async)2514 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2515 {
2516 struct blk_mq_hw_ctx *hctx;
2517 unsigned long i;
2518
2519 queue_for_each_hw_ctx(q, hctx, i)
2520 blk_mq_start_stopped_hw_queue(hctx, async ||
2521 (hctx->flags & BLK_MQ_F_BLOCKING));
2522 }
2523 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2524
blk_mq_run_work_fn(struct work_struct * work)2525 static void blk_mq_run_work_fn(struct work_struct *work)
2526 {
2527 struct blk_mq_hw_ctx *hctx =
2528 container_of(work, struct blk_mq_hw_ctx, run_work.work);
2529
2530 blk_mq_run_dispatch_ops(hctx->queue,
2531 blk_mq_sched_dispatch_requests(hctx));
2532 }
2533
2534 /**
2535 * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2536 * @rq: Pointer to request to be inserted.
2537 * @flags: BLK_MQ_INSERT_*
2538 *
2539 * Should only be used carefully, when the caller knows we want to
2540 * bypass a potential IO scheduler on the target device.
2541 */
blk_mq_request_bypass_insert(struct request * rq,blk_insert_t flags)2542 static void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags)
2543 {
2544 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2545
2546 spin_lock(&hctx->lock);
2547 if (flags & BLK_MQ_INSERT_AT_HEAD)
2548 list_add(&rq->queuelist, &hctx->dispatch);
2549 else
2550 list_add_tail(&rq->queuelist, &hctx->dispatch);
2551 spin_unlock(&hctx->lock);
2552 }
2553
blk_mq_insert_requests(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx,struct list_head * list,bool run_queue_async)2554 static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx,
2555 struct blk_mq_ctx *ctx, struct list_head *list,
2556 bool run_queue_async)
2557 {
2558 struct request *rq;
2559 enum hctx_type type = hctx->type;
2560
2561 /*
2562 * Try to issue requests directly if the hw queue isn't busy to save an
2563 * extra enqueue & dequeue to the sw queue.
2564 */
2565 if (!hctx->dispatch_busy && !run_queue_async) {
2566 blk_mq_run_dispatch_ops(hctx->queue,
2567 blk_mq_try_issue_list_directly(hctx, list));
2568 if (list_empty(list))
2569 goto out;
2570 }
2571
2572 /*
2573 * preemption doesn't flush plug list, so it's possible ctx->cpu is
2574 * offline now
2575 */
2576 list_for_each_entry(rq, list, queuelist) {
2577 BUG_ON(rq->mq_ctx != ctx);
2578 trace_block_rq_insert(rq);
2579 if (rq->cmd_flags & REQ_NOWAIT)
2580 run_queue_async = true;
2581 }
2582
2583 spin_lock(&ctx->lock);
2584 list_splice_tail_init(list, &ctx->rq_lists[type]);
2585 blk_mq_hctx_mark_pending(hctx, ctx);
2586 spin_unlock(&ctx->lock);
2587 out:
2588 blk_mq_run_hw_queue(hctx, run_queue_async);
2589 }
2590
blk_mq_insert_request(struct request * rq,blk_insert_t flags)2591 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags)
2592 {
2593 struct request_queue *q = rq->q;
2594 struct blk_mq_ctx *ctx = rq->mq_ctx;
2595 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2596
2597 if (blk_rq_is_passthrough(rq)) {
2598 /*
2599 * Passthrough request have to be added to hctx->dispatch
2600 * directly. The device may be in a situation where it can't
2601 * handle FS request, and always returns BLK_STS_RESOURCE for
2602 * them, which gets them added to hctx->dispatch.
2603 *
2604 * If a passthrough request is required to unblock the queues,
2605 * and it is added to the scheduler queue, there is no chance to
2606 * dispatch it given we prioritize requests in hctx->dispatch.
2607 */
2608 blk_mq_request_bypass_insert(rq, flags);
2609 } else if (req_op(rq) == REQ_OP_FLUSH) {
2610 /*
2611 * Firstly normal IO request is inserted to scheduler queue or
2612 * sw queue, meantime we add flush request to dispatch queue(
2613 * hctx->dispatch) directly and there is at most one in-flight
2614 * flush request for each hw queue, so it doesn't matter to add
2615 * flush request to tail or front of the dispatch queue.
2616 *
2617 * Secondly in case of NCQ, flush request belongs to non-NCQ
2618 * command, and queueing it will fail when there is any
2619 * in-flight normal IO request(NCQ command). When adding flush
2620 * rq to the front of hctx->dispatch, it is easier to introduce
2621 * extra time to flush rq's latency because of S_SCHED_RESTART
2622 * compared with adding to the tail of dispatch queue, then
2623 * chance of flush merge is increased, and less flush requests
2624 * will be issued to controller. It is observed that ~10% time
2625 * is saved in blktests block/004 on disk attached to AHCI/NCQ
2626 * drive when adding flush rq to the front of hctx->dispatch.
2627 *
2628 * Simply queue flush rq to the front of hctx->dispatch so that
2629 * intensive flush workloads can benefit in case of NCQ HW.
2630 */
2631 blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD);
2632 } else if (q->elevator) {
2633 LIST_HEAD(list);
2634
2635 WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG);
2636
2637 list_add(&rq->queuelist, &list);
2638 q->elevator->type->ops.insert_requests(hctx, &list, flags);
2639 } else {
2640 trace_block_rq_insert(rq);
2641
2642 spin_lock(&ctx->lock);
2643 if (flags & BLK_MQ_INSERT_AT_HEAD)
2644 list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]);
2645 else
2646 list_add_tail(&rq->queuelist,
2647 &ctx->rq_lists[hctx->type]);
2648 blk_mq_hctx_mark_pending(hctx, ctx);
2649 spin_unlock(&ctx->lock);
2650 }
2651 }
2652
blk_mq_bio_to_request(struct request * rq,struct bio * bio,unsigned int nr_segs)2653 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2654 unsigned int nr_segs)
2655 {
2656 int err;
2657
2658 if (bio->bi_opf & REQ_RAHEAD)
2659 rq->cmd_flags |= REQ_FAILFAST_MASK;
2660
2661 rq->bio = rq->biotail = bio;
2662 rq->__sector = bio->bi_iter.bi_sector;
2663 rq->__data_len = bio->bi_iter.bi_size;
2664 rq->nr_phys_segments = nr_segs;
2665 if (bio_integrity(bio))
2666 rq->nr_integrity_segments = blk_rq_count_integrity_sg(rq->q,
2667 bio);
2668
2669 /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2670 err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2671 WARN_ON_ONCE(err);
2672
2673 blk_account_io_start(rq);
2674 }
2675
__blk_mq_issue_directly(struct blk_mq_hw_ctx * hctx,struct request * rq,bool last)2676 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2677 struct request *rq, bool last)
2678 {
2679 struct request_queue *q = rq->q;
2680 struct blk_mq_queue_data bd = {
2681 .rq = rq,
2682 .last = last,
2683 };
2684 blk_status_t ret;
2685
2686 /*
2687 * For OK queue, we are done. For error, caller may kill it.
2688 * Any other error (busy), just add it to our list as we
2689 * previously would have done.
2690 */
2691 ret = q->mq_ops->queue_rq(hctx, &bd);
2692 switch (ret) {
2693 case BLK_STS_OK:
2694 blk_mq_update_dispatch_busy(hctx, false);
2695 break;
2696 case BLK_STS_RESOURCE:
2697 case BLK_STS_DEV_RESOURCE:
2698 blk_mq_update_dispatch_busy(hctx, true);
2699 __blk_mq_requeue_request(rq);
2700 break;
2701 default:
2702 blk_mq_update_dispatch_busy(hctx, false);
2703 break;
2704 }
2705
2706 return ret;
2707 }
2708
blk_mq_get_budget_and_tag(struct request * rq)2709 static bool blk_mq_get_budget_and_tag(struct request *rq)
2710 {
2711 int budget_token;
2712
2713 budget_token = blk_mq_get_dispatch_budget(rq->q);
2714 if (budget_token < 0)
2715 return false;
2716 blk_mq_set_rq_budget_token(rq, budget_token);
2717 if (!blk_mq_get_driver_tag(rq)) {
2718 blk_mq_put_dispatch_budget(rq->q, budget_token);
2719 return false;
2720 }
2721 return true;
2722 }
2723
2724 /**
2725 * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2726 * @hctx: Pointer of the associated hardware queue.
2727 * @rq: Pointer to request to be sent.
2728 *
2729 * If the device has enough resources to accept a new request now, send the
2730 * request directly to device driver. Else, insert at hctx->dispatch queue, so
2731 * we can try send it another time in the future. Requests inserted at this
2732 * queue have higher priority.
2733 */
blk_mq_try_issue_directly(struct blk_mq_hw_ctx * hctx,struct request * rq)2734 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2735 struct request *rq)
2736 {
2737 blk_status_t ret;
2738
2739 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2740 blk_mq_insert_request(rq, 0);
2741 blk_mq_run_hw_queue(hctx, false);
2742 return;
2743 }
2744
2745 if ((rq->rq_flags & RQF_USE_SCHED) || !blk_mq_get_budget_and_tag(rq)) {
2746 blk_mq_insert_request(rq, 0);
2747 blk_mq_run_hw_queue(hctx, rq->cmd_flags & REQ_NOWAIT);
2748 return;
2749 }
2750
2751 ret = __blk_mq_issue_directly(hctx, rq, true);
2752 switch (ret) {
2753 case BLK_STS_OK:
2754 break;
2755 case BLK_STS_RESOURCE:
2756 case BLK_STS_DEV_RESOURCE:
2757 blk_mq_request_bypass_insert(rq, 0);
2758 blk_mq_run_hw_queue(hctx, false);
2759 break;
2760 default:
2761 blk_mq_end_request(rq, ret);
2762 break;
2763 }
2764 }
2765
blk_mq_request_issue_directly(struct request * rq,bool last)2766 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2767 {
2768 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2769
2770 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2771 blk_mq_insert_request(rq, 0);
2772 blk_mq_run_hw_queue(hctx, false);
2773 return BLK_STS_OK;
2774 }
2775
2776 if (!blk_mq_get_budget_and_tag(rq))
2777 return BLK_STS_RESOURCE;
2778 return __blk_mq_issue_directly(hctx, rq, last);
2779 }
2780
blk_mq_plug_issue_direct(struct blk_plug * plug)2781 static void blk_mq_plug_issue_direct(struct blk_plug *plug)
2782 {
2783 struct blk_mq_hw_ctx *hctx = NULL;
2784 struct request *rq;
2785 int queued = 0;
2786 blk_status_t ret = BLK_STS_OK;
2787
2788 while ((rq = rq_list_pop(&plug->mq_list))) {
2789 bool last = rq_list_empty(&plug->mq_list);
2790
2791 if (hctx != rq->mq_hctx) {
2792 if (hctx) {
2793 blk_mq_commit_rqs(hctx, queued, false);
2794 queued = 0;
2795 }
2796 hctx = rq->mq_hctx;
2797 }
2798
2799 ret = blk_mq_request_issue_directly(rq, last);
2800 switch (ret) {
2801 case BLK_STS_OK:
2802 queued++;
2803 break;
2804 case BLK_STS_RESOURCE:
2805 case BLK_STS_DEV_RESOURCE:
2806 blk_mq_request_bypass_insert(rq, 0);
2807 blk_mq_run_hw_queue(hctx, false);
2808 goto out;
2809 default:
2810 blk_mq_end_request(rq, ret);
2811 break;
2812 }
2813 }
2814
2815 out:
2816 if (ret != BLK_STS_OK)
2817 blk_mq_commit_rqs(hctx, queued, false);
2818 }
2819
__blk_mq_flush_plug_list(struct request_queue * q,struct blk_plug * plug)2820 static void __blk_mq_flush_plug_list(struct request_queue *q,
2821 struct blk_plug *plug)
2822 {
2823 if (blk_queue_quiesced(q))
2824 return;
2825 q->mq_ops->queue_rqs(&plug->mq_list);
2826 }
2827
blk_mq_dispatch_plug_list(struct blk_plug * plug,bool from_sched)2828 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2829 {
2830 struct blk_mq_hw_ctx *this_hctx = NULL;
2831 struct blk_mq_ctx *this_ctx = NULL;
2832 struct rq_list requeue_list = {};
2833 unsigned int depth = 0;
2834 bool is_passthrough = false;
2835 LIST_HEAD(list);
2836
2837 do {
2838 struct request *rq = rq_list_pop(&plug->mq_list);
2839
2840 if (!this_hctx) {
2841 this_hctx = rq->mq_hctx;
2842 this_ctx = rq->mq_ctx;
2843 is_passthrough = blk_rq_is_passthrough(rq);
2844 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx ||
2845 is_passthrough != blk_rq_is_passthrough(rq)) {
2846 rq_list_add_tail(&requeue_list, rq);
2847 continue;
2848 }
2849 list_add_tail(&rq->queuelist, &list);
2850 depth++;
2851 } while (!rq_list_empty(&plug->mq_list));
2852
2853 plug->mq_list = requeue_list;
2854 trace_block_unplug(this_hctx->queue, depth, !from_sched);
2855
2856 percpu_ref_get(&this_hctx->queue->q_usage_counter);
2857 /* passthrough requests should never be issued to the I/O scheduler */
2858 if (is_passthrough) {
2859 spin_lock(&this_hctx->lock);
2860 list_splice_tail_init(&list, &this_hctx->dispatch);
2861 spin_unlock(&this_hctx->lock);
2862 blk_mq_run_hw_queue(this_hctx, from_sched);
2863 } else if (this_hctx->queue->elevator) {
2864 this_hctx->queue->elevator->type->ops.insert_requests(this_hctx,
2865 &list, 0);
2866 blk_mq_run_hw_queue(this_hctx, from_sched);
2867 } else {
2868 blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched);
2869 }
2870 percpu_ref_put(&this_hctx->queue->q_usage_counter);
2871 }
2872
blk_mq_flush_plug_list(struct blk_plug * plug,bool from_schedule)2873 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2874 {
2875 struct request *rq;
2876 unsigned int depth;
2877
2878 /*
2879 * We may have been called recursively midway through handling
2880 * plug->mq_list via a schedule() in the driver's queue_rq() callback.
2881 * To avoid mq_list changing under our feet, clear rq_count early and
2882 * bail out specifically if rq_count is 0 rather than checking
2883 * whether the mq_list is empty.
2884 */
2885 if (plug->rq_count == 0)
2886 return;
2887 depth = plug->rq_count;
2888 plug->rq_count = 0;
2889
2890 if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2891 struct request_queue *q;
2892
2893 rq = rq_list_peek(&plug->mq_list);
2894 q = rq->q;
2895 trace_block_unplug(q, depth, true);
2896
2897 /*
2898 * Peek first request and see if we have a ->queue_rqs() hook.
2899 * If we do, we can dispatch the whole plug list in one go. We
2900 * already know at this point that all requests belong to the
2901 * same queue, caller must ensure that's the case.
2902 */
2903 if (q->mq_ops->queue_rqs) {
2904 blk_mq_run_dispatch_ops(q,
2905 __blk_mq_flush_plug_list(q, plug));
2906 if (rq_list_empty(&plug->mq_list))
2907 return;
2908 }
2909
2910 blk_mq_run_dispatch_ops(q,
2911 blk_mq_plug_issue_direct(plug));
2912 if (rq_list_empty(&plug->mq_list))
2913 return;
2914 }
2915
2916 do {
2917 blk_mq_dispatch_plug_list(plug, from_schedule);
2918 } while (!rq_list_empty(&plug->mq_list));
2919 }
2920
blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx * hctx,struct list_head * list)2921 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2922 struct list_head *list)
2923 {
2924 int queued = 0;
2925 blk_status_t ret = BLK_STS_OK;
2926
2927 while (!list_empty(list)) {
2928 struct request *rq = list_first_entry(list, struct request,
2929 queuelist);
2930
2931 list_del_init(&rq->queuelist);
2932 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2933 switch (ret) {
2934 case BLK_STS_OK:
2935 queued++;
2936 break;
2937 case BLK_STS_RESOURCE:
2938 case BLK_STS_DEV_RESOURCE:
2939 blk_mq_request_bypass_insert(rq, 0);
2940 if (list_empty(list))
2941 blk_mq_run_hw_queue(hctx, false);
2942 goto out;
2943 default:
2944 blk_mq_end_request(rq, ret);
2945 break;
2946 }
2947 }
2948
2949 out:
2950 if (ret != BLK_STS_OK)
2951 blk_mq_commit_rqs(hctx, queued, false);
2952 }
2953
blk_mq_attempt_bio_merge(struct request_queue * q,struct bio * bio,unsigned int nr_segs)2954 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2955 struct bio *bio, unsigned int nr_segs)
2956 {
2957 if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2958 if (blk_attempt_plug_merge(q, bio, nr_segs))
2959 return true;
2960 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2961 return true;
2962 }
2963 return false;
2964 }
2965
blk_mq_get_new_requests(struct request_queue * q,struct blk_plug * plug,struct bio * bio,unsigned int nsegs)2966 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2967 struct blk_plug *plug,
2968 struct bio *bio,
2969 unsigned int nsegs)
2970 {
2971 struct blk_mq_alloc_data data = {
2972 .q = q,
2973 .nr_tags = 1,
2974 .cmd_flags = bio->bi_opf,
2975 };
2976 struct request *rq;
2977
2978 rq_qos_throttle(q, bio);
2979
2980 if (plug) {
2981 data.nr_tags = plug->nr_ios;
2982 plug->nr_ios = 1;
2983 data.cached_rqs = &plug->cached_rqs;
2984 }
2985
2986 rq = __blk_mq_alloc_requests(&data);
2987 if (unlikely(!rq))
2988 rq_qos_cleanup(q, bio);
2989 return rq;
2990 }
2991
2992 /*
2993 * Check if there is a suitable cached request and return it.
2994 */
blk_mq_peek_cached_request(struct blk_plug * plug,struct request_queue * q,blk_opf_t opf)2995 static struct request *blk_mq_peek_cached_request(struct blk_plug *plug,
2996 struct request_queue *q, blk_opf_t opf)
2997 {
2998 enum hctx_type type = blk_mq_get_hctx_type(opf);
2999 struct request *rq;
3000
3001 if (!plug)
3002 return NULL;
3003 rq = rq_list_peek(&plug->cached_rqs);
3004 if (!rq || rq->q != q)
3005 return NULL;
3006 if (type != rq->mq_hctx->type &&
3007 (type != HCTX_TYPE_READ || rq->mq_hctx->type != HCTX_TYPE_DEFAULT))
3008 return NULL;
3009 if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
3010 return NULL;
3011 return rq;
3012 }
3013
blk_mq_use_cached_rq(struct request * rq,struct blk_plug * plug,struct bio * bio)3014 static void blk_mq_use_cached_rq(struct request *rq, struct blk_plug *plug,
3015 struct bio *bio)
3016 {
3017 if (rq_list_pop(&plug->cached_rqs) != rq)
3018 WARN_ON_ONCE(1);
3019
3020 /*
3021 * If any qos ->throttle() end up blocking, we will have flushed the
3022 * plug and hence killed the cached_rq list as well. Pop this entry
3023 * before we throttle.
3024 */
3025 rq_qos_throttle(rq->q, bio);
3026
3027 blk_mq_rq_time_init(rq, blk_time_get_ns());
3028 rq->cmd_flags = bio->bi_opf;
3029 INIT_LIST_HEAD(&rq->queuelist);
3030 }
3031
bio_unaligned(const struct bio * bio,struct request_queue * q)3032 static bool bio_unaligned(const struct bio *bio, struct request_queue *q)
3033 {
3034 unsigned int bs_mask = queue_logical_block_size(q) - 1;
3035
3036 /* .bi_sector of any zero sized bio need to be initialized */
3037 if ((bio->bi_iter.bi_size & bs_mask) ||
3038 ((bio->bi_iter.bi_sector << SECTOR_SHIFT) & bs_mask))
3039 return true;
3040 return false;
3041 }
3042
3043 /**
3044 * blk_mq_submit_bio - Create and send a request to block device.
3045 * @bio: Bio pointer.
3046 *
3047 * Builds up a request structure from @q and @bio and send to the device. The
3048 * request may not be queued directly to hardware if:
3049 * * This request can be merged with another one
3050 * * We want to place request at plug queue for possible future merging
3051 * * There is an IO scheduler active at this queue
3052 *
3053 * It will not queue the request if there is an error with the bio, or at the
3054 * request creation.
3055 */
blk_mq_submit_bio(struct bio * bio)3056 void blk_mq_submit_bio(struct bio *bio)
3057 {
3058 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
3059 struct blk_plug *plug = current->plug;
3060 const int is_sync = op_is_sync(bio->bi_opf);
3061 struct blk_mq_hw_ctx *hctx;
3062 unsigned int nr_segs;
3063 struct request *rq;
3064 blk_status_t ret;
3065
3066 /*
3067 * If the plug has a cached request for this queue, try to use it.
3068 */
3069 rq = blk_mq_peek_cached_request(plug, q, bio->bi_opf);
3070
3071 /*
3072 * A BIO that was released from a zone write plug has already been
3073 * through the preparation in this function, already holds a reference
3074 * on the queue usage counter, and is the only write BIO in-flight for
3075 * the target zone. Go straight to preparing a request for it.
3076 */
3077 if (bio_zone_write_plugging(bio)) {
3078 nr_segs = bio->__bi_nr_segments;
3079 if (rq)
3080 blk_queue_exit(q);
3081 goto new_request;
3082 }
3083
3084 bio = blk_queue_bounce(bio, q);
3085
3086 /*
3087 * The cached request already holds a q_usage_counter reference and we
3088 * don't have to acquire a new one if we use it.
3089 */
3090 if (!rq) {
3091 if (unlikely(bio_queue_enter(bio)))
3092 return;
3093 }
3094
3095 /*
3096 * Device reconfiguration may change logical block size or reduce the
3097 * number of poll queues, so the checks for alignment and poll support
3098 * have to be done with queue usage counter held.
3099 */
3100 if (unlikely(bio_unaligned(bio, q))) {
3101 bio_io_error(bio);
3102 goto queue_exit;
3103 }
3104
3105 if ((bio->bi_opf & REQ_POLLED) && !blk_mq_can_poll(q)) {
3106 bio->bi_status = BLK_STS_NOTSUPP;
3107 bio_endio(bio);
3108 goto queue_exit;
3109 }
3110
3111 bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
3112 if (!bio)
3113 goto queue_exit;
3114
3115 if (!bio_integrity_prep(bio))
3116 goto queue_exit;
3117
3118 if (blk_mq_attempt_bio_merge(q, bio, nr_segs))
3119 goto queue_exit;
3120
3121 if (blk_queue_is_zoned(q) && blk_zone_plug_bio(bio, nr_segs))
3122 goto queue_exit;
3123
3124 new_request:
3125 if (rq) {
3126 blk_mq_use_cached_rq(rq, plug, bio);
3127 } else {
3128 rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
3129 if (unlikely(!rq)) {
3130 if (bio->bi_opf & REQ_NOWAIT)
3131 bio_wouldblock_error(bio);
3132 goto queue_exit;
3133 }
3134 }
3135
3136 trace_block_getrq(bio);
3137
3138 rq_qos_track(q, rq, bio);
3139
3140 blk_mq_bio_to_request(rq, bio, nr_segs);
3141
3142 ret = blk_crypto_rq_get_keyslot(rq);
3143 if (ret != BLK_STS_OK) {
3144 bio->bi_status = ret;
3145 bio_endio(bio);
3146 blk_mq_free_request(rq);
3147 return;
3148 }
3149
3150 if (bio_zone_write_plugging(bio))
3151 blk_zone_write_plug_init_request(rq);
3152
3153 if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq))
3154 return;
3155
3156 if (plug) {
3157 blk_add_rq_to_plug(plug, rq);
3158 return;
3159 }
3160
3161 hctx = rq->mq_hctx;
3162 if ((rq->rq_flags & RQF_USE_SCHED) ||
3163 (hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) {
3164 blk_mq_insert_request(rq, 0);
3165 blk_mq_run_hw_queue(hctx, true);
3166 } else {
3167 blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq));
3168 }
3169 return;
3170
3171 queue_exit:
3172 /*
3173 * Don't drop the queue reference if we were trying to use a cached
3174 * request and thus didn't acquire one.
3175 */
3176 if (!rq)
3177 blk_queue_exit(q);
3178 }
3179
3180 #ifdef CONFIG_BLK_MQ_STACKING
3181 /**
3182 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
3183 * @rq: the request being queued
3184 */
blk_insert_cloned_request(struct request * rq)3185 blk_status_t blk_insert_cloned_request(struct request *rq)
3186 {
3187 struct request_queue *q = rq->q;
3188 unsigned int max_sectors = blk_queue_get_max_sectors(rq);
3189 unsigned int max_segments = blk_rq_get_max_segments(rq);
3190 blk_status_t ret;
3191
3192 if (blk_rq_sectors(rq) > max_sectors) {
3193 /*
3194 * SCSI device does not have a good way to return if
3195 * Write Same/Zero is actually supported. If a device rejects
3196 * a non-read/write command (discard, write same,etc.) the
3197 * low-level device driver will set the relevant queue limit to
3198 * 0 to prevent blk-lib from issuing more of the offending
3199 * operations. Commands queued prior to the queue limit being
3200 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
3201 * errors being propagated to upper layers.
3202 */
3203 if (max_sectors == 0)
3204 return BLK_STS_NOTSUPP;
3205
3206 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
3207 __func__, blk_rq_sectors(rq), max_sectors);
3208 return BLK_STS_IOERR;
3209 }
3210
3211 /*
3212 * The queue settings related to segment counting may differ from the
3213 * original queue.
3214 */
3215 rq->nr_phys_segments = blk_recalc_rq_segments(rq);
3216 if (rq->nr_phys_segments > max_segments) {
3217 printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n",
3218 __func__, rq->nr_phys_segments, max_segments);
3219 return BLK_STS_IOERR;
3220 }
3221
3222 if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
3223 return BLK_STS_IOERR;
3224
3225 ret = blk_crypto_rq_get_keyslot(rq);
3226 if (ret != BLK_STS_OK)
3227 return ret;
3228
3229 blk_account_io_start(rq);
3230
3231 /*
3232 * Since we have a scheduler attached on the top device,
3233 * bypass a potential scheduler on the bottom device for
3234 * insert.
3235 */
3236 blk_mq_run_dispatch_ops(q,
3237 ret = blk_mq_request_issue_directly(rq, true));
3238 if (ret)
3239 blk_account_io_done(rq, blk_time_get_ns());
3240 return ret;
3241 }
3242 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
3243
3244 /**
3245 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3246 * @rq: the clone request to be cleaned up
3247 *
3248 * Description:
3249 * Free all bios in @rq for a cloned request.
3250 */
blk_rq_unprep_clone(struct request * rq)3251 void blk_rq_unprep_clone(struct request *rq)
3252 {
3253 struct bio *bio;
3254
3255 while ((bio = rq->bio) != NULL) {
3256 rq->bio = bio->bi_next;
3257
3258 bio_put(bio);
3259 }
3260 }
3261 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3262
3263 /**
3264 * blk_rq_prep_clone - Helper function to setup clone request
3265 * @rq: the request to be setup
3266 * @rq_src: original request to be cloned
3267 * @bs: bio_set that bios for clone are allocated from
3268 * @gfp_mask: memory allocation mask for bio
3269 * @bio_ctr: setup function to be called for each clone bio.
3270 * Returns %0 for success, non %0 for failure.
3271 * @data: private data to be passed to @bio_ctr
3272 *
3273 * Description:
3274 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3275 * Also, pages which the original bios are pointing to are not copied
3276 * and the cloned bios just point same pages.
3277 * So cloned bios must be completed before original bios, which means
3278 * the caller must complete @rq before @rq_src.
3279 */
blk_rq_prep_clone(struct request * rq,struct request * rq_src,struct bio_set * bs,gfp_t gfp_mask,int (* bio_ctr)(struct bio *,struct bio *,void *),void * data)3280 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3281 struct bio_set *bs, gfp_t gfp_mask,
3282 int (*bio_ctr)(struct bio *, struct bio *, void *),
3283 void *data)
3284 {
3285 struct bio *bio_src;
3286
3287 if (!bs)
3288 bs = &fs_bio_set;
3289
3290 __rq_for_each_bio(bio_src, rq_src) {
3291 struct bio *bio = bio_alloc_clone(rq->q->disk->part0, bio_src,
3292 gfp_mask, bs);
3293 if (!bio)
3294 goto free_and_out;
3295
3296 if (bio_ctr && bio_ctr(bio, bio_src, data)) {
3297 bio_put(bio);
3298 goto free_and_out;
3299 }
3300
3301 if (rq->bio) {
3302 rq->biotail->bi_next = bio;
3303 rq->biotail = bio;
3304 } else {
3305 rq->bio = rq->biotail = bio;
3306 }
3307 }
3308
3309 /* Copy attributes of the original request to the clone request. */
3310 rq->__sector = blk_rq_pos(rq_src);
3311 rq->__data_len = blk_rq_bytes(rq_src);
3312 if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3313 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3314 rq->special_vec = rq_src->special_vec;
3315 }
3316 rq->nr_phys_segments = rq_src->nr_phys_segments;
3317
3318 if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3319 goto free_and_out;
3320
3321 return 0;
3322
3323 free_and_out:
3324 blk_rq_unprep_clone(rq);
3325
3326 return -ENOMEM;
3327 }
3328 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3329 #endif /* CONFIG_BLK_MQ_STACKING */
3330
3331 /*
3332 * Steal bios from a request and add them to a bio list.
3333 * The request must not have been partially completed before.
3334 */
blk_steal_bios(struct bio_list * list,struct request * rq)3335 void blk_steal_bios(struct bio_list *list, struct request *rq)
3336 {
3337 if (rq->bio) {
3338 if (list->tail)
3339 list->tail->bi_next = rq->bio;
3340 else
3341 list->head = rq->bio;
3342 list->tail = rq->biotail;
3343
3344 rq->bio = NULL;
3345 rq->biotail = NULL;
3346 }
3347
3348 rq->__data_len = 0;
3349 }
3350 EXPORT_SYMBOL_GPL(blk_steal_bios);
3351
order_to_size(unsigned int order)3352 static size_t order_to_size(unsigned int order)
3353 {
3354 return (size_t)PAGE_SIZE << order;
3355 }
3356
3357 /* called before freeing request pool in @tags */
blk_mq_clear_rq_mapping(struct blk_mq_tags * drv_tags,struct blk_mq_tags * tags)3358 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3359 struct blk_mq_tags *tags)
3360 {
3361 struct page *page;
3362 unsigned long flags;
3363
3364 /*
3365 * There is no need to clear mapping if driver tags is not initialized
3366 * or the mapping belongs to the driver tags.
3367 */
3368 if (!drv_tags || drv_tags == tags)
3369 return;
3370
3371 list_for_each_entry(page, &tags->page_list, lru) {
3372 unsigned long start = (unsigned long)page_address(page);
3373 unsigned long end = start + order_to_size(page->private);
3374 int i;
3375
3376 for (i = 0; i < drv_tags->nr_tags; i++) {
3377 struct request *rq = drv_tags->rqs[i];
3378 unsigned long rq_addr = (unsigned long)rq;
3379
3380 if (rq_addr >= start && rq_addr < end) {
3381 WARN_ON_ONCE(req_ref_read(rq) != 0);
3382 cmpxchg(&drv_tags->rqs[i], rq, NULL);
3383 }
3384 }
3385 }
3386
3387 /*
3388 * Wait until all pending iteration is done.
3389 *
3390 * Request reference is cleared and it is guaranteed to be observed
3391 * after the ->lock is released.
3392 */
3393 spin_lock_irqsave(&drv_tags->lock, flags);
3394 spin_unlock_irqrestore(&drv_tags->lock, flags);
3395 }
3396
blk_mq_free_rqs(struct blk_mq_tag_set * set,struct blk_mq_tags * tags,unsigned int hctx_idx)3397 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3398 unsigned int hctx_idx)
3399 {
3400 struct blk_mq_tags *drv_tags;
3401 struct page *page;
3402
3403 if (list_empty(&tags->page_list))
3404 return;
3405
3406 if (blk_mq_is_shared_tags(set->flags))
3407 drv_tags = set->shared_tags;
3408 else
3409 drv_tags = set->tags[hctx_idx];
3410
3411 if (tags->static_rqs && set->ops->exit_request) {
3412 int i;
3413
3414 for (i = 0; i < tags->nr_tags; i++) {
3415 struct request *rq = tags->static_rqs[i];
3416
3417 if (!rq)
3418 continue;
3419 set->ops->exit_request(set, rq, hctx_idx);
3420 tags->static_rqs[i] = NULL;
3421 }
3422 }
3423
3424 blk_mq_clear_rq_mapping(drv_tags, tags);
3425
3426 while (!list_empty(&tags->page_list)) {
3427 page = list_first_entry(&tags->page_list, struct page, lru);
3428 list_del_init(&page->lru);
3429 /*
3430 * Remove kmemleak object previously allocated in
3431 * blk_mq_alloc_rqs().
3432 */
3433 kmemleak_free(page_address(page));
3434 __free_pages(page, page->private);
3435 }
3436 }
3437
blk_mq_free_rq_map(struct blk_mq_tags * tags)3438 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3439 {
3440 kfree(tags->rqs);
3441 tags->rqs = NULL;
3442 kfree(tags->static_rqs);
3443 tags->static_rqs = NULL;
3444
3445 blk_mq_free_tags(tags);
3446 }
3447
hctx_idx_to_type(struct blk_mq_tag_set * set,unsigned int hctx_idx)3448 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3449 unsigned int hctx_idx)
3450 {
3451 int i;
3452
3453 for (i = 0; i < set->nr_maps; i++) {
3454 unsigned int start = set->map[i].queue_offset;
3455 unsigned int end = start + set->map[i].nr_queues;
3456
3457 if (hctx_idx >= start && hctx_idx < end)
3458 break;
3459 }
3460
3461 if (i >= set->nr_maps)
3462 i = HCTX_TYPE_DEFAULT;
3463
3464 return i;
3465 }
3466
blk_mq_get_hctx_node(struct blk_mq_tag_set * set,unsigned int hctx_idx)3467 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3468 unsigned int hctx_idx)
3469 {
3470 enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3471
3472 return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3473 }
3474
blk_mq_alloc_rq_map(struct blk_mq_tag_set * set,unsigned int hctx_idx,unsigned int nr_tags,unsigned int reserved_tags)3475 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3476 unsigned int hctx_idx,
3477 unsigned int nr_tags,
3478 unsigned int reserved_tags)
3479 {
3480 int node = blk_mq_get_hctx_node(set, hctx_idx);
3481 struct blk_mq_tags *tags;
3482
3483 if (node == NUMA_NO_NODE)
3484 node = set->numa_node;
3485
3486 tags = blk_mq_init_tags(nr_tags, reserved_tags, set->flags, node);
3487 if (!tags)
3488 return NULL;
3489
3490 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3491 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3492 node);
3493 if (!tags->rqs)
3494 goto err_free_tags;
3495
3496 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3497 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3498 node);
3499 if (!tags->static_rqs)
3500 goto err_free_rqs;
3501
3502 return tags;
3503
3504 err_free_rqs:
3505 kfree(tags->rqs);
3506 err_free_tags:
3507 blk_mq_free_tags(tags);
3508 return NULL;
3509 }
3510
blk_mq_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,int node)3511 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3512 unsigned int hctx_idx, int node)
3513 {
3514 int ret;
3515
3516 if (set->ops->init_request) {
3517 ret = set->ops->init_request(set, rq, hctx_idx, node);
3518 if (ret)
3519 return ret;
3520 }
3521
3522 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3523 return 0;
3524 }
3525
blk_mq_alloc_rqs(struct blk_mq_tag_set * set,struct blk_mq_tags * tags,unsigned int hctx_idx,unsigned int depth)3526 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3527 struct blk_mq_tags *tags,
3528 unsigned int hctx_idx, unsigned int depth)
3529 {
3530 unsigned int i, j, entries_per_page, max_order = 4;
3531 int node = blk_mq_get_hctx_node(set, hctx_idx);
3532 size_t rq_size, left;
3533
3534 if (node == NUMA_NO_NODE)
3535 node = set->numa_node;
3536
3537 INIT_LIST_HEAD(&tags->page_list);
3538
3539 /*
3540 * rq_size is the size of the request plus driver payload, rounded
3541 * to the cacheline size
3542 */
3543 rq_size = round_up(sizeof(struct request) + set->cmd_size,
3544 cache_line_size());
3545 left = rq_size * depth;
3546
3547 for (i = 0; i < depth; ) {
3548 int this_order = max_order;
3549 struct page *page;
3550 int to_do;
3551 void *p;
3552
3553 while (this_order && left < order_to_size(this_order - 1))
3554 this_order--;
3555
3556 do {
3557 page = alloc_pages_node(node,
3558 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3559 this_order);
3560 if (page)
3561 break;
3562 if (!this_order--)
3563 break;
3564 if (order_to_size(this_order) < rq_size)
3565 break;
3566 } while (1);
3567
3568 if (!page)
3569 goto fail;
3570
3571 page->private = this_order;
3572 list_add_tail(&page->lru, &tags->page_list);
3573
3574 p = page_address(page);
3575 /*
3576 * Allow kmemleak to scan these pages as they contain pointers
3577 * to additional allocations like via ops->init_request().
3578 */
3579 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3580 entries_per_page = order_to_size(this_order) / rq_size;
3581 to_do = min(entries_per_page, depth - i);
3582 left -= to_do * rq_size;
3583 for (j = 0; j < to_do; j++) {
3584 struct request *rq = p;
3585
3586 tags->static_rqs[i] = rq;
3587 if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3588 tags->static_rqs[i] = NULL;
3589 goto fail;
3590 }
3591
3592 p += rq_size;
3593 i++;
3594 }
3595 }
3596 return 0;
3597
3598 fail:
3599 blk_mq_free_rqs(set, tags, hctx_idx);
3600 return -ENOMEM;
3601 }
3602
3603 struct rq_iter_data {
3604 struct blk_mq_hw_ctx *hctx;
3605 bool has_rq;
3606 };
3607
blk_mq_has_request(struct request * rq,void * data)3608 static bool blk_mq_has_request(struct request *rq, void *data)
3609 {
3610 struct rq_iter_data *iter_data = data;
3611
3612 if (rq->mq_hctx != iter_data->hctx)
3613 return true;
3614 iter_data->has_rq = true;
3615 return false;
3616 }
3617
blk_mq_hctx_has_requests(struct blk_mq_hw_ctx * hctx)3618 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3619 {
3620 struct blk_mq_tags *tags = hctx->sched_tags ?
3621 hctx->sched_tags : hctx->tags;
3622 struct rq_iter_data data = {
3623 .hctx = hctx,
3624 };
3625
3626 blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3627 return data.has_rq;
3628 }
3629
blk_mq_hctx_has_online_cpu(struct blk_mq_hw_ctx * hctx,unsigned int this_cpu)3630 static bool blk_mq_hctx_has_online_cpu(struct blk_mq_hw_ctx *hctx,
3631 unsigned int this_cpu)
3632 {
3633 enum hctx_type type = hctx->type;
3634 int cpu;
3635
3636 /*
3637 * hctx->cpumask has to rule out isolated CPUs, but userspace still
3638 * might submit IOs on these isolated CPUs, so use the queue map to
3639 * check if all CPUs mapped to this hctx are offline
3640 */
3641 for_each_online_cpu(cpu) {
3642 struct blk_mq_hw_ctx *h = blk_mq_map_queue_type(hctx->queue,
3643 type, cpu);
3644
3645 if (h != hctx)
3646 continue;
3647
3648 /* this hctx has at least one online CPU */
3649 if (this_cpu != cpu)
3650 return true;
3651 }
3652
3653 return false;
3654 }
3655
blk_mq_hctx_notify_offline(unsigned int cpu,struct hlist_node * node)3656 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3657 {
3658 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3659 struct blk_mq_hw_ctx, cpuhp_online);
3660
3661 if (blk_mq_hctx_has_online_cpu(hctx, cpu))
3662 return 0;
3663
3664 /*
3665 * Prevent new request from being allocated on the current hctx.
3666 *
3667 * The smp_mb__after_atomic() Pairs with the implied barrier in
3668 * test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is
3669 * seen once we return from the tag allocator.
3670 */
3671 set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3672 smp_mb__after_atomic();
3673
3674 /*
3675 * Try to grab a reference to the queue and wait for any outstanding
3676 * requests. If we could not grab a reference the queue has been
3677 * frozen and there are no requests.
3678 */
3679 if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3680 while (blk_mq_hctx_has_requests(hctx))
3681 msleep(5);
3682 percpu_ref_put(&hctx->queue->q_usage_counter);
3683 }
3684
3685 return 0;
3686 }
3687
3688 /*
3689 * Check if one CPU is mapped to the specified hctx
3690 *
3691 * Isolated CPUs have been ruled out from hctx->cpumask, which is supposed
3692 * to be used for scheduling kworker only. For other usage, please call this
3693 * helper for checking if one CPU belongs to the specified hctx
3694 */
blk_mq_cpu_mapped_to_hctx(unsigned int cpu,const struct blk_mq_hw_ctx * hctx)3695 static bool blk_mq_cpu_mapped_to_hctx(unsigned int cpu,
3696 const struct blk_mq_hw_ctx *hctx)
3697 {
3698 struct blk_mq_hw_ctx *mapped_hctx = blk_mq_map_queue_type(hctx->queue,
3699 hctx->type, cpu);
3700
3701 return mapped_hctx == hctx;
3702 }
3703
blk_mq_hctx_notify_online(unsigned int cpu,struct hlist_node * node)3704 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3705 {
3706 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3707 struct blk_mq_hw_ctx, cpuhp_online);
3708
3709 if (blk_mq_cpu_mapped_to_hctx(cpu, hctx))
3710 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3711 return 0;
3712 }
3713
3714 /*
3715 * 'cpu' is going away. splice any existing rq_list entries from this
3716 * software queue to the hw queue dispatch list, and ensure that it
3717 * gets run.
3718 */
blk_mq_hctx_notify_dead(unsigned int cpu,struct hlist_node * node)3719 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3720 {
3721 struct blk_mq_hw_ctx *hctx;
3722 struct blk_mq_ctx *ctx;
3723 LIST_HEAD(tmp);
3724 enum hctx_type type;
3725
3726 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3727 if (!blk_mq_cpu_mapped_to_hctx(cpu, hctx))
3728 return 0;
3729
3730 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3731 type = hctx->type;
3732
3733 spin_lock(&ctx->lock);
3734 if (!list_empty(&ctx->rq_lists[type])) {
3735 list_splice_init(&ctx->rq_lists[type], &tmp);
3736 blk_mq_hctx_clear_pending(hctx, ctx);
3737 }
3738 spin_unlock(&ctx->lock);
3739
3740 if (list_empty(&tmp))
3741 return 0;
3742
3743 spin_lock(&hctx->lock);
3744 list_splice_tail_init(&tmp, &hctx->dispatch);
3745 spin_unlock(&hctx->lock);
3746
3747 blk_mq_run_hw_queue(hctx, true);
3748 return 0;
3749 }
3750
__blk_mq_remove_cpuhp(struct blk_mq_hw_ctx * hctx)3751 static void __blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3752 {
3753 lockdep_assert_held(&blk_mq_cpuhp_lock);
3754
3755 if (!(hctx->flags & BLK_MQ_F_STACKING) &&
3756 !hlist_unhashed(&hctx->cpuhp_online)) {
3757 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3758 &hctx->cpuhp_online);
3759 INIT_HLIST_NODE(&hctx->cpuhp_online);
3760 }
3761
3762 if (!hlist_unhashed(&hctx->cpuhp_dead)) {
3763 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3764 &hctx->cpuhp_dead);
3765 INIT_HLIST_NODE(&hctx->cpuhp_dead);
3766 }
3767 }
3768
blk_mq_remove_cpuhp(struct blk_mq_hw_ctx * hctx)3769 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3770 {
3771 mutex_lock(&blk_mq_cpuhp_lock);
3772 __blk_mq_remove_cpuhp(hctx);
3773 mutex_unlock(&blk_mq_cpuhp_lock);
3774 }
3775
__blk_mq_add_cpuhp(struct blk_mq_hw_ctx * hctx)3776 static void __blk_mq_add_cpuhp(struct blk_mq_hw_ctx *hctx)
3777 {
3778 lockdep_assert_held(&blk_mq_cpuhp_lock);
3779
3780 if (!(hctx->flags & BLK_MQ_F_STACKING) &&
3781 hlist_unhashed(&hctx->cpuhp_online))
3782 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3783 &hctx->cpuhp_online);
3784
3785 if (hlist_unhashed(&hctx->cpuhp_dead))
3786 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3787 &hctx->cpuhp_dead);
3788 }
3789
__blk_mq_remove_cpuhp_list(struct list_head * head)3790 static void __blk_mq_remove_cpuhp_list(struct list_head *head)
3791 {
3792 struct blk_mq_hw_ctx *hctx;
3793
3794 lockdep_assert_held(&blk_mq_cpuhp_lock);
3795
3796 list_for_each_entry(hctx, head, hctx_list)
3797 __blk_mq_remove_cpuhp(hctx);
3798 }
3799
3800 /*
3801 * Unregister cpuhp callbacks from exited hw queues
3802 *
3803 * Safe to call if this `request_queue` is live
3804 */
blk_mq_remove_hw_queues_cpuhp(struct request_queue * q)3805 static void blk_mq_remove_hw_queues_cpuhp(struct request_queue *q)
3806 {
3807 LIST_HEAD(hctx_list);
3808
3809 spin_lock(&q->unused_hctx_lock);
3810 list_splice_init(&q->unused_hctx_list, &hctx_list);
3811 spin_unlock(&q->unused_hctx_lock);
3812
3813 mutex_lock(&blk_mq_cpuhp_lock);
3814 __blk_mq_remove_cpuhp_list(&hctx_list);
3815 mutex_unlock(&blk_mq_cpuhp_lock);
3816
3817 spin_lock(&q->unused_hctx_lock);
3818 list_splice(&hctx_list, &q->unused_hctx_list);
3819 spin_unlock(&q->unused_hctx_lock);
3820 }
3821
3822 /*
3823 * Register cpuhp callbacks from all hw queues
3824 *
3825 * Safe to call if this `request_queue` is live
3826 */
blk_mq_add_hw_queues_cpuhp(struct request_queue * q)3827 static void blk_mq_add_hw_queues_cpuhp(struct request_queue *q)
3828 {
3829 struct blk_mq_hw_ctx *hctx;
3830 unsigned long i;
3831
3832 mutex_lock(&blk_mq_cpuhp_lock);
3833 queue_for_each_hw_ctx(q, hctx, i)
3834 __blk_mq_add_cpuhp(hctx);
3835 mutex_unlock(&blk_mq_cpuhp_lock);
3836 }
3837
3838 /*
3839 * Before freeing hw queue, clearing the flush request reference in
3840 * tags->rqs[] for avoiding potential UAF.
3841 */
blk_mq_clear_flush_rq_mapping(struct blk_mq_tags * tags,unsigned int queue_depth,struct request * flush_rq)3842 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3843 unsigned int queue_depth, struct request *flush_rq)
3844 {
3845 int i;
3846 unsigned long flags;
3847
3848 /* The hw queue may not be mapped yet */
3849 if (!tags)
3850 return;
3851
3852 WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3853
3854 for (i = 0; i < queue_depth; i++)
3855 cmpxchg(&tags->rqs[i], flush_rq, NULL);
3856
3857 /*
3858 * Wait until all pending iteration is done.
3859 *
3860 * Request reference is cleared and it is guaranteed to be observed
3861 * after the ->lock is released.
3862 */
3863 spin_lock_irqsave(&tags->lock, flags);
3864 spin_unlock_irqrestore(&tags->lock, flags);
3865 }
3866
3867 /* hctx->ctxs will be freed in queue's release handler */
blk_mq_exit_hctx(struct request_queue * q,struct blk_mq_tag_set * set,struct blk_mq_hw_ctx * hctx,unsigned int hctx_idx)3868 static void blk_mq_exit_hctx(struct request_queue *q,
3869 struct blk_mq_tag_set *set,
3870 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3871 {
3872 struct request *flush_rq = hctx->fq->flush_rq;
3873
3874 if (blk_mq_hw_queue_mapped(hctx))
3875 blk_mq_tag_idle(hctx);
3876
3877 if (blk_queue_init_done(q))
3878 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3879 set->queue_depth, flush_rq);
3880 if (set->ops->exit_request)
3881 set->ops->exit_request(set, flush_rq, hctx_idx);
3882
3883 if (set->ops->exit_hctx)
3884 set->ops->exit_hctx(hctx, hctx_idx);
3885
3886 xa_erase(&q->hctx_table, hctx_idx);
3887
3888 spin_lock(&q->unused_hctx_lock);
3889 list_add(&hctx->hctx_list, &q->unused_hctx_list);
3890 spin_unlock(&q->unused_hctx_lock);
3891 }
3892
blk_mq_exit_hw_queues(struct request_queue * q,struct blk_mq_tag_set * set,int nr_queue)3893 static void blk_mq_exit_hw_queues(struct request_queue *q,
3894 struct blk_mq_tag_set *set, int nr_queue)
3895 {
3896 struct blk_mq_hw_ctx *hctx;
3897 unsigned long i;
3898
3899 queue_for_each_hw_ctx(q, hctx, i) {
3900 if (i == nr_queue)
3901 break;
3902 blk_mq_remove_cpuhp(hctx);
3903 blk_mq_exit_hctx(q, set, hctx, i);
3904 }
3905 }
3906
blk_mq_init_hctx(struct request_queue * q,struct blk_mq_tag_set * set,struct blk_mq_hw_ctx * hctx,unsigned hctx_idx)3907 static int blk_mq_init_hctx(struct request_queue *q,
3908 struct blk_mq_tag_set *set,
3909 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3910 {
3911 hctx->queue_num = hctx_idx;
3912
3913 hctx->tags = set->tags[hctx_idx];
3914
3915 if (set->ops->init_hctx &&
3916 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3917 goto fail;
3918
3919 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3920 hctx->numa_node))
3921 goto exit_hctx;
3922
3923 if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3924 goto exit_flush_rq;
3925
3926 return 0;
3927
3928 exit_flush_rq:
3929 if (set->ops->exit_request)
3930 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3931 exit_hctx:
3932 if (set->ops->exit_hctx)
3933 set->ops->exit_hctx(hctx, hctx_idx);
3934 fail:
3935 return -1;
3936 }
3937
3938 static struct blk_mq_hw_ctx *
blk_mq_alloc_hctx(struct request_queue * q,struct blk_mq_tag_set * set,int node)3939 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3940 int node)
3941 {
3942 struct blk_mq_hw_ctx *hctx;
3943 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3944
3945 hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3946 if (!hctx)
3947 goto fail_alloc_hctx;
3948
3949 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3950 goto free_hctx;
3951
3952 atomic_set(&hctx->nr_active, 0);
3953 if (node == NUMA_NO_NODE)
3954 node = set->numa_node;
3955 hctx->numa_node = node;
3956
3957 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3958 spin_lock_init(&hctx->lock);
3959 INIT_LIST_HEAD(&hctx->dispatch);
3960 INIT_HLIST_NODE(&hctx->cpuhp_dead);
3961 INIT_HLIST_NODE(&hctx->cpuhp_online);
3962 hctx->queue = q;
3963 hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3964
3965 INIT_LIST_HEAD(&hctx->hctx_list);
3966
3967 /*
3968 * Allocate space for all possible cpus to avoid allocation at
3969 * runtime
3970 */
3971 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3972 gfp, node);
3973 if (!hctx->ctxs)
3974 goto free_cpumask;
3975
3976 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3977 gfp, node, false, false))
3978 goto free_ctxs;
3979 hctx->nr_ctx = 0;
3980
3981 spin_lock_init(&hctx->dispatch_wait_lock);
3982 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3983 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3984
3985 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3986 if (!hctx->fq)
3987 goto free_bitmap;
3988
3989 blk_mq_hctx_kobj_init(hctx);
3990
3991 return hctx;
3992
3993 free_bitmap:
3994 sbitmap_free(&hctx->ctx_map);
3995 free_ctxs:
3996 kfree(hctx->ctxs);
3997 free_cpumask:
3998 free_cpumask_var(hctx->cpumask);
3999 free_hctx:
4000 kfree(hctx);
4001 fail_alloc_hctx:
4002 return NULL;
4003 }
4004
blk_mq_init_cpu_queues(struct request_queue * q,unsigned int nr_hw_queues)4005 static void blk_mq_init_cpu_queues(struct request_queue *q,
4006 unsigned int nr_hw_queues)
4007 {
4008 struct blk_mq_tag_set *set = q->tag_set;
4009 unsigned int i, j;
4010
4011 for_each_possible_cpu(i) {
4012 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
4013 struct blk_mq_hw_ctx *hctx;
4014 int k;
4015
4016 __ctx->cpu = i;
4017 spin_lock_init(&__ctx->lock);
4018 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
4019 INIT_LIST_HEAD(&__ctx->rq_lists[k]);
4020
4021 __ctx->queue = q;
4022
4023 /*
4024 * Set local node, IFF we have more than one hw queue. If
4025 * not, we remain on the home node of the device
4026 */
4027 for (j = 0; j < set->nr_maps; j++) {
4028 hctx = blk_mq_map_queue_type(q, j, i);
4029 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
4030 hctx->numa_node = cpu_to_node(i);
4031 }
4032 }
4033 }
4034
blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set * set,unsigned int hctx_idx,unsigned int depth)4035 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
4036 unsigned int hctx_idx,
4037 unsigned int depth)
4038 {
4039 struct blk_mq_tags *tags;
4040 int ret;
4041
4042 tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
4043 if (!tags)
4044 return NULL;
4045
4046 ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
4047 if (ret) {
4048 blk_mq_free_rq_map(tags);
4049 return NULL;
4050 }
4051
4052 return tags;
4053 }
4054
__blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set * set,int hctx_idx)4055 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
4056 int hctx_idx)
4057 {
4058 if (blk_mq_is_shared_tags(set->flags)) {
4059 set->tags[hctx_idx] = set->shared_tags;
4060
4061 return true;
4062 }
4063
4064 set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
4065 set->queue_depth);
4066
4067 return set->tags[hctx_idx];
4068 }
4069
blk_mq_free_map_and_rqs(struct blk_mq_tag_set * set,struct blk_mq_tags * tags,unsigned int hctx_idx)4070 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
4071 struct blk_mq_tags *tags,
4072 unsigned int hctx_idx)
4073 {
4074 if (tags) {
4075 blk_mq_free_rqs(set, tags, hctx_idx);
4076 blk_mq_free_rq_map(tags);
4077 }
4078 }
4079
__blk_mq_free_map_and_rqs(struct blk_mq_tag_set * set,unsigned int hctx_idx)4080 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
4081 unsigned int hctx_idx)
4082 {
4083 if (!blk_mq_is_shared_tags(set->flags))
4084 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
4085
4086 set->tags[hctx_idx] = NULL;
4087 }
4088
blk_mq_map_swqueue(struct request_queue * q)4089 static void blk_mq_map_swqueue(struct request_queue *q)
4090 {
4091 unsigned int j, hctx_idx;
4092 unsigned long i;
4093 struct blk_mq_hw_ctx *hctx;
4094 struct blk_mq_ctx *ctx;
4095 struct blk_mq_tag_set *set = q->tag_set;
4096
4097 queue_for_each_hw_ctx(q, hctx, i) {
4098 cpumask_clear(hctx->cpumask);
4099 hctx->nr_ctx = 0;
4100 hctx->dispatch_from = NULL;
4101 }
4102
4103 /*
4104 * Map software to hardware queues.
4105 *
4106 * If the cpu isn't present, the cpu is mapped to first hctx.
4107 */
4108 for_each_possible_cpu(i) {
4109
4110 ctx = per_cpu_ptr(q->queue_ctx, i);
4111 for (j = 0; j < set->nr_maps; j++) {
4112 if (!set->map[j].nr_queues) {
4113 ctx->hctxs[j] = blk_mq_map_queue_type(q,
4114 HCTX_TYPE_DEFAULT, i);
4115 continue;
4116 }
4117 hctx_idx = set->map[j].mq_map[i];
4118 /* unmapped hw queue can be remapped after CPU topo changed */
4119 if (!set->tags[hctx_idx] &&
4120 !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
4121 /*
4122 * If tags initialization fail for some hctx,
4123 * that hctx won't be brought online. In this
4124 * case, remap the current ctx to hctx[0] which
4125 * is guaranteed to always have tags allocated
4126 */
4127 set->map[j].mq_map[i] = 0;
4128 }
4129
4130 hctx = blk_mq_map_queue_type(q, j, i);
4131 ctx->hctxs[j] = hctx;
4132 /*
4133 * If the CPU is already set in the mask, then we've
4134 * mapped this one already. This can happen if
4135 * devices share queues across queue maps.
4136 */
4137 if (cpumask_test_cpu(i, hctx->cpumask))
4138 continue;
4139
4140 cpumask_set_cpu(i, hctx->cpumask);
4141 hctx->type = j;
4142 ctx->index_hw[hctx->type] = hctx->nr_ctx;
4143 hctx->ctxs[hctx->nr_ctx++] = ctx;
4144
4145 /*
4146 * If the nr_ctx type overflows, we have exceeded the
4147 * amount of sw queues we can support.
4148 */
4149 BUG_ON(!hctx->nr_ctx);
4150 }
4151
4152 for (; j < HCTX_MAX_TYPES; j++)
4153 ctx->hctxs[j] = blk_mq_map_queue_type(q,
4154 HCTX_TYPE_DEFAULT, i);
4155 }
4156
4157 queue_for_each_hw_ctx(q, hctx, i) {
4158 int cpu;
4159
4160 /*
4161 * If no software queues are mapped to this hardware queue,
4162 * disable it and free the request entries.
4163 */
4164 if (!hctx->nr_ctx) {
4165 /* Never unmap queue 0. We need it as a
4166 * fallback in case of a new remap fails
4167 * allocation
4168 */
4169 if (i)
4170 __blk_mq_free_map_and_rqs(set, i);
4171
4172 hctx->tags = NULL;
4173 continue;
4174 }
4175
4176 hctx->tags = set->tags[i];
4177 WARN_ON(!hctx->tags);
4178
4179 /*
4180 * Set the map size to the number of mapped software queues.
4181 * This is more accurate and more efficient than looping
4182 * over all possibly mapped software queues.
4183 */
4184 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
4185
4186 /*
4187 * Rule out isolated CPUs from hctx->cpumask to avoid
4188 * running block kworker on isolated CPUs
4189 */
4190 for_each_cpu(cpu, hctx->cpumask) {
4191 if (cpu_is_isolated(cpu))
4192 cpumask_clear_cpu(cpu, hctx->cpumask);
4193 }
4194
4195 /*
4196 * Initialize batch roundrobin counts
4197 */
4198 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
4199 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
4200 }
4201 }
4202
4203 /*
4204 * Caller needs to ensure that we're either frozen/quiesced, or that
4205 * the queue isn't live yet.
4206 */
queue_set_hctx_shared(struct request_queue * q,bool shared)4207 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
4208 {
4209 struct blk_mq_hw_ctx *hctx;
4210 unsigned long i;
4211
4212 queue_for_each_hw_ctx(q, hctx, i) {
4213 if (shared) {
4214 hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
4215 } else {
4216 blk_mq_tag_idle(hctx);
4217 hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
4218 }
4219 }
4220 }
4221
blk_mq_update_tag_set_shared(struct blk_mq_tag_set * set,bool shared)4222 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
4223 bool shared)
4224 {
4225 struct request_queue *q;
4226 unsigned int memflags;
4227
4228 lockdep_assert_held(&set->tag_list_lock);
4229
4230 list_for_each_entry(q, &set->tag_list, tag_set_list) {
4231 memflags = blk_mq_freeze_queue(q);
4232 queue_set_hctx_shared(q, shared);
4233 blk_mq_unfreeze_queue(q, memflags);
4234 }
4235 }
4236
blk_mq_del_queue_tag_set(struct request_queue * q)4237 static void blk_mq_del_queue_tag_set(struct request_queue *q)
4238 {
4239 struct blk_mq_tag_set *set = q->tag_set;
4240
4241 mutex_lock(&set->tag_list_lock);
4242 list_del(&q->tag_set_list);
4243 if (list_is_singular(&set->tag_list)) {
4244 /* just transitioned to unshared */
4245 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
4246 /* update existing queue */
4247 blk_mq_update_tag_set_shared(set, false);
4248 }
4249 mutex_unlock(&set->tag_list_lock);
4250 INIT_LIST_HEAD(&q->tag_set_list);
4251 }
4252
blk_mq_add_queue_tag_set(struct blk_mq_tag_set * set,struct request_queue * q)4253 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
4254 struct request_queue *q)
4255 {
4256 mutex_lock(&set->tag_list_lock);
4257
4258 /*
4259 * Check to see if we're transitioning to shared (from 1 to 2 queues).
4260 */
4261 if (!list_empty(&set->tag_list) &&
4262 !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
4263 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
4264 /* update existing queue */
4265 blk_mq_update_tag_set_shared(set, true);
4266 }
4267 if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
4268 queue_set_hctx_shared(q, true);
4269 list_add_tail(&q->tag_set_list, &set->tag_list);
4270
4271 mutex_unlock(&set->tag_list_lock);
4272 }
4273
4274 /* All allocations will be freed in release handler of q->mq_kobj */
blk_mq_alloc_ctxs(struct request_queue * q)4275 static int blk_mq_alloc_ctxs(struct request_queue *q)
4276 {
4277 struct blk_mq_ctxs *ctxs;
4278 int cpu;
4279
4280 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
4281 if (!ctxs)
4282 return -ENOMEM;
4283
4284 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
4285 if (!ctxs->queue_ctx)
4286 goto fail;
4287
4288 for_each_possible_cpu(cpu) {
4289 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
4290 ctx->ctxs = ctxs;
4291 }
4292
4293 q->mq_kobj = &ctxs->kobj;
4294 q->queue_ctx = ctxs->queue_ctx;
4295
4296 return 0;
4297 fail:
4298 kfree(ctxs);
4299 return -ENOMEM;
4300 }
4301
4302 /*
4303 * It is the actual release handler for mq, but we do it from
4304 * request queue's release handler for avoiding use-after-free
4305 * and headache because q->mq_kobj shouldn't have been introduced,
4306 * but we can't group ctx/kctx kobj without it.
4307 */
blk_mq_release(struct request_queue * q)4308 void blk_mq_release(struct request_queue *q)
4309 {
4310 struct blk_mq_hw_ctx *hctx, *next;
4311 unsigned long i;
4312
4313 queue_for_each_hw_ctx(q, hctx, i)
4314 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
4315
4316 /* all hctx are in .unused_hctx_list now */
4317 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
4318 list_del_init(&hctx->hctx_list);
4319 kobject_put(&hctx->kobj);
4320 }
4321
4322 xa_destroy(&q->hctx_table);
4323
4324 /*
4325 * release .mq_kobj and sw queue's kobject now because
4326 * both share lifetime with request queue.
4327 */
4328 blk_mq_sysfs_deinit(q);
4329 }
4330
blk_mq_alloc_queue(struct blk_mq_tag_set * set,struct queue_limits * lim,void * queuedata)4331 struct request_queue *blk_mq_alloc_queue(struct blk_mq_tag_set *set,
4332 struct queue_limits *lim, void *queuedata)
4333 {
4334 struct queue_limits default_lim = { };
4335 struct request_queue *q;
4336 int ret;
4337
4338 if (!lim)
4339 lim = &default_lim;
4340 lim->features |= BLK_FEAT_IO_STAT | BLK_FEAT_NOWAIT;
4341 if (set->nr_maps > HCTX_TYPE_POLL)
4342 lim->features |= BLK_FEAT_POLL;
4343
4344 q = blk_alloc_queue(lim, set->numa_node);
4345 if (IS_ERR(q))
4346 return q;
4347 q->queuedata = queuedata;
4348 ret = blk_mq_init_allocated_queue(set, q);
4349 if (ret) {
4350 blk_put_queue(q);
4351 return ERR_PTR(ret);
4352 }
4353 return q;
4354 }
4355 EXPORT_SYMBOL(blk_mq_alloc_queue);
4356
4357 /**
4358 * blk_mq_destroy_queue - shutdown a request queue
4359 * @q: request queue to shutdown
4360 *
4361 * This shuts down a request queue allocated by blk_mq_alloc_queue(). All future
4362 * requests will be failed with -ENODEV. The caller is responsible for dropping
4363 * the reference from blk_mq_alloc_queue() by calling blk_put_queue().
4364 *
4365 * Context: can sleep
4366 */
blk_mq_destroy_queue(struct request_queue * q)4367 void blk_mq_destroy_queue(struct request_queue *q)
4368 {
4369 WARN_ON_ONCE(!queue_is_mq(q));
4370 WARN_ON_ONCE(blk_queue_registered(q));
4371
4372 might_sleep();
4373
4374 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
4375 blk_queue_start_drain(q);
4376 blk_mq_freeze_queue_wait(q);
4377
4378 blk_sync_queue(q);
4379 blk_mq_cancel_work_sync(q);
4380 blk_mq_exit_queue(q);
4381 }
4382 EXPORT_SYMBOL(blk_mq_destroy_queue);
4383
__blk_mq_alloc_disk(struct blk_mq_tag_set * set,struct queue_limits * lim,void * queuedata,struct lock_class_key * lkclass)4384 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set,
4385 struct queue_limits *lim, void *queuedata,
4386 struct lock_class_key *lkclass)
4387 {
4388 struct request_queue *q;
4389 struct gendisk *disk;
4390
4391 q = blk_mq_alloc_queue(set, lim, queuedata);
4392 if (IS_ERR(q))
4393 return ERR_CAST(q);
4394
4395 disk = __alloc_disk_node(q, set->numa_node, lkclass);
4396 if (!disk) {
4397 blk_mq_destroy_queue(q);
4398 blk_put_queue(q);
4399 return ERR_PTR(-ENOMEM);
4400 }
4401 set_bit(GD_OWNS_QUEUE, &disk->state);
4402 return disk;
4403 }
4404 EXPORT_SYMBOL(__blk_mq_alloc_disk);
4405
blk_mq_alloc_disk_for_queue(struct request_queue * q,struct lock_class_key * lkclass)4406 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
4407 struct lock_class_key *lkclass)
4408 {
4409 struct gendisk *disk;
4410
4411 if (!blk_get_queue(q))
4412 return NULL;
4413 disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
4414 if (!disk)
4415 blk_put_queue(q);
4416 return disk;
4417 }
4418 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
4419
4420 /*
4421 * Only hctx removed from cpuhp list can be reused
4422 */
blk_mq_hctx_is_reusable(struct blk_mq_hw_ctx * hctx)4423 static bool blk_mq_hctx_is_reusable(struct blk_mq_hw_ctx *hctx)
4424 {
4425 return hlist_unhashed(&hctx->cpuhp_online) &&
4426 hlist_unhashed(&hctx->cpuhp_dead);
4427 }
4428
blk_mq_alloc_and_init_hctx(struct blk_mq_tag_set * set,struct request_queue * q,int hctx_idx,int node)4429 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
4430 struct blk_mq_tag_set *set, struct request_queue *q,
4431 int hctx_idx, int node)
4432 {
4433 struct blk_mq_hw_ctx *hctx = NULL, *tmp;
4434
4435 /* reuse dead hctx first */
4436 spin_lock(&q->unused_hctx_lock);
4437 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
4438 if (tmp->numa_node == node && blk_mq_hctx_is_reusable(tmp)) {
4439 hctx = tmp;
4440 break;
4441 }
4442 }
4443 if (hctx)
4444 list_del_init(&hctx->hctx_list);
4445 spin_unlock(&q->unused_hctx_lock);
4446
4447 if (!hctx)
4448 hctx = blk_mq_alloc_hctx(q, set, node);
4449 if (!hctx)
4450 goto fail;
4451
4452 if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4453 goto free_hctx;
4454
4455 return hctx;
4456
4457 free_hctx:
4458 kobject_put(&hctx->kobj);
4459 fail:
4460 return NULL;
4461 }
4462
blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set * set,struct request_queue * q)4463 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4464 struct request_queue *q)
4465 {
4466 struct blk_mq_hw_ctx *hctx;
4467 unsigned long i, j;
4468
4469 /* protect against switching io scheduler */
4470 mutex_lock(&q->sysfs_lock);
4471 for (i = 0; i < set->nr_hw_queues; i++) {
4472 int old_node;
4473 int node = blk_mq_get_hctx_node(set, i);
4474 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4475
4476 if (old_hctx) {
4477 old_node = old_hctx->numa_node;
4478 blk_mq_exit_hctx(q, set, old_hctx, i);
4479 }
4480
4481 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4482 if (!old_hctx)
4483 break;
4484 pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4485 node, old_node);
4486 hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4487 WARN_ON_ONCE(!hctx);
4488 }
4489 }
4490 /*
4491 * Increasing nr_hw_queues fails. Free the newly allocated
4492 * hctxs and keep the previous q->nr_hw_queues.
4493 */
4494 if (i != set->nr_hw_queues) {
4495 j = q->nr_hw_queues;
4496 } else {
4497 j = i;
4498 q->nr_hw_queues = set->nr_hw_queues;
4499 }
4500
4501 xa_for_each_start(&q->hctx_table, j, hctx, j)
4502 blk_mq_exit_hctx(q, set, hctx, j);
4503 mutex_unlock(&q->sysfs_lock);
4504
4505 /* unregister cpuhp callbacks for exited hctxs */
4506 blk_mq_remove_hw_queues_cpuhp(q);
4507
4508 /* register cpuhp for new initialized hctxs */
4509 blk_mq_add_hw_queues_cpuhp(q);
4510 }
4511
blk_mq_init_allocated_queue(struct blk_mq_tag_set * set,struct request_queue * q)4512 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4513 struct request_queue *q)
4514 {
4515 /* mark the queue as mq asap */
4516 q->mq_ops = set->ops;
4517
4518 /*
4519 * ->tag_set has to be setup before initialize hctx, which cpuphp
4520 * handler needs it for checking queue mapping
4521 */
4522 q->tag_set = set;
4523
4524 if (blk_mq_alloc_ctxs(q))
4525 goto err_exit;
4526
4527 /* init q->mq_kobj and sw queues' kobjects */
4528 blk_mq_sysfs_init(q);
4529
4530 INIT_LIST_HEAD(&q->unused_hctx_list);
4531 spin_lock_init(&q->unused_hctx_lock);
4532
4533 xa_init(&q->hctx_table);
4534
4535 blk_mq_realloc_hw_ctxs(set, q);
4536 if (!q->nr_hw_queues)
4537 goto err_hctxs;
4538
4539 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4540 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4541
4542 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4543
4544 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4545 INIT_LIST_HEAD(&q->flush_list);
4546 INIT_LIST_HEAD(&q->requeue_list);
4547 spin_lock_init(&q->requeue_lock);
4548
4549 q->nr_requests = set->queue_depth;
4550
4551 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4552 blk_mq_add_queue_tag_set(set, q);
4553 blk_mq_map_swqueue(q);
4554 return 0;
4555
4556 err_hctxs:
4557 blk_mq_release(q);
4558 err_exit:
4559 q->mq_ops = NULL;
4560 return -ENOMEM;
4561 }
4562 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4563
4564 /* tags can _not_ be used after returning from blk_mq_exit_queue */
blk_mq_exit_queue(struct request_queue * q)4565 void blk_mq_exit_queue(struct request_queue *q)
4566 {
4567 struct blk_mq_tag_set *set = q->tag_set;
4568
4569 /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4570 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4571 /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4572 blk_mq_del_queue_tag_set(q);
4573 }
4574
__blk_mq_alloc_rq_maps(struct blk_mq_tag_set * set)4575 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4576 {
4577 int i;
4578
4579 if (blk_mq_is_shared_tags(set->flags)) {
4580 set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4581 BLK_MQ_NO_HCTX_IDX,
4582 set->queue_depth);
4583 if (!set->shared_tags)
4584 return -ENOMEM;
4585 }
4586
4587 for (i = 0; i < set->nr_hw_queues; i++) {
4588 if (!__blk_mq_alloc_map_and_rqs(set, i))
4589 goto out_unwind;
4590 cond_resched();
4591 }
4592
4593 return 0;
4594
4595 out_unwind:
4596 while (--i >= 0)
4597 __blk_mq_free_map_and_rqs(set, i);
4598
4599 if (blk_mq_is_shared_tags(set->flags)) {
4600 blk_mq_free_map_and_rqs(set, set->shared_tags,
4601 BLK_MQ_NO_HCTX_IDX);
4602 }
4603
4604 return -ENOMEM;
4605 }
4606
4607 /*
4608 * Allocate the request maps associated with this tag_set. Note that this
4609 * may reduce the depth asked for, if memory is tight. set->queue_depth
4610 * will be updated to reflect the allocated depth.
4611 */
blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set * set)4612 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4613 {
4614 unsigned int depth;
4615 int err;
4616
4617 depth = set->queue_depth;
4618 do {
4619 err = __blk_mq_alloc_rq_maps(set);
4620 if (!err)
4621 break;
4622
4623 set->queue_depth >>= 1;
4624 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4625 err = -ENOMEM;
4626 break;
4627 }
4628 } while (set->queue_depth);
4629
4630 if (!set->queue_depth || err) {
4631 pr_err("blk-mq: failed to allocate request map\n");
4632 return -ENOMEM;
4633 }
4634
4635 if (depth != set->queue_depth)
4636 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4637 depth, set->queue_depth);
4638
4639 return 0;
4640 }
4641
blk_mq_update_queue_map(struct blk_mq_tag_set * set)4642 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4643 {
4644 /*
4645 * blk_mq_map_queues() and multiple .map_queues() implementations
4646 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4647 * number of hardware queues.
4648 */
4649 if (set->nr_maps == 1)
4650 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4651
4652 if (set->ops->map_queues) {
4653 int i;
4654
4655 /*
4656 * transport .map_queues is usually done in the following
4657 * way:
4658 *
4659 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4660 * mask = get_cpu_mask(queue)
4661 * for_each_cpu(cpu, mask)
4662 * set->map[x].mq_map[cpu] = queue;
4663 * }
4664 *
4665 * When we need to remap, the table has to be cleared for
4666 * killing stale mapping since one CPU may not be mapped
4667 * to any hw queue.
4668 */
4669 for (i = 0; i < set->nr_maps; i++)
4670 blk_mq_clear_mq_map(&set->map[i]);
4671
4672 set->ops->map_queues(set);
4673 } else {
4674 BUG_ON(set->nr_maps > 1);
4675 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4676 }
4677 }
4678
blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set * set,int new_nr_hw_queues)4679 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4680 int new_nr_hw_queues)
4681 {
4682 struct blk_mq_tags **new_tags;
4683 int i;
4684
4685 if (set->nr_hw_queues >= new_nr_hw_queues)
4686 goto done;
4687
4688 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4689 GFP_KERNEL, set->numa_node);
4690 if (!new_tags)
4691 return -ENOMEM;
4692
4693 if (set->tags)
4694 memcpy(new_tags, set->tags, set->nr_hw_queues *
4695 sizeof(*set->tags));
4696 kfree(set->tags);
4697 set->tags = new_tags;
4698
4699 for (i = set->nr_hw_queues; i < new_nr_hw_queues; i++) {
4700 if (!__blk_mq_alloc_map_and_rqs(set, i)) {
4701 while (--i >= set->nr_hw_queues)
4702 __blk_mq_free_map_and_rqs(set, i);
4703 return -ENOMEM;
4704 }
4705 cond_resched();
4706 }
4707
4708 done:
4709 set->nr_hw_queues = new_nr_hw_queues;
4710 return 0;
4711 }
4712
4713 /*
4714 * Alloc a tag set to be associated with one or more request queues.
4715 * May fail with EINVAL for various error conditions. May adjust the
4716 * requested depth down, if it's too large. In that case, the set
4717 * value will be stored in set->queue_depth.
4718 */
blk_mq_alloc_tag_set(struct blk_mq_tag_set * set)4719 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4720 {
4721 int i, ret;
4722
4723 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4724
4725 if (!set->nr_hw_queues)
4726 return -EINVAL;
4727 if (!set->queue_depth)
4728 return -EINVAL;
4729 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4730 return -EINVAL;
4731
4732 if (!set->ops->queue_rq)
4733 return -EINVAL;
4734
4735 if (!set->ops->get_budget ^ !set->ops->put_budget)
4736 return -EINVAL;
4737
4738 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4739 pr_info("blk-mq: reduced tag depth to %u\n",
4740 BLK_MQ_MAX_DEPTH);
4741 set->queue_depth = BLK_MQ_MAX_DEPTH;
4742 }
4743
4744 if (!set->nr_maps)
4745 set->nr_maps = 1;
4746 else if (set->nr_maps > HCTX_MAX_TYPES)
4747 return -EINVAL;
4748
4749 /*
4750 * If a crashdump is active, then we are potentially in a very
4751 * memory constrained environment. Limit us to 64 tags to prevent
4752 * using too much memory.
4753 */
4754 if (is_kdump_kernel())
4755 set->queue_depth = min(64U, set->queue_depth);
4756
4757 /*
4758 * There is no use for more h/w queues than cpus if we just have
4759 * a single map
4760 */
4761 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4762 set->nr_hw_queues = nr_cpu_ids;
4763
4764 if (set->flags & BLK_MQ_F_BLOCKING) {
4765 set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL);
4766 if (!set->srcu)
4767 return -ENOMEM;
4768 ret = init_srcu_struct(set->srcu);
4769 if (ret)
4770 goto out_free_srcu;
4771 }
4772
4773 ret = -ENOMEM;
4774 set->tags = kcalloc_node(set->nr_hw_queues,
4775 sizeof(struct blk_mq_tags *), GFP_KERNEL,
4776 set->numa_node);
4777 if (!set->tags)
4778 goto out_cleanup_srcu;
4779
4780 for (i = 0; i < set->nr_maps; i++) {
4781 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4782 sizeof(set->map[i].mq_map[0]),
4783 GFP_KERNEL, set->numa_node);
4784 if (!set->map[i].mq_map)
4785 goto out_free_mq_map;
4786 set->map[i].nr_queues = set->nr_hw_queues;
4787 }
4788
4789 blk_mq_update_queue_map(set);
4790
4791 ret = blk_mq_alloc_set_map_and_rqs(set);
4792 if (ret)
4793 goto out_free_mq_map;
4794
4795 mutex_init(&set->tag_list_lock);
4796 INIT_LIST_HEAD(&set->tag_list);
4797
4798 return 0;
4799
4800 out_free_mq_map:
4801 for (i = 0; i < set->nr_maps; i++) {
4802 kfree(set->map[i].mq_map);
4803 set->map[i].mq_map = NULL;
4804 }
4805 kfree(set->tags);
4806 set->tags = NULL;
4807 out_cleanup_srcu:
4808 if (set->flags & BLK_MQ_F_BLOCKING)
4809 cleanup_srcu_struct(set->srcu);
4810 out_free_srcu:
4811 if (set->flags & BLK_MQ_F_BLOCKING)
4812 kfree(set->srcu);
4813 return ret;
4814 }
4815 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4816
4817 /* allocate and initialize a tagset for a simple single-queue device */
blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set * set,const struct blk_mq_ops * ops,unsigned int queue_depth,unsigned int set_flags)4818 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4819 const struct blk_mq_ops *ops, unsigned int queue_depth,
4820 unsigned int set_flags)
4821 {
4822 memset(set, 0, sizeof(*set));
4823 set->ops = ops;
4824 set->nr_hw_queues = 1;
4825 set->nr_maps = 1;
4826 set->queue_depth = queue_depth;
4827 set->numa_node = NUMA_NO_NODE;
4828 set->flags = set_flags;
4829 return blk_mq_alloc_tag_set(set);
4830 }
4831 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4832
blk_mq_free_tag_set(struct blk_mq_tag_set * set)4833 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4834 {
4835 int i, j;
4836
4837 for (i = 0; i < set->nr_hw_queues; i++)
4838 __blk_mq_free_map_and_rqs(set, i);
4839
4840 if (blk_mq_is_shared_tags(set->flags)) {
4841 blk_mq_free_map_and_rqs(set, set->shared_tags,
4842 BLK_MQ_NO_HCTX_IDX);
4843 }
4844
4845 for (j = 0; j < set->nr_maps; j++) {
4846 kfree(set->map[j].mq_map);
4847 set->map[j].mq_map = NULL;
4848 }
4849
4850 kfree(set->tags);
4851 set->tags = NULL;
4852 if (set->flags & BLK_MQ_F_BLOCKING) {
4853 cleanup_srcu_struct(set->srcu);
4854 kfree(set->srcu);
4855 }
4856 }
4857 EXPORT_SYMBOL(blk_mq_free_tag_set);
4858
blk_mq_update_nr_requests(struct request_queue * q,unsigned int nr)4859 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4860 {
4861 struct blk_mq_tag_set *set = q->tag_set;
4862 struct blk_mq_hw_ctx *hctx;
4863 int ret;
4864 unsigned long i;
4865
4866 if (WARN_ON_ONCE(!q->mq_freeze_depth))
4867 return -EINVAL;
4868
4869 if (!set)
4870 return -EINVAL;
4871
4872 if (q->nr_requests == nr)
4873 return 0;
4874
4875 blk_mq_quiesce_queue(q);
4876
4877 ret = 0;
4878 queue_for_each_hw_ctx(q, hctx, i) {
4879 if (!hctx->tags)
4880 continue;
4881 /*
4882 * If we're using an MQ scheduler, just update the scheduler
4883 * queue depth. This is similar to what the old code would do.
4884 */
4885 if (hctx->sched_tags) {
4886 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4887 nr, true);
4888 } else {
4889 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4890 false);
4891 }
4892 if (ret)
4893 break;
4894 if (q->elevator && q->elevator->type->ops.depth_updated)
4895 q->elevator->type->ops.depth_updated(hctx);
4896 }
4897 if (!ret) {
4898 q->nr_requests = nr;
4899 if (blk_mq_is_shared_tags(set->flags)) {
4900 if (q->elevator)
4901 blk_mq_tag_update_sched_shared_tags(q);
4902 else
4903 blk_mq_tag_resize_shared_tags(set, nr);
4904 }
4905 }
4906
4907 blk_mq_unquiesce_queue(q);
4908
4909 return ret;
4910 }
4911
4912 /*
4913 * request_queue and elevator_type pair.
4914 * It is just used by __blk_mq_update_nr_hw_queues to cache
4915 * the elevator_type associated with a request_queue.
4916 */
4917 struct blk_mq_qe_pair {
4918 struct list_head node;
4919 struct request_queue *q;
4920 struct elevator_type *type;
4921 };
4922
4923 /*
4924 * Cache the elevator_type in qe pair list and switch the
4925 * io scheduler to 'none'
4926 */
blk_mq_elv_switch_none(struct list_head * head,struct request_queue * q)4927 static bool blk_mq_elv_switch_none(struct list_head *head,
4928 struct request_queue *q)
4929 {
4930 struct blk_mq_qe_pair *qe;
4931
4932 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4933 if (!qe)
4934 return false;
4935
4936 /* q->elevator needs protection from ->sysfs_lock */
4937 mutex_lock(&q->sysfs_lock);
4938
4939 /* the check has to be done with holding sysfs_lock */
4940 if (!q->elevator) {
4941 kfree(qe);
4942 goto unlock;
4943 }
4944
4945 INIT_LIST_HEAD(&qe->node);
4946 qe->q = q;
4947 qe->type = q->elevator->type;
4948 /* keep a reference to the elevator module as we'll switch back */
4949 __elevator_get(qe->type);
4950 list_add(&qe->node, head);
4951 elevator_disable(q);
4952 unlock:
4953 mutex_unlock(&q->sysfs_lock);
4954
4955 return true;
4956 }
4957
blk_lookup_qe_pair(struct list_head * head,struct request_queue * q)4958 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4959 struct request_queue *q)
4960 {
4961 struct blk_mq_qe_pair *qe;
4962
4963 list_for_each_entry(qe, head, node)
4964 if (qe->q == q)
4965 return qe;
4966
4967 return NULL;
4968 }
4969
blk_mq_elv_switch_back(struct list_head * head,struct request_queue * q)4970 static void blk_mq_elv_switch_back(struct list_head *head,
4971 struct request_queue *q)
4972 {
4973 struct blk_mq_qe_pair *qe;
4974 struct elevator_type *t;
4975
4976 qe = blk_lookup_qe_pair(head, q);
4977 if (!qe)
4978 return;
4979 t = qe->type;
4980 list_del(&qe->node);
4981 kfree(qe);
4982
4983 mutex_lock(&q->sysfs_lock);
4984 elevator_switch(q, t);
4985 /* drop the reference acquired in blk_mq_elv_switch_none */
4986 elevator_put(t);
4987 mutex_unlock(&q->sysfs_lock);
4988 }
4989
__blk_mq_update_nr_hw_queues(struct blk_mq_tag_set * set,int nr_hw_queues)4990 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4991 int nr_hw_queues)
4992 {
4993 struct request_queue *q;
4994 LIST_HEAD(head);
4995 int prev_nr_hw_queues = set->nr_hw_queues;
4996 unsigned int memflags;
4997 int i;
4998
4999 lockdep_assert_held(&set->tag_list_lock);
5000
5001 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
5002 nr_hw_queues = nr_cpu_ids;
5003 if (nr_hw_queues < 1)
5004 return;
5005 if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
5006 return;
5007
5008 memflags = memalloc_noio_save();
5009 list_for_each_entry(q, &set->tag_list, tag_set_list)
5010 blk_mq_freeze_queue_nomemsave(q);
5011
5012 /*
5013 * Switch IO scheduler to 'none', cleaning up the data associated
5014 * with the previous scheduler. We will switch back once we are done
5015 * updating the new sw to hw queue mappings.
5016 */
5017 list_for_each_entry(q, &set->tag_list, tag_set_list)
5018 if (!blk_mq_elv_switch_none(&head, q))
5019 goto switch_back;
5020
5021 list_for_each_entry(q, &set->tag_list, tag_set_list) {
5022 blk_mq_debugfs_unregister_hctxs(q);
5023 blk_mq_sysfs_unregister_hctxs(q);
5024 }
5025
5026 if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0)
5027 goto reregister;
5028
5029 fallback:
5030 blk_mq_update_queue_map(set);
5031 list_for_each_entry(q, &set->tag_list, tag_set_list) {
5032 blk_mq_realloc_hw_ctxs(set, q);
5033
5034 if (q->nr_hw_queues != set->nr_hw_queues) {
5035 int i = prev_nr_hw_queues;
5036
5037 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
5038 nr_hw_queues, prev_nr_hw_queues);
5039 for (; i < set->nr_hw_queues; i++)
5040 __blk_mq_free_map_and_rqs(set, i);
5041
5042 set->nr_hw_queues = prev_nr_hw_queues;
5043 goto fallback;
5044 }
5045 blk_mq_map_swqueue(q);
5046 }
5047
5048 reregister:
5049 list_for_each_entry(q, &set->tag_list, tag_set_list) {
5050 blk_mq_sysfs_register_hctxs(q);
5051 blk_mq_debugfs_register_hctxs(q);
5052 }
5053
5054 switch_back:
5055 list_for_each_entry(q, &set->tag_list, tag_set_list)
5056 blk_mq_elv_switch_back(&head, q);
5057
5058 list_for_each_entry(q, &set->tag_list, tag_set_list)
5059 blk_mq_unfreeze_queue_nomemrestore(q);
5060 memalloc_noio_restore(memflags);
5061
5062 /* Free the excess tags when nr_hw_queues shrink. */
5063 for (i = set->nr_hw_queues; i < prev_nr_hw_queues; i++)
5064 __blk_mq_free_map_and_rqs(set, i);
5065 }
5066
blk_mq_update_nr_hw_queues(struct blk_mq_tag_set * set,int nr_hw_queues)5067 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
5068 {
5069 mutex_lock(&set->tag_list_lock);
5070 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
5071 mutex_unlock(&set->tag_list_lock);
5072 }
5073 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
5074
blk_hctx_poll(struct request_queue * q,struct blk_mq_hw_ctx * hctx,struct io_comp_batch * iob,unsigned int flags)5075 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
5076 struct io_comp_batch *iob, unsigned int flags)
5077 {
5078 long state = get_current_state();
5079 int ret;
5080
5081 do {
5082 ret = q->mq_ops->poll(hctx, iob);
5083 if (ret > 0) {
5084 __set_current_state(TASK_RUNNING);
5085 return ret;
5086 }
5087
5088 if (signal_pending_state(state, current))
5089 __set_current_state(TASK_RUNNING);
5090 if (task_is_running(current))
5091 return 1;
5092
5093 if (ret < 0 || (flags & BLK_POLL_ONESHOT))
5094 break;
5095 cpu_relax();
5096 } while (!need_resched());
5097
5098 __set_current_state(TASK_RUNNING);
5099 return 0;
5100 }
5101
blk_mq_poll(struct request_queue * q,blk_qc_t cookie,struct io_comp_batch * iob,unsigned int flags)5102 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie,
5103 struct io_comp_batch *iob, unsigned int flags)
5104 {
5105 if (!blk_mq_can_poll(q))
5106 return 0;
5107 return blk_hctx_poll(q, xa_load(&q->hctx_table, cookie), iob, flags);
5108 }
5109
blk_rq_poll(struct request * rq,struct io_comp_batch * iob,unsigned int poll_flags)5110 int blk_rq_poll(struct request *rq, struct io_comp_batch *iob,
5111 unsigned int poll_flags)
5112 {
5113 struct request_queue *q = rq->q;
5114 int ret;
5115
5116 if (!blk_rq_is_poll(rq))
5117 return 0;
5118 if (!percpu_ref_tryget(&q->q_usage_counter))
5119 return 0;
5120
5121 ret = blk_hctx_poll(q, rq->mq_hctx, iob, poll_flags);
5122 blk_queue_exit(q);
5123
5124 return ret;
5125 }
5126 EXPORT_SYMBOL_GPL(blk_rq_poll);
5127
blk_mq_rq_cpu(struct request * rq)5128 unsigned int blk_mq_rq_cpu(struct request *rq)
5129 {
5130 return rq->mq_ctx->cpu;
5131 }
5132 EXPORT_SYMBOL(blk_mq_rq_cpu);
5133
blk_mq_cancel_work_sync(struct request_queue * q)5134 void blk_mq_cancel_work_sync(struct request_queue *q)
5135 {
5136 struct blk_mq_hw_ctx *hctx;
5137 unsigned long i;
5138
5139 cancel_delayed_work_sync(&q->requeue_work);
5140
5141 queue_for_each_hw_ctx(q, hctx, i)
5142 cancel_delayed_work_sync(&hctx->run_work);
5143 }
5144
blk_mq_init(void)5145 static int __init blk_mq_init(void)
5146 {
5147 int i;
5148
5149 for_each_possible_cpu(i)
5150 init_llist_head(&per_cpu(blk_cpu_done, i));
5151 for_each_possible_cpu(i)
5152 INIT_CSD(&per_cpu(blk_cpu_csd, i),
5153 __blk_mq_complete_request_remote, NULL);
5154 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
5155
5156 cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
5157 "block/softirq:dead", NULL,
5158 blk_softirq_cpu_dead);
5159 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
5160 blk_mq_hctx_notify_dead);
5161 cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
5162 blk_mq_hctx_notify_online,
5163 blk_mq_hctx_notify_offline);
5164 return 0;
5165 }
5166 subsys_initcall(blk_mq_init);
5167