1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/nfs/dir.c
4 *
5 * Copyright (C) 1992 Rick Sladkey
6 *
7 * nfs directory handling functions
8 *
9 * 10 Apr 1996 Added silly rename for unlink --okir
10 * 28 Sep 1996 Improved directory cache --okir
11 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
12 * Re-implemented silly rename for unlink, newly implemented
13 * silly rename for nfs_rename() following the suggestions
14 * of Olaf Kirch (okir) found in this file.
15 * Following Linus comments on my original hack, this version
16 * depends only on the dcache stuff and doesn't touch the inode
17 * layer (iput() and friends).
18 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
19 */
20
21 #include <linux/compat.h>
22 #include <linux/module.h>
23 #include <linux/time.h>
24 #include <linux/errno.h>
25 #include <linux/stat.h>
26 #include <linux/fcntl.h>
27 #include <linux/string.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/mm.h>
31 #include <linux/sunrpc/clnt.h>
32 #include <linux/nfs_fs.h>
33 #include <linux/nfs_mount.h>
34 #include <linux/pagemap.h>
35 #include <linux/pagevec.h>
36 #include <linux/namei.h>
37 #include <linux/mount.h>
38 #include <linux/swap.h>
39 #include <linux/sched.h>
40 #include <linux/kmemleak.h>
41 #include <linux/xattr.h>
42 #include <linux/hash.h>
43
44 #include "delegation.h"
45 #include "iostat.h"
46 #include "internal.h"
47 #include "fscache.h"
48
49 #include "nfstrace.h"
50
51 /* #define NFS_DEBUG_VERBOSE 1 */
52
53 static int nfs_opendir(struct inode *, struct file *);
54 static int nfs_closedir(struct inode *, struct file *);
55 static int nfs_readdir(struct file *, struct dir_context *);
56 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
57 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
58 static void nfs_readdir_clear_array(struct folio *);
59 static int nfs_do_create(struct inode *dir, struct dentry *dentry,
60 umode_t mode, int open_flags);
61
62 const struct file_operations nfs_dir_operations = {
63 .llseek = nfs_llseek_dir,
64 .read = generic_read_dir,
65 .iterate_shared = nfs_readdir,
66 .open = nfs_opendir,
67 .release = nfs_closedir,
68 .fsync = nfs_fsync_dir,
69 };
70
71 const struct address_space_operations nfs_dir_aops = {
72 .free_folio = nfs_readdir_clear_array,
73 };
74
75 #define NFS_INIT_DTSIZE PAGE_SIZE
76
77 static struct nfs_open_dir_context *
alloc_nfs_open_dir_context(struct inode * dir)78 alloc_nfs_open_dir_context(struct inode *dir)
79 {
80 struct nfs_inode *nfsi = NFS_I(dir);
81 struct nfs_open_dir_context *ctx;
82
83 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL_ACCOUNT);
84 if (ctx != NULL) {
85 ctx->attr_gencount = nfsi->attr_gencount;
86 ctx->dtsize = NFS_INIT_DTSIZE;
87 spin_lock(&dir->i_lock);
88 if (list_empty(&nfsi->open_files) &&
89 (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER))
90 nfs_set_cache_invalid(dir,
91 NFS_INO_INVALID_DATA |
92 NFS_INO_REVAL_FORCED);
93 list_add_tail_rcu(&ctx->list, &nfsi->open_files);
94 memcpy(ctx->verf, nfsi->cookieverf, sizeof(ctx->verf));
95 spin_unlock(&dir->i_lock);
96 return ctx;
97 }
98 return ERR_PTR(-ENOMEM);
99 }
100
put_nfs_open_dir_context(struct inode * dir,struct nfs_open_dir_context * ctx)101 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
102 {
103 spin_lock(&dir->i_lock);
104 list_del_rcu(&ctx->list);
105 spin_unlock(&dir->i_lock);
106 kfree_rcu(ctx, rcu_head);
107 }
108
109 /*
110 * Open file
111 */
112 static int
nfs_opendir(struct inode * inode,struct file * filp)113 nfs_opendir(struct inode *inode, struct file *filp)
114 {
115 int res = 0;
116 struct nfs_open_dir_context *ctx;
117
118 dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
119
120 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
121
122 ctx = alloc_nfs_open_dir_context(inode);
123 if (IS_ERR(ctx)) {
124 res = PTR_ERR(ctx);
125 goto out;
126 }
127 filp->private_data = ctx;
128 out:
129 return res;
130 }
131
132 static int
nfs_closedir(struct inode * inode,struct file * filp)133 nfs_closedir(struct inode *inode, struct file *filp)
134 {
135 put_nfs_open_dir_context(file_inode(filp), filp->private_data);
136 return 0;
137 }
138
139 struct nfs_cache_array_entry {
140 u64 cookie;
141 u64 ino;
142 const char *name;
143 unsigned int name_len;
144 unsigned char d_type;
145 };
146
147 struct nfs_cache_array {
148 u64 change_attr;
149 u64 last_cookie;
150 unsigned int size;
151 unsigned char folio_full : 1,
152 folio_is_eof : 1,
153 cookies_are_ordered : 1;
154 struct nfs_cache_array_entry array[] __counted_by(size);
155 };
156
157 struct nfs_readdir_descriptor {
158 struct file *file;
159 struct folio *folio;
160 struct dir_context *ctx;
161 pgoff_t folio_index;
162 pgoff_t folio_index_max;
163 u64 dir_cookie;
164 u64 last_cookie;
165 loff_t current_index;
166
167 __be32 verf[NFS_DIR_VERIFIER_SIZE];
168 unsigned long dir_verifier;
169 unsigned long timestamp;
170 unsigned long gencount;
171 unsigned long attr_gencount;
172 unsigned int cache_entry_index;
173 unsigned int buffer_fills;
174 unsigned int dtsize;
175 bool clear_cache;
176 bool plus;
177 bool eob;
178 bool eof;
179 };
180
nfs_set_dtsize(struct nfs_readdir_descriptor * desc,unsigned int sz)181 static void nfs_set_dtsize(struct nfs_readdir_descriptor *desc, unsigned int sz)
182 {
183 struct nfs_server *server = NFS_SERVER(file_inode(desc->file));
184 unsigned int maxsize = server->dtsize;
185
186 if (sz > maxsize)
187 sz = maxsize;
188 if (sz < NFS_MIN_FILE_IO_SIZE)
189 sz = NFS_MIN_FILE_IO_SIZE;
190 desc->dtsize = sz;
191 }
192
nfs_shrink_dtsize(struct nfs_readdir_descriptor * desc)193 static void nfs_shrink_dtsize(struct nfs_readdir_descriptor *desc)
194 {
195 nfs_set_dtsize(desc, desc->dtsize >> 1);
196 }
197
nfs_grow_dtsize(struct nfs_readdir_descriptor * desc)198 static void nfs_grow_dtsize(struct nfs_readdir_descriptor *desc)
199 {
200 nfs_set_dtsize(desc, desc->dtsize << 1);
201 }
202
nfs_readdir_folio_init_array(struct folio * folio,u64 last_cookie,u64 change_attr)203 static void nfs_readdir_folio_init_array(struct folio *folio, u64 last_cookie,
204 u64 change_attr)
205 {
206 struct nfs_cache_array *array;
207
208 array = kmap_local_folio(folio, 0);
209 array->change_attr = change_attr;
210 array->last_cookie = last_cookie;
211 array->size = 0;
212 array->folio_full = 0;
213 array->folio_is_eof = 0;
214 array->cookies_are_ordered = 1;
215 kunmap_local(array);
216 }
217
218 /*
219 * we are freeing strings created by nfs_add_to_readdir_array()
220 */
nfs_readdir_clear_array(struct folio * folio)221 static void nfs_readdir_clear_array(struct folio *folio)
222 {
223 struct nfs_cache_array *array;
224 unsigned int i;
225
226 array = kmap_local_folio(folio, 0);
227 for (i = 0; i < array->size; i++)
228 kfree(array->array[i].name);
229 array->size = 0;
230 kunmap_local(array);
231 }
232
nfs_readdir_folio_reinit_array(struct folio * folio,u64 last_cookie,u64 change_attr)233 static void nfs_readdir_folio_reinit_array(struct folio *folio, u64 last_cookie,
234 u64 change_attr)
235 {
236 nfs_readdir_clear_array(folio);
237 nfs_readdir_folio_init_array(folio, last_cookie, change_attr);
238 }
239
240 static struct folio *
nfs_readdir_folio_array_alloc(u64 last_cookie,gfp_t gfp_flags)241 nfs_readdir_folio_array_alloc(u64 last_cookie, gfp_t gfp_flags)
242 {
243 struct folio *folio = folio_alloc(gfp_flags, 0);
244 if (folio)
245 nfs_readdir_folio_init_array(folio, last_cookie, 0);
246 return folio;
247 }
248
nfs_readdir_folio_array_free(struct folio * folio)249 static void nfs_readdir_folio_array_free(struct folio *folio)
250 {
251 if (folio) {
252 nfs_readdir_clear_array(folio);
253 folio_put(folio);
254 }
255 }
256
nfs_readdir_array_index_cookie(struct nfs_cache_array * array)257 static u64 nfs_readdir_array_index_cookie(struct nfs_cache_array *array)
258 {
259 return array->size == 0 ? array->last_cookie : array->array[0].cookie;
260 }
261
nfs_readdir_array_set_eof(struct nfs_cache_array * array)262 static void nfs_readdir_array_set_eof(struct nfs_cache_array *array)
263 {
264 array->folio_is_eof = 1;
265 array->folio_full = 1;
266 }
267
nfs_readdir_array_is_full(struct nfs_cache_array * array)268 static bool nfs_readdir_array_is_full(struct nfs_cache_array *array)
269 {
270 return array->folio_full;
271 }
272
273 /*
274 * the caller is responsible for freeing qstr.name
275 * when called by nfs_readdir_add_to_array, the strings will be freed in
276 * nfs_clear_readdir_array()
277 */
nfs_readdir_copy_name(const char * name,unsigned int len)278 static const char *nfs_readdir_copy_name(const char *name, unsigned int len)
279 {
280 const char *ret = kmemdup_nul(name, len, GFP_KERNEL);
281
282 /*
283 * Avoid a kmemleak false positive. The pointer to the name is stored
284 * in a page cache page which kmemleak does not scan.
285 */
286 if (ret != NULL)
287 kmemleak_not_leak(ret);
288 return ret;
289 }
290
nfs_readdir_array_maxentries(void)291 static size_t nfs_readdir_array_maxentries(void)
292 {
293 return (PAGE_SIZE - sizeof(struct nfs_cache_array)) /
294 sizeof(struct nfs_cache_array_entry);
295 }
296
297 /*
298 * Check that the next array entry lies entirely within the page bounds
299 */
nfs_readdir_array_can_expand(struct nfs_cache_array * array)300 static int nfs_readdir_array_can_expand(struct nfs_cache_array *array)
301 {
302 if (array->folio_full)
303 return -ENOSPC;
304 if (array->size == nfs_readdir_array_maxentries()) {
305 array->folio_full = 1;
306 return -ENOSPC;
307 }
308 return 0;
309 }
310
nfs_readdir_folio_array_append(struct folio * folio,const struct nfs_entry * entry,u64 * cookie)311 static int nfs_readdir_folio_array_append(struct folio *folio,
312 const struct nfs_entry *entry,
313 u64 *cookie)
314 {
315 struct nfs_cache_array *array;
316 struct nfs_cache_array_entry *cache_entry;
317 const char *name;
318 int ret = -ENOMEM;
319
320 name = nfs_readdir_copy_name(entry->name, entry->len);
321
322 array = kmap_local_folio(folio, 0);
323 if (!name)
324 goto out;
325 ret = nfs_readdir_array_can_expand(array);
326 if (ret) {
327 kfree(name);
328 goto out;
329 }
330
331 array->size++;
332 cache_entry = &array->array[array->size - 1];
333 cache_entry->cookie = array->last_cookie;
334 cache_entry->ino = entry->ino;
335 cache_entry->d_type = entry->d_type;
336 cache_entry->name_len = entry->len;
337 cache_entry->name = name;
338 array->last_cookie = entry->cookie;
339 if (array->last_cookie <= cache_entry->cookie)
340 array->cookies_are_ordered = 0;
341 if (entry->eof != 0)
342 nfs_readdir_array_set_eof(array);
343 out:
344 *cookie = array->last_cookie;
345 kunmap_local(array);
346 return ret;
347 }
348
349 #define NFS_READDIR_COOKIE_MASK (U32_MAX >> 14)
350 /*
351 * Hash algorithm allowing content addressible access to sequences
352 * of directory cookies. Content is addressed by the value of the
353 * cookie index of the first readdir entry in a page.
354 *
355 * We select only the first 18 bits to avoid issues with excessive
356 * memory use for the page cache XArray. 18 bits should allow the caching
357 * of 262144 pages of sequences of readdir entries. Since each page holds
358 * 127 readdir entries for a typical 64-bit system, that works out to a
359 * cache of ~ 33 million entries per directory.
360 */
nfs_readdir_folio_cookie_hash(u64 cookie)361 static pgoff_t nfs_readdir_folio_cookie_hash(u64 cookie)
362 {
363 if (cookie == 0)
364 return 0;
365 return hash_64(cookie, 18);
366 }
367
nfs_readdir_folio_validate(struct folio * folio,u64 last_cookie,u64 change_attr)368 static bool nfs_readdir_folio_validate(struct folio *folio, u64 last_cookie,
369 u64 change_attr)
370 {
371 struct nfs_cache_array *array = kmap_local_folio(folio, 0);
372 int ret = true;
373
374 if (array->change_attr != change_attr)
375 ret = false;
376 if (nfs_readdir_array_index_cookie(array) != last_cookie)
377 ret = false;
378 kunmap_local(array);
379 return ret;
380 }
381
nfs_readdir_folio_unlock_and_put(struct folio * folio)382 static void nfs_readdir_folio_unlock_and_put(struct folio *folio)
383 {
384 folio_unlock(folio);
385 folio_put(folio);
386 }
387
nfs_readdir_folio_init_and_validate(struct folio * folio,u64 cookie,u64 change_attr)388 static void nfs_readdir_folio_init_and_validate(struct folio *folio, u64 cookie,
389 u64 change_attr)
390 {
391 if (folio_test_uptodate(folio)) {
392 if (nfs_readdir_folio_validate(folio, cookie, change_attr))
393 return;
394 nfs_readdir_clear_array(folio);
395 }
396 nfs_readdir_folio_init_array(folio, cookie, change_attr);
397 folio_mark_uptodate(folio);
398 }
399
nfs_readdir_folio_get_locked(struct address_space * mapping,u64 cookie,u64 change_attr)400 static struct folio *nfs_readdir_folio_get_locked(struct address_space *mapping,
401 u64 cookie, u64 change_attr)
402 {
403 pgoff_t index = nfs_readdir_folio_cookie_hash(cookie);
404 struct folio *folio;
405
406 folio = filemap_grab_folio(mapping, index);
407 if (IS_ERR(folio))
408 return NULL;
409 nfs_readdir_folio_init_and_validate(folio, cookie, change_attr);
410 return folio;
411 }
412
nfs_readdir_folio_last_cookie(struct folio * folio)413 static u64 nfs_readdir_folio_last_cookie(struct folio *folio)
414 {
415 struct nfs_cache_array *array;
416 u64 ret;
417
418 array = kmap_local_folio(folio, 0);
419 ret = array->last_cookie;
420 kunmap_local(array);
421 return ret;
422 }
423
nfs_readdir_folio_needs_filling(struct folio * folio)424 static bool nfs_readdir_folio_needs_filling(struct folio *folio)
425 {
426 struct nfs_cache_array *array;
427 bool ret;
428
429 array = kmap_local_folio(folio, 0);
430 ret = !nfs_readdir_array_is_full(array);
431 kunmap_local(array);
432 return ret;
433 }
434
nfs_readdir_folio_set_eof(struct folio * folio)435 static void nfs_readdir_folio_set_eof(struct folio *folio)
436 {
437 struct nfs_cache_array *array;
438
439 array = kmap_local_folio(folio, 0);
440 nfs_readdir_array_set_eof(array);
441 kunmap_local(array);
442 }
443
nfs_readdir_folio_get_next(struct address_space * mapping,u64 cookie,u64 change_attr)444 static struct folio *nfs_readdir_folio_get_next(struct address_space *mapping,
445 u64 cookie, u64 change_attr)
446 {
447 pgoff_t index = nfs_readdir_folio_cookie_hash(cookie);
448 struct folio *folio;
449
450 folio = __filemap_get_folio(mapping, index,
451 FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT,
452 mapping_gfp_mask(mapping));
453 if (IS_ERR(folio))
454 return NULL;
455 nfs_readdir_folio_init_and_validate(folio, cookie, change_attr);
456 if (nfs_readdir_folio_last_cookie(folio) != cookie)
457 nfs_readdir_folio_reinit_array(folio, cookie, change_attr);
458 return folio;
459 }
460
461 static inline
is_32bit_api(void)462 int is_32bit_api(void)
463 {
464 #ifdef CONFIG_COMPAT
465 return in_compat_syscall();
466 #else
467 return (BITS_PER_LONG == 32);
468 #endif
469 }
470
471 static
nfs_readdir_use_cookie(const struct file * filp)472 bool nfs_readdir_use_cookie(const struct file *filp)
473 {
474 if ((filp->f_mode & FMODE_32BITHASH) ||
475 (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
476 return false;
477 return true;
478 }
479
nfs_readdir_seek_next_array(struct nfs_cache_array * array,struct nfs_readdir_descriptor * desc)480 static void nfs_readdir_seek_next_array(struct nfs_cache_array *array,
481 struct nfs_readdir_descriptor *desc)
482 {
483 if (array->folio_full) {
484 desc->last_cookie = array->last_cookie;
485 desc->current_index += array->size;
486 desc->cache_entry_index = 0;
487 desc->folio_index++;
488 } else
489 desc->last_cookie = nfs_readdir_array_index_cookie(array);
490 }
491
nfs_readdir_rewind_search(struct nfs_readdir_descriptor * desc)492 static void nfs_readdir_rewind_search(struct nfs_readdir_descriptor *desc)
493 {
494 desc->current_index = 0;
495 desc->last_cookie = 0;
496 desc->folio_index = 0;
497 }
498
nfs_readdir_search_for_pos(struct nfs_cache_array * array,struct nfs_readdir_descriptor * desc)499 static int nfs_readdir_search_for_pos(struct nfs_cache_array *array,
500 struct nfs_readdir_descriptor *desc)
501 {
502 loff_t diff = desc->ctx->pos - desc->current_index;
503 unsigned int index;
504
505 if (diff < 0)
506 goto out_eof;
507 if (diff >= array->size) {
508 if (array->folio_is_eof)
509 goto out_eof;
510 nfs_readdir_seek_next_array(array, desc);
511 return -EAGAIN;
512 }
513
514 index = (unsigned int)diff;
515 desc->dir_cookie = array->array[index].cookie;
516 desc->cache_entry_index = index;
517 return 0;
518 out_eof:
519 desc->eof = true;
520 return -EBADCOOKIE;
521 }
522
nfs_readdir_array_cookie_in_range(struct nfs_cache_array * array,u64 cookie)523 static bool nfs_readdir_array_cookie_in_range(struct nfs_cache_array *array,
524 u64 cookie)
525 {
526 if (!array->cookies_are_ordered)
527 return true;
528 /* Optimisation for monotonically increasing cookies */
529 if (cookie >= array->last_cookie)
530 return false;
531 if (array->size && cookie < array->array[0].cookie)
532 return false;
533 return true;
534 }
535
nfs_readdir_search_for_cookie(struct nfs_cache_array * array,struct nfs_readdir_descriptor * desc)536 static int nfs_readdir_search_for_cookie(struct nfs_cache_array *array,
537 struct nfs_readdir_descriptor *desc)
538 {
539 unsigned int i;
540 int status = -EAGAIN;
541
542 if (!nfs_readdir_array_cookie_in_range(array, desc->dir_cookie))
543 goto check_eof;
544
545 for (i = 0; i < array->size; i++) {
546 if (array->array[i].cookie == desc->dir_cookie) {
547 if (nfs_readdir_use_cookie(desc->file))
548 desc->ctx->pos = desc->dir_cookie;
549 else
550 desc->ctx->pos = desc->current_index + i;
551 desc->cache_entry_index = i;
552 return 0;
553 }
554 }
555 check_eof:
556 if (array->folio_is_eof) {
557 status = -EBADCOOKIE;
558 if (desc->dir_cookie == array->last_cookie)
559 desc->eof = true;
560 } else
561 nfs_readdir_seek_next_array(array, desc);
562 return status;
563 }
564
nfs_readdir_search_array(struct nfs_readdir_descriptor * desc)565 static int nfs_readdir_search_array(struct nfs_readdir_descriptor *desc)
566 {
567 struct nfs_cache_array *array;
568 int status;
569
570 array = kmap_local_folio(desc->folio, 0);
571
572 if (desc->dir_cookie == 0)
573 status = nfs_readdir_search_for_pos(array, desc);
574 else
575 status = nfs_readdir_search_for_cookie(array, desc);
576
577 kunmap_local(array);
578 return status;
579 }
580
581 /* Fill a page with xdr information before transferring to the cache page */
nfs_readdir_xdr_filler(struct nfs_readdir_descriptor * desc,__be32 * verf,u64 cookie,struct page ** pages,size_t bufsize,__be32 * verf_res)582 static int nfs_readdir_xdr_filler(struct nfs_readdir_descriptor *desc,
583 __be32 *verf, u64 cookie,
584 struct page **pages, size_t bufsize,
585 __be32 *verf_res)
586 {
587 struct inode *inode = file_inode(desc->file);
588 struct nfs_readdir_arg arg = {
589 .dentry = file_dentry(desc->file),
590 .cred = desc->file->f_cred,
591 .verf = verf,
592 .cookie = cookie,
593 .pages = pages,
594 .page_len = bufsize,
595 .plus = desc->plus,
596 };
597 struct nfs_readdir_res res = {
598 .verf = verf_res,
599 };
600 unsigned long timestamp, gencount;
601 int error;
602
603 again:
604 timestamp = jiffies;
605 gencount = nfs_inc_attr_generation_counter();
606 desc->dir_verifier = nfs_save_change_attribute(inode);
607 error = NFS_PROTO(inode)->readdir(&arg, &res);
608 if (error < 0) {
609 /* We requested READDIRPLUS, but the server doesn't grok it */
610 if (error == -ENOTSUPP && desc->plus) {
611 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
612 desc->plus = arg.plus = false;
613 goto again;
614 }
615 goto error;
616 }
617 desc->timestamp = timestamp;
618 desc->gencount = gencount;
619 error:
620 return error;
621 }
622
xdr_decode(struct nfs_readdir_descriptor * desc,struct nfs_entry * entry,struct xdr_stream * xdr)623 static int xdr_decode(struct nfs_readdir_descriptor *desc,
624 struct nfs_entry *entry, struct xdr_stream *xdr)
625 {
626 struct inode *inode = file_inode(desc->file);
627 int error;
628
629 error = NFS_PROTO(inode)->decode_dirent(xdr, entry, desc->plus);
630 if (error)
631 return error;
632 entry->fattr->time_start = desc->timestamp;
633 entry->fattr->gencount = desc->gencount;
634 return 0;
635 }
636
637 /* Match file and dirent using either filehandle or fileid
638 * Note: caller is responsible for checking the fsid
639 */
640 static
nfs_same_file(struct dentry * dentry,struct nfs_entry * entry)641 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
642 {
643 struct inode *inode;
644 struct nfs_inode *nfsi;
645
646 if (d_really_is_negative(dentry))
647 return 0;
648
649 inode = d_inode(dentry);
650 if (is_bad_inode(inode) || NFS_STALE(inode))
651 return 0;
652
653 nfsi = NFS_I(inode);
654 if (entry->fattr->fileid != nfsi->fileid)
655 return 0;
656 if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
657 return 0;
658 return 1;
659 }
660
661 #define NFS_READDIR_CACHE_USAGE_THRESHOLD (8UL)
662
nfs_use_readdirplus(struct inode * dir,struct dir_context * ctx,unsigned int cache_hits,unsigned int cache_misses)663 static bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx,
664 unsigned int cache_hits,
665 unsigned int cache_misses)
666 {
667 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
668 return false;
669 if (NFS_SERVER(dir)->flags & NFS_MOUNT_FORCE_RDIRPLUS)
670 return true;
671 if (ctx->pos == 0 ||
672 cache_hits + cache_misses > NFS_READDIR_CACHE_USAGE_THRESHOLD)
673 return true;
674 return false;
675 }
676
677 /*
678 * This function is called by the getattr code to request the
679 * use of readdirplus to accelerate any future lookups in the same
680 * directory.
681 */
nfs_readdir_record_entry_cache_hit(struct inode * dir)682 void nfs_readdir_record_entry_cache_hit(struct inode *dir)
683 {
684 struct nfs_inode *nfsi = NFS_I(dir);
685 struct nfs_open_dir_context *ctx;
686
687 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
688 S_ISDIR(dir->i_mode)) {
689 rcu_read_lock();
690 list_for_each_entry_rcu (ctx, &nfsi->open_files, list)
691 atomic_inc(&ctx->cache_hits);
692 rcu_read_unlock();
693 }
694 }
695
696 /*
697 * This function is mainly for use by nfs_getattr().
698 *
699 * If this is an 'ls -l', we want to force use of readdirplus.
700 */
nfs_readdir_record_entry_cache_miss(struct inode * dir)701 void nfs_readdir_record_entry_cache_miss(struct inode *dir)
702 {
703 struct nfs_inode *nfsi = NFS_I(dir);
704 struct nfs_open_dir_context *ctx;
705
706 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
707 S_ISDIR(dir->i_mode)) {
708 rcu_read_lock();
709 list_for_each_entry_rcu (ctx, &nfsi->open_files, list)
710 atomic_inc(&ctx->cache_misses);
711 rcu_read_unlock();
712 }
713 }
714
nfs_lookup_advise_force_readdirplus(struct inode * dir,unsigned int flags)715 static void nfs_lookup_advise_force_readdirplus(struct inode *dir,
716 unsigned int flags)
717 {
718 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
719 return;
720 if (flags & (LOOKUP_EXCL | LOOKUP_PARENT | LOOKUP_REVAL))
721 return;
722 nfs_readdir_record_entry_cache_miss(dir);
723 }
724
725 static
nfs_prime_dcache(struct dentry * parent,struct nfs_entry * entry,unsigned long dir_verifier)726 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry,
727 unsigned long dir_verifier)
728 {
729 struct qstr filename = QSTR_INIT(entry->name, entry->len);
730 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
731 struct dentry *dentry;
732 struct dentry *alias;
733 struct inode *inode;
734 int status;
735
736 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
737 return;
738 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
739 return;
740 if (filename.len == 0)
741 return;
742 /* Validate that the name doesn't contain any illegal '\0' */
743 if (strnlen(filename.name, filename.len) != filename.len)
744 return;
745 /* ...or '/' */
746 if (strnchr(filename.name, filename.len, '/'))
747 return;
748 if (filename.name[0] == '.') {
749 if (filename.len == 1)
750 return;
751 if (filename.len == 2 && filename.name[1] == '.')
752 return;
753 }
754 filename.hash = full_name_hash(parent, filename.name, filename.len);
755
756 dentry = d_lookup(parent, &filename);
757 again:
758 if (!dentry) {
759 dentry = d_alloc_parallel(parent, &filename, &wq);
760 if (IS_ERR(dentry))
761 return;
762 }
763 if (!d_in_lookup(dentry)) {
764 /* Is there a mountpoint here? If so, just exit */
765 if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
766 &entry->fattr->fsid))
767 goto out;
768 if (nfs_same_file(dentry, entry)) {
769 if (!entry->fh->size)
770 goto out;
771 nfs_set_verifier(dentry, dir_verifier);
772 status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
773 if (!status)
774 nfs_setsecurity(d_inode(dentry), entry->fattr);
775 trace_nfs_readdir_lookup_revalidate(d_inode(parent),
776 dentry, 0, status);
777 goto out;
778 } else {
779 trace_nfs_readdir_lookup_revalidate_failed(
780 d_inode(parent), dentry, 0);
781 d_invalidate(dentry);
782 dput(dentry);
783 dentry = NULL;
784 goto again;
785 }
786 }
787 if (!entry->fh->size) {
788 d_lookup_done(dentry);
789 goto out;
790 }
791
792 nfs_set_verifier(dentry, dir_verifier);
793 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
794 alias = d_splice_alias(inode, dentry);
795 d_lookup_done(dentry);
796 if (alias) {
797 if (IS_ERR(alias))
798 goto out;
799 nfs_set_verifier(alias, dir_verifier);
800 dput(dentry);
801 dentry = alias;
802 }
803 trace_nfs_readdir_lookup(d_inode(parent), dentry, 0);
804 out:
805 dput(dentry);
806 }
807
nfs_readdir_entry_decode(struct nfs_readdir_descriptor * desc,struct nfs_entry * entry,struct xdr_stream * stream)808 static int nfs_readdir_entry_decode(struct nfs_readdir_descriptor *desc,
809 struct nfs_entry *entry,
810 struct xdr_stream *stream)
811 {
812 int ret;
813
814 if (entry->fattr->label)
815 entry->fattr->label->len = NFS4_MAXLABELLEN;
816 ret = xdr_decode(desc, entry, stream);
817 if (ret || !desc->plus)
818 return ret;
819 nfs_prime_dcache(file_dentry(desc->file), entry, desc->dir_verifier);
820 return 0;
821 }
822
823 /* Perform conversion from xdr to cache array */
nfs_readdir_folio_filler(struct nfs_readdir_descriptor * desc,struct nfs_entry * entry,struct page ** xdr_pages,unsigned int buflen,struct folio ** arrays,size_t narrays,u64 change_attr)824 static int nfs_readdir_folio_filler(struct nfs_readdir_descriptor *desc,
825 struct nfs_entry *entry,
826 struct page **xdr_pages, unsigned int buflen,
827 struct folio **arrays, size_t narrays,
828 u64 change_attr)
829 {
830 struct address_space *mapping = desc->file->f_mapping;
831 struct folio *new, *folio = *arrays;
832 struct xdr_stream stream;
833 struct folio *scratch;
834 struct xdr_buf buf;
835 u64 cookie;
836 int status;
837
838 scratch = folio_alloc(GFP_KERNEL, 0);
839 if (scratch == NULL)
840 return -ENOMEM;
841
842 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
843 xdr_set_scratch_folio(&stream, scratch);
844
845 do {
846 status = nfs_readdir_entry_decode(desc, entry, &stream);
847 if (status != 0)
848 break;
849
850 status = nfs_readdir_folio_array_append(folio, entry, &cookie);
851 if (status != -ENOSPC)
852 continue;
853
854 if (folio->mapping != mapping) {
855 if (!--narrays)
856 break;
857 new = nfs_readdir_folio_array_alloc(cookie, GFP_KERNEL);
858 if (!new)
859 break;
860 arrays++;
861 *arrays = folio = new;
862 } else {
863 new = nfs_readdir_folio_get_next(mapping, cookie,
864 change_attr);
865 if (!new)
866 break;
867 if (folio != *arrays)
868 nfs_readdir_folio_unlock_and_put(folio);
869 folio = new;
870 }
871 desc->folio_index_max++;
872 status = nfs_readdir_folio_array_append(folio, entry, &cookie);
873 } while (!status && !entry->eof);
874
875 switch (status) {
876 case -EBADCOOKIE:
877 if (!entry->eof)
878 break;
879 nfs_readdir_folio_set_eof(folio);
880 fallthrough;
881 case -EAGAIN:
882 status = 0;
883 break;
884 case -ENOSPC:
885 status = 0;
886 if (!desc->plus)
887 break;
888 while (!nfs_readdir_entry_decode(desc, entry, &stream))
889 ;
890 }
891
892 if (folio != *arrays)
893 nfs_readdir_folio_unlock_and_put(folio);
894
895 folio_put(scratch);
896 return status;
897 }
898
nfs_readdir_free_pages(struct page ** pages,size_t npages)899 static void nfs_readdir_free_pages(struct page **pages, size_t npages)
900 {
901 while (npages--)
902 put_page(pages[npages]);
903 kfree(pages);
904 }
905
906 /*
907 * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call
908 * to nfs_readdir_free_pages()
909 */
nfs_readdir_alloc_pages(size_t npages)910 static struct page **nfs_readdir_alloc_pages(size_t npages)
911 {
912 struct page **pages;
913 size_t i;
914
915 pages = kmalloc_array(npages, sizeof(*pages), GFP_KERNEL);
916 if (!pages)
917 return NULL;
918 for (i = 0; i < npages; i++) {
919 struct page *page = alloc_page(GFP_KERNEL);
920 if (page == NULL)
921 goto out_freepages;
922 pages[i] = page;
923 }
924 return pages;
925
926 out_freepages:
927 nfs_readdir_free_pages(pages, i);
928 return NULL;
929 }
930
nfs_readdir_xdr_to_array(struct nfs_readdir_descriptor * desc,__be32 * verf_arg,__be32 * verf_res,struct folio ** arrays,size_t narrays)931 static int nfs_readdir_xdr_to_array(struct nfs_readdir_descriptor *desc,
932 __be32 *verf_arg, __be32 *verf_res,
933 struct folio **arrays, size_t narrays)
934 {
935 u64 change_attr;
936 struct page **pages;
937 struct folio *folio = *arrays;
938 struct nfs_entry *entry;
939 size_t array_size;
940 struct inode *inode = file_inode(desc->file);
941 unsigned int dtsize = desc->dtsize;
942 unsigned int pglen;
943 int status = -ENOMEM;
944
945 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
946 if (!entry)
947 return -ENOMEM;
948 entry->cookie = nfs_readdir_folio_last_cookie(folio);
949 entry->fh = nfs_alloc_fhandle();
950 entry->fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode));
951 entry->server = NFS_SERVER(inode);
952 if (entry->fh == NULL || entry->fattr == NULL)
953 goto out;
954
955 array_size = (dtsize + PAGE_SIZE - 1) >> PAGE_SHIFT;
956 pages = nfs_readdir_alloc_pages(array_size);
957 if (!pages)
958 goto out;
959
960 change_attr = inode_peek_iversion_raw(inode);
961 status = nfs_readdir_xdr_filler(desc, verf_arg, entry->cookie, pages,
962 dtsize, verf_res);
963 if (status < 0)
964 goto free_pages;
965
966 pglen = status;
967 if (pglen != 0)
968 status = nfs_readdir_folio_filler(desc, entry, pages, pglen,
969 arrays, narrays, change_attr);
970 else
971 nfs_readdir_folio_set_eof(folio);
972 desc->buffer_fills++;
973
974 free_pages:
975 nfs_readdir_free_pages(pages, array_size);
976 out:
977 nfs_free_fattr(entry->fattr);
978 nfs_free_fhandle(entry->fh);
979 kfree(entry);
980 return status;
981 }
982
nfs_readdir_folio_put(struct nfs_readdir_descriptor * desc)983 static void nfs_readdir_folio_put(struct nfs_readdir_descriptor *desc)
984 {
985 folio_put(desc->folio);
986 desc->folio = NULL;
987 }
988
989 static void
nfs_readdir_folio_unlock_and_put_cached(struct nfs_readdir_descriptor * desc)990 nfs_readdir_folio_unlock_and_put_cached(struct nfs_readdir_descriptor *desc)
991 {
992 folio_unlock(desc->folio);
993 nfs_readdir_folio_put(desc);
994 }
995
996 static struct folio *
nfs_readdir_folio_get_cached(struct nfs_readdir_descriptor * desc)997 nfs_readdir_folio_get_cached(struct nfs_readdir_descriptor *desc)
998 {
999 struct address_space *mapping = desc->file->f_mapping;
1000 u64 change_attr = inode_peek_iversion_raw(mapping->host);
1001 u64 cookie = desc->last_cookie;
1002 struct folio *folio;
1003
1004 folio = nfs_readdir_folio_get_locked(mapping, cookie, change_attr);
1005 if (!folio)
1006 return NULL;
1007 if (desc->clear_cache && !nfs_readdir_folio_needs_filling(folio))
1008 nfs_readdir_folio_reinit_array(folio, cookie, change_attr);
1009 return folio;
1010 }
1011
1012 /*
1013 * Returns 0 if desc->dir_cookie was found on page desc->page_index
1014 * and locks the page to prevent removal from the page cache.
1015 */
find_and_lock_cache_page(struct nfs_readdir_descriptor * desc)1016 static int find_and_lock_cache_page(struct nfs_readdir_descriptor *desc)
1017 {
1018 struct inode *inode = file_inode(desc->file);
1019 struct nfs_inode *nfsi = NFS_I(inode);
1020 __be32 verf[NFS_DIR_VERIFIER_SIZE];
1021 int res;
1022
1023 desc->folio = nfs_readdir_folio_get_cached(desc);
1024 if (!desc->folio)
1025 return -ENOMEM;
1026 if (nfs_readdir_folio_needs_filling(desc->folio)) {
1027 /* Grow the dtsize if we had to go back for more pages */
1028 if (desc->folio_index == desc->folio_index_max)
1029 nfs_grow_dtsize(desc);
1030 desc->folio_index_max = desc->folio_index;
1031 trace_nfs_readdir_cache_fill(desc->file, nfsi->cookieverf,
1032 desc->last_cookie,
1033 desc->folio->index, desc->dtsize);
1034 res = nfs_readdir_xdr_to_array(desc, nfsi->cookieverf, verf,
1035 &desc->folio, 1);
1036 if (res < 0) {
1037 nfs_readdir_folio_unlock_and_put_cached(desc);
1038 trace_nfs_readdir_cache_fill_done(inode, res);
1039 if (res == -EBADCOOKIE || res == -ENOTSYNC) {
1040 invalidate_inode_pages2(desc->file->f_mapping);
1041 nfs_readdir_rewind_search(desc);
1042 trace_nfs_readdir_invalidate_cache_range(
1043 inode, 0, MAX_LFS_FILESIZE);
1044 return -EAGAIN;
1045 }
1046 return res;
1047 }
1048 /*
1049 * Set the cookie verifier if the page cache was empty
1050 */
1051 if (desc->last_cookie == 0 &&
1052 memcmp(nfsi->cookieverf, verf, sizeof(nfsi->cookieverf))) {
1053 memcpy(nfsi->cookieverf, verf,
1054 sizeof(nfsi->cookieverf));
1055 invalidate_inode_pages2_range(desc->file->f_mapping, 1,
1056 -1);
1057 trace_nfs_readdir_invalidate_cache_range(
1058 inode, 1, MAX_LFS_FILESIZE);
1059 }
1060 desc->clear_cache = false;
1061 }
1062 res = nfs_readdir_search_array(desc);
1063 if (res == 0)
1064 return 0;
1065 nfs_readdir_folio_unlock_and_put_cached(desc);
1066 return res;
1067 }
1068
1069 /* Search for desc->dir_cookie from the beginning of the page cache */
readdir_search_pagecache(struct nfs_readdir_descriptor * desc)1070 static int readdir_search_pagecache(struct nfs_readdir_descriptor *desc)
1071 {
1072 int res;
1073
1074 do {
1075 res = find_and_lock_cache_page(desc);
1076 } while (res == -EAGAIN);
1077 return res;
1078 }
1079
1080 #define NFS_READDIR_CACHE_MISS_THRESHOLD (16UL)
1081
1082 /*
1083 * Once we've found the start of the dirent within a page: fill 'er up...
1084 */
nfs_do_filldir(struct nfs_readdir_descriptor * desc,const __be32 * verf)1085 static void nfs_do_filldir(struct nfs_readdir_descriptor *desc,
1086 const __be32 *verf)
1087 {
1088 struct file *file = desc->file;
1089 struct nfs_cache_array *array;
1090 unsigned int i;
1091 bool first_emit = !desc->dir_cookie;
1092
1093 array = kmap_local_folio(desc->folio, 0);
1094 for (i = desc->cache_entry_index; i < array->size; i++) {
1095 struct nfs_cache_array_entry *ent;
1096
1097 /*
1098 * nfs_readdir_handle_cache_misses return force clear at
1099 * (cache_misses > NFS_READDIR_CACHE_MISS_THRESHOLD) for
1100 * readdir heuristic, NFS_READDIR_CACHE_MISS_THRESHOLD + 1
1101 * entries need be emitted here.
1102 */
1103 if (first_emit && i > NFS_READDIR_CACHE_MISS_THRESHOLD + 2) {
1104 desc->eob = true;
1105 break;
1106 }
1107
1108 ent = &array->array[i];
1109 if (!dir_emit(desc->ctx, ent->name, ent->name_len,
1110 nfs_compat_user_ino64(ent->ino), ent->d_type)) {
1111 desc->eob = true;
1112 break;
1113 }
1114 memcpy(desc->verf, verf, sizeof(desc->verf));
1115 if (i == array->size - 1) {
1116 desc->dir_cookie = array->last_cookie;
1117 nfs_readdir_seek_next_array(array, desc);
1118 } else {
1119 desc->dir_cookie = array->array[i + 1].cookie;
1120 desc->last_cookie = array->array[0].cookie;
1121 }
1122 if (nfs_readdir_use_cookie(file))
1123 desc->ctx->pos = desc->dir_cookie;
1124 else
1125 desc->ctx->pos++;
1126 }
1127 if (array->folio_is_eof)
1128 desc->eof = !desc->eob;
1129
1130 kunmap_local(array);
1131 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %llu\n",
1132 (unsigned long long)desc->dir_cookie);
1133 }
1134
1135 /*
1136 * If we cannot find a cookie in our cache, we suspect that this is
1137 * because it points to a deleted file, so we ask the server to return
1138 * whatever it thinks is the next entry. We then feed this to filldir.
1139 * If all goes well, we should then be able to find our way round the
1140 * cache on the next call to readdir_search_pagecache();
1141 *
1142 * NOTE: we cannot add the anonymous page to the pagecache because
1143 * the data it contains might not be page aligned. Besides,
1144 * we should already have a complete representation of the
1145 * directory in the page cache by the time we get here.
1146 */
uncached_readdir(struct nfs_readdir_descriptor * desc)1147 static int uncached_readdir(struct nfs_readdir_descriptor *desc)
1148 {
1149 struct folio **arrays;
1150 size_t i, sz = 512;
1151 __be32 verf[NFS_DIR_VERIFIER_SIZE];
1152 int status = -ENOMEM;
1153
1154 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %llu\n",
1155 (unsigned long long)desc->dir_cookie);
1156
1157 arrays = kcalloc(sz, sizeof(*arrays), GFP_KERNEL);
1158 if (!arrays)
1159 goto out;
1160 arrays[0] = nfs_readdir_folio_array_alloc(desc->dir_cookie, GFP_KERNEL);
1161 if (!arrays[0])
1162 goto out;
1163
1164 desc->folio_index = 0;
1165 desc->cache_entry_index = 0;
1166 desc->last_cookie = desc->dir_cookie;
1167 desc->folio_index_max = 0;
1168
1169 trace_nfs_readdir_uncached(desc->file, desc->verf, desc->last_cookie,
1170 -1, desc->dtsize);
1171
1172 status = nfs_readdir_xdr_to_array(desc, desc->verf, verf, arrays, sz);
1173 if (status < 0) {
1174 trace_nfs_readdir_uncached_done(file_inode(desc->file), status);
1175 goto out_free;
1176 }
1177
1178 for (i = 0; !desc->eob && i < sz && arrays[i]; i++) {
1179 desc->folio = arrays[i];
1180 nfs_do_filldir(desc, verf);
1181 }
1182 desc->folio = NULL;
1183
1184 /*
1185 * Grow the dtsize if we have to go back for more pages,
1186 * or shrink it if we're reading too many.
1187 */
1188 if (!desc->eof) {
1189 if (!desc->eob)
1190 nfs_grow_dtsize(desc);
1191 else if (desc->buffer_fills == 1 &&
1192 i < (desc->folio_index_max >> 1))
1193 nfs_shrink_dtsize(desc);
1194 }
1195 out_free:
1196 for (i = 0; i < sz && arrays[i]; i++)
1197 nfs_readdir_folio_array_free(arrays[i]);
1198 out:
1199 if (!nfs_readdir_use_cookie(desc->file))
1200 nfs_readdir_rewind_search(desc);
1201 desc->folio_index_max = -1;
1202 kfree(arrays);
1203 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, status);
1204 return status;
1205 }
1206
nfs_readdir_handle_cache_misses(struct inode * inode,struct nfs_readdir_descriptor * desc,unsigned int cache_misses,bool force_clear)1207 static bool nfs_readdir_handle_cache_misses(struct inode *inode,
1208 struct nfs_readdir_descriptor *desc,
1209 unsigned int cache_misses,
1210 bool force_clear)
1211 {
1212 if (desc->ctx->pos == 0 || !desc->plus)
1213 return false;
1214 if (cache_misses <= NFS_READDIR_CACHE_MISS_THRESHOLD && !force_clear)
1215 return false;
1216 trace_nfs_readdir_force_readdirplus(inode);
1217 return true;
1218 }
1219
1220 /* The file offset position represents the dirent entry number. A
1221 last cookie cache takes care of the common case of reading the
1222 whole directory.
1223 */
nfs_readdir(struct file * file,struct dir_context * ctx)1224 static int nfs_readdir(struct file *file, struct dir_context *ctx)
1225 {
1226 struct dentry *dentry = file_dentry(file);
1227 struct inode *inode = d_inode(dentry);
1228 struct nfs_inode *nfsi = NFS_I(inode);
1229 struct nfs_open_dir_context *dir_ctx = file->private_data;
1230 struct nfs_readdir_descriptor *desc;
1231 unsigned int cache_hits, cache_misses;
1232 bool force_clear;
1233 int res;
1234
1235 dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
1236 file, (long long)ctx->pos);
1237 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
1238
1239 /*
1240 * ctx->pos points to the dirent entry number.
1241 * *desc->dir_cookie has the cookie for the next entry. We have
1242 * to either find the entry with the appropriate number or
1243 * revalidate the cookie.
1244 */
1245 nfs_revalidate_mapping(inode, file->f_mapping);
1246
1247 res = -ENOMEM;
1248 desc = kzalloc(sizeof(*desc), GFP_KERNEL);
1249 if (!desc)
1250 goto out;
1251 desc->file = file;
1252 desc->ctx = ctx;
1253 desc->folio_index_max = -1;
1254
1255 spin_lock(&file->f_lock);
1256 desc->dir_cookie = dir_ctx->dir_cookie;
1257 desc->folio_index = dir_ctx->page_index;
1258 desc->last_cookie = dir_ctx->last_cookie;
1259 desc->attr_gencount = dir_ctx->attr_gencount;
1260 desc->eof = dir_ctx->eof;
1261 nfs_set_dtsize(desc, dir_ctx->dtsize);
1262 memcpy(desc->verf, dir_ctx->verf, sizeof(desc->verf));
1263 cache_hits = atomic_xchg(&dir_ctx->cache_hits, 0);
1264 cache_misses = atomic_xchg(&dir_ctx->cache_misses, 0);
1265 force_clear = dir_ctx->force_clear;
1266 spin_unlock(&file->f_lock);
1267
1268 if (desc->eof) {
1269 res = 0;
1270 goto out_free;
1271 }
1272
1273 desc->plus = nfs_use_readdirplus(inode, ctx, cache_hits, cache_misses);
1274 force_clear = nfs_readdir_handle_cache_misses(inode, desc, cache_misses,
1275 force_clear);
1276 desc->clear_cache = force_clear;
1277
1278 do {
1279 res = readdir_search_pagecache(desc);
1280
1281 if (res == -EBADCOOKIE) {
1282 res = 0;
1283 /* This means either end of directory */
1284 if (desc->dir_cookie && !desc->eof) {
1285 /* Or that the server has 'lost' a cookie */
1286 res = uncached_readdir(desc);
1287 if (res == 0)
1288 continue;
1289 if (res == -EBADCOOKIE || res == -ENOTSYNC)
1290 res = 0;
1291 }
1292 break;
1293 }
1294 if (res == -ETOOSMALL && desc->plus) {
1295 nfs_zap_caches(inode);
1296 desc->plus = false;
1297 desc->eof = false;
1298 continue;
1299 }
1300 if (res < 0)
1301 break;
1302
1303 nfs_do_filldir(desc, nfsi->cookieverf);
1304 nfs_readdir_folio_unlock_and_put_cached(desc);
1305 if (desc->folio_index == desc->folio_index_max)
1306 desc->clear_cache = force_clear;
1307 } while (!desc->eob && !desc->eof);
1308
1309 spin_lock(&file->f_lock);
1310 dir_ctx->dir_cookie = desc->dir_cookie;
1311 dir_ctx->last_cookie = desc->last_cookie;
1312 dir_ctx->attr_gencount = desc->attr_gencount;
1313 dir_ctx->page_index = desc->folio_index;
1314 dir_ctx->force_clear = force_clear;
1315 dir_ctx->eof = desc->eof;
1316 dir_ctx->dtsize = desc->dtsize;
1317 memcpy(dir_ctx->verf, desc->verf, sizeof(dir_ctx->verf));
1318 spin_unlock(&file->f_lock);
1319 out_free:
1320 kfree(desc);
1321
1322 out:
1323 dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
1324 return res;
1325 }
1326
nfs_llseek_dir(struct file * filp,loff_t offset,int whence)1327 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
1328 {
1329 struct nfs_open_dir_context *dir_ctx = filp->private_data;
1330
1331 dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
1332 filp, offset, whence);
1333
1334 switch (whence) {
1335 default:
1336 return -EINVAL;
1337 case SEEK_SET:
1338 if (offset < 0)
1339 return -EINVAL;
1340 spin_lock(&filp->f_lock);
1341 break;
1342 case SEEK_CUR:
1343 if (offset == 0)
1344 return filp->f_pos;
1345 spin_lock(&filp->f_lock);
1346 offset += filp->f_pos;
1347 if (offset < 0) {
1348 spin_unlock(&filp->f_lock);
1349 return -EINVAL;
1350 }
1351 }
1352 if (offset != filp->f_pos) {
1353 filp->f_pos = offset;
1354 dir_ctx->page_index = 0;
1355 if (!nfs_readdir_use_cookie(filp)) {
1356 dir_ctx->dir_cookie = 0;
1357 dir_ctx->last_cookie = 0;
1358 } else {
1359 dir_ctx->dir_cookie = offset;
1360 dir_ctx->last_cookie = offset;
1361 }
1362 dir_ctx->eof = false;
1363 }
1364 spin_unlock(&filp->f_lock);
1365 return offset;
1366 }
1367
1368 /*
1369 * All directory operations under NFS are synchronous, so fsync()
1370 * is a dummy operation.
1371 */
nfs_fsync_dir(struct file * filp,loff_t start,loff_t end,int datasync)1372 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
1373 int datasync)
1374 {
1375 dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
1376
1377 nfs_inc_stats(file_inode(filp), NFSIOS_VFSFSYNC);
1378 return 0;
1379 }
1380
1381 /**
1382 * nfs_force_lookup_revalidate - Mark the directory as having changed
1383 * @dir: pointer to directory inode
1384 *
1385 * This forces the revalidation code in nfs_lookup_revalidate() to do a
1386 * full lookup on all child dentries of 'dir' whenever a change occurs
1387 * on the server that might have invalidated our dcache.
1388 *
1389 * Note that we reserve bit '0' as a tag to let us know when a dentry
1390 * was revalidated while holding a delegation on its inode.
1391 *
1392 * The caller should be holding dir->i_lock
1393 */
nfs_force_lookup_revalidate(struct inode * dir)1394 void nfs_force_lookup_revalidate(struct inode *dir)
1395 {
1396 NFS_I(dir)->cache_change_attribute += 2;
1397 }
1398 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
1399
1400 /**
1401 * nfs_verify_change_attribute - Detects NFS remote directory changes
1402 * @dir: pointer to parent directory inode
1403 * @verf: previously saved change attribute
1404 *
1405 * Return "false" if the verifiers doesn't match the change attribute.
1406 * This would usually indicate that the directory contents have changed on
1407 * the server, and that any dentries need revalidating.
1408 */
nfs_verify_change_attribute(struct inode * dir,unsigned long verf)1409 static bool nfs_verify_change_attribute(struct inode *dir, unsigned long verf)
1410 {
1411 return (verf & ~1UL) == nfs_save_change_attribute(dir);
1412 }
1413
nfs_set_verifier_delegated(unsigned long * verf)1414 static void nfs_set_verifier_delegated(unsigned long *verf)
1415 {
1416 *verf |= 1UL;
1417 }
1418
1419 #if IS_ENABLED(CONFIG_NFS_V4)
nfs_unset_verifier_delegated(unsigned long * verf)1420 static void nfs_unset_verifier_delegated(unsigned long *verf)
1421 {
1422 *verf &= ~1UL;
1423 }
1424 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1425
nfs_test_verifier_delegated(unsigned long verf)1426 static bool nfs_test_verifier_delegated(unsigned long verf)
1427 {
1428 return verf & 1;
1429 }
1430
nfs_verifier_is_delegated(struct dentry * dentry)1431 static bool nfs_verifier_is_delegated(struct dentry *dentry)
1432 {
1433 return nfs_test_verifier_delegated(dentry->d_time);
1434 }
1435
nfs_set_verifier_locked(struct dentry * dentry,unsigned long verf)1436 static void nfs_set_verifier_locked(struct dentry *dentry, unsigned long verf)
1437 {
1438 struct inode *inode = d_inode(dentry);
1439 struct inode *dir = d_inode_rcu(dentry->d_parent);
1440
1441 if (!dir || !nfs_verify_change_attribute(dir, verf))
1442 return;
1443 if (inode && NFS_PROTO(inode)->have_delegation(inode, FMODE_READ, 0))
1444 nfs_set_verifier_delegated(&verf);
1445 dentry->d_time = verf;
1446 }
1447
1448 /**
1449 * nfs_set_verifier - save a parent directory verifier in the dentry
1450 * @dentry: pointer to dentry
1451 * @verf: verifier to save
1452 *
1453 * Saves the parent directory verifier in @dentry. If the inode has
1454 * a delegation, we also tag the dentry as having been revalidated
1455 * while holding a delegation so that we know we don't have to
1456 * look it up again after a directory change.
1457 */
nfs_set_verifier(struct dentry * dentry,unsigned long verf)1458 void nfs_set_verifier(struct dentry *dentry, unsigned long verf)
1459 {
1460
1461 spin_lock(&dentry->d_lock);
1462 nfs_set_verifier_locked(dentry, verf);
1463 spin_unlock(&dentry->d_lock);
1464 }
1465 EXPORT_SYMBOL_GPL(nfs_set_verifier);
1466
1467 #if IS_ENABLED(CONFIG_NFS_V4)
1468 /**
1469 * nfs_clear_verifier_delegated - clear the dir verifier delegation tag
1470 * @inode: pointer to inode
1471 *
1472 * Iterates through the dentries in the inode alias list and clears
1473 * the tag used to indicate that the dentry has been revalidated
1474 * while holding a delegation.
1475 * This function is intended for use when the delegation is being
1476 * returned or revoked.
1477 */
nfs_clear_verifier_delegated(struct inode * inode)1478 void nfs_clear_verifier_delegated(struct inode *inode)
1479 {
1480 struct dentry *alias;
1481
1482 if (!inode)
1483 return;
1484 spin_lock(&inode->i_lock);
1485 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1486 spin_lock(&alias->d_lock);
1487 nfs_unset_verifier_delegated(&alias->d_time);
1488 spin_unlock(&alias->d_lock);
1489 }
1490 spin_unlock(&inode->i_lock);
1491 }
1492 EXPORT_SYMBOL_GPL(nfs_clear_verifier_delegated);
1493 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1494
nfs_dentry_verify_change(struct inode * dir,struct dentry * dentry)1495 static int nfs_dentry_verify_change(struct inode *dir, struct dentry *dentry)
1496 {
1497 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE) &&
1498 d_really_is_negative(dentry))
1499 return dentry->d_time == inode_peek_iversion_raw(dir);
1500 return nfs_verify_change_attribute(dir, dentry->d_time);
1501 }
1502
1503 /*
1504 * A check for whether or not the parent directory has changed.
1505 * In the case it has, we assume that the dentries are untrustworthy
1506 * and may need to be looked up again.
1507 * If rcu_walk prevents us from performing a full check, return 0.
1508 */
nfs_check_verifier(struct inode * dir,struct dentry * dentry,int rcu_walk)1509 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1510 int rcu_walk)
1511 {
1512 if (IS_ROOT(dentry))
1513 return 1;
1514 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1515 return 0;
1516 if (!nfs_dentry_verify_change(dir, dentry))
1517 return 0;
1518
1519 /*
1520 * If we have a directory delegation then we don't need to revalidate
1521 * the directory. The delegation will either get recalled or we will
1522 * receive a notification when it changes.
1523 */
1524 if (nfs_have_directory_delegation(dir))
1525 return 0;
1526
1527 /* Revalidate nfsi->cache_change_attribute before we declare a match */
1528 if (nfs_mapping_need_revalidate_inode(dir)) {
1529 if (rcu_walk)
1530 return 0;
1531 if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
1532 return 0;
1533 }
1534 if (!nfs_dentry_verify_change(dir, dentry))
1535 return 0;
1536 return 1;
1537 }
1538
1539 /*
1540 * Use intent information to check whether or not we're going to do
1541 * an O_EXCL create using this path component.
1542 */
nfs_is_exclusive_create(struct inode * dir,unsigned int flags)1543 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1544 {
1545 if (NFS_PROTO(dir)->version == 2)
1546 return 0;
1547 return (flags & (LOOKUP_CREATE | LOOKUP_EXCL)) ==
1548 (LOOKUP_CREATE | LOOKUP_EXCL);
1549 }
1550
1551 /*
1552 * Inode and filehandle revalidation for lookups.
1553 *
1554 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1555 * or if the intent information indicates that we're about to open this
1556 * particular file and the "nocto" mount flag is not set.
1557 *
1558 */
1559 static
nfs_lookup_verify_inode(struct inode * inode,unsigned int flags)1560 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1561 {
1562 struct nfs_server *server = NFS_SERVER(inode);
1563 int ret;
1564
1565 if (IS_AUTOMOUNT(inode))
1566 return 0;
1567
1568 if (flags & LOOKUP_OPEN) {
1569 switch (inode->i_mode & S_IFMT) {
1570 case S_IFREG:
1571 /* A NFSv4 OPEN will revalidate later */
1572 if (server->caps & NFS_CAP_ATOMIC_OPEN)
1573 goto out;
1574 fallthrough;
1575 case S_IFDIR:
1576 if (server->flags & NFS_MOUNT_NOCTO)
1577 break;
1578 /* NFS close-to-open cache consistency validation */
1579 goto out_force;
1580 }
1581 }
1582
1583 /* VFS wants an on-the-wire revalidation */
1584 if (flags & LOOKUP_REVAL)
1585 goto out_force;
1586 out:
1587 if (inode->i_nlink > 0 ||
1588 (inode->i_nlink == 0 &&
1589 test_bit(NFS_INO_PRESERVE_UNLINKED, &NFS_I(inode)->flags)))
1590 return 0;
1591 else
1592 return -ESTALE;
1593 out_force:
1594 if (flags & LOOKUP_RCU)
1595 return -ECHILD;
1596 ret = __nfs_revalidate_inode(server, inode);
1597 if (ret != 0)
1598 return ret;
1599 goto out;
1600 }
1601
nfs_mark_dir_for_revalidate(struct inode * inode)1602 static void nfs_mark_dir_for_revalidate(struct inode *inode)
1603 {
1604 spin_lock(&inode->i_lock);
1605 nfs_set_cache_invalid(inode, NFS_INO_INVALID_CHANGE);
1606 spin_unlock(&inode->i_lock);
1607 }
1608
1609 /*
1610 * We judge how long we want to trust negative
1611 * dentries by looking at the parent inode mtime.
1612 *
1613 * If parent mtime has changed, we revalidate, else we wait for a
1614 * period corresponding to the parent's attribute cache timeout value.
1615 *
1616 * If LOOKUP_RCU prevents us from performing a full check, return 1
1617 * suggesting a reval is needed.
1618 *
1619 * Note that when creating a new file, or looking up a rename target,
1620 * then it shouldn't be necessary to revalidate a negative dentry.
1621 */
1622 static inline
nfs_neg_need_reval(struct inode * dir,struct dentry * dentry,unsigned int flags)1623 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1624 unsigned int flags)
1625 {
1626 if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET))
1627 return 0;
1628 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1629 return 1;
1630 /* Case insensitive server? Revalidate negative dentries */
1631 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1632 return 1;
1633 return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1634 }
1635
1636 static int
nfs_lookup_revalidate_done(struct inode * dir,struct dentry * dentry,struct inode * inode,int error)1637 nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry,
1638 struct inode *inode, int error)
1639 {
1640 switch (error) {
1641 case 1:
1642 break;
1643 case -ETIMEDOUT:
1644 if (inode && (IS_ROOT(dentry) ||
1645 NFS_SERVER(inode)->flags & NFS_MOUNT_SOFTREVAL))
1646 error = 1;
1647 break;
1648 case -ESTALE:
1649 case -ENOENT:
1650 error = 0;
1651 fallthrough;
1652 default:
1653 /*
1654 * We can't d_drop the root of a disconnected tree:
1655 * its d_hash is on the s_anon list and d_drop() would hide
1656 * it from shrink_dcache_for_unmount(), leading to busy
1657 * inodes on unmount and further oopses.
1658 */
1659 if (inode && IS_ROOT(dentry))
1660 error = 1;
1661 break;
1662 }
1663 trace_nfs_lookup_revalidate_exit(dir, dentry, 0, error);
1664 return error;
1665 }
1666
1667 static int
nfs_lookup_revalidate_negative(struct inode * dir,struct dentry * dentry,unsigned int flags)1668 nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry,
1669 unsigned int flags)
1670 {
1671 int ret = 1;
1672 if (nfs_neg_need_reval(dir, dentry, flags)) {
1673 if (flags & LOOKUP_RCU)
1674 return -ECHILD;
1675 ret = 0;
1676 }
1677 return nfs_lookup_revalidate_done(dir, dentry, NULL, ret);
1678 }
1679
1680 static int
nfs_lookup_revalidate_delegated(struct inode * dir,struct dentry * dentry,struct inode * inode)1681 nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry,
1682 struct inode *inode)
1683 {
1684 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1685 return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1686 }
1687
nfs_lookup_revalidate_dentry(struct inode * dir,const struct qstr * name,struct dentry * dentry,struct inode * inode,unsigned int flags)1688 static int nfs_lookup_revalidate_dentry(struct inode *dir, const struct qstr *name,
1689 struct dentry *dentry,
1690 struct inode *inode, unsigned int flags)
1691 {
1692 struct nfs_fh *fhandle;
1693 struct nfs_fattr *fattr;
1694 unsigned long dir_verifier;
1695 int ret;
1696
1697 trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1698
1699 ret = -ENOMEM;
1700 fhandle = nfs_alloc_fhandle();
1701 fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode));
1702 if (fhandle == NULL || fattr == NULL)
1703 goto out;
1704
1705 dir_verifier = nfs_save_change_attribute(dir);
1706 ret = NFS_PROTO(dir)->lookup(dir, dentry, name, fhandle, fattr);
1707 if (ret < 0)
1708 goto out;
1709
1710 /* Request help from readdirplus */
1711 nfs_lookup_advise_force_readdirplus(dir, flags);
1712
1713 ret = 0;
1714 if (nfs_compare_fh(NFS_FH(inode), fhandle))
1715 goto out;
1716 if (nfs_refresh_inode(inode, fattr) < 0)
1717 goto out;
1718
1719 nfs_setsecurity(inode, fattr);
1720 nfs_set_verifier(dentry, dir_verifier);
1721
1722 ret = 1;
1723 out:
1724 nfs_free_fattr(fattr);
1725 nfs_free_fhandle(fhandle);
1726
1727 /*
1728 * If the lookup failed despite the dentry change attribute being
1729 * a match, then we should revalidate the directory cache.
1730 */
1731 if (!ret && nfs_dentry_verify_change(dir, dentry))
1732 nfs_mark_dir_for_revalidate(dir);
1733 return nfs_lookup_revalidate_done(dir, dentry, inode, ret);
1734 }
1735
1736 /*
1737 * This is called every time the dcache has a lookup hit,
1738 * and we should check whether we can really trust that
1739 * lookup.
1740 *
1741 * NOTE! The hit can be a negative hit too, don't assume
1742 * we have an inode!
1743 *
1744 * If the parent directory is seen to have changed, we throw out the
1745 * cached dentry and do a new lookup.
1746 */
1747 static int
nfs_do_lookup_revalidate(struct inode * dir,const struct qstr * name,struct dentry * dentry,unsigned int flags)1748 nfs_do_lookup_revalidate(struct inode *dir, const struct qstr *name,
1749 struct dentry *dentry, unsigned int flags)
1750 {
1751 struct inode *inode;
1752 int error = 0;
1753
1754 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1755 inode = d_inode(dentry);
1756
1757 if (!inode)
1758 return nfs_lookup_revalidate_negative(dir, dentry, flags);
1759
1760 if (is_bad_inode(inode)) {
1761 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1762 __func__, dentry);
1763 goto out_bad;
1764 }
1765
1766 if ((flags & LOOKUP_RENAME_TARGET) && d_count(dentry) < 2 &&
1767 nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1768 goto out_bad;
1769
1770 if (nfs_verifier_is_delegated(dentry))
1771 return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1772
1773 /* Force a full look up iff the parent directory has changed */
1774 if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) &&
1775 nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1776 error = nfs_lookup_verify_inode(inode, flags);
1777 if (error) {
1778 if (error == -ESTALE)
1779 nfs_mark_dir_for_revalidate(dir);
1780 goto out_bad;
1781 }
1782 goto out_valid;
1783 }
1784
1785 if (flags & LOOKUP_RCU)
1786 return -ECHILD;
1787
1788 if (NFS_STALE(inode))
1789 goto out_bad;
1790
1791 return nfs_lookup_revalidate_dentry(dir, name, dentry, inode, flags);
1792 out_valid:
1793 return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1794 out_bad:
1795 if (flags & LOOKUP_RCU)
1796 return -ECHILD;
1797 return nfs_lookup_revalidate_done(dir, dentry, inode, error);
1798 }
1799
1800 static int
__nfs_lookup_revalidate(struct dentry * dentry,unsigned int flags)1801 __nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1802 {
1803 if (flags & LOOKUP_RCU) {
1804 if (dentry->d_fsdata == NFS_FSDATA_BLOCKED)
1805 return -ECHILD;
1806 } else {
1807 /* Wait for unlink to complete - see unblock_revalidate() */
1808 wait_var_event(&dentry->d_fsdata,
1809 smp_load_acquire(&dentry->d_fsdata)
1810 != NFS_FSDATA_BLOCKED);
1811 }
1812 return 0;
1813 }
1814
nfs_lookup_revalidate(struct inode * dir,const struct qstr * name,struct dentry * dentry,unsigned int flags)1815 static int nfs_lookup_revalidate(struct inode *dir, const struct qstr *name,
1816 struct dentry *dentry, unsigned int flags)
1817 {
1818 if (__nfs_lookup_revalidate(dentry, flags))
1819 return -ECHILD;
1820 return nfs_do_lookup_revalidate(dir, name, dentry, flags);
1821 }
1822
block_revalidate(struct dentry * dentry)1823 static void block_revalidate(struct dentry *dentry)
1824 {
1825 /* old devname - just in case */
1826 kfree(dentry->d_fsdata);
1827
1828 /* Any new reference that could lead to an open
1829 * will take ->d_lock in lookup_open() -> d_lookup().
1830 * Holding this lock ensures we cannot race with
1831 * __nfs_lookup_revalidate() and removes and need
1832 * for further barriers.
1833 */
1834 lockdep_assert_held(&dentry->d_lock);
1835
1836 dentry->d_fsdata = NFS_FSDATA_BLOCKED;
1837 }
1838
unblock_revalidate(struct dentry * dentry)1839 static void unblock_revalidate(struct dentry *dentry)
1840 {
1841 store_release_wake_up(&dentry->d_fsdata, NULL);
1842 }
1843
1844 /*
1845 * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1846 * when we don't really care about the dentry name. This is called when a
1847 * pathwalk ends on a dentry that was not found via a normal lookup in the
1848 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1849 *
1850 * In this situation, we just want to verify that the inode itself is OK
1851 * since the dentry might have changed on the server.
1852 */
nfs_weak_revalidate(struct dentry * dentry,unsigned int flags)1853 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1854 {
1855 struct inode *inode = d_inode(dentry);
1856 int error = 0;
1857
1858 /*
1859 * I believe we can only get a negative dentry here in the case of a
1860 * procfs-style symlink. Just assume it's correct for now, but we may
1861 * eventually need to do something more here.
1862 */
1863 if (!inode) {
1864 dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1865 __func__, dentry);
1866 return 1;
1867 }
1868
1869 if (is_bad_inode(inode)) {
1870 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1871 __func__, dentry);
1872 return 0;
1873 }
1874
1875 error = nfs_lookup_verify_inode(inode, flags);
1876 dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1877 __func__, inode->i_ino, error ? "invalid" : "valid");
1878 return !error;
1879 }
1880
1881 /*
1882 * This is called from dput() when d_count is going to 0.
1883 */
nfs_dentry_delete(const struct dentry * dentry)1884 static int nfs_dentry_delete(const struct dentry *dentry)
1885 {
1886 dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1887 dentry, dentry->d_flags);
1888
1889 /* Unhash any dentry with a stale inode */
1890 if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1891 return 1;
1892
1893 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1894 /* Unhash it, so that ->d_iput() would be called */
1895 return 1;
1896 }
1897 if (!(dentry->d_sb->s_flags & SB_ACTIVE)) {
1898 /* Unhash it, so that ancestors of killed async unlink
1899 * files will be cleaned up during umount */
1900 return 1;
1901 }
1902 return 0;
1903
1904 }
1905
1906 /* Ensure that we revalidate inode->i_nlink */
nfs_drop_nlink(struct inode * inode,unsigned long gencount)1907 static void nfs_drop_nlink(struct inode *inode, unsigned long gencount)
1908 {
1909 struct nfs_inode *nfsi = NFS_I(inode);
1910
1911 spin_lock(&inode->i_lock);
1912 /* drop the inode if we're reasonably sure this is the last link */
1913 if (inode->i_nlink > 0 && gencount == nfsi->attr_gencount)
1914 drop_nlink(inode);
1915 nfsi->attr_gencount = nfs_inc_attr_generation_counter();
1916 nfs_set_cache_invalid(
1917 inode, NFS_INO_INVALID_CHANGE | NFS_INO_INVALID_CTIME |
1918 NFS_INO_INVALID_NLINK);
1919 spin_unlock(&inode->i_lock);
1920 }
1921
1922 /*
1923 * Called when the dentry loses inode.
1924 * We use it to clean up silly-renamed files.
1925 */
nfs_dentry_iput(struct dentry * dentry,struct inode * inode)1926 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1927 {
1928 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1929 unsigned long gencount = READ_ONCE(NFS_I(inode)->attr_gencount);
1930 nfs_complete_unlink(dentry, inode);
1931 nfs_drop_nlink(inode, gencount);
1932 }
1933 iput(inode);
1934 }
1935
nfs_d_release(struct dentry * dentry)1936 static void nfs_d_release(struct dentry *dentry)
1937 {
1938 /* free cached devname value, if it survived that far */
1939 if (unlikely(dentry->d_fsdata)) {
1940 if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1941 WARN_ON(1);
1942 else
1943 kfree(dentry->d_fsdata);
1944 }
1945 }
1946
1947 const struct dentry_operations nfs_dentry_operations = {
1948 .d_revalidate = nfs_lookup_revalidate,
1949 .d_weak_revalidate = nfs_weak_revalidate,
1950 .d_delete = nfs_dentry_delete,
1951 .d_iput = nfs_dentry_iput,
1952 .d_automount = nfs_d_automount,
1953 .d_release = nfs_d_release,
1954 };
1955 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1956
nfs_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)1957 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1958 {
1959 struct dentry *res;
1960 struct inode *inode = NULL;
1961 struct nfs_fh *fhandle = NULL;
1962 struct nfs_fattr *fattr = NULL;
1963 unsigned long dir_verifier;
1964 int error;
1965
1966 dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1967 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1968
1969 if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1970 return ERR_PTR(-ENAMETOOLONG);
1971
1972 /*
1973 * If we're doing an exclusive create, optimize away the lookup
1974 * but don't hash the dentry.
1975 */
1976 if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET)
1977 return NULL;
1978
1979 res = ERR_PTR(-ENOMEM);
1980 fhandle = nfs_alloc_fhandle();
1981 fattr = nfs_alloc_fattr_with_label(NFS_SERVER(dir));
1982 if (fhandle == NULL || fattr == NULL)
1983 goto out;
1984
1985 dir_verifier = nfs_save_change_attribute(dir);
1986 trace_nfs_lookup_enter(dir, dentry, flags);
1987 error = NFS_PROTO(dir)->lookup(dir, dentry, &dentry->d_name,
1988 fhandle, fattr);
1989 if (error == -ENOENT) {
1990 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1991 dir_verifier = inode_peek_iversion_raw(dir);
1992 goto no_entry;
1993 }
1994 if (error < 0) {
1995 res = ERR_PTR(error);
1996 goto out;
1997 }
1998 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1999 res = ERR_CAST(inode);
2000 if (IS_ERR(res))
2001 goto out;
2002
2003 /* Notify readdir to use READDIRPLUS */
2004 nfs_lookup_advise_force_readdirplus(dir, flags);
2005
2006 no_entry:
2007 nfs_set_verifier(dentry, dir_verifier);
2008 res = d_splice_alias(inode, dentry);
2009 if (res != NULL) {
2010 if (IS_ERR(res))
2011 goto out;
2012 nfs_set_verifier(res, dir_verifier);
2013 dentry = res;
2014 }
2015 out:
2016 trace_nfs_lookup_exit(dir, dentry, flags, PTR_ERR_OR_ZERO(res));
2017 nfs_free_fattr(fattr);
2018 nfs_free_fhandle(fhandle);
2019 return res;
2020 }
2021 EXPORT_SYMBOL_GPL(nfs_lookup);
2022
nfs_d_prune_case_insensitive_aliases(struct inode * inode)2023 void nfs_d_prune_case_insensitive_aliases(struct inode *inode)
2024 {
2025 /* Case insensitive server? Revalidate dentries */
2026 if (inode && nfs_server_capable(inode, NFS_CAP_CASE_INSENSITIVE))
2027 d_prune_aliases(inode);
2028 }
2029 EXPORT_SYMBOL_GPL(nfs_d_prune_case_insensitive_aliases);
2030
2031 #if IS_ENABLED(CONFIG_NFS_V4)
2032 static int nfs4_lookup_revalidate(struct inode *, const struct qstr *,
2033 struct dentry *, unsigned int);
2034
2035 const struct dentry_operations nfs4_dentry_operations = {
2036 .d_revalidate = nfs4_lookup_revalidate,
2037 .d_weak_revalidate = nfs_weak_revalidate,
2038 .d_delete = nfs_dentry_delete,
2039 .d_iput = nfs_dentry_iput,
2040 .d_automount = nfs_d_automount,
2041 .d_release = nfs_d_release,
2042 };
2043 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
2044
create_nfs_open_context(struct dentry * dentry,int open_flags,struct file * filp)2045 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
2046 {
2047 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
2048 }
2049
do_open(struct inode * inode,struct file * filp)2050 static int do_open(struct inode *inode, struct file *filp)
2051 {
2052 nfs_fscache_open_file(inode, filp);
2053 return 0;
2054 }
2055
nfs_finish_open(struct nfs_open_context * ctx,struct dentry * dentry,struct file * file,unsigned open_flags)2056 static int nfs_finish_open(struct nfs_open_context *ctx,
2057 struct dentry *dentry,
2058 struct file *file, unsigned open_flags)
2059 {
2060 int err;
2061
2062 err = finish_open(file, dentry, do_open);
2063 if (err)
2064 goto out;
2065 if (S_ISREG(file_inode(file)->i_mode))
2066 nfs_file_set_open_context(file, ctx);
2067 else
2068 err = -EOPENSTALE;
2069 out:
2070 return err;
2071 }
2072
nfs_atomic_open(struct inode * dir,struct dentry * dentry,struct file * file,unsigned open_flags,umode_t mode)2073 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
2074 struct file *file, unsigned open_flags,
2075 umode_t mode)
2076 {
2077 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
2078 struct nfs_open_context *ctx;
2079 struct dentry *res;
2080 struct iattr attr = { .ia_valid = ATTR_OPEN };
2081 struct inode *inode;
2082 unsigned int lookup_flags = 0;
2083 unsigned long dir_verifier;
2084 bool switched = false;
2085 int created = 0;
2086 int err;
2087
2088 /* Expect a negative dentry */
2089 BUG_ON(d_inode(dentry));
2090
2091 dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
2092 dir->i_sb->s_id, dir->i_ino, dentry);
2093
2094 err = nfs_check_flags(open_flags);
2095 if (err)
2096 return err;
2097
2098 /* NFS only supports OPEN on regular files */
2099 if ((open_flags & O_DIRECTORY)) {
2100 if (!d_in_lookup(dentry)) {
2101 /*
2102 * Hashed negative dentry with O_DIRECTORY: dentry was
2103 * revalidated and is fine, no need to perform lookup
2104 * again
2105 */
2106 return -ENOENT;
2107 }
2108 lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
2109 goto no_open;
2110 }
2111
2112 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
2113 return -ENAMETOOLONG;
2114
2115 if (open_flags & O_CREAT) {
2116 struct nfs_server *server = NFS_SERVER(dir);
2117
2118 if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
2119 mode &= ~current_umask();
2120
2121 attr.ia_valid |= ATTR_MODE;
2122 attr.ia_mode = mode;
2123 }
2124 if (open_flags & O_TRUNC) {
2125 attr.ia_valid |= ATTR_SIZE;
2126 attr.ia_size = 0;
2127 }
2128
2129 if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
2130 d_drop(dentry);
2131 switched = true;
2132 dentry = d_alloc_parallel(dentry->d_parent,
2133 &dentry->d_name, &wq);
2134 if (IS_ERR(dentry))
2135 return PTR_ERR(dentry);
2136 if (unlikely(!d_in_lookup(dentry)))
2137 return finish_no_open(file, dentry);
2138 }
2139
2140 ctx = create_nfs_open_context(dentry, open_flags, file);
2141 err = PTR_ERR(ctx);
2142 if (IS_ERR(ctx))
2143 goto out;
2144
2145 trace_nfs_atomic_open_enter(dir, ctx, open_flags);
2146 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created);
2147 if (created)
2148 file->f_mode |= FMODE_CREATED;
2149 if (IS_ERR(inode)) {
2150 err = PTR_ERR(inode);
2151 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
2152 put_nfs_open_context(ctx);
2153 d_drop(dentry);
2154 switch (err) {
2155 case -ENOENT:
2156 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
2157 dir_verifier = inode_peek_iversion_raw(dir);
2158 else
2159 dir_verifier = nfs_save_change_attribute(dir);
2160 nfs_set_verifier(dentry, dir_verifier);
2161 d_splice_alias(NULL, dentry);
2162 break;
2163 case -EISDIR:
2164 case -ENOTDIR:
2165 goto no_open;
2166 case -ELOOP:
2167 if (!(open_flags & O_NOFOLLOW))
2168 goto no_open;
2169 break;
2170 /* case -EINVAL: */
2171 default:
2172 break;
2173 }
2174 goto out;
2175 }
2176 file->f_mode |= FMODE_CAN_ODIRECT;
2177
2178 err = nfs_finish_open(ctx, ctx->dentry, file, open_flags);
2179 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
2180 put_nfs_open_context(ctx);
2181 out:
2182 if (unlikely(switched)) {
2183 d_lookup_done(dentry);
2184 dput(dentry);
2185 }
2186 return err;
2187
2188 no_open:
2189 res = nfs_lookup(dir, dentry, lookup_flags);
2190 if (!res) {
2191 inode = d_inode(dentry);
2192 if ((lookup_flags & LOOKUP_DIRECTORY) && inode &&
2193 !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)))
2194 res = ERR_PTR(-ENOTDIR);
2195 else if (inode && S_ISREG(inode->i_mode))
2196 res = ERR_PTR(-EOPENSTALE);
2197 } else if (!IS_ERR(res)) {
2198 inode = d_inode(res);
2199 if ((lookup_flags & LOOKUP_DIRECTORY) && inode &&
2200 !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))) {
2201 dput(res);
2202 res = ERR_PTR(-ENOTDIR);
2203 } else if (inode && S_ISREG(inode->i_mode)) {
2204 dput(res);
2205 res = ERR_PTR(-EOPENSTALE);
2206 }
2207 }
2208 if (switched) {
2209 d_lookup_done(dentry);
2210 if (!res)
2211 res = dentry;
2212 else
2213 dput(dentry);
2214 }
2215 return finish_no_open(file, res);
2216 }
2217 EXPORT_SYMBOL_GPL(nfs_atomic_open);
2218
2219 static int
nfs_lookup_revalidate_delegated_parent(struct inode * dir,struct dentry * dentry,struct inode * inode)2220 nfs_lookup_revalidate_delegated_parent(struct inode *dir, struct dentry *dentry,
2221 struct inode *inode)
2222 {
2223 return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
2224 }
2225
2226 static int
nfs4_lookup_revalidate(struct inode * dir,const struct qstr * name,struct dentry * dentry,unsigned int flags)2227 nfs4_lookup_revalidate(struct inode *dir, const struct qstr *name,
2228 struct dentry *dentry, unsigned int flags)
2229 {
2230 struct inode *inode;
2231
2232 if (__nfs_lookup_revalidate(dentry, flags))
2233 return -ECHILD;
2234
2235 trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
2236
2237 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
2238 goto full_reval;
2239 if (d_mountpoint(dentry))
2240 goto full_reval;
2241
2242 inode = d_inode(dentry);
2243
2244 /* We can't create new files in nfs_open_revalidate(), so we
2245 * optimize away revalidation of negative dentries.
2246 */
2247 if (inode == NULL)
2248 goto full_reval;
2249
2250 if (nfs_verifier_is_delegated(dentry))
2251 return nfs_lookup_revalidate_delegated(dir, dentry, inode);
2252
2253 if (nfs_have_directory_delegation(dir))
2254 return nfs_lookup_revalidate_delegated_parent(dir, dentry, inode);
2255
2256 /* NFS only supports OPEN on regular files */
2257 if (!S_ISREG(inode->i_mode))
2258 goto full_reval;
2259
2260 /* We cannot do exclusive creation on a positive dentry */
2261 if (flags & (LOOKUP_EXCL | LOOKUP_REVAL))
2262 goto reval_dentry;
2263
2264 /* Check if the directory changed */
2265 if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU))
2266 goto reval_dentry;
2267
2268 /* Let f_op->open() actually open (and revalidate) the file */
2269 return 1;
2270 reval_dentry:
2271 if (flags & LOOKUP_RCU)
2272 return -ECHILD;
2273 return nfs_lookup_revalidate_dentry(dir, name, dentry, inode, flags);
2274
2275 full_reval:
2276 return nfs_do_lookup_revalidate(dir, name, dentry, flags);
2277 }
2278
2279 #endif /* CONFIG_NFSV4 */
2280
nfs_atomic_open_v23(struct inode * dir,struct dentry * dentry,struct file * file,unsigned int open_flags,umode_t mode)2281 int nfs_atomic_open_v23(struct inode *dir, struct dentry *dentry,
2282 struct file *file, unsigned int open_flags,
2283 umode_t mode)
2284 {
2285 struct dentry *res = NULL;
2286 /* Same as look+open from lookup_open(), but with different O_TRUNC
2287 * handling.
2288 */
2289 int error = 0;
2290
2291 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
2292 return -ENAMETOOLONG;
2293
2294 if (open_flags & O_CREAT) {
2295 error = nfs_do_create(dir, dentry, mode, open_flags);
2296 if (!error) {
2297 file->f_mode |= FMODE_CREATED;
2298 return finish_open(file, dentry, NULL);
2299 } else if (error != -EEXIST || open_flags & O_EXCL)
2300 return error;
2301 }
2302 if (d_in_lookup(dentry)) {
2303 /* The only flags nfs_lookup considers are
2304 * LOOKUP_EXCL and LOOKUP_RENAME_TARGET, and
2305 * we want those to be zero so the lookup isn't skipped.
2306 */
2307 res = nfs_lookup(dir, dentry, 0);
2308 }
2309 return finish_no_open(file, res);
2310
2311 }
2312 EXPORT_SYMBOL_GPL(nfs_atomic_open_v23);
2313
2314 struct dentry *
nfs_add_or_obtain(struct dentry * dentry,struct nfs_fh * fhandle,struct nfs_fattr * fattr)2315 nfs_add_or_obtain(struct dentry *dentry, struct nfs_fh *fhandle,
2316 struct nfs_fattr *fattr)
2317 {
2318 struct dentry *parent = dget_parent(dentry);
2319 struct inode *dir = d_inode(parent);
2320 struct inode *inode;
2321 struct dentry *d;
2322 int error;
2323
2324 d_drop(dentry);
2325
2326 if (fhandle->size == 0) {
2327 error = NFS_PROTO(dir)->lookup(dir, dentry, &dentry->d_name,
2328 fhandle, fattr);
2329 if (error)
2330 goto out_error;
2331 }
2332 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2333 if (!(fattr->valid & NFS_ATTR_FATTR)) {
2334 struct nfs_server *server = NFS_SB(dentry->d_sb);
2335 error = server->nfs_client->rpc_ops->getattr(server, fhandle,
2336 fattr, NULL);
2337 if (error < 0)
2338 goto out_error;
2339 }
2340 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
2341 d = d_splice_alias(inode, dentry);
2342 out:
2343 dput(parent);
2344 return d;
2345 out_error:
2346 d = ERR_PTR(error);
2347 goto out;
2348 }
2349 EXPORT_SYMBOL_GPL(nfs_add_or_obtain);
2350
2351 /*
2352 * Code common to create, mkdir, and mknod.
2353 */
nfs_instantiate(struct dentry * dentry,struct nfs_fh * fhandle,struct nfs_fattr * fattr)2354 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
2355 struct nfs_fattr *fattr)
2356 {
2357 struct dentry *d;
2358
2359 d = nfs_add_or_obtain(dentry, fhandle, fattr);
2360 if (IS_ERR(d))
2361 return PTR_ERR(d);
2362
2363 /* Callers don't care */
2364 dput(d);
2365 return 0;
2366 }
2367 EXPORT_SYMBOL_GPL(nfs_instantiate);
2368
2369 /*
2370 * Following a failed create operation, we drop the dentry rather
2371 * than retain a negative dentry. This avoids a problem in the event
2372 * that the operation succeeded on the server, but an error in the
2373 * reply path made it appear to have failed.
2374 */
nfs_do_create(struct inode * dir,struct dentry * dentry,umode_t mode,int open_flags)2375 static int nfs_do_create(struct inode *dir, struct dentry *dentry,
2376 umode_t mode, int open_flags)
2377 {
2378 struct iattr attr;
2379 int error;
2380
2381 open_flags |= O_CREAT;
2382
2383 dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
2384 dir->i_sb->s_id, dir->i_ino, dentry);
2385
2386 attr.ia_mode = mode;
2387 attr.ia_valid = ATTR_MODE;
2388 if (open_flags & O_TRUNC) {
2389 attr.ia_size = 0;
2390 attr.ia_valid |= ATTR_SIZE;
2391 }
2392
2393 trace_nfs_create_enter(dir, dentry, open_flags);
2394 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
2395 trace_nfs_create_exit(dir, dentry, open_flags, error);
2396 if (error != 0)
2397 goto out_err;
2398 return 0;
2399 out_err:
2400 d_drop(dentry);
2401 return error;
2402 }
2403
nfs_create(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)2404 int nfs_create(struct mnt_idmap *idmap, struct inode *dir,
2405 struct dentry *dentry, umode_t mode, bool excl)
2406 {
2407 return nfs_do_create(dir, dentry, mode, excl ? O_EXCL : 0);
2408 }
2409 EXPORT_SYMBOL_GPL(nfs_create);
2410
2411 /*
2412 * See comments for nfs_proc_create regarding failed operations.
2413 */
2414 int
nfs_mknod(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,dev_t rdev)2415 nfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
2416 struct dentry *dentry, umode_t mode, dev_t rdev)
2417 {
2418 struct iattr attr;
2419 int status;
2420
2421 dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
2422 dir->i_sb->s_id, dir->i_ino, dentry);
2423
2424 attr.ia_mode = mode;
2425 attr.ia_valid = ATTR_MODE;
2426
2427 trace_nfs_mknod_enter(dir, dentry);
2428 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
2429 trace_nfs_mknod_exit(dir, dentry, status);
2430 if (status != 0)
2431 goto out_err;
2432 return 0;
2433 out_err:
2434 d_drop(dentry);
2435 return status;
2436 }
2437 EXPORT_SYMBOL_GPL(nfs_mknod);
2438
2439 /*
2440 * See comments for nfs_proc_create regarding failed operations.
2441 */
nfs_mkdir(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode)2442 struct dentry *nfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
2443 struct dentry *dentry, umode_t mode)
2444 {
2445 struct iattr attr;
2446 struct dentry *ret;
2447
2448 dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
2449 dir->i_sb->s_id, dir->i_ino, dentry);
2450
2451 attr.ia_valid = ATTR_MODE;
2452 attr.ia_mode = mode | S_IFDIR;
2453
2454 trace_nfs_mkdir_enter(dir, dentry);
2455 ret = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
2456 trace_nfs_mkdir_exit(dir, dentry, PTR_ERR_OR_ZERO(ret));
2457 return ret;
2458 }
2459 EXPORT_SYMBOL_GPL(nfs_mkdir);
2460
nfs_dentry_handle_enoent(struct dentry * dentry)2461 static void nfs_dentry_handle_enoent(struct dentry *dentry)
2462 {
2463 if (simple_positive(dentry))
2464 d_delete(dentry);
2465 }
2466
nfs_dentry_remove_handle_error(struct inode * dir,struct dentry * dentry,int error)2467 static void nfs_dentry_remove_handle_error(struct inode *dir,
2468 struct dentry *dentry, int error)
2469 {
2470 switch (error) {
2471 case -ENOENT:
2472 if (d_really_is_positive(dentry))
2473 d_delete(dentry);
2474 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2475 break;
2476 case 0:
2477 nfs_d_prune_case_insensitive_aliases(d_inode(dentry));
2478 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2479 }
2480 }
2481
nfs_rmdir(struct inode * dir,struct dentry * dentry)2482 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
2483 {
2484 int error;
2485
2486 dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
2487 dir->i_sb->s_id, dir->i_ino, dentry);
2488
2489 trace_nfs_rmdir_enter(dir, dentry);
2490 if (d_really_is_positive(dentry)) {
2491 down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2492 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2493 /* Ensure the VFS deletes this inode */
2494 switch (error) {
2495 case 0:
2496 clear_nlink(d_inode(dentry));
2497 break;
2498 case -ENOENT:
2499 nfs_dentry_handle_enoent(dentry);
2500 }
2501 up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2502 } else
2503 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2504 nfs_dentry_remove_handle_error(dir, dentry, error);
2505 trace_nfs_rmdir_exit(dir, dentry, error);
2506
2507 return error;
2508 }
2509 EXPORT_SYMBOL_GPL(nfs_rmdir);
2510
2511 /*
2512 * Remove a file after making sure there are no pending writes,
2513 * and after checking that the file has only one user.
2514 *
2515 * We invalidate the attribute cache and free the inode prior to the operation
2516 * to avoid possible races if the server reuses the inode.
2517 */
nfs_safe_remove(struct dentry * dentry)2518 static int nfs_safe_remove(struct dentry *dentry)
2519 {
2520 struct inode *dir = d_inode(dentry->d_parent);
2521 struct inode *inode = d_inode(dentry);
2522 int error = -EBUSY;
2523
2524 dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
2525
2526 /* If the dentry was sillyrenamed, we simply call d_delete() */
2527 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
2528 error = 0;
2529 goto out;
2530 }
2531
2532 trace_nfs_remove_enter(dir, dentry);
2533 if (inode != NULL) {
2534 unsigned long gencount = READ_ONCE(NFS_I(inode)->attr_gencount);
2535
2536 error = NFS_PROTO(dir)->remove(dir, dentry);
2537 if (error == 0)
2538 nfs_drop_nlink(inode, gencount);
2539 } else
2540 error = NFS_PROTO(dir)->remove(dir, dentry);
2541 if (error == -ENOENT)
2542 nfs_dentry_handle_enoent(dentry);
2543 trace_nfs_remove_exit(dir, dentry, error);
2544 out:
2545 return error;
2546 }
2547
2548 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode
2549 * belongs to an active ".nfs..." file and we return -EBUSY.
2550 *
2551 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
2552 */
nfs_unlink(struct inode * dir,struct dentry * dentry)2553 int nfs_unlink(struct inode *dir, struct dentry *dentry)
2554 {
2555 int error;
2556
2557 dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
2558 dir->i_ino, dentry);
2559
2560 trace_nfs_unlink_enter(dir, dentry);
2561 spin_lock(&dentry->d_lock);
2562 if (d_count(dentry) > 1 && !test_bit(NFS_INO_PRESERVE_UNLINKED,
2563 &NFS_I(d_inode(dentry))->flags)) {
2564 spin_unlock(&dentry->d_lock);
2565 /* Start asynchronous writeout of the inode */
2566 write_inode_now(d_inode(dentry), 0);
2567 error = nfs_sillyrename(dir, dentry);
2568 goto out;
2569 }
2570 /* We must prevent any concurrent open until the unlink
2571 * completes. ->d_revalidate will wait for ->d_fsdata
2572 * to clear. We set it here to ensure no lookup succeeds until
2573 * the unlink is complete on the server.
2574 */
2575 error = -ETXTBSY;
2576 if (WARN_ON(dentry->d_flags & DCACHE_NFSFS_RENAMED) ||
2577 WARN_ON(dentry->d_fsdata == NFS_FSDATA_BLOCKED)) {
2578 spin_unlock(&dentry->d_lock);
2579 goto out;
2580 }
2581 block_revalidate(dentry);
2582
2583 spin_unlock(&dentry->d_lock);
2584 error = nfs_safe_remove(dentry);
2585 nfs_dentry_remove_handle_error(dir, dentry, error);
2586 unblock_revalidate(dentry);
2587 out:
2588 trace_nfs_unlink_exit(dir, dentry, error);
2589 return error;
2590 }
2591 EXPORT_SYMBOL_GPL(nfs_unlink);
2592
2593 /*
2594 * To create a symbolic link, most file systems instantiate a new inode,
2595 * add a page to it containing the path, then write it out to the disk
2596 * using prepare_write/commit_write.
2597 *
2598 * Unfortunately the NFS client can't create the in-core inode first
2599 * because it needs a file handle to create an in-core inode (see
2600 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
2601 * symlink request has completed on the server.
2602 *
2603 * So instead we allocate a raw page, copy the symname into it, then do
2604 * the SYMLINK request with the page as the buffer. If it succeeds, we
2605 * now have a new file handle and can instantiate an in-core NFS inode
2606 * and move the raw page into its mapping.
2607 */
nfs_symlink(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,const char * symname)2608 int nfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
2609 struct dentry *dentry, const char *symname)
2610 {
2611 struct folio *folio;
2612 char *kaddr;
2613 struct iattr attr;
2614 unsigned int pathlen = strlen(symname);
2615 int error;
2616
2617 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
2618 dir->i_ino, dentry, symname);
2619
2620 if (pathlen > PAGE_SIZE)
2621 return -ENAMETOOLONG;
2622
2623 attr.ia_mode = S_IFLNK | S_IRWXUGO;
2624 attr.ia_valid = ATTR_MODE;
2625
2626 folio = folio_alloc(GFP_USER, 0);
2627 if (!folio)
2628 return -ENOMEM;
2629
2630 kaddr = folio_address(folio);
2631 memcpy(kaddr, symname, pathlen);
2632 if (pathlen < PAGE_SIZE)
2633 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
2634
2635 trace_nfs_symlink_enter(dir, dentry);
2636 error = NFS_PROTO(dir)->symlink(dir, dentry, folio, pathlen, &attr);
2637 trace_nfs_symlink_exit(dir, dentry, error);
2638 if (error != 0) {
2639 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
2640 dir->i_sb->s_id, dir->i_ino,
2641 dentry, symname, error);
2642 d_drop(dentry);
2643 folio_put(folio);
2644 return error;
2645 }
2646
2647 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2648
2649 /*
2650 * No big deal if we can't add this page to the page cache here.
2651 * READLINK will get the missing page from the server if needed.
2652 */
2653 if (filemap_add_folio(d_inode(dentry)->i_mapping, folio, 0,
2654 GFP_KERNEL) == 0) {
2655 folio_mark_uptodate(folio);
2656 folio_unlock(folio);
2657 }
2658
2659 folio_put(folio);
2660 return 0;
2661 }
2662 EXPORT_SYMBOL_GPL(nfs_symlink);
2663
2664 int
nfs_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)2665 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2666 {
2667 struct inode *inode = d_inode(old_dentry);
2668 int error;
2669
2670 dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
2671 old_dentry, dentry);
2672
2673 trace_nfs_link_enter(inode, dir, dentry);
2674 d_drop(dentry);
2675 if (S_ISREG(inode->i_mode))
2676 nfs_sync_inode(inode);
2677 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
2678 if (error == 0) {
2679 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2680 ihold(inode);
2681 d_add(dentry, inode);
2682 }
2683 trace_nfs_link_exit(inode, dir, dentry, error);
2684 return error;
2685 }
2686 EXPORT_SYMBOL_GPL(nfs_link);
2687
2688 static void
nfs_unblock_rename(struct rpc_task * task,struct nfs_renamedata * data)2689 nfs_unblock_rename(struct rpc_task *task, struct nfs_renamedata *data)
2690 {
2691 struct dentry *new_dentry = data->new_dentry;
2692
2693 unblock_revalidate(new_dentry);
2694 }
2695
nfs_rename_is_unsafe_cross_dir(struct dentry * old_dentry,struct dentry * new_dentry)2696 static bool nfs_rename_is_unsafe_cross_dir(struct dentry *old_dentry,
2697 struct dentry *new_dentry)
2698 {
2699 struct nfs_server *server = NFS_SB(old_dentry->d_sb);
2700
2701 if (old_dentry->d_parent != new_dentry->d_parent)
2702 return false;
2703 if (server->fh_expire_type & NFS_FH_RENAME_UNSAFE)
2704 return !(server->fh_expire_type & NFS_FH_NOEXPIRE_WITH_OPEN);
2705 return true;
2706 }
2707
2708 /*
2709 * RENAME
2710 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2711 * different file handle for the same inode after a rename (e.g. when
2712 * moving to a different directory). A fail-safe method to do so would
2713 * be to look up old_dir/old_name, create a link to new_dir/new_name and
2714 * rename the old file using the sillyrename stuff. This way, the original
2715 * file in old_dir will go away when the last process iput()s the inode.
2716 *
2717 * FIXED.
2718 *
2719 * It actually works quite well. One needs to have the possibility for
2720 * at least one ".nfs..." file in each directory the file ever gets
2721 * moved or linked to which happens automagically with the new
2722 * implementation that only depends on the dcache stuff instead of
2723 * using the inode layer
2724 *
2725 * Unfortunately, things are a little more complicated than indicated
2726 * above. For a cross-directory move, we want to make sure we can get
2727 * rid of the old inode after the operation. This means there must be
2728 * no pending writes (if it's a file), and the use count must be 1.
2729 * If these conditions are met, we can drop the dentries before doing
2730 * the rename.
2731 */
nfs_rename(struct mnt_idmap * idmap,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)2732 int nfs_rename(struct mnt_idmap *idmap, struct inode *old_dir,
2733 struct dentry *old_dentry, struct inode *new_dir,
2734 struct dentry *new_dentry, unsigned int flags)
2735 {
2736 struct inode *old_inode = d_inode(old_dentry);
2737 struct inode *new_inode = d_inode(new_dentry);
2738 unsigned long new_gencount = 0;
2739 struct dentry *dentry = NULL;
2740 struct rpc_task *task;
2741 bool must_unblock = false;
2742 int error = -EBUSY;
2743
2744 if (flags)
2745 return -EINVAL;
2746
2747 dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2748 old_dentry, new_dentry,
2749 d_count(new_dentry));
2750
2751 trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2752 /*
2753 * For non-directories, check whether the target is busy and if so,
2754 * make a copy of the dentry and then do a silly-rename. If the
2755 * silly-rename succeeds, the copied dentry is hashed and becomes
2756 * the new target.
2757 */
2758 if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2759 /* We must prevent any concurrent open until the unlink
2760 * completes. ->d_revalidate will wait for ->d_fsdata
2761 * to clear. We set it here to ensure no lookup succeeds until
2762 * the unlink is complete on the server.
2763 */
2764 error = -ETXTBSY;
2765 if (WARN_ON(new_dentry->d_flags & DCACHE_NFSFS_RENAMED) ||
2766 WARN_ON(new_dentry->d_fsdata == NFS_FSDATA_BLOCKED))
2767 goto out;
2768
2769 spin_lock(&new_dentry->d_lock);
2770 if (d_count(new_dentry) > 2) {
2771 int err;
2772
2773 spin_unlock(&new_dentry->d_lock);
2774
2775 /* copy the target dentry's name */
2776 dentry = d_alloc(new_dentry->d_parent,
2777 &new_dentry->d_name);
2778 if (!dentry)
2779 goto out;
2780
2781 /* silly-rename the existing target ... */
2782 err = nfs_sillyrename(new_dir, new_dentry);
2783 if (err)
2784 goto out;
2785
2786 new_dentry = dentry;
2787 new_inode = NULL;
2788 } else {
2789 block_revalidate(new_dentry);
2790 must_unblock = true;
2791 new_gencount = NFS_I(new_inode)->attr_gencount;
2792 spin_unlock(&new_dentry->d_lock);
2793 }
2794
2795 }
2796
2797 if (S_ISREG(old_inode->i_mode) &&
2798 nfs_rename_is_unsafe_cross_dir(old_dentry, new_dentry))
2799 nfs_sync_inode(old_inode);
2800 task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry,
2801 must_unblock ? nfs_unblock_rename : NULL);
2802 if (IS_ERR(task)) {
2803 if (must_unblock)
2804 unblock_revalidate(new_dentry);
2805 error = PTR_ERR(task);
2806 goto out;
2807 }
2808
2809 error = rpc_wait_for_completion_task(task);
2810 if (error != 0) {
2811 ((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1;
2812 /* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2813 smp_wmb();
2814 } else
2815 error = task->tk_status;
2816 rpc_put_task(task);
2817 /* Ensure the inode attributes are revalidated */
2818 if (error == 0) {
2819 spin_lock(&old_inode->i_lock);
2820 NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter();
2821 nfs_set_cache_invalid(old_inode, NFS_INO_INVALID_CHANGE |
2822 NFS_INO_INVALID_CTIME |
2823 NFS_INO_REVAL_FORCED);
2824 spin_unlock(&old_inode->i_lock);
2825 }
2826 out:
2827 trace_nfs_rename_exit(old_dir, old_dentry,
2828 new_dir, new_dentry, error);
2829 if (!error) {
2830 if (new_inode != NULL)
2831 nfs_drop_nlink(new_inode, new_gencount);
2832 /*
2833 * The d_move() should be here instead of in an async RPC completion
2834 * handler because we need the proper locks to move the dentry. If
2835 * we're interrupted by a signal, the async RPC completion handler
2836 * should mark the directories for revalidation.
2837 */
2838 d_move(old_dentry, new_dentry);
2839 nfs_set_verifier(old_dentry,
2840 nfs_save_change_attribute(new_dir));
2841 } else if (error == -ENOENT)
2842 nfs_dentry_handle_enoent(old_dentry);
2843
2844 /* new dentry created? */
2845 if (dentry)
2846 dput(dentry);
2847 return error;
2848 }
2849 EXPORT_SYMBOL_GPL(nfs_rename);
2850
2851 static DEFINE_SPINLOCK(nfs_access_lru_lock);
2852 static LIST_HEAD(nfs_access_lru_list);
2853 static atomic_long_t nfs_access_nr_entries;
2854
2855 static unsigned long nfs_access_max_cachesize = 4*1024*1024;
2856 module_param(nfs_access_max_cachesize, ulong, 0644);
2857 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2858
nfs_access_free_entry(struct nfs_access_entry * entry)2859 static void nfs_access_free_entry(struct nfs_access_entry *entry)
2860 {
2861 put_group_info(entry->group_info);
2862 kfree_rcu(entry, rcu_head);
2863 smp_mb__before_atomic();
2864 atomic_long_dec(&nfs_access_nr_entries);
2865 smp_mb__after_atomic();
2866 }
2867
nfs_access_free_list(struct list_head * head)2868 static void nfs_access_free_list(struct list_head *head)
2869 {
2870 struct nfs_access_entry *cache;
2871
2872 while (!list_empty(head)) {
2873 cache = list_entry(head->next, struct nfs_access_entry, lru);
2874 list_del(&cache->lru);
2875 nfs_access_free_entry(cache);
2876 }
2877 }
2878
2879 static unsigned long
nfs_do_access_cache_scan(unsigned int nr_to_scan)2880 nfs_do_access_cache_scan(unsigned int nr_to_scan)
2881 {
2882 LIST_HEAD(head);
2883 struct nfs_inode *nfsi, *next;
2884 struct nfs_access_entry *cache;
2885 long freed = 0;
2886
2887 spin_lock(&nfs_access_lru_lock);
2888 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2889 struct inode *inode;
2890
2891 if (nr_to_scan-- == 0)
2892 break;
2893 inode = &nfsi->vfs_inode;
2894 spin_lock(&inode->i_lock);
2895 if (list_empty(&nfsi->access_cache_entry_lru))
2896 goto remove_lru_entry;
2897 cache = list_entry(nfsi->access_cache_entry_lru.next,
2898 struct nfs_access_entry, lru);
2899 list_move(&cache->lru, &head);
2900 rb_erase(&cache->rb_node, &nfsi->access_cache);
2901 freed++;
2902 if (!list_empty(&nfsi->access_cache_entry_lru))
2903 list_move_tail(&nfsi->access_cache_inode_lru,
2904 &nfs_access_lru_list);
2905 else {
2906 remove_lru_entry:
2907 list_del_init(&nfsi->access_cache_inode_lru);
2908 smp_mb__before_atomic();
2909 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2910 smp_mb__after_atomic();
2911 }
2912 spin_unlock(&inode->i_lock);
2913 }
2914 spin_unlock(&nfs_access_lru_lock);
2915 nfs_access_free_list(&head);
2916 return freed;
2917 }
2918
2919 unsigned long
nfs_access_cache_scan(struct shrinker * shrink,struct shrink_control * sc)2920 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2921 {
2922 int nr_to_scan = sc->nr_to_scan;
2923 gfp_t gfp_mask = sc->gfp_mask;
2924
2925 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2926 return SHRINK_STOP;
2927 return nfs_do_access_cache_scan(nr_to_scan);
2928 }
2929
2930
2931 unsigned long
nfs_access_cache_count(struct shrinker * shrink,struct shrink_control * sc)2932 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2933 {
2934 return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2935 }
2936
2937 static void
nfs_access_cache_enforce_limit(void)2938 nfs_access_cache_enforce_limit(void)
2939 {
2940 long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2941 unsigned long diff;
2942 unsigned int nr_to_scan;
2943
2944 if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2945 return;
2946 nr_to_scan = 100;
2947 diff = nr_entries - nfs_access_max_cachesize;
2948 if (diff < nr_to_scan)
2949 nr_to_scan = diff;
2950 nfs_do_access_cache_scan(nr_to_scan);
2951 }
2952
__nfs_access_zap_cache(struct nfs_inode * nfsi,struct list_head * head)2953 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2954 {
2955 struct rb_root *root_node = &nfsi->access_cache;
2956 struct rb_node *n;
2957 struct nfs_access_entry *entry;
2958
2959 /* Unhook entries from the cache */
2960 while ((n = rb_first(root_node)) != NULL) {
2961 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2962 rb_erase(n, root_node);
2963 list_move(&entry->lru, head);
2964 }
2965 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2966 }
2967
nfs_access_zap_cache(struct inode * inode)2968 void nfs_access_zap_cache(struct inode *inode)
2969 {
2970 LIST_HEAD(head);
2971
2972 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2973 return;
2974 /* Remove from global LRU init */
2975 spin_lock(&nfs_access_lru_lock);
2976 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2977 list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2978
2979 spin_lock(&inode->i_lock);
2980 __nfs_access_zap_cache(NFS_I(inode), &head);
2981 spin_unlock(&inode->i_lock);
2982 spin_unlock(&nfs_access_lru_lock);
2983 nfs_access_free_list(&head);
2984 }
2985 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2986
access_cmp(const struct cred * a,const struct nfs_access_entry * b)2987 static int access_cmp(const struct cred *a, const struct nfs_access_entry *b)
2988 {
2989 struct group_info *ga, *gb;
2990 int g;
2991
2992 if (uid_lt(a->fsuid, b->fsuid))
2993 return -1;
2994 if (uid_gt(a->fsuid, b->fsuid))
2995 return 1;
2996
2997 if (gid_lt(a->fsgid, b->fsgid))
2998 return -1;
2999 if (gid_gt(a->fsgid, b->fsgid))
3000 return 1;
3001
3002 ga = a->group_info;
3003 gb = b->group_info;
3004 if (ga == gb)
3005 return 0;
3006 if (ga == NULL)
3007 return -1;
3008 if (gb == NULL)
3009 return 1;
3010 if (ga->ngroups < gb->ngroups)
3011 return -1;
3012 if (ga->ngroups > gb->ngroups)
3013 return 1;
3014
3015 for (g = 0; g < ga->ngroups; g++) {
3016 if (gid_lt(ga->gid[g], gb->gid[g]))
3017 return -1;
3018 if (gid_gt(ga->gid[g], gb->gid[g]))
3019 return 1;
3020 }
3021 return 0;
3022 }
3023
nfs_access_search_rbtree(struct inode * inode,const struct cred * cred)3024 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred)
3025 {
3026 struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
3027
3028 while (n != NULL) {
3029 struct nfs_access_entry *entry =
3030 rb_entry(n, struct nfs_access_entry, rb_node);
3031 int cmp = access_cmp(cred, entry);
3032
3033 if (cmp < 0)
3034 n = n->rb_left;
3035 else if (cmp > 0)
3036 n = n->rb_right;
3037 else
3038 return entry;
3039 }
3040 return NULL;
3041 }
3042
nfs_access_login_time(const struct task_struct * task,const struct cred * cred)3043 static u64 nfs_access_login_time(const struct task_struct *task,
3044 const struct cred *cred)
3045 {
3046 const struct task_struct *parent;
3047 const struct cred *pcred;
3048 u64 ret;
3049
3050 rcu_read_lock();
3051 for (;;) {
3052 parent = rcu_dereference(task->real_parent);
3053 pcred = __task_cred(parent);
3054 if (parent == task || cred_fscmp(pcred, cred) != 0)
3055 break;
3056 task = parent;
3057 }
3058 ret = task->start_time;
3059 rcu_read_unlock();
3060 return ret;
3061 }
3062
nfs_access_get_cached_locked(struct inode * inode,const struct cred * cred,u32 * mask,bool may_block)3063 static int nfs_access_get_cached_locked(struct inode *inode, const struct cred *cred, u32 *mask, bool may_block)
3064 {
3065 struct nfs_inode *nfsi = NFS_I(inode);
3066 u64 login_time = nfs_access_login_time(current, cred);
3067 struct nfs_access_entry *cache;
3068 bool retry = true;
3069 int err;
3070
3071 spin_lock(&inode->i_lock);
3072 for(;;) {
3073 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
3074 goto out_zap;
3075 cache = nfs_access_search_rbtree(inode, cred);
3076 err = -ENOENT;
3077 if (cache == NULL)
3078 goto out;
3079 /* Found an entry, is our attribute cache valid? */
3080 if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
3081 break;
3082 if (!retry)
3083 break;
3084 err = -ECHILD;
3085 if (!may_block)
3086 goto out;
3087 spin_unlock(&inode->i_lock);
3088 err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
3089 if (err)
3090 return err;
3091 spin_lock(&inode->i_lock);
3092 retry = false;
3093 }
3094 err = -ENOENT;
3095 if ((s64)(login_time - cache->timestamp) > 0)
3096 goto out;
3097 *mask = cache->mask;
3098 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
3099 err = 0;
3100 out:
3101 spin_unlock(&inode->i_lock);
3102 return err;
3103 out_zap:
3104 spin_unlock(&inode->i_lock);
3105 nfs_access_zap_cache(inode);
3106 return -ENOENT;
3107 }
3108
nfs_access_get_cached_rcu(struct inode * inode,const struct cred * cred,u32 * mask)3109 static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, u32 *mask)
3110 {
3111 /* Only check the most recently returned cache entry,
3112 * but do it without locking.
3113 */
3114 struct nfs_inode *nfsi = NFS_I(inode);
3115 u64 login_time = nfs_access_login_time(current, cred);
3116 struct nfs_access_entry *cache;
3117 int err = -ECHILD;
3118 struct list_head *lh;
3119
3120 rcu_read_lock();
3121 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
3122 goto out;
3123 lh = rcu_dereference(list_tail_rcu(&nfsi->access_cache_entry_lru));
3124 cache = list_entry(lh, struct nfs_access_entry, lru);
3125 if (lh == &nfsi->access_cache_entry_lru ||
3126 access_cmp(cred, cache) != 0)
3127 cache = NULL;
3128 if (cache == NULL)
3129 goto out;
3130 if ((s64)(login_time - cache->timestamp) > 0)
3131 goto out;
3132 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
3133 goto out;
3134 *mask = cache->mask;
3135 err = 0;
3136 out:
3137 rcu_read_unlock();
3138 return err;
3139 }
3140
nfs_access_get_cached(struct inode * inode,const struct cred * cred,u32 * mask,bool may_block)3141 int nfs_access_get_cached(struct inode *inode, const struct cred *cred,
3142 u32 *mask, bool may_block)
3143 {
3144 int status;
3145
3146 status = nfs_access_get_cached_rcu(inode, cred, mask);
3147 if (status != 0)
3148 status = nfs_access_get_cached_locked(inode, cred, mask,
3149 may_block);
3150
3151 return status;
3152 }
3153 EXPORT_SYMBOL_GPL(nfs_access_get_cached);
3154
nfs_access_add_rbtree(struct inode * inode,struct nfs_access_entry * set,const struct cred * cred)3155 static void nfs_access_add_rbtree(struct inode *inode,
3156 struct nfs_access_entry *set,
3157 const struct cred *cred)
3158 {
3159 struct nfs_inode *nfsi = NFS_I(inode);
3160 struct rb_root *root_node = &nfsi->access_cache;
3161 struct rb_node **p = &root_node->rb_node;
3162 struct rb_node *parent = NULL;
3163 struct nfs_access_entry *entry;
3164 int cmp;
3165
3166 spin_lock(&inode->i_lock);
3167 while (*p != NULL) {
3168 parent = *p;
3169 entry = rb_entry(parent, struct nfs_access_entry, rb_node);
3170 cmp = access_cmp(cred, entry);
3171
3172 if (cmp < 0)
3173 p = &parent->rb_left;
3174 else if (cmp > 0)
3175 p = &parent->rb_right;
3176 else
3177 goto found;
3178 }
3179 rb_link_node(&set->rb_node, parent, p);
3180 rb_insert_color(&set->rb_node, root_node);
3181 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
3182 spin_unlock(&inode->i_lock);
3183 return;
3184 found:
3185 rb_replace_node(parent, &set->rb_node, root_node);
3186 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
3187 list_del(&entry->lru);
3188 spin_unlock(&inode->i_lock);
3189 nfs_access_free_entry(entry);
3190 }
3191
nfs_access_add_cache(struct inode * inode,struct nfs_access_entry * set,const struct cred * cred)3192 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set,
3193 const struct cred *cred)
3194 {
3195 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
3196 if (cache == NULL)
3197 return;
3198 RB_CLEAR_NODE(&cache->rb_node);
3199 cache->fsuid = cred->fsuid;
3200 cache->fsgid = cred->fsgid;
3201 cache->group_info = get_group_info(cred->group_info);
3202 cache->mask = set->mask;
3203 cache->timestamp = ktime_get_ns();
3204
3205 /* The above field assignments must be visible
3206 * before this item appears on the lru. We cannot easily
3207 * use rcu_assign_pointer, so just force the memory barrier.
3208 */
3209 smp_wmb();
3210 nfs_access_add_rbtree(inode, cache, cred);
3211
3212 /* Update accounting */
3213 smp_mb__before_atomic();
3214 atomic_long_inc(&nfs_access_nr_entries);
3215 smp_mb__after_atomic();
3216
3217 /* Add inode to global LRU list */
3218 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
3219 spin_lock(&nfs_access_lru_lock);
3220 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
3221 list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
3222 &nfs_access_lru_list);
3223 spin_unlock(&nfs_access_lru_lock);
3224 }
3225 nfs_access_cache_enforce_limit();
3226 }
3227 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
3228
3229 #define NFS_MAY_READ (NFS_ACCESS_READ)
3230 #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \
3231 NFS_ACCESS_EXTEND | \
3232 NFS_ACCESS_DELETE)
3233 #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \
3234 NFS_ACCESS_EXTEND)
3235 #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE
3236 #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP)
3237 #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE)
3238 static int
nfs_access_calc_mask(u32 access_result,umode_t umode)3239 nfs_access_calc_mask(u32 access_result, umode_t umode)
3240 {
3241 int mask = 0;
3242
3243 if (access_result & NFS_MAY_READ)
3244 mask |= MAY_READ;
3245 if (S_ISDIR(umode)) {
3246 if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE)
3247 mask |= MAY_WRITE;
3248 if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP)
3249 mask |= MAY_EXEC;
3250 } else if (S_ISREG(umode)) {
3251 if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE)
3252 mask |= MAY_WRITE;
3253 if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE)
3254 mask |= MAY_EXEC;
3255 } else if (access_result & NFS_MAY_WRITE)
3256 mask |= MAY_WRITE;
3257 return mask;
3258 }
3259
nfs_access_set_mask(struct nfs_access_entry * entry,u32 access_result)3260 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
3261 {
3262 entry->mask = access_result;
3263 }
3264 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
3265
nfs_do_access(struct inode * inode,const struct cred * cred,int mask)3266 static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask)
3267 {
3268 struct nfs_access_entry cache;
3269 bool may_block = (mask & MAY_NOT_BLOCK) == 0;
3270 int cache_mask = -1;
3271 int status;
3272
3273 trace_nfs_access_enter(inode);
3274
3275 status = nfs_access_get_cached(inode, cred, &cache.mask, may_block);
3276 if (status == 0)
3277 goto out_cached;
3278
3279 status = -ECHILD;
3280 if (!may_block)
3281 goto out;
3282
3283 /*
3284 * Determine which access bits we want to ask for...
3285 */
3286 cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND |
3287 nfs_access_xattr_mask(NFS_SERVER(inode));
3288 if (S_ISDIR(inode->i_mode))
3289 cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP;
3290 else
3291 cache.mask |= NFS_ACCESS_EXECUTE;
3292 status = NFS_PROTO(inode)->access(inode, &cache, cred);
3293 if (status != 0) {
3294 if (status == -ESTALE) {
3295 if (!S_ISDIR(inode->i_mode))
3296 nfs_set_inode_stale(inode);
3297 else
3298 nfs_zap_caches(inode);
3299 }
3300 goto out;
3301 }
3302 nfs_access_add_cache(inode, &cache, cred);
3303 out_cached:
3304 cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode);
3305 if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
3306 status = -EACCES;
3307 out:
3308 trace_nfs_access_exit(inode, mask, cache_mask, status);
3309 return status;
3310 }
3311
nfs_open_permission_mask(int openflags)3312 static int nfs_open_permission_mask(int openflags)
3313 {
3314 int mask = 0;
3315
3316 if (openflags & __FMODE_EXEC) {
3317 /* ONLY check exec rights */
3318 mask = MAY_EXEC;
3319 } else {
3320 if ((openflags & O_ACCMODE) != O_WRONLY)
3321 mask |= MAY_READ;
3322 if ((openflags & O_ACCMODE) != O_RDONLY)
3323 mask |= MAY_WRITE;
3324 }
3325
3326 return mask;
3327 }
3328
nfs_may_open(struct inode * inode,const struct cred * cred,int openflags)3329 int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags)
3330 {
3331 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
3332 }
3333 EXPORT_SYMBOL_GPL(nfs_may_open);
3334
nfs_execute_ok(struct inode * inode,int mask)3335 static int nfs_execute_ok(struct inode *inode, int mask)
3336 {
3337 struct nfs_server *server = NFS_SERVER(inode);
3338 int ret = 0;
3339
3340 if (S_ISDIR(inode->i_mode))
3341 return 0;
3342 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_MODE)) {
3343 if (mask & MAY_NOT_BLOCK)
3344 return -ECHILD;
3345 ret = __nfs_revalidate_inode(server, inode);
3346 }
3347 if (ret == 0 && !execute_ok(inode))
3348 ret = -EACCES;
3349 return ret;
3350 }
3351
nfs_permission(struct mnt_idmap * idmap,struct inode * inode,int mask)3352 int nfs_permission(struct mnt_idmap *idmap,
3353 struct inode *inode,
3354 int mask)
3355 {
3356 const struct cred *cred = current_cred();
3357 int res = 0;
3358
3359 nfs_inc_stats(inode, NFSIOS_VFSACCESS);
3360
3361 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
3362 goto out;
3363 /* Is this sys_access() ? */
3364 if (mask & (MAY_ACCESS | MAY_CHDIR))
3365 goto force_lookup;
3366
3367 switch (inode->i_mode & S_IFMT) {
3368 case S_IFLNK:
3369 goto out;
3370 case S_IFREG:
3371 if ((mask & MAY_OPEN) &&
3372 nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
3373 return 0;
3374 break;
3375 case S_IFDIR:
3376 /*
3377 * Optimize away all write operations, since the server
3378 * will check permissions when we perform the op.
3379 */
3380 if ((mask & MAY_WRITE) && !(mask & MAY_READ))
3381 goto out;
3382 }
3383
3384 force_lookup:
3385 if (!NFS_PROTO(inode)->access)
3386 goto out_notsup;
3387
3388 res = nfs_do_access(inode, cred, mask);
3389 out:
3390 if (!res && (mask & MAY_EXEC))
3391 res = nfs_execute_ok(inode, mask);
3392
3393 dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
3394 inode->i_sb->s_id, inode->i_ino, mask, res);
3395 return res;
3396 out_notsup:
3397 if (mask & MAY_NOT_BLOCK)
3398 return -ECHILD;
3399
3400 res = nfs_revalidate_inode(inode, NFS_INO_INVALID_MODE |
3401 NFS_INO_INVALID_OTHER);
3402 if (res == 0)
3403 res = generic_permission(&nop_mnt_idmap, inode, mask);
3404 goto out;
3405 }
3406 EXPORT_SYMBOL_GPL(nfs_permission);
3407