xref: /linux/fs/nfsd/vfs.c (revision 345c4b7734e841d20a70a84deb13cb317c45d484)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * File operations used by nfsd. Some of these have been ripped from
4  * other parts of the kernel because they weren't exported, others
5  * are partial duplicates with added or changed functionality.
6  *
7  * Note that several functions dget() the dentry upon which they want
8  * to act, most notably those that create directory entries. Response
9  * dentry's are dput()'d if necessary in the release callback.
10  * So if you notice code paths that apparently fail to dput() the
11  * dentry, don't worry--they have been taken care of.
12  *
13  * Copyright (C) 1995-1999 Olaf Kirch <okir@monad.swb.de>
14  * Zerocpy NFS support (C) 2002 Hirokazu Takahashi <taka@valinux.co.jp>
15  */
16 
17 #include <linux/fs.h>
18 #include <linux/file.h>
19 #include <linux/splice.h>
20 #include <linux/falloc.h>
21 #include <linux/fcntl.h>
22 #include <linux/namei.h>
23 #include <linux/delay.h>
24 #include <linux/fsnotify.h>
25 #include <linux/posix_acl_xattr.h>
26 #include <linux/xattr.h>
27 #include <linux/jhash.h>
28 #include <linux/pagemap.h>
29 #include <linux/slab.h>
30 #include <linux/uaccess.h>
31 #include <linux/exportfs.h>
32 #include <linux/writeback.h>
33 #include <linux/security.h>
34 #include <linux/sunrpc/xdr.h>
35 
36 #include "xdr3.h"
37 
38 #ifdef CONFIG_NFSD_V4
39 #include "acl.h"
40 #include "idmap.h"
41 #include "xdr4.h"
42 #endif /* CONFIG_NFSD_V4 */
43 
44 #include "nfsd.h"
45 #include "vfs.h"
46 #include "filecache.h"
47 #include "trace.h"
48 
49 #define NFSDDBG_FACILITY		NFSDDBG_FILEOP
50 
51 bool nfsd_disable_splice_read __read_mostly;
52 u64 nfsd_io_cache_read __read_mostly = NFSD_IO_BUFFERED;
53 u64 nfsd_io_cache_write __read_mostly = NFSD_IO_BUFFERED;
54 
55 /**
56  * nfserrno - Map Linux errnos to NFS errnos
57  * @errno: POSIX(-ish) error code to be mapped
58  *
59  * Returns the appropriate (net-endian) nfserr_* (or nfs_ok if errno is 0). If
60  * it's an error we don't expect, log it once and return nfserr_io.
61  */
62 __be32
63 nfserrno (int errno)
64 {
65 	static struct {
66 		__be32	nfserr;
67 		int	syserr;
68 	} nfs_errtbl[] = {
69 		{ nfs_ok, 0 },
70 		{ nfserr_perm, -EPERM },
71 		{ nfserr_noent, -ENOENT },
72 		{ nfserr_io, -EIO },
73 		{ nfserr_nxio, -ENXIO },
74 		{ nfserr_fbig, -E2BIG },
75 		{ nfserr_stale, -EBADF },
76 		{ nfserr_acces, -EACCES },
77 		{ nfserr_exist, -EEXIST },
78 		{ nfserr_xdev, -EXDEV },
79 		{ nfserr_nodev, -ENODEV },
80 		{ nfserr_notdir, -ENOTDIR },
81 		{ nfserr_isdir, -EISDIR },
82 		{ nfserr_inval, -EINVAL },
83 		{ nfserr_fbig, -EFBIG },
84 		{ nfserr_nospc, -ENOSPC },
85 		{ nfserr_rofs, -EROFS },
86 		{ nfserr_mlink, -EMLINK },
87 		{ nfserr_nametoolong, -ENAMETOOLONG },
88 		{ nfserr_notempty, -ENOTEMPTY },
89 		{ nfserr_dquot, -EDQUOT },
90 		{ nfserr_stale, -ESTALE },
91 		{ nfserr_jukebox, -ETIMEDOUT },
92 		{ nfserr_jukebox, -ERESTARTSYS },
93 		{ nfserr_jukebox, -EAGAIN },
94 		{ nfserr_jukebox, -EWOULDBLOCK },
95 		{ nfserr_jukebox, -ENOMEM },
96 		{ nfserr_io, -ETXTBSY },
97 		{ nfserr_notsupp, -EOPNOTSUPP },
98 		{ nfserr_toosmall, -ETOOSMALL },
99 		{ nfserr_serverfault, -ESERVERFAULT },
100 		{ nfserr_serverfault, -ENFILE },
101 		{ nfserr_io, -EREMOTEIO },
102 		{ nfserr_stale, -EOPENSTALE },
103 		{ nfserr_io, -EUCLEAN },
104 		{ nfserr_perm, -ENOKEY },
105 		{ nfserr_no_grace, -ENOGRACE},
106 		{ nfserr_io, -EBADMSG },
107 	};
108 	int	i;
109 
110 	for (i = 0; i < ARRAY_SIZE(nfs_errtbl); i++) {
111 		if (nfs_errtbl[i].syserr == errno)
112 			return nfs_errtbl[i].nfserr;
113 	}
114 	WARN_ONCE(1, "nfsd: non-standard errno: %d\n", errno);
115 	return nfserr_io;
116 }
117 
118 /*
119  * Called from nfsd_lookup and encode_dirent. Check if we have crossed
120  * a mount point.
121  * Returns -EAGAIN or -ETIMEDOUT leaving *dpp and *expp unchanged,
122  *  or nfs_ok having possibly changed *dpp and *expp
123  */
124 int
125 nfsd_cross_mnt(struct svc_rqst *rqstp, struct dentry **dpp,
126 		        struct svc_export **expp)
127 {
128 	struct svc_export *exp = *expp, *exp2 = NULL;
129 	struct dentry *dentry = *dpp;
130 	struct path path = {.mnt = mntget(exp->ex_path.mnt),
131 			    .dentry = dget(dentry)};
132 	unsigned int follow_flags = 0;
133 	int err = 0;
134 
135 	if (exp->ex_flags & NFSEXP_CROSSMOUNT)
136 		follow_flags = LOOKUP_AUTOMOUNT;
137 
138 	err = follow_down(&path, follow_flags);
139 	if (err < 0)
140 		goto out;
141 	if (path.mnt == exp->ex_path.mnt && path.dentry == dentry &&
142 	    nfsd_mountpoint(dentry, exp) == 2) {
143 		/* This is only a mountpoint in some other namespace */
144 		path_put(&path);
145 		goto out;
146 	}
147 
148 	exp2 = rqst_exp_get_by_name(rqstp, &path);
149 	if (IS_ERR(exp2)) {
150 		err = PTR_ERR(exp2);
151 		/*
152 		 * We normally allow NFS clients to continue
153 		 * "underneath" a mountpoint that is not exported.
154 		 * The exception is V4ROOT, where no traversal is ever
155 		 * allowed without an explicit export of the new
156 		 * directory.
157 		 */
158 		if (err == -ENOENT && !(exp->ex_flags & NFSEXP_V4ROOT))
159 			err = 0;
160 		path_put(&path);
161 		goto out;
162 	}
163 	if (nfsd_v4client(rqstp) ||
164 		(exp->ex_flags & NFSEXP_CROSSMOUNT) || EX_NOHIDE(exp2)) {
165 		/* successfully crossed mount point */
166 		/*
167 		 * This is subtle: path.dentry is *not* on path.mnt
168 		 * at this point.  The only reason we are safe is that
169 		 * original mnt is pinned down by exp, so we should
170 		 * put path *before* putting exp
171 		 */
172 		*dpp = path.dentry;
173 		path.dentry = dentry;
174 		*expp = exp2;
175 		exp2 = exp;
176 	}
177 	path_put(&path);
178 	exp_put(exp2);
179 out:
180 	return err;
181 }
182 
183 static void follow_to_parent(struct path *path)
184 {
185 	struct dentry *dp;
186 
187 	while (path->dentry == path->mnt->mnt_root && follow_up(path))
188 		;
189 	dp = dget_parent(path->dentry);
190 	dput(path->dentry);
191 	path->dentry = dp;
192 }
193 
194 static int nfsd_lookup_parent(struct svc_rqst *rqstp, struct dentry *dparent, struct svc_export **exp, struct dentry **dentryp)
195 {
196 	struct svc_export *exp2;
197 	struct path path = {.mnt = mntget((*exp)->ex_path.mnt),
198 			    .dentry = dget(dparent)};
199 
200 	follow_to_parent(&path);
201 
202 	exp2 = rqst_exp_parent(rqstp, &path);
203 	if (PTR_ERR(exp2) == -ENOENT) {
204 		*dentryp = dget(dparent);
205 	} else if (IS_ERR(exp2)) {
206 		path_put(&path);
207 		return PTR_ERR(exp2);
208 	} else {
209 		*dentryp = dget(path.dentry);
210 		exp_put(*exp);
211 		*exp = exp2;
212 	}
213 	path_put(&path);
214 	return 0;
215 }
216 
217 /*
218  * For nfsd purposes, we treat V4ROOT exports as though there was an
219  * export at *every* directory.
220  * We return:
221  * '1' if this dentry *must* be an export point,
222  * '2' if it might be, if there is really a mount here, and
223  * '0' if there is no chance of an export point here.
224  */
225 int nfsd_mountpoint(struct dentry *dentry, struct svc_export *exp)
226 {
227 	if (!d_inode(dentry))
228 		return 0;
229 	if (exp->ex_flags & NFSEXP_V4ROOT)
230 		return 1;
231 	if (nfsd4_is_junction(dentry))
232 		return 1;
233 	if (d_managed(dentry))
234 		/*
235 		 * Might only be a mountpoint in a different namespace,
236 		 * but we need to check.
237 		 */
238 		return 2;
239 	return 0;
240 }
241 
242 __be32
243 nfsd_lookup_dentry(struct svc_rqst *rqstp, struct svc_fh *fhp,
244 		   const char *name, unsigned int len,
245 		   struct svc_export **exp_ret, struct dentry **dentry_ret)
246 {
247 	struct svc_export	*exp;
248 	struct dentry		*dparent;
249 	struct dentry		*dentry;
250 	int			host_err;
251 
252 	trace_nfsd_vfs_lookup(rqstp, fhp, name, len);
253 
254 	dparent = fhp->fh_dentry;
255 	exp = exp_get(fhp->fh_export);
256 
257 	/* Lookup the name, but don't follow links */
258 	if (isdotent(name, len)) {
259 		if (len==1)
260 			dentry = dget(dparent);
261 		else if (dparent != exp->ex_path.dentry)
262 			dentry = dget_parent(dparent);
263 		else if (!EX_NOHIDE(exp) && !nfsd_v4client(rqstp))
264 			dentry = dget(dparent); /* .. == . just like at / */
265 		else {
266 			/* checking mountpoint crossing is very different when stepping up */
267 			host_err = nfsd_lookup_parent(rqstp, dparent, &exp, &dentry);
268 			if (host_err)
269 				goto out_nfserr;
270 		}
271 	} else {
272 		dentry = lookup_one_unlocked(&nop_mnt_idmap,
273 					     &QSTR_LEN(name, len), dparent);
274 		host_err = PTR_ERR(dentry);
275 		if (IS_ERR(dentry))
276 			goto out_nfserr;
277 		if (nfsd_mountpoint(dentry, exp)) {
278 			host_err = nfsd_cross_mnt(rqstp, &dentry, &exp);
279 			if (host_err) {
280 				dput(dentry);
281 				goto out_nfserr;
282 			}
283 		}
284 	}
285 	*dentry_ret = dentry;
286 	*exp_ret = exp;
287 	return 0;
288 
289 out_nfserr:
290 	exp_put(exp);
291 	return nfserrno(host_err);
292 }
293 
294 /**
295  * nfsd_lookup - look up a single path component for nfsd
296  *
297  * @rqstp:   the request context
298  * @fhp:     the file handle of the directory
299  * @name:    the component name, or %NULL to look up parent
300  * @len:     length of name to examine
301  * @resfh:   pointer to pre-initialised filehandle to hold result.
302  *
303  * Look up one component of a pathname.
304  * N.B. After this call _both_ fhp and resfh need an fh_put
305  *
306  * If the lookup would cross a mountpoint, and the mounted filesystem
307  * is exported to the client with NFSEXP_NOHIDE, then the lookup is
308  * accepted as it stands and the mounted directory is
309  * returned. Otherwise the covered directory is returned.
310  * NOTE: this mountpoint crossing is not supported properly by all
311  *   clients and is explicitly disallowed for NFSv3
312  *
313  */
314 __be32
315 nfsd_lookup(struct svc_rqst *rqstp, struct svc_fh *fhp, const char *name,
316 	    unsigned int len, struct svc_fh *resfh)
317 {
318 	struct svc_export	*exp;
319 	struct dentry		*dentry;
320 	__be32 err;
321 
322 	err = fh_verify(rqstp, fhp, S_IFDIR, NFSD_MAY_EXEC);
323 	if (err)
324 		return err;
325 	err = nfsd_lookup_dentry(rqstp, fhp, name, len, &exp, &dentry);
326 	if (err)
327 		return err;
328 	err = check_nfsd_access(exp, rqstp, false);
329 	if (err)
330 		goto out;
331 	/*
332 	 * Note: we compose the file handle now, but as the
333 	 * dentry may be negative, it may need to be updated.
334 	 */
335 	err = fh_compose(resfh, exp, dentry, fhp);
336 	if (!err && d_really_is_negative(dentry))
337 		err = nfserr_noent;
338 out:
339 	dput(dentry);
340 	exp_put(exp);
341 	return err;
342 }
343 
344 static void
345 commit_reset_write_verifier(struct nfsd_net *nn, struct svc_rqst *rqstp,
346 			    int err)
347 {
348 	switch (err) {
349 	case -EAGAIN:
350 	case -ESTALE:
351 		/*
352 		 * Neither of these are the result of a problem with
353 		 * durable storage, so avoid a write verifier reset.
354 		 */
355 		break;
356 	default:
357 		nfsd_reset_write_verifier(nn);
358 		trace_nfsd_writeverf_reset(nn, rqstp, err);
359 	}
360 }
361 
362 /*
363  * Commit metadata changes to stable storage.
364  */
365 static int
366 commit_inode_metadata(struct inode *inode)
367 {
368 	const struct export_operations *export_ops = inode->i_sb->s_export_op;
369 
370 	if (export_ops->commit_metadata)
371 		return export_ops->commit_metadata(inode);
372 	return sync_inode_metadata(inode, 1);
373 }
374 
375 static int
376 commit_metadata(struct svc_fh *fhp)
377 {
378 	struct inode *inode = d_inode(fhp->fh_dentry);
379 
380 	if (!EX_ISSYNC(fhp->fh_export))
381 		return 0;
382 	return commit_inode_metadata(inode);
383 }
384 
385 /*
386  * Go over the attributes and take care of the small differences between
387  * NFS semantics and what Linux expects.
388  */
389 static void
390 nfsd_sanitize_attrs(struct inode *inode, struct iattr *iap)
391 {
392 	/* Ignore mode updates on symlinks */
393 	if (S_ISLNK(inode->i_mode))
394 		iap->ia_valid &= ~ATTR_MODE;
395 
396 	/* sanitize the mode change */
397 	if (iap->ia_valid & ATTR_MODE) {
398 		iap->ia_mode &= S_IALLUGO;
399 		iap->ia_mode |= (inode->i_mode & ~S_IALLUGO);
400 	}
401 
402 	/* Revoke setuid/setgid on chown */
403 	if (!S_ISDIR(inode->i_mode) &&
404 	    ((iap->ia_valid & ATTR_UID) || (iap->ia_valid & ATTR_GID))) {
405 		iap->ia_valid |= ATTR_KILL_PRIV;
406 		if (iap->ia_valid & ATTR_MODE) {
407 			/* we're setting mode too, just clear the s*id bits */
408 			iap->ia_mode &= ~S_ISUID;
409 			if (iap->ia_mode & S_IXGRP)
410 				iap->ia_mode &= ~S_ISGID;
411 		} else {
412 			/* set ATTR_KILL_* bits and let VFS handle it */
413 			iap->ia_valid |= ATTR_KILL_SUID;
414 			iap->ia_valid |=
415 				setattr_should_drop_sgid(&nop_mnt_idmap, inode);
416 		}
417 	}
418 }
419 
420 static __be32
421 nfsd_get_write_access(struct svc_rqst *rqstp, struct svc_fh *fhp,
422 		struct iattr *iap)
423 {
424 	struct inode *inode = d_inode(fhp->fh_dentry);
425 
426 	if (iap->ia_size < inode->i_size) {
427 		__be32 err;
428 
429 		err = nfsd_permission(&rqstp->rq_cred,
430 				      fhp->fh_export, fhp->fh_dentry,
431 				      NFSD_MAY_TRUNC | NFSD_MAY_OWNER_OVERRIDE);
432 		if (err)
433 			return err;
434 	}
435 	return nfserrno(get_write_access(inode));
436 }
437 
438 static int __nfsd_setattr(struct dentry *dentry, struct iattr *iap)
439 {
440 	int host_err;
441 
442 	if (iap->ia_valid & ATTR_SIZE) {
443 		/*
444 		 * RFC5661, Section 18.30.4:
445 		 *   Changing the size of a file with SETATTR indirectly
446 		 *   changes the time_modify and change attributes.
447 		 *
448 		 * (and similar for the older RFCs)
449 		 */
450 		struct iattr size_attr = {
451 			.ia_valid	= ATTR_SIZE | ATTR_CTIME | ATTR_MTIME,
452 			.ia_size	= iap->ia_size,
453 		};
454 
455 		if (iap->ia_size < 0)
456 			return -EFBIG;
457 
458 		host_err = notify_change(&nop_mnt_idmap, dentry, &size_attr, NULL);
459 		if (host_err)
460 			return host_err;
461 		iap->ia_valid &= ~ATTR_SIZE;
462 
463 		/*
464 		 * Avoid the additional setattr call below if the only other
465 		 * attribute that the client sends is the mtime, as we update
466 		 * it as part of the size change above.
467 		 */
468 		if ((iap->ia_valid & ~ATTR_MTIME) == 0)
469 			return 0;
470 	}
471 
472 	if ((iap->ia_valid & ~ATTR_DELEG) == 0)
473 		return 0;
474 
475 	/*
476 	 * If ATTR_DELEG is set, then this is an update from a client that
477 	 * holds a delegation. If this is an update for only the atime, the
478 	 * ctime should not be changed. If the update contains the mtime
479 	 * too, then ATTR_CTIME should already be set.
480 	 */
481 	if (!(iap->ia_valid & ATTR_DELEG))
482 		iap->ia_valid |= ATTR_CTIME;
483 
484 	return notify_change(&nop_mnt_idmap, dentry, iap, NULL);
485 }
486 
487 /**
488  * nfsd_setattr - Set various file attributes.
489  * @rqstp: controlling RPC transaction
490  * @fhp: filehandle of target
491  * @attr: attributes to set
492  * @guardtime: do not act if ctime.tv_sec does not match this timestamp
493  *
494  * This call may adjust the contents of @attr (in particular, this
495  * call may change the bits in the na_iattr.ia_valid field).
496  *
497  * Returns nfs_ok on success, otherwise an NFS status code is
498  * returned. Caller must release @fhp by calling fh_put in either
499  * case.
500  */
501 __be32
502 nfsd_setattr(struct svc_rqst *rqstp, struct svc_fh *fhp,
503 	     struct nfsd_attrs *attr, const struct timespec64 *guardtime)
504 {
505 	struct dentry	*dentry;
506 	struct inode	*inode;
507 	struct iattr	*iap = attr->na_iattr;
508 	int		accmode = NFSD_MAY_SATTR;
509 	umode_t		ftype = 0;
510 	__be32		err;
511 	int		host_err = 0;
512 	bool		get_write_count;
513 	bool		size_change = (iap->ia_valid & ATTR_SIZE);
514 	int		retries;
515 
516 	trace_nfsd_vfs_setattr(rqstp, fhp, iap, guardtime);
517 
518 	if (iap->ia_valid & ATTR_SIZE) {
519 		accmode |= NFSD_MAY_WRITE|NFSD_MAY_OWNER_OVERRIDE;
520 		ftype = S_IFREG;
521 	}
522 
523 	/*
524 	 * If utimes(2) and friends are called with times not NULL, we should
525 	 * not set NFSD_MAY_WRITE bit. Otherwise fh_verify->nfsd_permission
526 	 * will return EACCES, when the caller's effective UID does not match
527 	 * the owner of the file, and the caller is not privileged. In this
528 	 * situation, we should return EPERM(notify_change will return this).
529 	 */
530 	if (iap->ia_valid & (ATTR_ATIME | ATTR_MTIME)) {
531 		accmode |= NFSD_MAY_OWNER_OVERRIDE;
532 		if (!(iap->ia_valid & (ATTR_ATIME_SET | ATTR_MTIME_SET)))
533 			accmode |= NFSD_MAY_WRITE;
534 	}
535 
536 	/* Callers that do fh_verify should do the fh_want_write: */
537 	get_write_count = !fhp->fh_dentry;
538 
539 	/* Get inode */
540 	err = fh_verify(rqstp, fhp, ftype, accmode);
541 	if (err)
542 		return err;
543 	if (get_write_count) {
544 		host_err = fh_want_write(fhp);
545 		if (host_err)
546 			goto out;
547 	}
548 
549 	dentry = fhp->fh_dentry;
550 	inode = d_inode(dentry);
551 
552 	nfsd_sanitize_attrs(inode, iap);
553 
554 	/*
555 	 * The size case is special, it changes the file in addition to the
556 	 * attributes, and file systems don't expect it to be mixed with
557 	 * "random" attribute changes.  We thus split out the size change
558 	 * into a separate call to ->setattr, and do the rest as a separate
559 	 * setattr call.
560 	 */
561 	if (size_change) {
562 		err = nfsd_get_write_access(rqstp, fhp, iap);
563 		if (err)
564 			return err;
565 	}
566 
567 	inode_lock(inode);
568 	err = fh_fill_pre_attrs(fhp);
569 	if (err)
570 		goto out_unlock;
571 
572 	if (guardtime) {
573 		struct timespec64 ctime = inode_get_ctime(inode);
574 		if ((u32)guardtime->tv_sec != (u32)ctime.tv_sec ||
575 		    guardtime->tv_nsec != ctime.tv_nsec) {
576 			err = nfserr_notsync;
577 			goto out_fill_attrs;
578 		}
579 	}
580 
581 	for (retries = 1;;) {
582 		struct iattr attrs;
583 
584 		/*
585 		 * notify_change() can alter its iattr argument, making
586 		 * @iap unsuitable for submission multiple times. Make a
587 		 * copy for every loop iteration.
588 		 */
589 		attrs = *iap;
590 		host_err = __nfsd_setattr(dentry, &attrs);
591 		if (host_err != -EAGAIN || !retries--)
592 			break;
593 		if (!nfsd_wait_for_delegreturn(rqstp, inode))
594 			break;
595 	}
596 	if (attr->na_seclabel && attr->na_seclabel->len)
597 		attr->na_labelerr = security_inode_setsecctx(dentry,
598 			attr->na_seclabel->data, attr->na_seclabel->len);
599 	if (IS_ENABLED(CONFIG_FS_POSIX_ACL) && attr->na_dpacl) {
600 		if (!S_ISDIR(inode->i_mode))
601 			attr->na_dpaclerr = -EINVAL;
602 		else if (attr->na_dpacl->a_count > 0)
603 			/* a_count == 0 means delete the ACL. */
604 			attr->na_dpaclerr = set_posix_acl(&nop_mnt_idmap,
605 						dentry, ACL_TYPE_DEFAULT,
606 						attr->na_dpacl);
607 		else
608 			attr->na_dpaclerr = set_posix_acl(&nop_mnt_idmap,
609 						dentry, ACL_TYPE_DEFAULT,
610 						NULL);
611 	}
612 	if (IS_ENABLED(CONFIG_FS_POSIX_ACL) && attr->na_pacl) {
613 		/*
614 		 * For any file system that is not ACL_SCOPE_FILE_OBJECT,
615 		 * a_count == 0 MUST reply nfserr_inval.
616 		 * For a file system that is ACL_SCOPE_FILE_OBJECT,
617 		 * a_count == 0 deletes the ACL.
618 		 * XXX File systems that are ACL_SCOPE_FILE_OBJECT
619 		 * are not yet supported.
620 		 */
621 		if (attr->na_pacl->a_count > 0)
622 			attr->na_paclerr = set_posix_acl(&nop_mnt_idmap,
623 							dentry, ACL_TYPE_ACCESS,
624 							attr->na_pacl);
625 		else
626 			attr->na_paclerr = -EINVAL;
627 	}
628 out_fill_attrs:
629 	/*
630 	 * RFC 1813 Section 3.3.2 does not mandate that an NFS server
631 	 * returns wcc_data for SETATTR. Some client implementations
632 	 * depend on receiving wcc_data, however, to sort out partial
633 	 * updates (eg., the client requested that size and mode be
634 	 * modified, but the server changed only the file mode).
635 	 */
636 	fh_fill_post_attrs(fhp);
637 out_unlock:
638 	inode_unlock(inode);
639 	if (size_change)
640 		put_write_access(inode);
641 out:
642 	if (!host_err)
643 		host_err = commit_metadata(fhp);
644 	return err != 0 ? err : nfserrno(host_err);
645 }
646 
647 #if defined(CONFIG_NFSD_V4)
648 /*
649  * NFS junction information is stored in an extended attribute.
650  */
651 #define NFSD_JUNCTION_XATTR_NAME	XATTR_TRUSTED_PREFIX "junction.nfs"
652 
653 /**
654  * nfsd4_is_junction - Test if an object could be an NFS junction
655  *
656  * @dentry: object to test
657  *
658  * Returns 1 if "dentry" appears to contain NFS junction information.
659  * Otherwise 0 is returned.
660  */
661 int nfsd4_is_junction(struct dentry *dentry)
662 {
663 	struct inode *inode = d_inode(dentry);
664 
665 	if (inode == NULL)
666 		return 0;
667 	if (inode->i_mode & S_IXUGO)
668 		return 0;
669 	if (!(inode->i_mode & S_ISVTX))
670 		return 0;
671 	if (vfs_getxattr(&nop_mnt_idmap, dentry, NFSD_JUNCTION_XATTR_NAME,
672 			 NULL, 0) <= 0)
673 		return 0;
674 	return 1;
675 }
676 
677 static struct nfsd4_compound_state *nfsd4_get_cstate(struct svc_rqst *rqstp)
678 {
679 	return &((struct nfsd4_compoundres *)rqstp->rq_resp)->cstate;
680 }
681 
682 __be32 nfsd4_clone_file_range(struct svc_rqst *rqstp,
683 		struct nfsd_file *nf_src, u64 src_pos,
684 		struct nfsd_file *nf_dst, u64 dst_pos,
685 		u64 count, bool sync)
686 {
687 	struct file *src = nf_src->nf_file;
688 	struct file *dst = nf_dst->nf_file;
689 	errseq_t since;
690 	loff_t cloned;
691 	__be32 ret = 0;
692 
693 	since = READ_ONCE(dst->f_wb_err);
694 	cloned = vfs_clone_file_range(src, src_pos, dst, dst_pos, count, 0);
695 	if (cloned < 0) {
696 		ret = nfserrno(cloned);
697 		goto out_err;
698 	}
699 	if (count && cloned != count) {
700 		ret = nfserrno(-EINVAL);
701 		goto out_err;
702 	}
703 	if (sync) {
704 		loff_t dst_end = count ? dst_pos + count - 1 : LLONG_MAX;
705 		int status = vfs_fsync_range(dst, dst_pos, dst_end, 0);
706 
707 		if (!status)
708 			status = filemap_check_wb_err(dst->f_mapping, since);
709 		if (!status)
710 			status = commit_inode_metadata(file_inode(src));
711 		if (status < 0) {
712 			struct nfsd_net *nn = net_generic(nf_dst->nf_net,
713 							  nfsd_net_id);
714 
715 			trace_nfsd_clone_file_range_err(rqstp,
716 					&nfsd4_get_cstate(rqstp)->save_fh,
717 					src_pos,
718 					&nfsd4_get_cstate(rqstp)->current_fh,
719 					dst_pos,
720 					count, status);
721 			commit_reset_write_verifier(nn, rqstp, status);
722 			ret = nfserrno(status);
723 		}
724 	}
725 out_err:
726 	return ret;
727 }
728 
729 ssize_t nfsd_copy_file_range(struct file *src, u64 src_pos, struct file *dst,
730 			     u64 dst_pos, u64 count)
731 {
732 	ssize_t ret;
733 
734 	/*
735 	 * Limit copy to 4MB to prevent indefinitely blocking an nfsd
736 	 * thread and client rpc slot.  The choice of 4MB is somewhat
737 	 * arbitrary.  We might instead base this on r/wsize, or make it
738 	 * tunable, or use a time instead of a byte limit, or implement
739 	 * asynchronous copy.  In theory a client could also recognize a
740 	 * limit like this and pipeline multiple COPY requests.
741 	 */
742 	count = min_t(u64, count, 1 << 22);
743 	ret = vfs_copy_file_range(src, src_pos, dst, dst_pos, count, 0);
744 
745 	if (ret == -EOPNOTSUPP || ret == -EXDEV)
746 		ret = vfs_copy_file_range(src, src_pos, dst, dst_pos, count,
747 					  COPY_FILE_SPLICE);
748 	return ret;
749 }
750 
751 __be32 nfsd4_vfs_fallocate(struct svc_rqst *rqstp, struct svc_fh *fhp,
752 			   struct file *file, loff_t offset, loff_t len,
753 			   int flags)
754 {
755 	int error;
756 
757 	if (!S_ISREG(file_inode(file)->i_mode))
758 		return nfserr_inval;
759 
760 	error = vfs_fallocate(file, flags, offset, len);
761 	if (!error)
762 		error = commit_metadata(fhp);
763 
764 	return nfserrno(error);
765 }
766 #endif /* defined(CONFIG_NFSD_V4) */
767 
768 /*
769  * Check server access rights to a file system object
770  */
771 struct accessmap {
772 	u32		access;
773 	int		how;
774 };
775 static struct accessmap	nfs3_regaccess[] = {
776     {	NFS3_ACCESS_READ,	NFSD_MAY_READ			},
777     {	NFS3_ACCESS_EXECUTE,	NFSD_MAY_EXEC			},
778     {	NFS3_ACCESS_MODIFY,	NFSD_MAY_WRITE|NFSD_MAY_TRUNC	},
779     {	NFS3_ACCESS_EXTEND,	NFSD_MAY_WRITE			},
780 
781 #ifdef CONFIG_NFSD_V4
782     {	NFS4_ACCESS_XAREAD,	NFSD_MAY_READ			},
783     {	NFS4_ACCESS_XAWRITE,	NFSD_MAY_WRITE			},
784     {	NFS4_ACCESS_XALIST,	NFSD_MAY_READ			},
785 #endif
786 
787     {	0,			0				}
788 };
789 
790 static struct accessmap	nfs3_diraccess[] = {
791     {	NFS3_ACCESS_READ,	NFSD_MAY_READ			},
792     {	NFS3_ACCESS_LOOKUP,	NFSD_MAY_EXEC			},
793     {	NFS3_ACCESS_MODIFY,	NFSD_MAY_EXEC|NFSD_MAY_WRITE|NFSD_MAY_TRUNC},
794     {	NFS3_ACCESS_EXTEND,	NFSD_MAY_EXEC|NFSD_MAY_WRITE	},
795     {	NFS3_ACCESS_DELETE,	NFSD_MAY_REMOVE			},
796 
797 #ifdef CONFIG_NFSD_V4
798     {	NFS4_ACCESS_XAREAD,	NFSD_MAY_READ			},
799     {	NFS4_ACCESS_XAWRITE,	NFSD_MAY_WRITE			},
800     {	NFS4_ACCESS_XALIST,	NFSD_MAY_READ			},
801 #endif
802 
803     {	0,			0				}
804 };
805 
806 static struct accessmap	nfs3_anyaccess[] = {
807 	/* Some clients - Solaris 2.6 at least, make an access call
808 	 * to the server to check for access for things like /dev/null
809 	 * (which really, the server doesn't care about).  So
810 	 * We provide simple access checking for them, looking
811 	 * mainly at mode bits, and we make sure to ignore read-only
812 	 * filesystem checks
813 	 */
814     {	NFS3_ACCESS_READ,	NFSD_MAY_READ			},
815     {	NFS3_ACCESS_EXECUTE,	NFSD_MAY_EXEC			},
816     {	NFS3_ACCESS_MODIFY,	NFSD_MAY_WRITE|NFSD_MAY_LOCAL_ACCESS	},
817     {	NFS3_ACCESS_EXTEND,	NFSD_MAY_WRITE|NFSD_MAY_LOCAL_ACCESS	},
818 
819     {	0,			0				}
820 };
821 
822 __be32
823 nfsd_access(struct svc_rqst *rqstp, struct svc_fh *fhp, u32 *access, u32 *supported)
824 {
825 	struct accessmap	*map;
826 	struct svc_export	*export;
827 	struct dentry		*dentry;
828 	u32			query, result = 0, sresult = 0;
829 	__be32			error;
830 
831 	error = fh_verify(rqstp, fhp, 0, NFSD_MAY_NOP);
832 	if (error)
833 		goto out;
834 
835 	export = fhp->fh_export;
836 	dentry = fhp->fh_dentry;
837 
838 	if (d_is_reg(dentry))
839 		map = nfs3_regaccess;
840 	else if (d_is_dir(dentry))
841 		map = nfs3_diraccess;
842 	else
843 		map = nfs3_anyaccess;
844 
845 
846 	query = *access;
847 	for  (; map->access; map++) {
848 		if (map->access & query) {
849 			__be32 err2;
850 
851 			sresult |= map->access;
852 
853 			err2 = nfsd_permission(&rqstp->rq_cred, export,
854 					       dentry, map->how);
855 			switch (err2) {
856 			case nfs_ok:
857 				result |= map->access;
858 				break;
859 
860 			/* the following error codes just mean the access was not allowed,
861 			 * rather than an error occurred */
862 			case nfserr_rofs:
863 			case nfserr_acces:
864 			case nfserr_perm:
865 				/* simply don't "or" in the access bit. */
866 				break;
867 			default:
868 				error = err2;
869 				goto out;
870 			}
871 		}
872 	}
873 	*access = result;
874 	if (supported)
875 		*supported = sresult;
876 
877  out:
878 	return error;
879 }
880 
881 int nfsd_open_break_lease(struct inode *inode, int access)
882 {
883 	unsigned int mode;
884 
885 	if (access & NFSD_MAY_NOT_BREAK_LEASE)
886 		return 0;
887 	mode = (access & NFSD_MAY_WRITE) ? O_WRONLY : O_RDONLY;
888 	return break_lease(inode, mode | O_NONBLOCK);
889 }
890 
891 /*
892  * Open an existing file or directory.
893  * The may_flags argument indicates the type of open (read/write/lock)
894  * and additional flags.
895  * N.B. After this call fhp needs an fh_put
896  */
897 static int
898 __nfsd_open(struct svc_fh *fhp, umode_t type, int may_flags, struct file **filp)
899 {
900 	struct path	path;
901 	struct inode	*inode;
902 	struct file	*file;
903 	int		flags = O_RDONLY|O_LARGEFILE;
904 	int		host_err = -EPERM;
905 
906 	path.mnt = fhp->fh_export->ex_path.mnt;
907 	path.dentry = fhp->fh_dentry;
908 	inode = d_inode(path.dentry);
909 
910 	if (IS_APPEND(inode) && (may_flags & NFSD_MAY_WRITE))
911 		goto out;
912 
913 	if (!inode->i_fop)
914 		goto out;
915 
916 	host_err = nfsd_open_break_lease(inode, may_flags);
917 	if (host_err) /* NOMEM or WOULDBLOCK */
918 		goto out;
919 
920 	if (may_flags & NFSD_MAY_WRITE) {
921 		if (may_flags & NFSD_MAY_READ)
922 			flags = O_RDWR|O_LARGEFILE;
923 		else
924 			flags = O_WRONLY|O_LARGEFILE;
925 	}
926 
927 	file = dentry_open(&path, flags, current_cred());
928 	if (IS_ERR(file)) {
929 		host_err = PTR_ERR(file);
930 		goto out;
931 	}
932 
933 	host_err = security_file_post_open(file, may_flags);
934 	if (host_err) {
935 		fput(file);
936 		goto out;
937 	}
938 
939 	*filp = file;
940 out:
941 	return host_err;
942 }
943 
944 __be32
945 nfsd_open(struct svc_rqst *rqstp, struct svc_fh *fhp, umode_t type,
946 		int may_flags, struct file **filp)
947 {
948 	__be32 err;
949 	int host_err;
950 	bool retried = false;
951 
952 	/*
953 	 * If we get here, then the client has already done an "open",
954 	 * and (hopefully) checked permission - so allow OWNER_OVERRIDE
955 	 * in case a chmod has now revoked permission.
956 	 *
957 	 * Arguably we should also allow the owner override for
958 	 * directories, but we never have and it doesn't seem to have
959 	 * caused anyone a problem.  If we were to change this, note
960 	 * also that our filldir callbacks would need a variant of
961 	 * lookup_one_positive_unlocked() that doesn't check permissions.
962 	 */
963 	if (type == S_IFREG)
964 		may_flags |= NFSD_MAY_OWNER_OVERRIDE;
965 retry:
966 	err = fh_verify(rqstp, fhp, type, may_flags);
967 	if (!err) {
968 		host_err = __nfsd_open(fhp, type, may_flags, filp);
969 		if (host_err == -EOPENSTALE && !retried) {
970 			retried = true;
971 			fh_put(fhp);
972 			goto retry;
973 		}
974 		err = nfserrno(host_err);
975 	}
976 	return err;
977 }
978 
979 /**
980  * nfsd_open_verified - Open a regular file for the filecache
981  * @fhp: NFS filehandle of the file to open
982  * @type: S_IFMT inode type allowed (0 means any type is allowed)
983  * @may_flags: internal permission flags
984  * @filp: OUT: open "struct file *"
985  *
986  * Returns zero on success, or a negative errno value.
987  */
988 int
989 nfsd_open_verified(struct svc_fh *fhp, umode_t type, int may_flags, struct file **filp)
990 {
991 	return __nfsd_open(fhp, type, may_flags, filp);
992 }
993 
994 /*
995  * Grab and keep cached pages associated with a file in the svc_rqst
996  * so that they can be passed to the network sendmsg routines
997  * directly. They will be released after the sending has completed.
998  *
999  * Return values: Number of bytes consumed, or -EIO if there are no
1000  * remaining pages in rqstp->rq_pages.
1001  */
1002 static int
1003 nfsd_splice_actor(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1004 		  struct splice_desc *sd)
1005 {
1006 	struct svc_rqst *rqstp = sd->u.data;
1007 	struct page *page = buf->page;	// may be a compound one
1008 	unsigned offset = buf->offset;
1009 	struct page *last_page;
1010 
1011 	last_page = page + (offset + sd->len - 1) / PAGE_SIZE;
1012 	for (page += offset / PAGE_SIZE; page <= last_page; page++) {
1013 		/*
1014 		 * Skip page replacement when extending the contents of the
1015 		 * current page.  But note that we may get two zero_pages in a
1016 		 * row from shmem.
1017 		 */
1018 		if (page == *(rqstp->rq_next_page - 1) &&
1019 		    offset_in_page(rqstp->rq_res.page_base +
1020 				   rqstp->rq_res.page_len))
1021 			continue;
1022 		if (unlikely(!svc_rqst_replace_page(rqstp, page)))
1023 			return -EIO;
1024 	}
1025 	if (rqstp->rq_res.page_len == 0)	// first call
1026 		rqstp->rq_res.page_base = offset % PAGE_SIZE;
1027 	rqstp->rq_res.page_len += sd->len;
1028 	return sd->len;
1029 }
1030 
1031 static int nfsd_direct_splice_actor(struct pipe_inode_info *pipe,
1032 				    struct splice_desc *sd)
1033 {
1034 	return __splice_from_pipe(pipe, sd, nfsd_splice_actor);
1035 }
1036 
1037 static u32 nfsd_eof_on_read(struct file *file, loff_t offset, ssize_t len,
1038 		size_t expected)
1039 {
1040 	if (expected != 0 && len == 0)
1041 		return 1;
1042 	if (offset+len >= i_size_read(file_inode(file)))
1043 		return 1;
1044 	return 0;
1045 }
1046 
1047 static __be32 nfsd_finish_read(struct svc_rqst *rqstp, struct svc_fh *fhp,
1048 			       struct file *file, loff_t offset,
1049 			       unsigned long *count, u32 *eof, ssize_t host_err)
1050 {
1051 	if (host_err >= 0) {
1052 		struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id);
1053 
1054 		nfsd_stats_io_read_add(nn, fhp->fh_export, host_err);
1055 		*eof = nfsd_eof_on_read(file, offset, host_err, *count);
1056 		*count = host_err;
1057 		fsnotify_access(file);
1058 		trace_nfsd_read_io_done(rqstp, fhp, offset, *count);
1059 		return 0;
1060 	} else {
1061 		trace_nfsd_read_err(rqstp, fhp, offset, host_err);
1062 		return nfserrno(host_err);
1063 	}
1064 }
1065 
1066 /**
1067  * nfsd_splice_read - Perform a VFS read using a splice pipe
1068  * @rqstp: RPC transaction context
1069  * @fhp: file handle of file to be read
1070  * @file: opened struct file of file to be read
1071  * @offset: starting byte offset
1072  * @count: IN: requested number of bytes; OUT: number of bytes read
1073  * @eof: OUT: set non-zero if operation reached the end of the file
1074  *
1075  * Returns nfs_ok on success, otherwise an nfserr stat value is
1076  * returned.
1077  */
1078 __be32 nfsd_splice_read(struct svc_rqst *rqstp, struct svc_fh *fhp,
1079 			struct file *file, loff_t offset, unsigned long *count,
1080 			u32 *eof)
1081 {
1082 	struct splice_desc sd = {
1083 		.len		= 0,
1084 		.total_len	= *count,
1085 		.pos		= offset,
1086 		.u.data		= rqstp,
1087 	};
1088 	ssize_t host_err;
1089 
1090 	trace_nfsd_read_splice(rqstp, fhp, offset, *count);
1091 	host_err = rw_verify_area(READ, file, &offset, *count);
1092 	if (!host_err)
1093 		host_err = splice_direct_to_actor(file, &sd,
1094 						  nfsd_direct_splice_actor);
1095 	return nfsd_finish_read(rqstp, fhp, file, offset, count, eof, host_err);
1096 }
1097 
1098 /*
1099  * The byte range of the client's READ request is expanded on both ends
1100  * until it meets the underlying file system's direct I/O alignment
1101  * requirements. After the internal read is complete, the byte range of
1102  * the NFS READ payload is reduced to the byte range that was originally
1103  * requested.
1104  *
1105  * Note that a direct read can be done only when the xdr_buf containing
1106  * the NFS READ reply does not already have contents in its .pages array.
1107  * This is due to potentially restrictive alignment requirements on the
1108  * read buffer. When .page_len and @base are zero, the .pages array is
1109  * guaranteed to be page-aligned.
1110  */
1111 static noinline_for_stack __be32
1112 nfsd_direct_read(struct svc_rqst *rqstp, struct svc_fh *fhp,
1113 		 struct nfsd_file *nf, loff_t offset, unsigned long *count,
1114 		 u32 *eof)
1115 {
1116 	u64 dio_start, dio_end;
1117 	unsigned long v, total;
1118 	struct iov_iter iter;
1119 	struct kiocb kiocb;
1120 	ssize_t host_err;
1121 	size_t len;
1122 
1123 	init_sync_kiocb(&kiocb, nf->nf_file);
1124 	kiocb.ki_flags |= IOCB_DIRECT;
1125 
1126 	/* Read a properly-aligned region of bytes into rq_bvec */
1127 	dio_start = round_down(offset, nf->nf_dio_read_offset_align);
1128 	dio_end = round_up((u64)offset + *count, nf->nf_dio_read_offset_align);
1129 
1130 	kiocb.ki_pos = dio_start;
1131 
1132 	v = 0;
1133 	total = dio_end - dio_start;
1134 	while (total && v < rqstp->rq_maxpages &&
1135 	       rqstp->rq_next_page < rqstp->rq_page_end) {
1136 		len = min_t(size_t, total, PAGE_SIZE);
1137 		bvec_set_page(&rqstp->rq_bvec[v], *rqstp->rq_next_page,
1138 			      len, 0);
1139 
1140 		total -= len;
1141 		++rqstp->rq_next_page;
1142 		++v;
1143 	}
1144 
1145 	trace_nfsd_read_direct(rqstp, fhp, offset, *count - total);
1146 	iov_iter_bvec(&iter, ITER_DEST, rqstp->rq_bvec, v,
1147 		      dio_end - dio_start - total);
1148 
1149 	host_err = vfs_iocb_iter_read(nf->nf_file, &kiocb, &iter);
1150 	if (host_err >= 0) {
1151 		unsigned int pad = offset - dio_start;
1152 
1153 		/* The returned payload starts after the pad */
1154 		rqstp->rq_res.page_base = pad;
1155 
1156 		/* Compute the count of bytes to be returned */
1157 		if (host_err > pad + *count)
1158 			host_err = *count;
1159 		else if (host_err > pad)
1160 			host_err -= pad;
1161 		else
1162 			host_err = 0;
1163 	} else if (unlikely(host_err == -EINVAL)) {
1164 		struct inode *inode = d_inode(fhp->fh_dentry);
1165 
1166 		pr_info_ratelimited("nfsd: Direct I/O alignment failure on %s/%ld\n",
1167 				    inode->i_sb->s_id, inode->i_ino);
1168 		host_err = -ESERVERFAULT;
1169 	}
1170 
1171 	return nfsd_finish_read(rqstp, fhp, nf->nf_file, offset, count,
1172 				eof, host_err);
1173 }
1174 
1175 /**
1176  * nfsd_iter_read - Perform a VFS read using an iterator
1177  * @rqstp: RPC transaction context
1178  * @fhp: file handle of file to be read
1179  * @nf: opened struct nfsd_file of file to be read
1180  * @offset: starting byte offset
1181  * @count: IN: requested number of bytes; OUT: number of bytes read
1182  * @base: offset in first page of read buffer
1183  * @eof: OUT: set non-zero if operation reached the end of the file
1184  *
1185  * Some filesystems or situations cannot use nfsd_splice_read. This
1186  * function is the slightly less-performant fallback for those cases.
1187  *
1188  * Returns nfs_ok on success, otherwise an nfserr stat value is
1189  * returned.
1190  */
1191 __be32 nfsd_iter_read(struct svc_rqst *rqstp, struct svc_fh *fhp,
1192 		      struct nfsd_file *nf, loff_t offset, unsigned long *count,
1193 		      unsigned int base, u32 *eof)
1194 {
1195 	struct file *file = nf->nf_file;
1196 	unsigned long v, total;
1197 	struct iov_iter iter;
1198 	struct kiocb kiocb;
1199 	ssize_t host_err;
1200 	size_t len;
1201 
1202 	init_sync_kiocb(&kiocb, file);
1203 
1204 	switch (nfsd_io_cache_read) {
1205 	case NFSD_IO_BUFFERED:
1206 		break;
1207 	case NFSD_IO_DIRECT:
1208 		/* When dio_read_offset_align is zero, dio is not supported */
1209 		if (nf->nf_dio_read_offset_align && !rqstp->rq_res.page_len)
1210 			return nfsd_direct_read(rqstp, fhp, nf, offset,
1211 						count, eof);
1212 		fallthrough;
1213 	case NFSD_IO_DONTCACHE:
1214 		if (file->f_op->fop_flags & FOP_DONTCACHE)
1215 			kiocb.ki_flags = IOCB_DONTCACHE;
1216 		break;
1217 	}
1218 
1219 	kiocb.ki_pos = offset;
1220 
1221 	v = 0;
1222 	total = *count;
1223 	while (total && v < rqstp->rq_maxpages &&
1224 	       rqstp->rq_next_page < rqstp->rq_page_end) {
1225 		len = min_t(size_t, total, PAGE_SIZE - base);
1226 		bvec_set_page(&rqstp->rq_bvec[v], *rqstp->rq_next_page,
1227 			      len, base);
1228 
1229 		total -= len;
1230 		++rqstp->rq_next_page;
1231 		++v;
1232 		base = 0;
1233 	}
1234 
1235 	trace_nfsd_read_vector(rqstp, fhp, offset, *count - total);
1236 	iov_iter_bvec(&iter, ITER_DEST, rqstp->rq_bvec, v, *count - total);
1237 	host_err = vfs_iocb_iter_read(file, &kiocb, &iter);
1238 	return nfsd_finish_read(rqstp, fhp, file, offset, count, eof, host_err);
1239 }
1240 
1241 /*
1242  * Gathered writes: If another process is currently writing to the file,
1243  * there's a high chance this is another nfsd (triggered by a bulk write
1244  * from a client's biod). Rather than syncing the file with each write
1245  * request, we sleep for 10 msec.
1246  *
1247  * I don't know if this roughly approximates C. Juszak's idea of
1248  * gathered writes, but it's a nice and simple solution (IMHO), and it
1249  * seems to work:-)
1250  *
1251  * Note: we do this only in the NFSv2 case, since v3 and higher have a
1252  * better tool (separate unstable writes and commits) for solving this
1253  * problem.
1254  */
1255 static int wait_for_concurrent_writes(struct file *file)
1256 {
1257 	struct inode *inode = file_inode(file);
1258 	static ino_t last_ino;
1259 	static dev_t last_dev;
1260 	int err = 0;
1261 
1262 	if (atomic_read(&inode->i_writecount) > 1
1263 	    || (last_ino == inode->i_ino && last_dev == inode->i_sb->s_dev)) {
1264 		dprintk("nfsd: write defer %d\n", task_pid_nr(current));
1265 		msleep(10);
1266 		dprintk("nfsd: write resume %d\n", task_pid_nr(current));
1267 	}
1268 
1269 	if (inode_state_read_once(inode) & I_DIRTY) {
1270 		dprintk("nfsd: write sync %d\n", task_pid_nr(current));
1271 		err = vfs_fsync(file, 0);
1272 	}
1273 	last_ino = inode->i_ino;
1274 	last_dev = inode->i_sb->s_dev;
1275 	return err;
1276 }
1277 
1278 struct nfsd_write_dio_seg {
1279 	struct iov_iter			iter;
1280 	int				flags;
1281 };
1282 
1283 static unsigned long
1284 iov_iter_bvec_offset(const struct iov_iter *iter)
1285 {
1286 	return (unsigned long)(iter->bvec->bv_offset + iter->iov_offset);
1287 }
1288 
1289 static void
1290 nfsd_write_dio_seg_init(struct nfsd_write_dio_seg *segment,
1291 			struct bio_vec *bvec, unsigned int nvecs,
1292 			unsigned long total, size_t start, size_t len,
1293 			struct kiocb *iocb)
1294 {
1295 	iov_iter_bvec(&segment->iter, ITER_SOURCE, bvec, nvecs, total);
1296 	if (start)
1297 		iov_iter_advance(&segment->iter, start);
1298 	iov_iter_truncate(&segment->iter, len);
1299 	segment->flags = iocb->ki_flags;
1300 }
1301 
1302 static unsigned int
1303 nfsd_write_dio_iters_init(struct nfsd_file *nf, struct bio_vec *bvec,
1304 			  unsigned int nvecs, struct kiocb *iocb,
1305 			  unsigned long total,
1306 			  struct nfsd_write_dio_seg segments[3])
1307 {
1308 	u32 offset_align = nf->nf_dio_offset_align;
1309 	loff_t prefix_end, orig_end, middle_end;
1310 	u32 mem_align = nf->nf_dio_mem_align;
1311 	size_t prefix, middle, suffix;
1312 	loff_t offset = iocb->ki_pos;
1313 	unsigned int nsegs = 0;
1314 
1315 	/*
1316 	 * Check if direct I/O is feasible for this write request.
1317 	 * If alignments are not available, the write is too small,
1318 	 * or no alignment can be found, fall back to buffered I/O.
1319 	 */
1320 	if (unlikely(!mem_align || !offset_align) ||
1321 	    unlikely(total < max(offset_align, mem_align)))
1322 		goto no_dio;
1323 
1324 	prefix_end = round_up(offset, offset_align);
1325 	orig_end = offset + total;
1326 	middle_end = round_down(orig_end, offset_align);
1327 
1328 	prefix = prefix_end - offset;
1329 	middle = middle_end - prefix_end;
1330 	suffix = orig_end - middle_end;
1331 
1332 	if (!middle)
1333 		goto no_dio;
1334 
1335 	if (prefix)
1336 		nfsd_write_dio_seg_init(&segments[nsegs++], bvec,
1337 					nvecs, total, 0, prefix, iocb);
1338 
1339 	nfsd_write_dio_seg_init(&segments[nsegs], bvec, nvecs,
1340 				total, prefix, middle, iocb);
1341 
1342 	/*
1343 	 * Check if the bvec iterator is aligned for direct I/O.
1344 	 *
1345 	 * bvecs generated from RPC receive buffers are contiguous: After
1346 	 * the first bvec, all subsequent bvecs start at bv_offset zero
1347 	 * (page-aligned). Therefore, only the first bvec is checked.
1348 	 */
1349 	if (iov_iter_bvec_offset(&segments[nsegs].iter) & (mem_align - 1))
1350 		goto no_dio;
1351 	segments[nsegs].flags |= IOCB_DIRECT;
1352 	nsegs++;
1353 
1354 	if (suffix)
1355 		nfsd_write_dio_seg_init(&segments[nsegs++], bvec, nvecs, total,
1356 					prefix + middle, suffix, iocb);
1357 
1358 	return nsegs;
1359 
1360 no_dio:
1361 	/* No DIO alignment possible - pack into single non-DIO segment. */
1362 	nfsd_write_dio_seg_init(&segments[0], bvec, nvecs, total, 0,
1363 				total, iocb);
1364 	return 1;
1365 }
1366 
1367 static noinline_for_stack int
1368 nfsd_direct_write(struct svc_rqst *rqstp, struct svc_fh *fhp,
1369 		  struct nfsd_file *nf, unsigned int nvecs,
1370 		  unsigned long *cnt, struct kiocb *kiocb)
1371 {
1372 	struct nfsd_write_dio_seg segments[3];
1373 	struct file *file = nf->nf_file;
1374 	unsigned int nsegs, i;
1375 	ssize_t host_err;
1376 
1377 	nsegs = nfsd_write_dio_iters_init(nf, rqstp->rq_bvec, nvecs,
1378 					  kiocb, *cnt, segments);
1379 
1380 	*cnt = 0;
1381 	for (i = 0; i < nsegs; i++) {
1382 		kiocb->ki_flags = segments[i].flags;
1383 		if (kiocb->ki_flags & IOCB_DIRECT)
1384 			trace_nfsd_write_direct(rqstp, fhp, kiocb->ki_pos,
1385 						segments[i].iter.count);
1386 		else {
1387 			trace_nfsd_write_vector(rqstp, fhp, kiocb->ki_pos,
1388 						segments[i].iter.count);
1389 			/*
1390 			 * Mark the I/O buffer as evict-able to reduce
1391 			 * memory contention.
1392 			 */
1393 			if (nf->nf_file->f_op->fop_flags & FOP_DONTCACHE)
1394 				kiocb->ki_flags |= IOCB_DONTCACHE;
1395 		}
1396 
1397 		host_err = vfs_iocb_iter_write(file, kiocb, &segments[i].iter);
1398 		if (host_err < 0)
1399 			return host_err;
1400 		*cnt += host_err;
1401 		if (host_err < segments[i].iter.count)
1402 			break;	/* partial write */
1403 	}
1404 
1405 	return 0;
1406 }
1407 
1408 /**
1409  * nfsd_vfs_write - write data to an already-open file
1410  * @rqstp: RPC execution context
1411  * @fhp: File handle of file to write into
1412  * @nf: An open file matching @fhp
1413  * @offset: Byte offset of start
1414  * @payload: xdr_buf containing the write payload
1415  * @cnt: IN: number of bytes to write, OUT: number of bytes actually written
1416  * @stable: An NFS stable_how value
1417  * @verf: NFS WRITE verifier
1418  *
1419  * Upon return, caller must invoke fh_put on @fhp.
1420  *
1421  * Return values:
1422  *   An nfsstat value in network byte order.
1423  */
1424 __be32
1425 nfsd_vfs_write(struct svc_rqst *rqstp, struct svc_fh *fhp,
1426 	       struct nfsd_file *nf, loff_t offset,
1427 	       const struct xdr_buf *payload, unsigned long *cnt,
1428 	       int stable, __be32 *verf)
1429 {
1430 	struct nfsd_net		*nn = net_generic(SVC_NET(rqstp), nfsd_net_id);
1431 	struct file		*file = nf->nf_file;
1432 	struct super_block	*sb = file_inode(file)->i_sb;
1433 	struct kiocb		kiocb;
1434 	struct svc_export	*exp;
1435 	struct iov_iter		iter;
1436 	errseq_t		since;
1437 	__be32			nfserr;
1438 	int			host_err;
1439 	unsigned long		exp_op_flags = 0;
1440 	unsigned int		pflags = current->flags;
1441 	bool			restore_flags = false;
1442 	unsigned int		nvecs;
1443 
1444 	trace_nfsd_write_opened(rqstp, fhp, offset, *cnt);
1445 
1446 	if (sb->s_export_op)
1447 		exp_op_flags = sb->s_export_op->flags;
1448 
1449 	if (test_bit(RQ_LOCAL, &rqstp->rq_flags) &&
1450 	    !(exp_op_flags & EXPORT_OP_REMOTE_FS)) {
1451 		/*
1452 		 * We want throttling in balance_dirty_pages()
1453 		 * and shrink_inactive_list() to only consider
1454 		 * the backingdev we are writing to, so that nfs to
1455 		 * localhost doesn't cause nfsd to lock up due to all
1456 		 * the client's dirty pages or its congested queue.
1457 		 */
1458 		current->flags |= PF_LOCAL_THROTTLE;
1459 		restore_flags = true;
1460 	}
1461 
1462 	exp = fhp->fh_export;
1463 
1464 	if (!EX_ISSYNC(exp))
1465 		stable = NFS_UNSTABLE;
1466 	init_sync_kiocb(&kiocb, file);
1467 	kiocb.ki_pos = offset;
1468 	if (likely(!fhp->fh_use_wgather)) {
1469 		switch (stable) {
1470 		case NFS_FILE_SYNC:
1471 			/* persist data and timestamps */
1472 			kiocb.ki_flags |= IOCB_DSYNC | IOCB_SYNC;
1473 			break;
1474 		case NFS_DATA_SYNC:
1475 			/* persist data only */
1476 			kiocb.ki_flags |= IOCB_DSYNC;
1477 			break;
1478 		}
1479 	}
1480 
1481 	nvecs = xdr_buf_to_bvec(rqstp->rq_bvec, rqstp->rq_maxpages, payload);
1482 
1483 	since = READ_ONCE(file->f_wb_err);
1484 	if (verf)
1485 		nfsd_copy_write_verifier(verf, nn);
1486 
1487 	switch (nfsd_io_cache_write) {
1488 	case NFSD_IO_DIRECT:
1489 		host_err = nfsd_direct_write(rqstp, fhp, nf, nvecs,
1490 					     cnt, &kiocb);
1491 		break;
1492 	case NFSD_IO_DONTCACHE:
1493 		if (file->f_op->fop_flags & FOP_DONTCACHE)
1494 			kiocb.ki_flags |= IOCB_DONTCACHE;
1495 		fallthrough;
1496 	case NFSD_IO_BUFFERED:
1497 		iov_iter_bvec(&iter, ITER_SOURCE, rqstp->rq_bvec, nvecs, *cnt);
1498 		host_err = vfs_iocb_iter_write(file, &kiocb, &iter);
1499 		if (host_err < 0)
1500 			break;
1501 		*cnt = host_err;
1502 		break;
1503 	}
1504 	if (host_err < 0) {
1505 		commit_reset_write_verifier(nn, rqstp, host_err);
1506 		goto out_nfserr;
1507 	}
1508 	nfsd_stats_io_write_add(nn, exp, *cnt);
1509 	fsnotify_modify(file);
1510 	host_err = filemap_check_wb_err(file->f_mapping, since);
1511 	if (host_err < 0)
1512 		goto out_nfserr;
1513 
1514 	if (stable && fhp->fh_use_wgather) {
1515 		host_err = wait_for_concurrent_writes(file);
1516 		if (host_err < 0)
1517 			commit_reset_write_verifier(nn, rqstp, host_err);
1518 	}
1519 
1520 out_nfserr:
1521 	if (host_err >= 0) {
1522 		trace_nfsd_write_io_done(rqstp, fhp, offset, *cnt);
1523 		nfserr = nfs_ok;
1524 	} else {
1525 		trace_nfsd_write_err(rqstp, fhp, offset, host_err);
1526 		nfserr = nfserrno(host_err);
1527 	}
1528 	if (restore_flags)
1529 		current_restore_flags(pflags, PF_LOCAL_THROTTLE);
1530 	return nfserr;
1531 }
1532 
1533 /**
1534  * nfsd_read_splice_ok - check if spliced reading is supported
1535  * @rqstp: RPC transaction context
1536  *
1537  * Return values:
1538  *   %true: nfsd_splice_read() may be used
1539  *   %false: nfsd_splice_read() must not be used
1540  *
1541  * NFS READ normally uses splice to send data in-place. However the
1542  * data in cache can change after the reply's MIC is computed but
1543  * before the RPC reply is sent. To prevent the client from
1544  * rejecting the server-computed MIC in this somewhat rare case, do
1545  * not use splice with the GSS integrity and privacy services.
1546  */
1547 bool nfsd_read_splice_ok(struct svc_rqst *rqstp)
1548 {
1549 	if (nfsd_disable_splice_read)
1550 		return false;
1551 	switch (svc_auth_flavor(rqstp)) {
1552 	case RPC_AUTH_GSS_KRB5I:
1553 	case RPC_AUTH_GSS_KRB5P:
1554 		return false;
1555 	}
1556 	return true;
1557 }
1558 
1559 /**
1560  * nfsd_read - Read data from a file
1561  * @rqstp: RPC transaction context
1562  * @fhp: file handle of file to be read
1563  * @offset: starting byte offset
1564  * @count: IN: requested number of bytes; OUT: number of bytes read
1565  * @eof: OUT: set non-zero if operation reached the end of the file
1566  *
1567  * The caller must verify that there is enough space in @rqstp.rq_res
1568  * to perform this operation.
1569  *
1570  * N.B. After this call fhp needs an fh_put
1571  *
1572  * Returns nfs_ok on success, otherwise an nfserr stat value is
1573  * returned.
1574  */
1575 __be32 nfsd_read(struct svc_rqst *rqstp, struct svc_fh *fhp,
1576 		 loff_t offset, unsigned long *count, u32 *eof)
1577 {
1578 	struct nfsd_file	*nf;
1579 	struct file *file;
1580 	__be32 err;
1581 
1582 	trace_nfsd_read_start(rqstp, fhp, offset, *count);
1583 	err = nfsd_file_acquire_gc(rqstp, fhp, NFSD_MAY_READ, &nf);
1584 	if (err)
1585 		return err;
1586 
1587 	file = nf->nf_file;
1588 	if (file->f_op->splice_read && nfsd_read_splice_ok(rqstp))
1589 		err = nfsd_splice_read(rqstp, fhp, file, offset, count, eof);
1590 	else
1591 		err = nfsd_iter_read(rqstp, fhp, nf, offset, count, 0, eof);
1592 
1593 	nfsd_file_put(nf);
1594 	trace_nfsd_read_done(rqstp, fhp, offset, *count);
1595 	return err;
1596 }
1597 
1598 /**
1599  * nfsd_write - open a file and write data to it
1600  * @rqstp: RPC execution context
1601  * @fhp: File handle of file to write into; nfsd_write() may modify it
1602  * @offset: Byte offset of start
1603  * @payload: xdr_buf containing the write payload
1604  * @cnt: IN: number of bytes to write, OUT: number of bytes actually written
1605  * @stable: An NFS stable_how value
1606  * @verf: NFS WRITE verifier
1607  *
1608  * Upon return, caller must invoke fh_put on @fhp.
1609  *
1610  * Return values:
1611  *   An nfsstat value in network byte order.
1612  */
1613 __be32
1614 nfsd_write(struct svc_rqst *rqstp, struct svc_fh *fhp, loff_t offset,
1615 	   const struct xdr_buf *payload, unsigned long *cnt, int stable,
1616 	   __be32 *verf)
1617 {
1618 	struct nfsd_file *nf;
1619 	__be32 err;
1620 
1621 	trace_nfsd_write_start(rqstp, fhp, offset, *cnt);
1622 
1623 	err = nfsd_file_acquire_gc(rqstp, fhp, NFSD_MAY_WRITE, &nf);
1624 	if (err)
1625 		goto out;
1626 
1627 	err = nfsd_vfs_write(rqstp, fhp, nf, offset, payload, cnt,
1628 			     stable, verf);
1629 	nfsd_file_put(nf);
1630 out:
1631 	trace_nfsd_write_done(rqstp, fhp, offset, *cnt);
1632 	return err;
1633 }
1634 
1635 /**
1636  * nfsd_commit - Commit pending writes to stable storage
1637  * @rqstp: RPC request being processed
1638  * @fhp: NFS filehandle
1639  * @nf: target file
1640  * @offset: raw offset from beginning of file
1641  * @count: raw count of bytes to sync
1642  * @verf: filled in with the server's current write verifier
1643  *
1644  * Note: we guarantee that data that lies within the range specified
1645  * by the 'offset' and 'count' parameters will be synced. The server
1646  * is permitted to sync data that lies outside this range at the
1647  * same time.
1648  *
1649  * Unfortunately we cannot lock the file to make sure we return full WCC
1650  * data to the client, as locking happens lower down in the filesystem.
1651  *
1652  * Return values:
1653  *   An nfsstat value in network byte order.
1654  */
1655 __be32
1656 nfsd_commit(struct svc_rqst *rqstp, struct svc_fh *fhp, struct nfsd_file *nf,
1657 	    u64 offset, u32 count, __be32 *verf)
1658 {
1659 	__be32			err = nfs_ok;
1660 	u64			maxbytes;
1661 	loff_t			start, end;
1662 	struct nfsd_net		*nn;
1663 
1664 	trace_nfsd_commit_start(rqstp, fhp, offset, count);
1665 
1666 	/*
1667 	 * Convert the client-provided (offset, count) range to a
1668 	 * (start, end) range. If the client-provided range falls
1669 	 * outside the maximum file size of the underlying FS,
1670 	 * clamp the sync range appropriately.
1671 	 */
1672 	start = 0;
1673 	end = LLONG_MAX;
1674 	maxbytes = (u64)fhp->fh_dentry->d_sb->s_maxbytes;
1675 	if (offset < maxbytes) {
1676 		start = offset;
1677 		if (count && (offset + count - 1 < maxbytes))
1678 			end = offset + count - 1;
1679 	}
1680 
1681 	nn = net_generic(nf->nf_net, nfsd_net_id);
1682 	if (EX_ISSYNC(fhp->fh_export)) {
1683 		errseq_t since = READ_ONCE(nf->nf_file->f_wb_err);
1684 		int err2;
1685 
1686 		err2 = vfs_fsync_range(nf->nf_file, start, end, 0);
1687 		switch (err2) {
1688 		case 0:
1689 			nfsd_copy_write_verifier(verf, nn);
1690 			err2 = filemap_check_wb_err(nf->nf_file->f_mapping,
1691 						    since);
1692 			err = nfserrno(err2);
1693 			break;
1694 		case -EINVAL:
1695 			err = nfserr_notsupp;
1696 			break;
1697 		default:
1698 			commit_reset_write_verifier(nn, rqstp, err2);
1699 			err = nfserrno(err2);
1700 		}
1701 	} else
1702 		nfsd_copy_write_verifier(verf, nn);
1703 
1704 	trace_nfsd_commit_done(rqstp, fhp, offset, count);
1705 	return err;
1706 }
1707 
1708 /**
1709  * nfsd_create_setattr - Set a created file's attributes
1710  * @rqstp: RPC transaction being executed
1711  * @fhp: NFS filehandle of parent directory
1712  * @resfhp: NFS filehandle of new object
1713  * @attrs: requested attributes of new object
1714  *
1715  * Returns nfs_ok on success, or an nfsstat in network byte order.
1716  */
1717 __be32
1718 nfsd_create_setattr(struct svc_rqst *rqstp, struct svc_fh *fhp,
1719 		    struct svc_fh *resfhp, struct nfsd_attrs *attrs)
1720 {
1721 	struct iattr *iap = attrs->na_iattr;
1722 	__be32 status;
1723 
1724 	/*
1725 	 * Mode has already been set by file creation.
1726 	 */
1727 	iap->ia_valid &= ~ATTR_MODE;
1728 
1729 	/*
1730 	 * Setting uid/gid works only for root.  Irix appears to
1731 	 * send along the gid on create when it tries to implement
1732 	 * setgid directories via NFS:
1733 	 */
1734 	if (!uid_eq(current_fsuid(), GLOBAL_ROOT_UID))
1735 		iap->ia_valid &= ~(ATTR_UID|ATTR_GID);
1736 
1737 	/*
1738 	 * Callers expect new file metadata to be committed even
1739 	 * if the attributes have not changed.
1740 	 */
1741 	if (nfsd_attrs_valid(attrs))
1742 		status = nfsd_setattr(rqstp, resfhp, attrs, NULL);
1743 	else
1744 		status = nfserrno(commit_metadata(resfhp));
1745 
1746 	/*
1747 	 * Transactional filesystems had a chance to commit changes
1748 	 * for both parent and child simultaneously making the
1749 	 * following commit_metadata a noop in many cases.
1750 	 */
1751 	if (!status)
1752 		status = nfserrno(commit_metadata(fhp));
1753 
1754 	/*
1755 	 * Update the new filehandle to pick up the new attributes.
1756 	 */
1757 	if (!status)
1758 		status = fh_update(resfhp);
1759 
1760 	return status;
1761 }
1762 
1763 /* HPUX client sometimes creates a file in mode 000, and sets size to 0.
1764  * setting size to 0 may fail for some specific file systems by the permission
1765  * checking which requires WRITE permission but the mode is 000.
1766  * we ignore the resizing(to 0) on the just new created file, since the size is
1767  * 0 after file created.
1768  *
1769  * call this only after vfs_create() is called.
1770  * */
1771 static void
1772 nfsd_check_ignore_resizing(struct iattr *iap)
1773 {
1774 	if ((iap->ia_valid & ATTR_SIZE) && (iap->ia_size == 0))
1775 		iap->ia_valid &= ~ATTR_SIZE;
1776 }
1777 
1778 /* The parent directory should already be locked - we will unlock */
1779 __be32
1780 nfsd_create_locked(struct svc_rqst *rqstp, struct svc_fh *fhp,
1781 		   struct nfsd_attrs *attrs,
1782 		   int type, dev_t rdev, struct svc_fh *resfhp)
1783 {
1784 	struct dentry	*dentry, *dchild;
1785 	struct inode	*dirp;
1786 	struct iattr	*iap = attrs->na_iattr;
1787 	__be32		err;
1788 	int		host_err = 0;
1789 
1790 	dentry = fhp->fh_dentry;
1791 	dirp = d_inode(dentry);
1792 
1793 	dchild = dget(resfhp->fh_dentry);
1794 	err = nfsd_permission(&rqstp->rq_cred, fhp->fh_export, dentry,
1795 			      NFSD_MAY_CREATE);
1796 	if (err)
1797 		goto out;
1798 
1799 	if (!(iap->ia_valid & ATTR_MODE))
1800 		iap->ia_mode = 0;
1801 	iap->ia_mode = (iap->ia_mode & S_IALLUGO) | type;
1802 
1803 	if (!IS_POSIXACL(dirp))
1804 		iap->ia_mode &= ~current_umask();
1805 
1806 	err = 0;
1807 	switch (type) {
1808 	case S_IFREG:
1809 		host_err = vfs_create(&nop_mnt_idmap, dchild, iap->ia_mode, NULL);
1810 		if (!host_err)
1811 			nfsd_check_ignore_resizing(iap);
1812 		break;
1813 	case S_IFDIR:
1814 		dchild = vfs_mkdir(&nop_mnt_idmap, dirp, dchild, iap->ia_mode, NULL);
1815 		if (IS_ERR(dchild)) {
1816 			host_err = PTR_ERR(dchild);
1817 		} else if (d_is_negative(dchild)) {
1818 			err = nfserr_serverfault;
1819 			goto out;
1820 		} else if (unlikely(dchild != resfhp->fh_dentry)) {
1821 			dput(resfhp->fh_dentry);
1822 			resfhp->fh_dentry = dget(dchild);
1823 		}
1824 		break;
1825 	case S_IFCHR:
1826 	case S_IFBLK:
1827 	case S_IFIFO:
1828 	case S_IFSOCK:
1829 		host_err = vfs_mknod(&nop_mnt_idmap, dirp, dchild,
1830 				     iap->ia_mode, rdev, NULL);
1831 		break;
1832 	default:
1833 		printk(KERN_WARNING "nfsd: bad file type %o in nfsd_create\n",
1834 		       type);
1835 		host_err = -EINVAL;
1836 	}
1837 	if (host_err < 0)
1838 		goto out_nfserr;
1839 
1840 	err = nfsd_create_setattr(rqstp, fhp, resfhp, attrs);
1841 
1842 out:
1843 	if (!err)
1844 		fh_fill_post_attrs(fhp);
1845 	end_creating(dchild);
1846 	return err;
1847 
1848 out_nfserr:
1849 	err = nfserrno(host_err);
1850 	goto out;
1851 }
1852 
1853 /*
1854  * Create a filesystem object (regular, directory, special).
1855  * Note that the parent directory is left locked.
1856  *
1857  * N.B. Every call to nfsd_create needs an fh_put for _both_ fhp and resfhp
1858  */
1859 __be32
1860 nfsd_create(struct svc_rqst *rqstp, struct svc_fh *fhp,
1861 	    char *fname, int flen, struct nfsd_attrs *attrs,
1862 	    int type, dev_t rdev, struct svc_fh *resfhp)
1863 {
1864 	struct dentry	*dentry, *dchild = NULL;
1865 	__be32		err;
1866 	int		host_err;
1867 
1868 	trace_nfsd_vfs_create(rqstp, fhp, type, fname, flen);
1869 
1870 	if (isdotent(fname, flen))
1871 		return nfserr_exist;
1872 
1873 	err = fh_verify(rqstp, fhp, S_IFDIR, NFSD_MAY_NOP);
1874 	if (err)
1875 		return err;
1876 
1877 	dentry = fhp->fh_dentry;
1878 
1879 	host_err = fh_want_write(fhp);
1880 	if (host_err)
1881 		return nfserrno(host_err);
1882 
1883 	dchild = start_creating(&nop_mnt_idmap, dentry, &QSTR_LEN(fname, flen));
1884 	host_err = PTR_ERR(dchild);
1885 	if (IS_ERR(dchild))
1886 		return nfserrno(host_err);
1887 
1888 	err = fh_compose(resfhp, fhp->fh_export, dchild, fhp);
1889 	if (err)
1890 		goto out_unlock;
1891 	err = fh_fill_pre_attrs(fhp);
1892 	if (err != nfs_ok)
1893 		goto out_unlock;
1894 	err = nfsd_create_locked(rqstp, fhp, attrs, type, rdev, resfhp);
1895 	/* nfsd_create_locked() unlocked the parent */
1896 	dput(dchild);
1897 	return err;
1898 
1899 out_unlock:
1900 	end_creating(dchild);
1901 	return err;
1902 }
1903 
1904 /*
1905  * Read a symlink. On entry, *lenp must contain the maximum path length that
1906  * fits into the buffer. On return, it contains the true length.
1907  * N.B. After this call fhp needs an fh_put
1908  */
1909 __be32
1910 nfsd_readlink(struct svc_rqst *rqstp, struct svc_fh *fhp, char *buf, int *lenp)
1911 {
1912 	__be32		err;
1913 	const char *link;
1914 	struct path path;
1915 	DEFINE_DELAYED_CALL(done);
1916 	int len;
1917 
1918 	err = fh_verify(rqstp, fhp, S_IFLNK, NFSD_MAY_NOP);
1919 	if (unlikely(err))
1920 		return err;
1921 
1922 	path.mnt = fhp->fh_export->ex_path.mnt;
1923 	path.dentry = fhp->fh_dentry;
1924 
1925 	if (unlikely(!d_is_symlink(path.dentry)))
1926 		return nfserr_inval;
1927 
1928 	touch_atime(&path);
1929 
1930 	link = vfs_get_link(path.dentry, &done);
1931 	if (IS_ERR(link))
1932 		return nfserrno(PTR_ERR(link));
1933 
1934 	len = strlen(link);
1935 	if (len < *lenp)
1936 		*lenp = len;
1937 	memcpy(buf, link, *lenp);
1938 	do_delayed_call(&done);
1939 	return 0;
1940 }
1941 
1942 /**
1943  * nfsd_symlink - Create a symlink and look up its inode
1944  * @rqstp: RPC transaction being executed
1945  * @fhp: NFS filehandle of parent directory
1946  * @fname: filename of the new symlink
1947  * @flen: length of @fname
1948  * @path: content of the new symlink (NUL-terminated)
1949  * @attrs: requested attributes of new object
1950  * @resfhp: NFS filehandle of new object
1951  *
1952  * N.B. After this call _both_ fhp and resfhp need an fh_put
1953  *
1954  * Returns nfs_ok on success, or an nfsstat in network byte order.
1955  */
1956 __be32
1957 nfsd_symlink(struct svc_rqst *rqstp, struct svc_fh *fhp,
1958 	     char *fname, int flen,
1959 	     char *path, struct nfsd_attrs *attrs,
1960 	     struct svc_fh *resfhp)
1961 {
1962 	struct dentry	*dentry, *dnew;
1963 	__be32		err, cerr;
1964 	int		host_err;
1965 
1966 	trace_nfsd_vfs_symlink(rqstp, fhp, fname, flen, path);
1967 
1968 	err = nfserr_noent;
1969 	if (!flen || path[0] == '\0')
1970 		goto out;
1971 	err = nfserr_exist;
1972 	if (isdotent(fname, flen))
1973 		goto out;
1974 
1975 	err = fh_verify(rqstp, fhp, S_IFDIR, NFSD_MAY_CREATE);
1976 	if (err)
1977 		goto out;
1978 
1979 	host_err = fh_want_write(fhp);
1980 	if (host_err) {
1981 		err = nfserrno(host_err);
1982 		goto out;
1983 	}
1984 
1985 	dentry = fhp->fh_dentry;
1986 	dnew = start_creating(&nop_mnt_idmap, dentry, &QSTR_LEN(fname, flen));
1987 	if (IS_ERR(dnew)) {
1988 		err = nfserrno(PTR_ERR(dnew));
1989 		goto out_drop_write;
1990 	}
1991 	err = fh_fill_pre_attrs(fhp);
1992 	if (err != nfs_ok)
1993 		goto out_unlock;
1994 	host_err = vfs_symlink(&nop_mnt_idmap, d_inode(dentry), dnew, path, NULL);
1995 	err = nfserrno(host_err);
1996 	cerr = fh_compose(resfhp, fhp->fh_export, dnew, fhp);
1997 	if (!err)
1998 		nfsd_create_setattr(rqstp, fhp, resfhp, attrs);
1999 	fh_fill_post_attrs(fhp);
2000 out_unlock:
2001 	end_creating(dnew);
2002 	if (!err)
2003 		err = nfserrno(commit_metadata(fhp));
2004 	if (!err)
2005 		err = cerr;
2006 out_drop_write:
2007 	fh_drop_write(fhp);
2008 out:
2009 	return err;
2010 }
2011 
2012 /**
2013  * nfsd_link - create a link
2014  * @rqstp: RPC transaction context
2015  * @ffhp: the file handle of the directory where the new link is to be created
2016  * @name: the filename of the new link
2017  * @len: the length of @name in octets
2018  * @tfhp: the file handle of an existing file object
2019  *
2020  * After this call _both_ ffhp and tfhp need an fh_put.
2021  *
2022  * Returns a generic NFS status code in network byte-order.
2023  */
2024 __be32
2025 nfsd_link(struct svc_rqst *rqstp, struct svc_fh *ffhp,
2026 				char *name, int len, struct svc_fh *tfhp)
2027 {
2028 	struct dentry	*ddir, *dnew, *dold;
2029 	struct inode	*dirp;
2030 	int		type;
2031 	__be32		err;
2032 	int		host_err;
2033 
2034 	trace_nfsd_vfs_link(rqstp, ffhp, tfhp, name, len);
2035 
2036 	err = fh_verify(rqstp, ffhp, S_IFDIR, NFSD_MAY_CREATE);
2037 	if (err)
2038 		goto out;
2039 	err = fh_verify(rqstp, tfhp, 0, NFSD_MAY_NOP);
2040 	if (err)
2041 		goto out;
2042 	err = nfserr_isdir;
2043 	if (d_is_dir(tfhp->fh_dentry))
2044 		goto out;
2045 	err = nfserr_perm;
2046 	if (!len)
2047 		goto out;
2048 	err = nfserr_exist;
2049 	if (isdotent(name, len))
2050 		goto out;
2051 
2052 	err = nfs_ok;
2053 	type = d_inode(tfhp->fh_dentry)->i_mode & S_IFMT;
2054 	host_err = fh_want_write(tfhp);
2055 	if (host_err)
2056 		goto out;
2057 
2058 	ddir = ffhp->fh_dentry;
2059 	dirp = d_inode(ddir);
2060 	dnew = start_creating(&nop_mnt_idmap, ddir, &QSTR_LEN(name, len));
2061 
2062 	if (IS_ERR(dnew)) {
2063 		host_err = PTR_ERR(dnew);
2064 		goto out_drop_write;
2065 	}
2066 
2067 	dold = tfhp->fh_dentry;
2068 
2069 	err = nfserr_noent;
2070 	if (d_really_is_negative(dold))
2071 		goto out_unlock;
2072 	err = fh_fill_pre_attrs(ffhp);
2073 	if (err != nfs_ok)
2074 		goto out_unlock;
2075 	host_err = vfs_link(dold, &nop_mnt_idmap, dirp, dnew, NULL);
2076 	fh_fill_post_attrs(ffhp);
2077 out_unlock:
2078 	end_creating(dnew);
2079 	if (!host_err) {
2080 		host_err = commit_metadata(ffhp);
2081 		if (!host_err)
2082 			host_err = commit_metadata(tfhp);
2083 	}
2084 
2085 out_drop_write:
2086 	fh_drop_write(tfhp);
2087 	if (host_err == -EBUSY) {
2088 		/*
2089 		 * See RFC 8881 Section 18.9.4 para 1-2: NFSv4 LINK
2090 		 * wants a status unique to the object type.
2091 		 */
2092 		if (type != S_IFDIR)
2093 			err = nfserr_file_open;
2094 		else
2095 			err = nfserr_acces;
2096 	}
2097 out:
2098 	return err != nfs_ok ? err : nfserrno(host_err);
2099 }
2100 
2101 static void
2102 nfsd_close_cached_files(struct dentry *dentry)
2103 {
2104 	struct inode *inode = d_inode(dentry);
2105 
2106 	if (inode && S_ISREG(inode->i_mode))
2107 		nfsd_file_close_inode_sync(inode);
2108 }
2109 
2110 static bool
2111 nfsd_has_cached_files(struct dentry *dentry)
2112 {
2113 	bool		ret = false;
2114 	struct inode *inode = d_inode(dentry);
2115 
2116 	if (inode && S_ISREG(inode->i_mode))
2117 		ret = nfsd_file_is_cached(inode);
2118 	return ret;
2119 }
2120 
2121 /**
2122  * nfsd_rename - rename a directory entry
2123  * @rqstp: RPC transaction context
2124  * @ffhp: the file handle of parent directory containing the entry to be renamed
2125  * @fname: the filename of directory entry to be renamed
2126  * @flen: the length of @fname in octets
2127  * @tfhp: the file handle of parent directory to contain the renamed entry
2128  * @tname: the filename of the new entry
2129  * @tlen: the length of @tlen in octets
2130  *
2131  * After this call _both_ ffhp and tfhp need an fh_put.
2132  *
2133  * Returns a generic NFS status code in network byte-order.
2134  */
2135 __be32
2136 nfsd_rename(struct svc_rqst *rqstp, struct svc_fh *ffhp, char *fname, int flen,
2137 			    struct svc_fh *tfhp, char *tname, int tlen)
2138 {
2139 	struct dentry	*fdentry, *tdentry;
2140 	int		type = S_IFDIR;
2141 	struct renamedata rd = {};
2142 	__be32		err;
2143 	int		host_err;
2144 	struct dentry	*close_cached;
2145 
2146 	trace_nfsd_vfs_rename(rqstp, ffhp, tfhp, fname, flen, tname, tlen);
2147 
2148 	err = fh_verify(rqstp, ffhp, S_IFDIR, NFSD_MAY_REMOVE);
2149 	if (err)
2150 		goto out;
2151 	err = fh_verify(rqstp, tfhp, S_IFDIR, NFSD_MAY_CREATE);
2152 	if (err)
2153 		goto out;
2154 
2155 	fdentry = ffhp->fh_dentry;
2156 
2157 	tdentry = tfhp->fh_dentry;
2158 
2159 	err = nfserr_perm;
2160 	if (!flen || isdotent(fname, flen) || !tlen || isdotent(tname, tlen))
2161 		goto out;
2162 
2163 	err = nfserr_xdev;
2164 	if (ffhp->fh_export->ex_path.mnt != tfhp->fh_export->ex_path.mnt)
2165 		goto out;
2166 	if (ffhp->fh_export->ex_path.dentry != tfhp->fh_export->ex_path.dentry)
2167 		goto out;
2168 
2169 retry:
2170 	close_cached = NULL;
2171 	host_err = fh_want_write(ffhp);
2172 	if (host_err) {
2173 		err = nfserrno(host_err);
2174 		goto out;
2175 	}
2176 
2177 	rd.mnt_idmap	= &nop_mnt_idmap;
2178 	rd.old_parent	= fdentry;
2179 	rd.new_parent	= tdentry;
2180 
2181 	host_err = start_renaming(&rd, 0, &QSTR_LEN(fname, flen),
2182 				  &QSTR_LEN(tname, tlen));
2183 
2184 	if (host_err) {
2185 		err = nfserrno(host_err);
2186 		goto out_want_write;
2187 	}
2188 	err = fh_fill_pre_attrs(ffhp);
2189 	if (err != nfs_ok)
2190 		goto out_unlock;
2191 	err = fh_fill_pre_attrs(tfhp);
2192 	if (err != nfs_ok)
2193 		goto out_unlock;
2194 
2195 	type = d_inode(rd.old_dentry)->i_mode & S_IFMT;
2196 
2197 	if (d_inode(rd.new_dentry))
2198 		type = d_inode(rd.new_dentry)->i_mode & S_IFMT;
2199 
2200 	if ((rd.new_dentry->d_sb->s_export_op->flags & EXPORT_OP_CLOSE_BEFORE_UNLINK) &&
2201 	    nfsd_has_cached_files(rd.new_dentry)) {
2202 		close_cached = dget(rd.new_dentry);
2203 		goto out_unlock;
2204 	} else {
2205 		int retries;
2206 
2207 		for (retries = 1;;) {
2208 			host_err = vfs_rename(&rd);
2209 			if (host_err != -EAGAIN || !retries--)
2210 				break;
2211 			if (!nfsd_wait_for_delegreturn(rqstp, d_inode(rd.old_dentry)))
2212 				break;
2213 		}
2214 		if (!host_err) {
2215 			host_err = commit_metadata(tfhp);
2216 			if (!host_err)
2217 				host_err = commit_metadata(ffhp);
2218 		}
2219 	}
2220 	if (host_err == -EBUSY) {
2221 		/*
2222 		 * See RFC 8881 Section 18.26.4 para 1-3: NFSv4 RENAME
2223 		 * wants a status unique to the object type.
2224 		 */
2225 		if (type != S_IFDIR)
2226 			err = nfserr_file_open;
2227 		else
2228 			err = nfserr_acces;
2229 	} else {
2230 		err = nfserrno(host_err);
2231 	}
2232 
2233 	if (!close_cached) {
2234 		fh_fill_post_attrs(ffhp);
2235 		fh_fill_post_attrs(tfhp);
2236 	}
2237 out_unlock:
2238 	end_renaming(&rd);
2239 out_want_write:
2240 	fh_drop_write(ffhp);
2241 
2242 	/*
2243 	 * If the target dentry has cached open files, then we need to
2244 	 * try to close them prior to doing the rename.  Final fput
2245 	 * shouldn't be done with locks held however, so we delay it
2246 	 * until this point and then reattempt the whole shebang.
2247 	 */
2248 	if (close_cached) {
2249 		nfsd_close_cached_files(close_cached);
2250 		dput(close_cached);
2251 		goto retry;
2252 	}
2253 out:
2254 	return err;
2255 }
2256 
2257 /**
2258  * nfsd_unlink - remove a directory entry
2259  * @rqstp: RPC transaction context
2260  * @fhp: the file handle of the parent directory to be modified
2261  * @type: enforced file type of the object to be removed
2262  * @fname: the name of directory entry to be removed
2263  * @flen: length of @fname in octets
2264  *
2265  * After this call fhp needs an fh_put.
2266  *
2267  * Returns a generic NFS status code in network byte-order.
2268  */
2269 __be32
2270 nfsd_unlink(struct svc_rqst *rqstp, struct svc_fh *fhp, int type,
2271 				char *fname, int flen)
2272 {
2273 	struct dentry	*dentry, *rdentry;
2274 	struct inode	*dirp;
2275 	struct inode	*rinode = NULL;
2276 	__be32		err;
2277 	int		host_err;
2278 
2279 	trace_nfsd_vfs_unlink(rqstp, fhp, fname, flen);
2280 
2281 	err = nfserr_acces;
2282 	if (!flen || isdotent(fname, flen))
2283 		goto out;
2284 	err = fh_verify(rqstp, fhp, S_IFDIR, NFSD_MAY_REMOVE);
2285 	if (err)
2286 		goto out;
2287 
2288 	host_err = fh_want_write(fhp);
2289 	if (host_err)
2290 		goto out_nfserr;
2291 
2292 	dentry = fhp->fh_dentry;
2293 	dirp = d_inode(dentry);
2294 
2295 	rdentry = start_removing(&nop_mnt_idmap, dentry, &QSTR_LEN(fname, flen));
2296 
2297 	host_err = PTR_ERR(rdentry);
2298 	if (IS_ERR(rdentry))
2299 		goto out_drop_write;
2300 
2301 	err = fh_fill_pre_attrs(fhp);
2302 	if (err != nfs_ok)
2303 		goto out_unlock;
2304 
2305 	rinode = d_inode(rdentry);
2306 	/* Prevent truncation until after locks dropped */
2307 	ihold(rinode);
2308 
2309 	if (!type)
2310 		type = d_inode(rdentry)->i_mode & S_IFMT;
2311 
2312 	if (type != S_IFDIR) {
2313 		int retries;
2314 
2315 		if (rdentry->d_sb->s_export_op->flags & EXPORT_OP_CLOSE_BEFORE_UNLINK)
2316 			nfsd_close_cached_files(rdentry);
2317 
2318 		for (retries = 1;;) {
2319 			host_err = vfs_unlink(&nop_mnt_idmap, dirp, rdentry, NULL);
2320 			if (host_err != -EAGAIN || !retries--)
2321 				break;
2322 			if (!nfsd_wait_for_delegreturn(rqstp, rinode))
2323 				break;
2324 		}
2325 	} else {
2326 		host_err = vfs_rmdir(&nop_mnt_idmap, dirp, rdentry, NULL);
2327 	}
2328 	fh_fill_post_attrs(fhp);
2329 
2330 out_unlock:
2331 	end_removing(rdentry);
2332 	if (!err && !host_err)
2333 		host_err = commit_metadata(fhp);
2334 	iput(rinode);    /* truncate the inode here */
2335 
2336 out_drop_write:
2337 	fh_drop_write(fhp);
2338 out_nfserr:
2339 	if (host_err == -EBUSY) {
2340 		/*
2341 		 * See RFC 8881 Section 18.25.4 para 4: NFSv4 REMOVE
2342 		 * wants a status unique to the object type.
2343 		 */
2344 		if (type != S_IFDIR)
2345 			err = nfserr_file_open;
2346 		else
2347 			err = nfserr_acces;
2348 	}
2349 out:
2350 	return err != nfs_ok ? err : nfserrno(host_err);
2351 }
2352 
2353 /*
2354  * We do this buffering because we must not call back into the file
2355  * system's ->lookup() method from the filldir callback. That may well
2356  * deadlock a number of file systems.
2357  *
2358  * This is based heavily on the implementation of same in XFS.
2359  */
2360 struct buffered_dirent {
2361 	u64		ino;
2362 	loff_t		offset;
2363 	int		namlen;
2364 	unsigned int	d_type;
2365 	char		name[];
2366 };
2367 
2368 struct readdir_data {
2369 	struct dir_context ctx;
2370 	char		*dirent;
2371 	size_t		used;
2372 	int		full;
2373 };
2374 
2375 static bool nfsd_buffered_filldir(struct dir_context *ctx, const char *name,
2376 				 int namlen, loff_t offset, u64 ino,
2377 				 unsigned int d_type)
2378 {
2379 	struct readdir_data *buf =
2380 		container_of(ctx, struct readdir_data, ctx);
2381 	struct buffered_dirent *de = (void *)(buf->dirent + buf->used);
2382 	unsigned int reclen;
2383 
2384 	reclen = ALIGN(sizeof(struct buffered_dirent) + namlen, sizeof(u64));
2385 	if (buf->used + reclen > PAGE_SIZE) {
2386 		buf->full = 1;
2387 		return false;
2388 	}
2389 
2390 	de->namlen = namlen;
2391 	de->offset = offset;
2392 	de->ino = ino;
2393 	de->d_type = d_type;
2394 	memcpy(de->name, name, namlen);
2395 	buf->used += reclen;
2396 
2397 	return true;
2398 }
2399 
2400 static __be32 nfsd_buffered_readdir(struct file *file, struct svc_fh *fhp,
2401 				    nfsd_filldir_t func, struct readdir_cd *cdp,
2402 				    loff_t *offsetp)
2403 {
2404 	struct buffered_dirent *de;
2405 	int host_err;
2406 	int size;
2407 	loff_t offset;
2408 	struct readdir_data buf = {
2409 		.ctx.actor = nfsd_buffered_filldir,
2410 		.dirent = (void *)__get_free_page(GFP_KERNEL)
2411 	};
2412 
2413 	if (!buf.dirent)
2414 		return nfserrno(-ENOMEM);
2415 
2416 	offset = *offsetp;
2417 
2418 	while (1) {
2419 		unsigned int reclen;
2420 
2421 		cdp->err = nfserr_eof; /* will be cleared on successful read */
2422 		buf.used = 0;
2423 		buf.full = 0;
2424 
2425 		host_err = iterate_dir(file, &buf.ctx);
2426 		if (buf.full)
2427 			host_err = 0;
2428 
2429 		if (host_err < 0)
2430 			break;
2431 
2432 		size = buf.used;
2433 
2434 		if (!size)
2435 			break;
2436 
2437 		de = (struct buffered_dirent *)buf.dirent;
2438 		while (size > 0) {
2439 			offset = de->offset;
2440 
2441 			if (func(cdp, de->name, de->namlen, de->offset,
2442 				 de->ino, de->d_type))
2443 				break;
2444 
2445 			if (cdp->err != nfs_ok)
2446 				break;
2447 
2448 			trace_nfsd_dirent(fhp, de->ino, de->name, de->namlen);
2449 
2450 			reclen = ALIGN(sizeof(*de) + de->namlen,
2451 				       sizeof(u64));
2452 			size -= reclen;
2453 			de = (struct buffered_dirent *)((char *)de + reclen);
2454 		}
2455 		if (size > 0) /* We bailed out early */
2456 			break;
2457 
2458 		offset = vfs_llseek(file, 0, SEEK_CUR);
2459 	}
2460 
2461 	free_page((unsigned long)(buf.dirent));
2462 
2463 	if (host_err)
2464 		return nfserrno(host_err);
2465 
2466 	*offsetp = offset;
2467 	return cdp->err;
2468 }
2469 
2470 /**
2471  * nfsd_readdir - Read entries from a directory
2472  * @rqstp: RPC transaction context
2473  * @fhp: NFS file handle of directory to be read
2474  * @offsetp: OUT: seek offset of final entry that was read
2475  * @cdp: OUT: an eof error value
2476  * @func: entry filler actor
2477  *
2478  * This implementation ignores the NFSv3/4 verifier cookie.
2479  *
2480  * NB: normal system calls hold file->f_pos_lock when calling
2481  * ->iterate_shared and ->llseek, but nfsd_readdir() does not.
2482  * Because the struct file acquired here is not visible to other
2483  * threads, it's internal state does not need mutex protection.
2484  *
2485  * Returns nfs_ok on success, otherwise an nfsstat code is
2486  * returned.
2487  */
2488 __be32
2489 nfsd_readdir(struct svc_rqst *rqstp, struct svc_fh *fhp, loff_t *offsetp,
2490 	     struct readdir_cd *cdp, nfsd_filldir_t func)
2491 {
2492 	__be32		err;
2493 	struct file	*file;
2494 	loff_t		offset = *offsetp;
2495 	int             may_flags = NFSD_MAY_READ;
2496 
2497 	err = nfsd_open(rqstp, fhp, S_IFDIR, may_flags, &file);
2498 	if (err)
2499 		goto out;
2500 
2501 	if (fhp->fh_64bit_cookies)
2502 		file->f_mode |= FMODE_64BITHASH;
2503 	else
2504 		file->f_mode |= FMODE_32BITHASH;
2505 
2506 	offset = vfs_llseek(file, offset, SEEK_SET);
2507 	if (offset < 0) {
2508 		err = nfserrno((int)offset);
2509 		goto out_close;
2510 	}
2511 
2512 	err = nfsd_buffered_readdir(file, fhp, func, cdp, offsetp);
2513 
2514 	if (err == nfserr_eof || err == nfserr_toosmall)
2515 		err = nfs_ok; /* can still be found in ->err */
2516 out_close:
2517 	nfsd_filp_close(file);
2518 out:
2519 	return err;
2520 }
2521 
2522 /**
2523  * nfsd_filp_close: close a file synchronously
2524  * @fp: the file to close
2525  *
2526  * nfsd_filp_close() is similar in behaviour to filp_close().
2527  * The difference is that if this is the final close on the
2528  * file, the that finalisation happens immediately, rather then
2529  * being handed over to a work_queue, as it the case for
2530  * filp_close().
2531  * When a user-space process closes a file (even when using
2532  * filp_close() the finalisation happens before returning to
2533  * userspace, so it is effectively synchronous.  When a kernel thread
2534  * uses file_close(), on the other hand, the handling is completely
2535  * asynchronous.  This means that any cost imposed by that finalisation
2536  * is not imposed on the nfsd thread, and nfsd could potentually
2537  * close files more quickly than the work queue finalises the close,
2538  * which would lead to unbounded growth in the queue.
2539  *
2540  * In some contexts is it not safe to synchronously wait for
2541  * close finalisation (see comment for __fput_sync()), but nfsd
2542  * does not match those contexts.  In partcilarly it does not, at the
2543  * time that this function is called, hold and locks and no finalisation
2544  * of any file, socket, or device driver would have any cause to wait
2545  * for nfsd to make progress.
2546  */
2547 void nfsd_filp_close(struct file *fp)
2548 {
2549 	get_file(fp);
2550 	filp_close(fp, NULL);
2551 	__fput_sync(fp);
2552 }
2553 
2554 /*
2555  * Get file system stats
2556  * N.B. After this call fhp needs an fh_put
2557  */
2558 __be32
2559 nfsd_statfs(struct svc_rqst *rqstp, struct svc_fh *fhp, struct kstatfs *stat, int access)
2560 {
2561 	__be32 err;
2562 
2563 	trace_nfsd_vfs_statfs(rqstp, fhp);
2564 
2565 	err = fh_verify(rqstp, fhp, 0, NFSD_MAY_NOP | access);
2566 	if (!err) {
2567 		struct path path = {
2568 			.mnt	= fhp->fh_export->ex_path.mnt,
2569 			.dentry	= fhp->fh_dentry,
2570 		};
2571 		if (vfs_statfs(&path, stat))
2572 			err = nfserr_io;
2573 	}
2574 	return err;
2575 }
2576 
2577 static int exp_rdonly(struct svc_cred *cred, struct svc_export *exp)
2578 {
2579 	return nfsexp_flags(cred, exp) & NFSEXP_READONLY;
2580 }
2581 
2582 #ifdef CONFIG_NFSD_V4
2583 /*
2584  * Helper function to translate error numbers. In the case of xattr operations,
2585  * some error codes need to be translated outside of the standard translations.
2586  *
2587  * ENODATA needs to be translated to nfserr_noxattr.
2588  * E2BIG to nfserr_xattr2big.
2589  *
2590  * Additionally, vfs_listxattr can return -ERANGE. This means that the
2591  * file has too many extended attributes to retrieve inside an
2592  * XATTR_LIST_MAX sized buffer. This is a bug in the xattr implementation:
2593  * filesystems will allow the adding of extended attributes until they hit
2594  * their own internal limit. This limit may be larger than XATTR_LIST_MAX.
2595  * So, at that point, the attributes are present and valid, but can't
2596  * be retrieved using listxattr, since the upper level xattr code enforces
2597  * the XATTR_LIST_MAX limit.
2598  *
2599  * This bug means that we need to deal with listxattr returning -ERANGE. The
2600  * best mapping is to return TOOSMALL.
2601  */
2602 static __be32
2603 nfsd_xattr_errno(int err)
2604 {
2605 	switch (err) {
2606 	case -ENODATA:
2607 		return nfserr_noxattr;
2608 	case -E2BIG:
2609 		return nfserr_xattr2big;
2610 	case -ERANGE:
2611 		return nfserr_toosmall;
2612 	}
2613 	return nfserrno(err);
2614 }
2615 
2616 /*
2617  * Retrieve the specified user extended attribute. To avoid always
2618  * having to allocate the maximum size (since we are not getting
2619  * a maximum size from the RPC), do a probe + alloc. Hold a reader
2620  * lock on i_rwsem to prevent the extended attribute from changing
2621  * size while we're doing this.
2622  */
2623 __be32
2624 nfsd_getxattr(struct svc_rqst *rqstp, struct svc_fh *fhp, char *name,
2625 	      void **bufp, int *lenp)
2626 {
2627 	ssize_t len;
2628 	__be32 err;
2629 	char *buf;
2630 	struct inode *inode;
2631 	struct dentry *dentry;
2632 
2633 	err = fh_verify(rqstp, fhp, 0, NFSD_MAY_READ);
2634 	if (err)
2635 		return err;
2636 
2637 	err = nfs_ok;
2638 	dentry = fhp->fh_dentry;
2639 	inode = d_inode(dentry);
2640 
2641 	inode_lock_shared(inode);
2642 
2643 	len = vfs_getxattr(&nop_mnt_idmap, dentry, name, NULL, 0);
2644 
2645 	/*
2646 	 * Zero-length attribute, just return.
2647 	 */
2648 	if (len == 0) {
2649 		*bufp = NULL;
2650 		*lenp = 0;
2651 		goto out;
2652 	}
2653 
2654 	if (len < 0) {
2655 		err = nfsd_xattr_errno(len);
2656 		goto out;
2657 	}
2658 
2659 	if (len > *lenp) {
2660 		err = nfserr_toosmall;
2661 		goto out;
2662 	}
2663 
2664 	buf = kvmalloc(len, GFP_KERNEL);
2665 	if (buf == NULL) {
2666 		err = nfserr_jukebox;
2667 		goto out;
2668 	}
2669 
2670 	len = vfs_getxattr(&nop_mnt_idmap, dentry, name, buf, len);
2671 	if (len <= 0) {
2672 		kvfree(buf);
2673 		buf = NULL;
2674 		err = nfsd_xattr_errno(len);
2675 	}
2676 
2677 	*lenp = len;
2678 	*bufp = buf;
2679 
2680 out:
2681 	inode_unlock_shared(inode);
2682 
2683 	return err;
2684 }
2685 
2686 /*
2687  * Retrieve the xattr names. Since we can't know how many are
2688  * user extended attributes, we must get all attributes here,
2689  * and have the XDR encode filter out the "user." ones.
2690  *
2691  * While this could always just allocate an XATTR_LIST_MAX
2692  * buffer, that's a waste, so do a probe + allocate. To
2693  * avoid any changes between the probe and allocate, wrap
2694  * this in inode_lock.
2695  */
2696 __be32
2697 nfsd_listxattr(struct svc_rqst *rqstp, struct svc_fh *fhp, char **bufp,
2698 	       int *lenp)
2699 {
2700 	ssize_t len;
2701 	__be32 err;
2702 	char *buf;
2703 	struct inode *inode;
2704 	struct dentry *dentry;
2705 
2706 	err = fh_verify(rqstp, fhp, 0, NFSD_MAY_READ);
2707 	if (err)
2708 		return err;
2709 
2710 	dentry = fhp->fh_dentry;
2711 	inode = d_inode(dentry);
2712 	*lenp = 0;
2713 
2714 	inode_lock_shared(inode);
2715 
2716 	len = vfs_listxattr(dentry, NULL, 0);
2717 	if (len <= 0) {
2718 		err = nfsd_xattr_errno(len);
2719 		goto out;
2720 	}
2721 
2722 	if (len > XATTR_LIST_MAX) {
2723 		err = nfserr_xattr2big;
2724 		goto out;
2725 	}
2726 
2727 	buf = kvmalloc(len, GFP_KERNEL);
2728 	if (buf == NULL) {
2729 		err = nfserr_jukebox;
2730 		goto out;
2731 	}
2732 
2733 	len = vfs_listxattr(dentry, buf, len);
2734 	if (len <= 0) {
2735 		kvfree(buf);
2736 		err = nfsd_xattr_errno(len);
2737 		goto out;
2738 	}
2739 
2740 	*lenp = len;
2741 	*bufp = buf;
2742 
2743 	err = nfs_ok;
2744 out:
2745 	inode_unlock_shared(inode);
2746 
2747 	return err;
2748 }
2749 
2750 /**
2751  * nfsd_removexattr - Remove an extended attribute
2752  * @rqstp: RPC transaction being executed
2753  * @fhp: NFS filehandle of object with xattr to remove
2754  * @name: name of xattr to remove (NUL-terminate)
2755  *
2756  * Pass in a NULL pointer for delegated_inode, and let the client deal
2757  * with NFS4ERR_DELAY (same as with e.g. setattr and remove).
2758  *
2759  * Returns nfs_ok on success, or an nfsstat in network byte order.
2760  */
2761 __be32
2762 nfsd_removexattr(struct svc_rqst *rqstp, struct svc_fh *fhp, char *name)
2763 {
2764 	__be32 err;
2765 	int ret;
2766 
2767 	err = fh_verify(rqstp, fhp, 0, NFSD_MAY_WRITE);
2768 	if (err)
2769 		return err;
2770 
2771 	ret = fh_want_write(fhp);
2772 	if (ret)
2773 		return nfserrno(ret);
2774 
2775 	inode_lock(fhp->fh_dentry->d_inode);
2776 	err = fh_fill_pre_attrs(fhp);
2777 	if (err != nfs_ok)
2778 		goto out_unlock;
2779 	ret = __vfs_removexattr_locked(&nop_mnt_idmap, fhp->fh_dentry,
2780 				       name, NULL);
2781 	err = nfsd_xattr_errno(ret);
2782 	fh_fill_post_attrs(fhp);
2783 out_unlock:
2784 	inode_unlock(fhp->fh_dentry->d_inode);
2785 	fh_drop_write(fhp);
2786 
2787 	return err;
2788 }
2789 
2790 __be32
2791 nfsd_setxattr(struct svc_rqst *rqstp, struct svc_fh *fhp, char *name,
2792 	      void *buf, u32 len, u32 flags)
2793 {
2794 	__be32 err;
2795 	int ret;
2796 
2797 	err = fh_verify(rqstp, fhp, 0, NFSD_MAY_WRITE);
2798 	if (err)
2799 		return err;
2800 
2801 	ret = fh_want_write(fhp);
2802 	if (ret)
2803 		return nfserrno(ret);
2804 	inode_lock(fhp->fh_dentry->d_inode);
2805 	err = fh_fill_pre_attrs(fhp);
2806 	if (err != nfs_ok)
2807 		goto out_unlock;
2808 	ret = __vfs_setxattr_locked(&nop_mnt_idmap, fhp->fh_dentry,
2809 				    name, buf, len, flags, NULL);
2810 	fh_fill_post_attrs(fhp);
2811 	err = nfsd_xattr_errno(ret);
2812 out_unlock:
2813 	inode_unlock(fhp->fh_dentry->d_inode);
2814 	fh_drop_write(fhp);
2815 	return err;
2816 }
2817 #endif
2818 
2819 /*
2820  * Check for a user's access permissions to this inode.
2821  */
2822 __be32
2823 nfsd_permission(struct svc_cred *cred, struct svc_export *exp,
2824 		struct dentry *dentry, int acc)
2825 {
2826 	struct inode	*inode = d_inode(dentry);
2827 	int		err;
2828 
2829 	if ((acc & NFSD_MAY_MASK) == NFSD_MAY_NOP)
2830 		return 0;
2831 #if 0
2832 	dprintk("nfsd: permission 0x%x%s%s%s%s%s%s%s mode 0%o%s%s%s\n",
2833 		acc,
2834 		(acc & NFSD_MAY_READ)?	" read"  : "",
2835 		(acc & NFSD_MAY_WRITE)?	" write" : "",
2836 		(acc & NFSD_MAY_EXEC)?	" exec"  : "",
2837 		(acc & NFSD_MAY_SATTR)?	" sattr" : "",
2838 		(acc & NFSD_MAY_TRUNC)?	" trunc" : "",
2839 		(acc & NFSD_MAY_NLM)?	" nlm"  : "",
2840 		(acc & NFSD_MAY_OWNER_OVERRIDE)? " owneroverride" : "",
2841 		inode->i_mode,
2842 		IS_IMMUTABLE(inode)?	" immut" : "",
2843 		IS_APPEND(inode)?	" append" : "",
2844 		__mnt_is_readonly(exp->ex_path.mnt)?	" ro" : "");
2845 	dprintk("      owner %d/%d user %d/%d\n",
2846 		inode->i_uid, inode->i_gid, current_fsuid(), current_fsgid());
2847 #endif
2848 
2849 	/* Normally we reject any write/sattr etc access on a read-only file
2850 	 * system.  But if it is IRIX doing check on write-access for a
2851 	 * device special file, we ignore rofs.
2852 	 */
2853 	if (!(acc & NFSD_MAY_LOCAL_ACCESS))
2854 		if (acc & (NFSD_MAY_WRITE | NFSD_MAY_SATTR | NFSD_MAY_TRUNC)) {
2855 			if (exp_rdonly(cred, exp) ||
2856 			    __mnt_is_readonly(exp->ex_path.mnt))
2857 				return nfserr_rofs;
2858 			if (/* (acc & NFSD_MAY_WRITE) && */ IS_IMMUTABLE(inode))
2859 				return nfserr_perm;
2860 		}
2861 	if ((acc & NFSD_MAY_TRUNC) && IS_APPEND(inode))
2862 		return nfserr_perm;
2863 
2864 	/*
2865 	 * The file owner always gets access permission for accesses that
2866 	 * would normally be checked at open time. This is to make
2867 	 * file access work even when the client has done a fchmod(fd, 0).
2868 	 *
2869 	 * However, `cp foo bar' should fail nevertheless when bar is
2870 	 * readonly. A sensible way to do this might be to reject all
2871 	 * attempts to truncate a read-only file, because a creat() call
2872 	 * always implies file truncation.
2873 	 * ... but this isn't really fair.  A process may reasonably call
2874 	 * ftruncate on an open file descriptor on a file with perm 000.
2875 	 * We must trust the client to do permission checking - using "ACCESS"
2876 	 * with NFSv3.
2877 	 */
2878 	if ((acc & NFSD_MAY_OWNER_OVERRIDE) &&
2879 	    uid_eq(inode->i_uid, current_fsuid()))
2880 		return 0;
2881 
2882 	/* This assumes  NFSD_MAY_{READ,WRITE,EXEC} == MAY_{READ,WRITE,EXEC} */
2883 	err = inode_permission(&nop_mnt_idmap, inode,
2884 			       acc & (MAY_READ | MAY_WRITE | MAY_EXEC));
2885 
2886 	/* Allow read access to binaries even when mode 111 */
2887 	if (err == -EACCES && S_ISREG(inode->i_mode) &&
2888 	     (((acc & NFSD_MAY_MASK) == NFSD_MAY_READ) &&
2889 	      (acc & (NFSD_MAY_OWNER_OVERRIDE | NFSD_MAY_READ_IF_EXEC))))
2890 		err = inode_permission(&nop_mnt_idmap, inode, MAY_EXEC);
2891 
2892 	return err? nfserrno(err) : 0;
2893 }
2894