1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2015 Cavium, Inc.
4 */
5
6 #include <linux/module.h>
7 #include <linux/interrupt.h>
8 #include <linux/pci.h>
9 #include <linux/netdevice.h>
10 #include <linux/if_vlan.h>
11 #include <linux/etherdevice.h>
12 #include <linux/ethtool.h>
13 #include <linux/log2.h>
14 #include <linux/prefetch.h>
15 #include <linux/irq.h>
16 #include <linux/iommu.h>
17 #include <linux/bpf.h>
18 #include <linux/bpf_trace.h>
19 #include <linux/filter.h>
20 #include <linux/net_tstamp.h>
21 #include <linux/workqueue.h>
22
23 #include "nic_reg.h"
24 #include "nic.h"
25 #include "nicvf_queues.h"
26 #include "thunder_bgx.h"
27 #include "../common/cavium_ptp.h"
28
29 #define DRV_NAME "nicvf"
30 #define DRV_VERSION "1.0"
31
32 /* NOTE: Packets bigger than 1530 are split across multiple pages and XDP needs
33 * the buffer to be contiguous. Allow XDP to be set up only if we don't exceed
34 * this value, keeping headroom for the 14 byte Ethernet header and two
35 * VLAN tags (for QinQ)
36 */
37 #define MAX_XDP_MTU (1530 - ETH_HLEN - VLAN_HLEN * 2)
38
39 /* Supported devices */
40 static const struct pci_device_id nicvf_id_table[] = {
41 { PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM,
42 PCI_DEVICE_ID_THUNDER_NIC_VF,
43 PCI_VENDOR_ID_CAVIUM,
44 PCI_SUBSYS_DEVID_88XX_NIC_VF) },
45 { PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM,
46 PCI_DEVICE_ID_THUNDER_PASS1_NIC_VF,
47 PCI_VENDOR_ID_CAVIUM,
48 PCI_SUBSYS_DEVID_88XX_PASS1_NIC_VF) },
49 { PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM,
50 PCI_DEVICE_ID_THUNDER_NIC_VF,
51 PCI_VENDOR_ID_CAVIUM,
52 PCI_SUBSYS_DEVID_81XX_NIC_VF) },
53 { PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM,
54 PCI_DEVICE_ID_THUNDER_NIC_VF,
55 PCI_VENDOR_ID_CAVIUM,
56 PCI_SUBSYS_DEVID_83XX_NIC_VF) },
57 { 0, } /* end of table */
58 };
59
60 MODULE_AUTHOR("Sunil Goutham");
61 MODULE_DESCRIPTION("Cavium Thunder NIC Virtual Function Driver");
62 MODULE_LICENSE("GPL v2");
63 MODULE_VERSION(DRV_VERSION);
64 MODULE_DEVICE_TABLE(pci, nicvf_id_table);
65
66 static int debug = 0x00;
67 module_param(debug, int, 0644);
68 MODULE_PARM_DESC(debug, "Debug message level bitmap");
69
70 static int cpi_alg = CPI_ALG_NONE;
71 module_param(cpi_alg, int, 0444);
72 MODULE_PARM_DESC(cpi_alg,
73 "PFC algorithm (0=none, 1=VLAN, 2=VLAN16, 3=IP Diffserv)");
74
nicvf_netdev_qidx(struct nicvf * nic,u8 qidx)75 static inline u8 nicvf_netdev_qidx(struct nicvf *nic, u8 qidx)
76 {
77 if (nic->sqs_mode)
78 return qidx + ((nic->sqs_id + 1) * MAX_CMP_QUEUES_PER_QS);
79 else
80 return qidx;
81 }
82
83 /* The Cavium ThunderX network controller can *only* be found in SoCs
84 * containing the ThunderX ARM64 CPU implementation. All accesses to the device
85 * registers on this platform are implicitly strongly ordered with respect
86 * to memory accesses. So writeq_relaxed() and readq_relaxed() are safe to use
87 * with no memory barriers in this driver. The readq()/writeq() functions add
88 * explicit ordering operation which in this case are redundant, and only
89 * add overhead.
90 */
91
92 /* Register read/write APIs */
nicvf_reg_write(struct nicvf * nic,u64 offset,u64 val)93 void nicvf_reg_write(struct nicvf *nic, u64 offset, u64 val)
94 {
95 writeq_relaxed(val, nic->reg_base + offset);
96 }
97
nicvf_reg_read(struct nicvf * nic,u64 offset)98 u64 nicvf_reg_read(struct nicvf *nic, u64 offset)
99 {
100 return readq_relaxed(nic->reg_base + offset);
101 }
102
nicvf_queue_reg_write(struct nicvf * nic,u64 offset,u64 qidx,u64 val)103 void nicvf_queue_reg_write(struct nicvf *nic, u64 offset,
104 u64 qidx, u64 val)
105 {
106 void __iomem *addr = nic->reg_base + offset;
107
108 writeq_relaxed(val, addr + (qidx << NIC_Q_NUM_SHIFT));
109 }
110
nicvf_queue_reg_read(struct nicvf * nic,u64 offset,u64 qidx)111 u64 nicvf_queue_reg_read(struct nicvf *nic, u64 offset, u64 qidx)
112 {
113 void __iomem *addr = nic->reg_base + offset;
114
115 return readq_relaxed(addr + (qidx << NIC_Q_NUM_SHIFT));
116 }
117
118 /* VF -> PF mailbox communication */
nicvf_write_to_mbx(struct nicvf * nic,union nic_mbx * mbx)119 static void nicvf_write_to_mbx(struct nicvf *nic, union nic_mbx *mbx)
120 {
121 u64 *msg = (u64 *)mbx;
122
123 nicvf_reg_write(nic, NIC_VF_PF_MAILBOX_0_1 + 0, msg[0]);
124 nicvf_reg_write(nic, NIC_VF_PF_MAILBOX_0_1 + 8, msg[1]);
125 }
126
nicvf_send_msg_to_pf(struct nicvf * nic,union nic_mbx * mbx)127 int nicvf_send_msg_to_pf(struct nicvf *nic, union nic_mbx *mbx)
128 {
129 unsigned long timeout;
130 int ret = 0;
131
132 mutex_lock(&nic->rx_mode_mtx);
133
134 nic->pf_acked = false;
135 nic->pf_nacked = false;
136
137 nicvf_write_to_mbx(nic, mbx);
138
139 timeout = jiffies + msecs_to_jiffies(NIC_MBOX_MSG_TIMEOUT);
140 /* Wait for previous message to be acked, timeout 2sec */
141 while (!nic->pf_acked) {
142 if (nic->pf_nacked) {
143 netdev_err(nic->netdev,
144 "PF NACK to mbox msg 0x%02x from VF%d\n",
145 (mbx->msg.msg & 0xFF), nic->vf_id);
146 ret = -EINVAL;
147 break;
148 }
149 usleep_range(8000, 10000);
150 if (nic->pf_acked)
151 break;
152 if (time_after(jiffies, timeout)) {
153 netdev_err(nic->netdev,
154 "PF didn't ACK to mbox msg 0x%02x from VF%d\n",
155 (mbx->msg.msg & 0xFF), nic->vf_id);
156 ret = -EBUSY;
157 break;
158 }
159 }
160 mutex_unlock(&nic->rx_mode_mtx);
161 return ret;
162 }
163
164 /* Checks if VF is able to comminicate with PF
165 * and also gets the VNIC number this VF is associated to.
166 */
nicvf_check_pf_ready(struct nicvf * nic)167 static int nicvf_check_pf_ready(struct nicvf *nic)
168 {
169 union nic_mbx mbx = {};
170
171 mbx.msg.msg = NIC_MBOX_MSG_READY;
172 if (nicvf_send_msg_to_pf(nic, &mbx)) {
173 netdev_err(nic->netdev,
174 "PF didn't respond to READY msg\n");
175 return 0;
176 }
177
178 return 1;
179 }
180
nicvf_send_cfg_done(struct nicvf * nic)181 static void nicvf_send_cfg_done(struct nicvf *nic)
182 {
183 union nic_mbx mbx = {};
184
185 mbx.msg.msg = NIC_MBOX_MSG_CFG_DONE;
186 if (nicvf_send_msg_to_pf(nic, &mbx)) {
187 netdev_err(nic->netdev,
188 "PF didn't respond to CFG DONE msg\n");
189 }
190 }
191
nicvf_read_bgx_stats(struct nicvf * nic,struct bgx_stats_msg * bgx)192 static void nicvf_read_bgx_stats(struct nicvf *nic, struct bgx_stats_msg *bgx)
193 {
194 if (bgx->rx)
195 nic->bgx_stats.rx_stats[bgx->idx] = bgx->stats;
196 else
197 nic->bgx_stats.tx_stats[bgx->idx] = bgx->stats;
198 }
199
nicvf_handle_mbx_intr(struct nicvf * nic)200 static void nicvf_handle_mbx_intr(struct nicvf *nic)
201 {
202 union nic_mbx mbx = {};
203 u64 *mbx_data;
204 u64 mbx_addr;
205 int i;
206
207 mbx_addr = NIC_VF_PF_MAILBOX_0_1;
208 mbx_data = (u64 *)&mbx;
209
210 for (i = 0; i < NIC_PF_VF_MAILBOX_SIZE; i++) {
211 *mbx_data = nicvf_reg_read(nic, mbx_addr);
212 mbx_data++;
213 mbx_addr += sizeof(u64);
214 }
215
216 netdev_dbg(nic->netdev, "Mbox message: msg: 0x%x\n", mbx.msg.msg);
217 switch (mbx.msg.msg) {
218 case NIC_MBOX_MSG_READY:
219 nic->pf_acked = true;
220 nic->vf_id = mbx.nic_cfg.vf_id & 0x7F;
221 nic->tns_mode = mbx.nic_cfg.tns_mode & 0x7F;
222 nic->node = mbx.nic_cfg.node_id;
223 if (!nic->set_mac_pending)
224 eth_hw_addr_set(nic->netdev, mbx.nic_cfg.mac_addr);
225 nic->sqs_mode = mbx.nic_cfg.sqs_mode;
226 nic->loopback_supported = mbx.nic_cfg.loopback_supported;
227 nic->link_up = false;
228 nic->duplex = 0;
229 nic->speed = 0;
230 break;
231 case NIC_MBOX_MSG_ACK:
232 nic->pf_acked = true;
233 break;
234 case NIC_MBOX_MSG_NACK:
235 nic->pf_nacked = true;
236 break;
237 case NIC_MBOX_MSG_RSS_SIZE:
238 nic->rss_info.rss_size = mbx.rss_size.ind_tbl_size;
239 nic->pf_acked = true;
240 break;
241 case NIC_MBOX_MSG_BGX_STATS:
242 nicvf_read_bgx_stats(nic, &mbx.bgx_stats);
243 nic->pf_acked = true;
244 break;
245 case NIC_MBOX_MSG_BGX_LINK_CHANGE:
246 nic->pf_acked = true;
247 if (nic->link_up != mbx.link_status.link_up) {
248 nic->link_up = mbx.link_status.link_up;
249 nic->duplex = mbx.link_status.duplex;
250 nic->speed = mbx.link_status.speed;
251 nic->mac_type = mbx.link_status.mac_type;
252 if (nic->link_up) {
253 netdev_info(nic->netdev,
254 "Link is Up %d Mbps %s duplex\n",
255 nic->speed,
256 nic->duplex == DUPLEX_FULL ?
257 "Full" : "Half");
258 netif_carrier_on(nic->netdev);
259 netif_tx_start_all_queues(nic->netdev);
260 } else {
261 netdev_info(nic->netdev, "Link is Down\n");
262 netif_carrier_off(nic->netdev);
263 netif_tx_stop_all_queues(nic->netdev);
264 }
265 }
266 break;
267 case NIC_MBOX_MSG_ALLOC_SQS:
268 nic->sqs_count = mbx.sqs_alloc.qs_count;
269 nic->pf_acked = true;
270 break;
271 case NIC_MBOX_MSG_SNICVF_PTR:
272 /* Primary VF: make note of secondary VF's pointer
273 * to be used while packet transmission.
274 */
275 nic->snicvf[mbx.nicvf.sqs_id] =
276 (struct nicvf *)mbx.nicvf.nicvf;
277 nic->pf_acked = true;
278 break;
279 case NIC_MBOX_MSG_PNICVF_PTR:
280 /* Secondary VF/Qset: make note of primary VF's pointer
281 * to be used while packet reception, to handover packet
282 * to primary VF's netdev.
283 */
284 nic->pnicvf = (struct nicvf *)mbx.nicvf.nicvf;
285 nic->pf_acked = true;
286 break;
287 case NIC_MBOX_MSG_PFC:
288 nic->pfc.autoneg = mbx.pfc.autoneg;
289 nic->pfc.fc_rx = mbx.pfc.fc_rx;
290 nic->pfc.fc_tx = mbx.pfc.fc_tx;
291 nic->pf_acked = true;
292 break;
293 default:
294 netdev_err(nic->netdev,
295 "Invalid message from PF, msg 0x%x\n", mbx.msg.msg);
296 break;
297 }
298 nicvf_clear_intr(nic, NICVF_INTR_MBOX, 0);
299 }
300
nicvf_hw_set_mac_addr(struct nicvf * nic,struct net_device * netdev)301 static int nicvf_hw_set_mac_addr(struct nicvf *nic, struct net_device *netdev)
302 {
303 union nic_mbx mbx = {};
304
305 mbx.mac.msg = NIC_MBOX_MSG_SET_MAC;
306 mbx.mac.vf_id = nic->vf_id;
307 ether_addr_copy(mbx.mac.mac_addr, netdev->dev_addr);
308
309 return nicvf_send_msg_to_pf(nic, &mbx);
310 }
311
nicvf_config_cpi(struct nicvf * nic)312 static void nicvf_config_cpi(struct nicvf *nic)
313 {
314 union nic_mbx mbx = {};
315
316 mbx.cpi_cfg.msg = NIC_MBOX_MSG_CPI_CFG;
317 mbx.cpi_cfg.vf_id = nic->vf_id;
318 mbx.cpi_cfg.cpi_alg = nic->cpi_alg;
319 mbx.cpi_cfg.rq_cnt = nic->qs->rq_cnt;
320
321 nicvf_send_msg_to_pf(nic, &mbx);
322 }
323
nicvf_get_rss_size(struct nicvf * nic)324 static void nicvf_get_rss_size(struct nicvf *nic)
325 {
326 union nic_mbx mbx = {};
327
328 mbx.rss_size.msg = NIC_MBOX_MSG_RSS_SIZE;
329 mbx.rss_size.vf_id = nic->vf_id;
330 nicvf_send_msg_to_pf(nic, &mbx);
331 }
332
nicvf_config_rss(struct nicvf * nic)333 void nicvf_config_rss(struct nicvf *nic)
334 {
335 union nic_mbx mbx = {};
336 struct nicvf_rss_info *rss = &nic->rss_info;
337 int ind_tbl_len = rss->rss_size;
338 int i, nextq = 0;
339
340 mbx.rss_cfg.vf_id = nic->vf_id;
341 mbx.rss_cfg.hash_bits = rss->hash_bits;
342 while (ind_tbl_len) {
343 mbx.rss_cfg.tbl_offset = nextq;
344 mbx.rss_cfg.tbl_len = min(ind_tbl_len,
345 RSS_IND_TBL_LEN_PER_MBX_MSG);
346 mbx.rss_cfg.msg = mbx.rss_cfg.tbl_offset ?
347 NIC_MBOX_MSG_RSS_CFG_CONT : NIC_MBOX_MSG_RSS_CFG;
348
349 for (i = 0; i < mbx.rss_cfg.tbl_len; i++)
350 mbx.rss_cfg.ind_tbl[i] = rss->ind_tbl[nextq++];
351
352 nicvf_send_msg_to_pf(nic, &mbx);
353
354 ind_tbl_len -= mbx.rss_cfg.tbl_len;
355 }
356 }
357
nicvf_set_rss_key(struct nicvf * nic)358 void nicvf_set_rss_key(struct nicvf *nic)
359 {
360 struct nicvf_rss_info *rss = &nic->rss_info;
361 u64 key_addr = NIC_VNIC_RSS_KEY_0_4;
362 int idx;
363
364 for (idx = 0; idx < RSS_HASH_KEY_SIZE; idx++) {
365 nicvf_reg_write(nic, key_addr, rss->key[idx]);
366 key_addr += sizeof(u64);
367 }
368 }
369
nicvf_rss_init(struct nicvf * nic)370 static int nicvf_rss_init(struct nicvf *nic)
371 {
372 struct nicvf_rss_info *rss = &nic->rss_info;
373 int idx;
374
375 nicvf_get_rss_size(nic);
376
377 if (cpi_alg != CPI_ALG_NONE) {
378 rss->enable = false;
379 rss->hash_bits = 0;
380 return 0;
381 }
382
383 rss->enable = true;
384
385 netdev_rss_key_fill(rss->key, RSS_HASH_KEY_SIZE * sizeof(u64));
386 nicvf_set_rss_key(nic);
387
388 rss->cfg = RSS_IP_HASH_ENA | RSS_TCP_HASH_ENA | RSS_UDP_HASH_ENA;
389 nicvf_reg_write(nic, NIC_VNIC_RSS_CFG, rss->cfg);
390
391 rss->hash_bits = ilog2(rounddown_pow_of_two(rss->rss_size));
392
393 for (idx = 0; idx < rss->rss_size; idx++)
394 rss->ind_tbl[idx] = ethtool_rxfh_indir_default(idx,
395 nic->rx_queues);
396 nicvf_config_rss(nic);
397 return 1;
398 }
399
400 /* Request PF to allocate additional Qsets */
nicvf_request_sqs(struct nicvf * nic)401 static void nicvf_request_sqs(struct nicvf *nic)
402 {
403 union nic_mbx mbx = {};
404 int sqs;
405 int sqs_count = nic->sqs_count;
406 int rx_queues = 0, tx_queues = 0;
407
408 /* Only primary VF should request */
409 if (nic->sqs_mode || !nic->sqs_count)
410 return;
411
412 mbx.sqs_alloc.msg = NIC_MBOX_MSG_ALLOC_SQS;
413 mbx.sqs_alloc.vf_id = nic->vf_id;
414 mbx.sqs_alloc.qs_count = nic->sqs_count;
415 if (nicvf_send_msg_to_pf(nic, &mbx)) {
416 /* No response from PF */
417 nic->sqs_count = 0;
418 return;
419 }
420
421 /* Return if no Secondary Qsets available */
422 if (!nic->sqs_count)
423 return;
424
425 if (nic->rx_queues > MAX_RCV_QUEUES_PER_QS)
426 rx_queues = nic->rx_queues - MAX_RCV_QUEUES_PER_QS;
427
428 tx_queues = nic->tx_queues + nic->xdp_tx_queues;
429 if (tx_queues > MAX_SND_QUEUES_PER_QS)
430 tx_queues = tx_queues - MAX_SND_QUEUES_PER_QS;
431
432 /* Set no of Rx/Tx queues in each of the SQsets */
433 for (sqs = 0; sqs < nic->sqs_count; sqs++) {
434 mbx.nicvf.msg = NIC_MBOX_MSG_SNICVF_PTR;
435 mbx.nicvf.vf_id = nic->vf_id;
436 mbx.nicvf.sqs_id = sqs;
437 nicvf_send_msg_to_pf(nic, &mbx);
438
439 nic->snicvf[sqs]->sqs_id = sqs;
440 if (rx_queues > MAX_RCV_QUEUES_PER_QS) {
441 nic->snicvf[sqs]->qs->rq_cnt = MAX_RCV_QUEUES_PER_QS;
442 rx_queues -= MAX_RCV_QUEUES_PER_QS;
443 } else {
444 nic->snicvf[sqs]->qs->rq_cnt = rx_queues;
445 rx_queues = 0;
446 }
447
448 if (tx_queues > MAX_SND_QUEUES_PER_QS) {
449 nic->snicvf[sqs]->qs->sq_cnt = MAX_SND_QUEUES_PER_QS;
450 tx_queues -= MAX_SND_QUEUES_PER_QS;
451 } else {
452 nic->snicvf[sqs]->qs->sq_cnt = tx_queues;
453 tx_queues = 0;
454 }
455
456 nic->snicvf[sqs]->qs->cq_cnt =
457 max(nic->snicvf[sqs]->qs->rq_cnt, nic->snicvf[sqs]->qs->sq_cnt);
458
459 /* Initialize secondary Qset's queues and its interrupts */
460 nicvf_open(nic->snicvf[sqs]->netdev);
461 }
462
463 /* Update stack with actual Rx/Tx queue count allocated */
464 if (sqs_count != nic->sqs_count)
465 nicvf_set_real_num_queues(nic->netdev,
466 nic->tx_queues, nic->rx_queues);
467 }
468
469 /* Send this Qset's nicvf pointer to PF.
470 * PF inturn sends primary VF's nicvf struct to secondary Qsets/VFs
471 * so that packets received by these Qsets can use primary VF's netdev
472 */
nicvf_send_vf_struct(struct nicvf * nic)473 static void nicvf_send_vf_struct(struct nicvf *nic)
474 {
475 union nic_mbx mbx = {};
476
477 mbx.nicvf.msg = NIC_MBOX_MSG_NICVF_PTR;
478 mbx.nicvf.sqs_mode = nic->sqs_mode;
479 mbx.nicvf.nicvf = (u64)nic;
480 nicvf_send_msg_to_pf(nic, &mbx);
481 }
482
nicvf_get_primary_vf_struct(struct nicvf * nic)483 static void nicvf_get_primary_vf_struct(struct nicvf *nic)
484 {
485 union nic_mbx mbx = {};
486
487 mbx.nicvf.msg = NIC_MBOX_MSG_PNICVF_PTR;
488 nicvf_send_msg_to_pf(nic, &mbx);
489 }
490
nicvf_set_real_num_queues(struct net_device * netdev,int tx_queues,int rx_queues)491 int nicvf_set_real_num_queues(struct net_device *netdev,
492 int tx_queues, int rx_queues)
493 {
494 int err = 0;
495
496 err = netif_set_real_num_tx_queues(netdev, tx_queues);
497 if (err) {
498 netdev_err(netdev,
499 "Failed to set no of Tx queues: %d\n", tx_queues);
500 return err;
501 }
502
503 err = netif_set_real_num_rx_queues(netdev, rx_queues);
504 if (err)
505 netdev_err(netdev,
506 "Failed to set no of Rx queues: %d\n", rx_queues);
507 return err;
508 }
509
nicvf_init_resources(struct nicvf * nic)510 static int nicvf_init_resources(struct nicvf *nic)
511 {
512 int err;
513
514 /* Enable Qset */
515 nicvf_qset_config(nic, true);
516
517 /* Initialize queues and HW for data transfer */
518 err = nicvf_config_data_transfer(nic, true);
519 if (err) {
520 netdev_err(nic->netdev,
521 "Failed to alloc/config VF's QSet resources\n");
522 return err;
523 }
524
525 return 0;
526 }
527
nicvf_xdp_rx(struct nicvf * nic,struct bpf_prog * prog,struct cqe_rx_t * cqe_rx,struct snd_queue * sq,struct rcv_queue * rq,struct sk_buff ** skb)528 static inline bool nicvf_xdp_rx(struct nicvf *nic, struct bpf_prog *prog,
529 struct cqe_rx_t *cqe_rx, struct snd_queue *sq,
530 struct rcv_queue *rq, struct sk_buff **skb)
531 {
532 unsigned char *hard_start, *data;
533 struct xdp_buff xdp;
534 struct page *page;
535 u32 action;
536 u16 len, offset = 0;
537 u64 dma_addr, cpu_addr;
538 void *orig_data;
539
540 /* Retrieve packet buffer's DMA address and length */
541 len = *((u16 *)((void *)cqe_rx + (3 * sizeof(u64))));
542 dma_addr = *((u64 *)((void *)cqe_rx + (7 * sizeof(u64))));
543
544 cpu_addr = nicvf_iova_to_phys(nic, dma_addr);
545 if (!cpu_addr)
546 return false;
547 cpu_addr = (u64)phys_to_virt(cpu_addr);
548 page = virt_to_page((void *)cpu_addr);
549
550 xdp_init_buff(&xdp, RCV_FRAG_LEN + XDP_PACKET_HEADROOM,
551 &rq->xdp_rxq);
552 hard_start = page_address(page);
553 data = (unsigned char *)cpu_addr;
554 xdp_prepare_buff(&xdp, hard_start, data - hard_start, len, false);
555 orig_data = xdp.data;
556
557 action = bpf_prog_run_xdp(prog, &xdp);
558
559 len = xdp.data_end - xdp.data;
560 /* Check if XDP program has changed headers */
561 if (orig_data != xdp.data) {
562 offset = orig_data - xdp.data;
563 dma_addr -= offset;
564 }
565
566 switch (action) {
567 case XDP_PASS:
568 /* Check if it's a recycled page, if not
569 * unmap the DMA mapping.
570 *
571 * Recycled page holds an extra reference.
572 */
573 if (page_ref_count(page) == 1) {
574 dma_addr &= PAGE_MASK;
575 dma_unmap_page_attrs(&nic->pdev->dev, dma_addr,
576 RCV_FRAG_LEN + XDP_PACKET_HEADROOM,
577 DMA_FROM_DEVICE,
578 DMA_ATTR_SKIP_CPU_SYNC);
579 }
580
581 /* Build SKB and pass on packet to network stack */
582 *skb = build_skb(xdp.data,
583 RCV_FRAG_LEN - cqe_rx->align_pad + offset);
584 if (!*skb)
585 put_page(page);
586 else
587 skb_put(*skb, len);
588 return false;
589 case XDP_TX:
590 nicvf_xdp_sq_append_pkt(nic, sq, (u64)xdp.data, dma_addr, len);
591 return true;
592 default:
593 bpf_warn_invalid_xdp_action(nic->netdev, prog, action);
594 fallthrough;
595 case XDP_ABORTED:
596 trace_xdp_exception(nic->netdev, prog, action);
597 fallthrough;
598 case XDP_DROP:
599 /* Check if it's a recycled page, if not
600 * unmap the DMA mapping.
601 *
602 * Recycled page holds an extra reference.
603 */
604 if (page_ref_count(page) == 1) {
605 dma_addr &= PAGE_MASK;
606 dma_unmap_page_attrs(&nic->pdev->dev, dma_addr,
607 RCV_FRAG_LEN + XDP_PACKET_HEADROOM,
608 DMA_FROM_DEVICE,
609 DMA_ATTR_SKIP_CPU_SYNC);
610 }
611 put_page(page);
612 return true;
613 }
614 return false;
615 }
616
nicvf_snd_ptp_handler(struct net_device * netdev,struct cqe_send_t * cqe_tx)617 static void nicvf_snd_ptp_handler(struct net_device *netdev,
618 struct cqe_send_t *cqe_tx)
619 {
620 struct nicvf *nic = netdev_priv(netdev);
621 struct skb_shared_hwtstamps ts;
622 u64 ns;
623
624 nic = nic->pnicvf;
625
626 /* Sync for 'ptp_skb' */
627 smp_rmb();
628
629 /* New timestamp request can be queued now */
630 atomic_set(&nic->tx_ptp_skbs, 0);
631
632 /* Check for timestamp requested skb */
633 if (!nic->ptp_skb)
634 return;
635
636 /* Check if timestamping is timedout, which is set to 10us */
637 if (cqe_tx->send_status == CQ_TX_ERROP_TSTMP_TIMEOUT ||
638 cqe_tx->send_status == CQ_TX_ERROP_TSTMP_CONFLICT)
639 goto no_tstamp;
640
641 /* Get the timestamp */
642 memset(&ts, 0, sizeof(ts));
643 ns = cavium_ptp_tstamp2time(nic->ptp_clock, cqe_tx->ptp_timestamp);
644 ts.hwtstamp = ns_to_ktime(ns);
645 skb_tstamp_tx(nic->ptp_skb, &ts);
646
647 no_tstamp:
648 /* Free the original skb */
649 dev_kfree_skb_any(nic->ptp_skb);
650 nic->ptp_skb = NULL;
651 /* Sync 'ptp_skb' */
652 smp_wmb();
653 }
654
nicvf_snd_pkt_handler(struct net_device * netdev,struct cqe_send_t * cqe_tx,int budget,int * subdesc_cnt,unsigned int * tx_pkts,unsigned int * tx_bytes)655 static void nicvf_snd_pkt_handler(struct net_device *netdev,
656 struct cqe_send_t *cqe_tx,
657 int budget, int *subdesc_cnt,
658 unsigned int *tx_pkts, unsigned int *tx_bytes)
659 {
660 struct sk_buff *skb = NULL;
661 struct page *page;
662 struct nicvf *nic = netdev_priv(netdev);
663 struct snd_queue *sq;
664 struct sq_hdr_subdesc *hdr;
665 struct sq_hdr_subdesc *tso_sqe;
666
667 sq = &nic->qs->sq[cqe_tx->sq_idx];
668
669 hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, cqe_tx->sqe_ptr);
670 if (hdr->subdesc_type != SQ_DESC_TYPE_HEADER)
671 return;
672
673 /* Check for errors */
674 if (cqe_tx->send_status)
675 nicvf_check_cqe_tx_errs(nic->pnicvf, cqe_tx);
676
677 /* Is this a XDP designated Tx queue */
678 if (sq->is_xdp) {
679 page = (struct page *)sq->xdp_page[cqe_tx->sqe_ptr];
680 /* Check if it's recycled page or else unmap DMA mapping */
681 if (page && (page_ref_count(page) == 1))
682 nicvf_unmap_sndq_buffers(nic, sq, cqe_tx->sqe_ptr,
683 hdr->subdesc_cnt);
684
685 /* Release page reference for recycling */
686 if (page)
687 put_page(page);
688 sq->xdp_page[cqe_tx->sqe_ptr] = (u64)NULL;
689 *subdesc_cnt += hdr->subdesc_cnt + 1;
690 return;
691 }
692
693 skb = (struct sk_buff *)sq->skbuff[cqe_tx->sqe_ptr];
694 if (skb) {
695 /* Check for dummy descriptor used for HW TSO offload on 88xx */
696 if (hdr->dont_send) {
697 /* Get actual TSO descriptors and free them */
698 tso_sqe =
699 (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, hdr->rsvd2);
700 nicvf_unmap_sndq_buffers(nic, sq, hdr->rsvd2,
701 tso_sqe->subdesc_cnt);
702 *subdesc_cnt += tso_sqe->subdesc_cnt + 1;
703 } else {
704 nicvf_unmap_sndq_buffers(nic, sq, cqe_tx->sqe_ptr,
705 hdr->subdesc_cnt);
706 }
707 *subdesc_cnt += hdr->subdesc_cnt + 1;
708 prefetch(skb);
709 (*tx_pkts)++;
710 *tx_bytes += skb->len;
711 /* If timestamp is requested for this skb, don't free it */
712 if (skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS &&
713 !nic->pnicvf->ptp_skb)
714 nic->pnicvf->ptp_skb = skb;
715 else
716 napi_consume_skb(skb, budget);
717 sq->skbuff[cqe_tx->sqe_ptr] = (u64)NULL;
718 } else {
719 /* In case of SW TSO on 88xx, only last segment will have
720 * a SKB attached, so just free SQEs here.
721 */
722 if (!nic->hw_tso)
723 *subdesc_cnt += hdr->subdesc_cnt + 1;
724 }
725 }
726
nicvf_set_rxhash(struct net_device * netdev,struct cqe_rx_t * cqe_rx,struct sk_buff * skb)727 static inline void nicvf_set_rxhash(struct net_device *netdev,
728 struct cqe_rx_t *cqe_rx,
729 struct sk_buff *skb)
730 {
731 u8 hash_type;
732 u32 hash;
733
734 if (!(netdev->features & NETIF_F_RXHASH))
735 return;
736
737 switch (cqe_rx->rss_alg) {
738 case RSS_ALG_TCP_IP:
739 case RSS_ALG_UDP_IP:
740 hash_type = PKT_HASH_TYPE_L4;
741 hash = cqe_rx->rss_tag;
742 break;
743 case RSS_ALG_IP:
744 hash_type = PKT_HASH_TYPE_L3;
745 hash = cqe_rx->rss_tag;
746 break;
747 default:
748 hash_type = PKT_HASH_TYPE_NONE;
749 hash = 0;
750 }
751
752 skb_set_hash(skb, hash, hash_type);
753 }
754
nicvf_set_rxtstamp(struct nicvf * nic,struct sk_buff * skb)755 static inline void nicvf_set_rxtstamp(struct nicvf *nic, struct sk_buff *skb)
756 {
757 u64 ns;
758
759 if (!nic->ptp_clock || !nic->hw_rx_tstamp)
760 return;
761
762 /* The first 8 bytes is the timestamp */
763 ns = cavium_ptp_tstamp2time(nic->ptp_clock,
764 be64_to_cpu(*(__be64 *)skb->data));
765 skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns);
766
767 __skb_pull(skb, 8);
768 }
769
nicvf_rcv_pkt_handler(struct net_device * netdev,struct napi_struct * napi,struct cqe_rx_t * cqe_rx,struct snd_queue * sq,struct rcv_queue * rq)770 static void nicvf_rcv_pkt_handler(struct net_device *netdev,
771 struct napi_struct *napi,
772 struct cqe_rx_t *cqe_rx,
773 struct snd_queue *sq, struct rcv_queue *rq)
774 {
775 struct sk_buff *skb = NULL;
776 struct nicvf *nic = netdev_priv(netdev);
777 struct nicvf *snic = nic;
778 int err = 0;
779 int rq_idx;
780
781 rq_idx = nicvf_netdev_qidx(nic, cqe_rx->rq_idx);
782
783 if (nic->sqs_mode) {
784 /* Use primary VF's 'nicvf' struct */
785 nic = nic->pnicvf;
786 netdev = nic->netdev;
787 }
788
789 /* Check for errors */
790 if (cqe_rx->err_level || cqe_rx->err_opcode) {
791 err = nicvf_check_cqe_rx_errs(nic, cqe_rx);
792 if (err && !cqe_rx->rb_cnt)
793 return;
794 }
795
796 /* For XDP, ignore pkts spanning multiple pages */
797 if (nic->xdp_prog && (cqe_rx->rb_cnt == 1)) {
798 /* Packet consumed by XDP */
799 if (nicvf_xdp_rx(snic, nic->xdp_prog, cqe_rx, sq, rq, &skb))
800 return;
801 } else {
802 skb = nicvf_get_rcv_skb(snic, cqe_rx,
803 nic->xdp_prog ? true : false);
804 }
805
806 if (!skb)
807 return;
808
809 if (netif_msg_pktdata(nic)) {
810 netdev_info(nic->netdev, "skb 0x%p, len=%d\n", skb, skb->len);
811 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 16, 1,
812 skb->data, skb->len, true);
813 }
814
815 /* If error packet, drop it here */
816 if (err) {
817 dev_kfree_skb_any(skb);
818 return;
819 }
820
821 nicvf_set_rxtstamp(nic, skb);
822 nicvf_set_rxhash(netdev, cqe_rx, skb);
823
824 skb_record_rx_queue(skb, rq_idx);
825 if (netdev->hw_features & NETIF_F_RXCSUM) {
826 /* HW by default verifies TCP/UDP/SCTP checksums */
827 skb->ip_summed = CHECKSUM_UNNECESSARY;
828 } else {
829 skb_checksum_none_assert(skb);
830 }
831
832 skb->protocol = eth_type_trans(skb, netdev);
833
834 /* Check for stripped VLAN */
835 if (cqe_rx->vlan_found && cqe_rx->vlan_stripped)
836 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
837 ntohs((__force __be16)cqe_rx->vlan_tci));
838
839 if (napi && (netdev->features & NETIF_F_GRO))
840 napi_gro_receive(napi, skb);
841 else
842 netif_receive_skb(skb);
843 }
844
nicvf_cq_intr_handler(struct net_device * netdev,u8 cq_idx,struct napi_struct * napi,int budget)845 static int nicvf_cq_intr_handler(struct net_device *netdev, u8 cq_idx,
846 struct napi_struct *napi, int budget)
847 {
848 int processed_cqe, work_done = 0, tx_done = 0;
849 int cqe_count, cqe_head;
850 int subdesc_cnt = 0;
851 struct nicvf *nic = netdev_priv(netdev);
852 struct queue_set *qs = nic->qs;
853 struct cmp_queue *cq = &qs->cq[cq_idx];
854 struct cqe_rx_t *cq_desc;
855 struct netdev_queue *txq;
856 struct snd_queue *sq = &qs->sq[cq_idx];
857 struct rcv_queue *rq = &qs->rq[cq_idx];
858 unsigned int tx_pkts = 0, tx_bytes = 0, txq_idx;
859
860 spin_lock_bh(&cq->lock);
861 loop:
862 processed_cqe = 0;
863 /* Get no of valid CQ entries to process */
864 cqe_count = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_STATUS, cq_idx);
865 cqe_count &= CQ_CQE_COUNT;
866 if (!cqe_count)
867 goto done;
868
869 /* Get head of the valid CQ entries */
870 cqe_head = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_HEAD, cq_idx) >> 9;
871 cqe_head &= 0xFFFF;
872
873 while (processed_cqe < cqe_count) {
874 /* Get the CQ descriptor */
875 cq_desc = (struct cqe_rx_t *)GET_CQ_DESC(cq, cqe_head);
876 cqe_head++;
877 cqe_head &= (cq->dmem.q_len - 1);
878 /* Initiate prefetch for next descriptor */
879 prefetch((struct cqe_rx_t *)GET_CQ_DESC(cq, cqe_head));
880
881 if ((work_done >= budget) && napi &&
882 (cq_desc->cqe_type != CQE_TYPE_SEND)) {
883 break;
884 }
885
886 switch (cq_desc->cqe_type) {
887 case CQE_TYPE_RX:
888 nicvf_rcv_pkt_handler(netdev, napi, cq_desc, sq, rq);
889 work_done++;
890 break;
891 case CQE_TYPE_SEND:
892 nicvf_snd_pkt_handler(netdev, (void *)cq_desc,
893 budget, &subdesc_cnt,
894 &tx_pkts, &tx_bytes);
895 tx_done++;
896 break;
897 case CQE_TYPE_SEND_PTP:
898 nicvf_snd_ptp_handler(netdev, (void *)cq_desc);
899 break;
900 case CQE_TYPE_INVALID:
901 case CQE_TYPE_RX_SPLIT:
902 case CQE_TYPE_RX_TCP:
903 /* Ignore for now */
904 break;
905 }
906 processed_cqe++;
907 }
908
909 /* Ring doorbell to inform H/W to reuse processed CQEs */
910 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_DOOR,
911 cq_idx, processed_cqe);
912
913 if ((work_done < budget) && napi)
914 goto loop;
915
916 done:
917 /* Update SQ's descriptor free count */
918 if (subdesc_cnt)
919 nicvf_put_sq_desc(sq, subdesc_cnt);
920
921 txq_idx = nicvf_netdev_qidx(nic, cq_idx);
922 /* Handle XDP TX queues */
923 if (nic->pnicvf->xdp_prog) {
924 if (txq_idx < nic->pnicvf->xdp_tx_queues) {
925 nicvf_xdp_sq_doorbell(nic, sq, cq_idx);
926 goto out;
927 }
928 nic = nic->pnicvf;
929 txq_idx -= nic->pnicvf->xdp_tx_queues;
930 }
931
932 /* Wakeup TXQ if its stopped earlier due to SQ full */
933 if (tx_done ||
934 (atomic_read(&sq->free_cnt) >= MIN_SQ_DESC_PER_PKT_XMIT)) {
935 netdev = nic->pnicvf->netdev;
936 txq = netdev_get_tx_queue(netdev, txq_idx);
937 if (tx_pkts)
938 netdev_tx_completed_queue(txq, tx_pkts, tx_bytes);
939
940 /* To read updated queue and carrier status */
941 smp_mb();
942 if (netif_tx_queue_stopped(txq) && netif_carrier_ok(netdev)) {
943 netif_tx_wake_queue(txq);
944 nic = nic->pnicvf;
945 this_cpu_inc(nic->drv_stats->txq_wake);
946 netif_warn(nic, tx_err, netdev,
947 "Transmit queue wakeup SQ%d\n", txq_idx);
948 }
949 }
950
951 out:
952 spin_unlock_bh(&cq->lock);
953 return work_done;
954 }
955
nicvf_poll(struct napi_struct * napi,int budget)956 static int nicvf_poll(struct napi_struct *napi, int budget)
957 {
958 u64 cq_head;
959 int work_done = 0;
960 struct net_device *netdev = napi->dev;
961 struct nicvf *nic = netdev_priv(netdev);
962 struct nicvf_cq_poll *cq;
963
964 cq = container_of(napi, struct nicvf_cq_poll, napi);
965 work_done = nicvf_cq_intr_handler(netdev, cq->cq_idx, napi, budget);
966
967 if (work_done < budget) {
968 /* Slow packet rate, exit polling */
969 napi_complete_done(napi, work_done);
970 /* Re-enable interrupts */
971 cq_head = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_HEAD,
972 cq->cq_idx);
973 nicvf_clear_intr(nic, NICVF_INTR_CQ, cq->cq_idx);
974 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_HEAD,
975 cq->cq_idx, cq_head);
976 nicvf_enable_intr(nic, NICVF_INTR_CQ, cq->cq_idx);
977 }
978 return work_done;
979 }
980
981 /* Qset error interrupt handler
982 *
983 * As of now only CQ errors are handled
984 */
nicvf_handle_qs_err(struct tasklet_struct * t)985 static void nicvf_handle_qs_err(struct tasklet_struct *t)
986 {
987 struct nicvf *nic = from_tasklet(nic, t, qs_err_task);
988 struct queue_set *qs = nic->qs;
989 int qidx;
990 u64 status;
991
992 netif_tx_disable(nic->netdev);
993
994 /* Check if it is CQ err */
995 for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
996 status = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_STATUS,
997 qidx);
998 if (!(status & CQ_ERR_MASK))
999 continue;
1000 /* Process already queued CQEs and reconfig CQ */
1001 nicvf_disable_intr(nic, NICVF_INTR_CQ, qidx);
1002 nicvf_sq_disable(nic, qidx);
1003 nicvf_cq_intr_handler(nic->netdev, qidx, NULL, 0);
1004 nicvf_cmp_queue_config(nic, qs, qidx, true);
1005 nicvf_sq_free_used_descs(nic->netdev, &qs->sq[qidx], qidx);
1006 nicvf_sq_enable(nic, &qs->sq[qidx], qidx);
1007
1008 nicvf_enable_intr(nic, NICVF_INTR_CQ, qidx);
1009 }
1010
1011 netif_tx_start_all_queues(nic->netdev);
1012 /* Re-enable Qset error interrupt */
1013 nicvf_enable_intr(nic, NICVF_INTR_QS_ERR, 0);
1014 }
1015
nicvf_dump_intr_status(struct nicvf * nic)1016 static void nicvf_dump_intr_status(struct nicvf *nic)
1017 {
1018 netif_info(nic, intr, nic->netdev, "interrupt status 0x%llx\n",
1019 nicvf_reg_read(nic, NIC_VF_INT));
1020 }
1021
nicvf_misc_intr_handler(int irq,void * nicvf_irq)1022 static irqreturn_t nicvf_misc_intr_handler(int irq, void *nicvf_irq)
1023 {
1024 struct nicvf *nic = (struct nicvf *)nicvf_irq;
1025 u64 intr;
1026
1027 nicvf_dump_intr_status(nic);
1028
1029 intr = nicvf_reg_read(nic, NIC_VF_INT);
1030 /* Check for spurious interrupt */
1031 if (!(intr & NICVF_INTR_MBOX_MASK))
1032 return IRQ_HANDLED;
1033
1034 nicvf_handle_mbx_intr(nic);
1035
1036 return IRQ_HANDLED;
1037 }
1038
nicvf_intr_handler(int irq,void * cq_irq)1039 static irqreturn_t nicvf_intr_handler(int irq, void *cq_irq)
1040 {
1041 struct nicvf_cq_poll *cq_poll = (struct nicvf_cq_poll *)cq_irq;
1042 struct nicvf *nic = cq_poll->nicvf;
1043 int qidx = cq_poll->cq_idx;
1044
1045 nicvf_dump_intr_status(nic);
1046
1047 /* Disable interrupts */
1048 nicvf_disable_intr(nic, NICVF_INTR_CQ, qidx);
1049
1050 /* Schedule NAPI */
1051 napi_schedule_irqoff(&cq_poll->napi);
1052
1053 /* Clear interrupt */
1054 nicvf_clear_intr(nic, NICVF_INTR_CQ, qidx);
1055
1056 return IRQ_HANDLED;
1057 }
1058
nicvf_rbdr_intr_handler(int irq,void * nicvf_irq)1059 static irqreturn_t nicvf_rbdr_intr_handler(int irq, void *nicvf_irq)
1060 {
1061 struct nicvf *nic = (struct nicvf *)nicvf_irq;
1062 u8 qidx;
1063
1064
1065 nicvf_dump_intr_status(nic);
1066
1067 /* Disable RBDR interrupt and schedule softirq */
1068 for (qidx = 0; qidx < nic->qs->rbdr_cnt; qidx++) {
1069 if (!nicvf_is_intr_enabled(nic, NICVF_INTR_RBDR, qidx))
1070 continue;
1071 nicvf_disable_intr(nic, NICVF_INTR_RBDR, qidx);
1072 tasklet_hi_schedule(&nic->rbdr_task);
1073 /* Clear interrupt */
1074 nicvf_clear_intr(nic, NICVF_INTR_RBDR, qidx);
1075 }
1076
1077 return IRQ_HANDLED;
1078 }
1079
nicvf_qs_err_intr_handler(int irq,void * nicvf_irq)1080 static irqreturn_t nicvf_qs_err_intr_handler(int irq, void *nicvf_irq)
1081 {
1082 struct nicvf *nic = (struct nicvf *)nicvf_irq;
1083
1084 nicvf_dump_intr_status(nic);
1085
1086 /* Disable Qset err interrupt and schedule softirq */
1087 nicvf_disable_intr(nic, NICVF_INTR_QS_ERR, 0);
1088 tasklet_hi_schedule(&nic->qs_err_task);
1089 nicvf_clear_intr(nic, NICVF_INTR_QS_ERR, 0);
1090
1091 return IRQ_HANDLED;
1092 }
1093
nicvf_set_irq_affinity(struct nicvf * nic)1094 static void nicvf_set_irq_affinity(struct nicvf *nic)
1095 {
1096 int vec, cpu;
1097
1098 for (vec = 0; vec < nic->num_vec; vec++) {
1099 if (!nic->irq_allocated[vec])
1100 continue;
1101
1102 if (!zalloc_cpumask_var(&nic->affinity_mask[vec], GFP_KERNEL))
1103 return;
1104 /* CQ interrupts */
1105 if (vec < NICVF_INTR_ID_SQ)
1106 /* Leave CPU0 for RBDR and other interrupts */
1107 cpu = nicvf_netdev_qidx(nic, vec) + 1;
1108 else
1109 cpu = 0;
1110
1111 cpumask_set_cpu(cpumask_local_spread(cpu, nic->node),
1112 nic->affinity_mask[vec]);
1113 irq_set_affinity_hint(pci_irq_vector(nic->pdev, vec),
1114 nic->affinity_mask[vec]);
1115 }
1116 }
1117
nicvf_register_interrupts(struct nicvf * nic)1118 static int nicvf_register_interrupts(struct nicvf *nic)
1119 {
1120 int irq, ret = 0;
1121
1122 for_each_cq_irq(irq)
1123 sprintf(nic->irq_name[irq], "%s-rxtx-%d",
1124 nic->pnicvf->netdev->name,
1125 nicvf_netdev_qidx(nic, irq));
1126
1127 for_each_sq_irq(irq)
1128 sprintf(nic->irq_name[irq], "%s-sq-%d",
1129 nic->pnicvf->netdev->name,
1130 nicvf_netdev_qidx(nic, irq - NICVF_INTR_ID_SQ));
1131
1132 for_each_rbdr_irq(irq)
1133 sprintf(nic->irq_name[irq], "%s-rbdr-%d",
1134 nic->pnicvf->netdev->name,
1135 nic->sqs_mode ? (nic->sqs_id + 1) : 0);
1136
1137 /* Register CQ interrupts */
1138 for (irq = 0; irq < nic->qs->cq_cnt; irq++) {
1139 ret = request_irq(pci_irq_vector(nic->pdev, irq),
1140 nicvf_intr_handler,
1141 0, nic->irq_name[irq], nic->napi[irq]);
1142 if (ret)
1143 goto err;
1144 nic->irq_allocated[irq] = true;
1145 }
1146
1147 /* Register RBDR interrupt */
1148 for (irq = NICVF_INTR_ID_RBDR;
1149 irq < (NICVF_INTR_ID_RBDR + nic->qs->rbdr_cnt); irq++) {
1150 ret = request_irq(pci_irq_vector(nic->pdev, irq),
1151 nicvf_rbdr_intr_handler,
1152 0, nic->irq_name[irq], nic);
1153 if (ret)
1154 goto err;
1155 nic->irq_allocated[irq] = true;
1156 }
1157
1158 /* Register QS error interrupt */
1159 sprintf(nic->irq_name[NICVF_INTR_ID_QS_ERR], "%s-qset-err-%d",
1160 nic->pnicvf->netdev->name,
1161 nic->sqs_mode ? (nic->sqs_id + 1) : 0);
1162 irq = NICVF_INTR_ID_QS_ERR;
1163 ret = request_irq(pci_irq_vector(nic->pdev, irq),
1164 nicvf_qs_err_intr_handler,
1165 0, nic->irq_name[irq], nic);
1166 if (ret)
1167 goto err;
1168
1169 nic->irq_allocated[irq] = true;
1170
1171 /* Set IRQ affinities */
1172 nicvf_set_irq_affinity(nic);
1173
1174 err:
1175 if (ret)
1176 netdev_err(nic->netdev, "request_irq failed, vector %d\n", irq);
1177
1178 return ret;
1179 }
1180
nicvf_unregister_interrupts(struct nicvf * nic)1181 static void nicvf_unregister_interrupts(struct nicvf *nic)
1182 {
1183 struct pci_dev *pdev = nic->pdev;
1184 int irq;
1185
1186 /* Free registered interrupts */
1187 for (irq = 0; irq < nic->num_vec; irq++) {
1188 if (!nic->irq_allocated[irq])
1189 continue;
1190
1191 irq_set_affinity_hint(pci_irq_vector(pdev, irq), NULL);
1192 free_cpumask_var(nic->affinity_mask[irq]);
1193
1194 if (irq < NICVF_INTR_ID_SQ)
1195 free_irq(pci_irq_vector(pdev, irq), nic->napi[irq]);
1196 else
1197 free_irq(pci_irq_vector(pdev, irq), nic);
1198
1199 nic->irq_allocated[irq] = false;
1200 }
1201
1202 /* Disable MSI-X */
1203 pci_free_irq_vectors(pdev);
1204 nic->num_vec = 0;
1205 }
1206
1207 /* Initialize MSIX vectors and register MISC interrupt.
1208 * Send READY message to PF to check if its alive
1209 */
nicvf_register_misc_interrupt(struct nicvf * nic)1210 static int nicvf_register_misc_interrupt(struct nicvf *nic)
1211 {
1212 int ret = 0;
1213 int irq = NICVF_INTR_ID_MISC;
1214
1215 /* Return if mailbox interrupt is already registered */
1216 if (nic->pdev->msix_enabled)
1217 return 0;
1218
1219 /* Enable MSI-X */
1220 nic->num_vec = pci_msix_vec_count(nic->pdev);
1221 ret = pci_alloc_irq_vectors(nic->pdev, nic->num_vec, nic->num_vec,
1222 PCI_IRQ_MSIX);
1223 if (ret < 0) {
1224 netdev_err(nic->netdev,
1225 "Req for #%d msix vectors failed\n", nic->num_vec);
1226 return ret;
1227 }
1228
1229 sprintf(nic->irq_name[irq], "%s Mbox", "NICVF");
1230 /* Register Misc interrupt */
1231 ret = request_irq(pci_irq_vector(nic->pdev, irq),
1232 nicvf_misc_intr_handler, 0, nic->irq_name[irq], nic);
1233
1234 if (ret)
1235 return ret;
1236 nic->irq_allocated[irq] = true;
1237
1238 /* Enable mailbox interrupt */
1239 nicvf_enable_intr(nic, NICVF_INTR_MBOX, 0);
1240
1241 /* Check if VF is able to communicate with PF */
1242 if (!nicvf_check_pf_ready(nic)) {
1243 nicvf_disable_intr(nic, NICVF_INTR_MBOX, 0);
1244 nicvf_unregister_interrupts(nic);
1245 return -EIO;
1246 }
1247
1248 return 0;
1249 }
1250
nicvf_xmit(struct sk_buff * skb,struct net_device * netdev)1251 static netdev_tx_t nicvf_xmit(struct sk_buff *skb, struct net_device *netdev)
1252 {
1253 struct nicvf *nic = netdev_priv(netdev);
1254 int qid = skb_get_queue_mapping(skb);
1255 struct netdev_queue *txq = netdev_get_tx_queue(netdev, qid);
1256 struct nicvf *snic;
1257 struct snd_queue *sq;
1258 int tmp;
1259
1260 /* Check for minimum packet length */
1261 if (skb->len <= ETH_HLEN) {
1262 dev_kfree_skb(skb);
1263 return NETDEV_TX_OK;
1264 }
1265
1266 /* In XDP case, initial HW tx queues are used for XDP,
1267 * but stack's queue mapping starts at '0', so skip the
1268 * Tx queues attached to Rx queues for XDP.
1269 */
1270 if (nic->xdp_prog)
1271 qid += nic->xdp_tx_queues;
1272
1273 snic = nic;
1274 /* Get secondary Qset's SQ structure */
1275 if (qid >= MAX_SND_QUEUES_PER_QS) {
1276 tmp = qid / MAX_SND_QUEUES_PER_QS;
1277 snic = (struct nicvf *)nic->snicvf[tmp - 1];
1278 if (!snic) {
1279 netdev_warn(nic->netdev,
1280 "Secondary Qset#%d's ptr not initialized\n",
1281 tmp - 1);
1282 dev_kfree_skb(skb);
1283 return NETDEV_TX_OK;
1284 }
1285 qid = qid % MAX_SND_QUEUES_PER_QS;
1286 }
1287
1288 sq = &snic->qs->sq[qid];
1289 if (!netif_tx_queue_stopped(txq) &&
1290 !nicvf_sq_append_skb(snic, sq, skb, qid)) {
1291 netif_tx_stop_queue(txq);
1292
1293 /* Barrier, so that stop_queue visible to other cpus */
1294 smp_mb();
1295
1296 /* Check again, incase another cpu freed descriptors */
1297 if (atomic_read(&sq->free_cnt) > MIN_SQ_DESC_PER_PKT_XMIT) {
1298 netif_tx_wake_queue(txq);
1299 } else {
1300 this_cpu_inc(nic->drv_stats->txq_stop);
1301 netif_warn(nic, tx_err, netdev,
1302 "Transmit ring full, stopping SQ%d\n", qid);
1303 }
1304 return NETDEV_TX_BUSY;
1305 }
1306
1307 return NETDEV_TX_OK;
1308 }
1309
nicvf_free_cq_poll(struct nicvf * nic)1310 static inline void nicvf_free_cq_poll(struct nicvf *nic)
1311 {
1312 struct nicvf_cq_poll *cq_poll;
1313 int qidx;
1314
1315 for (qidx = 0; qidx < nic->qs->cq_cnt; qidx++) {
1316 cq_poll = nic->napi[qidx];
1317 if (!cq_poll)
1318 continue;
1319 nic->napi[qidx] = NULL;
1320 kfree(cq_poll);
1321 }
1322 }
1323
nicvf_stop(struct net_device * netdev)1324 int nicvf_stop(struct net_device *netdev)
1325 {
1326 int irq, qidx;
1327 struct nicvf *nic = netdev_priv(netdev);
1328 struct queue_set *qs = nic->qs;
1329 struct nicvf_cq_poll *cq_poll = NULL;
1330 union nic_mbx mbx = {};
1331
1332 /* wait till all queued set_rx_mode tasks completes */
1333 if (nic->nicvf_rx_mode_wq) {
1334 cancel_delayed_work_sync(&nic->link_change_work);
1335 drain_workqueue(nic->nicvf_rx_mode_wq);
1336 }
1337
1338 mbx.msg.msg = NIC_MBOX_MSG_SHUTDOWN;
1339 nicvf_send_msg_to_pf(nic, &mbx);
1340
1341 netif_carrier_off(netdev);
1342 netif_tx_stop_all_queues(nic->netdev);
1343 nic->link_up = false;
1344
1345 /* Teardown secondary qsets first */
1346 if (!nic->sqs_mode) {
1347 for (qidx = 0; qidx < nic->sqs_count; qidx++) {
1348 if (!nic->snicvf[qidx])
1349 continue;
1350 nicvf_stop(nic->snicvf[qidx]->netdev);
1351 nic->snicvf[qidx] = NULL;
1352 }
1353 }
1354
1355 /* Disable RBDR & QS error interrupts */
1356 for (qidx = 0; qidx < qs->rbdr_cnt; qidx++) {
1357 nicvf_disable_intr(nic, NICVF_INTR_RBDR, qidx);
1358 nicvf_clear_intr(nic, NICVF_INTR_RBDR, qidx);
1359 }
1360 nicvf_disable_intr(nic, NICVF_INTR_QS_ERR, 0);
1361 nicvf_clear_intr(nic, NICVF_INTR_QS_ERR, 0);
1362
1363 /* Wait for pending IRQ handlers to finish */
1364 for (irq = 0; irq < nic->num_vec; irq++)
1365 synchronize_irq(pci_irq_vector(nic->pdev, irq));
1366
1367 tasklet_kill(&nic->rbdr_task);
1368 tasklet_kill(&nic->qs_err_task);
1369 if (nic->rb_work_scheduled)
1370 cancel_delayed_work_sync(&nic->rbdr_work);
1371
1372 for (qidx = 0; qidx < nic->qs->cq_cnt; qidx++) {
1373 cq_poll = nic->napi[qidx];
1374 if (!cq_poll)
1375 continue;
1376 napi_synchronize(&cq_poll->napi);
1377 /* CQ intr is enabled while napi_complete,
1378 * so disable it now
1379 */
1380 nicvf_disable_intr(nic, NICVF_INTR_CQ, qidx);
1381 nicvf_clear_intr(nic, NICVF_INTR_CQ, qidx);
1382 napi_disable(&cq_poll->napi);
1383 netif_napi_del(&cq_poll->napi);
1384 }
1385
1386 netif_tx_disable(netdev);
1387
1388 for (qidx = 0; qidx < netdev->num_tx_queues; qidx++)
1389 netdev_tx_reset_queue(netdev_get_tx_queue(netdev, qidx));
1390
1391 /* Free resources */
1392 nicvf_config_data_transfer(nic, false);
1393
1394 /* Disable HW Qset */
1395 nicvf_qset_config(nic, false);
1396
1397 /* disable mailbox interrupt */
1398 nicvf_disable_intr(nic, NICVF_INTR_MBOX, 0);
1399
1400 nicvf_unregister_interrupts(nic);
1401
1402 nicvf_free_cq_poll(nic);
1403
1404 /* Free any pending SKB saved to receive timestamp */
1405 if (nic->ptp_skb) {
1406 dev_kfree_skb_any(nic->ptp_skb);
1407 nic->ptp_skb = NULL;
1408 }
1409
1410 /* Clear multiqset info */
1411 nic->pnicvf = nic;
1412
1413 return 0;
1414 }
1415
nicvf_config_hw_rx_tstamp(struct nicvf * nic,bool enable)1416 static int nicvf_config_hw_rx_tstamp(struct nicvf *nic, bool enable)
1417 {
1418 union nic_mbx mbx = {};
1419
1420 mbx.ptp.msg = NIC_MBOX_MSG_PTP_CFG;
1421 mbx.ptp.enable = enable;
1422
1423 return nicvf_send_msg_to_pf(nic, &mbx);
1424 }
1425
nicvf_update_hw_max_frs(struct nicvf * nic,int mtu)1426 static int nicvf_update_hw_max_frs(struct nicvf *nic, int mtu)
1427 {
1428 union nic_mbx mbx = {};
1429
1430 mbx.frs.msg = NIC_MBOX_MSG_SET_MAX_FRS;
1431 mbx.frs.max_frs = mtu;
1432 mbx.frs.vf_id = nic->vf_id;
1433
1434 return nicvf_send_msg_to_pf(nic, &mbx);
1435 }
1436
nicvf_link_status_check_task(struct work_struct * work_arg)1437 static void nicvf_link_status_check_task(struct work_struct *work_arg)
1438 {
1439 struct nicvf *nic = container_of(work_arg,
1440 struct nicvf,
1441 link_change_work.work);
1442 union nic_mbx mbx = {};
1443 mbx.msg.msg = NIC_MBOX_MSG_BGX_LINK_CHANGE;
1444 nicvf_send_msg_to_pf(nic, &mbx);
1445 queue_delayed_work(nic->nicvf_rx_mode_wq,
1446 &nic->link_change_work, 2 * HZ);
1447 }
1448
nicvf_open(struct net_device * netdev)1449 int nicvf_open(struct net_device *netdev)
1450 {
1451 int cpu, err, qidx;
1452 struct nicvf *nic = netdev_priv(netdev);
1453 struct queue_set *qs = nic->qs;
1454 struct nicvf_cq_poll *cq_poll = NULL;
1455
1456 /* wait till all queued set_rx_mode tasks completes if any */
1457 if (nic->nicvf_rx_mode_wq)
1458 drain_workqueue(nic->nicvf_rx_mode_wq);
1459
1460 netif_carrier_off(netdev);
1461
1462 err = nicvf_register_misc_interrupt(nic);
1463 if (err)
1464 return err;
1465
1466 /* Register NAPI handler for processing CQEs */
1467 for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
1468 cq_poll = kzalloc(sizeof(*cq_poll), GFP_KERNEL);
1469 if (!cq_poll) {
1470 err = -ENOMEM;
1471 goto napi_del;
1472 }
1473 cq_poll->cq_idx = qidx;
1474 cq_poll->nicvf = nic;
1475 netif_napi_add(netdev, &cq_poll->napi, nicvf_poll);
1476 napi_enable(&cq_poll->napi);
1477 nic->napi[qidx] = cq_poll;
1478 }
1479
1480 /* Check if we got MAC address from PF or else generate a radom MAC */
1481 if (!nic->sqs_mode && is_zero_ether_addr(netdev->dev_addr)) {
1482 eth_hw_addr_random(netdev);
1483 nicvf_hw_set_mac_addr(nic, netdev);
1484 }
1485
1486 if (nic->set_mac_pending) {
1487 nic->set_mac_pending = false;
1488 nicvf_hw_set_mac_addr(nic, netdev);
1489 }
1490
1491 /* Init tasklet for handling Qset err interrupt */
1492 tasklet_setup(&nic->qs_err_task, nicvf_handle_qs_err);
1493
1494 /* Init RBDR tasklet which will refill RBDR */
1495 tasklet_setup(&nic->rbdr_task, nicvf_rbdr_task);
1496 INIT_DELAYED_WORK(&nic->rbdr_work, nicvf_rbdr_work);
1497
1498 /* Configure CPI alorithm */
1499 nic->cpi_alg = cpi_alg;
1500 if (!nic->sqs_mode)
1501 nicvf_config_cpi(nic);
1502
1503 nicvf_request_sqs(nic);
1504 if (nic->sqs_mode)
1505 nicvf_get_primary_vf_struct(nic);
1506
1507 /* Configure PTP timestamp */
1508 if (nic->ptp_clock)
1509 nicvf_config_hw_rx_tstamp(nic, nic->hw_rx_tstamp);
1510 atomic_set(&nic->tx_ptp_skbs, 0);
1511 nic->ptp_skb = NULL;
1512
1513 /* Configure receive side scaling and MTU */
1514 if (!nic->sqs_mode) {
1515 nicvf_rss_init(nic);
1516 err = nicvf_update_hw_max_frs(nic, netdev->mtu);
1517 if (err)
1518 goto cleanup;
1519
1520 /* Clear percpu stats */
1521 for_each_possible_cpu(cpu)
1522 memset(per_cpu_ptr(nic->drv_stats, cpu), 0,
1523 sizeof(struct nicvf_drv_stats));
1524 }
1525
1526 err = nicvf_register_interrupts(nic);
1527 if (err)
1528 goto cleanup;
1529
1530 /* Initialize the queues */
1531 err = nicvf_init_resources(nic);
1532 if (err)
1533 goto cleanup;
1534
1535 /* Make sure queue initialization is written */
1536 wmb();
1537
1538 nicvf_reg_write(nic, NIC_VF_INT, -1);
1539 /* Enable Qset err interrupt */
1540 nicvf_enable_intr(nic, NICVF_INTR_QS_ERR, 0);
1541
1542 /* Enable completion queue interrupt */
1543 for (qidx = 0; qidx < qs->cq_cnt; qidx++)
1544 nicvf_enable_intr(nic, NICVF_INTR_CQ, qidx);
1545
1546 /* Enable RBDR threshold interrupt */
1547 for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
1548 nicvf_enable_intr(nic, NICVF_INTR_RBDR, qidx);
1549
1550 /* Send VF config done msg to PF */
1551 nicvf_send_cfg_done(nic);
1552
1553 if (nic->nicvf_rx_mode_wq) {
1554 INIT_DELAYED_WORK(&nic->link_change_work,
1555 nicvf_link_status_check_task);
1556 queue_delayed_work(nic->nicvf_rx_mode_wq,
1557 &nic->link_change_work, 0);
1558 }
1559
1560 return 0;
1561 cleanup:
1562 nicvf_disable_intr(nic, NICVF_INTR_MBOX, 0);
1563 nicvf_unregister_interrupts(nic);
1564 tasklet_kill(&nic->qs_err_task);
1565 tasklet_kill(&nic->rbdr_task);
1566 napi_del:
1567 for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
1568 cq_poll = nic->napi[qidx];
1569 if (!cq_poll)
1570 continue;
1571 napi_disable(&cq_poll->napi);
1572 netif_napi_del(&cq_poll->napi);
1573 }
1574 nicvf_free_cq_poll(nic);
1575 return err;
1576 }
1577
nicvf_change_mtu(struct net_device * netdev,int new_mtu)1578 static int nicvf_change_mtu(struct net_device *netdev, int new_mtu)
1579 {
1580 struct nicvf *nic = netdev_priv(netdev);
1581 int orig_mtu = netdev->mtu;
1582
1583 /* For now just support only the usual MTU sized frames,
1584 * plus some headroom for VLAN, QinQ.
1585 */
1586 if (nic->xdp_prog && new_mtu > MAX_XDP_MTU) {
1587 netdev_warn(netdev, "Jumbo frames not yet supported with XDP, current MTU %d.\n",
1588 netdev->mtu);
1589 return -EINVAL;
1590 }
1591
1592 WRITE_ONCE(netdev->mtu, new_mtu);
1593
1594 if (!netif_running(netdev))
1595 return 0;
1596
1597 if (nicvf_update_hw_max_frs(nic, new_mtu)) {
1598 netdev->mtu = orig_mtu;
1599 return -EINVAL;
1600 }
1601
1602 return 0;
1603 }
1604
nicvf_set_mac_address(struct net_device * netdev,void * p)1605 static int nicvf_set_mac_address(struct net_device *netdev, void *p)
1606 {
1607 struct sockaddr *addr = p;
1608 struct nicvf *nic = netdev_priv(netdev);
1609
1610 if (!is_valid_ether_addr(addr->sa_data))
1611 return -EADDRNOTAVAIL;
1612
1613 eth_hw_addr_set(netdev, addr->sa_data);
1614
1615 if (nic->pdev->msix_enabled) {
1616 if (nicvf_hw_set_mac_addr(nic, netdev))
1617 return -EBUSY;
1618 } else {
1619 nic->set_mac_pending = true;
1620 }
1621
1622 return 0;
1623 }
1624
nicvf_update_lmac_stats(struct nicvf * nic)1625 void nicvf_update_lmac_stats(struct nicvf *nic)
1626 {
1627 int stat = 0;
1628 union nic_mbx mbx = {};
1629
1630 if (!netif_running(nic->netdev))
1631 return;
1632
1633 mbx.bgx_stats.msg = NIC_MBOX_MSG_BGX_STATS;
1634 mbx.bgx_stats.vf_id = nic->vf_id;
1635 /* Rx stats */
1636 mbx.bgx_stats.rx = 1;
1637 while (stat < BGX_RX_STATS_COUNT) {
1638 mbx.bgx_stats.idx = stat;
1639 if (nicvf_send_msg_to_pf(nic, &mbx))
1640 return;
1641 stat++;
1642 }
1643
1644 stat = 0;
1645
1646 /* Tx stats */
1647 mbx.bgx_stats.rx = 0;
1648 while (stat < BGX_TX_STATS_COUNT) {
1649 mbx.bgx_stats.idx = stat;
1650 if (nicvf_send_msg_to_pf(nic, &mbx))
1651 return;
1652 stat++;
1653 }
1654 }
1655
nicvf_update_stats(struct nicvf * nic)1656 void nicvf_update_stats(struct nicvf *nic)
1657 {
1658 int qidx, cpu;
1659 u64 tmp_stats = 0;
1660 struct nicvf_hw_stats *stats = &nic->hw_stats;
1661 struct nicvf_drv_stats *drv_stats;
1662 struct queue_set *qs = nic->qs;
1663
1664 #define GET_RX_STATS(reg) \
1665 nicvf_reg_read(nic, NIC_VNIC_RX_STAT_0_13 | (reg << 3))
1666 #define GET_TX_STATS(reg) \
1667 nicvf_reg_read(nic, NIC_VNIC_TX_STAT_0_4 | (reg << 3))
1668
1669 stats->rx_bytes = GET_RX_STATS(RX_OCTS);
1670 stats->rx_ucast_frames = GET_RX_STATS(RX_UCAST);
1671 stats->rx_bcast_frames = GET_RX_STATS(RX_BCAST);
1672 stats->rx_mcast_frames = GET_RX_STATS(RX_MCAST);
1673 stats->rx_fcs_errors = GET_RX_STATS(RX_FCS);
1674 stats->rx_l2_errors = GET_RX_STATS(RX_L2ERR);
1675 stats->rx_drop_red = GET_RX_STATS(RX_RED);
1676 stats->rx_drop_red_bytes = GET_RX_STATS(RX_RED_OCTS);
1677 stats->rx_drop_overrun = GET_RX_STATS(RX_ORUN);
1678 stats->rx_drop_overrun_bytes = GET_RX_STATS(RX_ORUN_OCTS);
1679 stats->rx_drop_bcast = GET_RX_STATS(RX_DRP_BCAST);
1680 stats->rx_drop_mcast = GET_RX_STATS(RX_DRP_MCAST);
1681 stats->rx_drop_l3_bcast = GET_RX_STATS(RX_DRP_L3BCAST);
1682 stats->rx_drop_l3_mcast = GET_RX_STATS(RX_DRP_L3MCAST);
1683
1684 stats->tx_bytes = GET_TX_STATS(TX_OCTS);
1685 stats->tx_ucast_frames = GET_TX_STATS(TX_UCAST);
1686 stats->tx_bcast_frames = GET_TX_STATS(TX_BCAST);
1687 stats->tx_mcast_frames = GET_TX_STATS(TX_MCAST);
1688 stats->tx_drops = GET_TX_STATS(TX_DROP);
1689
1690 /* On T88 pass 2.0, the dummy SQE added for TSO notification
1691 * via CQE has 'dont_send' set. Hence HW drops the pkt pointed
1692 * pointed by dummy SQE and results in tx_drops counter being
1693 * incremented. Subtracting it from tx_tso counter will give
1694 * exact tx_drops counter.
1695 */
1696 if (nic->t88 && nic->hw_tso) {
1697 for_each_possible_cpu(cpu) {
1698 drv_stats = per_cpu_ptr(nic->drv_stats, cpu);
1699 tmp_stats += drv_stats->tx_tso;
1700 }
1701 stats->tx_drops = tmp_stats - stats->tx_drops;
1702 }
1703 stats->tx_frames = stats->tx_ucast_frames +
1704 stats->tx_bcast_frames +
1705 stats->tx_mcast_frames;
1706 stats->rx_frames = stats->rx_ucast_frames +
1707 stats->rx_bcast_frames +
1708 stats->rx_mcast_frames;
1709 stats->rx_drops = stats->rx_drop_red +
1710 stats->rx_drop_overrun;
1711
1712 /* Update RQ and SQ stats */
1713 for (qidx = 0; qidx < qs->rq_cnt; qidx++)
1714 nicvf_update_rq_stats(nic, qidx);
1715 for (qidx = 0; qidx < qs->sq_cnt; qidx++)
1716 nicvf_update_sq_stats(nic, qidx);
1717 }
1718
nicvf_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)1719 static void nicvf_get_stats64(struct net_device *netdev,
1720 struct rtnl_link_stats64 *stats)
1721 {
1722 struct nicvf *nic = netdev_priv(netdev);
1723 struct nicvf_hw_stats *hw_stats = &nic->hw_stats;
1724
1725 nicvf_update_stats(nic);
1726
1727 stats->rx_bytes = hw_stats->rx_bytes;
1728 stats->rx_packets = hw_stats->rx_frames;
1729 stats->rx_dropped = hw_stats->rx_drops;
1730 stats->multicast = hw_stats->rx_mcast_frames;
1731
1732 stats->tx_bytes = hw_stats->tx_bytes;
1733 stats->tx_packets = hw_stats->tx_frames;
1734 stats->tx_dropped = hw_stats->tx_drops;
1735
1736 }
1737
nicvf_tx_timeout(struct net_device * dev,unsigned int txqueue)1738 static void nicvf_tx_timeout(struct net_device *dev, unsigned int txqueue)
1739 {
1740 struct nicvf *nic = netdev_priv(dev);
1741
1742 netif_warn(nic, tx_err, dev, "Transmit timed out, resetting\n");
1743
1744 this_cpu_inc(nic->drv_stats->tx_timeout);
1745 schedule_work(&nic->reset_task);
1746 }
1747
nicvf_reset_task(struct work_struct * work)1748 static void nicvf_reset_task(struct work_struct *work)
1749 {
1750 struct nicvf *nic;
1751
1752 nic = container_of(work, struct nicvf, reset_task);
1753
1754 if (!netif_running(nic->netdev))
1755 return;
1756
1757 nicvf_stop(nic->netdev);
1758 nicvf_open(nic->netdev);
1759 netif_trans_update(nic->netdev);
1760 }
1761
nicvf_config_loopback(struct nicvf * nic,netdev_features_t features)1762 static int nicvf_config_loopback(struct nicvf *nic,
1763 netdev_features_t features)
1764 {
1765 union nic_mbx mbx = {};
1766
1767 mbx.lbk.msg = NIC_MBOX_MSG_LOOPBACK;
1768 mbx.lbk.vf_id = nic->vf_id;
1769 mbx.lbk.enable = (features & NETIF_F_LOOPBACK) != 0;
1770
1771 return nicvf_send_msg_to_pf(nic, &mbx);
1772 }
1773
nicvf_fix_features(struct net_device * netdev,netdev_features_t features)1774 static netdev_features_t nicvf_fix_features(struct net_device *netdev,
1775 netdev_features_t features)
1776 {
1777 struct nicvf *nic = netdev_priv(netdev);
1778
1779 if ((features & NETIF_F_LOOPBACK) &&
1780 netif_running(netdev) && !nic->loopback_supported)
1781 features &= ~NETIF_F_LOOPBACK;
1782
1783 return features;
1784 }
1785
nicvf_set_features(struct net_device * netdev,netdev_features_t features)1786 static int nicvf_set_features(struct net_device *netdev,
1787 netdev_features_t features)
1788 {
1789 struct nicvf *nic = netdev_priv(netdev);
1790 netdev_features_t changed = features ^ netdev->features;
1791
1792 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
1793 nicvf_config_vlan_stripping(nic, features);
1794
1795 if ((changed & NETIF_F_LOOPBACK) && netif_running(netdev))
1796 return nicvf_config_loopback(nic, features);
1797
1798 return 0;
1799 }
1800
nicvf_set_xdp_queues(struct nicvf * nic,bool bpf_attached)1801 static void nicvf_set_xdp_queues(struct nicvf *nic, bool bpf_attached)
1802 {
1803 u8 cq_count, txq_count;
1804
1805 /* Set XDP Tx queue count same as Rx queue count */
1806 if (!bpf_attached)
1807 nic->xdp_tx_queues = 0;
1808 else
1809 nic->xdp_tx_queues = nic->rx_queues;
1810
1811 /* If queue count > MAX_CMP_QUEUES_PER_QS, then additional qsets
1812 * needs to be allocated, check how many.
1813 */
1814 txq_count = nic->xdp_tx_queues + nic->tx_queues;
1815 cq_count = max(nic->rx_queues, txq_count);
1816 if (cq_count > MAX_CMP_QUEUES_PER_QS) {
1817 nic->sqs_count = roundup(cq_count, MAX_CMP_QUEUES_PER_QS);
1818 nic->sqs_count = (nic->sqs_count / MAX_CMP_QUEUES_PER_QS) - 1;
1819 } else {
1820 nic->sqs_count = 0;
1821 }
1822
1823 /* Set primary Qset's resources */
1824 nic->qs->rq_cnt = min_t(u8, nic->rx_queues, MAX_RCV_QUEUES_PER_QS);
1825 nic->qs->sq_cnt = min_t(u8, txq_count, MAX_SND_QUEUES_PER_QS);
1826 nic->qs->cq_cnt = max_t(u8, nic->qs->rq_cnt, nic->qs->sq_cnt);
1827
1828 /* Update stack */
1829 nicvf_set_real_num_queues(nic->netdev, nic->tx_queues, nic->rx_queues);
1830 }
1831
nicvf_xdp_setup(struct nicvf * nic,struct bpf_prog * prog)1832 static int nicvf_xdp_setup(struct nicvf *nic, struct bpf_prog *prog)
1833 {
1834 struct net_device *dev = nic->netdev;
1835 bool if_up = netif_running(nic->netdev);
1836 struct bpf_prog *old_prog;
1837 bool bpf_attached = false;
1838 int ret = 0;
1839
1840 /* For now just support only the usual MTU sized frames,
1841 * plus some headroom for VLAN, QinQ.
1842 */
1843 if (prog && dev->mtu > MAX_XDP_MTU) {
1844 netdev_warn(dev, "Jumbo frames not yet supported with XDP, current MTU %d.\n",
1845 dev->mtu);
1846 return -EOPNOTSUPP;
1847 }
1848
1849 /* ALL SQs attached to CQs i.e same as RQs, are treated as
1850 * XDP Tx queues and more Tx queues are allocated for
1851 * network stack to send pkts out.
1852 *
1853 * No of Tx queues are either same as Rx queues or whatever
1854 * is left in max no of queues possible.
1855 */
1856 if ((nic->rx_queues + nic->tx_queues) > nic->max_queues) {
1857 netdev_warn(dev,
1858 "Failed to attach BPF prog, RXQs + TXQs > Max %d\n",
1859 nic->max_queues);
1860 return -ENOMEM;
1861 }
1862
1863 if (if_up)
1864 nicvf_stop(nic->netdev);
1865
1866 old_prog = xchg(&nic->xdp_prog, prog);
1867 /* Detach old prog, if any */
1868 if (old_prog)
1869 bpf_prog_put(old_prog);
1870
1871 if (nic->xdp_prog) {
1872 /* Attach BPF program */
1873 bpf_prog_add(nic->xdp_prog, nic->rx_queues - 1);
1874 bpf_attached = true;
1875 }
1876
1877 /* Calculate Tx queues needed for XDP and network stack */
1878 nicvf_set_xdp_queues(nic, bpf_attached);
1879
1880 if (if_up) {
1881 /* Reinitialize interface, clean slate */
1882 nicvf_open(nic->netdev);
1883 netif_trans_update(nic->netdev);
1884 }
1885
1886 return ret;
1887 }
1888
nicvf_xdp(struct net_device * netdev,struct netdev_bpf * xdp)1889 static int nicvf_xdp(struct net_device *netdev, struct netdev_bpf *xdp)
1890 {
1891 struct nicvf *nic = netdev_priv(netdev);
1892
1893 /* To avoid checks while retrieving buffer address from CQE_RX,
1894 * do not support XDP for T88 pass1.x silicons which are anyway
1895 * not in use widely.
1896 */
1897 if (pass1_silicon(nic->pdev))
1898 return -EOPNOTSUPP;
1899
1900 switch (xdp->command) {
1901 case XDP_SETUP_PROG:
1902 return nicvf_xdp_setup(nic, xdp->prog);
1903 default:
1904 return -EINVAL;
1905 }
1906 }
1907
nicvf_config_hwtstamp(struct net_device * netdev,struct ifreq * ifr)1908 static int nicvf_config_hwtstamp(struct net_device *netdev, struct ifreq *ifr)
1909 {
1910 struct hwtstamp_config config;
1911 struct nicvf *nic = netdev_priv(netdev);
1912
1913 if (!nic->ptp_clock)
1914 return -ENODEV;
1915
1916 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1917 return -EFAULT;
1918
1919 switch (config.tx_type) {
1920 case HWTSTAMP_TX_OFF:
1921 case HWTSTAMP_TX_ON:
1922 break;
1923 default:
1924 return -ERANGE;
1925 }
1926
1927 switch (config.rx_filter) {
1928 case HWTSTAMP_FILTER_NONE:
1929 nic->hw_rx_tstamp = false;
1930 break;
1931 case HWTSTAMP_FILTER_ALL:
1932 case HWTSTAMP_FILTER_SOME:
1933 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1934 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1935 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1936 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1937 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1938 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1939 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1940 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1941 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1942 case HWTSTAMP_FILTER_PTP_V2_EVENT:
1943 case HWTSTAMP_FILTER_PTP_V2_SYNC:
1944 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1945 nic->hw_rx_tstamp = true;
1946 config.rx_filter = HWTSTAMP_FILTER_ALL;
1947 break;
1948 default:
1949 return -ERANGE;
1950 }
1951
1952 if (netif_running(netdev))
1953 nicvf_config_hw_rx_tstamp(nic, nic->hw_rx_tstamp);
1954
1955 if (copy_to_user(ifr->ifr_data, &config, sizeof(config)))
1956 return -EFAULT;
1957
1958 return 0;
1959 }
1960
nicvf_ioctl(struct net_device * netdev,struct ifreq * req,int cmd)1961 static int nicvf_ioctl(struct net_device *netdev, struct ifreq *req, int cmd)
1962 {
1963 switch (cmd) {
1964 case SIOCSHWTSTAMP:
1965 return nicvf_config_hwtstamp(netdev, req);
1966 default:
1967 return -EOPNOTSUPP;
1968 }
1969 }
1970
__nicvf_set_rx_mode_task(u8 mode,struct xcast_addr_list * mc_addrs,struct nicvf * nic)1971 static void __nicvf_set_rx_mode_task(u8 mode, struct xcast_addr_list *mc_addrs,
1972 struct nicvf *nic)
1973 {
1974 union nic_mbx mbx = {};
1975 int idx;
1976
1977 /* From the inside of VM code flow we have only 128 bits memory
1978 * available to send message to host's PF, so send all mc addrs
1979 * one by one, starting from flush command in case if kernel
1980 * requests to configure specific MAC filtering
1981 */
1982
1983 /* flush DMAC filters and reset RX mode */
1984 mbx.xcast.msg = NIC_MBOX_MSG_RESET_XCAST;
1985 if (nicvf_send_msg_to_pf(nic, &mbx) < 0)
1986 goto free_mc;
1987
1988 if (mode & BGX_XCAST_MCAST_FILTER) {
1989 /* once enabling filtering, we need to signal to PF to add
1990 * its' own LMAC to the filter to accept packets for it.
1991 */
1992 mbx.xcast.msg = NIC_MBOX_MSG_ADD_MCAST;
1993 mbx.xcast.mac = 0;
1994 if (nicvf_send_msg_to_pf(nic, &mbx) < 0)
1995 goto free_mc;
1996 }
1997
1998 /* check if we have any specific MACs to be added to PF DMAC filter */
1999 if (mc_addrs) {
2000 /* now go through kernel list of MACs and add them one by one */
2001 for (idx = 0; idx < mc_addrs->count; idx++) {
2002 mbx.xcast.msg = NIC_MBOX_MSG_ADD_MCAST;
2003 mbx.xcast.mac = mc_addrs->mc[idx];
2004 if (nicvf_send_msg_to_pf(nic, &mbx) < 0)
2005 goto free_mc;
2006 }
2007 }
2008
2009 /* and finally set rx mode for PF accordingly */
2010 mbx.xcast.msg = NIC_MBOX_MSG_SET_XCAST;
2011 mbx.xcast.mode = mode;
2012
2013 nicvf_send_msg_to_pf(nic, &mbx);
2014 free_mc:
2015 kfree(mc_addrs);
2016 }
2017
nicvf_set_rx_mode_task(struct work_struct * work_arg)2018 static void nicvf_set_rx_mode_task(struct work_struct *work_arg)
2019 {
2020 struct nicvf_work *vf_work = container_of(work_arg, struct nicvf_work,
2021 work);
2022 struct nicvf *nic = container_of(vf_work, struct nicvf, rx_mode_work);
2023 u8 mode;
2024 struct xcast_addr_list *mc;
2025
2026 /* Save message data locally to prevent them from
2027 * being overwritten by next ndo_set_rx_mode call().
2028 */
2029 spin_lock_bh(&nic->rx_mode_wq_lock);
2030 mode = vf_work->mode;
2031 mc = vf_work->mc;
2032 vf_work->mc = NULL;
2033 spin_unlock_bh(&nic->rx_mode_wq_lock);
2034
2035 __nicvf_set_rx_mode_task(mode, mc, nic);
2036 }
2037
nicvf_set_rx_mode(struct net_device * netdev)2038 static void nicvf_set_rx_mode(struct net_device *netdev)
2039 {
2040 struct nicvf *nic = netdev_priv(netdev);
2041 struct netdev_hw_addr *ha;
2042 struct xcast_addr_list *mc_list = NULL;
2043 u8 mode = 0;
2044
2045 if (netdev->flags & IFF_PROMISC) {
2046 mode = BGX_XCAST_BCAST_ACCEPT | BGX_XCAST_MCAST_ACCEPT;
2047 } else {
2048 if (netdev->flags & IFF_BROADCAST)
2049 mode |= BGX_XCAST_BCAST_ACCEPT;
2050
2051 if (netdev->flags & IFF_ALLMULTI) {
2052 mode |= BGX_XCAST_MCAST_ACCEPT;
2053 } else if (netdev->flags & IFF_MULTICAST) {
2054 mode |= BGX_XCAST_MCAST_FILTER;
2055 /* here we need to copy mc addrs */
2056 if (netdev_mc_count(netdev)) {
2057 mc_list = kmalloc(struct_size(mc_list, mc,
2058 netdev_mc_count(netdev)),
2059 GFP_ATOMIC);
2060 if (unlikely(!mc_list))
2061 return;
2062 mc_list->count = 0;
2063 netdev_hw_addr_list_for_each(ha, &netdev->mc) {
2064 mc_list->mc[mc_list->count] =
2065 ether_addr_to_u64(ha->addr);
2066 mc_list->count++;
2067 }
2068 }
2069 }
2070 }
2071 spin_lock(&nic->rx_mode_wq_lock);
2072 kfree(nic->rx_mode_work.mc);
2073 nic->rx_mode_work.mc = mc_list;
2074 nic->rx_mode_work.mode = mode;
2075 queue_work(nic->nicvf_rx_mode_wq, &nic->rx_mode_work.work);
2076 spin_unlock(&nic->rx_mode_wq_lock);
2077 }
2078
2079 static const struct net_device_ops nicvf_netdev_ops = {
2080 .ndo_open = nicvf_open,
2081 .ndo_stop = nicvf_stop,
2082 .ndo_start_xmit = nicvf_xmit,
2083 .ndo_change_mtu = nicvf_change_mtu,
2084 .ndo_set_mac_address = nicvf_set_mac_address,
2085 .ndo_get_stats64 = nicvf_get_stats64,
2086 .ndo_tx_timeout = nicvf_tx_timeout,
2087 .ndo_fix_features = nicvf_fix_features,
2088 .ndo_set_features = nicvf_set_features,
2089 .ndo_bpf = nicvf_xdp,
2090 .ndo_eth_ioctl = nicvf_ioctl,
2091 .ndo_set_rx_mode = nicvf_set_rx_mode,
2092 };
2093
nicvf_probe(struct pci_dev * pdev,const struct pci_device_id * ent)2094 static int nicvf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2095 {
2096 struct device *dev = &pdev->dev;
2097 struct net_device *netdev;
2098 struct nicvf *nic;
2099 int err, qcount;
2100 u16 sdevid;
2101 struct cavium_ptp *ptp_clock;
2102
2103 ptp_clock = cavium_ptp_get();
2104 if (IS_ERR(ptp_clock)) {
2105 if (PTR_ERR(ptp_clock) == -ENODEV)
2106 /* In virtualized environment we proceed without ptp */
2107 ptp_clock = NULL;
2108 else
2109 return PTR_ERR(ptp_clock);
2110 }
2111
2112 err = pci_enable_device(pdev);
2113 if (err)
2114 return dev_err_probe(dev, err, "Failed to enable PCI device\n");
2115
2116 err = pci_request_regions(pdev, DRV_NAME);
2117 if (err) {
2118 dev_err(dev, "PCI request regions failed 0x%x\n", err);
2119 goto err_disable_device;
2120 }
2121
2122 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(48));
2123 if (err) {
2124 dev_err(dev, "Unable to get usable DMA configuration\n");
2125 goto err_release_regions;
2126 }
2127
2128 qcount = netif_get_num_default_rss_queues();
2129
2130 /* Restrict multiqset support only for host bound VFs */
2131 if (pdev->is_virtfn) {
2132 /* Set max number of queues per VF */
2133 qcount = min_t(int, num_online_cpus(),
2134 (MAX_SQS_PER_VF + 1) * MAX_CMP_QUEUES_PER_QS);
2135 }
2136
2137 netdev = alloc_etherdev_mqs(sizeof(struct nicvf), qcount, qcount);
2138 if (!netdev) {
2139 err = -ENOMEM;
2140 goto err_release_regions;
2141 }
2142
2143 pci_set_drvdata(pdev, netdev);
2144
2145 SET_NETDEV_DEV(netdev, &pdev->dev);
2146
2147 nic = netdev_priv(netdev);
2148 nic->netdev = netdev;
2149 nic->pdev = pdev;
2150 nic->pnicvf = nic;
2151 nic->max_queues = qcount;
2152 /* If no of CPUs are too low, there won't be any queues left
2153 * for XDP_TX, hence double it.
2154 */
2155 if (!nic->t88)
2156 nic->max_queues *= 2;
2157 nic->ptp_clock = ptp_clock;
2158
2159 /* Initialize mutex that serializes usage of VF's mailbox */
2160 mutex_init(&nic->rx_mode_mtx);
2161
2162 /* MAP VF's configuration registers */
2163 nic->reg_base = pcim_iomap(pdev, PCI_CFG_REG_BAR_NUM, 0);
2164 if (!nic->reg_base) {
2165 dev_err(dev, "Cannot map config register space, aborting\n");
2166 err = -ENOMEM;
2167 goto err_free_netdev;
2168 }
2169
2170 nic->drv_stats = netdev_alloc_pcpu_stats(struct nicvf_drv_stats);
2171 if (!nic->drv_stats) {
2172 err = -ENOMEM;
2173 goto err_free_netdev;
2174 }
2175
2176 err = nicvf_set_qset_resources(nic);
2177 if (err)
2178 goto err_free_netdev;
2179
2180 /* Check if PF is alive and get MAC address for this VF */
2181 err = nicvf_register_misc_interrupt(nic);
2182 if (err)
2183 goto err_free_netdev;
2184
2185 nicvf_send_vf_struct(nic);
2186
2187 if (!pass1_silicon(nic->pdev))
2188 nic->hw_tso = true;
2189
2190 /* Get iommu domain for iova to physical addr conversion */
2191 nic->iommu_domain = iommu_get_domain_for_dev(dev);
2192
2193 pci_read_config_word(nic->pdev, PCI_SUBSYSTEM_ID, &sdevid);
2194 if (sdevid == 0xA134)
2195 nic->t88 = true;
2196
2197 /* Check if this VF is in QS only mode */
2198 if (nic->sqs_mode)
2199 return 0;
2200
2201 err = nicvf_set_real_num_queues(netdev, nic->tx_queues, nic->rx_queues);
2202 if (err)
2203 goto err_unregister_interrupts;
2204
2205 netdev->hw_features = (NETIF_F_RXCSUM | NETIF_F_SG |
2206 NETIF_F_TSO | NETIF_F_GRO | NETIF_F_TSO6 |
2207 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2208 NETIF_F_HW_VLAN_CTAG_RX);
2209
2210 netdev->hw_features |= NETIF_F_RXHASH;
2211
2212 netdev->features |= netdev->hw_features;
2213 netdev->hw_features |= NETIF_F_LOOPBACK;
2214
2215 netdev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM |
2216 NETIF_F_IPV6_CSUM | NETIF_F_TSO | NETIF_F_TSO6;
2217
2218 netdev->netdev_ops = &nicvf_netdev_ops;
2219 netdev->watchdog_timeo = NICVF_TX_TIMEOUT;
2220
2221 if (!pass1_silicon(nic->pdev) &&
2222 nic->rx_queues + nic->tx_queues <= nic->max_queues)
2223 netdev->xdp_features = NETDEV_XDP_ACT_BASIC;
2224
2225 /* MTU range: 64 - 9200 */
2226 netdev->min_mtu = NIC_HW_MIN_FRS;
2227 netdev->max_mtu = NIC_HW_MAX_FRS;
2228
2229 INIT_WORK(&nic->reset_task, nicvf_reset_task);
2230
2231 nic->nicvf_rx_mode_wq = alloc_ordered_workqueue("nicvf_rx_mode_wq_VF%d",
2232 WQ_MEM_RECLAIM,
2233 nic->vf_id);
2234 if (!nic->nicvf_rx_mode_wq) {
2235 err = -ENOMEM;
2236 dev_err(dev, "Failed to allocate work queue\n");
2237 goto err_unregister_interrupts;
2238 }
2239
2240 INIT_WORK(&nic->rx_mode_work.work, nicvf_set_rx_mode_task);
2241 spin_lock_init(&nic->rx_mode_wq_lock);
2242
2243 err = register_netdev(netdev);
2244 if (err) {
2245 dev_err(dev, "Failed to register netdevice\n");
2246 goto err_destroy_workqueue;
2247 }
2248
2249 nic->msg_enable = debug;
2250
2251 nicvf_set_ethtool_ops(netdev);
2252
2253 return 0;
2254
2255 err_destroy_workqueue:
2256 destroy_workqueue(nic->nicvf_rx_mode_wq);
2257 err_unregister_interrupts:
2258 nicvf_unregister_interrupts(nic);
2259 err_free_netdev:
2260 pci_set_drvdata(pdev, NULL);
2261 if (nic->drv_stats)
2262 free_percpu(nic->drv_stats);
2263 free_netdev(netdev);
2264 err_release_regions:
2265 pci_release_regions(pdev);
2266 err_disable_device:
2267 pci_disable_device(pdev);
2268 return err;
2269 }
2270
nicvf_remove(struct pci_dev * pdev)2271 static void nicvf_remove(struct pci_dev *pdev)
2272 {
2273 struct net_device *netdev = pci_get_drvdata(pdev);
2274 struct nicvf *nic;
2275 struct net_device *pnetdev;
2276
2277 if (!netdev)
2278 return;
2279
2280 nic = netdev_priv(netdev);
2281 pnetdev = nic->pnicvf->netdev;
2282
2283 /* Check if this Qset is assigned to different VF.
2284 * If yes, clean primary and all secondary Qsets.
2285 */
2286 if (pnetdev && (pnetdev->reg_state == NETREG_REGISTERED))
2287 unregister_netdev(pnetdev);
2288 if (nic->nicvf_rx_mode_wq) {
2289 destroy_workqueue(nic->nicvf_rx_mode_wq);
2290 nic->nicvf_rx_mode_wq = NULL;
2291 }
2292 nicvf_unregister_interrupts(nic);
2293 pci_set_drvdata(pdev, NULL);
2294 if (nic->drv_stats)
2295 free_percpu(nic->drv_stats);
2296 cavium_ptp_put(nic->ptp_clock);
2297 free_netdev(netdev);
2298 pci_release_regions(pdev);
2299 pci_disable_device(pdev);
2300 }
2301
nicvf_shutdown(struct pci_dev * pdev)2302 static void nicvf_shutdown(struct pci_dev *pdev)
2303 {
2304 nicvf_remove(pdev);
2305 }
2306
2307 static struct pci_driver nicvf_driver = {
2308 .name = DRV_NAME,
2309 .id_table = nicvf_id_table,
2310 .probe = nicvf_probe,
2311 .remove = nicvf_remove,
2312 .shutdown = nicvf_shutdown,
2313 };
2314
nicvf_init_module(void)2315 static int __init nicvf_init_module(void)
2316 {
2317 pr_info("%s, ver %s\n", DRV_NAME, DRV_VERSION);
2318 return pci_register_driver(&nicvf_driver);
2319 }
2320
nicvf_cleanup_module(void)2321 static void __exit nicvf_cleanup_module(void)
2322 {
2323 pci_unregister_driver(&nicvf_driver);
2324 }
2325
2326 module_init(nicvf_init_module);
2327 module_exit(nicvf_cleanup_module);
2328