1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/super.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/module.h> 9 #include <linux/init.h> 10 #include <linux/fs.h> 11 #include <linux/fs_context.h> 12 #include <linux/sched/mm.h> 13 #include <linux/statfs.h> 14 #include <linux/kthread.h> 15 #include <linux/parser.h> 16 #include <linux/mount.h> 17 #include <linux/seq_file.h> 18 #include <linux/proc_fs.h> 19 #include <linux/random.h> 20 #include <linux/exportfs.h> 21 #include <linux/blkdev.h> 22 #include <linux/quotaops.h> 23 #include <linux/f2fs_fs.h> 24 #include <linux/sysfs.h> 25 #include <linux/quota.h> 26 #include <linux/unicode.h> 27 #include <linux/part_stat.h> 28 #include <linux/zstd.h> 29 #include <linux/lz4.h> 30 #include <linux/ctype.h> 31 #include <linux/fs_parser.h> 32 33 #include "f2fs.h" 34 #include "node.h" 35 #include "segment.h" 36 #include "xattr.h" 37 #include "gc.h" 38 #include "iostat.h" 39 40 #define CREATE_TRACE_POINTS 41 #include <trace/events/f2fs.h> 42 43 static struct kmem_cache *f2fs_inode_cachep; 44 45 #ifdef CONFIG_F2FS_FAULT_INJECTION 46 47 const char *f2fs_fault_name[FAULT_MAX] = { 48 [FAULT_KMALLOC] = "kmalloc", 49 [FAULT_KVMALLOC] = "kvmalloc", 50 [FAULT_PAGE_ALLOC] = "page alloc", 51 [FAULT_PAGE_GET] = "page get", 52 [FAULT_ALLOC_BIO] = "alloc bio(obsolete)", 53 [FAULT_ALLOC_NID] = "alloc nid", 54 [FAULT_ORPHAN] = "orphan", 55 [FAULT_BLOCK] = "no more block", 56 [FAULT_DIR_DEPTH] = "too big dir depth", 57 [FAULT_EVICT_INODE] = "evict_inode fail", 58 [FAULT_TRUNCATE] = "truncate fail", 59 [FAULT_READ_IO] = "read IO error", 60 [FAULT_CHECKPOINT] = "checkpoint error", 61 [FAULT_DISCARD] = "discard error", 62 [FAULT_WRITE_IO] = "write IO error", 63 [FAULT_SLAB_ALLOC] = "slab alloc", 64 [FAULT_DQUOT_INIT] = "dquot initialize", 65 [FAULT_LOCK_OP] = "lock_op", 66 [FAULT_BLKADDR_VALIDITY] = "invalid blkaddr", 67 [FAULT_BLKADDR_CONSISTENCE] = "inconsistent blkaddr", 68 [FAULT_NO_SEGMENT] = "no free segment", 69 [FAULT_INCONSISTENT_FOOTER] = "inconsistent footer", 70 [FAULT_ATOMIC_TIMEOUT] = "atomic timeout", 71 [FAULT_VMALLOC] = "vmalloc", 72 [FAULT_LOCK_TIMEOUT] = "lock timeout", 73 [FAULT_SKIP_WRITE] = "skip write", 74 }; 75 76 int f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned long rate, 77 unsigned long type, enum fault_option fo) 78 { 79 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info; 80 81 if (fo & FAULT_ALL) { 82 memset(ffi, 0, sizeof(struct f2fs_fault_info)); 83 return 0; 84 } 85 86 if (fo & FAULT_RATE) { 87 if (rate > INT_MAX) 88 return -EINVAL; 89 atomic_set(&ffi->inject_ops, 0); 90 ffi->inject_rate = (int)rate; 91 f2fs_info(sbi, "build fault injection rate: %lu", rate); 92 } 93 94 if (fo & FAULT_TYPE) { 95 if (type >= BIT(FAULT_MAX)) 96 return -EINVAL; 97 ffi->inject_type = (unsigned int)type; 98 f2fs_info(sbi, "build fault injection type: 0x%lx", type); 99 } 100 101 if (fo & FAULT_TIMEOUT) { 102 if (type >= TIMEOUT_TYPE_MAX) 103 return -EINVAL; 104 ffi->inject_lock_timeout = (unsigned int)type; 105 f2fs_info(sbi, "build fault timeout injection type: 0x%lx", type); 106 } 107 108 return 0; 109 } 110 111 static void inject_timeout(struct f2fs_sb_info *sbi) 112 { 113 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info; 114 enum f2fs_timeout_type type = ffi->inject_lock_timeout; 115 unsigned long start_time = jiffies; 116 unsigned long timeout = HZ; 117 118 switch (type) { 119 case TIMEOUT_TYPE_RUNNING: 120 while (!time_after(jiffies, start_time + timeout)) { 121 if (fatal_signal_pending(current)) 122 return; 123 ; 124 } 125 break; 126 case TIMEOUT_TYPE_IO_SLEEP: 127 f2fs_schedule_timeout_killable(timeout, true); 128 break; 129 case TIMEOUT_TYPE_NONIO_SLEEP: 130 f2fs_schedule_timeout_killable(timeout, false); 131 break; 132 case TIMEOUT_TYPE_RUNNABLE: 133 while (!time_after(jiffies, start_time + timeout)) { 134 if (fatal_signal_pending(current)) 135 return; 136 schedule(); 137 } 138 break; 139 default: 140 return; 141 } 142 } 143 144 void f2fs_simulate_lock_timeout(struct f2fs_sb_info *sbi) 145 { 146 struct f2fs_lock_context lc; 147 148 f2fs_lock_op(sbi, &lc); 149 inject_timeout(sbi); 150 f2fs_unlock_op(sbi, &lc); 151 } 152 #endif 153 154 /* f2fs-wide shrinker description */ 155 static struct shrinker *f2fs_shrinker_info; 156 157 static int __init f2fs_init_shrinker(void) 158 { 159 f2fs_shrinker_info = shrinker_alloc(0, "f2fs-shrinker"); 160 if (!f2fs_shrinker_info) 161 return -ENOMEM; 162 163 f2fs_shrinker_info->count_objects = f2fs_shrink_count; 164 f2fs_shrinker_info->scan_objects = f2fs_shrink_scan; 165 166 shrinker_register(f2fs_shrinker_info); 167 168 return 0; 169 } 170 171 static void f2fs_exit_shrinker(void) 172 { 173 shrinker_free(f2fs_shrinker_info); 174 } 175 176 enum { 177 Opt_gc_background, 178 Opt_disable_roll_forward, 179 Opt_norecovery, 180 Opt_discard, 181 Opt_noheap, 182 Opt_heap, 183 Opt_user_xattr, 184 Opt_acl, 185 Opt_active_logs, 186 Opt_disable_ext_identify, 187 Opt_inline_xattr, 188 Opt_inline_xattr_size, 189 Opt_inline_data, 190 Opt_inline_dentry, 191 Opt_flush_merge, 192 Opt_barrier, 193 Opt_fastboot, 194 Opt_extent_cache, 195 Opt_data_flush, 196 Opt_reserve_root, 197 Opt_reserve_node, 198 Opt_resgid, 199 Opt_resuid, 200 Opt_mode, 201 Opt_fault_injection, 202 Opt_fault_type, 203 Opt_lazytime, 204 Opt_quota, 205 Opt_usrquota, 206 Opt_grpquota, 207 Opt_prjquota, 208 Opt_usrjquota, 209 Opt_grpjquota, 210 Opt_prjjquota, 211 Opt_alloc, 212 Opt_fsync, 213 Opt_test_dummy_encryption, 214 Opt_inlinecrypt, 215 Opt_checkpoint_disable, 216 Opt_checkpoint_disable_cap, 217 Opt_checkpoint_disable_cap_perc, 218 Opt_checkpoint_enable, 219 Opt_checkpoint_merge, 220 Opt_compress_algorithm, 221 Opt_compress_log_size, 222 Opt_nocompress_extension, 223 Opt_compress_extension, 224 Opt_compress_chksum, 225 Opt_compress_mode, 226 Opt_compress_cache, 227 Opt_atgc, 228 Opt_gc_merge, 229 Opt_discard_unit, 230 Opt_memory_mode, 231 Opt_age_extent_cache, 232 Opt_errors, 233 Opt_nat_bits, 234 Opt_jqfmt, 235 Opt_checkpoint, 236 Opt_lookup_mode, 237 Opt_err, 238 }; 239 240 static const struct constant_table f2fs_param_background_gc[] = { 241 {"on", BGGC_MODE_ON}, 242 {"off", BGGC_MODE_OFF}, 243 {"sync", BGGC_MODE_SYNC}, 244 {} 245 }; 246 247 static const struct constant_table f2fs_param_mode[] = { 248 {"adaptive", FS_MODE_ADAPTIVE}, 249 {"lfs", FS_MODE_LFS}, 250 {"fragment:segment", FS_MODE_FRAGMENT_SEG}, 251 {"fragment:block", FS_MODE_FRAGMENT_BLK}, 252 {} 253 }; 254 255 static const struct constant_table f2fs_param_jqfmt[] = { 256 {"vfsold", QFMT_VFS_OLD}, 257 {"vfsv0", QFMT_VFS_V0}, 258 {"vfsv1", QFMT_VFS_V1}, 259 {} 260 }; 261 262 static const struct constant_table f2fs_param_alloc_mode[] = { 263 {"default", ALLOC_MODE_DEFAULT}, 264 {"reuse", ALLOC_MODE_REUSE}, 265 {} 266 }; 267 static const struct constant_table f2fs_param_fsync_mode[] = { 268 {"posix", FSYNC_MODE_POSIX}, 269 {"strict", FSYNC_MODE_STRICT}, 270 {"nobarrier", FSYNC_MODE_NOBARRIER}, 271 {} 272 }; 273 274 static const struct constant_table f2fs_param_compress_mode[] = { 275 {"fs", COMPR_MODE_FS}, 276 {"user", COMPR_MODE_USER}, 277 {} 278 }; 279 280 static const struct constant_table f2fs_param_discard_unit[] = { 281 {"block", DISCARD_UNIT_BLOCK}, 282 {"segment", DISCARD_UNIT_SEGMENT}, 283 {"section", DISCARD_UNIT_SECTION}, 284 {} 285 }; 286 287 static const struct constant_table f2fs_param_memory_mode[] = { 288 {"normal", MEMORY_MODE_NORMAL}, 289 {"low", MEMORY_MODE_LOW}, 290 {} 291 }; 292 293 static const struct constant_table f2fs_param_errors[] = { 294 {"remount-ro", MOUNT_ERRORS_READONLY}, 295 {"continue", MOUNT_ERRORS_CONTINUE}, 296 {"panic", MOUNT_ERRORS_PANIC}, 297 {} 298 }; 299 300 static const struct constant_table f2fs_param_lookup_mode[] = { 301 {"perf", LOOKUP_PERF}, 302 {"compat", LOOKUP_COMPAT}, 303 {"auto", LOOKUP_AUTO}, 304 {} 305 }; 306 307 static const struct fs_parameter_spec f2fs_param_specs[] = { 308 fsparam_enum("background_gc", Opt_gc_background, f2fs_param_background_gc), 309 fsparam_flag("disable_roll_forward", Opt_disable_roll_forward), 310 fsparam_flag("norecovery", Opt_norecovery), 311 fsparam_flag_no("discard", Opt_discard), 312 fsparam_flag("no_heap", Opt_noheap), 313 fsparam_flag("heap", Opt_heap), 314 fsparam_flag_no("user_xattr", Opt_user_xattr), 315 fsparam_flag_no("acl", Opt_acl), 316 fsparam_s32("active_logs", Opt_active_logs), 317 fsparam_flag("disable_ext_identify", Opt_disable_ext_identify), 318 fsparam_flag_no("inline_xattr", Opt_inline_xattr), 319 fsparam_s32("inline_xattr_size", Opt_inline_xattr_size), 320 fsparam_flag_no("inline_data", Opt_inline_data), 321 fsparam_flag_no("inline_dentry", Opt_inline_dentry), 322 fsparam_flag_no("flush_merge", Opt_flush_merge), 323 fsparam_flag_no("barrier", Opt_barrier), 324 fsparam_flag("fastboot", Opt_fastboot), 325 fsparam_flag_no("extent_cache", Opt_extent_cache), 326 fsparam_flag("data_flush", Opt_data_flush), 327 fsparam_u32("reserve_root", Opt_reserve_root), 328 fsparam_u32("reserve_node", Opt_reserve_node), 329 fsparam_gid("resgid", Opt_resgid), 330 fsparam_uid("resuid", Opt_resuid), 331 fsparam_enum("mode", Opt_mode, f2fs_param_mode), 332 fsparam_s32("fault_injection", Opt_fault_injection), 333 fsparam_u32("fault_type", Opt_fault_type), 334 fsparam_flag_no("lazytime", Opt_lazytime), 335 fsparam_flag_no("quota", Opt_quota), 336 fsparam_flag("usrquota", Opt_usrquota), 337 fsparam_flag("grpquota", Opt_grpquota), 338 fsparam_flag("prjquota", Opt_prjquota), 339 fsparam_string_empty("usrjquota", Opt_usrjquota), 340 fsparam_string_empty("grpjquota", Opt_grpjquota), 341 fsparam_string_empty("prjjquota", Opt_prjjquota), 342 fsparam_flag("nat_bits", Opt_nat_bits), 343 fsparam_enum("jqfmt", Opt_jqfmt, f2fs_param_jqfmt), 344 fsparam_enum("alloc_mode", Opt_alloc, f2fs_param_alloc_mode), 345 fsparam_enum("fsync_mode", Opt_fsync, f2fs_param_fsync_mode), 346 fsparam_string("test_dummy_encryption", Opt_test_dummy_encryption), 347 fsparam_flag("test_dummy_encryption", Opt_test_dummy_encryption), 348 fsparam_flag("inlinecrypt", Opt_inlinecrypt), 349 fsparam_string("checkpoint", Opt_checkpoint), 350 fsparam_flag_no("checkpoint_merge", Opt_checkpoint_merge), 351 fsparam_string("compress_algorithm", Opt_compress_algorithm), 352 fsparam_u32("compress_log_size", Opt_compress_log_size), 353 fsparam_string("compress_extension", Opt_compress_extension), 354 fsparam_string("nocompress_extension", Opt_nocompress_extension), 355 fsparam_flag("compress_chksum", Opt_compress_chksum), 356 fsparam_enum("compress_mode", Opt_compress_mode, f2fs_param_compress_mode), 357 fsparam_flag("compress_cache", Opt_compress_cache), 358 fsparam_flag("atgc", Opt_atgc), 359 fsparam_flag_no("gc_merge", Opt_gc_merge), 360 fsparam_enum("discard_unit", Opt_discard_unit, f2fs_param_discard_unit), 361 fsparam_enum("memory", Opt_memory_mode, f2fs_param_memory_mode), 362 fsparam_flag("age_extent_cache", Opt_age_extent_cache), 363 fsparam_enum("errors", Opt_errors, f2fs_param_errors), 364 fsparam_enum("lookup_mode", Opt_lookup_mode, f2fs_param_lookup_mode), 365 {} 366 }; 367 368 /* Resort to a match_table for this interestingly formatted option */ 369 static match_table_t f2fs_checkpoint_tokens = { 370 {Opt_checkpoint_disable, "disable"}, 371 {Opt_checkpoint_disable_cap, "disable:%u"}, 372 {Opt_checkpoint_disable_cap_perc, "disable:%u%%"}, 373 {Opt_checkpoint_enable, "enable"}, 374 {Opt_err, NULL}, 375 }; 376 377 #define F2FS_SPEC_background_gc (1 << 0) 378 #define F2FS_SPEC_inline_xattr_size (1 << 1) 379 #define F2FS_SPEC_active_logs (1 << 2) 380 #define F2FS_SPEC_reserve_root (1 << 3) 381 #define F2FS_SPEC_resgid (1 << 4) 382 #define F2FS_SPEC_resuid (1 << 5) 383 #define F2FS_SPEC_mode (1 << 6) 384 #define F2FS_SPEC_fault_injection (1 << 7) 385 #define F2FS_SPEC_fault_type (1 << 8) 386 #define F2FS_SPEC_jqfmt (1 << 9) 387 #define F2FS_SPEC_alloc_mode (1 << 10) 388 #define F2FS_SPEC_fsync_mode (1 << 11) 389 #define F2FS_SPEC_checkpoint_disable_cap (1 << 12) 390 #define F2FS_SPEC_checkpoint_disable_cap_perc (1 << 13) 391 #define F2FS_SPEC_compress_level (1 << 14) 392 #define F2FS_SPEC_compress_algorithm (1 << 15) 393 #define F2FS_SPEC_compress_log_size (1 << 16) 394 #define F2FS_SPEC_compress_extension (1 << 17) 395 #define F2FS_SPEC_nocompress_extension (1 << 18) 396 #define F2FS_SPEC_compress_chksum (1 << 19) 397 #define F2FS_SPEC_compress_mode (1 << 20) 398 #define F2FS_SPEC_discard_unit (1 << 21) 399 #define F2FS_SPEC_memory_mode (1 << 22) 400 #define F2FS_SPEC_errors (1 << 23) 401 #define F2FS_SPEC_lookup_mode (1 << 24) 402 #define F2FS_SPEC_reserve_node (1 << 25) 403 404 struct f2fs_fs_context { 405 struct f2fs_mount_info info; 406 unsigned long long opt_mask; /* Bits changed */ 407 unsigned int spec_mask; 408 unsigned short qname_mask; 409 }; 410 411 #define F2FS_CTX_INFO(ctx) ((ctx)->info) 412 413 static inline void ctx_set_opt(struct f2fs_fs_context *ctx, 414 enum f2fs_mount_opt flag) 415 { 416 ctx->info.opt |= BIT(flag); 417 ctx->opt_mask |= BIT(flag); 418 } 419 420 static inline void ctx_clear_opt(struct f2fs_fs_context *ctx, 421 enum f2fs_mount_opt flag) 422 { 423 ctx->info.opt &= ~BIT(flag); 424 ctx->opt_mask |= BIT(flag); 425 } 426 427 static inline bool ctx_test_opt(struct f2fs_fs_context *ctx, 428 enum f2fs_mount_opt flag) 429 { 430 return ctx->info.opt & BIT(flag); 431 } 432 433 void f2fs_printk(struct f2fs_sb_info *sbi, bool limit_rate, 434 const char *fmt, ...) 435 { 436 struct va_format vaf; 437 va_list args; 438 int level; 439 440 va_start(args, fmt); 441 442 level = printk_get_level(fmt); 443 vaf.fmt = printk_skip_level(fmt); 444 vaf.va = &args; 445 if (limit_rate) 446 if (sbi) 447 printk_ratelimited("%c%cF2FS-fs (%s): %pV\n", 448 KERN_SOH_ASCII, level, sbi->sb->s_id, &vaf); 449 else 450 printk_ratelimited("%c%cF2FS-fs: %pV\n", 451 KERN_SOH_ASCII, level, &vaf); 452 else 453 if (sbi) 454 printk("%c%cF2FS-fs (%s): %pV\n", 455 KERN_SOH_ASCII, level, sbi->sb->s_id, &vaf); 456 else 457 printk("%c%cF2FS-fs: %pV\n", 458 KERN_SOH_ASCII, level, &vaf); 459 460 va_end(args); 461 } 462 463 #if IS_ENABLED(CONFIG_UNICODE) 464 static const struct f2fs_sb_encodings { 465 __u16 magic; 466 char *name; 467 unsigned int version; 468 } f2fs_sb_encoding_map[] = { 469 {F2FS_ENC_UTF8_12_1, "utf8", UNICODE_AGE(12, 1, 0)}, 470 }; 471 472 static const struct f2fs_sb_encodings * 473 f2fs_sb_read_encoding(const struct f2fs_super_block *sb) 474 { 475 __u16 magic = le16_to_cpu(sb->s_encoding); 476 int i; 477 478 for (i = 0; i < ARRAY_SIZE(f2fs_sb_encoding_map); i++) 479 if (magic == f2fs_sb_encoding_map[i].magic) 480 return &f2fs_sb_encoding_map[i]; 481 482 return NULL; 483 } 484 485 struct kmem_cache *f2fs_cf_name_slab; 486 static int __init f2fs_create_casefold_cache(void) 487 { 488 f2fs_cf_name_slab = f2fs_kmem_cache_create("f2fs_casefolded_name", 489 F2FS_NAME_LEN); 490 return f2fs_cf_name_slab ? 0 : -ENOMEM; 491 } 492 493 static void f2fs_destroy_casefold_cache(void) 494 { 495 kmem_cache_destroy(f2fs_cf_name_slab); 496 } 497 #else 498 static int __init f2fs_create_casefold_cache(void) { return 0; } 499 static void f2fs_destroy_casefold_cache(void) { } 500 #endif 501 502 static inline void limit_reserve_root(struct f2fs_sb_info *sbi) 503 { 504 block_t block_limit = min((sbi->user_block_count >> 3), 505 sbi->user_block_count - sbi->reserved_blocks); 506 block_t node_limit = sbi->total_node_count >> 3; 507 508 /* limit is 12.5% */ 509 if (test_opt(sbi, RESERVE_ROOT) && 510 F2FS_OPTION(sbi).root_reserved_blocks > block_limit) { 511 F2FS_OPTION(sbi).root_reserved_blocks = block_limit; 512 f2fs_info(sbi, "Reduce reserved blocks for root = %u", 513 F2FS_OPTION(sbi).root_reserved_blocks); 514 } 515 if (test_opt(sbi, RESERVE_NODE) && 516 F2FS_OPTION(sbi).root_reserved_nodes > node_limit) { 517 F2FS_OPTION(sbi).root_reserved_nodes = node_limit; 518 f2fs_info(sbi, "Reduce reserved nodes for root = %u", 519 F2FS_OPTION(sbi).root_reserved_nodes); 520 } 521 if (!test_opt(sbi, RESERVE_ROOT) && !test_opt(sbi, RESERVE_NODE) && 522 (!uid_eq(F2FS_OPTION(sbi).s_resuid, 523 make_kuid(&init_user_ns, F2FS_DEF_RESUID)) || 524 !gid_eq(F2FS_OPTION(sbi).s_resgid, 525 make_kgid(&init_user_ns, F2FS_DEF_RESGID)))) 526 f2fs_info(sbi, "Ignore s_resuid=%u, s_resgid=%u w/o reserve_root" 527 " and reserve_node", 528 from_kuid_munged(&init_user_ns, 529 F2FS_OPTION(sbi).s_resuid), 530 from_kgid_munged(&init_user_ns, 531 F2FS_OPTION(sbi).s_resgid)); 532 } 533 534 static inline void adjust_unusable_cap_perc(struct f2fs_sb_info *sbi) 535 { 536 if (!F2FS_OPTION(sbi).unusable_cap_perc) 537 return; 538 539 if (F2FS_OPTION(sbi).unusable_cap_perc == 100) 540 F2FS_OPTION(sbi).unusable_cap = sbi->user_block_count; 541 else 542 F2FS_OPTION(sbi).unusable_cap = (sbi->user_block_count / 100) * 543 F2FS_OPTION(sbi).unusable_cap_perc; 544 545 f2fs_info(sbi, "Adjust unusable cap for checkpoint=disable = %u / %u%%", 546 F2FS_OPTION(sbi).unusable_cap, 547 F2FS_OPTION(sbi).unusable_cap_perc); 548 } 549 550 static void init_once(void *foo) 551 { 552 struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo; 553 554 inode_init_once(&fi->vfs_inode); 555 #ifdef CONFIG_FS_ENCRYPTION 556 fi->i_crypt_info = NULL; 557 #endif 558 } 559 560 #ifdef CONFIG_QUOTA 561 static const char * const quotatypes[] = INITQFNAMES; 562 #define QTYPE2NAME(t) (quotatypes[t]) 563 /* 564 * Note the name of the specified quota file. 565 */ 566 static int f2fs_note_qf_name(struct fs_context *fc, int qtype, 567 struct fs_parameter *param) 568 { 569 struct f2fs_fs_context *ctx = fc->fs_private; 570 char *qname; 571 572 if (param->size < 1) { 573 f2fs_err(NULL, "Missing quota name"); 574 return -EINVAL; 575 } 576 if (strchr(param->string, '/')) { 577 f2fs_err(NULL, "quotafile must be on filesystem root"); 578 return -EINVAL; 579 } 580 if (ctx->info.s_qf_names[qtype]) { 581 if (strcmp(ctx->info.s_qf_names[qtype], param->string) != 0) { 582 f2fs_err(NULL, "Quota file already specified"); 583 return -EINVAL; 584 } 585 return 0; 586 } 587 588 qname = kmemdup_nul(param->string, param->size, GFP_KERNEL); 589 if (!qname) { 590 f2fs_err(NULL, "Not enough memory for storing quotafile name"); 591 return -ENOMEM; 592 } 593 F2FS_CTX_INFO(ctx).s_qf_names[qtype] = qname; 594 ctx->qname_mask |= 1 << qtype; 595 return 0; 596 } 597 598 /* 599 * Clear the name of the specified quota file. 600 */ 601 static int f2fs_unnote_qf_name(struct fs_context *fc, int qtype) 602 { 603 struct f2fs_fs_context *ctx = fc->fs_private; 604 605 kfree(ctx->info.s_qf_names[qtype]); 606 ctx->info.s_qf_names[qtype] = NULL; 607 ctx->qname_mask |= 1 << qtype; 608 return 0; 609 } 610 611 static void f2fs_unnote_qf_name_all(struct fs_context *fc) 612 { 613 int i; 614 615 for (i = 0; i < MAXQUOTAS; i++) 616 f2fs_unnote_qf_name(fc, i); 617 } 618 #endif 619 620 static int f2fs_parse_test_dummy_encryption(const struct fs_parameter *param, 621 struct f2fs_fs_context *ctx) 622 { 623 int err; 624 625 if (!IS_ENABLED(CONFIG_FS_ENCRYPTION)) { 626 f2fs_warn(NULL, "test_dummy_encryption option not supported"); 627 return -EINVAL; 628 } 629 err = fscrypt_parse_test_dummy_encryption(param, 630 &ctx->info.dummy_enc_policy); 631 if (err) { 632 if (err == -EINVAL) 633 f2fs_warn(NULL, "Value of option \"%s\" is unrecognized", 634 param->key); 635 else if (err == -EEXIST) 636 f2fs_warn(NULL, "Conflicting test_dummy_encryption options"); 637 else 638 f2fs_warn(NULL, "Error processing option \"%s\" [%d]", 639 param->key, err); 640 return -EINVAL; 641 } 642 return 0; 643 } 644 645 #ifdef CONFIG_F2FS_FS_COMPRESSION 646 static bool is_compress_extension_exist(struct f2fs_mount_info *info, 647 const char *new_ext, bool is_ext) 648 { 649 unsigned char (*ext)[F2FS_EXTENSION_LEN]; 650 int ext_cnt; 651 int i; 652 653 if (is_ext) { 654 ext = info->extensions; 655 ext_cnt = info->compress_ext_cnt; 656 } else { 657 ext = info->noextensions; 658 ext_cnt = info->nocompress_ext_cnt; 659 } 660 661 for (i = 0; i < ext_cnt; i++) { 662 if (!strcasecmp(new_ext, ext[i])) 663 return true; 664 } 665 666 return false; 667 } 668 669 /* 670 * 1. The same extension name cannot not appear in both compress and non-compress extension 671 * at the same time. 672 * 2. If the compress extension specifies all files, the types specified by the non-compress 673 * extension will be treated as special cases and will not be compressed. 674 * 3. Don't allow the non-compress extension specifies all files. 675 */ 676 static int f2fs_test_compress_extension(unsigned char (*noext)[F2FS_EXTENSION_LEN], 677 int noext_cnt, 678 unsigned char (*ext)[F2FS_EXTENSION_LEN], 679 int ext_cnt) 680 { 681 int index = 0, no_index = 0; 682 683 if (!noext_cnt) 684 return 0; 685 686 for (no_index = 0; no_index < noext_cnt; no_index++) { 687 if (strlen(noext[no_index]) == 0) 688 continue; 689 if (!strcasecmp("*", noext[no_index])) { 690 f2fs_info(NULL, "Don't allow the nocompress extension specifies all files"); 691 return -EINVAL; 692 } 693 for (index = 0; index < ext_cnt; index++) { 694 if (strlen(ext[index]) == 0) 695 continue; 696 if (!strcasecmp(ext[index], noext[no_index])) { 697 f2fs_info(NULL, "Don't allow the same extension %s appear in both compress and nocompress extension", 698 ext[index]); 699 return -EINVAL; 700 } 701 } 702 } 703 return 0; 704 } 705 706 #ifdef CONFIG_F2FS_FS_LZ4 707 static int f2fs_set_lz4hc_level(struct f2fs_fs_context *ctx, const char *str) 708 { 709 #ifdef CONFIG_F2FS_FS_LZ4HC 710 unsigned int level; 711 712 if (strlen(str) == 3) { 713 F2FS_CTX_INFO(ctx).compress_level = 0; 714 ctx->spec_mask |= F2FS_SPEC_compress_level; 715 return 0; 716 } 717 718 str += 3; 719 720 if (str[0] != ':') { 721 f2fs_info(NULL, "wrong format, e.g. <alg_name>:<compr_level>"); 722 return -EINVAL; 723 } 724 if (kstrtouint(str + 1, 10, &level)) 725 return -EINVAL; 726 727 if (!f2fs_is_compress_level_valid(COMPRESS_LZ4, level)) { 728 f2fs_info(NULL, "invalid lz4hc compress level: %d", level); 729 return -EINVAL; 730 } 731 732 F2FS_CTX_INFO(ctx).compress_level = level; 733 ctx->spec_mask |= F2FS_SPEC_compress_level; 734 return 0; 735 #else 736 if (strlen(str) == 3) { 737 F2FS_CTX_INFO(ctx).compress_level = 0; 738 ctx->spec_mask |= F2FS_SPEC_compress_level; 739 return 0; 740 } 741 f2fs_info(NULL, "kernel doesn't support lz4hc compression"); 742 return -EINVAL; 743 #endif 744 } 745 #endif 746 747 #ifdef CONFIG_F2FS_FS_ZSTD 748 static int f2fs_set_zstd_level(struct f2fs_fs_context *ctx, const char *str) 749 { 750 int level; 751 int len = 4; 752 753 if (strlen(str) == len) { 754 F2FS_CTX_INFO(ctx).compress_level = F2FS_ZSTD_DEFAULT_CLEVEL; 755 ctx->spec_mask |= F2FS_SPEC_compress_level; 756 return 0; 757 } 758 759 str += len; 760 761 if (str[0] != ':') { 762 f2fs_info(NULL, "wrong format, e.g. <alg_name>:<compr_level>"); 763 return -EINVAL; 764 } 765 if (kstrtoint(str + 1, 10, &level)) 766 return -EINVAL; 767 768 /* f2fs does not support negative compress level now */ 769 if (level < 0) { 770 f2fs_info(NULL, "do not support negative compress level: %d", level); 771 return -ERANGE; 772 } 773 774 if (!f2fs_is_compress_level_valid(COMPRESS_ZSTD, level)) { 775 f2fs_info(NULL, "invalid zstd compress level: %d", level); 776 return -EINVAL; 777 } 778 779 F2FS_CTX_INFO(ctx).compress_level = level; 780 ctx->spec_mask |= F2FS_SPEC_compress_level; 781 return 0; 782 } 783 #endif 784 #endif 785 786 static int f2fs_parse_param(struct fs_context *fc, struct fs_parameter *param) 787 { 788 struct f2fs_fs_context *ctx = fc->fs_private; 789 #ifdef CONFIG_F2FS_FS_COMPRESSION 790 unsigned char (*ext)[F2FS_EXTENSION_LEN]; 791 unsigned char (*noext)[F2FS_EXTENSION_LEN]; 792 int ext_cnt, noext_cnt; 793 char *name; 794 #endif 795 substring_t args[MAX_OPT_ARGS]; 796 struct fs_parse_result result; 797 int token, ret, arg; 798 799 token = fs_parse(fc, f2fs_param_specs, param, &result); 800 if (token < 0) 801 return token; 802 803 switch (token) { 804 case Opt_gc_background: 805 F2FS_CTX_INFO(ctx).bggc_mode = result.uint_32; 806 ctx->spec_mask |= F2FS_SPEC_background_gc; 807 break; 808 case Opt_disable_roll_forward: 809 ctx_set_opt(ctx, F2FS_MOUNT_DISABLE_ROLL_FORWARD); 810 break; 811 case Opt_norecovery: 812 /* requires ro mount, checked in f2fs_validate_options */ 813 ctx_set_opt(ctx, F2FS_MOUNT_NORECOVERY); 814 break; 815 case Opt_discard: 816 if (result.negated) 817 ctx_clear_opt(ctx, F2FS_MOUNT_DISCARD); 818 else 819 ctx_set_opt(ctx, F2FS_MOUNT_DISCARD); 820 break; 821 case Opt_noheap: 822 case Opt_heap: 823 f2fs_warn(NULL, "heap/no_heap options were deprecated"); 824 break; 825 #ifdef CONFIG_F2FS_FS_XATTR 826 case Opt_user_xattr: 827 if (result.negated) 828 ctx_clear_opt(ctx, F2FS_MOUNT_XATTR_USER); 829 else 830 ctx_set_opt(ctx, F2FS_MOUNT_XATTR_USER); 831 break; 832 case Opt_inline_xattr: 833 if (result.negated) 834 ctx_clear_opt(ctx, F2FS_MOUNT_INLINE_XATTR); 835 else 836 ctx_set_opt(ctx, F2FS_MOUNT_INLINE_XATTR); 837 break; 838 case Opt_inline_xattr_size: 839 if (result.int_32 < MIN_INLINE_XATTR_SIZE || 840 result.int_32 > MAX_INLINE_XATTR_SIZE) { 841 f2fs_err(NULL, "inline xattr size is out of range: %u ~ %u", 842 (u32)MIN_INLINE_XATTR_SIZE, (u32)MAX_INLINE_XATTR_SIZE); 843 return -EINVAL; 844 } 845 ctx_set_opt(ctx, F2FS_MOUNT_INLINE_XATTR_SIZE); 846 F2FS_CTX_INFO(ctx).inline_xattr_size = result.int_32; 847 ctx->spec_mask |= F2FS_SPEC_inline_xattr_size; 848 break; 849 #else 850 case Opt_user_xattr: 851 case Opt_inline_xattr: 852 case Opt_inline_xattr_size: 853 f2fs_info(NULL, "%s options not supported", param->key); 854 break; 855 #endif 856 #ifdef CONFIG_F2FS_FS_POSIX_ACL 857 case Opt_acl: 858 if (result.negated) 859 ctx_clear_opt(ctx, F2FS_MOUNT_POSIX_ACL); 860 else 861 ctx_set_opt(ctx, F2FS_MOUNT_POSIX_ACL); 862 break; 863 #else 864 case Opt_acl: 865 f2fs_info(NULL, "%s options not supported", param->key); 866 break; 867 #endif 868 case Opt_active_logs: 869 if (result.int_32 != 2 && result.int_32 != 4 && 870 result.int_32 != NR_CURSEG_PERSIST_TYPE) 871 return -EINVAL; 872 ctx->spec_mask |= F2FS_SPEC_active_logs; 873 F2FS_CTX_INFO(ctx).active_logs = result.int_32; 874 break; 875 case Opt_disable_ext_identify: 876 ctx_set_opt(ctx, F2FS_MOUNT_DISABLE_EXT_IDENTIFY); 877 break; 878 case Opt_inline_data: 879 if (result.negated) 880 ctx_clear_opt(ctx, F2FS_MOUNT_INLINE_DATA); 881 else 882 ctx_set_opt(ctx, F2FS_MOUNT_INLINE_DATA); 883 break; 884 case Opt_inline_dentry: 885 if (result.negated) 886 ctx_clear_opt(ctx, F2FS_MOUNT_INLINE_DENTRY); 887 else 888 ctx_set_opt(ctx, F2FS_MOUNT_INLINE_DENTRY); 889 break; 890 case Opt_flush_merge: 891 if (result.negated) 892 ctx_clear_opt(ctx, F2FS_MOUNT_FLUSH_MERGE); 893 else 894 ctx_set_opt(ctx, F2FS_MOUNT_FLUSH_MERGE); 895 break; 896 case Opt_barrier: 897 if (result.negated) 898 ctx_set_opt(ctx, F2FS_MOUNT_NOBARRIER); 899 else 900 ctx_clear_opt(ctx, F2FS_MOUNT_NOBARRIER); 901 break; 902 case Opt_fastboot: 903 ctx_set_opt(ctx, F2FS_MOUNT_FASTBOOT); 904 break; 905 case Opt_extent_cache: 906 if (result.negated) 907 ctx_clear_opt(ctx, F2FS_MOUNT_READ_EXTENT_CACHE); 908 else 909 ctx_set_opt(ctx, F2FS_MOUNT_READ_EXTENT_CACHE); 910 break; 911 case Opt_data_flush: 912 ctx_set_opt(ctx, F2FS_MOUNT_DATA_FLUSH); 913 break; 914 case Opt_reserve_root: 915 ctx_set_opt(ctx, F2FS_MOUNT_RESERVE_ROOT); 916 F2FS_CTX_INFO(ctx).root_reserved_blocks = result.uint_32; 917 ctx->spec_mask |= F2FS_SPEC_reserve_root; 918 break; 919 case Opt_reserve_node: 920 ctx_set_opt(ctx, F2FS_MOUNT_RESERVE_NODE); 921 F2FS_CTX_INFO(ctx).root_reserved_nodes = result.uint_32; 922 ctx->spec_mask |= F2FS_SPEC_reserve_node; 923 break; 924 case Opt_resuid: 925 F2FS_CTX_INFO(ctx).s_resuid = result.uid; 926 ctx->spec_mask |= F2FS_SPEC_resuid; 927 break; 928 case Opt_resgid: 929 F2FS_CTX_INFO(ctx).s_resgid = result.gid; 930 ctx->spec_mask |= F2FS_SPEC_resgid; 931 break; 932 case Opt_mode: 933 F2FS_CTX_INFO(ctx).fs_mode = result.uint_32; 934 ctx->spec_mask |= F2FS_SPEC_mode; 935 break; 936 #ifdef CONFIG_F2FS_FAULT_INJECTION 937 case Opt_fault_injection: 938 F2FS_CTX_INFO(ctx).fault_info.inject_rate = result.int_32; 939 ctx->spec_mask |= F2FS_SPEC_fault_injection; 940 ctx_set_opt(ctx, F2FS_MOUNT_FAULT_INJECTION); 941 break; 942 943 case Opt_fault_type: 944 if (result.uint_32 > BIT(FAULT_MAX)) 945 return -EINVAL; 946 F2FS_CTX_INFO(ctx).fault_info.inject_type = result.uint_32; 947 ctx->spec_mask |= F2FS_SPEC_fault_type; 948 ctx_set_opt(ctx, F2FS_MOUNT_FAULT_INJECTION); 949 break; 950 #else 951 case Opt_fault_injection: 952 case Opt_fault_type: 953 f2fs_info(NULL, "%s options not supported", param->key); 954 break; 955 #endif 956 case Opt_lazytime: 957 if (result.negated) 958 ctx_clear_opt(ctx, F2FS_MOUNT_LAZYTIME); 959 else 960 ctx_set_opt(ctx, F2FS_MOUNT_LAZYTIME); 961 break; 962 #ifdef CONFIG_QUOTA 963 case Opt_quota: 964 if (result.negated) { 965 ctx_clear_opt(ctx, F2FS_MOUNT_QUOTA); 966 ctx_clear_opt(ctx, F2FS_MOUNT_USRQUOTA); 967 ctx_clear_opt(ctx, F2FS_MOUNT_GRPQUOTA); 968 ctx_clear_opt(ctx, F2FS_MOUNT_PRJQUOTA); 969 } else 970 ctx_set_opt(ctx, F2FS_MOUNT_USRQUOTA); 971 break; 972 case Opt_usrquota: 973 ctx_set_opt(ctx, F2FS_MOUNT_USRQUOTA); 974 break; 975 case Opt_grpquota: 976 ctx_set_opt(ctx, F2FS_MOUNT_GRPQUOTA); 977 break; 978 case Opt_prjquota: 979 ctx_set_opt(ctx, F2FS_MOUNT_PRJQUOTA); 980 break; 981 case Opt_usrjquota: 982 if (!*param->string) 983 ret = f2fs_unnote_qf_name(fc, USRQUOTA); 984 else 985 ret = f2fs_note_qf_name(fc, USRQUOTA, param); 986 if (ret) 987 return ret; 988 break; 989 case Opt_grpjquota: 990 if (!*param->string) 991 ret = f2fs_unnote_qf_name(fc, GRPQUOTA); 992 else 993 ret = f2fs_note_qf_name(fc, GRPQUOTA, param); 994 if (ret) 995 return ret; 996 break; 997 case Opt_prjjquota: 998 if (!*param->string) 999 ret = f2fs_unnote_qf_name(fc, PRJQUOTA); 1000 else 1001 ret = f2fs_note_qf_name(fc, PRJQUOTA, param); 1002 if (ret) 1003 return ret; 1004 break; 1005 case Opt_jqfmt: 1006 F2FS_CTX_INFO(ctx).s_jquota_fmt = result.int_32; 1007 ctx->spec_mask |= F2FS_SPEC_jqfmt; 1008 break; 1009 #else 1010 case Opt_quota: 1011 case Opt_usrquota: 1012 case Opt_grpquota: 1013 case Opt_prjquota: 1014 case Opt_usrjquota: 1015 case Opt_grpjquota: 1016 case Opt_prjjquota: 1017 f2fs_info(NULL, "quota operations not supported"); 1018 break; 1019 #endif 1020 case Opt_alloc: 1021 F2FS_CTX_INFO(ctx).alloc_mode = result.uint_32; 1022 ctx->spec_mask |= F2FS_SPEC_alloc_mode; 1023 break; 1024 case Opt_fsync: 1025 F2FS_CTX_INFO(ctx).fsync_mode = result.uint_32; 1026 ctx->spec_mask |= F2FS_SPEC_fsync_mode; 1027 break; 1028 case Opt_test_dummy_encryption: 1029 ret = f2fs_parse_test_dummy_encryption(param, ctx); 1030 if (ret) 1031 return ret; 1032 break; 1033 case Opt_inlinecrypt: 1034 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT 1035 ctx_set_opt(ctx, F2FS_MOUNT_INLINECRYPT); 1036 #else 1037 f2fs_info(NULL, "inline encryption not supported"); 1038 #endif 1039 break; 1040 case Opt_checkpoint: 1041 /* 1042 * Initialize args struct so we know whether arg was 1043 * found; some options take optional arguments. 1044 */ 1045 args[0].from = args[0].to = NULL; 1046 arg = 0; 1047 1048 /* revert to match_table for checkpoint= options */ 1049 token = match_token(param->string, f2fs_checkpoint_tokens, args); 1050 switch (token) { 1051 case Opt_checkpoint_disable_cap_perc: 1052 if (args->from && match_int(args, &arg)) 1053 return -EINVAL; 1054 if (arg < 0 || arg > 100) 1055 return -EINVAL; 1056 F2FS_CTX_INFO(ctx).unusable_cap_perc = arg; 1057 ctx->spec_mask |= F2FS_SPEC_checkpoint_disable_cap_perc; 1058 ctx_set_opt(ctx, F2FS_MOUNT_DISABLE_CHECKPOINT); 1059 break; 1060 case Opt_checkpoint_disable_cap: 1061 if (args->from && match_int(args, &arg)) 1062 return -EINVAL; 1063 F2FS_CTX_INFO(ctx).unusable_cap = arg; 1064 ctx->spec_mask |= F2FS_SPEC_checkpoint_disable_cap; 1065 ctx_set_opt(ctx, F2FS_MOUNT_DISABLE_CHECKPOINT); 1066 break; 1067 case Opt_checkpoint_disable: 1068 ctx_set_opt(ctx, F2FS_MOUNT_DISABLE_CHECKPOINT); 1069 break; 1070 case Opt_checkpoint_enable: 1071 F2FS_CTX_INFO(ctx).unusable_cap_perc = 0; 1072 ctx->spec_mask |= F2FS_SPEC_checkpoint_disable_cap_perc; 1073 F2FS_CTX_INFO(ctx).unusable_cap = 0; 1074 ctx->spec_mask |= F2FS_SPEC_checkpoint_disable_cap; 1075 ctx_clear_opt(ctx, F2FS_MOUNT_DISABLE_CHECKPOINT); 1076 break; 1077 default: 1078 return -EINVAL; 1079 } 1080 break; 1081 case Opt_checkpoint_merge: 1082 if (result.negated) 1083 ctx_clear_opt(ctx, F2FS_MOUNT_MERGE_CHECKPOINT); 1084 else 1085 ctx_set_opt(ctx, F2FS_MOUNT_MERGE_CHECKPOINT); 1086 break; 1087 #ifdef CONFIG_F2FS_FS_COMPRESSION 1088 case Opt_compress_algorithm: 1089 name = param->string; 1090 if (!strcmp(name, "lzo")) { 1091 #ifdef CONFIG_F2FS_FS_LZO 1092 F2FS_CTX_INFO(ctx).compress_level = 0; 1093 F2FS_CTX_INFO(ctx).compress_algorithm = COMPRESS_LZO; 1094 ctx->spec_mask |= F2FS_SPEC_compress_level; 1095 ctx->spec_mask |= F2FS_SPEC_compress_algorithm; 1096 #else 1097 f2fs_info(NULL, "kernel doesn't support lzo compression"); 1098 #endif 1099 } else if (!strncmp(name, "lz4", 3)) { 1100 #ifdef CONFIG_F2FS_FS_LZ4 1101 ret = f2fs_set_lz4hc_level(ctx, name); 1102 if (ret) 1103 return -EINVAL; 1104 F2FS_CTX_INFO(ctx).compress_algorithm = COMPRESS_LZ4; 1105 ctx->spec_mask |= F2FS_SPEC_compress_algorithm; 1106 #else 1107 f2fs_info(NULL, "kernel doesn't support lz4 compression"); 1108 #endif 1109 } else if (!strncmp(name, "zstd", 4)) { 1110 #ifdef CONFIG_F2FS_FS_ZSTD 1111 ret = f2fs_set_zstd_level(ctx, name); 1112 if (ret) 1113 return -EINVAL; 1114 F2FS_CTX_INFO(ctx).compress_algorithm = COMPRESS_ZSTD; 1115 ctx->spec_mask |= F2FS_SPEC_compress_algorithm; 1116 #else 1117 f2fs_info(NULL, "kernel doesn't support zstd compression"); 1118 #endif 1119 } else if (!strcmp(name, "lzo-rle")) { 1120 #ifdef CONFIG_F2FS_FS_LZORLE 1121 F2FS_CTX_INFO(ctx).compress_level = 0; 1122 F2FS_CTX_INFO(ctx).compress_algorithm = COMPRESS_LZORLE; 1123 ctx->spec_mask |= F2FS_SPEC_compress_level; 1124 ctx->spec_mask |= F2FS_SPEC_compress_algorithm; 1125 #else 1126 f2fs_info(NULL, "kernel doesn't support lzorle compression"); 1127 #endif 1128 } else 1129 return -EINVAL; 1130 break; 1131 case Opt_compress_log_size: 1132 if (result.uint_32 < MIN_COMPRESS_LOG_SIZE || 1133 result.uint_32 > MAX_COMPRESS_LOG_SIZE) { 1134 f2fs_err(NULL, 1135 "Compress cluster log size is out of range"); 1136 return -EINVAL; 1137 } 1138 F2FS_CTX_INFO(ctx).compress_log_size = result.uint_32; 1139 ctx->spec_mask |= F2FS_SPEC_compress_log_size; 1140 break; 1141 case Opt_compress_extension: 1142 name = param->string; 1143 ext = F2FS_CTX_INFO(ctx).extensions; 1144 ext_cnt = F2FS_CTX_INFO(ctx).compress_ext_cnt; 1145 1146 if (strlen(name) >= F2FS_EXTENSION_LEN || 1147 ext_cnt >= COMPRESS_EXT_NUM) { 1148 f2fs_err(NULL, "invalid extension length/number"); 1149 return -EINVAL; 1150 } 1151 1152 if (is_compress_extension_exist(&ctx->info, name, true)) 1153 break; 1154 1155 ret = strscpy(ext[ext_cnt], name, F2FS_EXTENSION_LEN); 1156 if (ret < 0) 1157 return ret; 1158 F2FS_CTX_INFO(ctx).compress_ext_cnt++; 1159 ctx->spec_mask |= F2FS_SPEC_compress_extension; 1160 break; 1161 case Opt_nocompress_extension: 1162 name = param->string; 1163 noext = F2FS_CTX_INFO(ctx).noextensions; 1164 noext_cnt = F2FS_CTX_INFO(ctx).nocompress_ext_cnt; 1165 1166 if (strlen(name) >= F2FS_EXTENSION_LEN || 1167 noext_cnt >= COMPRESS_EXT_NUM) { 1168 f2fs_err(NULL, "invalid extension length/number"); 1169 return -EINVAL; 1170 } 1171 1172 if (is_compress_extension_exist(&ctx->info, name, false)) 1173 break; 1174 1175 ret = strscpy(noext[noext_cnt], name, F2FS_EXTENSION_LEN); 1176 if (ret < 0) 1177 return ret; 1178 F2FS_CTX_INFO(ctx).nocompress_ext_cnt++; 1179 ctx->spec_mask |= F2FS_SPEC_nocompress_extension; 1180 break; 1181 case Opt_compress_chksum: 1182 F2FS_CTX_INFO(ctx).compress_chksum = true; 1183 ctx->spec_mask |= F2FS_SPEC_compress_chksum; 1184 break; 1185 case Opt_compress_mode: 1186 F2FS_CTX_INFO(ctx).compress_mode = result.uint_32; 1187 ctx->spec_mask |= F2FS_SPEC_compress_mode; 1188 break; 1189 case Opt_compress_cache: 1190 ctx_set_opt(ctx, F2FS_MOUNT_COMPRESS_CACHE); 1191 break; 1192 #else 1193 case Opt_compress_algorithm: 1194 case Opt_compress_log_size: 1195 case Opt_compress_extension: 1196 case Opt_nocompress_extension: 1197 case Opt_compress_chksum: 1198 case Opt_compress_mode: 1199 case Opt_compress_cache: 1200 f2fs_info(NULL, "compression options not supported"); 1201 break; 1202 #endif 1203 case Opt_atgc: 1204 ctx_set_opt(ctx, F2FS_MOUNT_ATGC); 1205 break; 1206 case Opt_gc_merge: 1207 if (result.negated) 1208 ctx_clear_opt(ctx, F2FS_MOUNT_GC_MERGE); 1209 else 1210 ctx_set_opt(ctx, F2FS_MOUNT_GC_MERGE); 1211 break; 1212 case Opt_discard_unit: 1213 F2FS_CTX_INFO(ctx).discard_unit = result.uint_32; 1214 ctx->spec_mask |= F2FS_SPEC_discard_unit; 1215 break; 1216 case Opt_memory_mode: 1217 F2FS_CTX_INFO(ctx).memory_mode = result.uint_32; 1218 ctx->spec_mask |= F2FS_SPEC_memory_mode; 1219 break; 1220 case Opt_age_extent_cache: 1221 ctx_set_opt(ctx, F2FS_MOUNT_AGE_EXTENT_CACHE); 1222 break; 1223 case Opt_errors: 1224 F2FS_CTX_INFO(ctx).errors = result.uint_32; 1225 ctx->spec_mask |= F2FS_SPEC_errors; 1226 break; 1227 case Opt_nat_bits: 1228 ctx_set_opt(ctx, F2FS_MOUNT_NAT_BITS); 1229 break; 1230 case Opt_lookup_mode: 1231 F2FS_CTX_INFO(ctx).lookup_mode = result.uint_32; 1232 ctx->spec_mask |= F2FS_SPEC_lookup_mode; 1233 break; 1234 } 1235 return 0; 1236 } 1237 1238 /* 1239 * Check quota settings consistency. 1240 */ 1241 static int f2fs_check_quota_consistency(struct fs_context *fc, 1242 struct super_block *sb) 1243 { 1244 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1245 #ifdef CONFIG_QUOTA 1246 struct f2fs_fs_context *ctx = fc->fs_private; 1247 bool quota_feature = f2fs_sb_has_quota_ino(sbi); 1248 bool quota_turnon = sb_any_quota_loaded(sb); 1249 char *old_qname, *new_qname; 1250 bool usr_qf_name, grp_qf_name, prj_qf_name, usrquota, grpquota, prjquota; 1251 int i; 1252 1253 /* 1254 * We do the test below only for project quotas. 'usrquota' and 1255 * 'grpquota' mount options are allowed even without quota feature 1256 * to support legacy quotas in quota files. 1257 */ 1258 if (ctx_test_opt(ctx, F2FS_MOUNT_PRJQUOTA) && 1259 !f2fs_sb_has_project_quota(sbi)) { 1260 f2fs_err(sbi, "Project quota feature not enabled. Cannot enable project quota enforcement."); 1261 return -EINVAL; 1262 } 1263 1264 if (ctx->qname_mask) { 1265 for (i = 0; i < MAXQUOTAS; i++) { 1266 if (!(ctx->qname_mask & (1 << i))) 1267 continue; 1268 1269 old_qname = F2FS_OPTION(sbi).s_qf_names[i]; 1270 new_qname = F2FS_CTX_INFO(ctx).s_qf_names[i]; 1271 if (quota_turnon && 1272 !!old_qname != !!new_qname) 1273 goto err_jquota_change; 1274 1275 if (old_qname) { 1276 if (!new_qname) { 1277 f2fs_info(sbi, "remove qf_name %s", 1278 old_qname); 1279 continue; 1280 } else if (strcmp(old_qname, new_qname) == 0) { 1281 ctx->qname_mask &= ~(1 << i); 1282 continue; 1283 } 1284 goto err_jquota_specified; 1285 } 1286 1287 if (quota_feature) { 1288 f2fs_info(sbi, "QUOTA feature is enabled, so ignore qf_name"); 1289 ctx->qname_mask &= ~(1 << i); 1290 kfree(F2FS_CTX_INFO(ctx).s_qf_names[i]); 1291 F2FS_CTX_INFO(ctx).s_qf_names[i] = NULL; 1292 } 1293 } 1294 } 1295 1296 /* Make sure we don't mix old and new quota format */ 1297 usr_qf_name = F2FS_OPTION(sbi).s_qf_names[USRQUOTA] || 1298 F2FS_CTX_INFO(ctx).s_qf_names[USRQUOTA]; 1299 grp_qf_name = F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] || 1300 F2FS_CTX_INFO(ctx).s_qf_names[GRPQUOTA]; 1301 prj_qf_name = F2FS_OPTION(sbi).s_qf_names[PRJQUOTA] || 1302 F2FS_CTX_INFO(ctx).s_qf_names[PRJQUOTA]; 1303 usrquota = test_opt(sbi, USRQUOTA) || 1304 ctx_test_opt(ctx, F2FS_MOUNT_USRQUOTA); 1305 grpquota = test_opt(sbi, GRPQUOTA) || 1306 ctx_test_opt(ctx, F2FS_MOUNT_GRPQUOTA); 1307 prjquota = test_opt(sbi, PRJQUOTA) || 1308 ctx_test_opt(ctx, F2FS_MOUNT_PRJQUOTA); 1309 1310 if (usr_qf_name) { 1311 ctx_clear_opt(ctx, F2FS_MOUNT_USRQUOTA); 1312 usrquota = false; 1313 } 1314 if (grp_qf_name) { 1315 ctx_clear_opt(ctx, F2FS_MOUNT_GRPQUOTA); 1316 grpquota = false; 1317 } 1318 if (prj_qf_name) { 1319 ctx_clear_opt(ctx, F2FS_MOUNT_PRJQUOTA); 1320 prjquota = false; 1321 } 1322 if (usr_qf_name || grp_qf_name || prj_qf_name) { 1323 if (grpquota || usrquota || prjquota) { 1324 f2fs_err(sbi, "old and new quota format mixing"); 1325 return -EINVAL; 1326 } 1327 if (!(ctx->spec_mask & F2FS_SPEC_jqfmt || 1328 F2FS_OPTION(sbi).s_jquota_fmt)) { 1329 f2fs_err(sbi, "journaled quota format not specified"); 1330 return -EINVAL; 1331 } 1332 } 1333 return 0; 1334 1335 err_jquota_change: 1336 f2fs_err(sbi, "Cannot change journaled quota options when quota turned on"); 1337 return -EINVAL; 1338 err_jquota_specified: 1339 f2fs_err(sbi, "%s quota file already specified", 1340 QTYPE2NAME(i)); 1341 return -EINVAL; 1342 1343 #else 1344 if (f2fs_readonly(sbi->sb)) 1345 return 0; 1346 if (f2fs_sb_has_quota_ino(sbi)) { 1347 f2fs_info(sbi, "Filesystem with quota feature cannot be mounted RDWR without CONFIG_QUOTA"); 1348 return -EINVAL; 1349 } 1350 if (f2fs_sb_has_project_quota(sbi)) { 1351 f2fs_err(sbi, "Filesystem with project quota feature cannot be mounted RDWR without CONFIG_QUOTA"); 1352 return -EINVAL; 1353 } 1354 1355 return 0; 1356 #endif 1357 } 1358 1359 static int f2fs_check_test_dummy_encryption(struct fs_context *fc, 1360 struct super_block *sb) 1361 { 1362 struct f2fs_fs_context *ctx = fc->fs_private; 1363 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1364 1365 if (!fscrypt_is_dummy_policy_set(&F2FS_CTX_INFO(ctx).dummy_enc_policy)) 1366 return 0; 1367 1368 if (!f2fs_sb_has_encrypt(sbi)) { 1369 f2fs_err(sbi, "Encrypt feature is off"); 1370 return -EINVAL; 1371 } 1372 1373 /* 1374 * This mount option is just for testing, and it's not worthwhile to 1375 * implement the extra complexity (e.g. RCU protection) that would be 1376 * needed to allow it to be set or changed during remount. We do allow 1377 * it to be specified during remount, but only if there is no change. 1378 */ 1379 if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) { 1380 if (fscrypt_dummy_policies_equal(&F2FS_OPTION(sbi).dummy_enc_policy, 1381 &F2FS_CTX_INFO(ctx).dummy_enc_policy)) 1382 return 0; 1383 f2fs_warn(sbi, "Can't set or change test_dummy_encryption on remount"); 1384 return -EINVAL; 1385 } 1386 return 0; 1387 } 1388 1389 static inline bool test_compression_spec(unsigned int mask) 1390 { 1391 return mask & (F2FS_SPEC_compress_algorithm 1392 | F2FS_SPEC_compress_log_size 1393 | F2FS_SPEC_compress_extension 1394 | F2FS_SPEC_nocompress_extension 1395 | F2FS_SPEC_compress_chksum 1396 | F2FS_SPEC_compress_mode); 1397 } 1398 1399 static inline void clear_compression_spec(struct f2fs_fs_context *ctx) 1400 { 1401 ctx->spec_mask &= ~(F2FS_SPEC_compress_algorithm 1402 | F2FS_SPEC_compress_log_size 1403 | F2FS_SPEC_compress_extension 1404 | F2FS_SPEC_nocompress_extension 1405 | F2FS_SPEC_compress_chksum 1406 | F2FS_SPEC_compress_mode); 1407 } 1408 1409 static int f2fs_check_compression(struct fs_context *fc, 1410 struct super_block *sb) 1411 { 1412 #ifdef CONFIG_F2FS_FS_COMPRESSION 1413 struct f2fs_fs_context *ctx = fc->fs_private; 1414 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1415 int i, cnt; 1416 1417 if (!f2fs_sb_has_compression(sbi)) { 1418 if (test_compression_spec(ctx->spec_mask) || 1419 ctx_test_opt(ctx, F2FS_MOUNT_COMPRESS_CACHE)) 1420 f2fs_info(sbi, "Image doesn't support compression"); 1421 clear_compression_spec(ctx); 1422 ctx->opt_mask &= ~BIT(F2FS_MOUNT_COMPRESS_CACHE); 1423 return 0; 1424 } 1425 if (ctx->spec_mask & F2FS_SPEC_compress_extension) { 1426 cnt = F2FS_CTX_INFO(ctx).compress_ext_cnt; 1427 for (i = 0; i < F2FS_CTX_INFO(ctx).compress_ext_cnt; i++) { 1428 if (is_compress_extension_exist(&F2FS_OPTION(sbi), 1429 F2FS_CTX_INFO(ctx).extensions[i], true)) { 1430 F2FS_CTX_INFO(ctx).extensions[i][0] = '\0'; 1431 cnt--; 1432 } 1433 } 1434 if (F2FS_OPTION(sbi).compress_ext_cnt + cnt > COMPRESS_EXT_NUM) { 1435 f2fs_err(sbi, "invalid extension length/number"); 1436 return -EINVAL; 1437 } 1438 } 1439 if (ctx->spec_mask & F2FS_SPEC_nocompress_extension) { 1440 cnt = F2FS_CTX_INFO(ctx).nocompress_ext_cnt; 1441 for (i = 0; i < F2FS_CTX_INFO(ctx).nocompress_ext_cnt; i++) { 1442 if (is_compress_extension_exist(&F2FS_OPTION(sbi), 1443 F2FS_CTX_INFO(ctx).noextensions[i], false)) { 1444 F2FS_CTX_INFO(ctx).noextensions[i][0] = '\0'; 1445 cnt--; 1446 } 1447 } 1448 if (F2FS_OPTION(sbi).nocompress_ext_cnt + cnt > COMPRESS_EXT_NUM) { 1449 f2fs_err(sbi, "invalid noextension length/number"); 1450 return -EINVAL; 1451 } 1452 } 1453 1454 if (f2fs_test_compress_extension(F2FS_CTX_INFO(ctx).noextensions, 1455 F2FS_CTX_INFO(ctx).nocompress_ext_cnt, 1456 F2FS_CTX_INFO(ctx).extensions, 1457 F2FS_CTX_INFO(ctx).compress_ext_cnt)) { 1458 f2fs_err(sbi, "new noextensions conflicts with new extensions"); 1459 return -EINVAL; 1460 } 1461 if (f2fs_test_compress_extension(F2FS_CTX_INFO(ctx).noextensions, 1462 F2FS_CTX_INFO(ctx).nocompress_ext_cnt, 1463 F2FS_OPTION(sbi).extensions, 1464 F2FS_OPTION(sbi).compress_ext_cnt)) { 1465 f2fs_err(sbi, "new noextensions conflicts with old extensions"); 1466 return -EINVAL; 1467 } 1468 if (f2fs_test_compress_extension(F2FS_OPTION(sbi).noextensions, 1469 F2FS_OPTION(sbi).nocompress_ext_cnt, 1470 F2FS_CTX_INFO(ctx).extensions, 1471 F2FS_CTX_INFO(ctx).compress_ext_cnt)) { 1472 f2fs_err(sbi, "new extensions conflicts with old noextensions"); 1473 return -EINVAL; 1474 } 1475 #endif 1476 return 0; 1477 } 1478 1479 static int f2fs_check_opt_consistency(struct fs_context *fc, 1480 struct super_block *sb) 1481 { 1482 struct f2fs_fs_context *ctx = fc->fs_private; 1483 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1484 int err; 1485 1486 if (ctx_test_opt(ctx, F2FS_MOUNT_NORECOVERY) && !f2fs_readonly(sb)) 1487 return -EINVAL; 1488 1489 if (f2fs_hw_should_discard(sbi) && 1490 (ctx->opt_mask & BIT(F2FS_MOUNT_DISCARD)) && 1491 !ctx_test_opt(ctx, F2FS_MOUNT_DISCARD)) { 1492 f2fs_warn(sbi, "discard is required for zoned block devices"); 1493 return -EINVAL; 1494 } 1495 1496 if (!f2fs_hw_support_discard(sbi) && 1497 (ctx->opt_mask & BIT(F2FS_MOUNT_DISCARD)) && 1498 ctx_test_opt(ctx, F2FS_MOUNT_DISCARD)) { 1499 f2fs_warn(sbi, "device does not support discard"); 1500 ctx_clear_opt(ctx, F2FS_MOUNT_DISCARD); 1501 ctx->opt_mask &= ~BIT(F2FS_MOUNT_DISCARD); 1502 } 1503 1504 if (f2fs_sb_has_device_alias(sbi) && 1505 (ctx->opt_mask & BIT(F2FS_MOUNT_READ_EXTENT_CACHE)) && 1506 !ctx_test_opt(ctx, F2FS_MOUNT_READ_EXTENT_CACHE)) { 1507 f2fs_err(sbi, "device aliasing requires extent cache"); 1508 return -EINVAL; 1509 } 1510 1511 if (test_opt(sbi, RESERVE_ROOT) && 1512 (ctx->opt_mask & BIT(F2FS_MOUNT_RESERVE_ROOT)) && 1513 ctx_test_opt(ctx, F2FS_MOUNT_RESERVE_ROOT)) { 1514 f2fs_info(sbi, "Preserve previous reserve_root=%u", 1515 F2FS_OPTION(sbi).root_reserved_blocks); 1516 ctx_clear_opt(ctx, F2FS_MOUNT_RESERVE_ROOT); 1517 ctx->opt_mask &= ~BIT(F2FS_MOUNT_RESERVE_ROOT); 1518 } 1519 if (test_opt(sbi, RESERVE_NODE) && 1520 (ctx->opt_mask & BIT(F2FS_MOUNT_RESERVE_NODE)) && 1521 ctx_test_opt(ctx, F2FS_MOUNT_RESERVE_NODE)) { 1522 f2fs_info(sbi, "Preserve previous reserve_node=%u", 1523 F2FS_OPTION(sbi).root_reserved_nodes); 1524 ctx_clear_opt(ctx, F2FS_MOUNT_RESERVE_NODE); 1525 ctx->opt_mask &= ~BIT(F2FS_MOUNT_RESERVE_NODE); 1526 } 1527 1528 err = f2fs_check_test_dummy_encryption(fc, sb); 1529 if (err) 1530 return err; 1531 1532 err = f2fs_check_compression(fc, sb); 1533 if (err) 1534 return err; 1535 1536 err = f2fs_check_quota_consistency(fc, sb); 1537 if (err) 1538 return err; 1539 1540 if (!IS_ENABLED(CONFIG_UNICODE) && f2fs_sb_has_casefold(sbi)) { 1541 f2fs_err(sbi, 1542 "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE"); 1543 return -EINVAL; 1544 } 1545 1546 /* 1547 * The BLKZONED feature indicates that the drive was formatted with 1548 * zone alignment optimization. This is optional for host-aware 1549 * devices, but mandatory for host-managed zoned block devices. 1550 */ 1551 if (f2fs_sb_has_blkzoned(sbi)) { 1552 if (F2FS_CTX_INFO(ctx).bggc_mode == BGGC_MODE_OFF) { 1553 f2fs_warn(sbi, "zoned devices need bggc"); 1554 return -EINVAL; 1555 } 1556 #ifdef CONFIG_BLK_DEV_ZONED 1557 if ((ctx->spec_mask & F2FS_SPEC_discard_unit) && 1558 F2FS_CTX_INFO(ctx).discard_unit != DISCARD_UNIT_SECTION) { 1559 f2fs_info(sbi, "Zoned block device doesn't need small discard, set discard_unit=section by default"); 1560 F2FS_CTX_INFO(ctx).discard_unit = DISCARD_UNIT_SECTION; 1561 } 1562 1563 if ((ctx->spec_mask & F2FS_SPEC_mode) && 1564 F2FS_CTX_INFO(ctx).fs_mode != FS_MODE_LFS) { 1565 f2fs_info(sbi, "Only lfs mode is allowed with zoned block device feature"); 1566 return -EINVAL; 1567 } 1568 #else 1569 f2fs_err(sbi, "Zoned block device support is not enabled"); 1570 return -EINVAL; 1571 #endif 1572 } 1573 1574 if (ctx_test_opt(ctx, F2FS_MOUNT_INLINE_XATTR_SIZE)) { 1575 if (!f2fs_sb_has_extra_attr(sbi) || 1576 !f2fs_sb_has_flexible_inline_xattr(sbi)) { 1577 f2fs_err(sbi, "extra_attr or flexible_inline_xattr feature is off"); 1578 return -EINVAL; 1579 } 1580 if (!ctx_test_opt(ctx, F2FS_MOUNT_INLINE_XATTR) && !test_opt(sbi, INLINE_XATTR)) { 1581 f2fs_err(sbi, "inline_xattr_size option should be set with inline_xattr option"); 1582 return -EINVAL; 1583 } 1584 } 1585 1586 if (ctx_test_opt(ctx, F2FS_MOUNT_ATGC) && 1587 F2FS_CTX_INFO(ctx).fs_mode == FS_MODE_LFS) { 1588 f2fs_err(sbi, "LFS is not compatible with ATGC"); 1589 return -EINVAL; 1590 } 1591 1592 if (f2fs_is_readonly(sbi) && ctx_test_opt(ctx, F2FS_MOUNT_FLUSH_MERGE)) { 1593 f2fs_err(sbi, "FLUSH_MERGE not compatible with readonly mode"); 1594 return -EINVAL; 1595 } 1596 1597 if (f2fs_sb_has_readonly(sbi) && !f2fs_readonly(sbi->sb)) { 1598 f2fs_err(sbi, "Allow to mount readonly mode only"); 1599 return -EROFS; 1600 } 1601 return 0; 1602 } 1603 1604 static void f2fs_apply_quota_options(struct fs_context *fc, 1605 struct super_block *sb) 1606 { 1607 #ifdef CONFIG_QUOTA 1608 struct f2fs_fs_context *ctx = fc->fs_private; 1609 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1610 bool quota_feature = f2fs_sb_has_quota_ino(sbi); 1611 char *qname; 1612 int i; 1613 1614 if (quota_feature) 1615 return; 1616 1617 for (i = 0; i < MAXQUOTAS; i++) { 1618 if (!(ctx->qname_mask & (1 << i))) 1619 continue; 1620 1621 qname = F2FS_CTX_INFO(ctx).s_qf_names[i]; 1622 if (qname) { 1623 qname = kstrdup(F2FS_CTX_INFO(ctx).s_qf_names[i], 1624 GFP_KERNEL | __GFP_NOFAIL); 1625 set_opt(sbi, QUOTA); 1626 } 1627 F2FS_OPTION(sbi).s_qf_names[i] = qname; 1628 } 1629 1630 if (ctx->spec_mask & F2FS_SPEC_jqfmt) 1631 F2FS_OPTION(sbi).s_jquota_fmt = F2FS_CTX_INFO(ctx).s_jquota_fmt; 1632 1633 if (quota_feature && F2FS_OPTION(sbi).s_jquota_fmt) { 1634 f2fs_info(sbi, "QUOTA feature is enabled, so ignore jquota_fmt"); 1635 F2FS_OPTION(sbi).s_jquota_fmt = 0; 1636 } 1637 #endif 1638 } 1639 1640 static void f2fs_apply_test_dummy_encryption(struct fs_context *fc, 1641 struct super_block *sb) 1642 { 1643 struct f2fs_fs_context *ctx = fc->fs_private; 1644 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1645 1646 if (!fscrypt_is_dummy_policy_set(&F2FS_CTX_INFO(ctx).dummy_enc_policy) || 1647 /* if already set, it was already verified to be the same */ 1648 fscrypt_is_dummy_policy_set(&F2FS_OPTION(sbi).dummy_enc_policy)) 1649 return; 1650 swap(F2FS_OPTION(sbi).dummy_enc_policy, F2FS_CTX_INFO(ctx).dummy_enc_policy); 1651 f2fs_warn(sbi, "Test dummy encryption mode enabled"); 1652 } 1653 1654 static void f2fs_apply_compression(struct fs_context *fc, 1655 struct super_block *sb) 1656 { 1657 #ifdef CONFIG_F2FS_FS_COMPRESSION 1658 struct f2fs_fs_context *ctx = fc->fs_private; 1659 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1660 unsigned char (*ctx_ext)[F2FS_EXTENSION_LEN]; 1661 unsigned char (*sbi_ext)[F2FS_EXTENSION_LEN]; 1662 int ctx_cnt, sbi_cnt, i; 1663 1664 if (ctx->spec_mask & F2FS_SPEC_compress_level) 1665 F2FS_OPTION(sbi).compress_level = 1666 F2FS_CTX_INFO(ctx).compress_level; 1667 if (ctx->spec_mask & F2FS_SPEC_compress_algorithm) 1668 F2FS_OPTION(sbi).compress_algorithm = 1669 F2FS_CTX_INFO(ctx).compress_algorithm; 1670 if (ctx->spec_mask & F2FS_SPEC_compress_log_size) 1671 F2FS_OPTION(sbi).compress_log_size = 1672 F2FS_CTX_INFO(ctx).compress_log_size; 1673 if (ctx->spec_mask & F2FS_SPEC_compress_chksum) 1674 F2FS_OPTION(sbi).compress_chksum = 1675 F2FS_CTX_INFO(ctx).compress_chksum; 1676 if (ctx->spec_mask & F2FS_SPEC_compress_mode) 1677 F2FS_OPTION(sbi).compress_mode = 1678 F2FS_CTX_INFO(ctx).compress_mode; 1679 if (ctx->spec_mask & F2FS_SPEC_compress_extension) { 1680 ctx_ext = F2FS_CTX_INFO(ctx).extensions; 1681 ctx_cnt = F2FS_CTX_INFO(ctx).compress_ext_cnt; 1682 sbi_ext = F2FS_OPTION(sbi).extensions; 1683 sbi_cnt = F2FS_OPTION(sbi).compress_ext_cnt; 1684 for (i = 0; i < ctx_cnt; i++) { 1685 if (strlen(ctx_ext[i]) == 0) 1686 continue; 1687 strscpy(sbi_ext[sbi_cnt], ctx_ext[i]); 1688 sbi_cnt++; 1689 } 1690 F2FS_OPTION(sbi).compress_ext_cnt = sbi_cnt; 1691 } 1692 if (ctx->spec_mask & F2FS_SPEC_nocompress_extension) { 1693 ctx_ext = F2FS_CTX_INFO(ctx).noextensions; 1694 ctx_cnt = F2FS_CTX_INFO(ctx).nocompress_ext_cnt; 1695 sbi_ext = F2FS_OPTION(sbi).noextensions; 1696 sbi_cnt = F2FS_OPTION(sbi).nocompress_ext_cnt; 1697 for (i = 0; i < ctx_cnt; i++) { 1698 if (strlen(ctx_ext[i]) == 0) 1699 continue; 1700 strscpy(sbi_ext[sbi_cnt], ctx_ext[i]); 1701 sbi_cnt++; 1702 } 1703 F2FS_OPTION(sbi).nocompress_ext_cnt = sbi_cnt; 1704 } 1705 #endif 1706 } 1707 1708 static void f2fs_apply_options(struct fs_context *fc, struct super_block *sb) 1709 { 1710 struct f2fs_fs_context *ctx = fc->fs_private; 1711 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1712 1713 F2FS_OPTION(sbi).opt &= ~ctx->opt_mask; 1714 F2FS_OPTION(sbi).opt |= F2FS_CTX_INFO(ctx).opt; 1715 1716 if (ctx->spec_mask & F2FS_SPEC_background_gc) 1717 F2FS_OPTION(sbi).bggc_mode = F2FS_CTX_INFO(ctx).bggc_mode; 1718 if (ctx->spec_mask & F2FS_SPEC_inline_xattr_size) 1719 F2FS_OPTION(sbi).inline_xattr_size = 1720 F2FS_CTX_INFO(ctx).inline_xattr_size; 1721 if (ctx->spec_mask & F2FS_SPEC_active_logs) 1722 F2FS_OPTION(sbi).active_logs = F2FS_CTX_INFO(ctx).active_logs; 1723 if (ctx->spec_mask & F2FS_SPEC_reserve_root) 1724 F2FS_OPTION(sbi).root_reserved_blocks = 1725 F2FS_CTX_INFO(ctx).root_reserved_blocks; 1726 if (ctx->spec_mask & F2FS_SPEC_reserve_node) 1727 F2FS_OPTION(sbi).root_reserved_nodes = 1728 F2FS_CTX_INFO(ctx).root_reserved_nodes; 1729 if (ctx->spec_mask & F2FS_SPEC_resgid) 1730 F2FS_OPTION(sbi).s_resgid = F2FS_CTX_INFO(ctx).s_resgid; 1731 if (ctx->spec_mask & F2FS_SPEC_resuid) 1732 F2FS_OPTION(sbi).s_resuid = F2FS_CTX_INFO(ctx).s_resuid; 1733 if (ctx->spec_mask & F2FS_SPEC_mode) 1734 F2FS_OPTION(sbi).fs_mode = F2FS_CTX_INFO(ctx).fs_mode; 1735 #ifdef CONFIG_F2FS_FAULT_INJECTION 1736 if (ctx->spec_mask & F2FS_SPEC_fault_injection) 1737 (void)f2fs_build_fault_attr(sbi, 1738 F2FS_CTX_INFO(ctx).fault_info.inject_rate, 0, FAULT_RATE); 1739 if (ctx->spec_mask & F2FS_SPEC_fault_type) 1740 (void)f2fs_build_fault_attr(sbi, 0, 1741 F2FS_CTX_INFO(ctx).fault_info.inject_type, FAULT_TYPE); 1742 #endif 1743 if (ctx->spec_mask & F2FS_SPEC_alloc_mode) 1744 F2FS_OPTION(sbi).alloc_mode = F2FS_CTX_INFO(ctx).alloc_mode; 1745 if (ctx->spec_mask & F2FS_SPEC_fsync_mode) 1746 F2FS_OPTION(sbi).fsync_mode = F2FS_CTX_INFO(ctx).fsync_mode; 1747 if (ctx->spec_mask & F2FS_SPEC_checkpoint_disable_cap) 1748 F2FS_OPTION(sbi).unusable_cap = F2FS_CTX_INFO(ctx).unusable_cap; 1749 if (ctx->spec_mask & F2FS_SPEC_checkpoint_disable_cap_perc) 1750 F2FS_OPTION(sbi).unusable_cap_perc = 1751 F2FS_CTX_INFO(ctx).unusable_cap_perc; 1752 if (ctx->spec_mask & F2FS_SPEC_discard_unit) 1753 F2FS_OPTION(sbi).discard_unit = F2FS_CTX_INFO(ctx).discard_unit; 1754 if (ctx->spec_mask & F2FS_SPEC_memory_mode) 1755 F2FS_OPTION(sbi).memory_mode = F2FS_CTX_INFO(ctx).memory_mode; 1756 if (ctx->spec_mask & F2FS_SPEC_errors) 1757 F2FS_OPTION(sbi).errors = F2FS_CTX_INFO(ctx).errors; 1758 if (ctx->spec_mask & F2FS_SPEC_lookup_mode) 1759 F2FS_OPTION(sbi).lookup_mode = F2FS_CTX_INFO(ctx).lookup_mode; 1760 1761 f2fs_apply_compression(fc, sb); 1762 f2fs_apply_test_dummy_encryption(fc, sb); 1763 f2fs_apply_quota_options(fc, sb); 1764 } 1765 1766 static int f2fs_sanity_check_options(struct f2fs_sb_info *sbi, bool remount) 1767 { 1768 if (f2fs_sb_has_device_alias(sbi) && 1769 !test_opt(sbi, READ_EXTENT_CACHE)) { 1770 f2fs_err(sbi, "device aliasing requires extent cache"); 1771 return -EINVAL; 1772 } 1773 1774 if (!remount) 1775 return 0; 1776 1777 #ifdef CONFIG_BLK_DEV_ZONED 1778 if (f2fs_sb_has_blkzoned(sbi) && 1779 sbi->max_open_zones < F2FS_OPTION(sbi).active_logs) { 1780 f2fs_err(sbi, 1781 "zoned: max open zones %u is too small, need at least %u open zones", 1782 sbi->max_open_zones, F2FS_OPTION(sbi).active_logs); 1783 return -EINVAL; 1784 } 1785 #endif 1786 if (f2fs_lfs_mode(sbi) && !IS_F2FS_IPU_DISABLE(sbi)) { 1787 f2fs_warn(sbi, "LFS is not compatible with IPU"); 1788 return -EINVAL; 1789 } 1790 return 0; 1791 } 1792 1793 static struct inode *f2fs_alloc_inode(struct super_block *sb) 1794 { 1795 struct f2fs_inode_info *fi; 1796 1797 if (time_to_inject(F2FS_SB(sb), FAULT_SLAB_ALLOC)) 1798 return NULL; 1799 1800 fi = alloc_inode_sb(sb, f2fs_inode_cachep, GFP_F2FS_ZERO); 1801 if (!fi) 1802 return NULL; 1803 1804 init_once((void *) fi); 1805 1806 /* Initialize f2fs-specific inode info */ 1807 atomic_set(&fi->dirty_pages, 0); 1808 atomic_set(&fi->i_compr_blocks, 0); 1809 atomic_set(&fi->open_count, 0); 1810 atomic_set(&fi->writeback, 0); 1811 init_f2fs_rwsem(&fi->i_sem); 1812 spin_lock_init(&fi->i_size_lock); 1813 INIT_LIST_HEAD(&fi->dirty_list); 1814 INIT_LIST_HEAD(&fi->gdirty_list); 1815 INIT_LIST_HEAD(&fi->gdonate_list); 1816 init_f2fs_rwsem(&fi->i_gc_rwsem[READ]); 1817 init_f2fs_rwsem(&fi->i_gc_rwsem[WRITE]); 1818 init_f2fs_rwsem(&fi->i_xattr_sem); 1819 1820 /* Will be used by directory only */ 1821 fi->i_dir_level = F2FS_SB(sb)->dir_level; 1822 1823 return &fi->vfs_inode; 1824 } 1825 1826 static int f2fs_drop_inode(struct inode *inode) 1827 { 1828 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1829 int ret; 1830 1831 /* 1832 * during filesystem shutdown, if checkpoint is disabled, 1833 * drop useless meta/node dirty pages. 1834 */ 1835 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 1836 if (inode->i_ino == F2FS_NODE_INO(sbi) || 1837 inode->i_ino == F2FS_META_INO(sbi)) { 1838 trace_f2fs_drop_inode(inode, 1); 1839 return 1; 1840 } 1841 } 1842 1843 /* 1844 * This is to avoid a deadlock condition like below. 1845 * writeback_single_inode(inode) 1846 * - f2fs_write_data_page 1847 * - f2fs_gc -> iput -> evict 1848 * - inode_wait_for_writeback(inode) 1849 */ 1850 if ((!inode_unhashed(inode) && inode_state_read(inode) & I_SYNC)) { 1851 if (!inode->i_nlink && !is_bad_inode(inode)) { 1852 /* to avoid evict_inode call simultaneously */ 1853 __iget(inode); 1854 spin_unlock(&inode->i_lock); 1855 1856 /* should remain fi->extent_tree for writepage */ 1857 f2fs_destroy_extent_node(inode); 1858 1859 sb_start_intwrite(inode->i_sb); 1860 f2fs_i_size_write(inode, 0); 1861 1862 f2fs_submit_merged_write_cond(F2FS_I_SB(inode), 1863 inode, NULL, 0, DATA); 1864 truncate_inode_pages_final(inode->i_mapping); 1865 1866 if (F2FS_HAS_BLOCKS(inode)) 1867 f2fs_truncate(inode); 1868 1869 sb_end_intwrite(inode->i_sb); 1870 1871 spin_lock(&inode->i_lock); 1872 atomic_dec(&inode->i_count); 1873 } 1874 trace_f2fs_drop_inode(inode, 0); 1875 return 0; 1876 } 1877 ret = inode_generic_drop(inode); 1878 if (!ret) 1879 ret = fscrypt_drop_inode(inode); 1880 trace_f2fs_drop_inode(inode, ret); 1881 return ret; 1882 } 1883 1884 int f2fs_inode_dirtied(struct inode *inode, bool sync) 1885 { 1886 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1887 int ret = 0; 1888 1889 spin_lock(&sbi->inode_lock[DIRTY_META]); 1890 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) { 1891 ret = 1; 1892 } else { 1893 set_inode_flag(inode, FI_DIRTY_INODE); 1894 stat_inc_dirty_inode(sbi, DIRTY_META); 1895 } 1896 if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) { 1897 list_add_tail(&F2FS_I(inode)->gdirty_list, 1898 &sbi->inode_list[DIRTY_META]); 1899 inc_page_count(sbi, F2FS_DIRTY_IMETA); 1900 } 1901 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1902 1903 /* if atomic write is not committed, set inode w/ atomic dirty */ 1904 if (!ret && f2fs_is_atomic_file(inode) && 1905 !is_inode_flag_set(inode, FI_ATOMIC_COMMITTED)) 1906 set_inode_flag(inode, FI_ATOMIC_DIRTIED); 1907 1908 return ret; 1909 } 1910 1911 void f2fs_inode_synced(struct inode *inode) 1912 { 1913 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1914 1915 spin_lock(&sbi->inode_lock[DIRTY_META]); 1916 if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) { 1917 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1918 return; 1919 } 1920 if (!list_empty(&F2FS_I(inode)->gdirty_list)) { 1921 list_del_init(&F2FS_I(inode)->gdirty_list); 1922 dec_page_count(sbi, F2FS_DIRTY_IMETA); 1923 } 1924 clear_inode_flag(inode, FI_DIRTY_INODE); 1925 clear_inode_flag(inode, FI_AUTO_RECOVER); 1926 stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META); 1927 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1928 } 1929 1930 /* 1931 * f2fs_dirty_inode() is called from __mark_inode_dirty() 1932 * 1933 * We should call set_dirty_inode to write the dirty inode through write_inode. 1934 */ 1935 static void f2fs_dirty_inode(struct inode *inode, int flags) 1936 { 1937 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1938 1939 if (inode->i_ino == F2FS_NODE_INO(sbi) || 1940 inode->i_ino == F2FS_META_INO(sbi)) 1941 return; 1942 1943 if (is_inode_flag_set(inode, FI_AUTO_RECOVER)) 1944 clear_inode_flag(inode, FI_AUTO_RECOVER); 1945 1946 f2fs_inode_dirtied(inode, false); 1947 } 1948 1949 static void f2fs_free_inode(struct inode *inode) 1950 { 1951 fscrypt_free_inode(inode); 1952 kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode)); 1953 } 1954 1955 static void destroy_percpu_info(struct f2fs_sb_info *sbi) 1956 { 1957 percpu_counter_destroy(&sbi->total_valid_inode_count); 1958 percpu_counter_destroy(&sbi->rf_node_block_count); 1959 percpu_counter_destroy(&sbi->alloc_valid_block_count); 1960 } 1961 1962 static void destroy_device_list(struct f2fs_sb_info *sbi) 1963 { 1964 int i; 1965 1966 for (i = 0; i < sbi->s_ndevs; i++) { 1967 if (i > 0) 1968 bdev_fput(FDEV(i).bdev_file); 1969 #ifdef CONFIG_BLK_DEV_ZONED 1970 kvfree(FDEV(i).blkz_seq); 1971 #endif 1972 } 1973 kvfree(sbi->devs); 1974 } 1975 1976 static void f2fs_put_super(struct super_block *sb) 1977 { 1978 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1979 int i; 1980 int err = 0; 1981 bool done; 1982 1983 /* unregister procfs/sysfs entries in advance to avoid race case */ 1984 f2fs_unregister_sysfs(sbi); 1985 1986 f2fs_quota_off_umount(sb); 1987 1988 /* prevent remaining shrinker jobs */ 1989 mutex_lock(&sbi->umount_mutex); 1990 1991 /* 1992 * flush all issued checkpoints and stop checkpoint issue thread. 1993 * after then, all checkpoints should be done by each process context. 1994 */ 1995 f2fs_stop_ckpt_thread(sbi); 1996 1997 /* 1998 * We don't need to do checkpoint when superblock is clean. 1999 * But, the previous checkpoint was not done by umount, it needs to do 2000 * clean checkpoint again. 2001 */ 2002 if ((is_sbi_flag_set(sbi, SBI_IS_DIRTY) || 2003 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG))) { 2004 struct cp_control cpc = { 2005 .reason = CP_UMOUNT, 2006 }; 2007 stat_inc_cp_call_count(sbi, TOTAL_CALL); 2008 err = f2fs_write_checkpoint(sbi, &cpc); 2009 } 2010 2011 /* be sure to wait for any on-going discard commands */ 2012 done = f2fs_issue_discard_timeout(sbi); 2013 if (f2fs_realtime_discard_enable(sbi) && !sbi->discard_blks && done) { 2014 struct cp_control cpc = { 2015 .reason = CP_UMOUNT | CP_TRIMMED, 2016 }; 2017 stat_inc_cp_call_count(sbi, TOTAL_CALL); 2018 err = f2fs_write_checkpoint(sbi, &cpc); 2019 } 2020 2021 /* 2022 * normally superblock is clean, so we need to release this. 2023 * In addition, EIO will skip do checkpoint, we need this as well. 2024 */ 2025 f2fs_release_ino_entry(sbi, true); 2026 2027 f2fs_leave_shrinker(sbi); 2028 mutex_unlock(&sbi->umount_mutex); 2029 2030 /* our cp_error case, we can wait for any writeback page */ 2031 f2fs_flush_merged_writes(sbi); 2032 2033 f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA); 2034 2035 if (err || f2fs_cp_error(sbi)) { 2036 truncate_inode_pages_final(NODE_MAPPING(sbi)); 2037 truncate_inode_pages_final(META_MAPPING(sbi)); 2038 } 2039 2040 f2fs_bug_on(sbi, sbi->fsync_node_num); 2041 2042 f2fs_destroy_compress_inode(sbi); 2043 2044 iput(sbi->node_inode); 2045 sbi->node_inode = NULL; 2046 2047 iput(sbi->meta_inode); 2048 sbi->meta_inode = NULL; 2049 2050 /* Should check the page counts after dropping all node/meta pages */ 2051 for (i = 0; i < NR_COUNT_TYPE; i++) { 2052 if (!get_pages(sbi, i)) 2053 continue; 2054 f2fs_err(sbi, "detect filesystem reference count leak during " 2055 "umount, type: %d, count: %lld", i, get_pages(sbi, i)); 2056 f2fs_bug_on(sbi, 1); 2057 } 2058 2059 /* 2060 * iput() can update stat information, if f2fs_write_checkpoint() 2061 * above failed with error. 2062 */ 2063 f2fs_destroy_stats(sbi); 2064 2065 /* destroy f2fs internal modules */ 2066 f2fs_destroy_node_manager(sbi); 2067 f2fs_destroy_segment_manager(sbi); 2068 2069 /* flush s_error_work before sbi destroy */ 2070 flush_work(&sbi->s_error_work); 2071 2072 f2fs_destroy_post_read_wq(sbi); 2073 2074 kvfree(sbi->ckpt); 2075 2076 kfree(sbi->raw_super); 2077 2078 f2fs_destroy_page_array_cache(sbi); 2079 #ifdef CONFIG_QUOTA 2080 for (i = 0; i < MAXQUOTAS; i++) 2081 kfree(F2FS_OPTION(sbi).s_qf_names[i]); 2082 #endif 2083 fscrypt_free_dummy_policy(&F2FS_OPTION(sbi).dummy_enc_policy); 2084 destroy_percpu_info(sbi); 2085 f2fs_destroy_iostat(sbi); 2086 for (i = 0; i < NR_PAGE_TYPE; i++) 2087 kfree(sbi->write_io[i]); 2088 #if IS_ENABLED(CONFIG_UNICODE) 2089 utf8_unload(sb->s_encoding); 2090 #endif 2091 } 2092 2093 int f2fs_sync_fs(struct super_block *sb, int sync) 2094 { 2095 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2096 int err = 0; 2097 2098 if (unlikely(f2fs_cp_error(sbi))) 2099 return 0; 2100 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 2101 return 0; 2102 2103 trace_f2fs_sync_fs(sb, sync); 2104 2105 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 2106 return -EAGAIN; 2107 2108 if (sync) { 2109 stat_inc_cp_call_count(sbi, TOTAL_CALL); 2110 err = f2fs_issue_checkpoint(sbi); 2111 } 2112 2113 return err; 2114 } 2115 2116 static int f2fs_freeze(struct super_block *sb) 2117 { 2118 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2119 2120 if (f2fs_readonly(sb)) 2121 return 0; 2122 2123 /* IO error happened before */ 2124 if (unlikely(f2fs_cp_error(sbi))) 2125 return -EIO; 2126 2127 /* must be clean, since sync_filesystem() was already called */ 2128 if (is_sbi_flag_set(sbi, SBI_IS_DIRTY)) 2129 return -EINVAL; 2130 2131 sbi->umount_lock_holder = current; 2132 2133 /* Let's flush checkpoints and stop the thread. */ 2134 f2fs_flush_ckpt_thread(sbi); 2135 2136 sbi->umount_lock_holder = NULL; 2137 2138 /* to avoid deadlock on f2fs_evict_inode->SB_FREEZE_FS */ 2139 set_sbi_flag(sbi, SBI_IS_FREEZING); 2140 return 0; 2141 } 2142 2143 static int f2fs_unfreeze(struct super_block *sb) 2144 { 2145 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2146 2147 /* 2148 * It will update discard_max_bytes of mounted lvm device to zero 2149 * after creating snapshot on this lvm device, let's drop all 2150 * remained discards. 2151 * We don't need to disable real-time discard because discard_max_bytes 2152 * will recover after removal of snapshot. 2153 */ 2154 if (test_opt(sbi, DISCARD) && !f2fs_hw_support_discard(sbi)) 2155 f2fs_issue_discard_timeout(sbi); 2156 2157 clear_sbi_flag(F2FS_SB(sb), SBI_IS_FREEZING); 2158 return 0; 2159 } 2160 2161 #ifdef CONFIG_QUOTA 2162 static int f2fs_statfs_project(struct super_block *sb, 2163 kprojid_t projid, struct kstatfs *buf) 2164 { 2165 struct kqid qid; 2166 struct dquot *dquot; 2167 u64 limit; 2168 u64 curblock; 2169 2170 qid = make_kqid_projid(projid); 2171 dquot = dqget(sb, qid); 2172 if (IS_ERR(dquot)) 2173 return PTR_ERR(dquot); 2174 spin_lock(&dquot->dq_dqb_lock); 2175 2176 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit, 2177 dquot->dq_dqb.dqb_bhardlimit); 2178 limit >>= sb->s_blocksize_bits; 2179 2180 if (limit) { 2181 uint64_t remaining = 0; 2182 2183 curblock = (dquot->dq_dqb.dqb_curspace + 2184 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits; 2185 if (limit > curblock) 2186 remaining = limit - curblock; 2187 2188 buf->f_blocks = min(buf->f_blocks, limit); 2189 buf->f_bfree = min(buf->f_bfree, remaining); 2190 buf->f_bavail = min(buf->f_bavail, remaining); 2191 } 2192 2193 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit, 2194 dquot->dq_dqb.dqb_ihardlimit); 2195 2196 if (limit) { 2197 uint64_t remaining = 0; 2198 2199 if (limit > dquot->dq_dqb.dqb_curinodes) 2200 remaining = limit - dquot->dq_dqb.dqb_curinodes; 2201 2202 buf->f_files = min(buf->f_files, limit); 2203 buf->f_ffree = min(buf->f_ffree, remaining); 2204 } 2205 2206 spin_unlock(&dquot->dq_dqb_lock); 2207 dqput(dquot); 2208 return 0; 2209 } 2210 #endif 2211 2212 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf) 2213 { 2214 struct super_block *sb = dentry->d_sb; 2215 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2216 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 2217 block_t total_count, user_block_count, start_count; 2218 u64 avail_node_count; 2219 unsigned int total_valid_node_count; 2220 2221 total_count = le64_to_cpu(sbi->raw_super->block_count); 2222 start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr); 2223 buf->f_type = F2FS_SUPER_MAGIC; 2224 buf->f_bsize = sbi->blocksize; 2225 2226 buf->f_blocks = total_count - start_count; 2227 2228 spin_lock(&sbi->stat_lock); 2229 if (sbi->carve_out) 2230 buf->f_blocks -= sbi->current_reserved_blocks; 2231 user_block_count = sbi->user_block_count; 2232 total_valid_node_count = valid_node_count(sbi); 2233 avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM; 2234 buf->f_bfree = user_block_count - valid_user_blocks(sbi) - 2235 sbi->current_reserved_blocks; 2236 2237 if (unlikely(buf->f_bfree <= sbi->unusable_block_count)) 2238 buf->f_bfree = 0; 2239 else 2240 buf->f_bfree -= sbi->unusable_block_count; 2241 spin_unlock(&sbi->stat_lock); 2242 2243 if (buf->f_bfree > F2FS_OPTION(sbi).root_reserved_blocks) 2244 buf->f_bavail = buf->f_bfree - 2245 F2FS_OPTION(sbi).root_reserved_blocks; 2246 else 2247 buf->f_bavail = 0; 2248 2249 if (avail_node_count > user_block_count) { 2250 buf->f_files = user_block_count; 2251 buf->f_ffree = buf->f_bavail; 2252 } else { 2253 buf->f_files = avail_node_count; 2254 buf->f_ffree = min(avail_node_count - total_valid_node_count, 2255 buf->f_bavail); 2256 } 2257 2258 buf->f_namelen = F2FS_NAME_LEN; 2259 buf->f_fsid = u64_to_fsid(id); 2260 2261 #ifdef CONFIG_QUOTA 2262 if (is_inode_flag_set(d_inode(dentry), FI_PROJ_INHERIT) && 2263 sb_has_quota_limits_enabled(sb, PRJQUOTA)) { 2264 f2fs_statfs_project(sb, F2FS_I(d_inode(dentry))->i_projid, buf); 2265 } 2266 #endif 2267 return 0; 2268 } 2269 2270 static inline void f2fs_show_quota_options(struct seq_file *seq, 2271 struct super_block *sb) 2272 { 2273 #ifdef CONFIG_QUOTA 2274 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2275 2276 if (F2FS_OPTION(sbi).s_jquota_fmt) { 2277 char *fmtname = ""; 2278 2279 switch (F2FS_OPTION(sbi).s_jquota_fmt) { 2280 case QFMT_VFS_OLD: 2281 fmtname = "vfsold"; 2282 break; 2283 case QFMT_VFS_V0: 2284 fmtname = "vfsv0"; 2285 break; 2286 case QFMT_VFS_V1: 2287 fmtname = "vfsv1"; 2288 break; 2289 } 2290 seq_printf(seq, ",jqfmt=%s", fmtname); 2291 } 2292 2293 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA]) 2294 seq_show_option(seq, "usrjquota", 2295 F2FS_OPTION(sbi).s_qf_names[USRQUOTA]); 2296 2297 if (F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]) 2298 seq_show_option(seq, "grpjquota", 2299 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]); 2300 2301 if (F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) 2302 seq_show_option(seq, "prjjquota", 2303 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]); 2304 #endif 2305 } 2306 2307 #ifdef CONFIG_F2FS_FS_COMPRESSION 2308 static inline void f2fs_show_compress_options(struct seq_file *seq, 2309 struct super_block *sb) 2310 { 2311 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2312 char *algtype = ""; 2313 int i; 2314 2315 if (!f2fs_sb_has_compression(sbi)) 2316 return; 2317 2318 switch (F2FS_OPTION(sbi).compress_algorithm) { 2319 case COMPRESS_LZO: 2320 algtype = "lzo"; 2321 break; 2322 case COMPRESS_LZ4: 2323 algtype = "lz4"; 2324 break; 2325 case COMPRESS_ZSTD: 2326 algtype = "zstd"; 2327 break; 2328 case COMPRESS_LZORLE: 2329 algtype = "lzo-rle"; 2330 break; 2331 } 2332 seq_printf(seq, ",compress_algorithm=%s", algtype); 2333 2334 if (F2FS_OPTION(sbi).compress_level) 2335 seq_printf(seq, ":%d", F2FS_OPTION(sbi).compress_level); 2336 2337 seq_printf(seq, ",compress_log_size=%u", 2338 F2FS_OPTION(sbi).compress_log_size); 2339 2340 for (i = 0; i < F2FS_OPTION(sbi).compress_ext_cnt; i++) { 2341 seq_printf(seq, ",compress_extension=%s", 2342 F2FS_OPTION(sbi).extensions[i]); 2343 } 2344 2345 for (i = 0; i < F2FS_OPTION(sbi).nocompress_ext_cnt; i++) { 2346 seq_printf(seq, ",nocompress_extension=%s", 2347 F2FS_OPTION(sbi).noextensions[i]); 2348 } 2349 2350 if (F2FS_OPTION(sbi).compress_chksum) 2351 seq_puts(seq, ",compress_chksum"); 2352 2353 if (F2FS_OPTION(sbi).compress_mode == COMPR_MODE_FS) 2354 seq_printf(seq, ",compress_mode=%s", "fs"); 2355 else if (F2FS_OPTION(sbi).compress_mode == COMPR_MODE_USER) 2356 seq_printf(seq, ",compress_mode=%s", "user"); 2357 2358 if (test_opt(sbi, COMPRESS_CACHE)) 2359 seq_puts(seq, ",compress_cache"); 2360 } 2361 #endif 2362 2363 static int f2fs_show_options(struct seq_file *seq, struct dentry *root) 2364 { 2365 struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb); 2366 2367 if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_SYNC) 2368 seq_printf(seq, ",background_gc=%s", "sync"); 2369 else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_ON) 2370 seq_printf(seq, ",background_gc=%s", "on"); 2371 else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF) 2372 seq_printf(seq, ",background_gc=%s", "off"); 2373 2374 if (test_opt(sbi, GC_MERGE)) 2375 seq_puts(seq, ",gc_merge"); 2376 else 2377 seq_puts(seq, ",nogc_merge"); 2378 2379 if (test_opt(sbi, DISABLE_ROLL_FORWARD)) 2380 seq_puts(seq, ",disable_roll_forward"); 2381 if (test_opt(sbi, NORECOVERY)) 2382 seq_puts(seq, ",norecovery"); 2383 if (test_opt(sbi, DISCARD)) { 2384 seq_puts(seq, ",discard"); 2385 if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK) 2386 seq_printf(seq, ",discard_unit=%s", "block"); 2387 else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT) 2388 seq_printf(seq, ",discard_unit=%s", "segment"); 2389 else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION) 2390 seq_printf(seq, ",discard_unit=%s", "section"); 2391 } else { 2392 seq_puts(seq, ",nodiscard"); 2393 } 2394 #ifdef CONFIG_F2FS_FS_XATTR 2395 if (test_opt(sbi, XATTR_USER)) 2396 seq_puts(seq, ",user_xattr"); 2397 else 2398 seq_puts(seq, ",nouser_xattr"); 2399 if (test_opt(sbi, INLINE_XATTR)) 2400 seq_puts(seq, ",inline_xattr"); 2401 else 2402 seq_puts(seq, ",noinline_xattr"); 2403 if (test_opt(sbi, INLINE_XATTR_SIZE)) 2404 seq_printf(seq, ",inline_xattr_size=%u", 2405 F2FS_OPTION(sbi).inline_xattr_size); 2406 #endif 2407 #ifdef CONFIG_F2FS_FS_POSIX_ACL 2408 if (test_opt(sbi, POSIX_ACL)) 2409 seq_puts(seq, ",acl"); 2410 else 2411 seq_puts(seq, ",noacl"); 2412 #endif 2413 if (test_opt(sbi, DISABLE_EXT_IDENTIFY)) 2414 seq_puts(seq, ",disable_ext_identify"); 2415 if (test_opt(sbi, INLINE_DATA)) 2416 seq_puts(seq, ",inline_data"); 2417 else 2418 seq_puts(seq, ",noinline_data"); 2419 if (test_opt(sbi, INLINE_DENTRY)) 2420 seq_puts(seq, ",inline_dentry"); 2421 else 2422 seq_puts(seq, ",noinline_dentry"); 2423 if (test_opt(sbi, FLUSH_MERGE)) 2424 seq_puts(seq, ",flush_merge"); 2425 else 2426 seq_puts(seq, ",noflush_merge"); 2427 if (test_opt(sbi, NOBARRIER)) 2428 seq_puts(seq, ",nobarrier"); 2429 else 2430 seq_puts(seq, ",barrier"); 2431 if (test_opt(sbi, FASTBOOT)) 2432 seq_puts(seq, ",fastboot"); 2433 if (test_opt(sbi, READ_EXTENT_CACHE)) 2434 seq_puts(seq, ",extent_cache"); 2435 else 2436 seq_puts(seq, ",noextent_cache"); 2437 if (test_opt(sbi, AGE_EXTENT_CACHE)) 2438 seq_puts(seq, ",age_extent_cache"); 2439 if (test_opt(sbi, DATA_FLUSH)) 2440 seq_puts(seq, ",data_flush"); 2441 2442 seq_puts(seq, ",mode="); 2443 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_ADAPTIVE) 2444 seq_puts(seq, "adaptive"); 2445 else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS) 2446 seq_puts(seq, "lfs"); 2447 else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG) 2448 seq_puts(seq, "fragment:segment"); 2449 else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK) 2450 seq_puts(seq, "fragment:block"); 2451 seq_printf(seq, ",active_logs=%u", F2FS_OPTION(sbi).active_logs); 2452 if (test_opt(sbi, RESERVE_ROOT) || test_opt(sbi, RESERVE_NODE)) 2453 seq_printf(seq, ",reserve_root=%u,reserve_node=%u,resuid=%u," 2454 "resgid=%u", 2455 F2FS_OPTION(sbi).root_reserved_blocks, 2456 F2FS_OPTION(sbi).root_reserved_nodes, 2457 from_kuid_munged(&init_user_ns, 2458 F2FS_OPTION(sbi).s_resuid), 2459 from_kgid_munged(&init_user_ns, 2460 F2FS_OPTION(sbi).s_resgid)); 2461 #ifdef CONFIG_F2FS_FAULT_INJECTION 2462 if (test_opt(sbi, FAULT_INJECTION)) { 2463 seq_printf(seq, ",fault_injection=%u", 2464 F2FS_OPTION(sbi).fault_info.inject_rate); 2465 seq_printf(seq, ",fault_type=%u", 2466 F2FS_OPTION(sbi).fault_info.inject_type); 2467 } 2468 #endif 2469 #ifdef CONFIG_QUOTA 2470 if (test_opt(sbi, QUOTA)) 2471 seq_puts(seq, ",quota"); 2472 if (test_opt(sbi, USRQUOTA)) 2473 seq_puts(seq, ",usrquota"); 2474 if (test_opt(sbi, GRPQUOTA)) 2475 seq_puts(seq, ",grpquota"); 2476 if (test_opt(sbi, PRJQUOTA)) 2477 seq_puts(seq, ",prjquota"); 2478 #endif 2479 f2fs_show_quota_options(seq, sbi->sb); 2480 2481 fscrypt_show_test_dummy_encryption(seq, ',', sbi->sb); 2482 2483 if (sbi->sb->s_flags & SB_INLINECRYPT) 2484 seq_puts(seq, ",inlinecrypt"); 2485 2486 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_DEFAULT) 2487 seq_printf(seq, ",alloc_mode=%s", "default"); 2488 else if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE) 2489 seq_printf(seq, ",alloc_mode=%s", "reuse"); 2490 2491 if (test_opt(sbi, DISABLE_CHECKPOINT)) 2492 seq_printf(seq, ",checkpoint=disable:%u", 2493 F2FS_OPTION(sbi).unusable_cap); 2494 if (test_opt(sbi, MERGE_CHECKPOINT)) 2495 seq_puts(seq, ",checkpoint_merge"); 2496 else 2497 seq_puts(seq, ",nocheckpoint_merge"); 2498 if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_POSIX) 2499 seq_printf(seq, ",fsync_mode=%s", "posix"); 2500 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT) 2501 seq_printf(seq, ",fsync_mode=%s", "strict"); 2502 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_NOBARRIER) 2503 seq_printf(seq, ",fsync_mode=%s", "nobarrier"); 2504 2505 #ifdef CONFIG_F2FS_FS_COMPRESSION 2506 f2fs_show_compress_options(seq, sbi->sb); 2507 #endif 2508 2509 if (test_opt(sbi, ATGC)) 2510 seq_puts(seq, ",atgc"); 2511 2512 if (F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_NORMAL) 2513 seq_printf(seq, ",memory=%s", "normal"); 2514 else if (F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_LOW) 2515 seq_printf(seq, ",memory=%s", "low"); 2516 2517 if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_READONLY) 2518 seq_printf(seq, ",errors=%s", "remount-ro"); 2519 else if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_CONTINUE) 2520 seq_printf(seq, ",errors=%s", "continue"); 2521 else if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_PANIC) 2522 seq_printf(seq, ",errors=%s", "panic"); 2523 2524 if (test_opt(sbi, NAT_BITS)) 2525 seq_puts(seq, ",nat_bits"); 2526 2527 if (F2FS_OPTION(sbi).lookup_mode == LOOKUP_PERF) 2528 seq_show_option(seq, "lookup_mode", "perf"); 2529 else if (F2FS_OPTION(sbi).lookup_mode == LOOKUP_COMPAT) 2530 seq_show_option(seq, "lookup_mode", "compat"); 2531 else if (F2FS_OPTION(sbi).lookup_mode == LOOKUP_AUTO) 2532 seq_show_option(seq, "lookup_mode", "auto"); 2533 2534 return 0; 2535 } 2536 2537 static void default_options(struct f2fs_sb_info *sbi, bool remount) 2538 { 2539 /* init some FS parameters */ 2540 if (!remount) { 2541 set_opt(sbi, READ_EXTENT_CACHE); 2542 clear_opt(sbi, DISABLE_CHECKPOINT); 2543 2544 if (f2fs_hw_support_discard(sbi) || f2fs_hw_should_discard(sbi)) 2545 set_opt(sbi, DISCARD); 2546 2547 if (f2fs_sb_has_blkzoned(sbi)) 2548 F2FS_OPTION(sbi).discard_unit = DISCARD_UNIT_SECTION; 2549 else 2550 F2FS_OPTION(sbi).discard_unit = DISCARD_UNIT_BLOCK; 2551 } 2552 2553 if (f2fs_sb_has_readonly(sbi)) 2554 F2FS_OPTION(sbi).active_logs = NR_CURSEG_RO_TYPE; 2555 else 2556 F2FS_OPTION(sbi).active_logs = NR_CURSEG_PERSIST_TYPE; 2557 2558 F2FS_OPTION(sbi).inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS; 2559 if (le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count_main) <= 2560 SMALL_VOLUME_SEGMENTS) 2561 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE; 2562 else 2563 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT; 2564 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX; 2565 F2FS_OPTION(sbi).s_resuid = make_kuid(&init_user_ns, F2FS_DEF_RESUID); 2566 F2FS_OPTION(sbi).s_resgid = make_kgid(&init_user_ns, F2FS_DEF_RESGID); 2567 if (f2fs_sb_has_compression(sbi)) { 2568 F2FS_OPTION(sbi).compress_algorithm = COMPRESS_LZ4; 2569 F2FS_OPTION(sbi).compress_log_size = MIN_COMPRESS_LOG_SIZE; 2570 F2FS_OPTION(sbi).compress_ext_cnt = 0; 2571 F2FS_OPTION(sbi).compress_mode = COMPR_MODE_FS; 2572 } 2573 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON; 2574 F2FS_OPTION(sbi).memory_mode = MEMORY_MODE_NORMAL; 2575 F2FS_OPTION(sbi).errors = MOUNT_ERRORS_CONTINUE; 2576 2577 set_opt(sbi, INLINE_XATTR); 2578 set_opt(sbi, INLINE_DATA); 2579 set_opt(sbi, INLINE_DENTRY); 2580 set_opt(sbi, MERGE_CHECKPOINT); 2581 set_opt(sbi, LAZYTIME); 2582 F2FS_OPTION(sbi).unusable_cap = 0; 2583 if (!f2fs_is_readonly(sbi)) 2584 set_opt(sbi, FLUSH_MERGE); 2585 if (f2fs_sb_has_blkzoned(sbi)) 2586 F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS; 2587 else 2588 F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE; 2589 2590 #ifdef CONFIG_F2FS_FS_XATTR 2591 set_opt(sbi, XATTR_USER); 2592 #endif 2593 #ifdef CONFIG_F2FS_FS_POSIX_ACL 2594 set_opt(sbi, POSIX_ACL); 2595 #endif 2596 2597 f2fs_build_fault_attr(sbi, 0, 0, FAULT_ALL); 2598 2599 F2FS_OPTION(sbi).lookup_mode = LOOKUP_PERF; 2600 } 2601 2602 #ifdef CONFIG_QUOTA 2603 static int f2fs_enable_quotas(struct super_block *sb); 2604 #endif 2605 2606 static int f2fs_disable_checkpoint(struct f2fs_sb_info *sbi) 2607 { 2608 unsigned int s_flags = sbi->sb->s_flags; 2609 struct cp_control cpc; 2610 struct f2fs_lock_context lc; 2611 unsigned int gc_mode = sbi->gc_mode; 2612 int err = 0; 2613 int ret; 2614 block_t unusable; 2615 2616 if (s_flags & SB_RDONLY) { 2617 f2fs_err(sbi, "checkpoint=disable on readonly fs"); 2618 return -EINVAL; 2619 } 2620 sbi->sb->s_flags |= SB_ACTIVE; 2621 2622 /* check if we need more GC first */ 2623 unusable = f2fs_get_unusable_blocks(sbi); 2624 if (!f2fs_disable_cp_again(sbi, unusable)) 2625 goto skip_gc; 2626 2627 f2fs_update_time(sbi, DISABLE_TIME); 2628 2629 sbi->gc_mode = GC_URGENT_HIGH; 2630 2631 while (!f2fs_time_over(sbi, DISABLE_TIME)) { 2632 struct f2fs_gc_control gc_control = { 2633 .victim_segno = NULL_SEGNO, 2634 .init_gc_type = FG_GC, 2635 .should_migrate_blocks = false, 2636 .err_gc_skipped = true, 2637 .no_bg_gc = true, 2638 .nr_free_secs = 1 }; 2639 2640 f2fs_down_write_trace(&sbi->gc_lock, &gc_control.lc); 2641 stat_inc_gc_call_count(sbi, FOREGROUND); 2642 err = f2fs_gc(sbi, &gc_control); 2643 if (err == -ENODATA) { 2644 err = 0; 2645 break; 2646 } 2647 if (err && err != -EAGAIN) 2648 break; 2649 } 2650 2651 ret = sync_filesystem(sbi->sb); 2652 if (ret || err) { 2653 err = ret ? ret : err; 2654 goto restore_flag; 2655 } 2656 2657 unusable = f2fs_get_unusable_blocks(sbi); 2658 if (f2fs_disable_cp_again(sbi, unusable)) { 2659 err = -EAGAIN; 2660 goto restore_flag; 2661 } 2662 2663 skip_gc: 2664 f2fs_down_write_trace(&sbi->gc_lock, &lc); 2665 cpc.reason = CP_PAUSE; 2666 set_sbi_flag(sbi, SBI_CP_DISABLED); 2667 stat_inc_cp_call_count(sbi, TOTAL_CALL); 2668 err = f2fs_write_checkpoint(sbi, &cpc); 2669 if (err) 2670 goto out_unlock; 2671 2672 spin_lock(&sbi->stat_lock); 2673 sbi->unusable_block_count = unusable; 2674 spin_unlock(&sbi->stat_lock); 2675 2676 out_unlock: 2677 f2fs_up_write_trace(&sbi->gc_lock, &lc); 2678 restore_flag: 2679 sbi->gc_mode = gc_mode; 2680 sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */ 2681 f2fs_info(sbi, "f2fs_disable_checkpoint() finish, err:%d", err); 2682 return err; 2683 } 2684 2685 static int f2fs_enable_checkpoint(struct f2fs_sb_info *sbi) 2686 { 2687 int retry = MAX_FLUSH_RETRY_COUNT; 2688 long long start, writeback, end; 2689 int ret; 2690 struct f2fs_lock_context lc; 2691 long long skipped_write, dirty_data; 2692 2693 f2fs_info(sbi, "f2fs_enable_checkpoint() starts, meta: %lld, node: %lld, data: %lld", 2694 get_pages(sbi, F2FS_DIRTY_META), 2695 get_pages(sbi, F2FS_DIRTY_NODES), 2696 get_pages(sbi, F2FS_DIRTY_DATA)); 2697 2698 start = ktime_get(); 2699 2700 set_sbi_flag(sbi, SBI_ENABLE_CHECKPOINT); 2701 2702 /* we should flush all the data to keep data consistency */ 2703 do { 2704 skipped_write = get_pages(sbi, F2FS_SKIPPED_WRITE); 2705 dirty_data = get_pages(sbi, F2FS_DIRTY_DATA); 2706 2707 sync_inodes_sb(sbi->sb); 2708 f2fs_io_schedule_timeout(DEFAULT_SCHEDULE_TIMEOUT); 2709 2710 f2fs_info(sbi, "sync_inode_sb done, dirty_data: %lld, %lld, " 2711 "skipped write: %lld, %lld, retry: %d", 2712 get_pages(sbi, F2FS_DIRTY_DATA), 2713 dirty_data, 2714 get_pages(sbi, F2FS_SKIPPED_WRITE), 2715 skipped_write, retry); 2716 2717 /* 2718 * sync_inodes_sb() has retry logic, so let's check dirty_data 2719 * in prior to skipped_write in case there is no dirty data. 2720 */ 2721 if (!get_pages(sbi, F2FS_DIRTY_DATA)) 2722 break; 2723 if (get_pages(sbi, F2FS_SKIPPED_WRITE) == skipped_write) 2724 break; 2725 } while (retry--); 2726 2727 clear_sbi_flag(sbi, SBI_ENABLE_CHECKPOINT); 2728 2729 writeback = ktime_get(); 2730 2731 if (unlikely(get_pages(sbi, F2FS_DIRTY_DATA) || 2732 get_pages(sbi, F2FS_SKIPPED_WRITE))) 2733 f2fs_warn(sbi, "checkpoint=enable unwritten data: %lld, skipped data: %lld, retry: %d", 2734 get_pages(sbi, F2FS_DIRTY_DATA), 2735 get_pages(sbi, F2FS_SKIPPED_WRITE), retry); 2736 2737 if (get_pages(sbi, F2FS_SKIPPED_WRITE)) 2738 atomic_set(&sbi->nr_pages[F2FS_SKIPPED_WRITE], 0); 2739 2740 f2fs_down_write_trace(&sbi->gc_lock, &lc); 2741 f2fs_dirty_to_prefree(sbi); 2742 2743 clear_sbi_flag(sbi, SBI_CP_DISABLED); 2744 set_sbi_flag(sbi, SBI_IS_DIRTY); 2745 f2fs_up_write_trace(&sbi->gc_lock, &lc); 2746 2747 ret = f2fs_sync_fs(sbi->sb, 1); 2748 if (ret) 2749 f2fs_err(sbi, "%s sync_fs failed, ret: %d", __func__, ret); 2750 2751 /* Let's ensure there's no pending checkpoint anymore */ 2752 f2fs_flush_ckpt_thread(sbi); 2753 2754 end = ktime_get(); 2755 2756 f2fs_info(sbi, "f2fs_enable_checkpoint() finishes, writeback:%llu, sync:%llu", 2757 ktime_ms_delta(writeback, start), 2758 ktime_ms_delta(end, writeback)); 2759 return ret; 2760 } 2761 2762 static int __f2fs_remount(struct fs_context *fc, struct super_block *sb) 2763 { 2764 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2765 struct f2fs_mount_info org_mount_opt; 2766 unsigned long old_sb_flags; 2767 unsigned int flags = fc->sb_flags; 2768 int err; 2769 bool need_restart_gc = false, need_stop_gc = false; 2770 bool need_restart_flush = false, need_stop_flush = false; 2771 bool need_restart_discard = false, need_stop_discard = false; 2772 bool need_enable_checkpoint = false, need_disable_checkpoint = false; 2773 bool no_read_extent_cache = !test_opt(sbi, READ_EXTENT_CACHE); 2774 bool no_age_extent_cache = !test_opt(sbi, AGE_EXTENT_CACHE); 2775 bool enable_checkpoint = !test_opt(sbi, DISABLE_CHECKPOINT); 2776 bool no_atgc = !test_opt(sbi, ATGC); 2777 bool no_discard = !test_opt(sbi, DISCARD); 2778 bool no_compress_cache = !test_opt(sbi, COMPRESS_CACHE); 2779 bool block_unit_discard = f2fs_block_unit_discard(sbi); 2780 bool no_nat_bits = !test_opt(sbi, NAT_BITS); 2781 #ifdef CONFIG_QUOTA 2782 int i, j; 2783 #endif 2784 2785 /* 2786 * Save the old mount options in case we 2787 * need to restore them. 2788 */ 2789 org_mount_opt = sbi->mount_opt; 2790 old_sb_flags = sb->s_flags; 2791 2792 sbi->umount_lock_holder = current; 2793 2794 #ifdef CONFIG_QUOTA 2795 org_mount_opt.s_jquota_fmt = F2FS_OPTION(sbi).s_jquota_fmt; 2796 for (i = 0; i < MAXQUOTAS; i++) { 2797 if (F2FS_OPTION(sbi).s_qf_names[i]) { 2798 org_mount_opt.s_qf_names[i] = 2799 kstrdup(F2FS_OPTION(sbi).s_qf_names[i], 2800 GFP_KERNEL); 2801 if (!org_mount_opt.s_qf_names[i]) { 2802 for (j = 0; j < i; j++) 2803 kfree(org_mount_opt.s_qf_names[j]); 2804 return -ENOMEM; 2805 } 2806 } else { 2807 org_mount_opt.s_qf_names[i] = NULL; 2808 } 2809 } 2810 #endif 2811 2812 /* recover superblocks we couldn't write due to previous RO mount */ 2813 if (!(flags & SB_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) { 2814 err = f2fs_commit_super(sbi, false); 2815 f2fs_info(sbi, "Try to recover all the superblocks, ret: %d", 2816 err); 2817 if (!err) 2818 clear_sbi_flag(sbi, SBI_NEED_SB_WRITE); 2819 } 2820 2821 default_options(sbi, true); 2822 2823 err = f2fs_check_opt_consistency(fc, sb); 2824 if (err) 2825 goto restore_opts; 2826 2827 f2fs_apply_options(fc, sb); 2828 2829 err = f2fs_sanity_check_options(sbi, true); 2830 if (err) 2831 goto restore_opts; 2832 2833 /* flush outstanding errors before changing fs state */ 2834 flush_work(&sbi->s_error_work); 2835 2836 /* 2837 * Previous and new state of filesystem is RO, 2838 * so skip checking GC and FLUSH_MERGE conditions. 2839 */ 2840 if (f2fs_readonly(sb) && (flags & SB_RDONLY)) 2841 goto skip; 2842 2843 if (f2fs_dev_is_readonly(sbi) && !(flags & SB_RDONLY)) { 2844 err = -EROFS; 2845 goto restore_opts; 2846 } 2847 2848 #ifdef CONFIG_QUOTA 2849 if (!f2fs_readonly(sb) && (flags & SB_RDONLY)) { 2850 err = dquot_suspend(sb, -1); 2851 if (err < 0) 2852 goto restore_opts; 2853 } else if (f2fs_readonly(sb) && !(flags & SB_RDONLY)) { 2854 /* dquot_resume needs RW */ 2855 sb->s_flags &= ~SB_RDONLY; 2856 if (sb_any_quota_suspended(sb)) { 2857 dquot_resume(sb, -1); 2858 } else if (f2fs_sb_has_quota_ino(sbi)) { 2859 err = f2fs_enable_quotas(sb); 2860 if (err) 2861 goto restore_opts; 2862 } 2863 } 2864 #endif 2865 /* disallow enable atgc dynamically */ 2866 if (no_atgc == !!test_opt(sbi, ATGC)) { 2867 err = -EINVAL; 2868 f2fs_warn(sbi, "switch atgc option is not allowed"); 2869 goto restore_opts; 2870 } 2871 2872 /* disallow enable/disable extent_cache dynamically */ 2873 if (no_read_extent_cache == !!test_opt(sbi, READ_EXTENT_CACHE)) { 2874 err = -EINVAL; 2875 f2fs_warn(sbi, "switch extent_cache option is not allowed"); 2876 goto restore_opts; 2877 } 2878 /* disallow enable/disable age extent_cache dynamically */ 2879 if (no_age_extent_cache == !!test_opt(sbi, AGE_EXTENT_CACHE)) { 2880 err = -EINVAL; 2881 f2fs_warn(sbi, "switch age_extent_cache option is not allowed"); 2882 goto restore_opts; 2883 } 2884 2885 if (no_compress_cache == !!test_opt(sbi, COMPRESS_CACHE)) { 2886 err = -EINVAL; 2887 f2fs_warn(sbi, "switch compress_cache option is not allowed"); 2888 goto restore_opts; 2889 } 2890 2891 if (block_unit_discard != f2fs_block_unit_discard(sbi)) { 2892 err = -EINVAL; 2893 f2fs_warn(sbi, "switch discard_unit option is not allowed"); 2894 goto restore_opts; 2895 } 2896 2897 if (no_nat_bits == !!test_opt(sbi, NAT_BITS)) { 2898 err = -EINVAL; 2899 f2fs_warn(sbi, "switch nat_bits option is not allowed"); 2900 goto restore_opts; 2901 } 2902 2903 if ((flags & SB_RDONLY) && test_opt(sbi, DISABLE_CHECKPOINT)) { 2904 err = -EINVAL; 2905 f2fs_warn(sbi, "disabling checkpoint not compatible with read-only"); 2906 goto restore_opts; 2907 } 2908 2909 /* 2910 * We stop the GC thread if FS is mounted as RO 2911 * or if background_gc = off is passed in mount 2912 * option. Also sync the filesystem. 2913 */ 2914 if ((flags & SB_RDONLY) || 2915 (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF && 2916 !test_opt(sbi, GC_MERGE))) { 2917 if (sbi->gc_thread) { 2918 f2fs_stop_gc_thread(sbi); 2919 need_restart_gc = true; 2920 } 2921 } else if (!sbi->gc_thread) { 2922 err = f2fs_start_gc_thread(sbi); 2923 if (err) 2924 goto restore_opts; 2925 need_stop_gc = true; 2926 } 2927 2928 if (flags & SB_RDONLY) { 2929 sync_inodes_sb(sb); 2930 2931 set_sbi_flag(sbi, SBI_IS_DIRTY); 2932 set_sbi_flag(sbi, SBI_IS_CLOSE); 2933 f2fs_sync_fs(sb, 1); 2934 clear_sbi_flag(sbi, SBI_IS_CLOSE); 2935 } 2936 2937 /* 2938 * We stop issue flush thread if FS is mounted as RO 2939 * or if flush_merge is not passed in mount option. 2940 */ 2941 if ((flags & SB_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) { 2942 clear_opt(sbi, FLUSH_MERGE); 2943 f2fs_destroy_flush_cmd_control(sbi, false); 2944 need_restart_flush = true; 2945 } else { 2946 err = f2fs_create_flush_cmd_control(sbi); 2947 if (err) 2948 goto restore_gc; 2949 need_stop_flush = true; 2950 } 2951 2952 if (no_discard == !!test_opt(sbi, DISCARD)) { 2953 if (test_opt(sbi, DISCARD)) { 2954 err = f2fs_start_discard_thread(sbi); 2955 if (err) 2956 goto restore_flush; 2957 need_stop_discard = true; 2958 } else { 2959 f2fs_stop_discard_thread(sbi); 2960 f2fs_issue_discard_timeout(sbi); 2961 need_restart_discard = true; 2962 } 2963 } 2964 2965 adjust_unusable_cap_perc(sbi); 2966 if (enable_checkpoint == !!test_opt(sbi, DISABLE_CHECKPOINT)) { 2967 if (test_opt(sbi, DISABLE_CHECKPOINT)) { 2968 err = f2fs_disable_checkpoint(sbi); 2969 if (err) 2970 goto restore_discard; 2971 need_enable_checkpoint = true; 2972 } else { 2973 err = f2fs_enable_checkpoint(sbi); 2974 if (err) 2975 goto restore_discard; 2976 need_disable_checkpoint = true; 2977 } 2978 } 2979 2980 /* 2981 * Place this routine at the end, since a new checkpoint would be 2982 * triggered while remount and we need to take care of it before 2983 * returning from remount. 2984 */ 2985 if ((flags & SB_RDONLY) || test_opt(sbi, DISABLE_CHECKPOINT) || 2986 !test_opt(sbi, MERGE_CHECKPOINT)) { 2987 f2fs_stop_ckpt_thread(sbi); 2988 } else { 2989 /* Flush if the previous checkpoint, if exists. */ 2990 f2fs_flush_ckpt_thread(sbi); 2991 2992 err = f2fs_start_ckpt_thread(sbi); 2993 if (err) { 2994 f2fs_err(sbi, 2995 "Failed to start F2FS issue_checkpoint_thread (%d)", 2996 err); 2997 goto restore_checkpoint; 2998 } 2999 } 3000 3001 skip: 3002 #ifdef CONFIG_QUOTA 3003 /* Release old quota file names */ 3004 for (i = 0; i < MAXQUOTAS; i++) 3005 kfree(org_mount_opt.s_qf_names[i]); 3006 #endif 3007 /* Update the POSIXACL Flag */ 3008 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 3009 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0); 3010 3011 limit_reserve_root(sbi); 3012 fc->sb_flags = (flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME); 3013 3014 sbi->umount_lock_holder = NULL; 3015 return 0; 3016 restore_checkpoint: 3017 if (need_enable_checkpoint) { 3018 if (f2fs_enable_checkpoint(sbi)) 3019 f2fs_warn(sbi, "checkpoint has not been enabled"); 3020 } else if (need_disable_checkpoint) { 3021 if (f2fs_disable_checkpoint(sbi)) 3022 f2fs_warn(sbi, "checkpoint has not been disabled"); 3023 } 3024 restore_discard: 3025 if (need_restart_discard) { 3026 if (f2fs_start_discard_thread(sbi)) 3027 f2fs_warn(sbi, "discard has been stopped"); 3028 } else if (need_stop_discard) { 3029 f2fs_stop_discard_thread(sbi); 3030 } 3031 restore_flush: 3032 if (need_restart_flush) { 3033 if (f2fs_create_flush_cmd_control(sbi)) 3034 f2fs_warn(sbi, "background flush thread has stopped"); 3035 } else if (need_stop_flush) { 3036 clear_opt(sbi, FLUSH_MERGE); 3037 f2fs_destroy_flush_cmd_control(sbi, false); 3038 } 3039 restore_gc: 3040 if (need_restart_gc) { 3041 if (f2fs_start_gc_thread(sbi)) 3042 f2fs_warn(sbi, "background gc thread has stopped"); 3043 } else if (need_stop_gc) { 3044 f2fs_stop_gc_thread(sbi); 3045 } 3046 restore_opts: 3047 #ifdef CONFIG_QUOTA 3048 F2FS_OPTION(sbi).s_jquota_fmt = org_mount_opt.s_jquota_fmt; 3049 for (i = 0; i < MAXQUOTAS; i++) { 3050 kfree(F2FS_OPTION(sbi).s_qf_names[i]); 3051 F2FS_OPTION(sbi).s_qf_names[i] = org_mount_opt.s_qf_names[i]; 3052 } 3053 #endif 3054 sbi->mount_opt = org_mount_opt; 3055 sb->s_flags = old_sb_flags; 3056 3057 sbi->umount_lock_holder = NULL; 3058 return err; 3059 } 3060 3061 static void f2fs_shutdown(struct super_block *sb) 3062 { 3063 f2fs_do_shutdown(F2FS_SB(sb), F2FS_GOING_DOWN_NOSYNC, false, false); 3064 } 3065 3066 #ifdef CONFIG_QUOTA 3067 static bool f2fs_need_recovery(struct f2fs_sb_info *sbi) 3068 { 3069 /* need to recovery orphan */ 3070 if (is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG)) 3071 return true; 3072 /* need to recovery data */ 3073 if (test_opt(sbi, DISABLE_ROLL_FORWARD)) 3074 return false; 3075 if (test_opt(sbi, NORECOVERY)) 3076 return false; 3077 return !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG); 3078 } 3079 3080 static bool f2fs_recover_quota_begin(struct f2fs_sb_info *sbi) 3081 { 3082 bool readonly = f2fs_readonly(sbi->sb); 3083 3084 if (!f2fs_need_recovery(sbi)) 3085 return false; 3086 3087 /* it doesn't need to check f2fs_sb_has_readonly() */ 3088 if (f2fs_hw_is_readonly(sbi)) 3089 return false; 3090 3091 if (readonly) { 3092 sbi->sb->s_flags &= ~SB_RDONLY; 3093 set_sbi_flag(sbi, SBI_IS_WRITABLE); 3094 } 3095 3096 /* 3097 * Turn on quotas which were not enabled for read-only mounts if 3098 * filesystem has quota feature, so that they are updated correctly. 3099 */ 3100 return f2fs_enable_quota_files(sbi, readonly); 3101 } 3102 3103 static void f2fs_recover_quota_end(struct f2fs_sb_info *sbi, 3104 bool quota_enabled) 3105 { 3106 if (quota_enabled) 3107 f2fs_quota_off_umount(sbi->sb); 3108 3109 if (is_sbi_flag_set(sbi, SBI_IS_WRITABLE)) { 3110 clear_sbi_flag(sbi, SBI_IS_WRITABLE); 3111 sbi->sb->s_flags |= SB_RDONLY; 3112 } 3113 } 3114 3115 /* Read data from quotafile */ 3116 static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data, 3117 size_t len, loff_t off) 3118 { 3119 struct inode *inode = sb_dqopt(sb)->files[type]; 3120 struct address_space *mapping = inode->i_mapping; 3121 int tocopy; 3122 size_t toread; 3123 loff_t i_size = i_size_read(inode); 3124 3125 if (off > i_size) 3126 return 0; 3127 3128 if (off + len > i_size) 3129 len = i_size - off; 3130 toread = len; 3131 while (toread > 0) { 3132 struct folio *folio; 3133 size_t offset; 3134 3135 repeat: 3136 folio = mapping_read_folio_gfp(mapping, off >> PAGE_SHIFT, 3137 GFP_NOFS); 3138 if (IS_ERR(folio)) { 3139 if (PTR_ERR(folio) == -ENOMEM) { 3140 memalloc_retry_wait(GFP_NOFS); 3141 goto repeat; 3142 } 3143 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 3144 return PTR_ERR(folio); 3145 } 3146 offset = offset_in_folio(folio, off); 3147 tocopy = min(folio_size(folio) - offset, toread); 3148 3149 folio_lock(folio); 3150 3151 if (unlikely(folio->mapping != mapping)) { 3152 f2fs_folio_put(folio, true); 3153 goto repeat; 3154 } 3155 3156 /* 3157 * should never happen, just leave f2fs_bug_on() here to catch 3158 * any potential bug. 3159 */ 3160 f2fs_bug_on(F2FS_SB(sb), !folio_test_uptodate(folio)); 3161 3162 memcpy_from_folio(data, folio, offset, tocopy); 3163 f2fs_folio_put(folio, true); 3164 3165 toread -= tocopy; 3166 data += tocopy; 3167 off += tocopy; 3168 } 3169 return len; 3170 } 3171 3172 /* Write to quotafile */ 3173 static ssize_t f2fs_quota_write(struct super_block *sb, int type, 3174 const char *data, size_t len, loff_t off) 3175 { 3176 struct inode *inode = sb_dqopt(sb)->files[type]; 3177 struct address_space *mapping = inode->i_mapping; 3178 const struct address_space_operations *a_ops = mapping->a_ops; 3179 int offset = off & (sb->s_blocksize - 1); 3180 size_t towrite = len; 3181 struct folio *folio; 3182 void *fsdata = NULL; 3183 int err = 0; 3184 int tocopy; 3185 3186 while (towrite > 0) { 3187 tocopy = min_t(unsigned long, sb->s_blocksize - offset, 3188 towrite); 3189 retry: 3190 err = a_ops->write_begin(NULL, mapping, off, tocopy, 3191 &folio, &fsdata); 3192 if (unlikely(err)) { 3193 if (err == -ENOMEM) { 3194 memalloc_retry_wait(GFP_NOFS); 3195 goto retry; 3196 } 3197 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 3198 break; 3199 } 3200 3201 memcpy_to_folio(folio, offset_in_folio(folio, off), data, tocopy); 3202 3203 a_ops->write_end(NULL, mapping, off, tocopy, tocopy, 3204 folio, fsdata); 3205 offset = 0; 3206 towrite -= tocopy; 3207 off += tocopy; 3208 data += tocopy; 3209 cond_resched(); 3210 } 3211 3212 if (len == towrite) 3213 return err; 3214 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 3215 f2fs_mark_inode_dirty_sync(inode, false); 3216 return len - towrite; 3217 } 3218 3219 int f2fs_dquot_initialize(struct inode *inode) 3220 { 3221 if (time_to_inject(F2FS_I_SB(inode), FAULT_DQUOT_INIT)) 3222 return -ESRCH; 3223 3224 return dquot_initialize(inode); 3225 } 3226 3227 static struct dquot __rcu **f2fs_get_dquots(struct inode *inode) 3228 { 3229 return F2FS_I(inode)->i_dquot; 3230 } 3231 3232 static qsize_t *f2fs_get_reserved_space(struct inode *inode) 3233 { 3234 return &F2FS_I(inode)->i_reserved_quota; 3235 } 3236 3237 static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type) 3238 { 3239 if (is_set_ckpt_flags(sbi, CP_QUOTA_NEED_FSCK_FLAG)) { 3240 f2fs_err(sbi, "quota sysfile may be corrupted, skip loading it"); 3241 return 0; 3242 } 3243 3244 return dquot_quota_on_mount(sbi->sb, F2FS_OPTION(sbi).s_qf_names[type], 3245 F2FS_OPTION(sbi).s_jquota_fmt, type); 3246 } 3247 3248 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly) 3249 { 3250 int enabled = 0; 3251 int i, err; 3252 3253 if (f2fs_sb_has_quota_ino(sbi) && rdonly) { 3254 err = f2fs_enable_quotas(sbi->sb); 3255 if (err) { 3256 f2fs_err(sbi, "Cannot turn on quota_ino: %d", err); 3257 return 0; 3258 } 3259 return 1; 3260 } 3261 3262 for (i = 0; i < MAXQUOTAS; i++) { 3263 if (F2FS_OPTION(sbi).s_qf_names[i]) { 3264 err = f2fs_quota_on_mount(sbi, i); 3265 if (!err) { 3266 enabled = 1; 3267 continue; 3268 } 3269 f2fs_err(sbi, "Cannot turn on quotas: %d on %d", 3270 err, i); 3271 } 3272 } 3273 return enabled; 3274 } 3275 3276 static int f2fs_quota_enable(struct super_block *sb, int type, int format_id, 3277 unsigned int flags, unsigned long qf_inum) 3278 { 3279 struct inode *qf_inode; 3280 unsigned long qf_flag = F2FS_QUOTA_DEFAULT_FL; 3281 int err; 3282 3283 qf_inode = f2fs_iget(sb, qf_inum); 3284 if (IS_ERR(qf_inode)) { 3285 f2fs_err(F2FS_SB(sb), "Bad quota inode %u:%lu", type, qf_inum); 3286 return PTR_ERR(qf_inode); 3287 } 3288 3289 /* Don't account quota for quota files to avoid recursion */ 3290 inode_lock(qf_inode); 3291 qf_inode->i_flags |= S_NOQUOTA; 3292 3293 if ((F2FS_I(qf_inode)->i_flags & qf_flag) != qf_flag) { 3294 F2FS_I(qf_inode)->i_flags |= qf_flag; 3295 f2fs_set_inode_flags(qf_inode); 3296 } 3297 inode_unlock(qf_inode); 3298 3299 err = dquot_load_quota_inode(qf_inode, type, format_id, flags); 3300 iput(qf_inode); 3301 return err; 3302 } 3303 3304 static int f2fs_enable_quotas(struct super_block *sb) 3305 { 3306 struct f2fs_sb_info *sbi = F2FS_SB(sb); 3307 int type, err = 0; 3308 unsigned long qf_inum; 3309 bool quota_mopt[MAXQUOTAS] = { 3310 test_opt(sbi, USRQUOTA), 3311 test_opt(sbi, GRPQUOTA), 3312 test_opt(sbi, PRJQUOTA), 3313 }; 3314 3315 if (is_set_ckpt_flags(sbi, CP_QUOTA_NEED_FSCK_FLAG)) { 3316 f2fs_err(sbi, "quota file may be corrupted, skip loading it"); 3317 return 0; 3318 } 3319 3320 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE; 3321 3322 for (type = 0; type < MAXQUOTAS; type++) { 3323 qf_inum = f2fs_qf_ino(sb, type); 3324 if (qf_inum) { 3325 err = f2fs_quota_enable(sb, type, QFMT_VFS_V1, 3326 DQUOT_USAGE_ENABLED | 3327 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0), qf_inum); 3328 if (err) { 3329 f2fs_err(sbi, "Failed to enable quota tracking (type=%d, err=%d). Please run fsck to fix.", 3330 type, err); 3331 for (type--; type >= 0; type--) 3332 dquot_quota_off(sb, type); 3333 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 3334 return err; 3335 } 3336 } 3337 } 3338 return 0; 3339 } 3340 3341 static int f2fs_quota_sync_file(struct f2fs_sb_info *sbi, int type) 3342 { 3343 struct quota_info *dqopt = sb_dqopt(sbi->sb); 3344 struct address_space *mapping = dqopt->files[type]->i_mapping; 3345 int ret = 0; 3346 3347 ret = dquot_writeback_dquots(sbi->sb, type); 3348 if (ret) 3349 goto out; 3350 3351 ret = filemap_fdatawrite(mapping); 3352 if (ret) 3353 goto out; 3354 3355 /* if we are using journalled quota */ 3356 if (is_journalled_quota(sbi)) 3357 goto out; 3358 3359 ret = filemap_fdatawait(mapping); 3360 3361 truncate_inode_pages(&dqopt->files[type]->i_data, 0); 3362 out: 3363 if (ret) 3364 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 3365 return ret; 3366 } 3367 3368 int f2fs_do_quota_sync(struct super_block *sb, int type) 3369 { 3370 struct f2fs_sb_info *sbi = F2FS_SB(sb); 3371 struct quota_info *dqopt = sb_dqopt(sb); 3372 int cnt; 3373 int ret = 0; 3374 3375 /* 3376 * Now when everything is written we can discard the pagecache so 3377 * that userspace sees the changes. 3378 */ 3379 for (cnt = 0; cnt < MAXQUOTAS; cnt++) { 3380 struct f2fs_lock_context lc; 3381 3382 if (type != -1 && cnt != type) 3383 continue; 3384 3385 if (!sb_has_quota_active(sb, cnt)) 3386 continue; 3387 3388 if (!f2fs_sb_has_quota_ino(sbi)) 3389 inode_lock(dqopt->files[cnt]); 3390 3391 /* 3392 * do_quotactl 3393 * f2fs_quota_sync 3394 * f2fs_down_read(quota_sem) 3395 * dquot_writeback_dquots() 3396 * f2fs_dquot_commit 3397 * block_operation 3398 * f2fs_down_read(quota_sem) 3399 */ 3400 f2fs_lock_op(sbi, &lc); 3401 f2fs_down_read(&sbi->quota_sem); 3402 3403 ret = f2fs_quota_sync_file(sbi, cnt); 3404 3405 f2fs_up_read(&sbi->quota_sem); 3406 f2fs_unlock_op(sbi, &lc); 3407 3408 if (!f2fs_sb_has_quota_ino(sbi)) 3409 inode_unlock(dqopt->files[cnt]); 3410 3411 if (ret) 3412 break; 3413 } 3414 return ret; 3415 } 3416 3417 static int f2fs_quota_sync(struct super_block *sb, int type) 3418 { 3419 int ret; 3420 3421 F2FS_SB(sb)->umount_lock_holder = current; 3422 ret = f2fs_do_quota_sync(sb, type); 3423 F2FS_SB(sb)->umount_lock_holder = NULL; 3424 return ret; 3425 } 3426 3427 static int f2fs_quota_on(struct super_block *sb, int type, int format_id, 3428 const struct path *path) 3429 { 3430 struct inode *inode; 3431 int err = 0; 3432 3433 /* if quota sysfile exists, deny enabling quota with specific file */ 3434 if (f2fs_sb_has_quota_ino(F2FS_SB(sb))) { 3435 f2fs_err(F2FS_SB(sb), "quota sysfile already exists"); 3436 return -EBUSY; 3437 } 3438 3439 if (path->dentry->d_sb != sb) 3440 return -EXDEV; 3441 3442 F2FS_SB(sb)->umount_lock_holder = current; 3443 3444 err = f2fs_do_quota_sync(sb, type); 3445 if (err) 3446 goto out; 3447 3448 inode = d_inode(path->dentry); 3449 3450 err = filemap_fdatawrite(inode->i_mapping); 3451 if (err) 3452 goto out; 3453 3454 err = filemap_fdatawait(inode->i_mapping); 3455 if (err) 3456 goto out; 3457 3458 err = dquot_quota_on(sb, type, format_id, path); 3459 if (err) 3460 goto out; 3461 3462 inode_lock(inode); 3463 F2FS_I(inode)->i_flags |= F2FS_QUOTA_DEFAULT_FL; 3464 f2fs_set_inode_flags(inode); 3465 inode_unlock(inode); 3466 f2fs_mark_inode_dirty_sync(inode, false); 3467 out: 3468 F2FS_SB(sb)->umount_lock_holder = NULL; 3469 return err; 3470 } 3471 3472 static int __f2fs_quota_off(struct super_block *sb, int type) 3473 { 3474 struct inode *inode = sb_dqopt(sb)->files[type]; 3475 int err; 3476 3477 if (!inode || !igrab(inode)) 3478 return dquot_quota_off(sb, type); 3479 3480 err = f2fs_do_quota_sync(sb, type); 3481 if (err) 3482 goto out_put; 3483 3484 err = dquot_quota_off(sb, type); 3485 if (err || f2fs_sb_has_quota_ino(F2FS_SB(sb))) 3486 goto out_put; 3487 3488 inode_lock(inode); 3489 F2FS_I(inode)->i_flags &= ~F2FS_QUOTA_DEFAULT_FL; 3490 f2fs_set_inode_flags(inode); 3491 inode_unlock(inode); 3492 f2fs_mark_inode_dirty_sync(inode, false); 3493 out_put: 3494 iput(inode); 3495 return err; 3496 } 3497 3498 static int f2fs_quota_off(struct super_block *sb, int type) 3499 { 3500 struct f2fs_sb_info *sbi = F2FS_SB(sb); 3501 int err; 3502 3503 F2FS_SB(sb)->umount_lock_holder = current; 3504 3505 err = __f2fs_quota_off(sb, type); 3506 3507 /* 3508 * quotactl can shutdown journalled quota, result in inconsistence 3509 * between quota record and fs data by following updates, tag the 3510 * flag to let fsck be aware of it. 3511 */ 3512 if (is_journalled_quota(sbi)) 3513 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 3514 3515 F2FS_SB(sb)->umount_lock_holder = NULL; 3516 3517 return err; 3518 } 3519 3520 void f2fs_quota_off_umount(struct super_block *sb) 3521 { 3522 int type; 3523 int err; 3524 3525 for (type = 0; type < MAXQUOTAS; type++) { 3526 err = __f2fs_quota_off(sb, type); 3527 if (err) { 3528 int ret = dquot_quota_off(sb, type); 3529 3530 f2fs_err(F2FS_SB(sb), "Fail to turn off disk quota (type: %d, err: %d, ret:%d), Please run fsck to fix it.", 3531 type, err, ret); 3532 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 3533 } 3534 } 3535 /* 3536 * In case of checkpoint=disable, we must flush quota blocks. 3537 * This can cause NULL exception for node_inode in end_io, since 3538 * put_super already dropped it. 3539 */ 3540 sync_filesystem(sb); 3541 } 3542 3543 static void f2fs_truncate_quota_inode_pages(struct super_block *sb) 3544 { 3545 struct quota_info *dqopt = sb_dqopt(sb); 3546 int type; 3547 3548 for (type = 0; type < MAXQUOTAS; type++) { 3549 if (!dqopt->files[type]) 3550 continue; 3551 f2fs_inode_synced(dqopt->files[type]); 3552 } 3553 } 3554 3555 static int f2fs_dquot_commit(struct dquot *dquot) 3556 { 3557 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb); 3558 int ret; 3559 3560 f2fs_down_read_nested(&sbi->quota_sem, SINGLE_DEPTH_NESTING); 3561 ret = dquot_commit(dquot); 3562 if (ret < 0) 3563 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 3564 f2fs_up_read(&sbi->quota_sem); 3565 return ret; 3566 } 3567 3568 static int f2fs_dquot_acquire(struct dquot *dquot) 3569 { 3570 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb); 3571 int ret; 3572 3573 f2fs_down_read(&sbi->quota_sem); 3574 ret = dquot_acquire(dquot); 3575 if (ret < 0) 3576 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 3577 f2fs_up_read(&sbi->quota_sem); 3578 return ret; 3579 } 3580 3581 static int f2fs_dquot_release(struct dquot *dquot) 3582 { 3583 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb); 3584 int ret = dquot_release(dquot); 3585 3586 if (ret < 0) 3587 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 3588 return ret; 3589 } 3590 3591 static int f2fs_dquot_mark_dquot_dirty(struct dquot *dquot) 3592 { 3593 struct super_block *sb = dquot->dq_sb; 3594 struct f2fs_sb_info *sbi = F2FS_SB(sb); 3595 int ret = dquot_mark_dquot_dirty(dquot); 3596 3597 /* if we are using journalled quota */ 3598 if (is_journalled_quota(sbi)) 3599 set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH); 3600 3601 return ret; 3602 } 3603 3604 static int f2fs_dquot_commit_info(struct super_block *sb, int type) 3605 { 3606 struct f2fs_sb_info *sbi = F2FS_SB(sb); 3607 int ret = dquot_commit_info(sb, type); 3608 3609 if (ret < 0) 3610 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 3611 return ret; 3612 } 3613 3614 static int f2fs_get_projid(struct inode *inode, kprojid_t *projid) 3615 { 3616 *projid = F2FS_I(inode)->i_projid; 3617 return 0; 3618 } 3619 3620 static const struct dquot_operations f2fs_quota_operations = { 3621 .get_reserved_space = f2fs_get_reserved_space, 3622 .write_dquot = f2fs_dquot_commit, 3623 .acquire_dquot = f2fs_dquot_acquire, 3624 .release_dquot = f2fs_dquot_release, 3625 .mark_dirty = f2fs_dquot_mark_dquot_dirty, 3626 .write_info = f2fs_dquot_commit_info, 3627 .alloc_dquot = dquot_alloc, 3628 .destroy_dquot = dquot_destroy, 3629 .get_projid = f2fs_get_projid, 3630 .get_next_id = dquot_get_next_id, 3631 }; 3632 3633 static const struct quotactl_ops f2fs_quotactl_ops = { 3634 .quota_on = f2fs_quota_on, 3635 .quota_off = f2fs_quota_off, 3636 .quota_sync = f2fs_quota_sync, 3637 .get_state = dquot_get_state, 3638 .set_info = dquot_set_dqinfo, 3639 .get_dqblk = dquot_get_dqblk, 3640 .set_dqblk = dquot_set_dqblk, 3641 .get_nextdqblk = dquot_get_next_dqblk, 3642 }; 3643 #else 3644 int f2fs_dquot_initialize(struct inode *inode) 3645 { 3646 return 0; 3647 } 3648 3649 int f2fs_do_quota_sync(struct super_block *sb, int type) 3650 { 3651 return 0; 3652 } 3653 3654 void f2fs_quota_off_umount(struct super_block *sb) 3655 { 3656 } 3657 #endif 3658 3659 static const struct super_operations f2fs_sops = { 3660 .alloc_inode = f2fs_alloc_inode, 3661 .free_inode = f2fs_free_inode, 3662 .drop_inode = f2fs_drop_inode, 3663 .write_inode = f2fs_write_inode, 3664 .dirty_inode = f2fs_dirty_inode, 3665 .show_options = f2fs_show_options, 3666 #ifdef CONFIG_QUOTA 3667 .quota_read = f2fs_quota_read, 3668 .quota_write = f2fs_quota_write, 3669 .get_dquots = f2fs_get_dquots, 3670 #endif 3671 .evict_inode = f2fs_evict_inode, 3672 .put_super = f2fs_put_super, 3673 .sync_fs = f2fs_sync_fs, 3674 .freeze_fs = f2fs_freeze, 3675 .unfreeze_fs = f2fs_unfreeze, 3676 .statfs = f2fs_statfs, 3677 .shutdown = f2fs_shutdown, 3678 }; 3679 3680 #ifdef CONFIG_FS_ENCRYPTION 3681 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len) 3682 { 3683 return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION, 3684 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, 3685 ctx, len, NULL); 3686 } 3687 3688 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len, 3689 void *fs_data) 3690 { 3691 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3692 3693 /* 3694 * Encrypting the root directory is not allowed because fsck 3695 * expects lost+found directory to exist and remain unencrypted 3696 * if LOST_FOUND feature is enabled. 3697 * 3698 */ 3699 if (f2fs_sb_has_lost_found(sbi) && 3700 inode->i_ino == F2FS_ROOT_INO(sbi)) 3701 return -EPERM; 3702 3703 return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION, 3704 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, 3705 ctx, len, fs_data, XATTR_CREATE); 3706 } 3707 3708 static const union fscrypt_policy *f2fs_get_dummy_policy(struct super_block *sb) 3709 { 3710 return F2FS_OPTION(F2FS_SB(sb)).dummy_enc_policy.policy; 3711 } 3712 3713 static bool f2fs_has_stable_inodes(struct super_block *sb) 3714 { 3715 return true; 3716 } 3717 3718 static struct block_device **f2fs_get_devices(struct super_block *sb, 3719 unsigned int *num_devs) 3720 { 3721 struct f2fs_sb_info *sbi = F2FS_SB(sb); 3722 struct block_device **devs; 3723 int i; 3724 3725 if (!f2fs_is_multi_device(sbi)) 3726 return NULL; 3727 3728 devs = kmalloc_array(sbi->s_ndevs, sizeof(*devs), GFP_KERNEL); 3729 if (!devs) 3730 return ERR_PTR(-ENOMEM); 3731 3732 for (i = 0; i < sbi->s_ndevs; i++) 3733 devs[i] = FDEV(i).bdev; 3734 *num_devs = sbi->s_ndevs; 3735 return devs; 3736 } 3737 3738 static const struct fscrypt_operations f2fs_cryptops = { 3739 .inode_info_offs = (int)offsetof(struct f2fs_inode_info, i_crypt_info) - 3740 (int)offsetof(struct f2fs_inode_info, vfs_inode), 3741 .needs_bounce_pages = 1, 3742 .has_32bit_inodes = 1, 3743 .supports_subblock_data_units = 1, 3744 .legacy_key_prefix = "f2fs:", 3745 .get_context = f2fs_get_context, 3746 .set_context = f2fs_set_context, 3747 .get_dummy_policy = f2fs_get_dummy_policy, 3748 .empty_dir = f2fs_empty_dir, 3749 .has_stable_inodes = f2fs_has_stable_inodes, 3750 .get_devices = f2fs_get_devices, 3751 }; 3752 #endif /* CONFIG_FS_ENCRYPTION */ 3753 3754 static struct inode *f2fs_nfs_get_inode(struct super_block *sb, 3755 u64 ino, u32 generation) 3756 { 3757 struct f2fs_sb_info *sbi = F2FS_SB(sb); 3758 struct inode *inode; 3759 3760 if (f2fs_check_nid_range(sbi, ino)) 3761 return ERR_PTR(-ESTALE); 3762 3763 /* 3764 * f2fs_iget isn't quite right if the inode is currently unallocated! 3765 * However f2fs_iget currently does appropriate checks to handle stale 3766 * inodes so everything is OK. 3767 */ 3768 inode = f2fs_iget(sb, ino); 3769 if (IS_ERR(inode)) 3770 return ERR_CAST(inode); 3771 if (unlikely(generation && inode->i_generation != generation)) { 3772 /* we didn't find the right inode.. */ 3773 iput(inode); 3774 return ERR_PTR(-ESTALE); 3775 } 3776 return inode; 3777 } 3778 3779 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid, 3780 int fh_len, int fh_type) 3781 { 3782 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 3783 f2fs_nfs_get_inode); 3784 } 3785 3786 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid, 3787 int fh_len, int fh_type) 3788 { 3789 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 3790 f2fs_nfs_get_inode); 3791 } 3792 3793 static const struct export_operations f2fs_export_ops = { 3794 .encode_fh = generic_encode_ino32_fh, 3795 .fh_to_dentry = f2fs_fh_to_dentry, 3796 .fh_to_parent = f2fs_fh_to_parent, 3797 .get_parent = f2fs_get_parent, 3798 }; 3799 3800 loff_t max_file_blocks(struct inode *inode) 3801 { 3802 loff_t result = 0; 3803 loff_t leaf_count; 3804 3805 /* 3806 * note: previously, result is equal to (DEF_ADDRS_PER_INODE - 3807 * DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more 3808 * space in inode.i_addr, it will be more safe to reassign 3809 * result as zero. 3810 */ 3811 3812 if (inode && f2fs_compressed_file(inode)) 3813 leaf_count = ADDRS_PER_BLOCK(inode); 3814 else 3815 leaf_count = DEF_ADDRS_PER_BLOCK; 3816 3817 /* two direct node blocks */ 3818 result += (leaf_count * 2); 3819 3820 /* two indirect node blocks */ 3821 leaf_count *= NIDS_PER_BLOCK; 3822 result += (leaf_count * 2); 3823 3824 /* one double indirect node block */ 3825 leaf_count *= NIDS_PER_BLOCK; 3826 result += leaf_count; 3827 3828 /* 3829 * For compatibility with FSCRYPT_POLICY_FLAG_IV_INO_LBLK_{64,32} with 3830 * a 4K crypto data unit, we must restrict the max filesize to what can 3831 * fit within U32_MAX + 1 data units. 3832 */ 3833 3834 result = umin(result, F2FS_BYTES_TO_BLK(((loff_t)U32_MAX + 1) * 4096)); 3835 3836 return result; 3837 } 3838 3839 static int __f2fs_commit_super(struct f2fs_sb_info *sbi, struct folio *folio, 3840 pgoff_t index, bool update) 3841 { 3842 struct bio *bio; 3843 /* it's rare case, we can do fua all the time */ 3844 blk_opf_t opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH | REQ_FUA; 3845 int ret; 3846 3847 folio_lock(folio); 3848 folio_wait_writeback(folio); 3849 if (update) 3850 memcpy(F2FS_SUPER_BLOCK(folio, index), F2FS_RAW_SUPER(sbi), 3851 sizeof(struct f2fs_super_block)); 3852 folio_mark_dirty(folio); 3853 folio_clear_dirty_for_io(folio); 3854 folio_start_writeback(folio); 3855 folio_unlock(folio); 3856 3857 bio = bio_alloc(sbi->sb->s_bdev, 1, opf, GFP_NOFS); 3858 3859 /* it doesn't need to set crypto context for superblock update */ 3860 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(folio->index); 3861 3862 if (!bio_add_folio(bio, folio, folio_size(folio), 0)) 3863 f2fs_bug_on(sbi, 1); 3864 3865 ret = submit_bio_wait(bio); 3866 bio_put(bio); 3867 folio_end_writeback(folio); 3868 3869 return ret; 3870 } 3871 3872 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi, 3873 struct folio *folio, pgoff_t index) 3874 { 3875 struct f2fs_super_block *raw_super = F2FS_SUPER_BLOCK(folio, index); 3876 struct super_block *sb = sbi->sb; 3877 u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 3878 u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr); 3879 u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr); 3880 u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr); 3881 u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 3882 u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 3883 u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt); 3884 u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit); 3885 u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat); 3886 u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa); 3887 u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main); 3888 u32 segment_count = le32_to_cpu(raw_super->segment_count); 3889 u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 3890 u64 main_end_blkaddr = main_blkaddr + 3891 ((u64)segment_count_main << log_blocks_per_seg); 3892 u64 seg_end_blkaddr = segment0_blkaddr + 3893 ((u64)segment_count << log_blocks_per_seg); 3894 3895 if (segment0_blkaddr != cp_blkaddr) { 3896 f2fs_info(sbi, "Mismatch start address, segment0(%u) cp_blkaddr(%u)", 3897 segment0_blkaddr, cp_blkaddr); 3898 return true; 3899 } 3900 3901 if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) != 3902 sit_blkaddr) { 3903 f2fs_info(sbi, "Wrong CP boundary, start(%u) end(%u) blocks(%u)", 3904 cp_blkaddr, sit_blkaddr, 3905 segment_count_ckpt << log_blocks_per_seg); 3906 return true; 3907 } 3908 3909 if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) != 3910 nat_blkaddr) { 3911 f2fs_info(sbi, "Wrong SIT boundary, start(%u) end(%u) blocks(%u)", 3912 sit_blkaddr, nat_blkaddr, 3913 segment_count_sit << log_blocks_per_seg); 3914 return true; 3915 } 3916 3917 if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) != 3918 ssa_blkaddr) { 3919 f2fs_info(sbi, "Wrong NAT boundary, start(%u) end(%u) blocks(%u)", 3920 nat_blkaddr, ssa_blkaddr, 3921 segment_count_nat << log_blocks_per_seg); 3922 return true; 3923 } 3924 3925 if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) != 3926 main_blkaddr) { 3927 f2fs_info(sbi, "Wrong SSA boundary, start(%u) end(%u) blocks(%u)", 3928 ssa_blkaddr, main_blkaddr, 3929 segment_count_ssa << log_blocks_per_seg); 3930 return true; 3931 } 3932 3933 if (main_end_blkaddr > seg_end_blkaddr) { 3934 f2fs_info(sbi, "Wrong MAIN_AREA boundary, start(%u) end(%llu) block(%u)", 3935 main_blkaddr, seg_end_blkaddr, 3936 segment_count_main << log_blocks_per_seg); 3937 return true; 3938 } else if (main_end_blkaddr < seg_end_blkaddr) { 3939 int err = 0; 3940 char *res; 3941 3942 /* fix in-memory information all the time */ 3943 raw_super->segment_count = cpu_to_le32((main_end_blkaddr - 3944 segment0_blkaddr) >> log_blocks_per_seg); 3945 3946 if (f2fs_readonly(sb) || f2fs_hw_is_readonly(sbi)) { 3947 set_sbi_flag(sbi, SBI_NEED_SB_WRITE); 3948 res = "internally"; 3949 } else { 3950 err = __f2fs_commit_super(sbi, folio, index, false); 3951 res = err ? "failed" : "done"; 3952 } 3953 f2fs_info(sbi, "Fix alignment : %s, start(%u) end(%llu) block(%u)", 3954 res, main_blkaddr, seg_end_blkaddr, 3955 segment_count_main << log_blocks_per_seg); 3956 if (err) 3957 return true; 3958 } 3959 return false; 3960 } 3961 3962 static int sanity_check_raw_super(struct f2fs_sb_info *sbi, 3963 struct folio *folio, pgoff_t index) 3964 { 3965 block_t segment_count, segs_per_sec, secs_per_zone, segment_count_main; 3966 block_t total_sections, blocks_per_seg; 3967 struct f2fs_super_block *raw_super = F2FS_SUPER_BLOCK(folio, index); 3968 size_t crc_offset = 0; 3969 __u32 crc = 0; 3970 3971 if (le32_to_cpu(raw_super->magic) != F2FS_SUPER_MAGIC) { 3972 f2fs_info(sbi, "Magic Mismatch, valid(0x%x) - read(0x%x)", 3973 F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic)); 3974 return -EINVAL; 3975 } 3976 3977 /* Check checksum_offset and crc in superblock */ 3978 if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_SB_CHKSUM)) { 3979 crc_offset = le32_to_cpu(raw_super->checksum_offset); 3980 if (crc_offset != 3981 offsetof(struct f2fs_super_block, crc)) { 3982 f2fs_info(sbi, "Invalid SB checksum offset: %zu", 3983 crc_offset); 3984 return -EFSCORRUPTED; 3985 } 3986 crc = le32_to_cpu(raw_super->crc); 3987 if (crc != f2fs_crc32(raw_super, crc_offset)) { 3988 f2fs_info(sbi, "Invalid SB checksum value: %u", crc); 3989 return -EFSCORRUPTED; 3990 } 3991 } 3992 3993 /* only support block_size equals to PAGE_SIZE */ 3994 if (le32_to_cpu(raw_super->log_blocksize) != F2FS_BLKSIZE_BITS) { 3995 f2fs_info(sbi, "Invalid log_blocksize (%u), supports only %u", 3996 le32_to_cpu(raw_super->log_blocksize), 3997 F2FS_BLKSIZE_BITS); 3998 return -EFSCORRUPTED; 3999 } 4000 4001 /* check log blocks per segment */ 4002 if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) { 4003 f2fs_info(sbi, "Invalid log blocks per segment (%u)", 4004 le32_to_cpu(raw_super->log_blocks_per_seg)); 4005 return -EFSCORRUPTED; 4006 } 4007 4008 /* Currently, support 512/1024/2048/4096/16K bytes sector size */ 4009 if (le32_to_cpu(raw_super->log_sectorsize) > 4010 F2FS_MAX_LOG_SECTOR_SIZE || 4011 le32_to_cpu(raw_super->log_sectorsize) < 4012 F2FS_MIN_LOG_SECTOR_SIZE) { 4013 f2fs_info(sbi, "Invalid log sectorsize (%u)", 4014 le32_to_cpu(raw_super->log_sectorsize)); 4015 return -EFSCORRUPTED; 4016 } 4017 if (le32_to_cpu(raw_super->log_sectors_per_block) + 4018 le32_to_cpu(raw_super->log_sectorsize) != 4019 F2FS_MAX_LOG_SECTOR_SIZE) { 4020 f2fs_info(sbi, "Invalid log sectors per block(%u) log sectorsize(%u)", 4021 le32_to_cpu(raw_super->log_sectors_per_block), 4022 le32_to_cpu(raw_super->log_sectorsize)); 4023 return -EFSCORRUPTED; 4024 } 4025 4026 segment_count = le32_to_cpu(raw_super->segment_count); 4027 segment_count_main = le32_to_cpu(raw_super->segment_count_main); 4028 segs_per_sec = le32_to_cpu(raw_super->segs_per_sec); 4029 secs_per_zone = le32_to_cpu(raw_super->secs_per_zone); 4030 total_sections = le32_to_cpu(raw_super->section_count); 4031 4032 /* blocks_per_seg should be 512, given the above check */ 4033 blocks_per_seg = BIT(le32_to_cpu(raw_super->log_blocks_per_seg)); 4034 4035 if (segment_count > F2FS_MAX_SEGMENT || 4036 segment_count < F2FS_MIN_SEGMENTS) { 4037 f2fs_info(sbi, "Invalid segment count (%u)", segment_count); 4038 return -EFSCORRUPTED; 4039 } 4040 4041 if (total_sections > segment_count_main || total_sections < 1 || 4042 segs_per_sec > segment_count || !segs_per_sec) { 4043 f2fs_info(sbi, "Invalid segment/section count (%u, %u x %u)", 4044 segment_count, total_sections, segs_per_sec); 4045 return -EFSCORRUPTED; 4046 } 4047 4048 if (segment_count_main != total_sections * segs_per_sec) { 4049 f2fs_info(sbi, "Invalid segment/section count (%u != %u * %u)", 4050 segment_count_main, total_sections, segs_per_sec); 4051 return -EFSCORRUPTED; 4052 } 4053 4054 if ((segment_count / segs_per_sec) < total_sections) { 4055 f2fs_info(sbi, "Small segment_count (%u < %u * %u)", 4056 segment_count, segs_per_sec, total_sections); 4057 return -EFSCORRUPTED; 4058 } 4059 4060 if (segment_count > (le64_to_cpu(raw_super->block_count) >> 9)) { 4061 f2fs_info(sbi, "Wrong segment_count / block_count (%u > %llu)", 4062 segment_count, le64_to_cpu(raw_super->block_count)); 4063 return -EFSCORRUPTED; 4064 } 4065 4066 if (RDEV(0).path[0]) { 4067 block_t dev_seg_count = le32_to_cpu(RDEV(0).total_segments); 4068 int i = 1; 4069 4070 while (i < MAX_DEVICES && RDEV(i).path[0]) { 4071 dev_seg_count += le32_to_cpu(RDEV(i).total_segments); 4072 i++; 4073 } 4074 if (segment_count != dev_seg_count) { 4075 f2fs_info(sbi, "Segment count (%u) mismatch with total segments from devices (%u)", 4076 segment_count, dev_seg_count); 4077 return -EFSCORRUPTED; 4078 } 4079 } else { 4080 if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_BLKZONED) && 4081 !bdev_is_zoned(sbi->sb->s_bdev)) { 4082 f2fs_info(sbi, "Zoned block device path is missing"); 4083 return -EFSCORRUPTED; 4084 } 4085 } 4086 4087 if (secs_per_zone > total_sections || !secs_per_zone) { 4088 f2fs_info(sbi, "Wrong secs_per_zone / total_sections (%u, %u)", 4089 secs_per_zone, total_sections); 4090 return -EFSCORRUPTED; 4091 } 4092 if (le32_to_cpu(raw_super->extension_count) > F2FS_MAX_EXTENSION || 4093 raw_super->hot_ext_count > F2FS_MAX_EXTENSION || 4094 (le32_to_cpu(raw_super->extension_count) + 4095 raw_super->hot_ext_count) > F2FS_MAX_EXTENSION) { 4096 f2fs_info(sbi, "Corrupted extension count (%u + %u > %u)", 4097 le32_to_cpu(raw_super->extension_count), 4098 raw_super->hot_ext_count, 4099 F2FS_MAX_EXTENSION); 4100 return -EFSCORRUPTED; 4101 } 4102 4103 if (le32_to_cpu(raw_super->cp_payload) >= 4104 (blocks_per_seg - F2FS_CP_PACKS - 4105 NR_CURSEG_PERSIST_TYPE)) { 4106 f2fs_info(sbi, "Insane cp_payload (%u >= %u)", 4107 le32_to_cpu(raw_super->cp_payload), 4108 blocks_per_seg - F2FS_CP_PACKS - 4109 NR_CURSEG_PERSIST_TYPE); 4110 return -EFSCORRUPTED; 4111 } 4112 4113 /* check reserved ino info */ 4114 if (le32_to_cpu(raw_super->node_ino) != 1 || 4115 le32_to_cpu(raw_super->meta_ino) != 2 || 4116 le32_to_cpu(raw_super->root_ino) != 3) { 4117 f2fs_info(sbi, "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)", 4118 le32_to_cpu(raw_super->node_ino), 4119 le32_to_cpu(raw_super->meta_ino), 4120 le32_to_cpu(raw_super->root_ino)); 4121 return -EFSCORRUPTED; 4122 } 4123 4124 /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */ 4125 if (sanity_check_area_boundary(sbi, folio, index)) 4126 return -EFSCORRUPTED; 4127 4128 return 0; 4129 } 4130 4131 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi) 4132 { 4133 unsigned int total, fsmeta; 4134 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 4135 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 4136 unsigned int ovp_segments, reserved_segments; 4137 unsigned int main_segs, blocks_per_seg; 4138 unsigned int sit_segs, nat_segs; 4139 unsigned int sit_bitmap_size, nat_bitmap_size; 4140 unsigned int log_blocks_per_seg; 4141 unsigned int segment_count_main; 4142 unsigned int cp_pack_start_sum, cp_payload; 4143 block_t user_block_count, valid_user_blocks; 4144 block_t avail_node_count, valid_node_count; 4145 unsigned int nat_blocks, nat_bits_bytes, nat_bits_blocks; 4146 unsigned int sit_blk_cnt; 4147 int i, j; 4148 4149 total = le32_to_cpu(raw_super->segment_count); 4150 fsmeta = le32_to_cpu(raw_super->segment_count_ckpt); 4151 sit_segs = le32_to_cpu(raw_super->segment_count_sit); 4152 fsmeta += sit_segs; 4153 nat_segs = le32_to_cpu(raw_super->segment_count_nat); 4154 fsmeta += nat_segs; 4155 fsmeta += le32_to_cpu(ckpt->rsvd_segment_count); 4156 fsmeta += le32_to_cpu(raw_super->segment_count_ssa); 4157 4158 if (unlikely(fsmeta >= total)) 4159 return 1; 4160 4161 ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 4162 reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 4163 4164 if (!f2fs_sb_has_readonly(sbi) && 4165 unlikely(fsmeta < F2FS_MIN_META_SEGMENTS || 4166 ovp_segments == 0 || reserved_segments == 0)) { 4167 f2fs_err(sbi, "Wrong layout: check mkfs.f2fs version"); 4168 return 1; 4169 } 4170 user_block_count = le64_to_cpu(ckpt->user_block_count); 4171 segment_count_main = le32_to_cpu(raw_super->segment_count_main) + 4172 (f2fs_sb_has_readonly(sbi) ? 1 : 0); 4173 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 4174 if (!user_block_count || user_block_count >= 4175 segment_count_main << log_blocks_per_seg) { 4176 f2fs_err(sbi, "Wrong user_block_count: %u", 4177 user_block_count); 4178 return 1; 4179 } 4180 4181 valid_user_blocks = le64_to_cpu(ckpt->valid_block_count); 4182 if (valid_user_blocks > user_block_count) { 4183 f2fs_err(sbi, "Wrong valid_user_blocks: %u, user_block_count: %u", 4184 valid_user_blocks, user_block_count); 4185 return 1; 4186 } 4187 4188 valid_node_count = le32_to_cpu(ckpt->valid_node_count); 4189 avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM; 4190 if (valid_node_count > avail_node_count) { 4191 f2fs_err(sbi, "Wrong valid_node_count: %u, avail_node_count: %u", 4192 valid_node_count, avail_node_count); 4193 return 1; 4194 } 4195 4196 main_segs = le32_to_cpu(raw_super->segment_count_main); 4197 blocks_per_seg = BLKS_PER_SEG(sbi); 4198 4199 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 4200 if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs || 4201 le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg) 4202 return 1; 4203 4204 if (f2fs_sb_has_readonly(sbi)) 4205 goto check_data; 4206 4207 for (j = i + 1; j < NR_CURSEG_NODE_TYPE; j++) { 4208 if (le32_to_cpu(ckpt->cur_node_segno[i]) == 4209 le32_to_cpu(ckpt->cur_node_segno[j])) { 4210 f2fs_err(sbi, "Node segment (%u, %u) has the same segno: %u", 4211 i, j, 4212 le32_to_cpu(ckpt->cur_node_segno[i])); 4213 return 1; 4214 } 4215 } 4216 } 4217 check_data: 4218 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) { 4219 if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs || 4220 le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg) 4221 return 1; 4222 4223 if (f2fs_sb_has_readonly(sbi)) 4224 goto skip_cross; 4225 4226 for (j = i + 1; j < NR_CURSEG_DATA_TYPE; j++) { 4227 if (le32_to_cpu(ckpt->cur_data_segno[i]) == 4228 le32_to_cpu(ckpt->cur_data_segno[j])) { 4229 f2fs_err(sbi, "Data segment (%u, %u) has the same segno: %u", 4230 i, j, 4231 le32_to_cpu(ckpt->cur_data_segno[i])); 4232 return 1; 4233 } 4234 } 4235 } 4236 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 4237 for (j = 0; j < NR_CURSEG_DATA_TYPE; j++) { 4238 if (le32_to_cpu(ckpt->cur_node_segno[i]) == 4239 le32_to_cpu(ckpt->cur_data_segno[j])) { 4240 f2fs_err(sbi, "Node segment (%u) and Data segment (%u) has the same segno: %u", 4241 i, j, 4242 le32_to_cpu(ckpt->cur_node_segno[i])); 4243 return 1; 4244 } 4245 } 4246 } 4247 skip_cross: 4248 sit_bitmap_size = le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); 4249 nat_bitmap_size = le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); 4250 4251 if (sit_bitmap_size != ((sit_segs / 2) << log_blocks_per_seg) / 8 || 4252 nat_bitmap_size != ((nat_segs / 2) << log_blocks_per_seg) / 8) { 4253 f2fs_err(sbi, "Wrong bitmap size: sit: %u, nat:%u", 4254 sit_bitmap_size, nat_bitmap_size); 4255 return 1; 4256 } 4257 4258 sit_blk_cnt = DIV_ROUND_UP(main_segs, SIT_ENTRY_PER_BLOCK); 4259 if (sit_bitmap_size * 8 < sit_blk_cnt) { 4260 f2fs_err(sbi, "Wrong bitmap size: sit: %u, sit_blk_cnt:%u", 4261 sit_bitmap_size, sit_blk_cnt); 4262 return 1; 4263 } 4264 4265 cp_pack_start_sum = __start_sum_addr(sbi); 4266 cp_payload = __cp_payload(sbi); 4267 if (cp_pack_start_sum < cp_payload + 1 || 4268 cp_pack_start_sum > blocks_per_seg - 1 - 4269 NR_CURSEG_PERSIST_TYPE) { 4270 f2fs_err(sbi, "Wrong cp_pack_start_sum: %u", 4271 cp_pack_start_sum); 4272 return 1; 4273 } 4274 4275 if (__is_set_ckpt_flags(ckpt, CP_LARGE_NAT_BITMAP_FLAG) && 4276 le32_to_cpu(ckpt->checksum_offset) != CP_MIN_CHKSUM_OFFSET) { 4277 f2fs_warn(sbi, "using deprecated layout of large_nat_bitmap, " 4278 "please run fsck v1.13.0 or higher to repair, chksum_offset: %u, " 4279 "fixed with patch: \"f2fs-tools: relocate chksum_offset for large_nat_bitmap feature\"", 4280 le32_to_cpu(ckpt->checksum_offset)); 4281 return 1; 4282 } 4283 4284 nat_blocks = nat_segs << log_blocks_per_seg; 4285 nat_bits_bytes = nat_blocks / BITS_PER_BYTE; 4286 nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8); 4287 if (__is_set_ckpt_flags(ckpt, CP_NAT_BITS_FLAG) && 4288 (cp_payload + F2FS_CP_PACKS + 4289 NR_CURSEG_PERSIST_TYPE + nat_bits_blocks >= blocks_per_seg)) { 4290 f2fs_warn(sbi, "Insane cp_payload: %u, nat_bits_blocks: %u)", 4291 cp_payload, nat_bits_blocks); 4292 return 1; 4293 } 4294 4295 if (unlikely(f2fs_cp_error(sbi))) { 4296 f2fs_err(sbi, "A bug case: need to run fsck"); 4297 return 1; 4298 } 4299 return 0; 4300 } 4301 4302 static void init_sb_info(struct f2fs_sb_info *sbi) 4303 { 4304 struct f2fs_super_block *raw_super = sbi->raw_super; 4305 int i; 4306 4307 sbi->log_sectors_per_block = 4308 le32_to_cpu(raw_super->log_sectors_per_block); 4309 sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize); 4310 sbi->blocksize = BIT(sbi->log_blocksize); 4311 sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 4312 sbi->blocks_per_seg = BIT(sbi->log_blocks_per_seg); 4313 sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec); 4314 sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone); 4315 sbi->total_sections = le32_to_cpu(raw_super->section_count); 4316 sbi->total_node_count = SEGS_TO_BLKS(sbi, 4317 ((le32_to_cpu(raw_super->segment_count_nat) / 2) * 4318 NAT_ENTRY_PER_BLOCK)); 4319 sbi->allocate_section_hint = le32_to_cpu(raw_super->section_count); 4320 sbi->allocate_section_policy = ALLOCATE_FORWARD_NOHINT; 4321 F2FS_ROOT_INO(sbi) = le32_to_cpu(raw_super->root_ino); 4322 F2FS_NODE_INO(sbi) = le32_to_cpu(raw_super->node_ino); 4323 F2FS_META_INO(sbi) = le32_to_cpu(raw_super->meta_ino); 4324 sbi->cur_victim_sec = NULL_SECNO; 4325 sbi->gc_mode = GC_NORMAL; 4326 sbi->next_victim_seg[BG_GC] = NULL_SEGNO; 4327 sbi->next_victim_seg[FG_GC] = NULL_SEGNO; 4328 sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH; 4329 sbi->migration_granularity = SEGS_PER_SEC(sbi); 4330 sbi->migration_window_granularity = f2fs_sb_has_blkzoned(sbi) ? 4331 DEF_MIGRATION_WINDOW_GRANULARITY_ZONED : SEGS_PER_SEC(sbi); 4332 sbi->seq_file_ra_mul = MIN_RA_MUL; 4333 sbi->max_fragment_chunk = DEF_FRAGMENT_SIZE; 4334 sbi->max_fragment_hole = DEF_FRAGMENT_SIZE; 4335 spin_lock_init(&sbi->gc_remaining_trials_lock); 4336 atomic64_set(&sbi->current_atomic_write, 0); 4337 sbi->max_lock_elapsed_time = MAX_LOCK_ELAPSED_TIME; 4338 sbi->adjust_lock_priority = 0; 4339 sbi->lock_duration_priority = F2FS_DEFAULT_TASK_PRIORITY; 4340 sbi->critical_task_priority = F2FS_CRITICAL_TASK_PRIORITY; 4341 4342 sbi->sum_blocksize = f2fs_sb_has_packed_ssa(sbi) ? 4343 4096 : sbi->blocksize; 4344 sbi->sums_per_block = sbi->blocksize / sbi->sum_blocksize; 4345 sbi->entries_in_sum = sbi->sum_blocksize / 8; 4346 sbi->sum_entry_size = SUMMARY_SIZE * sbi->entries_in_sum; 4347 sbi->sum_journal_size = sbi->sum_blocksize - SUM_FOOTER_SIZE - 4348 sbi->sum_entry_size; 4349 sbi->nat_journal_entries = (sbi->sum_journal_size - 2) / 4350 sizeof(struct nat_journal_entry); 4351 sbi->sit_journal_entries = (sbi->sum_journal_size - 2) / 4352 sizeof(struct sit_journal_entry); 4353 4354 sbi->dir_level = DEF_DIR_LEVEL; 4355 sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL; 4356 sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL; 4357 sbi->interval_time[DISCARD_TIME] = DEF_IDLE_INTERVAL; 4358 sbi->interval_time[GC_TIME] = DEF_IDLE_INTERVAL; 4359 sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_INTERVAL; 4360 sbi->interval_time[UMOUNT_DISCARD_TIMEOUT] = 4361 DEF_UMOUNT_DISCARD_TIMEOUT; 4362 clear_sbi_flag(sbi, SBI_NEED_FSCK); 4363 4364 for (i = 0; i < NR_COUNT_TYPE; i++) 4365 atomic_set(&sbi->nr_pages[i], 0); 4366 4367 for (i = 0; i < META; i++) 4368 atomic_set(&sbi->wb_sync_req[i], 0); 4369 4370 INIT_LIST_HEAD(&sbi->s_list); 4371 mutex_init(&sbi->umount_mutex); 4372 init_f2fs_rwsem(&sbi->io_order_lock); 4373 spin_lock_init(&sbi->cp_lock); 4374 4375 sbi->dirty_device = 0; 4376 spin_lock_init(&sbi->dev_lock); 4377 4378 init_f2fs_rwsem(&sbi->sb_lock); 4379 init_f2fs_rwsem(&sbi->pin_sem); 4380 } 4381 4382 static int init_percpu_info(struct f2fs_sb_info *sbi) 4383 { 4384 int err; 4385 4386 err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL); 4387 if (err) 4388 return err; 4389 4390 err = percpu_counter_init(&sbi->rf_node_block_count, 0, GFP_KERNEL); 4391 if (err) 4392 goto err_valid_block; 4393 4394 err = percpu_counter_init(&sbi->total_valid_inode_count, 0, 4395 GFP_KERNEL); 4396 if (err) 4397 goto err_node_block; 4398 return 0; 4399 4400 err_node_block: 4401 percpu_counter_destroy(&sbi->rf_node_block_count); 4402 err_valid_block: 4403 percpu_counter_destroy(&sbi->alloc_valid_block_count); 4404 return err; 4405 } 4406 4407 #ifdef CONFIG_BLK_DEV_ZONED 4408 4409 struct f2fs_report_zones_args { 4410 struct f2fs_sb_info *sbi; 4411 struct f2fs_dev_info *dev; 4412 }; 4413 4414 static int f2fs_report_zone_cb(struct blk_zone *zone, unsigned int idx, 4415 void *data) 4416 { 4417 struct f2fs_report_zones_args *rz_args = data; 4418 block_t unusable_blocks = (zone->len - zone->capacity) >> 4419 F2FS_LOG_SECTORS_PER_BLOCK; 4420 4421 if (zone->type == BLK_ZONE_TYPE_CONVENTIONAL) 4422 return 0; 4423 4424 set_bit(idx, rz_args->dev->blkz_seq); 4425 if (!rz_args->sbi->unusable_blocks_per_sec) { 4426 rz_args->sbi->unusable_blocks_per_sec = unusable_blocks; 4427 return 0; 4428 } 4429 if (rz_args->sbi->unusable_blocks_per_sec != unusable_blocks) { 4430 f2fs_err(rz_args->sbi, "F2FS supports single zone capacity\n"); 4431 return -EINVAL; 4432 } 4433 return 0; 4434 } 4435 4436 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi) 4437 { 4438 struct block_device *bdev = FDEV(devi).bdev; 4439 sector_t nr_sectors = bdev_nr_sectors(bdev); 4440 struct f2fs_report_zones_args rep_zone_arg; 4441 u64 zone_sectors; 4442 unsigned int max_open_zones; 4443 int ret; 4444 4445 if (!f2fs_sb_has_blkzoned(sbi)) 4446 return 0; 4447 4448 if (bdev_is_zoned(FDEV(devi).bdev)) { 4449 max_open_zones = bdev_max_open_zones(bdev); 4450 if (max_open_zones && (max_open_zones < sbi->max_open_zones)) 4451 sbi->max_open_zones = max_open_zones; 4452 if (sbi->max_open_zones < F2FS_OPTION(sbi).active_logs) { 4453 f2fs_err(sbi, 4454 "zoned: max open zones %u is too small, need at least %u open zones", 4455 sbi->max_open_zones, F2FS_OPTION(sbi).active_logs); 4456 return -EINVAL; 4457 } 4458 } 4459 4460 zone_sectors = bdev_zone_sectors(bdev); 4461 if (sbi->blocks_per_blkz && sbi->blocks_per_blkz != 4462 SECTOR_TO_BLOCK(zone_sectors)) 4463 return -EINVAL; 4464 sbi->blocks_per_blkz = SECTOR_TO_BLOCK(zone_sectors); 4465 FDEV(devi).nr_blkz = div_u64(SECTOR_TO_BLOCK(nr_sectors), 4466 sbi->blocks_per_blkz); 4467 if (nr_sectors & (zone_sectors - 1)) 4468 FDEV(devi).nr_blkz++; 4469 4470 FDEV(devi).blkz_seq = f2fs_kvzalloc(sbi, 4471 BITS_TO_LONGS(FDEV(devi).nr_blkz) 4472 * sizeof(unsigned long), 4473 GFP_KERNEL); 4474 if (!FDEV(devi).blkz_seq) 4475 return -ENOMEM; 4476 4477 rep_zone_arg.sbi = sbi; 4478 rep_zone_arg.dev = &FDEV(devi); 4479 4480 ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES, f2fs_report_zone_cb, 4481 &rep_zone_arg); 4482 if (ret < 0) 4483 return ret; 4484 return 0; 4485 } 4486 #endif 4487 4488 /* 4489 * Read f2fs raw super block. 4490 * Because we have two copies of super block, so read both of them 4491 * to get the first valid one. If any one of them is broken, we pass 4492 * them recovery flag back to the caller. 4493 */ 4494 static int read_raw_super_block(struct f2fs_sb_info *sbi, 4495 struct f2fs_super_block **raw_super, 4496 int *valid_super_block, int *recovery) 4497 { 4498 struct super_block *sb = sbi->sb; 4499 int block; 4500 struct folio *folio; 4501 struct f2fs_super_block *super; 4502 int err = 0; 4503 4504 super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL); 4505 if (!super) 4506 return -ENOMEM; 4507 4508 for (block = 0; block < 2; block++) { 4509 folio = read_mapping_folio(sb->s_bdev->bd_mapping, block, NULL); 4510 if (IS_ERR(folio)) { 4511 f2fs_err(sbi, "Unable to read %dth superblock", 4512 block + 1); 4513 err = PTR_ERR(folio); 4514 *recovery = 1; 4515 continue; 4516 } 4517 4518 /* sanity checking of raw super */ 4519 err = sanity_check_raw_super(sbi, folio, block); 4520 if (err) { 4521 f2fs_err(sbi, "Can't find valid F2FS filesystem in %dth superblock", 4522 block + 1); 4523 folio_put(folio); 4524 *recovery = 1; 4525 continue; 4526 } 4527 4528 if (!*raw_super) { 4529 memcpy(super, F2FS_SUPER_BLOCK(folio, block), 4530 sizeof(*super)); 4531 *valid_super_block = block; 4532 *raw_super = super; 4533 } 4534 folio_put(folio); 4535 } 4536 4537 /* No valid superblock */ 4538 if (!*raw_super) 4539 kfree(super); 4540 else 4541 err = 0; 4542 4543 return err; 4544 } 4545 4546 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover) 4547 { 4548 struct folio *folio; 4549 pgoff_t index; 4550 __u32 crc = 0; 4551 int err; 4552 4553 if ((recover && f2fs_readonly(sbi->sb)) || 4554 f2fs_hw_is_readonly(sbi)) { 4555 set_sbi_flag(sbi, SBI_NEED_SB_WRITE); 4556 return -EROFS; 4557 } 4558 4559 /* we should update superblock crc here */ 4560 if (!recover && f2fs_sb_has_sb_chksum(sbi)) { 4561 crc = f2fs_crc32(F2FS_RAW_SUPER(sbi), 4562 offsetof(struct f2fs_super_block, crc)); 4563 F2FS_RAW_SUPER(sbi)->crc = cpu_to_le32(crc); 4564 } 4565 4566 /* write back-up superblock first */ 4567 index = sbi->valid_super_block ? 0 : 1; 4568 folio = read_mapping_folio(sbi->sb->s_bdev->bd_mapping, index, NULL); 4569 if (IS_ERR(folio)) 4570 return PTR_ERR(folio); 4571 err = __f2fs_commit_super(sbi, folio, index, true); 4572 folio_put(folio); 4573 4574 /* if we are in recovery path, skip writing valid superblock */ 4575 if (recover || err) 4576 return err; 4577 4578 /* write current valid superblock */ 4579 index = sbi->valid_super_block; 4580 folio = read_mapping_folio(sbi->sb->s_bdev->bd_mapping, index, NULL); 4581 if (IS_ERR(folio)) 4582 return PTR_ERR(folio); 4583 err = __f2fs_commit_super(sbi, folio, index, true); 4584 folio_put(folio); 4585 return err; 4586 } 4587 4588 static void save_stop_reason(struct f2fs_sb_info *sbi, unsigned char reason) 4589 { 4590 unsigned long flags; 4591 4592 spin_lock_irqsave(&sbi->error_lock, flags); 4593 if (sbi->stop_reason[reason] < GENMASK(BITS_PER_BYTE - 1, 0)) 4594 sbi->stop_reason[reason]++; 4595 spin_unlock_irqrestore(&sbi->error_lock, flags); 4596 } 4597 4598 static void f2fs_record_stop_reason(struct f2fs_sb_info *sbi) 4599 { 4600 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 4601 unsigned long flags; 4602 int err; 4603 4604 f2fs_down_write(&sbi->sb_lock); 4605 4606 spin_lock_irqsave(&sbi->error_lock, flags); 4607 if (sbi->error_dirty) { 4608 memcpy(F2FS_RAW_SUPER(sbi)->s_errors, sbi->errors, 4609 MAX_F2FS_ERRORS); 4610 sbi->error_dirty = false; 4611 } 4612 memcpy(raw_super->s_stop_reason, sbi->stop_reason, MAX_STOP_REASON); 4613 spin_unlock_irqrestore(&sbi->error_lock, flags); 4614 4615 err = f2fs_commit_super(sbi, false); 4616 4617 f2fs_up_write(&sbi->sb_lock); 4618 if (err) 4619 f2fs_err_ratelimited(sbi, 4620 "f2fs_commit_super fails to record stop_reason, err:%d", 4621 err); 4622 } 4623 4624 void f2fs_save_errors(struct f2fs_sb_info *sbi, unsigned char flag) 4625 { 4626 unsigned long flags; 4627 4628 spin_lock_irqsave(&sbi->error_lock, flags); 4629 if (!test_bit(flag, (unsigned long *)sbi->errors)) { 4630 set_bit(flag, (unsigned long *)sbi->errors); 4631 sbi->error_dirty = true; 4632 } 4633 spin_unlock_irqrestore(&sbi->error_lock, flags); 4634 } 4635 4636 void f2fs_handle_error(struct f2fs_sb_info *sbi, unsigned char error) 4637 { 4638 f2fs_save_errors(sbi, error); 4639 4640 if (!sbi->error_dirty) 4641 return; 4642 if (!test_bit(error, (unsigned long *)sbi->errors)) 4643 return; 4644 schedule_work(&sbi->s_error_work); 4645 } 4646 4647 static bool system_going_down(void) 4648 { 4649 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF 4650 || system_state == SYSTEM_RESTART; 4651 } 4652 4653 void f2fs_handle_critical_error(struct f2fs_sb_info *sbi, unsigned char reason) 4654 { 4655 struct super_block *sb = sbi->sb; 4656 bool shutdown = reason == STOP_CP_REASON_SHUTDOWN; 4657 bool continue_fs = !shutdown && 4658 F2FS_OPTION(sbi).errors == MOUNT_ERRORS_CONTINUE; 4659 4660 set_ckpt_flags(sbi, CP_ERROR_FLAG); 4661 4662 if (!f2fs_hw_is_readonly(sbi)) { 4663 save_stop_reason(sbi, reason); 4664 4665 /* 4666 * always create an asynchronous task to record stop_reason 4667 * in order to avoid potential deadlock when running into 4668 * f2fs_record_stop_reason() synchronously. 4669 */ 4670 schedule_work(&sbi->s_error_work); 4671 } 4672 4673 /* 4674 * We force ERRORS_RO behavior when system is rebooting. Otherwise we 4675 * could panic during 'reboot -f' as the underlying device got already 4676 * disabled. 4677 */ 4678 if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_PANIC && 4679 !shutdown && !system_going_down() && 4680 !is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN)) 4681 panic("F2FS-fs (device %s): panic forced after error\n", 4682 sb->s_id); 4683 4684 if (shutdown) 4685 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 4686 else 4687 dump_stack(); 4688 4689 /* 4690 * Continue filesystem operators if errors=continue. Should not set 4691 * RO by shutdown, since RO bypasses thaw_super which can hang the 4692 * system. 4693 */ 4694 if (continue_fs || f2fs_readonly(sb) || shutdown) { 4695 f2fs_warn(sbi, "Stopped filesystem due to reason: %d", reason); 4696 return; 4697 } 4698 4699 f2fs_warn(sbi, "Remounting filesystem read-only"); 4700 4701 /* 4702 * We have already set CP_ERROR_FLAG flag to stop all updates 4703 * to filesystem, so it doesn't need to set SB_RDONLY flag here 4704 * because the flag should be set covered w/ sb->s_umount semaphore 4705 * via remount procedure, otherwise, it will confuse code like 4706 * freeze_super() which will lead to deadlocks and other problems. 4707 */ 4708 } 4709 4710 static void f2fs_record_error_work(struct work_struct *work) 4711 { 4712 struct f2fs_sb_info *sbi = container_of(work, 4713 struct f2fs_sb_info, s_error_work); 4714 4715 f2fs_record_stop_reason(sbi); 4716 } 4717 4718 static inline unsigned int get_first_seq_zone_segno(struct f2fs_sb_info *sbi) 4719 { 4720 #ifdef CONFIG_BLK_DEV_ZONED 4721 unsigned int zoneno, total_zones; 4722 int devi; 4723 4724 if (!f2fs_sb_has_blkzoned(sbi)) 4725 return NULL_SEGNO; 4726 4727 for (devi = 0; devi < sbi->s_ndevs; devi++) { 4728 if (!bdev_is_zoned(FDEV(devi).bdev)) 4729 continue; 4730 4731 total_zones = GET_ZONE_FROM_SEG(sbi, FDEV(devi).total_segments); 4732 4733 for (zoneno = 0; zoneno < total_zones; zoneno++) { 4734 unsigned int segs, blks; 4735 4736 if (!f2fs_zone_is_seq(sbi, devi, zoneno)) 4737 continue; 4738 4739 segs = GET_SEG_FROM_SEC(sbi, 4740 zoneno * sbi->secs_per_zone); 4741 blks = SEGS_TO_BLKS(sbi, segs); 4742 return GET_SEGNO(sbi, FDEV(devi).start_blk + blks); 4743 } 4744 } 4745 #endif 4746 return NULL_SEGNO; 4747 } 4748 4749 static int f2fs_scan_devices(struct f2fs_sb_info *sbi) 4750 { 4751 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 4752 unsigned int max_devices = MAX_DEVICES; 4753 unsigned int logical_blksize; 4754 blk_mode_t mode = sb_open_mode(sbi->sb->s_flags); 4755 int i; 4756 4757 /* Initialize single device information */ 4758 if (!RDEV(0).path[0]) { 4759 if (!bdev_is_zoned(sbi->sb->s_bdev)) 4760 return 0; 4761 max_devices = 1; 4762 } 4763 4764 /* 4765 * Initialize multiple devices information, or single 4766 * zoned block device information. 4767 */ 4768 sbi->devs = f2fs_kzalloc(sbi, 4769 array_size(max_devices, 4770 sizeof(struct f2fs_dev_info)), 4771 GFP_KERNEL); 4772 if (!sbi->devs) 4773 return -ENOMEM; 4774 4775 logical_blksize = bdev_logical_block_size(sbi->sb->s_bdev); 4776 sbi->aligned_blksize = true; 4777 sbi->bggc_io_aware = AWARE_ALL_IO; 4778 #ifdef CONFIG_BLK_DEV_ZONED 4779 sbi->max_open_zones = UINT_MAX; 4780 sbi->blkzone_alloc_policy = BLKZONE_ALLOC_PRIOR_SEQ; 4781 sbi->bggc_io_aware = AWARE_READ_IO; 4782 #endif 4783 4784 for (i = 0; i < max_devices; i++) { 4785 if (max_devices == 1) { 4786 FDEV(i).total_segments = 4787 le32_to_cpu(raw_super->segment_count_main); 4788 FDEV(i).start_blk = 0; 4789 FDEV(i).end_blk = FDEV(i).total_segments * 4790 BLKS_PER_SEG(sbi); 4791 } 4792 4793 if (i == 0) 4794 FDEV(0).bdev_file = sbi->sb->s_bdev_file; 4795 else if (!RDEV(i).path[0]) 4796 break; 4797 4798 if (max_devices > 1) { 4799 /* Multi-device mount */ 4800 memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN); 4801 FDEV(i).total_segments = 4802 le32_to_cpu(RDEV(i).total_segments); 4803 if (i == 0) { 4804 FDEV(i).start_blk = 0; 4805 FDEV(i).end_blk = FDEV(i).start_blk + 4806 SEGS_TO_BLKS(sbi, 4807 FDEV(i).total_segments) - 1 + 4808 le32_to_cpu(raw_super->segment0_blkaddr); 4809 sbi->allocate_section_hint = FDEV(i).total_segments / 4810 SEGS_PER_SEC(sbi); 4811 } else { 4812 FDEV(i).start_blk = FDEV(i - 1).end_blk + 1; 4813 FDEV(i).end_blk = FDEV(i).start_blk + 4814 SEGS_TO_BLKS(sbi, 4815 FDEV(i).total_segments) - 1; 4816 FDEV(i).bdev_file = bdev_file_open_by_path( 4817 FDEV(i).path, mode, sbi->sb, NULL); 4818 } 4819 } 4820 if (IS_ERR(FDEV(i).bdev_file)) 4821 return PTR_ERR(FDEV(i).bdev_file); 4822 4823 FDEV(i).bdev = file_bdev(FDEV(i).bdev_file); 4824 /* to release errored devices */ 4825 sbi->s_ndevs = i + 1; 4826 4827 if (logical_blksize != bdev_logical_block_size(FDEV(i).bdev)) 4828 sbi->aligned_blksize = false; 4829 4830 #ifdef CONFIG_BLK_DEV_ZONED 4831 if (bdev_is_zoned(FDEV(i).bdev)) { 4832 if (!f2fs_sb_has_blkzoned(sbi)) { 4833 f2fs_err(sbi, "Zoned block device feature not enabled"); 4834 return -EINVAL; 4835 } 4836 if (init_blkz_info(sbi, i)) { 4837 f2fs_err(sbi, "Failed to initialize F2FS blkzone information"); 4838 return -EINVAL; 4839 } 4840 if (max_devices == 1) 4841 break; 4842 f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: Host-managed)", 4843 i, FDEV(i).path, 4844 FDEV(i).total_segments, 4845 FDEV(i).start_blk, FDEV(i).end_blk); 4846 continue; 4847 } 4848 #endif 4849 f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x", 4850 i, FDEV(i).path, 4851 FDEV(i).total_segments, 4852 FDEV(i).start_blk, FDEV(i).end_blk); 4853 } 4854 return 0; 4855 } 4856 4857 static int f2fs_setup_casefold(struct f2fs_sb_info *sbi) 4858 { 4859 #if IS_ENABLED(CONFIG_UNICODE) 4860 if (f2fs_sb_has_casefold(sbi) && !sbi->sb->s_encoding) { 4861 const struct f2fs_sb_encodings *encoding_info; 4862 struct unicode_map *encoding; 4863 __u16 encoding_flags; 4864 4865 encoding_info = f2fs_sb_read_encoding(sbi->raw_super); 4866 if (!encoding_info) { 4867 f2fs_err(sbi, 4868 "Encoding requested by superblock is unknown"); 4869 return -EINVAL; 4870 } 4871 4872 encoding_flags = le16_to_cpu(sbi->raw_super->s_encoding_flags); 4873 encoding = utf8_load(encoding_info->version); 4874 if (IS_ERR(encoding)) { 4875 f2fs_err(sbi, 4876 "can't mount with superblock charset: %s-%u.%u.%u " 4877 "not supported by the kernel. flags: 0x%x.", 4878 encoding_info->name, 4879 unicode_major(encoding_info->version), 4880 unicode_minor(encoding_info->version), 4881 unicode_rev(encoding_info->version), 4882 encoding_flags); 4883 return PTR_ERR(encoding); 4884 } 4885 f2fs_info(sbi, "Using encoding defined by superblock: " 4886 "%s-%u.%u.%u with flags 0x%hx", encoding_info->name, 4887 unicode_major(encoding_info->version), 4888 unicode_minor(encoding_info->version), 4889 unicode_rev(encoding_info->version), 4890 encoding_flags); 4891 4892 sbi->sb->s_encoding = encoding; 4893 sbi->sb->s_encoding_flags = encoding_flags; 4894 } 4895 #else 4896 if (f2fs_sb_has_casefold(sbi)) { 4897 f2fs_err(sbi, "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE"); 4898 return -EINVAL; 4899 } 4900 #endif 4901 return 0; 4902 } 4903 4904 static void f2fs_tuning_parameters(struct f2fs_sb_info *sbi) 4905 { 4906 /* adjust parameters according to the volume size */ 4907 if (MAIN_SEGS(sbi) <= SMALL_VOLUME_SEGMENTS) { 4908 if (f2fs_block_unit_discard(sbi)) 4909 SM_I(sbi)->dcc_info->discard_granularity = 4910 MIN_DISCARD_GRANULARITY; 4911 if (!f2fs_lfs_mode(sbi)) 4912 SM_I(sbi)->ipu_policy = BIT(F2FS_IPU_FORCE) | 4913 BIT(F2FS_IPU_HONOR_OPU_WRITE); 4914 } 4915 4916 sbi->readdir_ra = true; 4917 } 4918 4919 static int f2fs_fill_super(struct super_block *sb, struct fs_context *fc) 4920 { 4921 struct f2fs_fs_context *ctx = fc->fs_private; 4922 struct f2fs_sb_info *sbi; 4923 struct f2fs_super_block *raw_super; 4924 struct inode *root; 4925 int err; 4926 bool skip_recovery = false, need_fsck = false; 4927 int recovery, i, valid_super_block; 4928 struct curseg_info *seg_i; 4929 int retry_cnt = 1; 4930 #ifdef CONFIG_QUOTA 4931 bool quota_enabled = false; 4932 #endif 4933 4934 try_onemore: 4935 err = -EINVAL; 4936 raw_super = NULL; 4937 valid_super_block = -1; 4938 recovery = 0; 4939 4940 /* allocate memory for f2fs-specific super block info */ 4941 sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL); 4942 if (!sbi) 4943 return -ENOMEM; 4944 4945 sbi->sb = sb; 4946 4947 /* initialize locks within allocated memory */ 4948 init_f2fs_rwsem_trace(&sbi->gc_lock, sbi, LOCK_NAME_GC_LOCK); 4949 mutex_init(&sbi->writepages); 4950 init_f2fs_rwsem_trace(&sbi->cp_global_sem, sbi, LOCK_NAME_CP_GLOBAL); 4951 init_f2fs_rwsem_trace(&sbi->node_write, sbi, LOCK_NAME_NODE_WRITE); 4952 init_f2fs_rwsem_trace(&sbi->node_change, sbi, LOCK_NAME_NODE_CHANGE); 4953 spin_lock_init(&sbi->stat_lock); 4954 init_f2fs_rwsem_trace(&sbi->cp_rwsem, sbi, LOCK_NAME_CP_RWSEM); 4955 init_f2fs_rwsem(&sbi->quota_sem); 4956 init_waitqueue_head(&sbi->cp_wait); 4957 spin_lock_init(&sbi->error_lock); 4958 4959 for (i = 0; i < NR_INODE_TYPE; i++) { 4960 INIT_LIST_HEAD(&sbi->inode_list[i]); 4961 spin_lock_init(&sbi->inode_lock[i]); 4962 } 4963 mutex_init(&sbi->flush_lock); 4964 4965 /* set a block size */ 4966 if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) { 4967 f2fs_err(sbi, "unable to set blocksize"); 4968 goto free_sbi; 4969 } 4970 4971 err = read_raw_super_block(sbi, &raw_super, &valid_super_block, 4972 &recovery); 4973 if (err) 4974 goto free_sbi; 4975 4976 sb->s_fs_info = sbi; 4977 sbi->raw_super = raw_super; 4978 4979 INIT_WORK(&sbi->s_error_work, f2fs_record_error_work); 4980 memcpy(sbi->errors, raw_super->s_errors, MAX_F2FS_ERRORS); 4981 memcpy(sbi->stop_reason, raw_super->s_stop_reason, MAX_STOP_REASON); 4982 4983 /* precompute checksum seed for metadata */ 4984 if (f2fs_sb_has_inode_chksum(sbi)) 4985 sbi->s_chksum_seed = f2fs_chksum(~0, raw_super->uuid, 4986 sizeof(raw_super->uuid)); 4987 4988 default_options(sbi, false); 4989 4990 err = f2fs_check_opt_consistency(fc, sb); 4991 if (err) 4992 goto free_sb_buf; 4993 4994 f2fs_apply_options(fc, sb); 4995 4996 err = f2fs_sanity_check_options(sbi, false); 4997 if (err) 4998 goto free_options; 4999 5000 sb->s_maxbytes = max_file_blocks(NULL) << 5001 le32_to_cpu(raw_super->log_blocksize); 5002 sb->s_max_links = F2FS_LINK_MAX; 5003 5004 err = f2fs_setup_casefold(sbi); 5005 if (err) 5006 goto free_options; 5007 5008 #ifdef CONFIG_QUOTA 5009 sb->dq_op = &f2fs_quota_operations; 5010 sb->s_qcop = &f2fs_quotactl_ops; 5011 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 5012 5013 if (f2fs_sb_has_quota_ino(sbi)) { 5014 for (i = 0; i < MAXQUOTAS; i++) { 5015 if (f2fs_qf_ino(sbi->sb, i)) 5016 sbi->nquota_files++; 5017 } 5018 } 5019 #endif 5020 5021 sb->s_op = &f2fs_sops; 5022 #ifdef CONFIG_FS_ENCRYPTION 5023 sb->s_cop = &f2fs_cryptops; 5024 #endif 5025 #ifdef CONFIG_FS_VERITY 5026 sb->s_vop = &f2fs_verityops; 5027 #endif 5028 sb->s_xattr = f2fs_xattr_handlers; 5029 sb->s_export_op = &f2fs_export_ops; 5030 sb->s_magic = F2FS_SUPER_MAGIC; 5031 sb->s_time_gran = 1; 5032 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 5033 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0); 5034 if (test_opt(sbi, INLINECRYPT)) 5035 sb->s_flags |= SB_INLINECRYPT; 5036 5037 if (test_opt(sbi, LAZYTIME)) 5038 sb->s_flags |= SB_LAZYTIME; 5039 else 5040 sb->s_flags &= ~SB_LAZYTIME; 5041 5042 super_set_uuid(sb, (void *) raw_super->uuid, sizeof(raw_super->uuid)); 5043 super_set_sysfs_name_bdev(sb); 5044 sb->s_iflags |= SB_I_CGROUPWB; 5045 5046 /* init f2fs-specific super block info */ 5047 sbi->valid_super_block = valid_super_block; 5048 5049 /* disallow all the data/node/meta page writes */ 5050 set_sbi_flag(sbi, SBI_POR_DOING); 5051 5052 err = f2fs_init_write_merge_io(sbi); 5053 if (err) 5054 goto free_bio_info; 5055 5056 init_sb_info(sbi); 5057 5058 err = f2fs_init_iostat(sbi); 5059 if (err) 5060 goto free_bio_info; 5061 5062 err = init_percpu_info(sbi); 5063 if (err) 5064 goto free_iostat; 5065 5066 err = f2fs_init_page_array_cache(sbi); 5067 if (err) 5068 goto free_percpu; 5069 5070 /* get an inode for meta space */ 5071 sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi)); 5072 if (IS_ERR(sbi->meta_inode)) { 5073 f2fs_err(sbi, "Failed to read F2FS meta data inode"); 5074 err = PTR_ERR(sbi->meta_inode); 5075 goto free_page_array_cache; 5076 } 5077 5078 err = f2fs_get_valid_checkpoint(sbi); 5079 if (err) { 5080 f2fs_err(sbi, "Failed to get valid F2FS checkpoint"); 5081 goto free_meta_inode; 5082 } 5083 5084 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_QUOTA_NEED_FSCK_FLAG)) 5085 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 5086 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_DISABLED_QUICK_FLAG)) { 5087 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK); 5088 sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_QUICK_INTERVAL; 5089 } 5090 5091 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FSCK_FLAG)) 5092 set_sbi_flag(sbi, SBI_NEED_FSCK); 5093 5094 /* Initialize device list */ 5095 err = f2fs_scan_devices(sbi); 5096 if (err) { 5097 f2fs_err(sbi, "Failed to find devices"); 5098 goto free_devices; 5099 } 5100 5101 err = f2fs_init_post_read_wq(sbi); 5102 if (err) { 5103 f2fs_err(sbi, "Failed to initialize post read workqueue"); 5104 goto free_devices; 5105 } 5106 5107 sbi->total_valid_node_count = 5108 le32_to_cpu(sbi->ckpt->valid_node_count); 5109 percpu_counter_set(&sbi->total_valid_inode_count, 5110 le32_to_cpu(sbi->ckpt->valid_inode_count)); 5111 sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count); 5112 sbi->total_valid_block_count = 5113 le64_to_cpu(sbi->ckpt->valid_block_count); 5114 sbi->last_valid_block_count = sbi->total_valid_block_count; 5115 sbi->reserved_blocks = 0; 5116 sbi->current_reserved_blocks = 0; 5117 limit_reserve_root(sbi); 5118 adjust_unusable_cap_perc(sbi); 5119 5120 f2fs_init_extent_cache_info(sbi); 5121 5122 f2fs_init_ino_entry_info(sbi); 5123 5124 f2fs_init_fsync_node_info(sbi); 5125 5126 /* setup checkpoint request control and start checkpoint issue thread */ 5127 f2fs_init_ckpt_req_control(sbi); 5128 if (!f2fs_readonly(sb) && !test_opt(sbi, DISABLE_CHECKPOINT) && 5129 test_opt(sbi, MERGE_CHECKPOINT)) { 5130 err = f2fs_start_ckpt_thread(sbi); 5131 if (err) { 5132 f2fs_err(sbi, 5133 "Failed to start F2FS issue_checkpoint_thread (%d)", 5134 err); 5135 goto stop_ckpt_thread; 5136 } 5137 } 5138 5139 /* setup f2fs internal modules */ 5140 err = f2fs_build_segment_manager(sbi); 5141 if (err) { 5142 f2fs_err(sbi, "Failed to initialize F2FS segment manager (%d)", 5143 err); 5144 goto free_sm; 5145 } 5146 err = f2fs_build_node_manager(sbi); 5147 if (err) { 5148 f2fs_err(sbi, "Failed to initialize F2FS node manager (%d)", 5149 err); 5150 goto free_nm; 5151 } 5152 5153 /* For write statistics */ 5154 sbi->sectors_written_start = f2fs_get_sectors_written(sbi); 5155 5156 /* get segno of first zoned block device */ 5157 sbi->first_seq_zone_segno = get_first_seq_zone_segno(sbi); 5158 5159 sbi->reserved_pin_section = f2fs_sb_has_blkzoned(sbi) ? 5160 ZONED_PIN_SEC_REQUIRED_COUNT : 5161 GET_SEC_FROM_SEG(sbi, overprovision_segments(sbi)); 5162 5163 /* Read accumulated write IO statistics if exists */ 5164 seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE); 5165 if (__exist_node_summaries(sbi)) 5166 sbi->kbytes_written = 5167 le64_to_cpu(seg_i->journal->info.kbytes_written); 5168 5169 f2fs_build_gc_manager(sbi); 5170 5171 err = f2fs_build_stats(sbi); 5172 if (err) 5173 goto free_nm; 5174 5175 /* get an inode for node space */ 5176 sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi)); 5177 if (IS_ERR(sbi->node_inode)) { 5178 f2fs_err(sbi, "Failed to read node inode"); 5179 err = PTR_ERR(sbi->node_inode); 5180 goto free_stats; 5181 } 5182 5183 /* read root inode and dentry */ 5184 root = f2fs_iget(sb, F2FS_ROOT_INO(sbi)); 5185 if (IS_ERR(root)) { 5186 f2fs_err(sbi, "Failed to read root inode"); 5187 err = PTR_ERR(root); 5188 goto free_node_inode; 5189 } 5190 if (!S_ISDIR(root->i_mode) || !root->i_blocks || 5191 !root->i_size || !root->i_nlink) { 5192 iput(root); 5193 err = -EINVAL; 5194 goto free_node_inode; 5195 } 5196 5197 generic_set_sb_d_ops(sb); 5198 sb->s_root = d_make_root(root); /* allocate root dentry */ 5199 if (!sb->s_root) { 5200 err = -ENOMEM; 5201 goto free_node_inode; 5202 } 5203 5204 err = f2fs_init_compress_inode(sbi); 5205 if (err) 5206 goto free_root_inode; 5207 5208 err = f2fs_register_sysfs(sbi); 5209 if (err) 5210 goto free_compress_inode; 5211 5212 sbi->umount_lock_holder = current; 5213 #ifdef CONFIG_QUOTA 5214 /* Enable quota usage during mount */ 5215 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) { 5216 err = f2fs_enable_quotas(sb); 5217 if (err) 5218 f2fs_err(sbi, "Cannot turn on quotas: error %d", err); 5219 } 5220 5221 quota_enabled = f2fs_recover_quota_begin(sbi); 5222 #endif 5223 /* if there are any orphan inodes, free them */ 5224 err = f2fs_recover_orphan_inodes(sbi); 5225 if (err) 5226 goto free_meta; 5227 5228 if (unlikely(is_set_ckpt_flags(sbi, CP_DISABLED_FLAG))) { 5229 skip_recovery = true; 5230 goto reset_checkpoint; 5231 } 5232 5233 /* recover fsynced data */ 5234 if (!test_opt(sbi, DISABLE_ROLL_FORWARD) && 5235 !test_opt(sbi, NORECOVERY)) { 5236 /* 5237 * mount should be failed, when device has readonly mode, and 5238 * previous checkpoint was not done by clean system shutdown. 5239 */ 5240 if (f2fs_hw_is_readonly(sbi)) { 5241 if (!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) { 5242 err = f2fs_recover_fsync_data(sbi, true); 5243 if (err > 0) { 5244 err = -EROFS; 5245 f2fs_err(sbi, "Need to recover fsync data, but " 5246 "write access unavailable, please try " 5247 "mount w/ disable_roll_forward or norecovery"); 5248 } 5249 if (err < 0) 5250 goto free_meta; 5251 } 5252 f2fs_info(sbi, "write access unavailable, skipping recovery"); 5253 goto reset_checkpoint; 5254 } 5255 5256 if (need_fsck) 5257 set_sbi_flag(sbi, SBI_NEED_FSCK); 5258 5259 if (skip_recovery) 5260 goto reset_checkpoint; 5261 5262 err = f2fs_recover_fsync_data(sbi, false); 5263 if (err < 0) { 5264 if (err != -ENOMEM) 5265 skip_recovery = true; 5266 need_fsck = true; 5267 f2fs_err(sbi, "Cannot recover all fsync data errno=%d", 5268 err); 5269 goto free_meta; 5270 } 5271 } else { 5272 err = f2fs_recover_fsync_data(sbi, true); 5273 if (err > 0) { 5274 if (!f2fs_readonly(sb)) { 5275 f2fs_err(sbi, "Need to recover fsync data"); 5276 err = -EINVAL; 5277 goto free_meta; 5278 } else { 5279 f2fs_info(sbi, "drop all fsynced data"); 5280 err = 0; 5281 } 5282 } 5283 } 5284 5285 reset_checkpoint: 5286 #ifdef CONFIG_QUOTA 5287 f2fs_recover_quota_end(sbi, quota_enabled); 5288 #endif 5289 /* 5290 * If the f2fs is not readonly and fsync data recovery succeeds, 5291 * write pointer consistency of cursegs and other zones are already 5292 * checked and fixed during recovery. However, if recovery fails, 5293 * write pointers are left untouched, and retry-mount should check 5294 * them here. 5295 */ 5296 if (skip_recovery) 5297 err = f2fs_check_and_fix_write_pointer(sbi); 5298 if (err) 5299 goto free_meta; 5300 5301 /* f2fs_recover_fsync_data() cleared this already */ 5302 clear_sbi_flag(sbi, SBI_POR_DOING); 5303 5304 err = f2fs_init_inmem_curseg(sbi); 5305 if (err) 5306 goto sync_free_meta; 5307 5308 if (test_opt(sbi, DISABLE_CHECKPOINT)) 5309 err = f2fs_disable_checkpoint(sbi); 5310 else if (is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)) 5311 err = f2fs_enable_checkpoint(sbi); 5312 if (err) 5313 goto sync_free_meta; 5314 5315 /* 5316 * If filesystem is not mounted as read-only then 5317 * do start the gc_thread. 5318 */ 5319 if ((F2FS_OPTION(sbi).bggc_mode != BGGC_MODE_OFF || 5320 test_opt(sbi, GC_MERGE)) && !f2fs_readonly(sb)) { 5321 /* After POR, we can run background GC thread.*/ 5322 err = f2fs_start_gc_thread(sbi); 5323 if (err) 5324 goto sync_free_meta; 5325 } 5326 5327 /* recover broken superblock */ 5328 if (recovery) { 5329 err = f2fs_commit_super(sbi, true); 5330 f2fs_info(sbi, "Try to recover %dth superblock, ret: %d", 5331 sbi->valid_super_block ? 1 : 2, err); 5332 } 5333 5334 f2fs_join_shrinker(sbi); 5335 5336 f2fs_tuning_parameters(sbi); 5337 5338 f2fs_notice(sbi, "Mounted with checkpoint version = %llx", 5339 cur_cp_version(F2FS_CKPT(sbi))); 5340 f2fs_update_time(sbi, CP_TIME); 5341 f2fs_update_time(sbi, REQ_TIME); 5342 clear_sbi_flag(sbi, SBI_CP_DISABLED_QUICK); 5343 5344 sbi->umount_lock_holder = NULL; 5345 return 0; 5346 5347 sync_free_meta: 5348 /* safe to flush all the data */ 5349 sync_filesystem(sbi->sb); 5350 retry_cnt = 0; 5351 5352 free_meta: 5353 #ifdef CONFIG_QUOTA 5354 f2fs_truncate_quota_inode_pages(sb); 5355 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) 5356 f2fs_quota_off_umount(sbi->sb); 5357 #endif 5358 /* 5359 * Some dirty meta pages can be produced by f2fs_recover_orphan_inodes() 5360 * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg() 5361 * followed by f2fs_write_checkpoint() through f2fs_write_node_pages(), which 5362 * falls into an infinite loop in f2fs_sync_meta_pages(). 5363 */ 5364 truncate_inode_pages_final(META_MAPPING(sbi)); 5365 /* evict some inodes being cached by GC */ 5366 evict_inodes(sb); 5367 f2fs_unregister_sysfs(sbi); 5368 free_compress_inode: 5369 f2fs_destroy_compress_inode(sbi); 5370 free_root_inode: 5371 dput(sb->s_root); 5372 sb->s_root = NULL; 5373 free_node_inode: 5374 f2fs_release_ino_entry(sbi, true); 5375 truncate_inode_pages_final(NODE_MAPPING(sbi)); 5376 iput(sbi->node_inode); 5377 sbi->node_inode = NULL; 5378 free_stats: 5379 f2fs_destroy_stats(sbi); 5380 free_nm: 5381 /* stop discard thread before destroying node manager */ 5382 f2fs_stop_discard_thread(sbi); 5383 f2fs_destroy_node_manager(sbi); 5384 free_sm: 5385 f2fs_destroy_segment_manager(sbi); 5386 stop_ckpt_thread: 5387 f2fs_stop_ckpt_thread(sbi); 5388 /* flush s_error_work before sbi destroy */ 5389 flush_work(&sbi->s_error_work); 5390 f2fs_destroy_post_read_wq(sbi); 5391 free_devices: 5392 destroy_device_list(sbi); 5393 kvfree(sbi->ckpt); 5394 free_meta_inode: 5395 make_bad_inode(sbi->meta_inode); 5396 iput(sbi->meta_inode); 5397 sbi->meta_inode = NULL; 5398 free_page_array_cache: 5399 f2fs_destroy_page_array_cache(sbi); 5400 free_percpu: 5401 destroy_percpu_info(sbi); 5402 free_iostat: 5403 f2fs_destroy_iostat(sbi); 5404 free_bio_info: 5405 for (i = 0; i < NR_PAGE_TYPE; i++) 5406 kfree(sbi->write_io[i]); 5407 5408 #if IS_ENABLED(CONFIG_UNICODE) 5409 utf8_unload(sb->s_encoding); 5410 sb->s_encoding = NULL; 5411 #endif 5412 free_options: 5413 #ifdef CONFIG_QUOTA 5414 for (i = 0; i < MAXQUOTAS; i++) 5415 kfree(F2FS_OPTION(sbi).s_qf_names[i]); 5416 #endif 5417 /* no need to free dummy_enc_policy, we just keep it in ctx when failed */ 5418 swap(F2FS_CTX_INFO(ctx).dummy_enc_policy, F2FS_OPTION(sbi).dummy_enc_policy); 5419 free_sb_buf: 5420 kfree(raw_super); 5421 free_sbi: 5422 kfree(sbi); 5423 sb->s_fs_info = NULL; 5424 5425 /* give only one another chance */ 5426 if (retry_cnt > 0 && skip_recovery) { 5427 retry_cnt--; 5428 shrink_dcache_sb(sb); 5429 goto try_onemore; 5430 } 5431 return err; 5432 } 5433 5434 static int f2fs_get_tree(struct fs_context *fc) 5435 { 5436 return get_tree_bdev(fc, f2fs_fill_super); 5437 } 5438 5439 static int f2fs_reconfigure(struct fs_context *fc) 5440 { 5441 struct super_block *sb = fc->root->d_sb; 5442 5443 return __f2fs_remount(fc, sb); 5444 } 5445 5446 static void f2fs_fc_free(struct fs_context *fc) 5447 { 5448 struct f2fs_fs_context *ctx = fc->fs_private; 5449 5450 if (!ctx) 5451 return; 5452 5453 #ifdef CONFIG_QUOTA 5454 f2fs_unnote_qf_name_all(fc); 5455 #endif 5456 fscrypt_free_dummy_policy(&F2FS_CTX_INFO(ctx).dummy_enc_policy); 5457 kfree(ctx); 5458 } 5459 5460 static const struct fs_context_operations f2fs_context_ops = { 5461 .parse_param = f2fs_parse_param, 5462 .get_tree = f2fs_get_tree, 5463 .reconfigure = f2fs_reconfigure, 5464 .free = f2fs_fc_free, 5465 }; 5466 5467 static void kill_f2fs_super(struct super_block *sb) 5468 { 5469 struct f2fs_sb_info *sbi = F2FS_SB(sb); 5470 5471 if (sb->s_root) { 5472 sbi->umount_lock_holder = current; 5473 5474 set_sbi_flag(sbi, SBI_IS_CLOSE); 5475 f2fs_stop_gc_thread(sbi); 5476 f2fs_stop_discard_thread(sbi); 5477 5478 #ifdef CONFIG_F2FS_FS_COMPRESSION 5479 /* 5480 * latter evict_inode() can bypass checking and invalidating 5481 * compress inode cache. 5482 */ 5483 if (test_opt(sbi, COMPRESS_CACHE)) 5484 truncate_inode_pages_final(COMPRESS_MAPPING(sbi)); 5485 #endif 5486 5487 if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) || 5488 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) { 5489 struct cp_control cpc = { 5490 .reason = CP_UMOUNT, 5491 }; 5492 stat_inc_cp_call_count(sbi, TOTAL_CALL); 5493 f2fs_write_checkpoint(sbi, &cpc); 5494 } 5495 5496 if (is_sbi_flag_set(sbi, SBI_IS_RECOVERED) && f2fs_readonly(sb)) 5497 sb->s_flags &= ~SB_RDONLY; 5498 } 5499 kill_block_super(sb); 5500 /* Release block devices last, after fscrypt_destroy_keyring(). */ 5501 if (sbi) { 5502 destroy_device_list(sbi); 5503 kfree(sbi); 5504 sb->s_fs_info = NULL; 5505 } 5506 } 5507 5508 static int f2fs_init_fs_context(struct fs_context *fc) 5509 { 5510 struct f2fs_fs_context *ctx; 5511 5512 ctx = kzalloc(sizeof(struct f2fs_fs_context), GFP_KERNEL); 5513 if (!ctx) 5514 return -ENOMEM; 5515 5516 fc->fs_private = ctx; 5517 fc->ops = &f2fs_context_ops; 5518 5519 return 0; 5520 } 5521 5522 static struct file_system_type f2fs_fs_type = { 5523 .owner = THIS_MODULE, 5524 .name = "f2fs", 5525 .init_fs_context = f2fs_init_fs_context, 5526 .kill_sb = kill_f2fs_super, 5527 .fs_flags = FS_REQUIRES_DEV | FS_ALLOW_IDMAP, 5528 }; 5529 MODULE_ALIAS_FS("f2fs"); 5530 5531 static int __init init_inodecache(void) 5532 { 5533 f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache", 5534 sizeof(struct f2fs_inode_info), 0, 5535 SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL); 5536 return f2fs_inode_cachep ? 0 : -ENOMEM; 5537 } 5538 5539 static void destroy_inodecache(void) 5540 { 5541 /* 5542 * Make sure all delayed rcu free inodes are flushed before we 5543 * destroy cache. 5544 */ 5545 rcu_barrier(); 5546 kmem_cache_destroy(f2fs_inode_cachep); 5547 } 5548 5549 static int __init init_f2fs_fs(void) 5550 { 5551 int err; 5552 5553 err = init_inodecache(); 5554 if (err) 5555 goto fail; 5556 err = f2fs_create_node_manager_caches(); 5557 if (err) 5558 goto free_inodecache; 5559 err = f2fs_create_segment_manager_caches(); 5560 if (err) 5561 goto free_node_manager_caches; 5562 err = f2fs_create_checkpoint_caches(); 5563 if (err) 5564 goto free_segment_manager_caches; 5565 err = f2fs_create_recovery_cache(); 5566 if (err) 5567 goto free_checkpoint_caches; 5568 err = f2fs_create_extent_cache(); 5569 if (err) 5570 goto free_recovery_cache; 5571 err = f2fs_create_garbage_collection_cache(); 5572 if (err) 5573 goto free_extent_cache; 5574 err = f2fs_init_sysfs(); 5575 if (err) 5576 goto free_garbage_collection_cache; 5577 err = f2fs_init_shrinker(); 5578 if (err) 5579 goto free_sysfs; 5580 f2fs_create_root_stats(); 5581 err = f2fs_init_post_read_processing(); 5582 if (err) 5583 goto free_root_stats; 5584 err = f2fs_init_iostat_processing(); 5585 if (err) 5586 goto free_post_read; 5587 err = f2fs_init_bio_entry_cache(); 5588 if (err) 5589 goto free_iostat; 5590 err = f2fs_init_bioset(); 5591 if (err) 5592 goto free_bio_entry_cache; 5593 err = f2fs_init_compress_mempool(); 5594 if (err) 5595 goto free_bioset; 5596 err = f2fs_init_compress_cache(); 5597 if (err) 5598 goto free_compress_mempool; 5599 err = f2fs_create_casefold_cache(); 5600 if (err) 5601 goto free_compress_cache; 5602 err = f2fs_init_xattr_cache(); 5603 if (err) 5604 goto free_casefold_cache; 5605 err = register_filesystem(&f2fs_fs_type); 5606 if (err) 5607 goto free_xattr_cache; 5608 return 0; 5609 free_xattr_cache: 5610 f2fs_destroy_xattr_cache(); 5611 free_casefold_cache: 5612 f2fs_destroy_casefold_cache(); 5613 free_compress_cache: 5614 f2fs_destroy_compress_cache(); 5615 free_compress_mempool: 5616 f2fs_destroy_compress_mempool(); 5617 free_bioset: 5618 f2fs_destroy_bioset(); 5619 free_bio_entry_cache: 5620 f2fs_destroy_bio_entry_cache(); 5621 free_iostat: 5622 f2fs_destroy_iostat_processing(); 5623 free_post_read: 5624 f2fs_destroy_post_read_processing(); 5625 free_root_stats: 5626 f2fs_destroy_root_stats(); 5627 f2fs_exit_shrinker(); 5628 free_sysfs: 5629 f2fs_exit_sysfs(); 5630 free_garbage_collection_cache: 5631 f2fs_destroy_garbage_collection_cache(); 5632 free_extent_cache: 5633 f2fs_destroy_extent_cache(); 5634 free_recovery_cache: 5635 f2fs_destroy_recovery_cache(); 5636 free_checkpoint_caches: 5637 f2fs_destroy_checkpoint_caches(); 5638 free_segment_manager_caches: 5639 f2fs_destroy_segment_manager_caches(); 5640 free_node_manager_caches: 5641 f2fs_destroy_node_manager_caches(); 5642 free_inodecache: 5643 destroy_inodecache(); 5644 fail: 5645 return err; 5646 } 5647 5648 static void __exit exit_f2fs_fs(void) 5649 { 5650 unregister_filesystem(&f2fs_fs_type); 5651 f2fs_destroy_xattr_cache(); 5652 f2fs_destroy_casefold_cache(); 5653 f2fs_destroy_compress_cache(); 5654 f2fs_destroy_compress_mempool(); 5655 f2fs_destroy_bioset(); 5656 f2fs_destroy_bio_entry_cache(); 5657 f2fs_destroy_iostat_processing(); 5658 f2fs_destroy_post_read_processing(); 5659 f2fs_destroy_root_stats(); 5660 f2fs_exit_shrinker(); 5661 f2fs_exit_sysfs(); 5662 f2fs_destroy_garbage_collection_cache(); 5663 f2fs_destroy_extent_cache(); 5664 f2fs_destroy_recovery_cache(); 5665 f2fs_destroy_checkpoint_caches(); 5666 f2fs_destroy_segment_manager_caches(); 5667 f2fs_destroy_node_manager_caches(); 5668 destroy_inodecache(); 5669 } 5670 5671 module_init(init_f2fs_fs) 5672 module_exit(exit_f2fs_fs) 5673 5674 MODULE_AUTHOR("Samsung Electronics's Praesto Team"); 5675 MODULE_DESCRIPTION("Flash Friendly File System"); 5676 MODULE_LICENSE("GPL"); 5677