xref: /linux/fs/nfsd/nfscache.c (revision 81538c8e42806eed71ce125723877a7c2307370c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Request reply cache. This is currently a global cache, but this may
4  * change in the future and be a per-client cache.
5  *
6  * This code is heavily inspired by the 44BSD implementation, although
7  * it does things a bit differently.
8  *
9  * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
10  */
11 
12 #include <linux/sunrpc/svc_xprt.h>
13 #include <linux/slab.h>
14 #include <linux/vmalloc.h>
15 #include <linux/sunrpc/addr.h>
16 #include <linux/highmem.h>
17 #include <linux/log2.h>
18 #include <linux/hash.h>
19 #include <net/checksum.h>
20 
21 #include "nfsd.h"
22 #include "cache.h"
23 #include "trace.h"
24 
25 /*
26  * We use this value to determine the number of hash buckets from the max
27  * cache size, the idea being that when the cache is at its maximum number
28  * of entries, then this should be the average number of entries per bucket.
29  */
30 #define TARGET_BUCKET_SIZE	8
31 
32 struct nfsd_drc_bucket {
33 	struct rb_root rb_head;
34 	struct list_head lru_head;
35 	spinlock_t cache_lock;
36 };
37 
38 static struct kmem_cache	*drc_slab;
39 
40 static int	nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *vec);
41 static unsigned long nfsd_reply_cache_count(struct shrinker *shrink,
42 					    struct shrink_control *sc);
43 static unsigned long nfsd_reply_cache_scan(struct shrinker *shrink,
44 					   struct shrink_control *sc);
45 
46 /*
47  * Put a cap on the size of the DRC based on the amount of available
48  * low memory in the machine.
49  *
50  *  64MB:    8192
51  * 128MB:   11585
52  * 256MB:   16384
53  * 512MB:   23170
54  *   1GB:   32768
55  *   2GB:   46340
56  *   4GB:   65536
57  *   8GB:   92681
58  *  16GB:  131072
59  *
60  * ...with a hard cap of 256k entries. In the worst case, each entry will be
61  * ~1k, so the above numbers should give a rough max of the amount of memory
62  * used in k.
63  *
64  * XXX: these limits are per-container, so memory used will increase
65  * linearly with number of containers.  Maybe that's OK.
66  */
67 static unsigned int
nfsd_cache_size_limit(void)68 nfsd_cache_size_limit(void)
69 {
70 	unsigned int limit;
71 	unsigned long low_pages = totalram_pages() - totalhigh_pages();
72 
73 	limit = (16 * int_sqrt(low_pages)) << (PAGE_SHIFT-10);
74 	return min_t(unsigned int, limit, 256*1024);
75 }
76 
77 /*
78  * Compute the number of hash buckets we need. Divide the max cachesize by
79  * the "target" max bucket size, and round up to next power of two.
80  */
81 static unsigned int
nfsd_hashsize(unsigned int limit)82 nfsd_hashsize(unsigned int limit)
83 {
84 	return roundup_pow_of_two(limit / TARGET_BUCKET_SIZE);
85 }
86 
87 static struct nfsd_cacherep *
nfsd_cacherep_alloc(struct svc_rqst * rqstp,__wsum csum,struct nfsd_net * nn)88 nfsd_cacherep_alloc(struct svc_rqst *rqstp, __wsum csum,
89 		    struct nfsd_net *nn)
90 {
91 	struct nfsd_cacherep *rp;
92 
93 	rp = kmem_cache_alloc(drc_slab, GFP_KERNEL);
94 	if (rp) {
95 		rp->c_state = RC_UNUSED;
96 		rp->c_type = RC_NOCACHE;
97 		RB_CLEAR_NODE(&rp->c_node);
98 		INIT_LIST_HEAD(&rp->c_lru);
99 
100 		memset(&rp->c_key, 0, sizeof(rp->c_key));
101 		rp->c_key.k_xid = rqstp->rq_xid;
102 		rp->c_key.k_proc = rqstp->rq_proc;
103 		rpc_copy_addr((struct sockaddr *)&rp->c_key.k_addr, svc_addr(rqstp));
104 		rpc_set_port((struct sockaddr *)&rp->c_key.k_addr, rpc_get_port(svc_addr(rqstp)));
105 		rp->c_key.k_prot = rqstp->rq_prot;
106 		rp->c_key.k_vers = rqstp->rq_vers;
107 		rp->c_key.k_len = rqstp->rq_arg.len;
108 		rp->c_key.k_csum = csum;
109 	}
110 	return rp;
111 }
112 
nfsd_cacherep_free(struct nfsd_cacherep * rp)113 static void nfsd_cacherep_free(struct nfsd_cacherep *rp)
114 {
115 	if (rp->c_type == RC_REPLBUFF)
116 		kfree(rp->c_replvec.iov_base);
117 	kmem_cache_free(drc_slab, rp);
118 }
119 
120 static unsigned long
nfsd_cacherep_dispose(struct list_head * dispose)121 nfsd_cacherep_dispose(struct list_head *dispose)
122 {
123 	struct nfsd_cacherep *rp;
124 	unsigned long freed = 0;
125 
126 	while (!list_empty(dispose)) {
127 		rp = list_first_entry(dispose, struct nfsd_cacherep, c_lru);
128 		list_del(&rp->c_lru);
129 		nfsd_cacherep_free(rp);
130 		freed++;
131 	}
132 	return freed;
133 }
134 
135 static void
nfsd_cacherep_unlink_locked(struct nfsd_net * nn,struct nfsd_drc_bucket * b,struct nfsd_cacherep * rp)136 nfsd_cacherep_unlink_locked(struct nfsd_net *nn, struct nfsd_drc_bucket *b,
137 			    struct nfsd_cacherep *rp)
138 {
139 	if (rp->c_type == RC_REPLBUFF && rp->c_replvec.iov_base)
140 		nfsd_stats_drc_mem_usage_sub(nn, rp->c_replvec.iov_len);
141 	if (rp->c_state != RC_UNUSED) {
142 		rb_erase(&rp->c_node, &b->rb_head);
143 		list_del(&rp->c_lru);
144 		atomic_dec(&nn->num_drc_entries);
145 		nfsd_stats_drc_mem_usage_sub(nn, sizeof(*rp));
146 	}
147 }
148 
149 static void
nfsd_reply_cache_free_locked(struct nfsd_drc_bucket * b,struct nfsd_cacherep * rp,struct nfsd_net * nn)150 nfsd_reply_cache_free_locked(struct nfsd_drc_bucket *b, struct nfsd_cacherep *rp,
151 				struct nfsd_net *nn)
152 {
153 	nfsd_cacherep_unlink_locked(nn, b, rp);
154 	nfsd_cacherep_free(rp);
155 }
156 
157 static void
nfsd_reply_cache_free(struct nfsd_drc_bucket * b,struct nfsd_cacherep * rp,struct nfsd_net * nn)158 nfsd_reply_cache_free(struct nfsd_drc_bucket *b, struct nfsd_cacherep *rp,
159 			struct nfsd_net *nn)
160 {
161 	spin_lock(&b->cache_lock);
162 	nfsd_cacherep_unlink_locked(nn, b, rp);
163 	spin_unlock(&b->cache_lock);
164 	nfsd_cacherep_free(rp);
165 }
166 
nfsd_drc_slab_create(void)167 int nfsd_drc_slab_create(void)
168 {
169 	drc_slab = KMEM_CACHE(nfsd_cacherep, 0);
170 	return drc_slab ? 0: -ENOMEM;
171 }
172 
nfsd_drc_slab_free(void)173 void nfsd_drc_slab_free(void)
174 {
175 	kmem_cache_destroy(drc_slab);
176 }
177 
nfsd_reply_cache_init(struct nfsd_net * nn)178 int nfsd_reply_cache_init(struct nfsd_net *nn)
179 {
180 	unsigned int hashsize;
181 	unsigned int i;
182 
183 	nn->max_drc_entries = nfsd_cache_size_limit();
184 	atomic_set(&nn->num_drc_entries, 0);
185 	hashsize = nfsd_hashsize(nn->max_drc_entries);
186 	nn->maskbits = ilog2(hashsize);
187 
188 	nn->drc_hashtbl = kvzalloc(array_size(hashsize,
189 				sizeof(*nn->drc_hashtbl)), GFP_KERNEL);
190 	if (!nn->drc_hashtbl)
191 		return -ENOMEM;
192 
193 	nn->nfsd_reply_cache_shrinker = shrinker_alloc(0, "nfsd-reply:%s",
194 						       nn->nfsd_name);
195 	if (!nn->nfsd_reply_cache_shrinker)
196 		goto out_shrinker;
197 
198 	nn->nfsd_reply_cache_shrinker->scan_objects = nfsd_reply_cache_scan;
199 	nn->nfsd_reply_cache_shrinker->count_objects = nfsd_reply_cache_count;
200 	nn->nfsd_reply_cache_shrinker->seeks = 1;
201 	nn->nfsd_reply_cache_shrinker->private_data = nn;
202 
203 	shrinker_register(nn->nfsd_reply_cache_shrinker);
204 
205 	for (i = 0; i < hashsize; i++) {
206 		INIT_LIST_HEAD(&nn->drc_hashtbl[i].lru_head);
207 		spin_lock_init(&nn->drc_hashtbl[i].cache_lock);
208 	}
209 	nn->drc_hashsize = hashsize;
210 
211 	return 0;
212 out_shrinker:
213 	kvfree(nn->drc_hashtbl);
214 	printk(KERN_ERR "nfsd: failed to allocate reply cache\n");
215 	return -ENOMEM;
216 }
217 
nfsd_reply_cache_shutdown(struct nfsd_net * nn)218 void nfsd_reply_cache_shutdown(struct nfsd_net *nn)
219 {
220 	struct nfsd_cacherep *rp;
221 	unsigned int i;
222 
223 	shrinker_free(nn->nfsd_reply_cache_shrinker);
224 
225 	for (i = 0; i < nn->drc_hashsize; i++) {
226 		struct list_head *head = &nn->drc_hashtbl[i].lru_head;
227 		while (!list_empty(head)) {
228 			rp = list_first_entry(head, struct nfsd_cacherep, c_lru);
229 			nfsd_reply_cache_free_locked(&nn->drc_hashtbl[i],
230 									rp, nn);
231 		}
232 	}
233 
234 	kvfree(nn->drc_hashtbl);
235 	nn->drc_hashtbl = NULL;
236 	nn->drc_hashsize = 0;
237 
238 }
239 
240 static void
lru_put_end(struct nfsd_drc_bucket * b,struct nfsd_cacherep * rp)241 lru_put_end(struct nfsd_drc_bucket *b, struct nfsd_cacherep *rp)
242 {
243 	rp->c_timestamp = jiffies;
244 	list_move_tail(&rp->c_lru, &b->lru_head);
245 }
246 
247 static noinline struct nfsd_drc_bucket *
nfsd_cache_bucket_find(__be32 xid,struct nfsd_net * nn)248 nfsd_cache_bucket_find(__be32 xid, struct nfsd_net *nn)
249 {
250 	unsigned int hash = hash_32((__force u32)xid, nn->maskbits);
251 
252 	return &nn->drc_hashtbl[hash];
253 }
254 
255 /*
256  * Remove and return no more than @max expired entries in bucket @b.
257  * If @max is zero, do not limit the number of removed entries.
258  */
259 static void
nfsd_prune_bucket_locked(struct nfsd_net * nn,struct nfsd_drc_bucket * b,unsigned int max,struct list_head * dispose)260 nfsd_prune_bucket_locked(struct nfsd_net *nn, struct nfsd_drc_bucket *b,
261 			 unsigned int max, struct list_head *dispose)
262 {
263 	unsigned long expiry = jiffies - RC_EXPIRE;
264 	struct nfsd_cacherep *rp, *tmp;
265 	unsigned int freed = 0;
266 
267 	lockdep_assert_held(&b->cache_lock);
268 
269 	/* The bucket LRU is ordered oldest-first. */
270 	list_for_each_entry_safe(rp, tmp, &b->lru_head, c_lru) {
271 		if (atomic_read(&nn->num_drc_entries) <= nn->max_drc_entries &&
272 		    time_before(expiry, rp->c_timestamp))
273 			break;
274 
275 		nfsd_cacherep_unlink_locked(nn, b, rp);
276 		list_add(&rp->c_lru, dispose);
277 
278 		if (max && ++freed > max)
279 			break;
280 	}
281 }
282 
283 /**
284  * nfsd_reply_cache_count - count_objects method for the DRC shrinker
285  * @shrink: our registered shrinker context
286  * @sc: garbage collection parameters
287  *
288  * Returns the total number of entries in the duplicate reply cache. To
289  * keep things simple and quick, this is not the number of expired entries
290  * in the cache (ie, the number that would be removed by a call to
291  * nfsd_reply_cache_scan).
292  */
293 static unsigned long
nfsd_reply_cache_count(struct shrinker * shrink,struct shrink_control * sc)294 nfsd_reply_cache_count(struct shrinker *shrink, struct shrink_control *sc)
295 {
296 	struct nfsd_net *nn = shrink->private_data;
297 
298 	return atomic_read(&nn->num_drc_entries);
299 }
300 
301 /**
302  * nfsd_reply_cache_scan - scan_objects method for the DRC shrinker
303  * @shrink: our registered shrinker context
304  * @sc: garbage collection parameters
305  *
306  * Free expired entries on each bucket's LRU list until we've released
307  * nr_to_scan freed objects. Nothing will be released if the cache
308  * has not exceeded it's max_drc_entries limit.
309  *
310  * Returns the number of entries released by this call.
311  */
312 static unsigned long
nfsd_reply_cache_scan(struct shrinker * shrink,struct shrink_control * sc)313 nfsd_reply_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
314 {
315 	struct nfsd_net *nn = shrink->private_data;
316 	unsigned long freed = 0;
317 	LIST_HEAD(dispose);
318 	unsigned int i;
319 
320 	for (i = 0; i < nn->drc_hashsize; i++) {
321 		struct nfsd_drc_bucket *b = &nn->drc_hashtbl[i];
322 
323 		if (list_empty(&b->lru_head))
324 			continue;
325 
326 		spin_lock(&b->cache_lock);
327 		nfsd_prune_bucket_locked(nn, b, 0, &dispose);
328 		spin_unlock(&b->cache_lock);
329 
330 		freed += nfsd_cacherep_dispose(&dispose);
331 		if (freed > sc->nr_to_scan)
332 			break;
333 	}
334 	return freed;
335 }
336 
337 /**
338  * nfsd_cache_csum - Checksum incoming NFS Call arguments
339  * @buf: buffer containing a whole RPC Call message
340  * @start: starting byte of the NFS Call header
341  * @remaining: size of the NFS Call header, in bytes
342  *
343  * Compute a weak checksum of the leading bytes of an NFS procedure
344  * call header to help verify that a retransmitted Call matches an
345  * entry in the duplicate reply cache.
346  *
347  * To avoid assumptions about how the RPC message is laid out in
348  * @buf and what else it might contain (eg, a GSS MIC suffix), the
349  * caller passes us the exact location and length of the NFS Call
350  * header.
351  *
352  * Returns a 32-bit checksum value, as defined in RFC 793.
353  */
nfsd_cache_csum(struct xdr_buf * buf,unsigned int start,unsigned int remaining)354 static __wsum nfsd_cache_csum(struct xdr_buf *buf, unsigned int start,
355 			      unsigned int remaining)
356 {
357 	unsigned int base, len;
358 	struct xdr_buf subbuf;
359 	__wsum csum = 0;
360 	void *p;
361 	int idx;
362 
363 	if (remaining > RC_CSUMLEN)
364 		remaining = RC_CSUMLEN;
365 	if (xdr_buf_subsegment(buf, &subbuf, start, remaining))
366 		return csum;
367 
368 	/* rq_arg.head first */
369 	if (subbuf.head[0].iov_len) {
370 		len = min_t(unsigned int, subbuf.head[0].iov_len, remaining);
371 		csum = csum_partial(subbuf.head[0].iov_base, len, csum);
372 		remaining -= len;
373 	}
374 
375 	/* Continue into page array */
376 	idx = subbuf.page_base / PAGE_SIZE;
377 	base = subbuf.page_base & ~PAGE_MASK;
378 	while (remaining) {
379 		p = page_address(subbuf.pages[idx]) + base;
380 		len = min_t(unsigned int, PAGE_SIZE - base, remaining);
381 		csum = csum_partial(p, len, csum);
382 		remaining -= len;
383 		base = 0;
384 		++idx;
385 	}
386 	return csum;
387 }
388 
389 static int
nfsd_cache_key_cmp(const struct nfsd_cacherep * key,const struct nfsd_cacherep * rp,struct nfsd_net * nn)390 nfsd_cache_key_cmp(const struct nfsd_cacherep *key,
391 		   const struct nfsd_cacherep *rp, struct nfsd_net *nn)
392 {
393 	if (key->c_key.k_xid == rp->c_key.k_xid &&
394 	    key->c_key.k_csum != rp->c_key.k_csum) {
395 		nfsd_stats_payload_misses_inc(nn);
396 		trace_nfsd_drc_mismatch(nn, key, rp);
397 	}
398 
399 	return memcmp(&key->c_key, &rp->c_key, sizeof(key->c_key));
400 }
401 
402 /*
403  * Search the request hash for an entry that matches the given rqstp.
404  * Must be called with cache_lock held. Returns the found entry or
405  * inserts an empty key on failure.
406  */
407 static struct nfsd_cacherep *
nfsd_cache_insert(struct nfsd_drc_bucket * b,struct nfsd_cacherep * key,struct nfsd_net * nn)408 nfsd_cache_insert(struct nfsd_drc_bucket *b, struct nfsd_cacherep *key,
409 			struct nfsd_net *nn)
410 {
411 	struct nfsd_cacherep	*rp, *ret = key;
412 	struct rb_node		**p = &b->rb_head.rb_node,
413 				*parent = NULL;
414 	unsigned int		entries = 0;
415 	int cmp;
416 
417 	while (*p != NULL) {
418 		++entries;
419 		parent = *p;
420 		rp = rb_entry(parent, struct nfsd_cacherep, c_node);
421 
422 		cmp = nfsd_cache_key_cmp(key, rp, nn);
423 		if (cmp < 0)
424 			p = &parent->rb_left;
425 		else if (cmp > 0)
426 			p = &parent->rb_right;
427 		else {
428 			ret = rp;
429 			goto out;
430 		}
431 	}
432 	rb_link_node(&key->c_node, parent, p);
433 	rb_insert_color(&key->c_node, &b->rb_head);
434 out:
435 	/* tally hash chain length stats */
436 	if (entries > nn->longest_chain) {
437 		nn->longest_chain = entries;
438 		nn->longest_chain_cachesize = atomic_read(&nn->num_drc_entries);
439 	} else if (entries == nn->longest_chain) {
440 		/* prefer to keep the smallest cachesize possible here */
441 		nn->longest_chain_cachesize = min_t(unsigned int,
442 				nn->longest_chain_cachesize,
443 				atomic_read(&nn->num_drc_entries));
444 	}
445 	return ret;
446 }
447 
448 /**
449  * nfsd_cache_lookup - Find an entry in the duplicate reply cache
450  * @rqstp: Incoming Call to find
451  * @start: starting byte in @rqstp->rq_arg of the NFS Call header
452  * @len: size of the NFS Call header, in bytes
453  * @cacherep: OUT: DRC entry for this request
454  *
455  * Try to find an entry matching the current call in the cache. When none
456  * is found, we try to grab the oldest expired entry off the LRU list. If
457  * a suitable one isn't there, then drop the cache_lock and allocate a
458  * new one, then search again in case one got inserted while this thread
459  * didn't hold the lock.
460  *
461  * Return values:
462  *   %RC_DOIT: Process the request normally
463  *   %RC_REPLY: Reply from cache
464  *   %RC_DROPIT: Do not process the request further
465  */
nfsd_cache_lookup(struct svc_rqst * rqstp,unsigned int start,unsigned int len,struct nfsd_cacherep ** cacherep)466 int nfsd_cache_lookup(struct svc_rqst *rqstp, unsigned int start,
467 		      unsigned int len, struct nfsd_cacherep **cacherep)
468 {
469 	struct nfsd_net		*nn = net_generic(SVC_NET(rqstp), nfsd_net_id);
470 	struct nfsd_cacherep	*rp, *found;
471 	__wsum			csum;
472 	struct nfsd_drc_bucket	*b;
473 	int type = rqstp->rq_cachetype;
474 	LIST_HEAD(dispose);
475 	int rtn = RC_DOIT;
476 
477 	if (type == RC_NOCACHE) {
478 		nfsd_stats_rc_nocache_inc(nn);
479 		goto out;
480 	}
481 
482 	csum = nfsd_cache_csum(&rqstp->rq_arg, start, len);
483 
484 	/*
485 	 * Since the common case is a cache miss followed by an insert,
486 	 * preallocate an entry.
487 	 */
488 	rp = nfsd_cacherep_alloc(rqstp, csum, nn);
489 	if (!rp)
490 		goto out;
491 
492 	b = nfsd_cache_bucket_find(rqstp->rq_xid, nn);
493 	spin_lock(&b->cache_lock);
494 	found = nfsd_cache_insert(b, rp, nn);
495 	if (found != rp)
496 		goto found_entry;
497 	*cacherep = rp;
498 	rp->c_state = RC_INPROG;
499 	nfsd_prune_bucket_locked(nn, b, 3, &dispose);
500 	spin_unlock(&b->cache_lock);
501 
502 	nfsd_cacherep_dispose(&dispose);
503 
504 	nfsd_stats_rc_misses_inc(nn);
505 	atomic_inc(&nn->num_drc_entries);
506 	nfsd_stats_drc_mem_usage_add(nn, sizeof(*rp));
507 	goto out;
508 
509 found_entry:
510 	/* We found a matching entry which is either in progress or done. */
511 	nfsd_reply_cache_free_locked(NULL, rp, nn);
512 	nfsd_stats_rc_hits_inc(nn);
513 	rtn = RC_DROPIT;
514 	rp = found;
515 
516 	/* Request being processed */
517 	if (rp->c_state == RC_INPROG)
518 		goto out_trace;
519 
520 	/* From the hall of fame of impractical attacks:
521 	 * Is this a user who tries to snoop on the cache? */
522 	rtn = RC_DOIT;
523 	if (!test_bit(RQ_SECURE, &rqstp->rq_flags) && rp->c_secure)
524 		goto out_trace;
525 
526 	/* Compose RPC reply header */
527 	switch (rp->c_type) {
528 	case RC_NOCACHE:
529 		break;
530 	case RC_REPLSTAT:
531 		xdr_stream_encode_be32(&rqstp->rq_res_stream, rp->c_replstat);
532 		rtn = RC_REPLY;
533 		break;
534 	case RC_REPLBUFF:
535 		if (!nfsd_cache_append(rqstp, &rp->c_replvec))
536 			goto out_unlock; /* should not happen */
537 		rtn = RC_REPLY;
538 		break;
539 	default:
540 		WARN_ONCE(1, "nfsd: bad repcache type %d\n", rp->c_type);
541 	}
542 
543 out_trace:
544 	trace_nfsd_drc_found(nn, rqstp, rtn);
545 out_unlock:
546 	spin_unlock(&b->cache_lock);
547 out:
548 	return rtn;
549 }
550 
551 /**
552  * nfsd_cache_update - Update an entry in the duplicate reply cache.
553  * @rqstp: svc_rqst with a finished Reply
554  * @rp: IN: DRC entry for this request
555  * @cachetype: which cache to update
556  * @statp: pointer to Reply's NFS status code, or NULL
557  *
558  * This is called from nfsd_dispatch when the procedure has been
559  * executed and the complete reply is in rqstp->rq_res.
560  *
561  * We're copying around data here rather than swapping buffers because
562  * the toplevel loop requires max-sized buffers, which would be a waste
563  * of memory for a cache with a max reply size of 100 bytes (diropokres).
564  *
565  * If we should start to use different types of cache entries tailored
566  * specifically for attrstat and fh's, we may save even more space.
567  *
568  * Also note that a cachetype of RC_NOCACHE can legally be passed when
569  * nfsd failed to encode a reply that otherwise would have been cached.
570  * In this case, nfsd_cache_update is called with statp == NULL.
571  */
nfsd_cache_update(struct svc_rqst * rqstp,struct nfsd_cacherep * rp,int cachetype,__be32 * statp)572 void nfsd_cache_update(struct svc_rqst *rqstp, struct nfsd_cacherep *rp,
573 		       int cachetype, __be32 *statp)
574 {
575 	struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id);
576 	struct kvec	*resv = &rqstp->rq_res.head[0], *cachv;
577 	struct nfsd_drc_bucket *b;
578 	int		len;
579 	size_t		bufsize = 0;
580 
581 	if (!rp)
582 		return;
583 
584 	b = nfsd_cache_bucket_find(rp->c_key.k_xid, nn);
585 
586 	len = resv->iov_len - ((char*)statp - (char*)resv->iov_base);
587 	len >>= 2;
588 
589 	/* Don't cache excessive amounts of data and XDR failures */
590 	if (!statp || len > (256 >> 2)) {
591 		nfsd_reply_cache_free(b, rp, nn);
592 		return;
593 	}
594 
595 	switch (cachetype) {
596 	case RC_REPLSTAT:
597 		if (len != 1)
598 			printk("nfsd: RC_REPLSTAT/reply len %d!\n",len);
599 		rp->c_replstat = *statp;
600 		break;
601 	case RC_REPLBUFF:
602 		cachv = &rp->c_replvec;
603 		bufsize = len << 2;
604 		cachv->iov_base = kmalloc(bufsize, GFP_KERNEL);
605 		if (!cachv->iov_base) {
606 			nfsd_reply_cache_free(b, rp, nn);
607 			return;
608 		}
609 		cachv->iov_len = bufsize;
610 		memcpy(cachv->iov_base, statp, bufsize);
611 		break;
612 	case RC_NOCACHE:
613 		nfsd_reply_cache_free(b, rp, nn);
614 		return;
615 	}
616 	spin_lock(&b->cache_lock);
617 	nfsd_stats_drc_mem_usage_add(nn, bufsize);
618 	lru_put_end(b, rp);
619 	rp->c_secure = test_bit(RQ_SECURE, &rqstp->rq_flags);
620 	rp->c_type = cachetype;
621 	rp->c_state = RC_DONE;
622 	spin_unlock(&b->cache_lock);
623 	return;
624 }
625 
626 static int
nfsd_cache_append(struct svc_rqst * rqstp,struct kvec * data)627 nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *data)
628 {
629 	__be32 *p;
630 
631 	p = xdr_reserve_space(&rqstp->rq_res_stream, data->iov_len);
632 	if (unlikely(!p))
633 		return false;
634 	memcpy(p, data->iov_base, data->iov_len);
635 	xdr_commit_encode(&rqstp->rq_res_stream);
636 	return true;
637 }
638 
639 /*
640  * Note that fields may be added, removed or reordered in the future. Programs
641  * scraping this file for info should test the labels to ensure they're
642  * getting the correct field.
643  */
nfsd_reply_cache_stats_show(struct seq_file * m,void * v)644 int nfsd_reply_cache_stats_show(struct seq_file *m, void *v)
645 {
646 	struct nfsd_net *nn = net_generic(file_inode(m->file)->i_sb->s_fs_info,
647 					  nfsd_net_id);
648 
649 	seq_printf(m, "max entries:           %u\n", nn->max_drc_entries);
650 	seq_printf(m, "num entries:           %u\n",
651 		   atomic_read(&nn->num_drc_entries));
652 	seq_printf(m, "hash buckets:          %u\n", 1 << nn->maskbits);
653 	seq_printf(m, "mem usage:             %lld\n",
654 		   percpu_counter_sum_positive(&nn->counter[NFSD_STATS_DRC_MEM_USAGE]));
655 	seq_printf(m, "cache hits:            %lld\n",
656 		   percpu_counter_sum_positive(&nn->counter[NFSD_STATS_RC_HITS]));
657 	seq_printf(m, "cache misses:          %lld\n",
658 		   percpu_counter_sum_positive(&nn->counter[NFSD_STATS_RC_MISSES]));
659 	seq_printf(m, "not cached:            %lld\n",
660 		   percpu_counter_sum_positive(&nn->counter[NFSD_STATS_RC_NOCACHE]));
661 	seq_printf(m, "payload misses:        %lld\n",
662 		   percpu_counter_sum_positive(&nn->counter[NFSD_STATS_PAYLOAD_MISSES]));
663 	seq_printf(m, "longest chain len:     %u\n", nn->longest_chain);
664 	seq_printf(m, "cachesize at longest:  %u\n", nn->longest_chain_cachesize);
665 	return 0;
666 }
667