1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Request reply cache. This is currently a global cache, but this may
4 * change in the future and be a per-client cache.
5 *
6 * This code is heavily inspired by the 44BSD implementation, although
7 * it does things a bit differently.
8 *
9 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
10 */
11
12 #include <linux/sunrpc/svc_xprt.h>
13 #include <linux/slab.h>
14 #include <linux/vmalloc.h>
15 #include <linux/sunrpc/addr.h>
16 #include <linux/highmem.h>
17 #include <linux/log2.h>
18 #include <linux/hash.h>
19 #include <net/checksum.h>
20
21 #include "nfsd.h"
22 #include "cache.h"
23 #include "trace.h"
24
25 /*
26 * We use this value to determine the number of hash buckets from the max
27 * cache size, the idea being that when the cache is at its maximum number
28 * of entries, then this should be the average number of entries per bucket.
29 */
30 #define TARGET_BUCKET_SIZE 8
31
32 struct nfsd_drc_bucket {
33 struct rb_root rb_head;
34 struct list_head lru_head;
35 spinlock_t cache_lock;
36 };
37
38 static struct kmem_cache *drc_slab;
39
40 static int nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *vec);
41 static unsigned long nfsd_reply_cache_count(struct shrinker *shrink,
42 struct shrink_control *sc);
43 static unsigned long nfsd_reply_cache_scan(struct shrinker *shrink,
44 struct shrink_control *sc);
45
46 /*
47 * Put a cap on the size of the DRC based on the amount of available
48 * low memory in the machine.
49 *
50 * 64MB: 8192
51 * 128MB: 11585
52 * 256MB: 16384
53 * 512MB: 23170
54 * 1GB: 32768
55 * 2GB: 46340
56 * 4GB: 65536
57 * 8GB: 92681
58 * 16GB: 131072
59 *
60 * ...with a hard cap of 256k entries. In the worst case, each entry will be
61 * ~1k, so the above numbers should give a rough max of the amount of memory
62 * used in k.
63 *
64 * XXX: these limits are per-container, so memory used will increase
65 * linearly with number of containers. Maybe that's OK.
66 */
67 static unsigned int
nfsd_cache_size_limit(void)68 nfsd_cache_size_limit(void)
69 {
70 unsigned int limit;
71 unsigned long low_pages = totalram_pages() - totalhigh_pages();
72
73 limit = (16 * int_sqrt(low_pages)) << (PAGE_SHIFT-10);
74 return min_t(unsigned int, limit, 256*1024);
75 }
76
77 /*
78 * Compute the number of hash buckets we need. Divide the max cachesize by
79 * the "target" max bucket size, and round up to next power of two.
80 */
81 static unsigned int
nfsd_hashsize(unsigned int limit)82 nfsd_hashsize(unsigned int limit)
83 {
84 return roundup_pow_of_two(limit / TARGET_BUCKET_SIZE);
85 }
86
87 static struct nfsd_cacherep *
nfsd_cacherep_alloc(struct svc_rqst * rqstp,__wsum csum,struct nfsd_net * nn)88 nfsd_cacherep_alloc(struct svc_rqst *rqstp, __wsum csum,
89 struct nfsd_net *nn)
90 {
91 struct nfsd_cacherep *rp;
92
93 rp = kmem_cache_alloc(drc_slab, GFP_KERNEL);
94 if (rp) {
95 rp->c_state = RC_UNUSED;
96 rp->c_type = RC_NOCACHE;
97 RB_CLEAR_NODE(&rp->c_node);
98 INIT_LIST_HEAD(&rp->c_lru);
99
100 memset(&rp->c_key, 0, sizeof(rp->c_key));
101 rp->c_key.k_xid = rqstp->rq_xid;
102 rp->c_key.k_proc = rqstp->rq_proc;
103 rpc_copy_addr((struct sockaddr *)&rp->c_key.k_addr, svc_addr(rqstp));
104 rpc_set_port((struct sockaddr *)&rp->c_key.k_addr, rpc_get_port(svc_addr(rqstp)));
105 rp->c_key.k_prot = rqstp->rq_prot;
106 rp->c_key.k_vers = rqstp->rq_vers;
107 rp->c_key.k_len = rqstp->rq_arg.len;
108 rp->c_key.k_csum = csum;
109 }
110 return rp;
111 }
112
nfsd_cacherep_free(struct nfsd_cacherep * rp)113 static void nfsd_cacherep_free(struct nfsd_cacherep *rp)
114 {
115 if (rp->c_type == RC_REPLBUFF)
116 kfree(rp->c_replvec.iov_base);
117 kmem_cache_free(drc_slab, rp);
118 }
119
120 static unsigned long
nfsd_cacherep_dispose(struct list_head * dispose)121 nfsd_cacherep_dispose(struct list_head *dispose)
122 {
123 struct nfsd_cacherep *rp;
124 unsigned long freed = 0;
125
126 while (!list_empty(dispose)) {
127 rp = list_first_entry(dispose, struct nfsd_cacherep, c_lru);
128 list_del(&rp->c_lru);
129 nfsd_cacherep_free(rp);
130 freed++;
131 }
132 return freed;
133 }
134
135 static void
nfsd_cacherep_unlink_locked(struct nfsd_net * nn,struct nfsd_drc_bucket * b,struct nfsd_cacherep * rp)136 nfsd_cacherep_unlink_locked(struct nfsd_net *nn, struct nfsd_drc_bucket *b,
137 struct nfsd_cacherep *rp)
138 {
139 if (rp->c_type == RC_REPLBUFF && rp->c_replvec.iov_base)
140 nfsd_stats_drc_mem_usage_sub(nn, rp->c_replvec.iov_len);
141 if (rp->c_state != RC_UNUSED) {
142 rb_erase(&rp->c_node, &b->rb_head);
143 list_del(&rp->c_lru);
144 atomic_dec(&nn->num_drc_entries);
145 nfsd_stats_drc_mem_usage_sub(nn, sizeof(*rp));
146 }
147 }
148
149 static void
nfsd_reply_cache_free_locked(struct nfsd_drc_bucket * b,struct nfsd_cacherep * rp,struct nfsd_net * nn)150 nfsd_reply_cache_free_locked(struct nfsd_drc_bucket *b, struct nfsd_cacherep *rp,
151 struct nfsd_net *nn)
152 {
153 nfsd_cacherep_unlink_locked(nn, b, rp);
154 nfsd_cacherep_free(rp);
155 }
156
157 static void
nfsd_reply_cache_free(struct nfsd_drc_bucket * b,struct nfsd_cacherep * rp,struct nfsd_net * nn)158 nfsd_reply_cache_free(struct nfsd_drc_bucket *b, struct nfsd_cacherep *rp,
159 struct nfsd_net *nn)
160 {
161 spin_lock(&b->cache_lock);
162 nfsd_cacherep_unlink_locked(nn, b, rp);
163 spin_unlock(&b->cache_lock);
164 nfsd_cacherep_free(rp);
165 }
166
nfsd_drc_slab_create(void)167 int nfsd_drc_slab_create(void)
168 {
169 drc_slab = KMEM_CACHE(nfsd_cacherep, 0);
170 return drc_slab ? 0: -ENOMEM;
171 }
172
nfsd_drc_slab_free(void)173 void nfsd_drc_slab_free(void)
174 {
175 kmem_cache_destroy(drc_slab);
176 }
177
nfsd_reply_cache_init(struct nfsd_net * nn)178 int nfsd_reply_cache_init(struct nfsd_net *nn)
179 {
180 unsigned int hashsize;
181 unsigned int i;
182
183 nn->max_drc_entries = nfsd_cache_size_limit();
184 atomic_set(&nn->num_drc_entries, 0);
185 hashsize = nfsd_hashsize(nn->max_drc_entries);
186 nn->maskbits = ilog2(hashsize);
187
188 nn->drc_hashtbl = kvzalloc(array_size(hashsize,
189 sizeof(*nn->drc_hashtbl)), GFP_KERNEL);
190 if (!nn->drc_hashtbl)
191 return -ENOMEM;
192
193 nn->nfsd_reply_cache_shrinker = shrinker_alloc(0, "nfsd-reply:%s",
194 nn->nfsd_name);
195 if (!nn->nfsd_reply_cache_shrinker)
196 goto out_shrinker;
197
198 nn->nfsd_reply_cache_shrinker->scan_objects = nfsd_reply_cache_scan;
199 nn->nfsd_reply_cache_shrinker->count_objects = nfsd_reply_cache_count;
200 nn->nfsd_reply_cache_shrinker->seeks = 1;
201 nn->nfsd_reply_cache_shrinker->private_data = nn;
202
203 shrinker_register(nn->nfsd_reply_cache_shrinker);
204
205 for (i = 0; i < hashsize; i++) {
206 INIT_LIST_HEAD(&nn->drc_hashtbl[i].lru_head);
207 spin_lock_init(&nn->drc_hashtbl[i].cache_lock);
208 }
209 nn->drc_hashsize = hashsize;
210
211 return 0;
212 out_shrinker:
213 kvfree(nn->drc_hashtbl);
214 printk(KERN_ERR "nfsd: failed to allocate reply cache\n");
215 return -ENOMEM;
216 }
217
nfsd_reply_cache_shutdown(struct nfsd_net * nn)218 void nfsd_reply_cache_shutdown(struct nfsd_net *nn)
219 {
220 struct nfsd_cacherep *rp;
221 unsigned int i;
222
223 shrinker_free(nn->nfsd_reply_cache_shrinker);
224
225 for (i = 0; i < nn->drc_hashsize; i++) {
226 struct list_head *head = &nn->drc_hashtbl[i].lru_head;
227 while (!list_empty(head)) {
228 rp = list_first_entry(head, struct nfsd_cacherep, c_lru);
229 nfsd_reply_cache_free_locked(&nn->drc_hashtbl[i],
230 rp, nn);
231 }
232 }
233
234 kvfree(nn->drc_hashtbl);
235 nn->drc_hashtbl = NULL;
236 nn->drc_hashsize = 0;
237
238 }
239
240 static void
lru_put_end(struct nfsd_drc_bucket * b,struct nfsd_cacherep * rp)241 lru_put_end(struct nfsd_drc_bucket *b, struct nfsd_cacherep *rp)
242 {
243 rp->c_timestamp = jiffies;
244 list_move_tail(&rp->c_lru, &b->lru_head);
245 }
246
247 static noinline struct nfsd_drc_bucket *
nfsd_cache_bucket_find(__be32 xid,struct nfsd_net * nn)248 nfsd_cache_bucket_find(__be32 xid, struct nfsd_net *nn)
249 {
250 unsigned int hash = hash_32((__force u32)xid, nn->maskbits);
251
252 return &nn->drc_hashtbl[hash];
253 }
254
255 /*
256 * Remove and return no more than @max expired entries in bucket @b.
257 * If @max is zero, do not limit the number of removed entries.
258 */
259 static void
nfsd_prune_bucket_locked(struct nfsd_net * nn,struct nfsd_drc_bucket * b,unsigned int max,struct list_head * dispose)260 nfsd_prune_bucket_locked(struct nfsd_net *nn, struct nfsd_drc_bucket *b,
261 unsigned int max, struct list_head *dispose)
262 {
263 unsigned long expiry = jiffies - RC_EXPIRE;
264 struct nfsd_cacherep *rp, *tmp;
265 unsigned int freed = 0;
266
267 lockdep_assert_held(&b->cache_lock);
268
269 /* The bucket LRU is ordered oldest-first. */
270 list_for_each_entry_safe(rp, tmp, &b->lru_head, c_lru) {
271 if (atomic_read(&nn->num_drc_entries) <= nn->max_drc_entries &&
272 time_before(expiry, rp->c_timestamp))
273 break;
274
275 nfsd_cacherep_unlink_locked(nn, b, rp);
276 list_add(&rp->c_lru, dispose);
277
278 if (max && ++freed > max)
279 break;
280 }
281 }
282
283 /**
284 * nfsd_reply_cache_count - count_objects method for the DRC shrinker
285 * @shrink: our registered shrinker context
286 * @sc: garbage collection parameters
287 *
288 * Returns the total number of entries in the duplicate reply cache. To
289 * keep things simple and quick, this is not the number of expired entries
290 * in the cache (ie, the number that would be removed by a call to
291 * nfsd_reply_cache_scan).
292 */
293 static unsigned long
nfsd_reply_cache_count(struct shrinker * shrink,struct shrink_control * sc)294 nfsd_reply_cache_count(struct shrinker *shrink, struct shrink_control *sc)
295 {
296 struct nfsd_net *nn = shrink->private_data;
297
298 return atomic_read(&nn->num_drc_entries);
299 }
300
301 /**
302 * nfsd_reply_cache_scan - scan_objects method for the DRC shrinker
303 * @shrink: our registered shrinker context
304 * @sc: garbage collection parameters
305 *
306 * Free expired entries on each bucket's LRU list until we've released
307 * nr_to_scan freed objects. Nothing will be released if the cache
308 * has not exceeded it's max_drc_entries limit.
309 *
310 * Returns the number of entries released by this call.
311 */
312 static unsigned long
nfsd_reply_cache_scan(struct shrinker * shrink,struct shrink_control * sc)313 nfsd_reply_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
314 {
315 struct nfsd_net *nn = shrink->private_data;
316 unsigned long freed = 0;
317 LIST_HEAD(dispose);
318 unsigned int i;
319
320 for (i = 0; i < nn->drc_hashsize; i++) {
321 struct nfsd_drc_bucket *b = &nn->drc_hashtbl[i];
322
323 if (list_empty(&b->lru_head))
324 continue;
325
326 spin_lock(&b->cache_lock);
327 nfsd_prune_bucket_locked(nn, b, 0, &dispose);
328 spin_unlock(&b->cache_lock);
329
330 freed += nfsd_cacherep_dispose(&dispose);
331 if (freed > sc->nr_to_scan)
332 break;
333 }
334 return freed;
335 }
336
337 /**
338 * nfsd_cache_csum - Checksum incoming NFS Call arguments
339 * @buf: buffer containing a whole RPC Call message
340 * @start: starting byte of the NFS Call header
341 * @remaining: size of the NFS Call header, in bytes
342 *
343 * Compute a weak checksum of the leading bytes of an NFS procedure
344 * call header to help verify that a retransmitted Call matches an
345 * entry in the duplicate reply cache.
346 *
347 * To avoid assumptions about how the RPC message is laid out in
348 * @buf and what else it might contain (eg, a GSS MIC suffix), the
349 * caller passes us the exact location and length of the NFS Call
350 * header.
351 *
352 * Returns a 32-bit checksum value, as defined in RFC 793.
353 */
nfsd_cache_csum(struct xdr_buf * buf,unsigned int start,unsigned int remaining)354 static __wsum nfsd_cache_csum(struct xdr_buf *buf, unsigned int start,
355 unsigned int remaining)
356 {
357 unsigned int base, len;
358 struct xdr_buf subbuf;
359 __wsum csum = 0;
360 void *p;
361 int idx;
362
363 if (remaining > RC_CSUMLEN)
364 remaining = RC_CSUMLEN;
365 if (xdr_buf_subsegment(buf, &subbuf, start, remaining))
366 return csum;
367
368 /* rq_arg.head first */
369 if (subbuf.head[0].iov_len) {
370 len = min_t(unsigned int, subbuf.head[0].iov_len, remaining);
371 csum = csum_partial(subbuf.head[0].iov_base, len, csum);
372 remaining -= len;
373 }
374
375 /* Continue into page array */
376 idx = subbuf.page_base / PAGE_SIZE;
377 base = subbuf.page_base & ~PAGE_MASK;
378 while (remaining) {
379 p = page_address(subbuf.pages[idx]) + base;
380 len = min_t(unsigned int, PAGE_SIZE - base, remaining);
381 csum = csum_partial(p, len, csum);
382 remaining -= len;
383 base = 0;
384 ++idx;
385 }
386 return csum;
387 }
388
389 static int
nfsd_cache_key_cmp(const struct nfsd_cacherep * key,const struct nfsd_cacherep * rp,struct nfsd_net * nn)390 nfsd_cache_key_cmp(const struct nfsd_cacherep *key,
391 const struct nfsd_cacherep *rp, struct nfsd_net *nn)
392 {
393 if (key->c_key.k_xid == rp->c_key.k_xid &&
394 key->c_key.k_csum != rp->c_key.k_csum) {
395 nfsd_stats_payload_misses_inc(nn);
396 trace_nfsd_drc_mismatch(nn, key, rp);
397 }
398
399 return memcmp(&key->c_key, &rp->c_key, sizeof(key->c_key));
400 }
401
402 /*
403 * Search the request hash for an entry that matches the given rqstp.
404 * Must be called with cache_lock held. Returns the found entry or
405 * inserts an empty key on failure.
406 */
407 static struct nfsd_cacherep *
nfsd_cache_insert(struct nfsd_drc_bucket * b,struct nfsd_cacherep * key,struct nfsd_net * nn)408 nfsd_cache_insert(struct nfsd_drc_bucket *b, struct nfsd_cacherep *key,
409 struct nfsd_net *nn)
410 {
411 struct nfsd_cacherep *rp, *ret = key;
412 struct rb_node **p = &b->rb_head.rb_node,
413 *parent = NULL;
414 unsigned int entries = 0;
415 int cmp;
416
417 while (*p != NULL) {
418 ++entries;
419 parent = *p;
420 rp = rb_entry(parent, struct nfsd_cacherep, c_node);
421
422 cmp = nfsd_cache_key_cmp(key, rp, nn);
423 if (cmp < 0)
424 p = &parent->rb_left;
425 else if (cmp > 0)
426 p = &parent->rb_right;
427 else {
428 ret = rp;
429 goto out;
430 }
431 }
432 rb_link_node(&key->c_node, parent, p);
433 rb_insert_color(&key->c_node, &b->rb_head);
434 out:
435 /* tally hash chain length stats */
436 if (entries > nn->longest_chain) {
437 nn->longest_chain = entries;
438 nn->longest_chain_cachesize = atomic_read(&nn->num_drc_entries);
439 } else if (entries == nn->longest_chain) {
440 /* prefer to keep the smallest cachesize possible here */
441 nn->longest_chain_cachesize = min_t(unsigned int,
442 nn->longest_chain_cachesize,
443 atomic_read(&nn->num_drc_entries));
444 }
445 return ret;
446 }
447
448 /**
449 * nfsd_cache_lookup - Find an entry in the duplicate reply cache
450 * @rqstp: Incoming Call to find
451 * @start: starting byte in @rqstp->rq_arg of the NFS Call header
452 * @len: size of the NFS Call header, in bytes
453 * @cacherep: OUT: DRC entry for this request
454 *
455 * Try to find an entry matching the current call in the cache. When none
456 * is found, we try to grab the oldest expired entry off the LRU list. If
457 * a suitable one isn't there, then drop the cache_lock and allocate a
458 * new one, then search again in case one got inserted while this thread
459 * didn't hold the lock.
460 *
461 * Return values:
462 * %RC_DOIT: Process the request normally
463 * %RC_REPLY: Reply from cache
464 * %RC_DROPIT: Do not process the request further
465 */
nfsd_cache_lookup(struct svc_rqst * rqstp,unsigned int start,unsigned int len,struct nfsd_cacherep ** cacherep)466 int nfsd_cache_lookup(struct svc_rqst *rqstp, unsigned int start,
467 unsigned int len, struct nfsd_cacherep **cacherep)
468 {
469 struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id);
470 struct nfsd_cacherep *rp, *found;
471 __wsum csum;
472 struct nfsd_drc_bucket *b;
473 int type = rqstp->rq_cachetype;
474 LIST_HEAD(dispose);
475 int rtn = RC_DOIT;
476
477 if (type == RC_NOCACHE) {
478 nfsd_stats_rc_nocache_inc(nn);
479 goto out;
480 }
481
482 csum = nfsd_cache_csum(&rqstp->rq_arg, start, len);
483
484 /*
485 * Since the common case is a cache miss followed by an insert,
486 * preallocate an entry.
487 */
488 rp = nfsd_cacherep_alloc(rqstp, csum, nn);
489 if (!rp)
490 goto out;
491
492 b = nfsd_cache_bucket_find(rqstp->rq_xid, nn);
493 spin_lock(&b->cache_lock);
494 found = nfsd_cache_insert(b, rp, nn);
495 if (found != rp)
496 goto found_entry;
497 *cacherep = rp;
498 rp->c_state = RC_INPROG;
499 nfsd_prune_bucket_locked(nn, b, 3, &dispose);
500 spin_unlock(&b->cache_lock);
501
502 nfsd_cacherep_dispose(&dispose);
503
504 nfsd_stats_rc_misses_inc(nn);
505 atomic_inc(&nn->num_drc_entries);
506 nfsd_stats_drc_mem_usage_add(nn, sizeof(*rp));
507 goto out;
508
509 found_entry:
510 /* We found a matching entry which is either in progress or done. */
511 nfsd_reply_cache_free_locked(NULL, rp, nn);
512 nfsd_stats_rc_hits_inc(nn);
513 rtn = RC_DROPIT;
514 rp = found;
515
516 /* Request being processed */
517 if (rp->c_state == RC_INPROG)
518 goto out_trace;
519
520 /* From the hall of fame of impractical attacks:
521 * Is this a user who tries to snoop on the cache? */
522 rtn = RC_DOIT;
523 if (!test_bit(RQ_SECURE, &rqstp->rq_flags) && rp->c_secure)
524 goto out_trace;
525
526 /* Compose RPC reply header */
527 switch (rp->c_type) {
528 case RC_NOCACHE:
529 break;
530 case RC_REPLSTAT:
531 xdr_stream_encode_be32(&rqstp->rq_res_stream, rp->c_replstat);
532 rtn = RC_REPLY;
533 break;
534 case RC_REPLBUFF:
535 if (!nfsd_cache_append(rqstp, &rp->c_replvec))
536 goto out_unlock; /* should not happen */
537 rtn = RC_REPLY;
538 break;
539 default:
540 WARN_ONCE(1, "nfsd: bad repcache type %d\n", rp->c_type);
541 }
542
543 out_trace:
544 trace_nfsd_drc_found(nn, rqstp, rtn);
545 out_unlock:
546 spin_unlock(&b->cache_lock);
547 out:
548 return rtn;
549 }
550
551 /**
552 * nfsd_cache_update - Update an entry in the duplicate reply cache.
553 * @rqstp: svc_rqst with a finished Reply
554 * @rp: IN: DRC entry for this request
555 * @cachetype: which cache to update
556 * @statp: pointer to Reply's NFS status code, or NULL
557 *
558 * This is called from nfsd_dispatch when the procedure has been
559 * executed and the complete reply is in rqstp->rq_res.
560 *
561 * We're copying around data here rather than swapping buffers because
562 * the toplevel loop requires max-sized buffers, which would be a waste
563 * of memory for a cache with a max reply size of 100 bytes (diropokres).
564 *
565 * If we should start to use different types of cache entries tailored
566 * specifically for attrstat and fh's, we may save even more space.
567 *
568 * Also note that a cachetype of RC_NOCACHE can legally be passed when
569 * nfsd failed to encode a reply that otherwise would have been cached.
570 * In this case, nfsd_cache_update is called with statp == NULL.
571 */
nfsd_cache_update(struct svc_rqst * rqstp,struct nfsd_cacherep * rp,int cachetype,__be32 * statp)572 void nfsd_cache_update(struct svc_rqst *rqstp, struct nfsd_cacherep *rp,
573 int cachetype, __be32 *statp)
574 {
575 struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id);
576 struct kvec *resv = &rqstp->rq_res.head[0], *cachv;
577 struct nfsd_drc_bucket *b;
578 int len;
579 size_t bufsize = 0;
580
581 if (!rp)
582 return;
583
584 b = nfsd_cache_bucket_find(rp->c_key.k_xid, nn);
585
586 len = resv->iov_len - ((char*)statp - (char*)resv->iov_base);
587 len >>= 2;
588
589 /* Don't cache excessive amounts of data and XDR failures */
590 if (!statp || len > (256 >> 2)) {
591 nfsd_reply_cache_free(b, rp, nn);
592 return;
593 }
594
595 switch (cachetype) {
596 case RC_REPLSTAT:
597 if (len != 1)
598 printk("nfsd: RC_REPLSTAT/reply len %d!\n",len);
599 rp->c_replstat = *statp;
600 break;
601 case RC_REPLBUFF:
602 cachv = &rp->c_replvec;
603 bufsize = len << 2;
604 cachv->iov_base = kmalloc(bufsize, GFP_KERNEL);
605 if (!cachv->iov_base) {
606 nfsd_reply_cache_free(b, rp, nn);
607 return;
608 }
609 cachv->iov_len = bufsize;
610 memcpy(cachv->iov_base, statp, bufsize);
611 break;
612 case RC_NOCACHE:
613 nfsd_reply_cache_free(b, rp, nn);
614 return;
615 }
616 spin_lock(&b->cache_lock);
617 nfsd_stats_drc_mem_usage_add(nn, bufsize);
618 lru_put_end(b, rp);
619 rp->c_secure = test_bit(RQ_SECURE, &rqstp->rq_flags);
620 rp->c_type = cachetype;
621 rp->c_state = RC_DONE;
622 spin_unlock(&b->cache_lock);
623 return;
624 }
625
626 static int
nfsd_cache_append(struct svc_rqst * rqstp,struct kvec * data)627 nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *data)
628 {
629 __be32 *p;
630
631 p = xdr_reserve_space(&rqstp->rq_res_stream, data->iov_len);
632 if (unlikely(!p))
633 return false;
634 memcpy(p, data->iov_base, data->iov_len);
635 xdr_commit_encode(&rqstp->rq_res_stream);
636 return true;
637 }
638
639 /*
640 * Note that fields may be added, removed or reordered in the future. Programs
641 * scraping this file for info should test the labels to ensure they're
642 * getting the correct field.
643 */
nfsd_reply_cache_stats_show(struct seq_file * m,void * v)644 int nfsd_reply_cache_stats_show(struct seq_file *m, void *v)
645 {
646 struct nfsd_net *nn = net_generic(file_inode(m->file)->i_sb->s_fs_info,
647 nfsd_net_id);
648
649 seq_printf(m, "max entries: %u\n", nn->max_drc_entries);
650 seq_printf(m, "num entries: %u\n",
651 atomic_read(&nn->num_drc_entries));
652 seq_printf(m, "hash buckets: %u\n", 1 << nn->maskbits);
653 seq_printf(m, "mem usage: %lld\n",
654 percpu_counter_sum_positive(&nn->counter[NFSD_STATS_DRC_MEM_USAGE]));
655 seq_printf(m, "cache hits: %lld\n",
656 percpu_counter_sum_positive(&nn->counter[NFSD_STATS_RC_HITS]));
657 seq_printf(m, "cache misses: %lld\n",
658 percpu_counter_sum_positive(&nn->counter[NFSD_STATS_RC_MISSES]));
659 seq_printf(m, "not cached: %lld\n",
660 percpu_counter_sum_positive(&nn->counter[NFSD_STATS_RC_NOCACHE]));
661 seq_printf(m, "payload misses: %lld\n",
662 percpu_counter_sum_positive(&nn->counter[NFSD_STATS_PAYLOAD_MISSES]));
663 seq_printf(m, "longest chain len: %u\n", nn->longest_chain);
664 seq_printf(m, "cachesize at longest: %u\n", nn->longest_chain_cachesize);
665 return 0;
666 }
667