xref: /linux/fs/f2fs/node.c (revision 1db4b3609aa13efceddeae2e58749acb62d42d71)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/node.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/mpage.h>
11 #include <linux/sched/mm.h>
12 #include <linux/blkdev.h>
13 #include <linux/pagevec.h>
14 #include <linux/swap.h>
15 
16 #include "f2fs.h"
17 #include "node.h"
18 #include "segment.h"
19 #include "xattr.h"
20 #include "iostat.h"
21 #include <trace/events/f2fs.h>
22 
23 #define on_f2fs_build_free_nids(nm_i) mutex_is_locked(&(nm_i)->build_lock)
24 
25 static struct kmem_cache *nat_entry_slab;
26 static struct kmem_cache *free_nid_slab;
27 static struct kmem_cache *nat_entry_set_slab;
28 static struct kmem_cache *fsync_node_entry_slab;
29 
30 static inline bool is_invalid_nid(struct f2fs_sb_info *sbi, nid_t nid)
31 {
32 	return nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid;
33 }
34 
35 /*
36  * Check whether the given nid is within node id range.
37  */
38 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
39 {
40 	if (unlikely(is_invalid_nid(sbi, nid))) {
41 		set_sbi_flag(sbi, SBI_NEED_FSCK);
42 		f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.",
43 			  __func__, nid);
44 		f2fs_handle_error(sbi, ERROR_CORRUPTED_INODE);
45 		return -EFSCORRUPTED;
46 	}
47 	return 0;
48 }
49 
50 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
51 {
52 	struct f2fs_nm_info *nm_i = NM_I(sbi);
53 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
54 	struct sysinfo val;
55 	unsigned long avail_ram;
56 	unsigned long mem_size = 0;
57 	bool res = false;
58 
59 	if (!nm_i)
60 		return true;
61 
62 	si_meminfo(&val);
63 
64 	/* only uses low memory */
65 	avail_ram = val.totalram - val.totalhigh;
66 
67 	/*
68 	 * give 25%, 25%, 50%, 50%, 25%, 25% memory for each components respectively
69 	 */
70 	if (type == FREE_NIDS) {
71 		mem_size = (nm_i->nid_cnt[FREE_NID] *
72 				sizeof(struct free_nid)) >> PAGE_SHIFT;
73 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
74 	} else if (type == NAT_ENTRIES) {
75 		mem_size = (nm_i->nat_cnt[TOTAL_NAT] *
76 				sizeof(struct nat_entry)) >> PAGE_SHIFT;
77 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
78 		if (excess_cached_nats(sbi))
79 			res = false;
80 	} else if (type == DIRTY_DENTS) {
81 		if (sbi->sb->s_bdi->wb.dirty_exceeded)
82 			return false;
83 		mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
84 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
85 	} else if (type == INO_ENTRIES) {
86 		int i;
87 
88 		for (i = 0; i < MAX_INO_ENTRY; i++)
89 			mem_size += sbi->im[i].ino_num *
90 						sizeof(struct ino_entry);
91 		mem_size >>= PAGE_SHIFT;
92 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
93 	} else if (type == READ_EXTENT_CACHE || type == AGE_EXTENT_CACHE) {
94 		enum extent_type etype = type == READ_EXTENT_CACHE ?
95 						EX_READ : EX_BLOCK_AGE;
96 		struct extent_tree_info *eti = &sbi->extent_tree[etype];
97 
98 		mem_size = (atomic_read(&eti->total_ext_tree) *
99 				sizeof(struct extent_tree) +
100 				atomic_read(&eti->total_ext_node) *
101 				sizeof(struct extent_node)) >> PAGE_SHIFT;
102 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
103 	} else if (type == DISCARD_CACHE) {
104 		mem_size = (atomic_read(&dcc->discard_cmd_cnt) *
105 				sizeof(struct discard_cmd)) >> PAGE_SHIFT;
106 		res = mem_size < (avail_ram * nm_i->ram_thresh / 100);
107 	} else if (type == COMPRESS_PAGE) {
108 #ifdef CONFIG_F2FS_FS_COMPRESSION
109 		unsigned long free_ram = val.freeram;
110 
111 		/*
112 		 * free memory is lower than watermark or cached page count
113 		 * exceed threshold, deny caching compress page.
114 		 */
115 		res = (free_ram > avail_ram * sbi->compress_watermark / 100) &&
116 			(COMPRESS_MAPPING(sbi)->nrpages <
117 			 free_ram * sbi->compress_percent / 100);
118 #else
119 		res = false;
120 #endif
121 	} else {
122 		if (!sbi->sb->s_bdi->wb.dirty_exceeded)
123 			return true;
124 	}
125 	return res;
126 }
127 
128 static void clear_node_folio_dirty(struct folio *folio)
129 {
130 	if (folio_test_dirty(folio)) {
131 		f2fs_clear_page_cache_dirty_tag(folio);
132 		folio_clear_dirty_for_io(folio);
133 		dec_page_count(F2FS_F_SB(folio), F2FS_DIRTY_NODES);
134 	}
135 	folio_clear_uptodate(folio);
136 }
137 
138 static struct folio *get_current_nat_folio(struct f2fs_sb_info *sbi, nid_t nid)
139 {
140 	return f2fs_get_meta_folio_retry(sbi, current_nat_addr(sbi, nid));
141 }
142 
143 static struct folio *get_next_nat_folio(struct f2fs_sb_info *sbi, nid_t nid)
144 {
145 	struct folio *src_folio;
146 	struct folio *dst_folio;
147 	pgoff_t dst_off;
148 	void *src_addr;
149 	void *dst_addr;
150 	struct f2fs_nm_info *nm_i = NM_I(sbi);
151 
152 	dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
153 
154 	/* get current nat block page with lock */
155 	src_folio = get_current_nat_folio(sbi, nid);
156 	if (IS_ERR(src_folio))
157 		return src_folio;
158 	dst_folio = f2fs_grab_meta_folio(sbi, dst_off);
159 	f2fs_bug_on(sbi, folio_test_dirty(src_folio));
160 
161 	src_addr = folio_address(src_folio);
162 	dst_addr = folio_address(dst_folio);
163 	memcpy(dst_addr, src_addr, PAGE_SIZE);
164 	folio_mark_dirty(dst_folio);
165 	f2fs_folio_put(src_folio, true);
166 
167 	set_to_next_nat(nm_i, nid);
168 
169 	return dst_folio;
170 }
171 
172 static struct nat_entry *__alloc_nat_entry(struct f2fs_sb_info *sbi,
173 						nid_t nid, bool no_fail)
174 {
175 	struct nat_entry *new;
176 
177 	new = f2fs_kmem_cache_alloc(nat_entry_slab,
178 					GFP_F2FS_ZERO, no_fail, sbi);
179 	if (new) {
180 		nat_set_nid(new, nid);
181 		nat_reset_flag(new);
182 	}
183 	return new;
184 }
185 
186 static void __free_nat_entry(struct nat_entry *e)
187 {
188 	kmem_cache_free(nat_entry_slab, e);
189 }
190 
191 /* must be locked by nat_tree_lock */
192 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
193 	struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail, bool init_dirty)
194 {
195 	if (no_fail)
196 		f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
197 	else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
198 		return NULL;
199 
200 	if (raw_ne)
201 		node_info_from_raw_nat(&ne->ni, raw_ne);
202 
203 	if (init_dirty) {
204 		INIT_LIST_HEAD(&ne->list);
205 		nm_i->nat_cnt[TOTAL_NAT]++;
206 		return ne;
207 	}
208 
209 	spin_lock(&nm_i->nat_list_lock);
210 	list_add_tail(&ne->list, &nm_i->nat_entries);
211 	spin_unlock(&nm_i->nat_list_lock);
212 
213 	nm_i->nat_cnt[TOTAL_NAT]++;
214 	nm_i->nat_cnt[RECLAIMABLE_NAT]++;
215 	return ne;
216 }
217 
218 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n, bool for_dirty)
219 {
220 	struct nat_entry *ne;
221 
222 	ne = radix_tree_lookup(&nm_i->nat_root, n);
223 
224 	/*
225 	 * for recent accessed nat entry which will not be dirtied soon
226 	 * later, move it to tail of lru list.
227 	 */
228 	if (ne && !get_nat_flag(ne, IS_DIRTY) && !for_dirty) {
229 		spin_lock(&nm_i->nat_list_lock);
230 		if (!list_empty(&ne->list))
231 			list_move_tail(&ne->list, &nm_i->nat_entries);
232 		spin_unlock(&nm_i->nat_list_lock);
233 	}
234 
235 	return ne;
236 }
237 
238 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
239 		nid_t start, unsigned int nr, struct nat_entry **ep)
240 {
241 	return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
242 }
243 
244 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
245 {
246 	radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
247 	nm_i->nat_cnt[TOTAL_NAT]--;
248 	nm_i->nat_cnt[RECLAIMABLE_NAT]--;
249 	__free_nat_entry(e);
250 }
251 
252 static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
253 							struct nat_entry *ne)
254 {
255 	nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
256 	struct nat_entry_set *head;
257 
258 	head = radix_tree_lookup(&nm_i->nat_set_root, set);
259 	if (!head) {
260 		head = f2fs_kmem_cache_alloc(nat_entry_set_slab,
261 						GFP_NOFS, true, NULL);
262 
263 		INIT_LIST_HEAD(&head->entry_list);
264 		INIT_LIST_HEAD(&head->set_list);
265 		head->set = set;
266 		head->entry_cnt = 0;
267 		f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
268 	}
269 	return head;
270 }
271 
272 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
273 		struct nat_entry *ne, bool init_dirty)
274 {
275 	struct nat_entry_set *head;
276 	bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
277 
278 	if (!new_ne)
279 		head = __grab_nat_entry_set(nm_i, ne);
280 
281 	/*
282 	 * update entry_cnt in below condition:
283 	 * 1. update NEW_ADDR to valid block address;
284 	 * 2. update old block address to new one;
285 	 */
286 	if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
287 				!get_nat_flag(ne, IS_DIRTY)))
288 		head->entry_cnt++;
289 
290 	set_nat_flag(ne, IS_PREALLOC, new_ne);
291 
292 	if (get_nat_flag(ne, IS_DIRTY))
293 		goto refresh_list;
294 
295 	nm_i->nat_cnt[DIRTY_NAT]++;
296 	if (!init_dirty)
297 		nm_i->nat_cnt[RECLAIMABLE_NAT]--;
298 	set_nat_flag(ne, IS_DIRTY, true);
299 refresh_list:
300 	spin_lock(&nm_i->nat_list_lock);
301 	if (new_ne)
302 		list_del_init(&ne->list);
303 	else
304 		list_move_tail(&ne->list, &head->entry_list);
305 	spin_unlock(&nm_i->nat_list_lock);
306 }
307 
308 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
309 		struct nat_entry_set *set, struct nat_entry *ne)
310 {
311 	spin_lock(&nm_i->nat_list_lock);
312 	list_move_tail(&ne->list, &nm_i->nat_entries);
313 	spin_unlock(&nm_i->nat_list_lock);
314 
315 	set_nat_flag(ne, IS_DIRTY, false);
316 	set->entry_cnt--;
317 	nm_i->nat_cnt[DIRTY_NAT]--;
318 	nm_i->nat_cnt[RECLAIMABLE_NAT]++;
319 }
320 
321 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
322 		nid_t start, unsigned int nr, struct nat_entry_set **ep)
323 {
324 	return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
325 							start, nr);
326 }
327 
328 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct folio *folio)
329 {
330 	return is_node_folio(folio) && IS_DNODE(folio) && is_cold_node(folio);
331 }
332 
333 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
334 {
335 	spin_lock_init(&sbi->fsync_node_lock);
336 	INIT_LIST_HEAD(&sbi->fsync_node_list);
337 	sbi->fsync_seg_id = 0;
338 	sbi->fsync_node_num = 0;
339 }
340 
341 static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
342 		struct folio *folio)
343 {
344 	struct fsync_node_entry *fn;
345 	unsigned long flags;
346 	unsigned int seq_id;
347 
348 	fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab,
349 					GFP_NOFS, true, NULL);
350 
351 	folio_get(folio);
352 	fn->folio = folio;
353 	INIT_LIST_HEAD(&fn->list);
354 
355 	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
356 	list_add_tail(&fn->list, &sbi->fsync_node_list);
357 	fn->seq_id = sbi->fsync_seg_id++;
358 	seq_id = fn->seq_id;
359 	sbi->fsync_node_num++;
360 	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
361 
362 	return seq_id;
363 }
364 
365 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct folio *folio)
366 {
367 	struct fsync_node_entry *fn;
368 	unsigned long flags;
369 
370 	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
371 	list_for_each_entry(fn, &sbi->fsync_node_list, list) {
372 		if (fn->folio == folio) {
373 			list_del(&fn->list);
374 			sbi->fsync_node_num--;
375 			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
376 			kmem_cache_free(fsync_node_entry_slab, fn);
377 			folio_put(folio);
378 			return;
379 		}
380 	}
381 	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
382 	f2fs_bug_on(sbi, 1);
383 }
384 
385 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
386 {
387 	unsigned long flags;
388 
389 	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
390 	sbi->fsync_seg_id = 0;
391 	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
392 }
393 
394 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
395 {
396 	struct f2fs_nm_info *nm_i = NM_I(sbi);
397 	struct nat_entry *e;
398 	bool need = false;
399 
400 	f2fs_down_read(&nm_i->nat_tree_lock);
401 	e = __lookup_nat_cache(nm_i, nid, false);
402 	if (e) {
403 		if (!get_nat_flag(e, IS_CHECKPOINTED) &&
404 				!get_nat_flag(e, HAS_FSYNCED_INODE))
405 			need = true;
406 	}
407 	f2fs_up_read(&nm_i->nat_tree_lock);
408 	return need;
409 }
410 
411 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
412 {
413 	struct f2fs_nm_info *nm_i = NM_I(sbi);
414 	struct nat_entry *e;
415 	bool is_cp = true;
416 
417 	f2fs_down_read(&nm_i->nat_tree_lock);
418 	e = __lookup_nat_cache(nm_i, nid, false);
419 	if (e && !get_nat_flag(e, IS_CHECKPOINTED))
420 		is_cp = false;
421 	f2fs_up_read(&nm_i->nat_tree_lock);
422 	return is_cp;
423 }
424 
425 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
426 {
427 	struct f2fs_nm_info *nm_i = NM_I(sbi);
428 	struct nat_entry *e;
429 	bool need_update = true;
430 
431 	f2fs_down_read(&nm_i->nat_tree_lock);
432 	e = __lookup_nat_cache(nm_i, ino, false);
433 	if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
434 			(get_nat_flag(e, IS_CHECKPOINTED) ||
435 			 get_nat_flag(e, HAS_FSYNCED_INODE)))
436 		need_update = false;
437 	f2fs_up_read(&nm_i->nat_tree_lock);
438 	return need_update;
439 }
440 
441 /* must be locked by nat_tree_lock */
442 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
443 						struct f2fs_nat_entry *ne)
444 {
445 	struct f2fs_nm_info *nm_i = NM_I(sbi);
446 	struct nat_entry *new, *e;
447 
448 	/* Let's mitigate lock contention of nat_tree_lock during checkpoint */
449 	if (f2fs_rwsem_is_locked(&sbi->cp_global_sem))
450 		return;
451 
452 	new = __alloc_nat_entry(sbi, nid, false);
453 	if (!new)
454 		return;
455 
456 	f2fs_down_write(&nm_i->nat_tree_lock);
457 	e = __lookup_nat_cache(nm_i, nid, false);
458 	if (!e)
459 		e = __init_nat_entry(nm_i, new, ne, false, false);
460 	else
461 		f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
462 				nat_get_blkaddr(e) !=
463 					le32_to_cpu(ne->block_addr) ||
464 				nat_get_version(e) != ne->version);
465 	f2fs_up_write(&nm_i->nat_tree_lock);
466 	if (e != new)
467 		__free_nat_entry(new);
468 }
469 
470 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
471 			block_t new_blkaddr, bool fsync_done)
472 {
473 	struct f2fs_nm_info *nm_i = NM_I(sbi);
474 	struct nat_entry *e;
475 	struct nat_entry *new = __alloc_nat_entry(sbi, ni->nid, true);
476 	bool init_dirty = false;
477 
478 	f2fs_down_write(&nm_i->nat_tree_lock);
479 	e = __lookup_nat_cache(nm_i, ni->nid, true);
480 	if (!e) {
481 		init_dirty = true;
482 		e = __init_nat_entry(nm_i, new, NULL, true, true);
483 		copy_node_info(&e->ni, ni);
484 		f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
485 	} else if (new_blkaddr == NEW_ADDR) {
486 		/*
487 		 * when nid is reallocated,
488 		 * previous nat entry can be remained in nat cache.
489 		 * So, reinitialize it with new information.
490 		 */
491 		copy_node_info(&e->ni, ni);
492 		f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
493 	}
494 	/* let's free early to reduce memory consumption */
495 	if (e != new)
496 		__free_nat_entry(new);
497 
498 	/* sanity check */
499 	f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
500 	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
501 			new_blkaddr == NULL_ADDR);
502 	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
503 			new_blkaddr == NEW_ADDR);
504 	f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
505 			new_blkaddr == NEW_ADDR);
506 
507 	/* increment version no as node is removed */
508 	if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
509 		unsigned char version = nat_get_version(e);
510 
511 		nat_set_version(e, inc_node_version(version));
512 	}
513 
514 	/* change address */
515 	nat_set_blkaddr(e, new_blkaddr);
516 	if (!__is_valid_data_blkaddr(new_blkaddr))
517 		set_nat_flag(e, IS_CHECKPOINTED, false);
518 	__set_nat_cache_dirty(nm_i, e, init_dirty);
519 
520 	/* update fsync_mark if its inode nat entry is still alive */
521 	if (ni->nid != ni->ino)
522 		e = __lookup_nat_cache(nm_i, ni->ino, false);
523 	if (e) {
524 		if (fsync_done && ni->nid == ni->ino)
525 			set_nat_flag(e, HAS_FSYNCED_INODE, true);
526 		set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
527 	}
528 	f2fs_up_write(&nm_i->nat_tree_lock);
529 }
530 
531 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
532 {
533 	struct f2fs_nm_info *nm_i = NM_I(sbi);
534 	int nr = nr_shrink;
535 
536 	if (!f2fs_down_write_trylock(&nm_i->nat_tree_lock))
537 		return 0;
538 
539 	spin_lock(&nm_i->nat_list_lock);
540 	while (nr_shrink) {
541 		struct nat_entry *ne;
542 
543 		if (list_empty(&nm_i->nat_entries))
544 			break;
545 
546 		ne = list_first_entry(&nm_i->nat_entries,
547 					struct nat_entry, list);
548 		list_del(&ne->list);
549 		spin_unlock(&nm_i->nat_list_lock);
550 
551 		__del_from_nat_cache(nm_i, ne);
552 		nr_shrink--;
553 
554 		spin_lock(&nm_i->nat_list_lock);
555 	}
556 	spin_unlock(&nm_i->nat_list_lock);
557 
558 	f2fs_up_write(&nm_i->nat_tree_lock);
559 	return nr - nr_shrink;
560 }
561 
562 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
563 				struct node_info *ni, bool checkpoint_context)
564 {
565 	struct f2fs_nm_info *nm_i = NM_I(sbi);
566 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
567 	struct f2fs_journal *journal = curseg->journal;
568 	nid_t start_nid = START_NID(nid);
569 	struct f2fs_nat_block *nat_blk;
570 	struct folio *folio = NULL;
571 	struct f2fs_nat_entry ne;
572 	struct nat_entry *e;
573 	pgoff_t index;
574 	int i;
575 	bool need_cache = true;
576 
577 	ni->flag = 0;
578 	ni->nid = nid;
579 retry:
580 	/* Check nat cache */
581 	f2fs_down_read(&nm_i->nat_tree_lock);
582 	e = __lookup_nat_cache(nm_i, nid, false);
583 	if (e) {
584 		ni->ino = nat_get_ino(e);
585 		ni->blk_addr = nat_get_blkaddr(e);
586 		ni->version = nat_get_version(e);
587 		f2fs_up_read(&nm_i->nat_tree_lock);
588 		if (IS_ENABLED(CONFIG_F2FS_CHECK_FS)) {
589 			need_cache = false;
590 			goto sanity_check;
591 		}
592 		return 0;
593 	}
594 
595 	/*
596 	 * Check current segment summary by trying to grab journal_rwsem first.
597 	 * This sem is on the critical path on the checkpoint requiring the above
598 	 * nat_tree_lock. Therefore, we should retry, if we failed to grab here
599 	 * while not bothering checkpoint.
600 	 */
601 	if (!f2fs_rwsem_is_locked(&sbi->cp_global_sem) || checkpoint_context) {
602 		down_read(&curseg->journal_rwsem);
603 	} else if (f2fs_rwsem_is_contended(&nm_i->nat_tree_lock) ||
604 				!down_read_trylock(&curseg->journal_rwsem)) {
605 		f2fs_up_read(&nm_i->nat_tree_lock);
606 		goto retry;
607 	}
608 
609 	i = f2fs_lookup_journal_in_cursum(sbi, journal, NAT_JOURNAL, nid, 0);
610 	if (i >= 0) {
611 		ne = nat_in_journal(journal, i);
612 		node_info_from_raw_nat(ni, &ne);
613 	}
614 	up_read(&curseg->journal_rwsem);
615 	if (i >= 0) {
616 		f2fs_up_read(&nm_i->nat_tree_lock);
617 		goto sanity_check;
618 	}
619 
620 	/* Fill node_info from nat page */
621 	index = current_nat_addr(sbi, nid);
622 	f2fs_up_read(&nm_i->nat_tree_lock);
623 
624 	folio = f2fs_get_meta_folio(sbi, index);
625 	if (IS_ERR(folio))
626 		return PTR_ERR(folio);
627 
628 	nat_blk = folio_address(folio);
629 	ne = nat_blk->entries[nid - start_nid];
630 	node_info_from_raw_nat(ni, &ne);
631 	f2fs_folio_put(folio, true);
632 sanity_check:
633 	if (__is_valid_data_blkaddr(ni->blk_addr) &&
634 		!f2fs_is_valid_blkaddr(sbi, ni->blk_addr,
635 					DATA_GENERIC_ENHANCE)) {
636 		set_sbi_flag(sbi, SBI_NEED_FSCK);
637 		f2fs_err_ratelimited(sbi,
638 			"f2fs_get_node_info of %pS: inconsistent nat entry, "
639 			"ino:%u, nid:%u, blkaddr:%u, ver:%u, flag:%u",
640 			__builtin_return_address(0),
641 			ni->ino, ni->nid, ni->blk_addr, ni->version, ni->flag);
642 		f2fs_handle_error(sbi, ERROR_INCONSISTENT_NAT);
643 		return -EFSCORRUPTED;
644 	}
645 
646 	if (unlikely(f2fs_quota_file(sbi, ni->nid) &&
647 		!__is_valid_data_blkaddr(ni->blk_addr))) {
648 		set_sbi_flag(sbi, SBI_NEED_FSCK);
649 		f2fs_err_ratelimited(sbi,
650 			"f2fs_get_node_info of %pS: inconsistent nat entry from qf_ino, "
651 			"ino:%u, nid:%u, blkaddr:%u, ver:%u, flag:%u",
652 			__builtin_return_address(0),
653 			ni->ino, ni->nid, ni->blk_addr, ni->version, ni->flag);
654 		f2fs_handle_error(sbi, ERROR_INCONSISTENT_NAT);
655 	}
656 
657 	/* cache nat entry */
658 	if (need_cache)
659 		cache_nat_entry(sbi, nid, &ne);
660 	return 0;
661 }
662 
663 /*
664  * readahead MAX_RA_NODE number of node pages.
665  */
666 static void f2fs_ra_node_pages(struct folio *parent, int start, int n)
667 {
668 	struct f2fs_sb_info *sbi = F2FS_F_SB(parent);
669 	struct blk_plug plug;
670 	int i, end;
671 	nid_t nid;
672 
673 	blk_start_plug(&plug);
674 
675 	/* Then, try readahead for siblings of the desired node */
676 	end = start + n;
677 	end = min(end, (int)NIDS_PER_BLOCK);
678 	for (i = start; i < end; i++) {
679 		nid = get_nid(parent, i, false);
680 		f2fs_ra_node_page(sbi, nid);
681 	}
682 
683 	blk_finish_plug(&plug);
684 }
685 
686 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
687 {
688 	const long direct_index = ADDRS_PER_INODE(dn->inode);
689 	const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
690 	const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
691 	unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
692 	int cur_level = dn->cur_level;
693 	int max_level = dn->max_level;
694 	pgoff_t base = 0;
695 
696 	if (!dn->max_level)
697 		return pgofs + 1;
698 
699 	while (max_level-- > cur_level)
700 		skipped_unit *= NIDS_PER_BLOCK;
701 
702 	switch (dn->max_level) {
703 	case 3:
704 		base += 2 * indirect_blks;
705 		fallthrough;
706 	case 2:
707 		base += 2 * direct_blks;
708 		fallthrough;
709 	case 1:
710 		base += direct_index;
711 		break;
712 	default:
713 		f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
714 	}
715 
716 	return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
717 }
718 
719 /*
720  * The maximum depth is four.
721  * Offset[0] will have raw inode offset.
722  */
723 static int get_node_path(struct inode *inode, long block,
724 				int offset[4], unsigned int noffset[4])
725 {
726 	const long direct_index = ADDRS_PER_INODE(inode);
727 	const long direct_blks = ADDRS_PER_BLOCK(inode);
728 	const long dptrs_per_blk = NIDS_PER_BLOCK;
729 	const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
730 	const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
731 	int n = 0;
732 	int level = 0;
733 
734 	noffset[0] = 0;
735 
736 	if (block < direct_index) {
737 		offset[n] = block;
738 		goto got;
739 	}
740 	block -= direct_index;
741 	if (block < direct_blks) {
742 		offset[n++] = NODE_DIR1_BLOCK;
743 		noffset[n] = 1;
744 		offset[n] = block;
745 		level = 1;
746 		goto got;
747 	}
748 	block -= direct_blks;
749 	if (block < direct_blks) {
750 		offset[n++] = NODE_DIR2_BLOCK;
751 		noffset[n] = 2;
752 		offset[n] = block;
753 		level = 1;
754 		goto got;
755 	}
756 	block -= direct_blks;
757 	if (block < indirect_blks) {
758 		offset[n++] = NODE_IND1_BLOCK;
759 		noffset[n] = 3;
760 		offset[n++] = block / direct_blks;
761 		noffset[n] = 4 + offset[n - 1];
762 		offset[n] = block % direct_blks;
763 		level = 2;
764 		goto got;
765 	}
766 	block -= indirect_blks;
767 	if (block < indirect_blks) {
768 		offset[n++] = NODE_IND2_BLOCK;
769 		noffset[n] = 4 + dptrs_per_blk;
770 		offset[n++] = block / direct_blks;
771 		noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
772 		offset[n] = block % direct_blks;
773 		level = 2;
774 		goto got;
775 	}
776 	block -= indirect_blks;
777 	if (block < dindirect_blks) {
778 		offset[n++] = NODE_DIND_BLOCK;
779 		noffset[n] = 5 + (dptrs_per_blk * 2);
780 		offset[n++] = block / indirect_blks;
781 		noffset[n] = 6 + (dptrs_per_blk * 2) +
782 			      offset[n - 1] * (dptrs_per_blk + 1);
783 		offset[n++] = (block / direct_blks) % dptrs_per_blk;
784 		noffset[n] = 7 + (dptrs_per_blk * 2) +
785 			      offset[n - 2] * (dptrs_per_blk + 1) +
786 			      offset[n - 1];
787 		offset[n] = block % direct_blks;
788 		level = 3;
789 		goto got;
790 	} else {
791 		return -E2BIG;
792 	}
793 got:
794 	return level;
795 }
796 
797 static struct folio *f2fs_get_node_folio_ra(struct folio *parent, int start);
798 
799 /*
800  * Caller should call f2fs_put_dnode(dn).
801  * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
802  * f2fs_unlock_op() only if mode is set with ALLOC_NODE.
803  */
804 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
805 {
806 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
807 	struct folio *nfolio[4];
808 	struct folio *parent = NULL;
809 	int offset[4];
810 	unsigned int noffset[4];
811 	nid_t nids[4];
812 	int level, i = 0;
813 	int err = 0;
814 
815 	level = get_node_path(dn->inode, index, offset, noffset);
816 	if (level < 0)
817 		return level;
818 
819 	nids[0] = dn->inode->i_ino;
820 
821 	if (!dn->inode_folio) {
822 		nfolio[0] = f2fs_get_inode_folio(sbi, nids[0]);
823 		if (IS_ERR(nfolio[0]))
824 			return PTR_ERR(nfolio[0]);
825 	} else {
826 		nfolio[0] = dn->inode_folio;
827 	}
828 
829 	/* if inline_data is set, should not report any block indices */
830 	if (f2fs_has_inline_data(dn->inode) && index) {
831 		err = -ENOENT;
832 		f2fs_folio_put(nfolio[0], true);
833 		goto release_out;
834 	}
835 
836 	parent = nfolio[0];
837 	if (level != 0)
838 		nids[1] = get_nid(parent, offset[0], true);
839 	dn->inode_folio = nfolio[0];
840 	dn->inode_folio_locked = true;
841 
842 	/* get indirect or direct nodes */
843 	for (i = 1; i <= level; i++) {
844 		bool done = false;
845 
846 		if (nids[i] && nids[i] == dn->inode->i_ino) {
847 			err = -EFSCORRUPTED;
848 			f2fs_err_ratelimited(sbi,
849 				"inode mapping table is corrupted, run fsck to fix it, "
850 				"ino:%lu, nid:%u, level:%d, offset:%d",
851 				dn->inode->i_ino, nids[i], level, offset[level]);
852 			set_sbi_flag(sbi, SBI_NEED_FSCK);
853 			goto release_pages;
854 		}
855 
856 		if (!nids[i] && mode == ALLOC_NODE) {
857 			/* alloc new node */
858 			if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
859 				err = -ENOSPC;
860 				goto release_pages;
861 			}
862 
863 			dn->nid = nids[i];
864 			nfolio[i] = f2fs_new_node_folio(dn, noffset[i]);
865 			if (IS_ERR(nfolio[i])) {
866 				f2fs_alloc_nid_failed(sbi, nids[i]);
867 				err = PTR_ERR(nfolio[i]);
868 				goto release_pages;
869 			}
870 
871 			set_nid(parent, offset[i - 1], nids[i], i == 1);
872 			f2fs_alloc_nid_done(sbi, nids[i]);
873 			done = true;
874 		} else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
875 			nfolio[i] = f2fs_get_node_folio_ra(parent, offset[i - 1]);
876 			if (IS_ERR(nfolio[i])) {
877 				err = PTR_ERR(nfolio[i]);
878 				goto release_pages;
879 			}
880 			done = true;
881 		}
882 		if (i == 1) {
883 			dn->inode_folio_locked = false;
884 			folio_unlock(parent);
885 		} else {
886 			f2fs_folio_put(parent, true);
887 		}
888 
889 		if (!done) {
890 			nfolio[i] = f2fs_get_node_folio(sbi, nids[i],
891 						NODE_TYPE_NON_INODE);
892 			if (IS_ERR(nfolio[i])) {
893 				err = PTR_ERR(nfolio[i]);
894 				f2fs_folio_put(nfolio[0], false);
895 				goto release_out;
896 			}
897 		}
898 		if (i < level) {
899 			parent = nfolio[i];
900 			nids[i + 1] = get_nid(parent, offset[i], false);
901 		}
902 	}
903 	dn->nid = nids[level];
904 	dn->ofs_in_node = offset[level];
905 	dn->node_folio = nfolio[level];
906 	dn->data_blkaddr = f2fs_data_blkaddr(dn);
907 
908 	if (is_inode_flag_set(dn->inode, FI_COMPRESSED_FILE) &&
909 					f2fs_sb_has_readonly(sbi)) {
910 		unsigned int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
911 		unsigned int ofs_in_node = dn->ofs_in_node;
912 		pgoff_t fofs = index;
913 		unsigned int c_len;
914 		block_t blkaddr;
915 
916 		/* should align fofs and ofs_in_node to cluster_size */
917 		if (fofs % cluster_size) {
918 			fofs = round_down(fofs, cluster_size);
919 			ofs_in_node = round_down(ofs_in_node, cluster_size);
920 		}
921 
922 		c_len = f2fs_cluster_blocks_are_contiguous(dn, ofs_in_node);
923 		if (!c_len)
924 			goto out;
925 
926 		blkaddr = data_blkaddr(dn->inode, dn->node_folio, ofs_in_node);
927 		if (blkaddr == COMPRESS_ADDR)
928 			blkaddr = data_blkaddr(dn->inode, dn->node_folio,
929 						ofs_in_node + 1);
930 
931 		f2fs_update_read_extent_tree_range_compressed(dn->inode,
932 					fofs, blkaddr, cluster_size, c_len);
933 	}
934 out:
935 	return 0;
936 
937 release_pages:
938 	f2fs_folio_put(parent, true);
939 	if (i > 1)
940 		f2fs_folio_put(nfolio[0], false);
941 release_out:
942 	dn->inode_folio = NULL;
943 	dn->node_folio = NULL;
944 	if (err == -ENOENT) {
945 		dn->cur_level = i;
946 		dn->max_level = level;
947 		dn->ofs_in_node = offset[level];
948 	}
949 	return err;
950 }
951 
952 static int truncate_node(struct dnode_of_data *dn)
953 {
954 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
955 	struct node_info ni;
956 	int err;
957 	pgoff_t index;
958 
959 	err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
960 	if (err)
961 		return err;
962 
963 	if (ni.blk_addr != NEW_ADDR &&
964 		!f2fs_is_valid_blkaddr(sbi, ni.blk_addr, DATA_GENERIC_ENHANCE)) {
965 		f2fs_err_ratelimited(sbi,
966 			"nat entry is corrupted, run fsck to fix it, ino:%u, "
967 			"nid:%u, blkaddr:%u", ni.ino, ni.nid, ni.blk_addr);
968 		set_sbi_flag(sbi, SBI_NEED_FSCK);
969 		f2fs_handle_error(sbi, ERROR_INCONSISTENT_NAT);
970 		return -EFSCORRUPTED;
971 	}
972 
973 	/* Deallocate node address */
974 	f2fs_invalidate_blocks(sbi, ni.blk_addr, 1);
975 	dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
976 	set_node_addr(sbi, &ni, NULL_ADDR, false);
977 
978 	if (dn->nid == dn->inode->i_ino) {
979 		f2fs_remove_orphan_inode(sbi, dn->nid);
980 		dec_valid_inode_count(sbi);
981 		f2fs_inode_synced(dn->inode);
982 	}
983 
984 	clear_node_folio_dirty(dn->node_folio);
985 	set_sbi_flag(sbi, SBI_IS_DIRTY);
986 
987 	index = dn->node_folio->index;
988 	f2fs_folio_put(dn->node_folio, true);
989 
990 	invalidate_mapping_pages(NODE_MAPPING(sbi),
991 			index, index);
992 
993 	dn->node_folio = NULL;
994 	trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
995 
996 	return 0;
997 }
998 
999 static int truncate_dnode(struct dnode_of_data *dn)
1000 {
1001 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1002 	struct folio *folio;
1003 	int err;
1004 
1005 	if (dn->nid == 0)
1006 		return 1;
1007 
1008 	/* get direct node */
1009 	folio = f2fs_get_node_folio(sbi, dn->nid, NODE_TYPE_NON_INODE);
1010 	if (PTR_ERR(folio) == -ENOENT)
1011 		return 1;
1012 	else if (IS_ERR(folio))
1013 		return PTR_ERR(folio);
1014 
1015 	if (IS_INODE(folio) || ino_of_node(folio) != dn->inode->i_ino) {
1016 		f2fs_err(sbi, "incorrect node reference, ino: %lu, nid: %u, ino_of_node: %u",
1017 				dn->inode->i_ino, dn->nid, ino_of_node(folio));
1018 		set_sbi_flag(sbi, SBI_NEED_FSCK);
1019 		f2fs_handle_error(sbi, ERROR_INVALID_NODE_REFERENCE);
1020 		f2fs_folio_put(folio, true);
1021 		return -EFSCORRUPTED;
1022 	}
1023 
1024 	/* Make dnode_of_data for parameter */
1025 	dn->node_folio = folio;
1026 	dn->ofs_in_node = 0;
1027 	f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK(dn->inode));
1028 	err = truncate_node(dn);
1029 	if (err) {
1030 		f2fs_folio_put(folio, true);
1031 		return err;
1032 	}
1033 
1034 	return 1;
1035 }
1036 
1037 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
1038 						int ofs, int depth)
1039 {
1040 	struct dnode_of_data rdn = *dn;
1041 	struct folio *folio;
1042 	struct f2fs_node *rn;
1043 	nid_t child_nid;
1044 	unsigned int child_nofs;
1045 	int freed = 0;
1046 	int i, ret;
1047 
1048 	if (dn->nid == 0)
1049 		return NIDS_PER_BLOCK + 1;
1050 
1051 	trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
1052 
1053 	folio = f2fs_get_node_folio(F2FS_I_SB(dn->inode), dn->nid,
1054 						NODE_TYPE_NON_INODE);
1055 	if (IS_ERR(folio)) {
1056 		trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(folio));
1057 		return PTR_ERR(folio);
1058 	}
1059 
1060 	f2fs_ra_node_pages(folio, ofs, NIDS_PER_BLOCK);
1061 
1062 	rn = F2FS_NODE(folio);
1063 	if (depth < 3) {
1064 		for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
1065 			child_nid = le32_to_cpu(rn->in.nid[i]);
1066 			if (child_nid == 0)
1067 				continue;
1068 			rdn.nid = child_nid;
1069 			ret = truncate_dnode(&rdn);
1070 			if (ret < 0)
1071 				goto out_err;
1072 			if (set_nid(folio, i, 0, false))
1073 				dn->node_changed = true;
1074 		}
1075 	} else {
1076 		child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
1077 		for (i = ofs; i < NIDS_PER_BLOCK; i++) {
1078 			child_nid = le32_to_cpu(rn->in.nid[i]);
1079 			if (child_nid == 0) {
1080 				child_nofs += NIDS_PER_BLOCK + 1;
1081 				continue;
1082 			}
1083 			rdn.nid = child_nid;
1084 			ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
1085 			if (ret == (NIDS_PER_BLOCK + 1)) {
1086 				if (set_nid(folio, i, 0, false))
1087 					dn->node_changed = true;
1088 				child_nofs += ret;
1089 			} else if (ret < 0 && ret != -ENOENT) {
1090 				goto out_err;
1091 			}
1092 		}
1093 		freed = child_nofs;
1094 	}
1095 
1096 	if (!ofs) {
1097 		/* remove current indirect node */
1098 		dn->node_folio = folio;
1099 		ret = truncate_node(dn);
1100 		if (ret)
1101 			goto out_err;
1102 		freed++;
1103 	} else {
1104 		f2fs_folio_put(folio, true);
1105 	}
1106 	trace_f2fs_truncate_nodes_exit(dn->inode, freed);
1107 	return freed;
1108 
1109 out_err:
1110 	f2fs_folio_put(folio, true);
1111 	trace_f2fs_truncate_nodes_exit(dn->inode, ret);
1112 	return ret;
1113 }
1114 
1115 static int truncate_partial_nodes(struct dnode_of_data *dn,
1116 			struct f2fs_inode *ri, int *offset, int depth)
1117 {
1118 	struct folio *folios[2];
1119 	nid_t nid[3];
1120 	nid_t child_nid;
1121 	int err = 0;
1122 	int i;
1123 	int idx = depth - 2;
1124 
1125 	nid[0] = get_nid(dn->inode_folio, offset[0], true);
1126 	if (!nid[0])
1127 		return 0;
1128 
1129 	/* get indirect nodes in the path */
1130 	for (i = 0; i < idx + 1; i++) {
1131 		/* reference count'll be increased */
1132 		folios[i] = f2fs_get_node_folio(F2FS_I_SB(dn->inode), nid[i],
1133 							NODE_TYPE_NON_INODE);
1134 		if (IS_ERR(folios[i])) {
1135 			err = PTR_ERR(folios[i]);
1136 			idx = i - 1;
1137 			goto fail;
1138 		}
1139 		nid[i + 1] = get_nid(folios[i], offset[i + 1], false);
1140 	}
1141 
1142 	f2fs_ra_node_pages(folios[idx], offset[idx + 1], NIDS_PER_BLOCK);
1143 
1144 	/* free direct nodes linked to a partial indirect node */
1145 	for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
1146 		child_nid = get_nid(folios[idx], i, false);
1147 		if (!child_nid)
1148 			continue;
1149 		dn->nid = child_nid;
1150 		err = truncate_dnode(dn);
1151 		if (err < 0)
1152 			goto fail;
1153 		if (set_nid(folios[idx], i, 0, false))
1154 			dn->node_changed = true;
1155 	}
1156 
1157 	if (offset[idx + 1] == 0) {
1158 		dn->node_folio = folios[idx];
1159 		dn->nid = nid[idx];
1160 		err = truncate_node(dn);
1161 		if (err)
1162 			goto fail;
1163 	} else {
1164 		f2fs_folio_put(folios[idx], true);
1165 	}
1166 	offset[idx]++;
1167 	offset[idx + 1] = 0;
1168 	idx--;
1169 fail:
1170 	for (i = idx; i >= 0; i--)
1171 		f2fs_folio_put(folios[i], true);
1172 
1173 	trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1174 
1175 	return err;
1176 }
1177 
1178 /*
1179  * All the block addresses of data and nodes should be nullified.
1180  */
1181 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1182 {
1183 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1184 	int err = 0, cont = 1;
1185 	int level, offset[4], noffset[4];
1186 	unsigned int nofs = 0;
1187 	struct f2fs_inode *ri;
1188 	struct dnode_of_data dn;
1189 	struct folio *folio;
1190 
1191 	trace_f2fs_truncate_inode_blocks_enter(inode, from);
1192 
1193 	level = get_node_path(inode, from, offset, noffset);
1194 	if (level <= 0) {
1195 		if (!level) {
1196 			level = -EFSCORRUPTED;
1197 			f2fs_err(sbi, "%s: inode ino=%lx has corrupted node block, from:%lu addrs:%u",
1198 					__func__, inode->i_ino,
1199 					from, ADDRS_PER_INODE(inode));
1200 			set_sbi_flag(sbi, SBI_NEED_FSCK);
1201 		}
1202 		trace_f2fs_truncate_inode_blocks_exit(inode, level);
1203 		return level;
1204 	}
1205 
1206 	folio = f2fs_get_inode_folio(sbi, inode->i_ino);
1207 	if (IS_ERR(folio)) {
1208 		trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(folio));
1209 		return PTR_ERR(folio);
1210 	}
1211 
1212 	set_new_dnode(&dn, inode, folio, NULL, 0);
1213 	folio_unlock(folio);
1214 
1215 	ri = F2FS_INODE(folio);
1216 	switch (level) {
1217 	case 0:
1218 	case 1:
1219 		nofs = noffset[1];
1220 		break;
1221 	case 2:
1222 		nofs = noffset[1];
1223 		if (!offset[level - 1])
1224 			goto skip_partial;
1225 		err = truncate_partial_nodes(&dn, ri, offset, level);
1226 		if (err < 0 && err != -ENOENT)
1227 			goto fail;
1228 		nofs += 1 + NIDS_PER_BLOCK;
1229 		break;
1230 	case 3:
1231 		nofs = 5 + 2 * NIDS_PER_BLOCK;
1232 		if (!offset[level - 1])
1233 			goto skip_partial;
1234 		err = truncate_partial_nodes(&dn, ri, offset, level);
1235 		if (err < 0 && err != -ENOENT)
1236 			goto fail;
1237 		break;
1238 	default:
1239 		BUG();
1240 	}
1241 
1242 skip_partial:
1243 	while (cont) {
1244 		dn.nid = get_nid(folio, offset[0], true);
1245 		switch (offset[0]) {
1246 		case NODE_DIR1_BLOCK:
1247 		case NODE_DIR2_BLOCK:
1248 			err = truncate_dnode(&dn);
1249 			break;
1250 
1251 		case NODE_IND1_BLOCK:
1252 		case NODE_IND2_BLOCK:
1253 			err = truncate_nodes(&dn, nofs, offset[1], 2);
1254 			break;
1255 
1256 		case NODE_DIND_BLOCK:
1257 			err = truncate_nodes(&dn, nofs, offset[1], 3);
1258 			cont = 0;
1259 			break;
1260 
1261 		default:
1262 			BUG();
1263 		}
1264 		if (err == -ENOENT) {
1265 			set_sbi_flag(F2FS_F_SB(folio), SBI_NEED_FSCK);
1266 			f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1267 			f2fs_err_ratelimited(sbi,
1268 				"truncate node fail, ino:%lu, nid:%u, "
1269 				"offset[0]:%d, offset[1]:%d, nofs:%d",
1270 				inode->i_ino, dn.nid, offset[0],
1271 				offset[1], nofs);
1272 			err = 0;
1273 		}
1274 		if (err < 0)
1275 			goto fail;
1276 		if (offset[1] == 0 && get_nid(folio, offset[0], true)) {
1277 			folio_lock(folio);
1278 			BUG_ON(!is_node_folio(folio));
1279 			set_nid(folio, offset[0], 0, true);
1280 			folio_unlock(folio);
1281 		}
1282 		offset[1] = 0;
1283 		offset[0]++;
1284 		nofs += err;
1285 	}
1286 fail:
1287 	f2fs_folio_put(folio, false);
1288 	trace_f2fs_truncate_inode_blocks_exit(inode, err);
1289 	return err > 0 ? 0 : err;
1290 }
1291 
1292 /* caller must lock inode page */
1293 int f2fs_truncate_xattr_node(struct inode *inode)
1294 {
1295 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1296 	nid_t nid = F2FS_I(inode)->i_xattr_nid;
1297 	struct dnode_of_data dn;
1298 	struct folio *nfolio;
1299 	int err;
1300 
1301 	if (!nid)
1302 		return 0;
1303 
1304 	nfolio = f2fs_get_xnode_folio(sbi, nid);
1305 	if (IS_ERR(nfolio))
1306 		return PTR_ERR(nfolio);
1307 
1308 	set_new_dnode(&dn, inode, NULL, nfolio, nid);
1309 	err = truncate_node(&dn);
1310 	if (err) {
1311 		f2fs_folio_put(nfolio, true);
1312 		return err;
1313 	}
1314 
1315 	f2fs_i_xnid_write(inode, 0);
1316 
1317 	return 0;
1318 }
1319 
1320 /*
1321  * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1322  * f2fs_unlock_op().
1323  */
1324 int f2fs_remove_inode_page(struct inode *inode)
1325 {
1326 	struct dnode_of_data dn;
1327 	int err;
1328 
1329 	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1330 	err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1331 	if (err)
1332 		return err;
1333 
1334 	err = f2fs_truncate_xattr_node(inode);
1335 	if (err) {
1336 		f2fs_put_dnode(&dn);
1337 		return err;
1338 	}
1339 
1340 	/* remove potential inline_data blocks */
1341 	if (!IS_DEVICE_ALIASING(inode) &&
1342 	    (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1343 	     S_ISLNK(inode->i_mode)))
1344 		f2fs_truncate_data_blocks_range(&dn, 1);
1345 
1346 	/* 0 is possible, after f2fs_new_inode() has failed */
1347 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1348 		f2fs_put_dnode(&dn);
1349 		return -EIO;
1350 	}
1351 
1352 	if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
1353 		f2fs_warn(F2FS_I_SB(inode),
1354 			"f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu",
1355 			inode->i_ino, (unsigned long long)inode->i_blocks);
1356 		set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
1357 	}
1358 
1359 	/* will put inode & node pages */
1360 	err = truncate_node(&dn);
1361 	if (err) {
1362 		f2fs_put_dnode(&dn);
1363 		return err;
1364 	}
1365 	return 0;
1366 }
1367 
1368 struct folio *f2fs_new_inode_folio(struct inode *inode)
1369 {
1370 	struct dnode_of_data dn;
1371 
1372 	/* allocate inode page for new inode */
1373 	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1374 
1375 	/* caller should f2fs_folio_put(folio, true); */
1376 	return f2fs_new_node_folio(&dn, 0);
1377 }
1378 
1379 struct folio *f2fs_new_node_folio(struct dnode_of_data *dn, unsigned int ofs)
1380 {
1381 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1382 	struct node_info new_ni;
1383 	struct folio *folio;
1384 	int err;
1385 
1386 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1387 		return ERR_PTR(-EPERM);
1388 
1389 	folio = f2fs_grab_cache_folio(NODE_MAPPING(sbi), dn->nid, false);
1390 	if (IS_ERR(folio))
1391 		return folio;
1392 
1393 	if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1394 		goto fail;
1395 
1396 #ifdef CONFIG_F2FS_CHECK_FS
1397 	err = f2fs_get_node_info(sbi, dn->nid, &new_ni, false);
1398 	if (err) {
1399 		dec_valid_node_count(sbi, dn->inode, !ofs);
1400 		goto fail;
1401 	}
1402 	if (unlikely(new_ni.blk_addr != NULL_ADDR)) {
1403 		err = -EFSCORRUPTED;
1404 		dec_valid_node_count(sbi, dn->inode, !ofs);
1405 		set_sbi_flag(sbi, SBI_NEED_FSCK);
1406 		f2fs_warn_ratelimited(sbi,
1407 			"f2fs_new_node_folio: inconsistent nat entry, "
1408 			"ino:%u, nid:%u, blkaddr:%u, ver:%u, flag:%u",
1409 			new_ni.ino, new_ni.nid, new_ni.blk_addr,
1410 			new_ni.version, new_ni.flag);
1411 		f2fs_handle_error(sbi, ERROR_INCONSISTENT_NAT);
1412 		goto fail;
1413 	}
1414 #endif
1415 	new_ni.nid = dn->nid;
1416 	new_ni.ino = dn->inode->i_ino;
1417 	new_ni.blk_addr = NULL_ADDR;
1418 	new_ni.flag = 0;
1419 	new_ni.version = 0;
1420 	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1421 
1422 	f2fs_folio_wait_writeback(folio, NODE, true, true);
1423 	fill_node_footer(folio, dn->nid, dn->inode->i_ino, ofs, true);
1424 	set_cold_node(folio, S_ISDIR(dn->inode->i_mode));
1425 	if (!folio_test_uptodate(folio))
1426 		folio_mark_uptodate(folio);
1427 	if (folio_mark_dirty(folio))
1428 		dn->node_changed = true;
1429 
1430 	if (f2fs_has_xattr_block(ofs))
1431 		f2fs_i_xnid_write(dn->inode, dn->nid);
1432 
1433 	if (ofs == 0)
1434 		inc_valid_inode_count(sbi);
1435 	return folio;
1436 fail:
1437 	clear_node_folio_dirty(folio);
1438 	f2fs_folio_put(folio, true);
1439 	return ERR_PTR(err);
1440 }
1441 
1442 /*
1443  * Caller should do after getting the following values.
1444  * 0: f2fs_folio_put(folio, false)
1445  * LOCKED_PAGE or error: f2fs_folio_put(folio, true)
1446  */
1447 static int read_node_folio(struct folio *folio, blk_opf_t op_flags)
1448 {
1449 	struct f2fs_sb_info *sbi = F2FS_F_SB(folio);
1450 	struct node_info ni;
1451 	struct f2fs_io_info fio = {
1452 		.sbi = sbi,
1453 		.type = NODE,
1454 		.op = REQ_OP_READ,
1455 		.op_flags = op_flags,
1456 		.folio = folio,
1457 		.encrypted_page = NULL,
1458 	};
1459 	int err;
1460 
1461 	if (folio_test_uptodate(folio)) {
1462 		if (!f2fs_inode_chksum_verify(sbi, folio)) {
1463 			folio_clear_uptodate(folio);
1464 			return -EFSBADCRC;
1465 		}
1466 		return LOCKED_PAGE;
1467 	}
1468 
1469 	err = f2fs_get_node_info(sbi, folio->index, &ni, false);
1470 	if (err)
1471 		return err;
1472 
1473 	/* NEW_ADDR can be seen, after cp_error drops some dirty node pages */
1474 	if (unlikely(ni.blk_addr == NULL_ADDR || ni.blk_addr == NEW_ADDR)) {
1475 		folio_clear_uptodate(folio);
1476 		return -ENOENT;
1477 	}
1478 
1479 	fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1480 
1481 	err = f2fs_submit_page_bio(&fio);
1482 
1483 	if (!err)
1484 		f2fs_update_iostat(sbi, NULL, FS_NODE_READ_IO, F2FS_BLKSIZE);
1485 
1486 	return err;
1487 }
1488 
1489 /*
1490  * Readahead a node page
1491  */
1492 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1493 {
1494 	struct folio *afolio;
1495 	int err;
1496 
1497 	if (!nid)
1498 		return;
1499 	if (f2fs_check_nid_range(sbi, nid))
1500 		return;
1501 
1502 	afolio = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
1503 	if (afolio)
1504 		return;
1505 
1506 	afolio = f2fs_grab_cache_folio(NODE_MAPPING(sbi), nid, false);
1507 	if (IS_ERR(afolio))
1508 		return;
1509 
1510 	err = read_node_folio(afolio, REQ_RAHEAD);
1511 	f2fs_folio_put(afolio, err ? true : false);
1512 }
1513 
1514 int f2fs_sanity_check_node_footer(struct f2fs_sb_info *sbi,
1515 					struct folio *folio, pgoff_t nid,
1516 					enum node_type ntype, bool in_irq)
1517 {
1518 	bool is_inode, is_xnode;
1519 
1520 	if (unlikely(nid != nid_of_node(folio)))
1521 		goto out_err;
1522 
1523 	is_inode = IS_INODE(folio);
1524 	is_xnode = f2fs_has_xattr_block(ofs_of_node(folio));
1525 
1526 	switch (ntype) {
1527 	case NODE_TYPE_REGULAR:
1528 		if (is_inode && is_xnode)
1529 			goto out_err;
1530 		break;
1531 	case NODE_TYPE_INODE:
1532 		if (!is_inode || is_xnode)
1533 			goto out_err;
1534 		break;
1535 	case NODE_TYPE_XATTR:
1536 		if (is_inode || !is_xnode)
1537 			goto out_err;
1538 		break;
1539 	case NODE_TYPE_NON_INODE:
1540 		if (is_inode)
1541 			goto out_err;
1542 		break;
1543 	default:
1544 		break;
1545 	}
1546 	if (time_to_inject(sbi, FAULT_INCONSISTENT_FOOTER))
1547 		goto out_err;
1548 	return 0;
1549 out_err:
1550 	set_sbi_flag(sbi, SBI_NEED_FSCK);
1551 	f2fs_warn_ratelimited(sbi, "inconsistent node block, node_type:%d, nid:%lu, "
1552 		"node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1553 		ntype, nid, nid_of_node(folio), ino_of_node(folio),
1554 		ofs_of_node(folio), cpver_of_node(folio),
1555 		next_blkaddr_of_node(folio));
1556 
1557 	f2fs_handle_error(sbi, ERROR_INCONSISTENT_FOOTER);
1558 	return -EFSCORRUPTED;
1559 }
1560 
1561 static struct folio *__get_node_folio(struct f2fs_sb_info *sbi, pgoff_t nid,
1562 		struct folio *parent, int start, enum node_type ntype)
1563 {
1564 	struct folio *folio;
1565 	int err;
1566 
1567 	if (!nid)
1568 		return ERR_PTR(-ENOENT);
1569 	if (f2fs_check_nid_range(sbi, nid))
1570 		return ERR_PTR(-EINVAL);
1571 repeat:
1572 	folio = f2fs_grab_cache_folio(NODE_MAPPING(sbi), nid, false);
1573 	if (IS_ERR(folio))
1574 		return folio;
1575 
1576 	err = read_node_folio(folio, 0);
1577 	if (err < 0)
1578 		goto out_put_err;
1579 	if (err == LOCKED_PAGE)
1580 		goto page_hit;
1581 
1582 	if (parent)
1583 		f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1584 
1585 	folio_lock(folio);
1586 
1587 	if (unlikely(!is_node_folio(folio))) {
1588 		f2fs_folio_put(folio, true);
1589 		goto repeat;
1590 	}
1591 
1592 	if (unlikely(!folio_test_uptodate(folio))) {
1593 		err = -EIO;
1594 		goto out_put_err;
1595 	}
1596 
1597 	if (!f2fs_inode_chksum_verify(sbi, folio)) {
1598 		err = -EFSBADCRC;
1599 		goto out_err;
1600 	}
1601 page_hit:
1602 	err = f2fs_sanity_check_node_footer(sbi, folio, nid, ntype, false);
1603 	if (!err)
1604 		return folio;
1605 out_err:
1606 	folio_clear_uptodate(folio);
1607 out_put_err:
1608 	/* ENOENT comes from read_node_folio which is not an error. */
1609 	if (err != -ENOENT)
1610 		f2fs_handle_page_eio(sbi, folio, NODE);
1611 	f2fs_folio_put(folio, true);
1612 	return ERR_PTR(err);
1613 }
1614 
1615 struct folio *f2fs_get_node_folio(struct f2fs_sb_info *sbi, pgoff_t nid,
1616 						enum node_type node_type)
1617 {
1618 	return __get_node_folio(sbi, nid, NULL, 0, node_type);
1619 }
1620 
1621 struct folio *f2fs_get_inode_folio(struct f2fs_sb_info *sbi, pgoff_t ino)
1622 {
1623 	return __get_node_folio(sbi, ino, NULL, 0, NODE_TYPE_INODE);
1624 }
1625 
1626 struct folio *f2fs_get_xnode_folio(struct f2fs_sb_info *sbi, pgoff_t xnid)
1627 {
1628 	return __get_node_folio(sbi, xnid, NULL, 0, NODE_TYPE_XATTR);
1629 }
1630 
1631 static struct folio *f2fs_get_node_folio_ra(struct folio *parent, int start)
1632 {
1633 	struct f2fs_sb_info *sbi = F2FS_F_SB(parent);
1634 	nid_t nid = get_nid(parent, start, false);
1635 
1636 	return __get_node_folio(sbi, nid, parent, start, NODE_TYPE_REGULAR);
1637 }
1638 
1639 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1640 {
1641 	struct inode *inode;
1642 	struct folio *folio;
1643 	int ret;
1644 
1645 	/* should flush inline_data before evict_inode */
1646 	inode = ilookup(sbi->sb, ino);
1647 	if (!inode)
1648 		return;
1649 
1650 	folio = f2fs_filemap_get_folio(inode->i_mapping, 0,
1651 					FGP_LOCK|FGP_NOWAIT, 0);
1652 	if (IS_ERR(folio))
1653 		goto iput_out;
1654 
1655 	if (!folio_test_uptodate(folio))
1656 		goto folio_out;
1657 
1658 	if (!folio_test_dirty(folio))
1659 		goto folio_out;
1660 
1661 	if (!folio_clear_dirty_for_io(folio))
1662 		goto folio_out;
1663 
1664 	ret = f2fs_write_inline_data(inode, folio);
1665 	inode_dec_dirty_pages(inode);
1666 	f2fs_remove_dirty_inode(inode);
1667 	if (ret)
1668 		folio_mark_dirty(folio);
1669 folio_out:
1670 	f2fs_folio_put(folio, true);
1671 iput_out:
1672 	iput(inode);
1673 }
1674 
1675 static struct folio *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1676 {
1677 	pgoff_t index;
1678 	struct folio_batch fbatch;
1679 	struct folio *last_folio = NULL;
1680 	int nr_folios;
1681 
1682 	folio_batch_init(&fbatch);
1683 	index = 0;
1684 
1685 	while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index,
1686 					(pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1687 					&fbatch))) {
1688 		int i;
1689 
1690 		for (i = 0; i < nr_folios; i++) {
1691 			struct folio *folio = fbatch.folios[i];
1692 
1693 			if (unlikely(f2fs_cp_error(sbi))) {
1694 				f2fs_folio_put(last_folio, false);
1695 				folio_batch_release(&fbatch);
1696 				return ERR_PTR(-EIO);
1697 			}
1698 
1699 			if (!IS_DNODE(folio) || !is_cold_node(folio))
1700 				continue;
1701 			if (ino_of_node(folio) != ino)
1702 				continue;
1703 
1704 			folio_lock(folio);
1705 
1706 			if (unlikely(!is_node_folio(folio))) {
1707 continue_unlock:
1708 				folio_unlock(folio);
1709 				continue;
1710 			}
1711 			if (ino_of_node(folio) != ino)
1712 				goto continue_unlock;
1713 
1714 			if (!folio_test_dirty(folio)) {
1715 				/* someone wrote it for us */
1716 				goto continue_unlock;
1717 			}
1718 
1719 			if (last_folio)
1720 				f2fs_folio_put(last_folio, false);
1721 
1722 			folio_get(folio);
1723 			last_folio = folio;
1724 			folio_unlock(folio);
1725 		}
1726 		folio_batch_release(&fbatch);
1727 		cond_resched();
1728 	}
1729 	return last_folio;
1730 }
1731 
1732 static bool __write_node_folio(struct folio *folio, bool atomic, bool *submitted,
1733 				struct writeback_control *wbc, bool do_balance,
1734 				enum iostat_type io_type, unsigned int *seq_id)
1735 {
1736 	struct f2fs_sb_info *sbi = F2FS_F_SB(folio);
1737 	nid_t nid;
1738 	struct node_info ni;
1739 	struct f2fs_io_info fio = {
1740 		.sbi = sbi,
1741 		.ino = ino_of_node(folio),
1742 		.type = NODE,
1743 		.op = REQ_OP_WRITE,
1744 		.op_flags = wbc_to_write_flags(wbc),
1745 		.folio = folio,
1746 		.encrypted_page = NULL,
1747 		.submitted = 0,
1748 		.io_type = io_type,
1749 		.io_wbc = wbc,
1750 	};
1751 	struct f2fs_lock_context lc;
1752 	unsigned int seq;
1753 
1754 	trace_f2fs_writepage(folio, NODE);
1755 
1756 	if (unlikely(f2fs_cp_error(sbi))) {
1757 		/* keep node pages in remount-ro mode */
1758 		if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_READONLY)
1759 			goto redirty_out;
1760 		folio_clear_uptodate(folio);
1761 		dec_page_count(sbi, F2FS_DIRTY_NODES);
1762 		folio_unlock(folio);
1763 		return true;
1764 	}
1765 
1766 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1767 		goto redirty_out;
1768 
1769 	if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1770 			wbc->sync_mode == WB_SYNC_NONE &&
1771 			IS_DNODE(folio) && is_cold_node(folio))
1772 		goto redirty_out;
1773 
1774 	/* get old block addr of this node page */
1775 	nid = nid_of_node(folio);
1776 
1777 	if (f2fs_sanity_check_node_footer(sbi, folio, nid,
1778 					NODE_TYPE_REGULAR, false)) {
1779 		f2fs_handle_critical_error(sbi, STOP_CP_REASON_CORRUPTED_NID);
1780 		goto redirty_out;
1781 	}
1782 
1783 	if (f2fs_get_node_info(sbi, nid, &ni, !do_balance))
1784 		goto redirty_out;
1785 
1786 	f2fs_down_read_trace(&sbi->node_write, &lc);
1787 
1788 	/* This page is already truncated */
1789 	if (unlikely(ni.blk_addr == NULL_ADDR)) {
1790 		folio_clear_uptodate(folio);
1791 		dec_page_count(sbi, F2FS_DIRTY_NODES);
1792 		f2fs_up_read_trace(&sbi->node_write, &lc);
1793 		folio_unlock(folio);
1794 		return true;
1795 	}
1796 
1797 	if (__is_valid_data_blkaddr(ni.blk_addr) &&
1798 		!f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
1799 					DATA_GENERIC_ENHANCE)) {
1800 		f2fs_up_read_trace(&sbi->node_write, &lc);
1801 		goto redirty_out;
1802 	}
1803 
1804 	if (atomic) {
1805 		if (!test_opt(sbi, NOBARRIER))
1806 			fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1807 		if (IS_INODE(folio))
1808 			set_dentry_mark(folio,
1809 				f2fs_need_dentry_mark(sbi, ino_of_node(folio)));
1810 	}
1811 
1812 	/* should add to global list before clearing PAGECACHE status */
1813 	if (f2fs_in_warm_node_list(sbi, folio)) {
1814 		seq = f2fs_add_fsync_node_entry(sbi, folio);
1815 		if (seq_id)
1816 			*seq_id = seq;
1817 	}
1818 
1819 	folio_start_writeback(folio);
1820 
1821 	fio.old_blkaddr = ni.blk_addr;
1822 	f2fs_do_write_node_page(nid, &fio);
1823 	set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(folio));
1824 	dec_page_count(sbi, F2FS_DIRTY_NODES);
1825 	f2fs_up_read_trace(&sbi->node_write, &lc);
1826 
1827 	folio_unlock(folio);
1828 
1829 	if (unlikely(f2fs_cp_error(sbi))) {
1830 		f2fs_submit_merged_write(sbi, NODE);
1831 		submitted = NULL;
1832 	}
1833 	if (submitted)
1834 		*submitted = fio.submitted;
1835 
1836 	if (do_balance)
1837 		f2fs_balance_fs(sbi, false);
1838 	return true;
1839 
1840 redirty_out:
1841 	folio_redirty_for_writepage(wbc, folio);
1842 	folio_unlock(folio);
1843 	return false;
1844 }
1845 
1846 int f2fs_move_node_folio(struct folio *node_folio, int gc_type)
1847 {
1848 	int err = 0;
1849 
1850 	if (gc_type == FG_GC) {
1851 		struct writeback_control wbc = {
1852 			.sync_mode = WB_SYNC_ALL,
1853 			.nr_to_write = 1,
1854 		};
1855 
1856 		f2fs_folio_wait_writeback(node_folio, NODE, true, true);
1857 
1858 		folio_mark_dirty(node_folio);
1859 
1860 		if (!folio_clear_dirty_for_io(node_folio)) {
1861 			err = -EAGAIN;
1862 			goto out_page;
1863 		}
1864 
1865 		if (!__write_node_folio(node_folio, false, NULL,
1866 					&wbc, false, FS_GC_NODE_IO, NULL))
1867 			err = -EAGAIN;
1868 		goto release_page;
1869 	} else {
1870 		/* set page dirty and write it */
1871 		if (!folio_test_writeback(node_folio))
1872 			folio_mark_dirty(node_folio);
1873 	}
1874 out_page:
1875 	folio_unlock(node_folio);
1876 release_page:
1877 	f2fs_folio_put(node_folio, false);
1878 	return err;
1879 }
1880 
1881 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1882 			struct writeback_control *wbc, bool atomic,
1883 			unsigned int *seq_id)
1884 {
1885 	pgoff_t index;
1886 	struct folio_batch fbatch;
1887 	int ret = 0;
1888 	struct folio *last_folio = NULL;
1889 	bool marked = false;
1890 	nid_t ino = inode->i_ino;
1891 	int nr_folios;
1892 	int nwritten = 0;
1893 
1894 	if (atomic) {
1895 		last_folio = last_fsync_dnode(sbi, ino);
1896 		if (IS_ERR_OR_NULL(last_folio))
1897 			return PTR_ERR_OR_ZERO(last_folio);
1898 	}
1899 retry:
1900 	folio_batch_init(&fbatch);
1901 	index = 0;
1902 
1903 	while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index,
1904 					(pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1905 					&fbatch))) {
1906 		int i;
1907 
1908 		for (i = 0; i < nr_folios; i++) {
1909 			struct folio *folio = fbatch.folios[i];
1910 			bool submitted = false;
1911 
1912 			if (unlikely(f2fs_cp_error(sbi))) {
1913 				f2fs_folio_put(last_folio, false);
1914 				folio_batch_release(&fbatch);
1915 				ret = -EIO;
1916 				goto out;
1917 			}
1918 
1919 			if (!IS_DNODE(folio) || !is_cold_node(folio))
1920 				continue;
1921 			if (ino_of_node(folio) != ino)
1922 				continue;
1923 
1924 			folio_lock(folio);
1925 
1926 			if (unlikely(!is_node_folio(folio))) {
1927 continue_unlock:
1928 				folio_unlock(folio);
1929 				continue;
1930 			}
1931 			if (ino_of_node(folio) != ino)
1932 				goto continue_unlock;
1933 
1934 			if (!folio_test_dirty(folio) && folio != last_folio) {
1935 				/* someone wrote it for us */
1936 				goto continue_unlock;
1937 			}
1938 
1939 			f2fs_folio_wait_writeback(folio, NODE, true, true);
1940 
1941 			set_fsync_mark(folio, 0);
1942 			set_dentry_mark(folio, 0);
1943 
1944 			if (!atomic || folio == last_folio) {
1945 				set_fsync_mark(folio, 1);
1946 				percpu_counter_inc(&sbi->rf_node_block_count);
1947 				if (IS_INODE(folio)) {
1948 					if (is_inode_flag_set(inode,
1949 								FI_DIRTY_INODE))
1950 						f2fs_update_inode(inode, folio);
1951 					if (!atomic)
1952 						set_dentry_mark(folio,
1953 							f2fs_need_dentry_mark(sbi, ino));
1954 				}
1955 				/* may be written by other thread */
1956 				if (!folio_test_dirty(folio))
1957 					folio_mark_dirty(folio);
1958 			}
1959 
1960 			if (!folio_clear_dirty_for_io(folio))
1961 				goto continue_unlock;
1962 
1963 			if (!__write_node_folio(folio, atomic &&
1964 						folio == last_folio,
1965 						&submitted, wbc, true,
1966 						FS_NODE_IO, seq_id)) {
1967 				f2fs_folio_put(last_folio, false);
1968 				folio_batch_release(&fbatch);
1969 				ret = -EIO;
1970 				goto out;
1971 			}
1972 			if (submitted)
1973 				nwritten++;
1974 
1975 			if (folio == last_folio) {
1976 				f2fs_folio_put(folio, false);
1977 				folio_batch_release(&fbatch);
1978 				marked = true;
1979 				goto out;
1980 			}
1981 		}
1982 		folio_batch_release(&fbatch);
1983 		cond_resched();
1984 	}
1985 	if (atomic && !marked) {
1986 		f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx",
1987 			   ino, last_folio->index);
1988 		folio_lock(last_folio);
1989 		f2fs_folio_wait_writeback(last_folio, NODE, true, true);
1990 		folio_mark_dirty(last_folio);
1991 		folio_unlock(last_folio);
1992 		goto retry;
1993 	}
1994 out:
1995 	if (nwritten)
1996 		f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1997 	return ret;
1998 }
1999 
2000 static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data)
2001 {
2002 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2003 	bool clean;
2004 
2005 	if (inode->i_ino != ino)
2006 		return 0;
2007 
2008 	if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
2009 		return 0;
2010 
2011 	spin_lock(&sbi->inode_lock[DIRTY_META]);
2012 	clean = list_empty(&F2FS_I(inode)->gdirty_list);
2013 	spin_unlock(&sbi->inode_lock[DIRTY_META]);
2014 
2015 	if (clean)
2016 		return 0;
2017 
2018 	inode = igrab(inode);
2019 	if (!inode)
2020 		return 0;
2021 	return 1;
2022 }
2023 
2024 static bool flush_dirty_inode(struct folio *folio)
2025 {
2026 	struct f2fs_sb_info *sbi = F2FS_F_SB(folio);
2027 	struct inode *inode;
2028 	nid_t ino = ino_of_node(folio);
2029 
2030 	inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL);
2031 	if (!inode)
2032 		return false;
2033 
2034 	f2fs_update_inode(inode, folio);
2035 	folio_unlock(folio);
2036 
2037 	iput(inode);
2038 	return true;
2039 }
2040 
2041 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi)
2042 {
2043 	pgoff_t index = 0;
2044 	struct folio_batch fbatch;
2045 	int nr_folios;
2046 
2047 	folio_batch_init(&fbatch);
2048 
2049 	while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index,
2050 					(pgoff_t)-1, PAGECACHE_TAG_DIRTY,
2051 					&fbatch))) {
2052 		int i;
2053 
2054 		for (i = 0; i < nr_folios; i++) {
2055 			struct folio *folio = fbatch.folios[i];
2056 
2057 			if (!IS_INODE(folio))
2058 				continue;
2059 
2060 			folio_lock(folio);
2061 
2062 			if (unlikely(!is_node_folio(folio)))
2063 				goto unlock;
2064 			if (!folio_test_dirty(folio))
2065 				goto unlock;
2066 
2067 			/* flush inline_data, if it's async context. */
2068 			if (folio_test_f2fs_inline(folio)) {
2069 				folio_clear_f2fs_inline(folio);
2070 				folio_unlock(folio);
2071 				flush_inline_data(sbi, ino_of_node(folio));
2072 				continue;
2073 			}
2074 unlock:
2075 			folio_unlock(folio);
2076 		}
2077 		folio_batch_release(&fbatch);
2078 		cond_resched();
2079 	}
2080 }
2081 
2082 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
2083 				struct writeback_control *wbc,
2084 				bool do_balance, enum iostat_type io_type)
2085 {
2086 	pgoff_t index;
2087 	struct folio_batch fbatch;
2088 	int step = 0;
2089 	int nwritten = 0;
2090 	int ret = 0;
2091 	int nr_folios, done = 0;
2092 
2093 	folio_batch_init(&fbatch);
2094 
2095 next_step:
2096 	index = 0;
2097 
2098 	while (!done && (nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi),
2099 				&index, (pgoff_t)-1, PAGECACHE_TAG_DIRTY,
2100 				&fbatch))) {
2101 		int i;
2102 
2103 		for (i = 0; i < nr_folios; i++) {
2104 			struct folio *folio = fbatch.folios[i];
2105 			bool submitted = false;
2106 
2107 			/* give a priority to WB_SYNC threads */
2108 			if (atomic_read(&sbi->wb_sync_req[NODE]) &&
2109 					wbc->sync_mode == WB_SYNC_NONE) {
2110 				done = 1;
2111 				break;
2112 			}
2113 
2114 			/*
2115 			 * flushing sequence with step:
2116 			 * 0. indirect nodes
2117 			 * 1. dentry dnodes
2118 			 * 2. file dnodes
2119 			 */
2120 			if (step == 0 && IS_DNODE(folio))
2121 				continue;
2122 			if (step == 1 && (!IS_DNODE(folio) ||
2123 						is_cold_node(folio)))
2124 				continue;
2125 			if (step == 2 && (!IS_DNODE(folio) ||
2126 						!is_cold_node(folio)))
2127 				continue;
2128 lock_node:
2129 			if (wbc->sync_mode == WB_SYNC_ALL)
2130 				folio_lock(folio);
2131 			else if (!folio_trylock(folio))
2132 				continue;
2133 
2134 			if (unlikely(!is_node_folio(folio))) {
2135 continue_unlock:
2136 				folio_unlock(folio);
2137 				continue;
2138 			}
2139 
2140 			if (!folio_test_dirty(folio)) {
2141 				/* someone wrote it for us */
2142 				goto continue_unlock;
2143 			}
2144 
2145 			/* flush inline_data/inode, if it's async context. */
2146 			if (!do_balance)
2147 				goto write_node;
2148 
2149 			/* flush inline_data */
2150 			if (folio_test_f2fs_inline(folio)) {
2151 				folio_clear_f2fs_inline(folio);
2152 				folio_unlock(folio);
2153 				flush_inline_data(sbi, ino_of_node(folio));
2154 				goto lock_node;
2155 			}
2156 
2157 			/* flush dirty inode */
2158 			if (IS_INODE(folio) && flush_dirty_inode(folio))
2159 				goto lock_node;
2160 write_node:
2161 			f2fs_folio_wait_writeback(folio, NODE, true, true);
2162 
2163 			if (!folio_clear_dirty_for_io(folio))
2164 				goto continue_unlock;
2165 
2166 			set_fsync_mark(folio, 0);
2167 			set_dentry_mark(folio, 0);
2168 
2169 			if (!__write_node_folio(folio, false, &submitted,
2170 					wbc, do_balance, io_type, NULL)) {
2171 				folio_batch_release(&fbatch);
2172 				ret = -EIO;
2173 				goto out;
2174 			}
2175 			if (submitted)
2176 				nwritten++;
2177 
2178 			if (--wbc->nr_to_write == 0)
2179 				break;
2180 		}
2181 		folio_batch_release(&fbatch);
2182 		cond_resched();
2183 
2184 		if (wbc->nr_to_write == 0) {
2185 			step = 2;
2186 			break;
2187 		}
2188 	}
2189 
2190 	if (step < 2) {
2191 		if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2192 				wbc->sync_mode == WB_SYNC_NONE && step == 1)
2193 			goto out;
2194 		step++;
2195 		goto next_step;
2196 	}
2197 out:
2198 	if (nwritten)
2199 		f2fs_submit_merged_write(sbi, NODE);
2200 
2201 	if (unlikely(f2fs_cp_error(sbi)))
2202 		return -EIO;
2203 	return ret;
2204 }
2205 
2206 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
2207 						unsigned int seq_id)
2208 {
2209 	struct fsync_node_entry *fn;
2210 	struct list_head *head = &sbi->fsync_node_list;
2211 	unsigned long flags;
2212 	unsigned int cur_seq_id = 0;
2213 
2214 	while (seq_id && cur_seq_id < seq_id) {
2215 		struct folio *folio;
2216 
2217 		spin_lock_irqsave(&sbi->fsync_node_lock, flags);
2218 		if (list_empty(head)) {
2219 			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2220 			break;
2221 		}
2222 		fn = list_first_entry(head, struct fsync_node_entry, list);
2223 		if (fn->seq_id > seq_id) {
2224 			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2225 			break;
2226 		}
2227 		cur_seq_id = fn->seq_id;
2228 		folio = fn->folio;
2229 		folio_get(folio);
2230 		spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2231 
2232 		f2fs_folio_wait_writeback(folio, NODE, true, false);
2233 
2234 		folio_put(folio);
2235 	}
2236 
2237 	return filemap_check_errors(NODE_MAPPING(sbi));
2238 }
2239 
2240 static int f2fs_write_node_pages(struct address_space *mapping,
2241 			    struct writeback_control *wbc)
2242 {
2243 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2244 	struct blk_plug plug;
2245 	long diff;
2246 
2247 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2248 		goto skip_write;
2249 
2250 	/* balancing f2fs's metadata in background */
2251 	f2fs_balance_fs_bg(sbi, true);
2252 
2253 	/* collect a number of dirty node pages and write together */
2254 	if (wbc->sync_mode != WB_SYNC_ALL &&
2255 			get_pages(sbi, F2FS_DIRTY_NODES) <
2256 					nr_pages_to_skip(sbi, NODE))
2257 		goto skip_write;
2258 
2259 	if (wbc->sync_mode == WB_SYNC_ALL)
2260 		atomic_inc(&sbi->wb_sync_req[NODE]);
2261 	else if (atomic_read(&sbi->wb_sync_req[NODE])) {
2262 		/* to avoid potential deadlock */
2263 		if (current->plug)
2264 			blk_finish_plug(current->plug);
2265 		goto skip_write;
2266 	}
2267 
2268 	trace_f2fs_writepages(mapping->host, wbc, NODE);
2269 
2270 	diff = nr_pages_to_write(sbi, NODE, wbc);
2271 	blk_start_plug(&plug);
2272 	f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
2273 	blk_finish_plug(&plug);
2274 	wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
2275 
2276 	if (wbc->sync_mode == WB_SYNC_ALL)
2277 		atomic_dec(&sbi->wb_sync_req[NODE]);
2278 	return 0;
2279 
2280 skip_write:
2281 	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
2282 	trace_f2fs_writepages(mapping->host, wbc, NODE);
2283 	return 0;
2284 }
2285 
2286 static bool f2fs_dirty_node_folio(struct address_space *mapping,
2287 		struct folio *folio)
2288 {
2289 	trace_f2fs_set_page_dirty(folio, NODE);
2290 
2291 	if (!folio_test_uptodate(folio))
2292 		folio_mark_uptodate(folio);
2293 #ifdef CONFIG_F2FS_CHECK_FS
2294 	if (IS_INODE(folio))
2295 		f2fs_inode_chksum_set(F2FS_M_SB(mapping), folio);
2296 #endif
2297 	if (filemap_dirty_folio(mapping, folio)) {
2298 		inc_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
2299 		folio_set_f2fs_reference(folio);
2300 		return true;
2301 	}
2302 	return false;
2303 }
2304 
2305 /*
2306  * Structure of the f2fs node operations
2307  */
2308 const struct address_space_operations f2fs_node_aops = {
2309 	.writepages	= f2fs_write_node_pages,
2310 	.dirty_folio	= f2fs_dirty_node_folio,
2311 	.invalidate_folio = f2fs_invalidate_folio,
2312 	.release_folio	= f2fs_release_folio,
2313 	.migrate_folio	= filemap_migrate_folio,
2314 };
2315 
2316 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
2317 						nid_t n)
2318 {
2319 	return radix_tree_lookup(&nm_i->free_nid_root, n);
2320 }
2321 
2322 static int __insert_free_nid(struct f2fs_sb_info *sbi,
2323 				struct free_nid *i)
2324 {
2325 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2326 	int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
2327 
2328 	if (err)
2329 		return err;
2330 
2331 	nm_i->nid_cnt[FREE_NID]++;
2332 	list_add_tail(&i->list, &nm_i->free_nid_list);
2333 	return 0;
2334 }
2335 
2336 static void __remove_free_nid(struct f2fs_sb_info *sbi,
2337 			struct free_nid *i, enum nid_state state)
2338 {
2339 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2340 
2341 	f2fs_bug_on(sbi, state != i->state);
2342 	nm_i->nid_cnt[state]--;
2343 	if (state == FREE_NID)
2344 		list_del(&i->list);
2345 	radix_tree_delete(&nm_i->free_nid_root, i->nid);
2346 }
2347 
2348 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2349 			enum nid_state org_state, enum nid_state dst_state)
2350 {
2351 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2352 
2353 	f2fs_bug_on(sbi, org_state != i->state);
2354 	i->state = dst_state;
2355 	nm_i->nid_cnt[org_state]--;
2356 	nm_i->nid_cnt[dst_state]++;
2357 
2358 	switch (dst_state) {
2359 	case PREALLOC_NID:
2360 		list_del(&i->list);
2361 		break;
2362 	case FREE_NID:
2363 		list_add_tail(&i->list, &nm_i->free_nid_list);
2364 		break;
2365 	default:
2366 		BUG_ON(1);
2367 	}
2368 }
2369 
2370 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2371 							bool set, bool build)
2372 {
2373 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2374 	unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2375 	unsigned int nid_ofs = nid - START_NID(nid);
2376 
2377 	if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2378 		return;
2379 
2380 	if (set) {
2381 		if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2382 			return;
2383 		__set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2384 		nm_i->free_nid_count[nat_ofs]++;
2385 	} else {
2386 		if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2387 			return;
2388 		__clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2389 		if (!build)
2390 			nm_i->free_nid_count[nat_ofs]--;
2391 	}
2392 }
2393 
2394 /* return if the nid is recognized as free */
2395 static bool add_free_nid(struct f2fs_sb_info *sbi,
2396 				nid_t nid, bool build, bool update)
2397 {
2398 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2399 	struct free_nid *i, *e;
2400 	struct nat_entry *ne;
2401 	int err;
2402 	bool ret = false;
2403 
2404 	/* 0 nid should not be used */
2405 	if (unlikely(nid == 0))
2406 		return false;
2407 
2408 	if (unlikely(f2fs_check_nid_range(sbi, nid)))
2409 		return false;
2410 
2411 	i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS, true, NULL);
2412 	i->nid = nid;
2413 	i->state = FREE_NID;
2414 
2415 	err = radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2416 	f2fs_bug_on(sbi, err);
2417 
2418 	err = -EINVAL;
2419 
2420 	spin_lock(&nm_i->nid_list_lock);
2421 
2422 	if (build) {
2423 		/*
2424 		 *   Thread A             Thread B
2425 		 *  - f2fs_create
2426 		 *   - f2fs_new_inode
2427 		 *    - f2fs_alloc_nid
2428 		 *     - __insert_nid_to_list(PREALLOC_NID)
2429 		 *                     - f2fs_balance_fs_bg
2430 		 *                      - f2fs_build_free_nids
2431 		 *                       - __f2fs_build_free_nids
2432 		 *                        - scan_nat_page
2433 		 *                         - add_free_nid
2434 		 *                          - __lookup_nat_cache
2435 		 *  - f2fs_add_link
2436 		 *   - f2fs_init_inode_metadata
2437 		 *    - f2fs_new_inode_folio
2438 		 *     - f2fs_new_node_folio
2439 		 *      - set_node_addr
2440 		 *  - f2fs_alloc_nid_done
2441 		 *   - __remove_nid_from_list(PREALLOC_NID)
2442 		 *                         - __insert_nid_to_list(FREE_NID)
2443 		 */
2444 		ne = __lookup_nat_cache(nm_i, nid, false);
2445 		if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2446 				nat_get_blkaddr(ne) != NULL_ADDR))
2447 			goto err_out;
2448 
2449 		e = __lookup_free_nid_list(nm_i, nid);
2450 		if (e) {
2451 			if (e->state == FREE_NID)
2452 				ret = true;
2453 			goto err_out;
2454 		}
2455 	}
2456 	ret = true;
2457 	err = __insert_free_nid(sbi, i);
2458 err_out:
2459 	if (update) {
2460 		update_free_nid_bitmap(sbi, nid, ret, build);
2461 		if (!build)
2462 			nm_i->available_nids++;
2463 	}
2464 	spin_unlock(&nm_i->nid_list_lock);
2465 	radix_tree_preload_end();
2466 
2467 	if (err)
2468 		kmem_cache_free(free_nid_slab, i);
2469 	return ret;
2470 }
2471 
2472 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2473 {
2474 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2475 	struct free_nid *i;
2476 	bool need_free = false;
2477 
2478 	spin_lock(&nm_i->nid_list_lock);
2479 	i = __lookup_free_nid_list(nm_i, nid);
2480 	if (i && i->state == FREE_NID) {
2481 		__remove_free_nid(sbi, i, FREE_NID);
2482 		need_free = true;
2483 	}
2484 	spin_unlock(&nm_i->nid_list_lock);
2485 
2486 	if (need_free)
2487 		kmem_cache_free(free_nid_slab, i);
2488 }
2489 
2490 static int scan_nat_page(struct f2fs_sb_info *sbi,
2491 			struct f2fs_nat_block *nat_blk, nid_t start_nid)
2492 {
2493 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2494 	block_t blk_addr;
2495 	unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2496 	int i;
2497 
2498 	__set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2499 
2500 	i = start_nid % NAT_ENTRY_PER_BLOCK;
2501 
2502 	for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2503 		if (unlikely(start_nid >= nm_i->max_nid))
2504 			break;
2505 
2506 		blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2507 
2508 		if (blk_addr == NEW_ADDR)
2509 			return -EFSCORRUPTED;
2510 
2511 		if (blk_addr == NULL_ADDR) {
2512 			add_free_nid(sbi, start_nid, true, true);
2513 		} else {
2514 			spin_lock(&NM_I(sbi)->nid_list_lock);
2515 			update_free_nid_bitmap(sbi, start_nid, false, true);
2516 			spin_unlock(&NM_I(sbi)->nid_list_lock);
2517 		}
2518 	}
2519 
2520 	return 0;
2521 }
2522 
2523 static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2524 {
2525 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2526 	struct f2fs_journal *journal = curseg->journal;
2527 	int i;
2528 
2529 	down_read(&curseg->journal_rwsem);
2530 	for (i = 0; i < nats_in_cursum(journal); i++) {
2531 		block_t addr;
2532 		nid_t nid;
2533 
2534 		addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2535 		nid = le32_to_cpu(nid_in_journal(journal, i));
2536 		if (addr == NULL_ADDR)
2537 			add_free_nid(sbi, nid, true, false);
2538 		else
2539 			remove_free_nid(sbi, nid);
2540 	}
2541 	up_read(&curseg->journal_rwsem);
2542 }
2543 
2544 static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2545 {
2546 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2547 	unsigned int i, idx;
2548 	nid_t nid;
2549 
2550 	f2fs_down_read(&nm_i->nat_tree_lock);
2551 
2552 	for (i = 0; i < nm_i->nat_blocks; i++) {
2553 		if (!test_bit_le(i, nm_i->nat_block_bitmap))
2554 			continue;
2555 		if (!nm_i->free_nid_count[i])
2556 			continue;
2557 		for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2558 			idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2559 						NAT_ENTRY_PER_BLOCK, idx);
2560 			if (idx >= NAT_ENTRY_PER_BLOCK)
2561 				break;
2562 
2563 			nid = i * NAT_ENTRY_PER_BLOCK + idx;
2564 			add_free_nid(sbi, nid, true, false);
2565 
2566 			if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2567 				goto out;
2568 		}
2569 	}
2570 out:
2571 	scan_curseg_cache(sbi);
2572 
2573 	f2fs_up_read(&nm_i->nat_tree_lock);
2574 }
2575 
2576 static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2577 						bool sync, bool mount)
2578 {
2579 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2580 	int i = 0, ret;
2581 	nid_t nid = nm_i->next_scan_nid;
2582 
2583 	if (unlikely(nid >= nm_i->max_nid))
2584 		nid = 0;
2585 
2586 	if (unlikely(nid % NAT_ENTRY_PER_BLOCK))
2587 		nid = NAT_BLOCK_OFFSET(nid) * NAT_ENTRY_PER_BLOCK;
2588 
2589 	/* Enough entries */
2590 	if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2591 		return 0;
2592 
2593 	if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2594 		return 0;
2595 
2596 	if (!mount) {
2597 		/* try to find free nids in free_nid_bitmap */
2598 		scan_free_nid_bits(sbi);
2599 
2600 		if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2601 			return 0;
2602 	}
2603 
2604 	/* readahead nat pages to be scanned */
2605 	f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2606 							META_NAT, true);
2607 
2608 	f2fs_down_read(&nm_i->nat_tree_lock);
2609 
2610 	while (1) {
2611 		if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2612 						nm_i->nat_block_bitmap)) {
2613 			struct folio *folio = get_current_nat_folio(sbi, nid);
2614 
2615 			if (IS_ERR(folio)) {
2616 				ret = PTR_ERR(folio);
2617 			} else {
2618 				ret = scan_nat_page(sbi, folio_address(folio),
2619 						nid);
2620 				f2fs_folio_put(folio, true);
2621 			}
2622 
2623 			if (ret) {
2624 				f2fs_up_read(&nm_i->nat_tree_lock);
2625 
2626 				if (ret == -EFSCORRUPTED) {
2627 					f2fs_err(sbi, "NAT is corrupt, run fsck to fix it");
2628 					set_sbi_flag(sbi, SBI_NEED_FSCK);
2629 					f2fs_handle_error(sbi,
2630 						ERROR_INCONSISTENT_NAT);
2631 				}
2632 
2633 				return ret;
2634 			}
2635 		}
2636 
2637 		nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2638 		if (unlikely(nid >= nm_i->max_nid))
2639 			nid = 0;
2640 
2641 		if (++i >= FREE_NID_PAGES)
2642 			break;
2643 	}
2644 
2645 	/* go to the next free nat pages to find free nids abundantly */
2646 	nm_i->next_scan_nid = nid;
2647 
2648 	/* find free nids from current sum_pages */
2649 	scan_curseg_cache(sbi);
2650 
2651 	f2fs_up_read(&nm_i->nat_tree_lock);
2652 
2653 	f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2654 					nm_i->ra_nid_pages, META_NAT, false);
2655 
2656 	return 0;
2657 }
2658 
2659 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2660 {
2661 	int ret;
2662 
2663 	mutex_lock(&NM_I(sbi)->build_lock);
2664 	ret = __f2fs_build_free_nids(sbi, sync, mount);
2665 	mutex_unlock(&NM_I(sbi)->build_lock);
2666 
2667 	return ret;
2668 }
2669 
2670 /*
2671  * If this function returns success, caller can obtain a new nid
2672  * from second parameter of this function.
2673  * The returned nid could be used ino as well as nid when inode is created.
2674  */
2675 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2676 {
2677 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2678 	struct free_nid *i = NULL;
2679 retry:
2680 	if (time_to_inject(sbi, FAULT_ALLOC_NID))
2681 		return false;
2682 
2683 	spin_lock(&nm_i->nid_list_lock);
2684 
2685 	if (unlikely(nm_i->available_nids == 0)) {
2686 		spin_unlock(&nm_i->nid_list_lock);
2687 		return false;
2688 	}
2689 
2690 	/* We should not use stale free nids created by f2fs_build_free_nids */
2691 	if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2692 		f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2693 		i = list_first_entry(&nm_i->free_nid_list,
2694 					struct free_nid, list);
2695 
2696 		if (unlikely(is_invalid_nid(sbi, i->nid))) {
2697 			spin_unlock(&nm_i->nid_list_lock);
2698 			f2fs_err(sbi, "Corrupted nid %u in free_nid_list",
2699 								i->nid);
2700 			f2fs_stop_checkpoint(sbi, false,
2701 					STOP_CP_REASON_CORRUPTED_NID);
2702 			return false;
2703 		}
2704 
2705 		*nid = i->nid;
2706 
2707 		__move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2708 		nm_i->available_nids--;
2709 
2710 		update_free_nid_bitmap(sbi, *nid, false, false);
2711 
2712 		spin_unlock(&nm_i->nid_list_lock);
2713 		return true;
2714 	}
2715 	spin_unlock(&nm_i->nid_list_lock);
2716 
2717 	/* Let's scan nat pages and its caches to get free nids */
2718 	if (!f2fs_build_free_nids(sbi, true, false))
2719 		goto retry;
2720 	return false;
2721 }
2722 
2723 /*
2724  * f2fs_alloc_nid() should be called prior to this function.
2725  */
2726 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2727 {
2728 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2729 	struct free_nid *i;
2730 
2731 	spin_lock(&nm_i->nid_list_lock);
2732 	i = __lookup_free_nid_list(nm_i, nid);
2733 	f2fs_bug_on(sbi, !i);
2734 	__remove_free_nid(sbi, i, PREALLOC_NID);
2735 	spin_unlock(&nm_i->nid_list_lock);
2736 
2737 	kmem_cache_free(free_nid_slab, i);
2738 }
2739 
2740 /*
2741  * f2fs_alloc_nid() should be called prior to this function.
2742  */
2743 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2744 {
2745 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2746 	struct free_nid *i;
2747 	bool need_free = false;
2748 
2749 	if (!nid)
2750 		return;
2751 
2752 	spin_lock(&nm_i->nid_list_lock);
2753 	i = __lookup_free_nid_list(nm_i, nid);
2754 	f2fs_bug_on(sbi, !i);
2755 
2756 	if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2757 		__remove_free_nid(sbi, i, PREALLOC_NID);
2758 		need_free = true;
2759 	} else {
2760 		__move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2761 	}
2762 
2763 	nm_i->available_nids++;
2764 
2765 	update_free_nid_bitmap(sbi, nid, true, false);
2766 
2767 	spin_unlock(&nm_i->nid_list_lock);
2768 
2769 	if (need_free)
2770 		kmem_cache_free(free_nid_slab, i);
2771 }
2772 
2773 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2774 {
2775 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2776 	int nr = nr_shrink;
2777 
2778 	if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2779 		return 0;
2780 
2781 	if (!mutex_trylock(&nm_i->build_lock))
2782 		return 0;
2783 
2784 	while (nr_shrink && nm_i->nid_cnt[FREE_NID] > MAX_FREE_NIDS) {
2785 		struct free_nid *i, *next;
2786 		unsigned int batch = SHRINK_NID_BATCH_SIZE;
2787 
2788 		spin_lock(&nm_i->nid_list_lock);
2789 		list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2790 			if (!nr_shrink || !batch ||
2791 				nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2792 				break;
2793 			__remove_free_nid(sbi, i, FREE_NID);
2794 			kmem_cache_free(free_nid_slab, i);
2795 			nr_shrink--;
2796 			batch--;
2797 		}
2798 		spin_unlock(&nm_i->nid_list_lock);
2799 	}
2800 
2801 	mutex_unlock(&nm_i->build_lock);
2802 
2803 	return nr - nr_shrink;
2804 }
2805 
2806 int f2fs_recover_inline_xattr(struct inode *inode, struct folio *folio)
2807 {
2808 	void *src_addr, *dst_addr;
2809 	size_t inline_size;
2810 	struct folio *ifolio;
2811 	struct f2fs_inode *ri;
2812 
2813 	ifolio = f2fs_get_inode_folio(F2FS_I_SB(inode), inode->i_ino);
2814 	if (IS_ERR(ifolio))
2815 		return PTR_ERR(ifolio);
2816 
2817 	ri = F2FS_INODE(folio);
2818 	if (ri->i_inline & F2FS_INLINE_XATTR) {
2819 		if (!f2fs_has_inline_xattr(inode)) {
2820 			set_inode_flag(inode, FI_INLINE_XATTR);
2821 			stat_inc_inline_xattr(inode);
2822 		}
2823 	} else {
2824 		if (f2fs_has_inline_xattr(inode)) {
2825 			stat_dec_inline_xattr(inode);
2826 			clear_inode_flag(inode, FI_INLINE_XATTR);
2827 		}
2828 		goto update_inode;
2829 	}
2830 
2831 	dst_addr = inline_xattr_addr(inode, ifolio);
2832 	src_addr = inline_xattr_addr(inode, folio);
2833 	inline_size = inline_xattr_size(inode);
2834 
2835 	f2fs_folio_wait_writeback(ifolio, NODE, true, true);
2836 	memcpy(dst_addr, src_addr, inline_size);
2837 update_inode:
2838 	f2fs_update_inode(inode, ifolio);
2839 	f2fs_folio_put(ifolio, true);
2840 	return 0;
2841 }
2842 
2843 int f2fs_recover_xattr_data(struct inode *inode, struct folio *folio)
2844 {
2845 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2846 	nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2847 	nid_t new_xnid;
2848 	struct dnode_of_data dn;
2849 	struct node_info ni;
2850 	struct folio *xfolio;
2851 	int err;
2852 
2853 	if (!prev_xnid)
2854 		goto recover_xnid;
2855 
2856 	/* 1: invalidate the previous xattr nid */
2857 	err = f2fs_get_node_info(sbi, prev_xnid, &ni, false);
2858 	if (err)
2859 		return err;
2860 
2861 	f2fs_invalidate_blocks(sbi, ni.blk_addr, 1);
2862 	dec_valid_node_count(sbi, inode, false);
2863 	set_node_addr(sbi, &ni, NULL_ADDR, false);
2864 
2865 recover_xnid:
2866 	/* 2: update xattr nid in inode */
2867 	if (!f2fs_alloc_nid(sbi, &new_xnid))
2868 		return -ENOSPC;
2869 
2870 	set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2871 	xfolio = f2fs_new_node_folio(&dn, XATTR_NODE_OFFSET);
2872 	if (IS_ERR(xfolio)) {
2873 		f2fs_alloc_nid_failed(sbi, new_xnid);
2874 		return PTR_ERR(xfolio);
2875 	}
2876 
2877 	f2fs_alloc_nid_done(sbi, new_xnid);
2878 	f2fs_update_inode_page(inode);
2879 
2880 	/* 3: update and set xattr node page dirty */
2881 	if (folio) {
2882 		memcpy(F2FS_NODE(xfolio), F2FS_NODE(folio),
2883 				VALID_XATTR_BLOCK_SIZE);
2884 		folio_mark_dirty(xfolio);
2885 	}
2886 	f2fs_folio_put(xfolio, true);
2887 
2888 	return 0;
2889 }
2890 
2891 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct folio *folio)
2892 {
2893 	struct f2fs_inode *src, *dst;
2894 	nid_t ino = ino_of_node(folio);
2895 	struct node_info old_ni, new_ni;
2896 	struct folio *ifolio;
2897 	int err;
2898 
2899 	err = f2fs_get_node_info(sbi, ino, &old_ni, false);
2900 	if (err)
2901 		return err;
2902 
2903 	if (unlikely(old_ni.blk_addr != NULL_ADDR))
2904 		return -EINVAL;
2905 retry:
2906 	ifolio = f2fs_grab_cache_folio(NODE_MAPPING(sbi), ino, false);
2907 	if (IS_ERR(ifolio)) {
2908 		memalloc_retry_wait(GFP_NOFS);
2909 		goto retry;
2910 	}
2911 
2912 	/* Should not use this inode from free nid list */
2913 	remove_free_nid(sbi, ino);
2914 
2915 	if (!folio_test_uptodate(ifolio))
2916 		folio_mark_uptodate(ifolio);
2917 	fill_node_footer(ifolio, ino, ino, 0, true);
2918 	set_cold_node(ifolio, false);
2919 
2920 	src = F2FS_INODE(folio);
2921 	dst = F2FS_INODE(ifolio);
2922 
2923 	memcpy(dst, src, offsetof(struct f2fs_inode, i_ext));
2924 	dst->i_size = 0;
2925 	dst->i_blocks = cpu_to_le64(1);
2926 	dst->i_links = cpu_to_le32(1);
2927 	dst->i_xattr_nid = 0;
2928 	dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2929 	if (dst->i_inline & F2FS_EXTRA_ATTR) {
2930 		dst->i_extra_isize = src->i_extra_isize;
2931 
2932 		if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2933 			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2934 							i_inline_xattr_size))
2935 			dst->i_inline_xattr_size = src->i_inline_xattr_size;
2936 
2937 		if (f2fs_sb_has_project_quota(sbi) &&
2938 			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2939 								i_projid))
2940 			dst->i_projid = src->i_projid;
2941 
2942 		if (f2fs_sb_has_inode_crtime(sbi) &&
2943 			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2944 							i_crtime_nsec)) {
2945 			dst->i_crtime = src->i_crtime;
2946 			dst->i_crtime_nsec = src->i_crtime_nsec;
2947 		}
2948 	}
2949 
2950 	new_ni = old_ni;
2951 	new_ni.ino = ino;
2952 
2953 	if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2954 		WARN_ON(1);
2955 	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2956 	inc_valid_inode_count(sbi);
2957 	folio_mark_dirty(ifolio);
2958 	f2fs_folio_put(ifolio, true);
2959 	return 0;
2960 }
2961 
2962 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2963 			unsigned int segno, struct f2fs_summary_block *sum)
2964 {
2965 	struct f2fs_node *rn;
2966 	struct f2fs_summary *sum_entry;
2967 	block_t addr;
2968 	int i, idx, last_offset, nrpages;
2969 
2970 	/* scan the node segment */
2971 	last_offset = BLKS_PER_SEG(sbi);
2972 	addr = START_BLOCK(sbi, segno);
2973 	sum_entry = sum_entries(sum);
2974 
2975 	for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2976 		nrpages = bio_max_segs(last_offset - i);
2977 
2978 		/* readahead node pages */
2979 		f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2980 
2981 		for (idx = addr; idx < addr + nrpages; idx++) {
2982 			struct folio *folio = f2fs_get_tmp_folio(sbi, idx);
2983 
2984 			if (IS_ERR(folio))
2985 				return PTR_ERR(folio);
2986 
2987 			rn = F2FS_NODE(folio);
2988 			sum_entry->nid = rn->footer.nid;
2989 			sum_entry->version = 0;
2990 			sum_entry->ofs_in_node = 0;
2991 			sum_entry++;
2992 			f2fs_folio_put(folio, true);
2993 		}
2994 
2995 		invalidate_mapping_pages(META_MAPPING(sbi), addr,
2996 							addr + nrpages);
2997 	}
2998 	return 0;
2999 }
3000 
3001 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
3002 {
3003 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3004 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
3005 	struct f2fs_journal *journal = curseg->journal;
3006 	int i;
3007 	bool init_dirty;
3008 
3009 	down_write(&curseg->journal_rwsem);
3010 	for (i = 0; i < nats_in_cursum(journal); i++) {
3011 		struct nat_entry *ne;
3012 		struct f2fs_nat_entry raw_ne;
3013 		nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
3014 
3015 		if (f2fs_check_nid_range(sbi, nid))
3016 			continue;
3017 
3018 		init_dirty = false;
3019 
3020 		raw_ne = nat_in_journal(journal, i);
3021 
3022 		ne = __lookup_nat_cache(nm_i, nid, true);
3023 		if (!ne) {
3024 			init_dirty = true;
3025 			ne = __alloc_nat_entry(sbi, nid, true);
3026 			__init_nat_entry(nm_i, ne, &raw_ne, true, true);
3027 		}
3028 
3029 		/*
3030 		 * if a free nat in journal has not been used after last
3031 		 * checkpoint, we should remove it from available nids,
3032 		 * since later we will add it again.
3033 		 */
3034 		if (!get_nat_flag(ne, IS_DIRTY) &&
3035 				le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
3036 			spin_lock(&nm_i->nid_list_lock);
3037 			nm_i->available_nids--;
3038 			spin_unlock(&nm_i->nid_list_lock);
3039 		}
3040 
3041 		__set_nat_cache_dirty(nm_i, ne, init_dirty);
3042 	}
3043 	update_nats_in_cursum(journal, -i);
3044 	up_write(&curseg->journal_rwsem);
3045 }
3046 
3047 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
3048 						struct list_head *head, int max)
3049 {
3050 	struct nat_entry_set *cur;
3051 
3052 	if (nes->entry_cnt >= max)
3053 		goto add_out;
3054 
3055 	list_for_each_entry(cur, head, set_list) {
3056 		if (cur->entry_cnt >= nes->entry_cnt) {
3057 			list_add(&nes->set_list, cur->set_list.prev);
3058 			return;
3059 		}
3060 	}
3061 add_out:
3062 	list_add_tail(&nes->set_list, head);
3063 }
3064 
3065 static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
3066 		const struct f2fs_nat_block *nat_blk)
3067 {
3068 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3069 	unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
3070 	int valid = 0;
3071 	int i = 0;
3072 
3073 	if (!enabled_nat_bits(sbi, NULL))
3074 		return;
3075 
3076 	if (nat_index == 0) {
3077 		valid = 1;
3078 		i = 1;
3079 	}
3080 	for (; i < NAT_ENTRY_PER_BLOCK; i++) {
3081 		if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR)
3082 			valid++;
3083 	}
3084 	if (valid == 0) {
3085 		__set_bit_le(nat_index, nm_i->empty_nat_bits);
3086 		__clear_bit_le(nat_index, nm_i->full_nat_bits);
3087 		return;
3088 	}
3089 
3090 	__clear_bit_le(nat_index, nm_i->empty_nat_bits);
3091 	if (valid == NAT_ENTRY_PER_BLOCK)
3092 		__set_bit_le(nat_index, nm_i->full_nat_bits);
3093 	else
3094 		__clear_bit_le(nat_index, nm_i->full_nat_bits);
3095 }
3096 
3097 static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
3098 		struct nat_entry_set *set, struct cp_control *cpc)
3099 {
3100 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
3101 	struct f2fs_journal *journal = curseg->journal;
3102 	nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
3103 	bool to_journal = true;
3104 	struct f2fs_nat_block *nat_blk;
3105 	struct nat_entry *ne, *cur;
3106 	struct folio *folio = NULL;
3107 
3108 	/*
3109 	 * there are two steps to flush nat entries:
3110 	 * #1, flush nat entries to journal in current hot data summary block.
3111 	 * #2, flush nat entries to nat page.
3112 	 */
3113 	if (enabled_nat_bits(sbi, cpc) ||
3114 		!__has_cursum_space(sbi, journal, set->entry_cnt, NAT_JOURNAL))
3115 		to_journal = false;
3116 
3117 	if (to_journal) {
3118 		down_write(&curseg->journal_rwsem);
3119 	} else {
3120 		folio = get_next_nat_folio(sbi, start_nid);
3121 		if (IS_ERR(folio))
3122 			return PTR_ERR(folio);
3123 
3124 		nat_blk = folio_address(folio);
3125 		f2fs_bug_on(sbi, !nat_blk);
3126 	}
3127 
3128 	/* flush dirty nats in nat entry set */
3129 	list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
3130 		struct f2fs_nat_entry *raw_ne;
3131 		nid_t nid = nat_get_nid(ne);
3132 		int offset;
3133 
3134 		f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
3135 
3136 		if (to_journal) {
3137 			offset = f2fs_lookup_journal_in_cursum(sbi, journal,
3138 							NAT_JOURNAL, nid, 1);
3139 			f2fs_bug_on(sbi, offset < 0);
3140 			raw_ne = &nat_in_journal(journal, offset);
3141 			nid_in_journal(journal, offset) = cpu_to_le32(nid);
3142 		} else {
3143 			raw_ne = &nat_blk->entries[nid - start_nid];
3144 		}
3145 		raw_nat_from_node_info(raw_ne, &ne->ni);
3146 		nat_reset_flag(ne);
3147 		__clear_nat_cache_dirty(NM_I(sbi), set, ne);
3148 		if (nat_get_blkaddr(ne) == NULL_ADDR) {
3149 			add_free_nid(sbi, nid, false, true);
3150 		} else {
3151 			spin_lock(&NM_I(sbi)->nid_list_lock);
3152 			update_free_nid_bitmap(sbi, nid, false, false);
3153 			spin_unlock(&NM_I(sbi)->nid_list_lock);
3154 		}
3155 	}
3156 
3157 	if (to_journal) {
3158 		up_write(&curseg->journal_rwsem);
3159 	} else {
3160 		__update_nat_bits(sbi, start_nid, nat_blk);
3161 		f2fs_folio_put(folio, true);
3162 	}
3163 
3164 	/* Allow dirty nats by node block allocation in write_begin */
3165 	if (!set->entry_cnt) {
3166 		radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
3167 		kmem_cache_free(nat_entry_set_slab, set);
3168 	}
3169 	return 0;
3170 }
3171 
3172 /*
3173  * This function is called during the checkpointing process.
3174  */
3175 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
3176 {
3177 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3178 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
3179 	struct f2fs_journal *journal = curseg->journal;
3180 	struct nat_entry_set *setvec[NAT_VEC_SIZE];
3181 	struct nat_entry_set *set, *tmp;
3182 	unsigned int found, entry_count = 0;
3183 	nid_t set_idx = 0;
3184 	LIST_HEAD(sets);
3185 	int err = 0;
3186 
3187 	/*
3188 	 * during unmount, let's flush nat_bits before checking
3189 	 * nat_cnt[DIRTY_NAT].
3190 	 */
3191 	if (enabled_nat_bits(sbi, cpc)) {
3192 		f2fs_down_write(&nm_i->nat_tree_lock);
3193 		remove_nats_in_journal(sbi);
3194 		f2fs_up_write(&nm_i->nat_tree_lock);
3195 	}
3196 
3197 	if (!nm_i->nat_cnt[DIRTY_NAT])
3198 		return 0;
3199 
3200 	f2fs_down_write(&nm_i->nat_tree_lock);
3201 
3202 	/*
3203 	 * if there are no enough space in journal to store dirty nat
3204 	 * entries, remove all entries from journal and merge them
3205 	 * into nat entry set.
3206 	 */
3207 	if (enabled_nat_bits(sbi, cpc) ||
3208 		!__has_cursum_space(sbi, journal,
3209 			nm_i->nat_cnt[DIRTY_NAT], NAT_JOURNAL))
3210 		remove_nats_in_journal(sbi);
3211 
3212 	while ((found = __gang_lookup_nat_set(nm_i,
3213 					set_idx, NAT_VEC_SIZE, setvec))) {
3214 		unsigned idx;
3215 
3216 		set_idx = setvec[found - 1]->set + 1;
3217 		for (idx = 0; idx < found; idx++)
3218 			__adjust_nat_entry_set(setvec[idx], &sets,
3219 					MAX_NAT_JENTRIES(sbi, journal));
3220 	}
3221 
3222 	/*
3223 	 * Readahead the current NAT block to prevent read requests from
3224 	 * being issued and waited on one by one.
3225 	 */
3226 	list_for_each_entry(set, &sets, set_list) {
3227 		entry_count += set->entry_cnt;
3228 		if (!enabled_nat_bits(sbi, cpc) &&
3229 			__has_cursum_space(sbi, journal,
3230 					entry_count, NAT_JOURNAL))
3231 			continue;
3232 		f2fs_ra_meta_pages(sbi, set->set, 1, META_NAT, true);
3233 	}
3234 	/* flush dirty nats in nat entry set */
3235 	list_for_each_entry_safe(set, tmp, &sets, set_list) {
3236 		err = __flush_nat_entry_set(sbi, set, cpc);
3237 		if (err)
3238 			break;
3239 	}
3240 
3241 	f2fs_up_write(&nm_i->nat_tree_lock);
3242 	/* Allow dirty nats by node block allocation in write_begin */
3243 
3244 	return err;
3245 }
3246 
3247 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
3248 {
3249 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3250 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3251 	unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
3252 	unsigned int i;
3253 	__u64 cp_ver = cur_cp_version(ckpt);
3254 	block_t nat_bits_addr;
3255 
3256 	if (!enabled_nat_bits(sbi, NULL))
3257 		return 0;
3258 
3259 	nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
3260 	nm_i->nat_bits = f2fs_kvzalloc(sbi,
3261 			F2FS_BLK_TO_BYTES(nm_i->nat_bits_blocks), GFP_KERNEL);
3262 	if (!nm_i->nat_bits)
3263 		return -ENOMEM;
3264 
3265 	nat_bits_addr = __start_cp_addr(sbi) + BLKS_PER_SEG(sbi) -
3266 						nm_i->nat_bits_blocks;
3267 	for (i = 0; i < nm_i->nat_bits_blocks; i++) {
3268 		struct folio *folio;
3269 
3270 		folio = f2fs_get_meta_folio(sbi, nat_bits_addr++);
3271 		if (IS_ERR(folio))
3272 			return PTR_ERR(folio);
3273 
3274 		memcpy(nm_i->nat_bits + F2FS_BLK_TO_BYTES(i),
3275 					folio_address(folio), F2FS_BLKSIZE);
3276 		f2fs_folio_put(folio, true);
3277 	}
3278 
3279 	cp_ver |= (cur_cp_crc(ckpt) << 32);
3280 	if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
3281 		disable_nat_bits(sbi, true);
3282 		return 0;
3283 	}
3284 
3285 	nm_i->full_nat_bits = nm_i->nat_bits + 8;
3286 	nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
3287 
3288 	f2fs_notice(sbi, "Found nat_bits in checkpoint");
3289 	return 0;
3290 }
3291 
3292 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
3293 {
3294 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3295 	unsigned int i = 0;
3296 	nid_t nid, last_nid;
3297 
3298 	if (!enabled_nat_bits(sbi, NULL))
3299 		return;
3300 
3301 	for (i = 0; i < nm_i->nat_blocks; i++) {
3302 		i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
3303 		if (i >= nm_i->nat_blocks)
3304 			break;
3305 
3306 		__set_bit_le(i, nm_i->nat_block_bitmap);
3307 
3308 		nid = i * NAT_ENTRY_PER_BLOCK;
3309 		last_nid = nid + NAT_ENTRY_PER_BLOCK;
3310 
3311 		spin_lock(&NM_I(sbi)->nid_list_lock);
3312 		for (; nid < last_nid; nid++)
3313 			update_free_nid_bitmap(sbi, nid, true, true);
3314 		spin_unlock(&NM_I(sbi)->nid_list_lock);
3315 	}
3316 
3317 	for (i = 0; i < nm_i->nat_blocks; i++) {
3318 		i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
3319 		if (i >= nm_i->nat_blocks)
3320 			break;
3321 
3322 		__set_bit_le(i, nm_i->nat_block_bitmap);
3323 	}
3324 }
3325 
3326 static int init_node_manager(struct f2fs_sb_info *sbi)
3327 {
3328 	struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
3329 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3330 	unsigned char *version_bitmap;
3331 	unsigned int nat_segs;
3332 	int err;
3333 
3334 	nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
3335 
3336 	/* segment_count_nat includes pair segment so divide to 2. */
3337 	nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
3338 	nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
3339 	nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
3340 
3341 	/* not used nids: 0, node, meta, (and root counted as valid node) */
3342 	nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
3343 						F2FS_RESERVED_NODE_NUM;
3344 	nm_i->nid_cnt[FREE_NID] = 0;
3345 	nm_i->nid_cnt[PREALLOC_NID] = 0;
3346 	nm_i->ram_thresh = DEF_RAM_THRESHOLD;
3347 	nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
3348 	nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
3349 	nm_i->max_rf_node_blocks = DEF_RF_NODE_BLOCKS;
3350 
3351 	INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
3352 	INIT_LIST_HEAD(&nm_i->free_nid_list);
3353 	INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
3354 	INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
3355 	INIT_LIST_HEAD(&nm_i->nat_entries);
3356 	spin_lock_init(&nm_i->nat_list_lock);
3357 
3358 	mutex_init(&nm_i->build_lock);
3359 	spin_lock_init(&nm_i->nid_list_lock);
3360 	init_f2fs_rwsem(&nm_i->nat_tree_lock);
3361 
3362 	nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
3363 	nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
3364 	version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
3365 	nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
3366 					GFP_KERNEL);
3367 	if (!nm_i->nat_bitmap)
3368 		return -ENOMEM;
3369 
3370 	if (!test_opt(sbi, NAT_BITS))
3371 		disable_nat_bits(sbi, true);
3372 
3373 	err = __get_nat_bitmaps(sbi);
3374 	if (err)
3375 		return err;
3376 
3377 #ifdef CONFIG_F2FS_CHECK_FS
3378 	nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
3379 					GFP_KERNEL);
3380 	if (!nm_i->nat_bitmap_mir)
3381 		return -ENOMEM;
3382 #endif
3383 
3384 	return 0;
3385 }
3386 
3387 static int init_free_nid_cache(struct f2fs_sb_info *sbi)
3388 {
3389 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3390 	int i;
3391 
3392 	nm_i->free_nid_bitmap =
3393 		f2fs_kvzalloc(sbi, array_size(sizeof(unsigned char *),
3394 					      nm_i->nat_blocks),
3395 			      GFP_KERNEL);
3396 	if (!nm_i->free_nid_bitmap)
3397 		return -ENOMEM;
3398 
3399 	for (i = 0; i < nm_i->nat_blocks; i++) {
3400 		nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3401 			f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3402 		if (!nm_i->free_nid_bitmap[i])
3403 			return -ENOMEM;
3404 	}
3405 
3406 	nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3407 								GFP_KERNEL);
3408 	if (!nm_i->nat_block_bitmap)
3409 		return -ENOMEM;
3410 
3411 	nm_i->free_nid_count =
3412 		f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3413 					      nm_i->nat_blocks),
3414 			      GFP_KERNEL);
3415 	if (!nm_i->free_nid_count)
3416 		return -ENOMEM;
3417 	return 0;
3418 }
3419 
3420 int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3421 {
3422 	int err;
3423 
3424 	sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3425 							GFP_KERNEL);
3426 	if (!sbi->nm_info)
3427 		return -ENOMEM;
3428 
3429 	err = init_node_manager(sbi);
3430 	if (err)
3431 		return err;
3432 
3433 	err = init_free_nid_cache(sbi);
3434 	if (err)
3435 		return err;
3436 
3437 	/* load free nid status from nat_bits table */
3438 	load_free_nid_bitmap(sbi);
3439 
3440 	return f2fs_build_free_nids(sbi, true, true);
3441 }
3442 
3443 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3444 {
3445 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3446 	struct free_nid *i, *next_i;
3447 	void *vec[NAT_VEC_SIZE];
3448 	struct nat_entry **natvec = (struct nat_entry **)vec;
3449 	struct nat_entry_set **setvec = (struct nat_entry_set **)vec;
3450 	nid_t nid = 0;
3451 	unsigned int found;
3452 
3453 	if (!nm_i)
3454 		return;
3455 
3456 	/* destroy free nid list */
3457 	spin_lock(&nm_i->nid_list_lock);
3458 	list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3459 		__remove_free_nid(sbi, i, FREE_NID);
3460 		spin_unlock(&nm_i->nid_list_lock);
3461 		kmem_cache_free(free_nid_slab, i);
3462 		spin_lock(&nm_i->nid_list_lock);
3463 	}
3464 	f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3465 	f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3466 	f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3467 	spin_unlock(&nm_i->nid_list_lock);
3468 
3469 	/* destroy nat cache */
3470 	f2fs_down_write(&nm_i->nat_tree_lock);
3471 	while ((found = __gang_lookup_nat_cache(nm_i,
3472 					nid, NAT_VEC_SIZE, natvec))) {
3473 		unsigned idx;
3474 
3475 		nid = nat_get_nid(natvec[found - 1]) + 1;
3476 		for (idx = 0; idx < found; idx++) {
3477 			spin_lock(&nm_i->nat_list_lock);
3478 			list_del(&natvec[idx]->list);
3479 			spin_unlock(&nm_i->nat_list_lock);
3480 
3481 			__del_from_nat_cache(nm_i, natvec[idx]);
3482 		}
3483 	}
3484 	f2fs_bug_on(sbi, nm_i->nat_cnt[TOTAL_NAT]);
3485 
3486 	/* destroy nat set cache */
3487 	nid = 0;
3488 	memset(vec, 0, sizeof(void *) * NAT_VEC_SIZE);
3489 	while ((found = __gang_lookup_nat_set(nm_i,
3490 					nid, NAT_VEC_SIZE, setvec))) {
3491 		unsigned idx;
3492 
3493 		nid = setvec[found - 1]->set + 1;
3494 		for (idx = 0; idx < found; idx++) {
3495 			/* entry_cnt is not zero, when cp_error was occurred */
3496 			f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3497 			radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3498 			kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3499 		}
3500 	}
3501 	f2fs_up_write(&nm_i->nat_tree_lock);
3502 
3503 	kvfree(nm_i->nat_block_bitmap);
3504 	if (nm_i->free_nid_bitmap) {
3505 		int i;
3506 
3507 		for (i = 0; i < nm_i->nat_blocks; i++)
3508 			kvfree(nm_i->free_nid_bitmap[i]);
3509 		kvfree(nm_i->free_nid_bitmap);
3510 	}
3511 	kvfree(nm_i->free_nid_count);
3512 
3513 	kfree(nm_i->nat_bitmap);
3514 	kvfree(nm_i->nat_bits);
3515 #ifdef CONFIG_F2FS_CHECK_FS
3516 	kfree(nm_i->nat_bitmap_mir);
3517 #endif
3518 	sbi->nm_info = NULL;
3519 	kfree(nm_i);
3520 }
3521 
3522 int __init f2fs_create_node_manager_caches(void)
3523 {
3524 	nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry",
3525 			sizeof(struct nat_entry));
3526 	if (!nat_entry_slab)
3527 		goto fail;
3528 
3529 	free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid",
3530 			sizeof(struct free_nid));
3531 	if (!free_nid_slab)
3532 		goto destroy_nat_entry;
3533 
3534 	nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set",
3535 			sizeof(struct nat_entry_set));
3536 	if (!nat_entry_set_slab)
3537 		goto destroy_free_nid;
3538 
3539 	fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry",
3540 			sizeof(struct fsync_node_entry));
3541 	if (!fsync_node_entry_slab)
3542 		goto destroy_nat_entry_set;
3543 	return 0;
3544 
3545 destroy_nat_entry_set:
3546 	kmem_cache_destroy(nat_entry_set_slab);
3547 destroy_free_nid:
3548 	kmem_cache_destroy(free_nid_slab);
3549 destroy_nat_entry:
3550 	kmem_cache_destroy(nat_entry_slab);
3551 fail:
3552 	return -ENOMEM;
3553 }
3554 
3555 void f2fs_destroy_node_manager_caches(void)
3556 {
3557 	kmem_cache_destroy(fsync_node_entry_slab);
3558 	kmem_cache_destroy(nat_entry_set_slab);
3559 	kmem_cache_destroy(free_nid_slab);
3560 	kmem_cache_destroy(nat_entry_slab);
3561 }
3562