xref: /linux/fs/nfs/dir.c (revision 6bb34aff1ebdd4ee8ea1721068f74d476d707f01)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/nfs/dir.c
4  *
5  *  Copyright (C) 1992  Rick Sladkey
6  *
7  *  nfs directory handling functions
8  *
9  * 10 Apr 1996	Added silly rename for unlink	--okir
10  * 28 Sep 1996	Improved directory cache --okir
11  * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de
12  *              Re-implemented silly rename for unlink, newly implemented
13  *              silly rename for nfs_rename() following the suggestions
14  *              of Olaf Kirch (okir) found in this file.
15  *              Following Linus comments on my original hack, this version
16  *              depends only on the dcache stuff and doesn't touch the inode
17  *              layer (iput() and friends).
18  *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
19  */
20 
21 #include <linux/compat.h>
22 #include <linux/module.h>
23 #include <linux/time.h>
24 #include <linux/errno.h>
25 #include <linux/stat.h>
26 #include <linux/fcntl.h>
27 #include <linux/string.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/mm.h>
31 #include <linux/sunrpc/clnt.h>
32 #include <linux/nfs_fs.h>
33 #include <linux/nfs_mount.h>
34 #include <linux/pagemap.h>
35 #include <linux/pagevec.h>
36 #include <linux/namei.h>
37 #include <linux/mount.h>
38 #include <linux/swap.h>
39 #include <linux/sched.h>
40 #include <linux/kmemleak.h>
41 #include <linux/xattr.h>
42 #include <linux/hash.h>
43 
44 #include "delegation.h"
45 #include "iostat.h"
46 #include "internal.h"
47 #include "fscache.h"
48 
49 #include "nfstrace.h"
50 
51 /* #define NFS_DEBUG_VERBOSE 1 */
52 
53 static int nfs_opendir(struct inode *, struct file *);
54 static int nfs_closedir(struct inode *, struct file *);
55 static int nfs_readdir(struct file *, struct dir_context *);
56 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
57 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
58 static void nfs_readdir_clear_array(struct folio *);
59 static int nfs_do_create(struct inode *dir, struct dentry *dentry,
60 			 umode_t mode, int open_flags);
61 
62 const struct file_operations nfs_dir_operations = {
63 	.llseek		= nfs_llseek_dir,
64 	.read		= generic_read_dir,
65 	.iterate_shared	= nfs_readdir,
66 	.open		= nfs_opendir,
67 	.release	= nfs_closedir,
68 	.fsync		= nfs_fsync_dir,
69 };
70 
71 const struct address_space_operations nfs_dir_aops = {
72 	.free_folio = nfs_readdir_clear_array,
73 };
74 
75 #define NFS_INIT_DTSIZE PAGE_SIZE
76 
77 static struct nfs_open_dir_context *
alloc_nfs_open_dir_context(struct inode * dir)78 alloc_nfs_open_dir_context(struct inode *dir)
79 {
80 	struct nfs_inode *nfsi = NFS_I(dir);
81 	struct nfs_open_dir_context *ctx;
82 
83 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL_ACCOUNT);
84 	if (ctx != NULL) {
85 		ctx->attr_gencount = nfsi->attr_gencount;
86 		ctx->dtsize = NFS_INIT_DTSIZE;
87 		spin_lock(&dir->i_lock);
88 		if (list_empty(&nfsi->open_files) &&
89 		    (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER))
90 			nfs_set_cache_invalid(dir,
91 					      NFS_INO_INVALID_DATA |
92 						      NFS_INO_REVAL_FORCED);
93 		list_add_tail_rcu(&ctx->list, &nfsi->open_files);
94 		memcpy(ctx->verf, nfsi->cookieverf, sizeof(ctx->verf));
95 		spin_unlock(&dir->i_lock);
96 		return ctx;
97 	}
98 	return  ERR_PTR(-ENOMEM);
99 }
100 
put_nfs_open_dir_context(struct inode * dir,struct nfs_open_dir_context * ctx)101 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
102 {
103 	spin_lock(&dir->i_lock);
104 	list_del_rcu(&ctx->list);
105 	spin_unlock(&dir->i_lock);
106 	kfree_rcu(ctx, rcu_head);
107 }
108 
109 /*
110  * Open file
111  */
112 static int
nfs_opendir(struct inode * inode,struct file * filp)113 nfs_opendir(struct inode *inode, struct file *filp)
114 {
115 	int res = 0;
116 	struct nfs_open_dir_context *ctx;
117 
118 	dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
119 
120 	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
121 
122 	ctx = alloc_nfs_open_dir_context(inode);
123 	if (IS_ERR(ctx)) {
124 		res = PTR_ERR(ctx);
125 		goto out;
126 	}
127 	filp->private_data = ctx;
128 out:
129 	return res;
130 }
131 
132 static int
nfs_closedir(struct inode * inode,struct file * filp)133 nfs_closedir(struct inode *inode, struct file *filp)
134 {
135 	put_nfs_open_dir_context(file_inode(filp), filp->private_data);
136 	return 0;
137 }
138 
139 struct nfs_cache_array_entry {
140 	u64 cookie;
141 	u64 ino;
142 	const char *name;
143 	unsigned int name_len;
144 	unsigned char d_type;
145 };
146 
147 struct nfs_cache_array {
148 	u64 change_attr;
149 	u64 last_cookie;
150 	unsigned int size;
151 	unsigned char folio_full : 1,
152 		      folio_is_eof : 1,
153 		      cookies_are_ordered : 1;
154 	struct nfs_cache_array_entry array[] __counted_by(size);
155 };
156 
157 struct nfs_readdir_descriptor {
158 	struct file	*file;
159 	struct folio	*folio;
160 	struct dir_context *ctx;
161 	pgoff_t		folio_index;
162 	pgoff_t		folio_index_max;
163 	u64		dir_cookie;
164 	u64		last_cookie;
165 	loff_t		current_index;
166 
167 	__be32		verf[NFS_DIR_VERIFIER_SIZE];
168 	unsigned long	dir_verifier;
169 	unsigned long	timestamp;
170 	unsigned long	gencount;
171 	unsigned long	attr_gencount;
172 	unsigned int	cache_entry_index;
173 	unsigned int	buffer_fills;
174 	unsigned int	dtsize;
175 	bool clear_cache;
176 	bool plus;
177 	bool eob;
178 	bool eof;
179 };
180 
nfs_set_dtsize(struct nfs_readdir_descriptor * desc,unsigned int sz)181 static void nfs_set_dtsize(struct nfs_readdir_descriptor *desc, unsigned int sz)
182 {
183 	struct nfs_server *server = NFS_SERVER(file_inode(desc->file));
184 	unsigned int maxsize = server->dtsize;
185 
186 	if (sz > maxsize)
187 		sz = maxsize;
188 	if (sz < NFS_MIN_FILE_IO_SIZE)
189 		sz = NFS_MIN_FILE_IO_SIZE;
190 	desc->dtsize = sz;
191 }
192 
nfs_shrink_dtsize(struct nfs_readdir_descriptor * desc)193 static void nfs_shrink_dtsize(struct nfs_readdir_descriptor *desc)
194 {
195 	nfs_set_dtsize(desc, desc->dtsize >> 1);
196 }
197 
nfs_grow_dtsize(struct nfs_readdir_descriptor * desc)198 static void nfs_grow_dtsize(struct nfs_readdir_descriptor *desc)
199 {
200 	nfs_set_dtsize(desc, desc->dtsize << 1);
201 }
202 
nfs_readdir_folio_init_array(struct folio * folio,u64 last_cookie,u64 change_attr)203 static void nfs_readdir_folio_init_array(struct folio *folio, u64 last_cookie,
204 					 u64 change_attr)
205 {
206 	struct nfs_cache_array *array;
207 
208 	array = kmap_local_folio(folio, 0);
209 	array->change_attr = change_attr;
210 	array->last_cookie = last_cookie;
211 	array->size = 0;
212 	array->folio_full = 0;
213 	array->folio_is_eof = 0;
214 	array->cookies_are_ordered = 1;
215 	kunmap_local(array);
216 }
217 
218 /*
219  * we are freeing strings created by nfs_add_to_readdir_array()
220  */
nfs_readdir_clear_array(struct folio * folio)221 static void nfs_readdir_clear_array(struct folio *folio)
222 {
223 	struct nfs_cache_array *array;
224 	unsigned int i;
225 
226 	array = kmap_local_folio(folio, 0);
227 	for (i = 0; i < array->size; i++)
228 		kfree(array->array[i].name);
229 	array->size = 0;
230 	kunmap_local(array);
231 }
232 
nfs_readdir_folio_reinit_array(struct folio * folio,u64 last_cookie,u64 change_attr)233 static void nfs_readdir_folio_reinit_array(struct folio *folio, u64 last_cookie,
234 					   u64 change_attr)
235 {
236 	nfs_readdir_clear_array(folio);
237 	nfs_readdir_folio_init_array(folio, last_cookie, change_attr);
238 }
239 
240 static struct folio *
nfs_readdir_folio_array_alloc(u64 last_cookie,gfp_t gfp_flags)241 nfs_readdir_folio_array_alloc(u64 last_cookie, gfp_t gfp_flags)
242 {
243 	struct folio *folio = folio_alloc(gfp_flags, 0);
244 	if (folio)
245 		nfs_readdir_folio_init_array(folio, last_cookie, 0);
246 	return folio;
247 }
248 
nfs_readdir_folio_array_free(struct folio * folio)249 static void nfs_readdir_folio_array_free(struct folio *folio)
250 {
251 	if (folio) {
252 		nfs_readdir_clear_array(folio);
253 		folio_put(folio);
254 	}
255 }
256 
nfs_readdir_array_index_cookie(struct nfs_cache_array * array)257 static u64 nfs_readdir_array_index_cookie(struct nfs_cache_array *array)
258 {
259 	return array->size == 0 ? array->last_cookie : array->array[0].cookie;
260 }
261 
nfs_readdir_array_set_eof(struct nfs_cache_array * array)262 static void nfs_readdir_array_set_eof(struct nfs_cache_array *array)
263 {
264 	array->folio_is_eof = 1;
265 	array->folio_full = 1;
266 }
267 
nfs_readdir_array_is_full(struct nfs_cache_array * array)268 static bool nfs_readdir_array_is_full(struct nfs_cache_array *array)
269 {
270 	return array->folio_full;
271 }
272 
273 /*
274  * the caller is responsible for freeing qstr.name
275  * when called by nfs_readdir_add_to_array, the strings will be freed in
276  * nfs_clear_readdir_array()
277  */
nfs_readdir_copy_name(const char * name,unsigned int len)278 static const char *nfs_readdir_copy_name(const char *name, unsigned int len)
279 {
280 	const char *ret = kmemdup_nul(name, len, GFP_KERNEL);
281 
282 	/*
283 	 * Avoid a kmemleak false positive. The pointer to the name is stored
284 	 * in a page cache page which kmemleak does not scan.
285 	 */
286 	if (ret != NULL)
287 		kmemleak_not_leak(ret);
288 	return ret;
289 }
290 
nfs_readdir_array_maxentries(void)291 static size_t nfs_readdir_array_maxentries(void)
292 {
293 	return (PAGE_SIZE - sizeof(struct nfs_cache_array)) /
294 	       sizeof(struct nfs_cache_array_entry);
295 }
296 
297 /*
298  * Check that the next array entry lies entirely within the page bounds
299  */
nfs_readdir_array_can_expand(struct nfs_cache_array * array)300 static int nfs_readdir_array_can_expand(struct nfs_cache_array *array)
301 {
302 	if (array->folio_full)
303 		return -ENOSPC;
304 	if (array->size == nfs_readdir_array_maxentries()) {
305 		array->folio_full = 1;
306 		return -ENOSPC;
307 	}
308 	return 0;
309 }
310 
nfs_readdir_folio_array_append(struct folio * folio,const struct nfs_entry * entry,u64 * cookie)311 static int nfs_readdir_folio_array_append(struct folio *folio,
312 					  const struct nfs_entry *entry,
313 					  u64 *cookie)
314 {
315 	struct nfs_cache_array *array;
316 	struct nfs_cache_array_entry *cache_entry;
317 	const char *name;
318 	int ret = -ENOMEM;
319 
320 	name = nfs_readdir_copy_name(entry->name, entry->len);
321 
322 	array = kmap_local_folio(folio, 0);
323 	if (!name)
324 		goto out;
325 	ret = nfs_readdir_array_can_expand(array);
326 	if (ret) {
327 		kfree(name);
328 		goto out;
329 	}
330 
331 	array->size++;
332 	cache_entry = &array->array[array->size - 1];
333 	cache_entry->cookie = array->last_cookie;
334 	cache_entry->ino = entry->ino;
335 	cache_entry->d_type = entry->d_type;
336 	cache_entry->name_len = entry->len;
337 	cache_entry->name = name;
338 	array->last_cookie = entry->cookie;
339 	if (array->last_cookie <= cache_entry->cookie)
340 		array->cookies_are_ordered = 0;
341 	if (entry->eof != 0)
342 		nfs_readdir_array_set_eof(array);
343 out:
344 	*cookie = array->last_cookie;
345 	kunmap_local(array);
346 	return ret;
347 }
348 
349 #define NFS_READDIR_COOKIE_MASK (U32_MAX >> 14)
350 /*
351  * Hash algorithm allowing content addressible access to sequences
352  * of directory cookies. Content is addressed by the value of the
353  * cookie index of the first readdir entry in a page.
354  *
355  * We select only the first 18 bits to avoid issues with excessive
356  * memory use for the page cache XArray. 18 bits should allow the caching
357  * of 262144 pages of sequences of readdir entries. Since each page holds
358  * 127 readdir entries for a typical 64-bit system, that works out to a
359  * cache of ~ 33 million entries per directory.
360  */
nfs_readdir_folio_cookie_hash(u64 cookie)361 static pgoff_t nfs_readdir_folio_cookie_hash(u64 cookie)
362 {
363 	if (cookie == 0)
364 		return 0;
365 	return hash_64(cookie, 18);
366 }
367 
nfs_readdir_folio_validate(struct folio * folio,u64 last_cookie,u64 change_attr)368 static bool nfs_readdir_folio_validate(struct folio *folio, u64 last_cookie,
369 				       u64 change_attr)
370 {
371 	struct nfs_cache_array *array = kmap_local_folio(folio, 0);
372 	int ret = true;
373 
374 	if (array->change_attr != change_attr)
375 		ret = false;
376 	if (nfs_readdir_array_index_cookie(array) != last_cookie)
377 		ret = false;
378 	kunmap_local(array);
379 	return ret;
380 }
381 
nfs_readdir_folio_unlock_and_put(struct folio * folio)382 static void nfs_readdir_folio_unlock_and_put(struct folio *folio)
383 {
384 	folio_unlock(folio);
385 	folio_put(folio);
386 }
387 
nfs_readdir_folio_init_and_validate(struct folio * folio,u64 cookie,u64 change_attr)388 static void nfs_readdir_folio_init_and_validate(struct folio *folio, u64 cookie,
389 						u64 change_attr)
390 {
391 	if (folio_test_uptodate(folio)) {
392 		if (nfs_readdir_folio_validate(folio, cookie, change_attr))
393 			return;
394 		nfs_readdir_clear_array(folio);
395 	}
396 	nfs_readdir_folio_init_array(folio, cookie, change_attr);
397 	folio_mark_uptodate(folio);
398 }
399 
nfs_readdir_folio_get_locked(struct address_space * mapping,u64 cookie,u64 change_attr)400 static struct folio *nfs_readdir_folio_get_locked(struct address_space *mapping,
401 						  u64 cookie, u64 change_attr)
402 {
403 	pgoff_t index = nfs_readdir_folio_cookie_hash(cookie);
404 	struct folio *folio;
405 
406 	folio = filemap_grab_folio(mapping, index);
407 	if (IS_ERR(folio))
408 		return NULL;
409 	nfs_readdir_folio_init_and_validate(folio, cookie, change_attr);
410 	return folio;
411 }
412 
nfs_readdir_folio_last_cookie(struct folio * folio)413 static u64 nfs_readdir_folio_last_cookie(struct folio *folio)
414 {
415 	struct nfs_cache_array *array;
416 	u64 ret;
417 
418 	array = kmap_local_folio(folio, 0);
419 	ret = array->last_cookie;
420 	kunmap_local(array);
421 	return ret;
422 }
423 
nfs_readdir_folio_needs_filling(struct folio * folio)424 static bool nfs_readdir_folio_needs_filling(struct folio *folio)
425 {
426 	struct nfs_cache_array *array;
427 	bool ret;
428 
429 	array = kmap_local_folio(folio, 0);
430 	ret = !nfs_readdir_array_is_full(array);
431 	kunmap_local(array);
432 	return ret;
433 }
434 
nfs_readdir_folio_set_eof(struct folio * folio)435 static void nfs_readdir_folio_set_eof(struct folio *folio)
436 {
437 	struct nfs_cache_array *array;
438 
439 	array = kmap_local_folio(folio, 0);
440 	nfs_readdir_array_set_eof(array);
441 	kunmap_local(array);
442 }
443 
nfs_readdir_folio_get_next(struct address_space * mapping,u64 cookie,u64 change_attr)444 static struct folio *nfs_readdir_folio_get_next(struct address_space *mapping,
445 						u64 cookie, u64 change_attr)
446 {
447 	pgoff_t index = nfs_readdir_folio_cookie_hash(cookie);
448 	struct folio *folio;
449 
450 	folio = __filemap_get_folio(mapping, index,
451 			FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT,
452 			mapping_gfp_mask(mapping));
453 	if (IS_ERR(folio))
454 		return NULL;
455 	nfs_readdir_folio_init_and_validate(folio, cookie, change_attr);
456 	if (nfs_readdir_folio_last_cookie(folio) != cookie)
457 		nfs_readdir_folio_reinit_array(folio, cookie, change_attr);
458 	return folio;
459 }
460 
461 static inline
is_32bit_api(void)462 int is_32bit_api(void)
463 {
464 #ifdef CONFIG_COMPAT
465 	return in_compat_syscall();
466 #else
467 	return (BITS_PER_LONG == 32);
468 #endif
469 }
470 
471 static
nfs_readdir_use_cookie(const struct file * filp)472 bool nfs_readdir_use_cookie(const struct file *filp)
473 {
474 	if ((filp->f_mode & FMODE_32BITHASH) ||
475 	    (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
476 		return false;
477 	return true;
478 }
479 
nfs_readdir_seek_next_array(struct nfs_cache_array * array,struct nfs_readdir_descriptor * desc)480 static void nfs_readdir_seek_next_array(struct nfs_cache_array *array,
481 					struct nfs_readdir_descriptor *desc)
482 {
483 	if (array->folio_full) {
484 		desc->last_cookie = array->last_cookie;
485 		desc->current_index += array->size;
486 		desc->cache_entry_index = 0;
487 		desc->folio_index++;
488 	} else
489 		desc->last_cookie = nfs_readdir_array_index_cookie(array);
490 }
491 
nfs_readdir_rewind_search(struct nfs_readdir_descriptor * desc)492 static void nfs_readdir_rewind_search(struct nfs_readdir_descriptor *desc)
493 {
494 	desc->current_index = 0;
495 	desc->last_cookie = 0;
496 	desc->folio_index = 0;
497 }
498 
nfs_readdir_search_for_pos(struct nfs_cache_array * array,struct nfs_readdir_descriptor * desc)499 static int nfs_readdir_search_for_pos(struct nfs_cache_array *array,
500 				      struct nfs_readdir_descriptor *desc)
501 {
502 	loff_t diff = desc->ctx->pos - desc->current_index;
503 	unsigned int index;
504 
505 	if (diff < 0)
506 		goto out_eof;
507 	if (diff >= array->size) {
508 		if (array->folio_is_eof)
509 			goto out_eof;
510 		nfs_readdir_seek_next_array(array, desc);
511 		return -EAGAIN;
512 	}
513 
514 	index = (unsigned int)diff;
515 	desc->dir_cookie = array->array[index].cookie;
516 	desc->cache_entry_index = index;
517 	return 0;
518 out_eof:
519 	desc->eof = true;
520 	return -EBADCOOKIE;
521 }
522 
nfs_readdir_array_cookie_in_range(struct nfs_cache_array * array,u64 cookie)523 static bool nfs_readdir_array_cookie_in_range(struct nfs_cache_array *array,
524 					      u64 cookie)
525 {
526 	if (!array->cookies_are_ordered)
527 		return true;
528 	/* Optimisation for monotonically increasing cookies */
529 	if (cookie >= array->last_cookie)
530 		return false;
531 	if (array->size && cookie < array->array[0].cookie)
532 		return false;
533 	return true;
534 }
535 
nfs_readdir_search_for_cookie(struct nfs_cache_array * array,struct nfs_readdir_descriptor * desc)536 static int nfs_readdir_search_for_cookie(struct nfs_cache_array *array,
537 					 struct nfs_readdir_descriptor *desc)
538 {
539 	unsigned int i;
540 	int status = -EAGAIN;
541 
542 	if (!nfs_readdir_array_cookie_in_range(array, desc->dir_cookie))
543 		goto check_eof;
544 
545 	for (i = 0; i < array->size; i++) {
546 		if (array->array[i].cookie == desc->dir_cookie) {
547 			if (nfs_readdir_use_cookie(desc->file))
548 				desc->ctx->pos = desc->dir_cookie;
549 			else
550 				desc->ctx->pos = desc->current_index + i;
551 			desc->cache_entry_index = i;
552 			return 0;
553 		}
554 	}
555 check_eof:
556 	if (array->folio_is_eof) {
557 		status = -EBADCOOKIE;
558 		if (desc->dir_cookie == array->last_cookie)
559 			desc->eof = true;
560 	} else
561 		nfs_readdir_seek_next_array(array, desc);
562 	return status;
563 }
564 
nfs_readdir_search_array(struct nfs_readdir_descriptor * desc)565 static int nfs_readdir_search_array(struct nfs_readdir_descriptor *desc)
566 {
567 	struct nfs_cache_array *array;
568 	int status;
569 
570 	array = kmap_local_folio(desc->folio, 0);
571 
572 	if (desc->dir_cookie == 0)
573 		status = nfs_readdir_search_for_pos(array, desc);
574 	else
575 		status = nfs_readdir_search_for_cookie(array, desc);
576 
577 	kunmap_local(array);
578 	return status;
579 }
580 
581 /* Fill a page with xdr information before transferring to the cache page */
nfs_readdir_xdr_filler(struct nfs_readdir_descriptor * desc,__be32 * verf,u64 cookie,struct page ** pages,size_t bufsize,__be32 * verf_res)582 static int nfs_readdir_xdr_filler(struct nfs_readdir_descriptor *desc,
583 				  __be32 *verf, u64 cookie,
584 				  struct page **pages, size_t bufsize,
585 				  __be32 *verf_res)
586 {
587 	struct inode *inode = file_inode(desc->file);
588 	struct nfs_readdir_arg arg = {
589 		.dentry = file_dentry(desc->file),
590 		.cred = desc->file->f_cred,
591 		.verf = verf,
592 		.cookie = cookie,
593 		.pages = pages,
594 		.page_len = bufsize,
595 		.plus = desc->plus,
596 	};
597 	struct nfs_readdir_res res = {
598 		.verf = verf_res,
599 	};
600 	unsigned long	timestamp, gencount;
601 	int		error;
602 
603  again:
604 	timestamp = jiffies;
605 	gencount = nfs_inc_attr_generation_counter();
606 	desc->dir_verifier = nfs_save_change_attribute(inode);
607 	error = NFS_PROTO(inode)->readdir(&arg, &res);
608 	if (error < 0) {
609 		/* We requested READDIRPLUS, but the server doesn't grok it */
610 		if (error == -ENOTSUPP && desc->plus) {
611 			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
612 			desc->plus = arg.plus = false;
613 			goto again;
614 		}
615 		goto error;
616 	}
617 	desc->timestamp = timestamp;
618 	desc->gencount = gencount;
619 error:
620 	return error;
621 }
622 
xdr_decode(struct nfs_readdir_descriptor * desc,struct nfs_entry * entry,struct xdr_stream * xdr)623 static int xdr_decode(struct nfs_readdir_descriptor *desc,
624 		      struct nfs_entry *entry, struct xdr_stream *xdr)
625 {
626 	struct inode *inode = file_inode(desc->file);
627 	int error;
628 
629 	error = NFS_PROTO(inode)->decode_dirent(xdr, entry, desc->plus);
630 	if (error)
631 		return error;
632 	entry->fattr->time_start = desc->timestamp;
633 	entry->fattr->gencount = desc->gencount;
634 	return 0;
635 }
636 
637 /* Match file and dirent using either filehandle or fileid
638  * Note: caller is responsible for checking the fsid
639  */
640 static
nfs_same_file(struct dentry * dentry,struct nfs_entry * entry)641 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
642 {
643 	struct inode *inode;
644 	struct nfs_inode *nfsi;
645 
646 	if (d_really_is_negative(dentry))
647 		return 0;
648 
649 	inode = d_inode(dentry);
650 	if (is_bad_inode(inode) || NFS_STALE(inode))
651 		return 0;
652 
653 	nfsi = NFS_I(inode);
654 	if (entry->fattr->fileid != nfsi->fileid)
655 		return 0;
656 	if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
657 		return 0;
658 	return 1;
659 }
660 
661 #define NFS_READDIR_CACHE_USAGE_THRESHOLD (8UL)
662 
nfs_use_readdirplus(struct inode * dir,struct dir_context * ctx,unsigned int cache_hits,unsigned int cache_misses)663 static bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx,
664 				unsigned int cache_hits,
665 				unsigned int cache_misses)
666 {
667 	if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
668 		return false;
669 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_FORCE_RDIRPLUS)
670 		return true;
671 	if (ctx->pos == 0 ||
672 	    cache_hits + cache_misses > NFS_READDIR_CACHE_USAGE_THRESHOLD)
673 		return true;
674 	return false;
675 }
676 
677 /*
678  * This function is called by the getattr code to request the
679  * use of readdirplus to accelerate any future lookups in the same
680  * directory.
681  */
nfs_readdir_record_entry_cache_hit(struct inode * dir)682 void nfs_readdir_record_entry_cache_hit(struct inode *dir)
683 {
684 	struct nfs_inode *nfsi = NFS_I(dir);
685 	struct nfs_open_dir_context *ctx;
686 
687 	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
688 	    S_ISDIR(dir->i_mode)) {
689 		rcu_read_lock();
690 		list_for_each_entry_rcu (ctx, &nfsi->open_files, list)
691 			atomic_inc(&ctx->cache_hits);
692 		rcu_read_unlock();
693 	}
694 }
695 
696 /*
697  * This function is mainly for use by nfs_getattr().
698  *
699  * If this is an 'ls -l', we want to force use of readdirplus.
700  */
nfs_readdir_record_entry_cache_miss(struct inode * dir)701 void nfs_readdir_record_entry_cache_miss(struct inode *dir)
702 {
703 	struct nfs_inode *nfsi = NFS_I(dir);
704 	struct nfs_open_dir_context *ctx;
705 
706 	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
707 	    S_ISDIR(dir->i_mode)) {
708 		rcu_read_lock();
709 		list_for_each_entry_rcu (ctx, &nfsi->open_files, list)
710 			atomic_inc(&ctx->cache_misses);
711 		rcu_read_unlock();
712 	}
713 }
714 
nfs_lookup_advise_force_readdirplus(struct inode * dir,unsigned int flags)715 static void nfs_lookup_advise_force_readdirplus(struct inode *dir,
716 						unsigned int flags)
717 {
718 	if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
719 		return;
720 	if (flags & (LOOKUP_EXCL | LOOKUP_PARENT | LOOKUP_REVAL))
721 		return;
722 	nfs_readdir_record_entry_cache_miss(dir);
723 }
724 
725 static
nfs_prime_dcache(struct dentry * parent,struct nfs_entry * entry,unsigned long dir_verifier)726 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry,
727 		unsigned long dir_verifier)
728 {
729 	struct qstr filename = QSTR_INIT(entry->name, entry->len);
730 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
731 	struct dentry *dentry;
732 	struct dentry *alias;
733 	struct inode *inode;
734 	int status;
735 
736 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
737 		return;
738 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
739 		return;
740 	if (filename.len == 0)
741 		return;
742 	/* Validate that the name doesn't contain any illegal '\0' */
743 	if (strnlen(filename.name, filename.len) != filename.len)
744 		return;
745 	/* ...or '/' */
746 	if (strnchr(filename.name, filename.len, '/'))
747 		return;
748 	if (filename.name[0] == '.') {
749 		if (filename.len == 1)
750 			return;
751 		if (filename.len == 2 && filename.name[1] == '.')
752 			return;
753 	}
754 	filename.hash = full_name_hash(parent, filename.name, filename.len);
755 
756 	dentry = d_lookup(parent, &filename);
757 again:
758 	if (!dentry) {
759 		dentry = d_alloc_parallel(parent, &filename, &wq);
760 		if (IS_ERR(dentry))
761 			return;
762 	}
763 	if (!d_in_lookup(dentry)) {
764 		/* Is there a mountpoint here? If so, just exit */
765 		if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
766 					&entry->fattr->fsid))
767 			goto out;
768 		if (nfs_same_file(dentry, entry)) {
769 			if (!entry->fh->size)
770 				goto out;
771 			nfs_set_verifier(dentry, dir_verifier);
772 			status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
773 			if (!status)
774 				nfs_setsecurity(d_inode(dentry), entry->fattr);
775 			trace_nfs_readdir_lookup_revalidate(d_inode(parent),
776 							    dentry, 0, status);
777 			goto out;
778 		} else {
779 			trace_nfs_readdir_lookup_revalidate_failed(
780 				d_inode(parent), dentry, 0);
781 			d_invalidate(dentry);
782 			dput(dentry);
783 			dentry = NULL;
784 			goto again;
785 		}
786 	}
787 	if (!entry->fh->size) {
788 		d_lookup_done(dentry);
789 		goto out;
790 	}
791 
792 	nfs_set_verifier(dentry, dir_verifier);
793 	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
794 	alias = d_splice_alias(inode, dentry);
795 	d_lookup_done(dentry);
796 	if (alias) {
797 		if (IS_ERR(alias))
798 			goto out;
799 		nfs_set_verifier(alias, dir_verifier);
800 		dput(dentry);
801 		dentry = alias;
802 	}
803 	trace_nfs_readdir_lookup(d_inode(parent), dentry, 0);
804 out:
805 	dput(dentry);
806 }
807 
nfs_readdir_entry_decode(struct nfs_readdir_descriptor * desc,struct nfs_entry * entry,struct xdr_stream * stream)808 static int nfs_readdir_entry_decode(struct nfs_readdir_descriptor *desc,
809 				    struct nfs_entry *entry,
810 				    struct xdr_stream *stream)
811 {
812 	int ret;
813 
814 	if (entry->fattr->label)
815 		entry->fattr->label->len = NFS4_MAXLABELLEN;
816 	ret = xdr_decode(desc, entry, stream);
817 	if (ret || !desc->plus)
818 		return ret;
819 	nfs_prime_dcache(file_dentry(desc->file), entry, desc->dir_verifier);
820 	return 0;
821 }
822 
823 /* Perform conversion from xdr to cache array */
nfs_readdir_folio_filler(struct nfs_readdir_descriptor * desc,struct nfs_entry * entry,struct page ** xdr_pages,unsigned int buflen,struct folio ** arrays,size_t narrays,u64 change_attr)824 static int nfs_readdir_folio_filler(struct nfs_readdir_descriptor *desc,
825 				    struct nfs_entry *entry,
826 				    struct page **xdr_pages, unsigned int buflen,
827 				    struct folio **arrays, size_t narrays,
828 				    u64 change_attr)
829 {
830 	struct address_space *mapping = desc->file->f_mapping;
831 	struct folio *new, *folio = *arrays;
832 	struct xdr_stream stream;
833 	struct folio *scratch;
834 	struct xdr_buf buf;
835 	u64 cookie;
836 	int status;
837 
838 	scratch = folio_alloc(GFP_KERNEL, 0);
839 	if (scratch == NULL)
840 		return -ENOMEM;
841 
842 	xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
843 	xdr_set_scratch_folio(&stream, scratch);
844 
845 	do {
846 		status = nfs_readdir_entry_decode(desc, entry, &stream);
847 		if (status != 0)
848 			break;
849 
850 		status = nfs_readdir_folio_array_append(folio, entry, &cookie);
851 		if (status != -ENOSPC)
852 			continue;
853 
854 		if (folio->mapping != mapping) {
855 			if (!--narrays)
856 				break;
857 			new = nfs_readdir_folio_array_alloc(cookie, GFP_KERNEL);
858 			if (!new)
859 				break;
860 			arrays++;
861 			*arrays = folio = new;
862 		} else {
863 			new = nfs_readdir_folio_get_next(mapping, cookie,
864 							 change_attr);
865 			if (!new)
866 				break;
867 			if (folio != *arrays)
868 				nfs_readdir_folio_unlock_and_put(folio);
869 			folio = new;
870 		}
871 		desc->folio_index_max++;
872 		status = nfs_readdir_folio_array_append(folio, entry, &cookie);
873 	} while (!status && !entry->eof);
874 
875 	switch (status) {
876 	case -EBADCOOKIE:
877 		if (!entry->eof)
878 			break;
879 		nfs_readdir_folio_set_eof(folio);
880 		fallthrough;
881 	case -EAGAIN:
882 		status = 0;
883 		break;
884 	case -ENOSPC:
885 		status = 0;
886 		if (!desc->plus)
887 			break;
888 		while (!nfs_readdir_entry_decode(desc, entry, &stream))
889 			;
890 	}
891 
892 	if (folio != *arrays)
893 		nfs_readdir_folio_unlock_and_put(folio);
894 
895 	folio_put(scratch);
896 	return status;
897 }
898 
nfs_readdir_free_pages(struct page ** pages,size_t npages)899 static void nfs_readdir_free_pages(struct page **pages, size_t npages)
900 {
901 	while (npages--)
902 		put_page(pages[npages]);
903 	kfree(pages);
904 }
905 
906 /*
907  * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call
908  * to nfs_readdir_free_pages()
909  */
nfs_readdir_alloc_pages(size_t npages)910 static struct page **nfs_readdir_alloc_pages(size_t npages)
911 {
912 	struct page **pages;
913 	size_t i;
914 
915 	pages = kmalloc_array(npages, sizeof(*pages), GFP_KERNEL);
916 	if (!pages)
917 		return NULL;
918 	for (i = 0; i < npages; i++) {
919 		struct page *page = alloc_page(GFP_KERNEL);
920 		if (page == NULL)
921 			goto out_freepages;
922 		pages[i] = page;
923 	}
924 	return pages;
925 
926 out_freepages:
927 	nfs_readdir_free_pages(pages, i);
928 	return NULL;
929 }
930 
nfs_readdir_xdr_to_array(struct nfs_readdir_descriptor * desc,__be32 * verf_arg,__be32 * verf_res,struct folio ** arrays,size_t narrays)931 static int nfs_readdir_xdr_to_array(struct nfs_readdir_descriptor *desc,
932 				    __be32 *verf_arg, __be32 *verf_res,
933 				    struct folio **arrays, size_t narrays)
934 {
935 	u64 change_attr;
936 	struct page **pages;
937 	struct folio *folio = *arrays;
938 	struct nfs_entry *entry;
939 	size_t array_size;
940 	struct inode *inode = file_inode(desc->file);
941 	unsigned int dtsize = desc->dtsize;
942 	unsigned int pglen;
943 	int status = -ENOMEM;
944 
945 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
946 	if (!entry)
947 		return -ENOMEM;
948 	entry->cookie = nfs_readdir_folio_last_cookie(folio);
949 	entry->fh = nfs_alloc_fhandle();
950 	entry->fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode));
951 	entry->server = NFS_SERVER(inode);
952 	if (entry->fh == NULL || entry->fattr == NULL)
953 		goto out;
954 
955 	array_size = (dtsize + PAGE_SIZE - 1) >> PAGE_SHIFT;
956 	pages = nfs_readdir_alloc_pages(array_size);
957 	if (!pages)
958 		goto out;
959 
960 	change_attr = inode_peek_iversion_raw(inode);
961 	status = nfs_readdir_xdr_filler(desc, verf_arg, entry->cookie, pages,
962 					dtsize, verf_res);
963 	if (status < 0)
964 		goto free_pages;
965 
966 	pglen = status;
967 	if (pglen != 0)
968 		status = nfs_readdir_folio_filler(desc, entry, pages, pglen,
969 						  arrays, narrays, change_attr);
970 	else
971 		nfs_readdir_folio_set_eof(folio);
972 	desc->buffer_fills++;
973 
974 free_pages:
975 	nfs_readdir_free_pages(pages, array_size);
976 out:
977 	nfs_free_fattr(entry->fattr);
978 	nfs_free_fhandle(entry->fh);
979 	kfree(entry);
980 	return status;
981 }
982 
nfs_readdir_folio_put(struct nfs_readdir_descriptor * desc)983 static void nfs_readdir_folio_put(struct nfs_readdir_descriptor *desc)
984 {
985 	folio_put(desc->folio);
986 	desc->folio = NULL;
987 }
988 
989 static void
nfs_readdir_folio_unlock_and_put_cached(struct nfs_readdir_descriptor * desc)990 nfs_readdir_folio_unlock_and_put_cached(struct nfs_readdir_descriptor *desc)
991 {
992 	folio_unlock(desc->folio);
993 	nfs_readdir_folio_put(desc);
994 }
995 
996 static struct folio *
nfs_readdir_folio_get_cached(struct nfs_readdir_descriptor * desc)997 nfs_readdir_folio_get_cached(struct nfs_readdir_descriptor *desc)
998 {
999 	struct address_space *mapping = desc->file->f_mapping;
1000 	u64 change_attr = inode_peek_iversion_raw(mapping->host);
1001 	u64 cookie = desc->last_cookie;
1002 	struct folio *folio;
1003 
1004 	folio = nfs_readdir_folio_get_locked(mapping, cookie, change_attr);
1005 	if (!folio)
1006 		return NULL;
1007 	if (desc->clear_cache && !nfs_readdir_folio_needs_filling(folio))
1008 		nfs_readdir_folio_reinit_array(folio, cookie, change_attr);
1009 	return folio;
1010 }
1011 
1012 /*
1013  * Returns 0 if desc->dir_cookie was found on page desc->page_index
1014  * and locks the page to prevent removal from the page cache.
1015  */
find_and_lock_cache_page(struct nfs_readdir_descriptor * desc)1016 static int find_and_lock_cache_page(struct nfs_readdir_descriptor *desc)
1017 {
1018 	struct inode *inode = file_inode(desc->file);
1019 	struct nfs_inode *nfsi = NFS_I(inode);
1020 	__be32 verf[NFS_DIR_VERIFIER_SIZE];
1021 	int res;
1022 
1023 	desc->folio = nfs_readdir_folio_get_cached(desc);
1024 	if (!desc->folio)
1025 		return -ENOMEM;
1026 	if (nfs_readdir_folio_needs_filling(desc->folio)) {
1027 		/* Grow the dtsize if we had to go back for more pages */
1028 		if (desc->folio_index == desc->folio_index_max)
1029 			nfs_grow_dtsize(desc);
1030 		desc->folio_index_max = desc->folio_index;
1031 		trace_nfs_readdir_cache_fill(desc->file, nfsi->cookieverf,
1032 					     desc->last_cookie,
1033 					     desc->folio->index, desc->dtsize);
1034 		res = nfs_readdir_xdr_to_array(desc, nfsi->cookieverf, verf,
1035 					       &desc->folio, 1);
1036 		if (res < 0) {
1037 			nfs_readdir_folio_unlock_and_put_cached(desc);
1038 			trace_nfs_readdir_cache_fill_done(inode, res);
1039 			if (res == -EBADCOOKIE || res == -ENOTSYNC) {
1040 				invalidate_inode_pages2(desc->file->f_mapping);
1041 				nfs_readdir_rewind_search(desc);
1042 				trace_nfs_readdir_invalidate_cache_range(
1043 					inode, 0, MAX_LFS_FILESIZE);
1044 				return -EAGAIN;
1045 			}
1046 			return res;
1047 		}
1048 		/*
1049 		 * Set the cookie verifier if the page cache was empty
1050 		 */
1051 		if (desc->last_cookie == 0 &&
1052 		    memcmp(nfsi->cookieverf, verf, sizeof(nfsi->cookieverf))) {
1053 			memcpy(nfsi->cookieverf, verf,
1054 			       sizeof(nfsi->cookieverf));
1055 			invalidate_inode_pages2_range(desc->file->f_mapping, 1,
1056 						      -1);
1057 			trace_nfs_readdir_invalidate_cache_range(
1058 				inode, 1, MAX_LFS_FILESIZE);
1059 		}
1060 		desc->clear_cache = false;
1061 	}
1062 	res = nfs_readdir_search_array(desc);
1063 	if (res == 0)
1064 		return 0;
1065 	nfs_readdir_folio_unlock_and_put_cached(desc);
1066 	return res;
1067 }
1068 
1069 /* Search for desc->dir_cookie from the beginning of the page cache */
readdir_search_pagecache(struct nfs_readdir_descriptor * desc)1070 static int readdir_search_pagecache(struct nfs_readdir_descriptor *desc)
1071 {
1072 	int res;
1073 
1074 	do {
1075 		res = find_and_lock_cache_page(desc);
1076 	} while (res == -EAGAIN);
1077 	return res;
1078 }
1079 
1080 #define NFS_READDIR_CACHE_MISS_THRESHOLD (16UL)
1081 
1082 /*
1083  * Once we've found the start of the dirent within a page: fill 'er up...
1084  */
nfs_do_filldir(struct nfs_readdir_descriptor * desc,const __be32 * verf)1085 static void nfs_do_filldir(struct nfs_readdir_descriptor *desc,
1086 			   const __be32 *verf)
1087 {
1088 	struct file	*file = desc->file;
1089 	struct nfs_cache_array *array;
1090 	unsigned int i;
1091 	bool first_emit = !desc->dir_cookie;
1092 
1093 	array = kmap_local_folio(desc->folio, 0);
1094 	for (i = desc->cache_entry_index; i < array->size; i++) {
1095 		struct nfs_cache_array_entry *ent;
1096 
1097 		/*
1098 		 * nfs_readdir_handle_cache_misses return force clear at
1099 		 * (cache_misses > NFS_READDIR_CACHE_MISS_THRESHOLD) for
1100 		 * readdir heuristic, NFS_READDIR_CACHE_MISS_THRESHOLD + 1
1101 		 * entries need be emitted here.
1102 		 */
1103 		if (first_emit && i > NFS_READDIR_CACHE_MISS_THRESHOLD + 2) {
1104 			desc->eob = true;
1105 			break;
1106 		}
1107 
1108 		ent = &array->array[i];
1109 		if (!dir_emit(desc->ctx, ent->name, ent->name_len,
1110 		    nfs_compat_user_ino64(ent->ino), ent->d_type)) {
1111 			desc->eob = true;
1112 			break;
1113 		}
1114 		memcpy(desc->verf, verf, sizeof(desc->verf));
1115 		if (i == array->size - 1) {
1116 			desc->dir_cookie = array->last_cookie;
1117 			nfs_readdir_seek_next_array(array, desc);
1118 		} else {
1119 			desc->dir_cookie = array->array[i + 1].cookie;
1120 			desc->last_cookie = array->array[0].cookie;
1121 		}
1122 		if (nfs_readdir_use_cookie(file))
1123 			desc->ctx->pos = desc->dir_cookie;
1124 		else
1125 			desc->ctx->pos++;
1126 	}
1127 	if (array->folio_is_eof)
1128 		desc->eof = !desc->eob;
1129 
1130 	kunmap_local(array);
1131 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %llu\n",
1132 			(unsigned long long)desc->dir_cookie);
1133 }
1134 
1135 /*
1136  * If we cannot find a cookie in our cache, we suspect that this is
1137  * because it points to a deleted file, so we ask the server to return
1138  * whatever it thinks is the next entry. We then feed this to filldir.
1139  * If all goes well, we should then be able to find our way round the
1140  * cache on the next call to readdir_search_pagecache();
1141  *
1142  * NOTE: we cannot add the anonymous page to the pagecache because
1143  *	 the data it contains might not be page aligned. Besides,
1144  *	 we should already have a complete representation of the
1145  *	 directory in the page cache by the time we get here.
1146  */
uncached_readdir(struct nfs_readdir_descriptor * desc)1147 static int uncached_readdir(struct nfs_readdir_descriptor *desc)
1148 {
1149 	struct folio	**arrays;
1150 	size_t		i, sz = 512;
1151 	__be32		verf[NFS_DIR_VERIFIER_SIZE];
1152 	int		status = -ENOMEM;
1153 
1154 	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %llu\n",
1155 			(unsigned long long)desc->dir_cookie);
1156 
1157 	arrays = kcalloc(sz, sizeof(*arrays), GFP_KERNEL);
1158 	if (!arrays)
1159 		goto out;
1160 	arrays[0] = nfs_readdir_folio_array_alloc(desc->dir_cookie, GFP_KERNEL);
1161 	if (!arrays[0])
1162 		goto out;
1163 
1164 	desc->folio_index = 0;
1165 	desc->cache_entry_index = 0;
1166 	desc->last_cookie = desc->dir_cookie;
1167 	desc->folio_index_max = 0;
1168 
1169 	trace_nfs_readdir_uncached(desc->file, desc->verf, desc->last_cookie,
1170 				   -1, desc->dtsize);
1171 
1172 	status = nfs_readdir_xdr_to_array(desc, desc->verf, verf, arrays, sz);
1173 	if (status < 0) {
1174 		trace_nfs_readdir_uncached_done(file_inode(desc->file), status);
1175 		goto out_free;
1176 	}
1177 
1178 	for (i = 0; !desc->eob && i < sz && arrays[i]; i++) {
1179 		desc->folio = arrays[i];
1180 		nfs_do_filldir(desc, verf);
1181 	}
1182 	desc->folio = NULL;
1183 
1184 	/*
1185 	 * Grow the dtsize if we have to go back for more pages,
1186 	 * or shrink it if we're reading too many.
1187 	 */
1188 	if (!desc->eof) {
1189 		if (!desc->eob)
1190 			nfs_grow_dtsize(desc);
1191 		else if (desc->buffer_fills == 1 &&
1192 			 i < (desc->folio_index_max >> 1))
1193 			nfs_shrink_dtsize(desc);
1194 	}
1195 out_free:
1196 	for (i = 0; i < sz && arrays[i]; i++)
1197 		nfs_readdir_folio_array_free(arrays[i]);
1198 out:
1199 	if (!nfs_readdir_use_cookie(desc->file))
1200 		nfs_readdir_rewind_search(desc);
1201 	desc->folio_index_max = -1;
1202 	kfree(arrays);
1203 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, status);
1204 	return status;
1205 }
1206 
nfs_readdir_handle_cache_misses(struct inode * inode,struct nfs_readdir_descriptor * desc,unsigned int cache_misses,bool force_clear)1207 static bool nfs_readdir_handle_cache_misses(struct inode *inode,
1208 					    struct nfs_readdir_descriptor *desc,
1209 					    unsigned int cache_misses,
1210 					    bool force_clear)
1211 {
1212 	if (desc->ctx->pos == 0 || !desc->plus)
1213 		return false;
1214 	if (cache_misses <= NFS_READDIR_CACHE_MISS_THRESHOLD && !force_clear)
1215 		return false;
1216 	trace_nfs_readdir_force_readdirplus(inode);
1217 	return true;
1218 }
1219 
1220 /* The file offset position represents the dirent entry number.  A
1221    last cookie cache takes care of the common case of reading the
1222    whole directory.
1223  */
nfs_readdir(struct file * file,struct dir_context * ctx)1224 static int nfs_readdir(struct file *file, struct dir_context *ctx)
1225 {
1226 	struct dentry	*dentry = file_dentry(file);
1227 	struct inode	*inode = d_inode(dentry);
1228 	struct nfs_inode *nfsi = NFS_I(inode);
1229 	struct nfs_open_dir_context *dir_ctx = file->private_data;
1230 	struct nfs_readdir_descriptor *desc;
1231 	unsigned int cache_hits, cache_misses;
1232 	bool force_clear;
1233 	int res;
1234 
1235 	dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
1236 			file, (long long)ctx->pos);
1237 	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
1238 
1239 	/*
1240 	 * ctx->pos points to the dirent entry number.
1241 	 * *desc->dir_cookie has the cookie for the next entry. We have
1242 	 * to either find the entry with the appropriate number or
1243 	 * revalidate the cookie.
1244 	 */
1245 	nfs_revalidate_mapping(inode, file->f_mapping);
1246 
1247 	res = -ENOMEM;
1248 	desc = kzalloc(sizeof(*desc), GFP_KERNEL);
1249 	if (!desc)
1250 		goto out;
1251 	desc->file = file;
1252 	desc->ctx = ctx;
1253 	desc->folio_index_max = -1;
1254 
1255 	spin_lock(&file->f_lock);
1256 	desc->dir_cookie = dir_ctx->dir_cookie;
1257 	desc->folio_index = dir_ctx->page_index;
1258 	desc->last_cookie = dir_ctx->last_cookie;
1259 	desc->attr_gencount = dir_ctx->attr_gencount;
1260 	desc->eof = dir_ctx->eof;
1261 	nfs_set_dtsize(desc, dir_ctx->dtsize);
1262 	memcpy(desc->verf, dir_ctx->verf, sizeof(desc->verf));
1263 	cache_hits = atomic_xchg(&dir_ctx->cache_hits, 0);
1264 	cache_misses = atomic_xchg(&dir_ctx->cache_misses, 0);
1265 	force_clear = dir_ctx->force_clear;
1266 	spin_unlock(&file->f_lock);
1267 
1268 	if (desc->eof) {
1269 		res = 0;
1270 		goto out_free;
1271 	}
1272 
1273 	desc->plus = nfs_use_readdirplus(inode, ctx, cache_hits, cache_misses);
1274 	force_clear = nfs_readdir_handle_cache_misses(inode, desc, cache_misses,
1275 						      force_clear);
1276 	desc->clear_cache = force_clear;
1277 
1278 	do {
1279 		res = readdir_search_pagecache(desc);
1280 
1281 		if (res == -EBADCOOKIE) {
1282 			res = 0;
1283 			/* This means either end of directory */
1284 			if (desc->dir_cookie && !desc->eof) {
1285 				/* Or that the server has 'lost' a cookie */
1286 				res = uncached_readdir(desc);
1287 				if (res == 0)
1288 					continue;
1289 				if (res == -EBADCOOKIE || res == -ENOTSYNC)
1290 					res = 0;
1291 			}
1292 			break;
1293 		}
1294 		if (res == -ETOOSMALL && desc->plus) {
1295 			nfs_zap_caches(inode);
1296 			desc->plus = false;
1297 			desc->eof = false;
1298 			continue;
1299 		}
1300 		if (res < 0)
1301 			break;
1302 
1303 		nfs_do_filldir(desc, nfsi->cookieverf);
1304 		nfs_readdir_folio_unlock_and_put_cached(desc);
1305 		if (desc->folio_index == desc->folio_index_max)
1306 			desc->clear_cache = force_clear;
1307 	} while (!desc->eob && !desc->eof);
1308 
1309 	spin_lock(&file->f_lock);
1310 	dir_ctx->dir_cookie = desc->dir_cookie;
1311 	dir_ctx->last_cookie = desc->last_cookie;
1312 	dir_ctx->attr_gencount = desc->attr_gencount;
1313 	dir_ctx->page_index = desc->folio_index;
1314 	dir_ctx->force_clear = force_clear;
1315 	dir_ctx->eof = desc->eof;
1316 	dir_ctx->dtsize = desc->dtsize;
1317 	memcpy(dir_ctx->verf, desc->verf, sizeof(dir_ctx->verf));
1318 	spin_unlock(&file->f_lock);
1319 out_free:
1320 	kfree(desc);
1321 
1322 out:
1323 	dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
1324 	return res;
1325 }
1326 
nfs_llseek_dir(struct file * filp,loff_t offset,int whence)1327 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
1328 {
1329 	struct nfs_open_dir_context *dir_ctx = filp->private_data;
1330 
1331 	dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
1332 			filp, offset, whence);
1333 
1334 	switch (whence) {
1335 	default:
1336 		return -EINVAL;
1337 	case SEEK_SET:
1338 		if (offset < 0)
1339 			return -EINVAL;
1340 		spin_lock(&filp->f_lock);
1341 		break;
1342 	case SEEK_CUR:
1343 		if (offset == 0)
1344 			return filp->f_pos;
1345 		spin_lock(&filp->f_lock);
1346 		offset += filp->f_pos;
1347 		if (offset < 0) {
1348 			spin_unlock(&filp->f_lock);
1349 			return -EINVAL;
1350 		}
1351 	}
1352 	if (offset != filp->f_pos) {
1353 		filp->f_pos = offset;
1354 		dir_ctx->page_index = 0;
1355 		if (!nfs_readdir_use_cookie(filp)) {
1356 			dir_ctx->dir_cookie = 0;
1357 			dir_ctx->last_cookie = 0;
1358 		} else {
1359 			dir_ctx->dir_cookie = offset;
1360 			dir_ctx->last_cookie = offset;
1361 		}
1362 		dir_ctx->eof = false;
1363 	}
1364 	spin_unlock(&filp->f_lock);
1365 	return offset;
1366 }
1367 
1368 /*
1369  * All directory operations under NFS are synchronous, so fsync()
1370  * is a dummy operation.
1371  */
nfs_fsync_dir(struct file * filp,loff_t start,loff_t end,int datasync)1372 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
1373 			 int datasync)
1374 {
1375 	dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
1376 
1377 	nfs_inc_stats(file_inode(filp), NFSIOS_VFSFSYNC);
1378 	return 0;
1379 }
1380 
1381 /**
1382  * nfs_force_lookup_revalidate - Mark the directory as having changed
1383  * @dir: pointer to directory inode
1384  *
1385  * This forces the revalidation code in nfs_lookup_revalidate() to do a
1386  * full lookup on all child dentries of 'dir' whenever a change occurs
1387  * on the server that might have invalidated our dcache.
1388  *
1389  * Note that we reserve bit '0' as a tag to let us know when a dentry
1390  * was revalidated while holding a delegation on its inode.
1391  *
1392  * The caller should be holding dir->i_lock
1393  */
nfs_force_lookup_revalidate(struct inode * dir)1394 void nfs_force_lookup_revalidate(struct inode *dir)
1395 {
1396 	NFS_I(dir)->cache_change_attribute += 2;
1397 }
1398 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
1399 
1400 /**
1401  * nfs_verify_change_attribute - Detects NFS remote directory changes
1402  * @dir: pointer to parent directory inode
1403  * @verf: previously saved change attribute
1404  *
1405  * Return "false" if the verifiers doesn't match the change attribute.
1406  * This would usually indicate that the directory contents have changed on
1407  * the server, and that any dentries need revalidating.
1408  */
nfs_verify_change_attribute(struct inode * dir,unsigned long verf)1409 static bool nfs_verify_change_attribute(struct inode *dir, unsigned long verf)
1410 {
1411 	return (verf & ~1UL) == nfs_save_change_attribute(dir);
1412 }
1413 
nfs_set_verifier_delegated(unsigned long * verf)1414 static void nfs_set_verifier_delegated(unsigned long *verf)
1415 {
1416 	*verf |= 1UL;
1417 }
1418 
1419 #if IS_ENABLED(CONFIG_NFS_V4)
nfs_unset_verifier_delegated(unsigned long * verf)1420 static void nfs_unset_verifier_delegated(unsigned long *verf)
1421 {
1422 	*verf &= ~1UL;
1423 }
1424 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1425 
nfs_test_verifier_delegated(unsigned long verf)1426 static bool nfs_test_verifier_delegated(unsigned long verf)
1427 {
1428 	return verf & 1;
1429 }
1430 
nfs_verifier_is_delegated(struct dentry * dentry)1431 static bool nfs_verifier_is_delegated(struct dentry *dentry)
1432 {
1433 	return nfs_test_verifier_delegated(dentry->d_time);
1434 }
1435 
nfs_set_verifier_locked(struct dentry * dentry,unsigned long verf)1436 static void nfs_set_verifier_locked(struct dentry *dentry, unsigned long verf)
1437 {
1438 	struct inode *inode = d_inode(dentry);
1439 	struct inode *dir = d_inode_rcu(dentry->d_parent);
1440 
1441 	if (!dir || !nfs_verify_change_attribute(dir, verf))
1442 		return;
1443 	if (inode && NFS_PROTO(inode)->have_delegation(inode, FMODE_READ, 0))
1444 		nfs_set_verifier_delegated(&verf);
1445 	dentry->d_time = verf;
1446 }
1447 
1448 /**
1449  * nfs_set_verifier - save a parent directory verifier in the dentry
1450  * @dentry: pointer to dentry
1451  * @verf: verifier to save
1452  *
1453  * Saves the parent directory verifier in @dentry. If the inode has
1454  * a delegation, we also tag the dentry as having been revalidated
1455  * while holding a delegation so that we know we don't have to
1456  * look it up again after a directory change.
1457  */
nfs_set_verifier(struct dentry * dentry,unsigned long verf)1458 void nfs_set_verifier(struct dentry *dentry, unsigned long verf)
1459 {
1460 
1461 	spin_lock(&dentry->d_lock);
1462 	nfs_set_verifier_locked(dentry, verf);
1463 	spin_unlock(&dentry->d_lock);
1464 }
1465 EXPORT_SYMBOL_GPL(nfs_set_verifier);
1466 
1467 #if IS_ENABLED(CONFIG_NFS_V4)
1468 /**
1469  * nfs_clear_verifier_delegated - clear the dir verifier delegation tag
1470  * @inode: pointer to inode
1471  *
1472  * Iterates through the dentries in the inode alias list and clears
1473  * the tag used to indicate that the dentry has been revalidated
1474  * while holding a delegation.
1475  * This function is intended for use when the delegation is being
1476  * returned or revoked.
1477  */
nfs_clear_verifier_delegated(struct inode * inode)1478 void nfs_clear_verifier_delegated(struct inode *inode)
1479 {
1480 	struct dentry *alias;
1481 
1482 	if (!inode)
1483 		return;
1484 	spin_lock(&inode->i_lock);
1485 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1486 		spin_lock(&alias->d_lock);
1487 		nfs_unset_verifier_delegated(&alias->d_time);
1488 		spin_unlock(&alias->d_lock);
1489 	}
1490 	spin_unlock(&inode->i_lock);
1491 }
1492 EXPORT_SYMBOL_GPL(nfs_clear_verifier_delegated);
1493 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1494 
nfs_dentry_verify_change(struct inode * dir,struct dentry * dentry)1495 static int nfs_dentry_verify_change(struct inode *dir, struct dentry *dentry)
1496 {
1497 	if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE) &&
1498 	    d_really_is_negative(dentry))
1499 		return dentry->d_time == inode_peek_iversion_raw(dir);
1500 	return nfs_verify_change_attribute(dir, dentry->d_time);
1501 }
1502 
1503 /*
1504  * A check for whether or not the parent directory has changed.
1505  * In the case it has, we assume that the dentries are untrustworthy
1506  * and may need to be looked up again.
1507  * If rcu_walk prevents us from performing a full check, return 0.
1508  */
nfs_check_verifier(struct inode * dir,struct dentry * dentry,int rcu_walk)1509 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1510 			      int rcu_walk)
1511 {
1512 	if (IS_ROOT(dentry))
1513 		return 1;
1514 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1515 		return 0;
1516 	if (!nfs_dentry_verify_change(dir, dentry))
1517 		return 0;
1518 
1519 	/*
1520 	 * If we have a directory delegation then we don't need to revalidate
1521 	 * the directory. The delegation will either get recalled or we will
1522 	 * receive a notification when it changes.
1523 	 */
1524 	if (nfs_have_directory_delegation(dir))
1525 		return 0;
1526 
1527 	/* Revalidate nfsi->cache_change_attribute before we declare a match */
1528 	if (nfs_mapping_need_revalidate_inode(dir)) {
1529 		if (rcu_walk)
1530 			return 0;
1531 		if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
1532 			return 0;
1533 	}
1534 	if (!nfs_dentry_verify_change(dir, dentry))
1535 		return 0;
1536 	return 1;
1537 }
1538 
1539 /*
1540  * Use intent information to check whether or not we're going to do
1541  * an O_EXCL create using this path component.
1542  */
nfs_is_exclusive_create(struct inode * dir,unsigned int flags)1543 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1544 {
1545 	if (NFS_PROTO(dir)->version == 2)
1546 		return 0;
1547 	return (flags & (LOOKUP_CREATE | LOOKUP_EXCL)) ==
1548 		(LOOKUP_CREATE | LOOKUP_EXCL);
1549 }
1550 
1551 /*
1552  * Inode and filehandle revalidation for lookups.
1553  *
1554  * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1555  * or if the intent information indicates that we're about to open this
1556  * particular file and the "nocto" mount flag is not set.
1557  *
1558  */
1559 static
nfs_lookup_verify_inode(struct inode * inode,unsigned int flags)1560 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1561 {
1562 	struct nfs_server *server = NFS_SERVER(inode);
1563 	int ret;
1564 
1565 	if (IS_AUTOMOUNT(inode))
1566 		return 0;
1567 
1568 	if (flags & LOOKUP_OPEN) {
1569 		switch (inode->i_mode & S_IFMT) {
1570 		case S_IFREG:
1571 			/* A NFSv4 OPEN will revalidate later */
1572 			if (server->caps & NFS_CAP_ATOMIC_OPEN)
1573 				goto out;
1574 			fallthrough;
1575 		case S_IFDIR:
1576 			if (server->flags & NFS_MOUNT_NOCTO)
1577 				break;
1578 			/* NFS close-to-open cache consistency validation */
1579 			goto out_force;
1580 		}
1581 	}
1582 
1583 	/* VFS wants an on-the-wire revalidation */
1584 	if (flags & LOOKUP_REVAL)
1585 		goto out_force;
1586 out:
1587 	if (inode->i_nlink > 0 ||
1588 	    (inode->i_nlink == 0 &&
1589 	     test_bit(NFS_INO_PRESERVE_UNLINKED, &NFS_I(inode)->flags)))
1590 		return 0;
1591 	else
1592 		return -ESTALE;
1593 out_force:
1594 	if (flags & LOOKUP_RCU)
1595 		return -ECHILD;
1596 	ret = __nfs_revalidate_inode(server, inode);
1597 	if (ret != 0)
1598 		return ret;
1599 	goto out;
1600 }
1601 
nfs_mark_dir_for_revalidate(struct inode * inode)1602 static void nfs_mark_dir_for_revalidate(struct inode *inode)
1603 {
1604 	spin_lock(&inode->i_lock);
1605 	nfs_set_cache_invalid(inode, NFS_INO_INVALID_CHANGE);
1606 	spin_unlock(&inode->i_lock);
1607 }
1608 
1609 /*
1610  * We judge how long we want to trust negative
1611  * dentries by looking at the parent inode mtime.
1612  *
1613  * If parent mtime has changed, we revalidate, else we wait for a
1614  * period corresponding to the parent's attribute cache timeout value.
1615  *
1616  * If LOOKUP_RCU prevents us from performing a full check, return 1
1617  * suggesting a reval is needed.
1618  *
1619  * Note that when creating a new file, or looking up a rename target,
1620  * then it shouldn't be necessary to revalidate a negative dentry.
1621  */
1622 static inline
nfs_neg_need_reval(struct inode * dir,struct dentry * dentry,unsigned int flags)1623 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1624 		       unsigned int flags)
1625 {
1626 	if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET))
1627 		return 0;
1628 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1629 		return 1;
1630 	/* Case insensitive server? Revalidate negative dentries */
1631 	if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1632 		return 1;
1633 	return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1634 }
1635 
1636 static int
nfs_lookup_revalidate_done(struct inode * dir,struct dentry * dentry,struct inode * inode,int error)1637 nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry,
1638 			   struct inode *inode, int error)
1639 {
1640 	switch (error) {
1641 	case 1:
1642 		break;
1643 	case -ETIMEDOUT:
1644 		if (inode && (IS_ROOT(dentry) ||
1645 			      NFS_SERVER(inode)->flags & NFS_MOUNT_SOFTREVAL))
1646 			error = 1;
1647 		break;
1648 	case -ESTALE:
1649 	case -ENOENT:
1650 		error = 0;
1651 		fallthrough;
1652 	default:
1653 		/*
1654 		 * We can't d_drop the root of a disconnected tree:
1655 		 * its d_hash is on the s_anon list and d_drop() would hide
1656 		 * it from shrink_dcache_for_unmount(), leading to busy
1657 		 * inodes on unmount and further oopses.
1658 		 */
1659 		if (inode && IS_ROOT(dentry))
1660 			error = 1;
1661 		break;
1662 	}
1663 	trace_nfs_lookup_revalidate_exit(dir, dentry, 0, error);
1664 	return error;
1665 }
1666 
1667 static int
nfs_lookup_revalidate_negative(struct inode * dir,struct dentry * dentry,unsigned int flags)1668 nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry,
1669 			       unsigned int flags)
1670 {
1671 	int ret = 1;
1672 	if (nfs_neg_need_reval(dir, dentry, flags)) {
1673 		if (flags & LOOKUP_RCU)
1674 			return -ECHILD;
1675 		ret = 0;
1676 	}
1677 	return nfs_lookup_revalidate_done(dir, dentry, NULL, ret);
1678 }
1679 
1680 static int
nfs_lookup_revalidate_delegated(struct inode * dir,struct dentry * dentry,struct inode * inode)1681 nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry,
1682 				struct inode *inode)
1683 {
1684 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1685 	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1686 }
1687 
nfs_lookup_revalidate_dentry(struct inode * dir,const struct qstr * name,struct dentry * dentry,struct inode * inode,unsigned int flags)1688 static int nfs_lookup_revalidate_dentry(struct inode *dir, const struct qstr *name,
1689 					struct dentry *dentry,
1690 					struct inode *inode, unsigned int flags)
1691 {
1692 	struct nfs_fh *fhandle;
1693 	struct nfs_fattr *fattr;
1694 	unsigned long dir_verifier;
1695 	int ret;
1696 
1697 	trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1698 
1699 	ret = -ENOMEM;
1700 	fhandle = nfs_alloc_fhandle();
1701 	fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode));
1702 	if (fhandle == NULL || fattr == NULL)
1703 		goto out;
1704 
1705 	dir_verifier = nfs_save_change_attribute(dir);
1706 	ret = NFS_PROTO(dir)->lookup(dir, dentry, name, fhandle, fattr);
1707 	if (ret < 0)
1708 		goto out;
1709 
1710 	/* Request help from readdirplus */
1711 	nfs_lookup_advise_force_readdirplus(dir, flags);
1712 
1713 	ret = 0;
1714 	if (nfs_compare_fh(NFS_FH(inode), fhandle))
1715 		goto out;
1716 	if (nfs_refresh_inode(inode, fattr) < 0)
1717 		goto out;
1718 
1719 	nfs_setsecurity(inode, fattr);
1720 	nfs_set_verifier(dentry, dir_verifier);
1721 
1722 	ret = 1;
1723 out:
1724 	nfs_free_fattr(fattr);
1725 	nfs_free_fhandle(fhandle);
1726 
1727 	/*
1728 	 * If the lookup failed despite the dentry change attribute being
1729 	 * a match, then we should revalidate the directory cache.
1730 	 */
1731 	if (!ret && nfs_dentry_verify_change(dir, dentry))
1732 		nfs_mark_dir_for_revalidate(dir);
1733 	return nfs_lookup_revalidate_done(dir, dentry, inode, ret);
1734 }
1735 
1736 /*
1737  * This is called every time the dcache has a lookup hit,
1738  * and we should check whether we can really trust that
1739  * lookup.
1740  *
1741  * NOTE! The hit can be a negative hit too, don't assume
1742  * we have an inode!
1743  *
1744  * If the parent directory is seen to have changed, we throw out the
1745  * cached dentry and do a new lookup.
1746  */
1747 static int
nfs_do_lookup_revalidate(struct inode * dir,const struct qstr * name,struct dentry * dentry,unsigned int flags)1748 nfs_do_lookup_revalidate(struct inode *dir, const struct qstr *name,
1749 			 struct dentry *dentry, unsigned int flags)
1750 {
1751 	struct inode *inode;
1752 	int error = 0;
1753 
1754 	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1755 	inode = d_inode(dentry);
1756 
1757 	if (!inode)
1758 		return nfs_lookup_revalidate_negative(dir, dentry, flags);
1759 
1760 	if (is_bad_inode(inode)) {
1761 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1762 				__func__, dentry);
1763 		goto out_bad;
1764 	}
1765 
1766 	if ((flags & LOOKUP_RENAME_TARGET) && d_count(dentry) < 2 &&
1767 	    nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1768 		goto out_bad;
1769 
1770 	if (nfs_verifier_is_delegated(dentry))
1771 		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1772 
1773 	/* Force a full look up iff the parent directory has changed */
1774 	if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) &&
1775 	    nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1776 		error = nfs_lookup_verify_inode(inode, flags);
1777 		if (error) {
1778 			if (error == -ESTALE)
1779 				nfs_mark_dir_for_revalidate(dir);
1780 			goto out_bad;
1781 		}
1782 		goto out_valid;
1783 	}
1784 
1785 	if (flags & LOOKUP_RCU)
1786 		return -ECHILD;
1787 
1788 	if (NFS_STALE(inode))
1789 		goto out_bad;
1790 
1791 	return nfs_lookup_revalidate_dentry(dir, name, dentry, inode, flags);
1792 out_valid:
1793 	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1794 out_bad:
1795 	if (flags & LOOKUP_RCU)
1796 		return -ECHILD;
1797 	return nfs_lookup_revalidate_done(dir, dentry, inode, error);
1798 }
1799 
1800 static int
__nfs_lookup_revalidate(struct dentry * dentry,unsigned int flags)1801 __nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1802 {
1803 	if (flags & LOOKUP_RCU) {
1804 		if (dentry->d_fsdata == NFS_FSDATA_BLOCKED)
1805 			return -ECHILD;
1806 	} else {
1807 		/* Wait for unlink to complete - see unblock_revalidate() */
1808 		wait_var_event(&dentry->d_fsdata,
1809 			       smp_load_acquire(&dentry->d_fsdata)
1810 			       != NFS_FSDATA_BLOCKED);
1811 	}
1812 	return 0;
1813 }
1814 
nfs_lookup_revalidate(struct inode * dir,const struct qstr * name,struct dentry * dentry,unsigned int flags)1815 static int nfs_lookup_revalidate(struct inode *dir, const struct qstr *name,
1816 				 struct dentry *dentry, unsigned int flags)
1817 {
1818 	if (__nfs_lookup_revalidate(dentry, flags))
1819 		return -ECHILD;
1820 	return nfs_do_lookup_revalidate(dir, name, dentry, flags);
1821 }
1822 
block_revalidate(struct dentry * dentry)1823 static void block_revalidate(struct dentry *dentry)
1824 {
1825 	/* old devname - just in case */
1826 	kfree(dentry->d_fsdata);
1827 
1828 	/* Any new reference that could lead to an open
1829 	 * will take ->d_lock in lookup_open() -> d_lookup().
1830 	 * Holding this lock ensures we cannot race with
1831 	 * __nfs_lookup_revalidate() and removes and need
1832 	 * for further barriers.
1833 	 */
1834 	lockdep_assert_held(&dentry->d_lock);
1835 
1836 	dentry->d_fsdata = NFS_FSDATA_BLOCKED;
1837 }
1838 
unblock_revalidate(struct dentry * dentry)1839 static void unblock_revalidate(struct dentry *dentry)
1840 {
1841 	store_release_wake_up(&dentry->d_fsdata, NULL);
1842 }
1843 
1844 /*
1845  * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1846  * when we don't really care about the dentry name. This is called when a
1847  * pathwalk ends on a dentry that was not found via a normal lookup in the
1848  * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1849  *
1850  * In this situation, we just want to verify that the inode itself is OK
1851  * since the dentry might have changed on the server.
1852  */
nfs_weak_revalidate(struct dentry * dentry,unsigned int flags)1853 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1854 {
1855 	struct inode *inode = d_inode(dentry);
1856 	int error = 0;
1857 
1858 	/*
1859 	 * I believe we can only get a negative dentry here in the case of a
1860 	 * procfs-style symlink. Just assume it's correct for now, but we may
1861 	 * eventually need to do something more here.
1862 	 */
1863 	if (!inode) {
1864 		dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1865 				__func__, dentry);
1866 		return 1;
1867 	}
1868 
1869 	if (is_bad_inode(inode)) {
1870 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1871 				__func__, dentry);
1872 		return 0;
1873 	}
1874 
1875 	error = nfs_lookup_verify_inode(inode, flags);
1876 	dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1877 			__func__, inode->i_ino, error ? "invalid" : "valid");
1878 	return !error;
1879 }
1880 
1881 /*
1882  * This is called from dput() when d_count is going to 0.
1883  */
nfs_dentry_delete(const struct dentry * dentry)1884 static int nfs_dentry_delete(const struct dentry *dentry)
1885 {
1886 	dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1887 		dentry, dentry->d_flags);
1888 
1889 	/* Unhash any dentry with a stale inode */
1890 	if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1891 		return 1;
1892 
1893 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1894 		/* Unhash it, so that ->d_iput() would be called */
1895 		return 1;
1896 	}
1897 	if (!(dentry->d_sb->s_flags & SB_ACTIVE)) {
1898 		/* Unhash it, so that ancestors of killed async unlink
1899 		 * files will be cleaned up during umount */
1900 		return 1;
1901 	}
1902 	return 0;
1903 
1904 }
1905 
1906 /* Ensure that we revalidate inode->i_nlink */
nfs_drop_nlink(struct inode * inode,unsigned long gencount)1907 static void nfs_drop_nlink(struct inode *inode, unsigned long gencount)
1908 {
1909 	struct nfs_inode *nfsi = NFS_I(inode);
1910 
1911 	spin_lock(&inode->i_lock);
1912 	/* drop the inode if we're reasonably sure this is the last link */
1913 	if (inode->i_nlink > 0 && gencount == nfsi->attr_gencount)
1914 		drop_nlink(inode);
1915 	nfsi->attr_gencount = nfs_inc_attr_generation_counter();
1916 	nfs_set_cache_invalid(
1917 		inode, NFS_INO_INVALID_CHANGE | NFS_INO_INVALID_CTIME |
1918 			       NFS_INO_INVALID_NLINK);
1919 	spin_unlock(&inode->i_lock);
1920 }
1921 
1922 /*
1923  * Called when the dentry loses inode.
1924  * We use it to clean up silly-renamed files.
1925  */
nfs_dentry_iput(struct dentry * dentry,struct inode * inode)1926 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1927 {
1928 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1929 		unsigned long gencount = READ_ONCE(NFS_I(inode)->attr_gencount);
1930 		nfs_complete_unlink(dentry, inode);
1931 		nfs_drop_nlink(inode, gencount);
1932 	}
1933 	iput(inode);
1934 }
1935 
nfs_d_release(struct dentry * dentry)1936 static void nfs_d_release(struct dentry *dentry)
1937 {
1938 	/* free cached devname value, if it survived that far */
1939 	if (unlikely(dentry->d_fsdata)) {
1940 		if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1941 			WARN_ON(1);
1942 		else
1943 			kfree(dentry->d_fsdata);
1944 	}
1945 }
1946 
1947 const struct dentry_operations nfs_dentry_operations = {
1948 	.d_revalidate	= nfs_lookup_revalidate,
1949 	.d_weak_revalidate	= nfs_weak_revalidate,
1950 	.d_delete	= nfs_dentry_delete,
1951 	.d_iput		= nfs_dentry_iput,
1952 	.d_automount	= nfs_d_automount,
1953 	.d_release	= nfs_d_release,
1954 };
1955 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1956 
nfs_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)1957 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1958 {
1959 	struct dentry *res;
1960 	struct inode *inode = NULL;
1961 	struct nfs_fh *fhandle = NULL;
1962 	struct nfs_fattr *fattr = NULL;
1963 	unsigned long dir_verifier;
1964 	int error;
1965 
1966 	dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1967 	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1968 
1969 	if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1970 		return ERR_PTR(-ENAMETOOLONG);
1971 
1972 	/*
1973 	 * If we're doing an exclusive create, optimize away the lookup
1974 	 * but don't hash the dentry.
1975 	 */
1976 	if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET)
1977 		return NULL;
1978 
1979 	res = ERR_PTR(-ENOMEM);
1980 	fhandle = nfs_alloc_fhandle();
1981 	fattr = nfs_alloc_fattr_with_label(NFS_SERVER(dir));
1982 	if (fhandle == NULL || fattr == NULL)
1983 		goto out;
1984 
1985 	dir_verifier = nfs_save_change_attribute(dir);
1986 	trace_nfs_lookup_enter(dir, dentry, flags);
1987 	error = NFS_PROTO(dir)->lookup(dir, dentry, &dentry->d_name,
1988 				       fhandle, fattr);
1989 	if (error == -ENOENT) {
1990 		if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1991 			dir_verifier = inode_peek_iversion_raw(dir);
1992 		goto no_entry;
1993 	}
1994 	if (error < 0) {
1995 		res = ERR_PTR(error);
1996 		goto out;
1997 	}
1998 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1999 	res = ERR_CAST(inode);
2000 	if (IS_ERR(res))
2001 		goto out;
2002 
2003 	/* Notify readdir to use READDIRPLUS */
2004 	nfs_lookup_advise_force_readdirplus(dir, flags);
2005 
2006 no_entry:
2007 	nfs_set_verifier(dentry, dir_verifier);
2008 	res = d_splice_alias(inode, dentry);
2009 	if (res != NULL) {
2010 		if (IS_ERR(res))
2011 			goto out;
2012 		nfs_set_verifier(res, dir_verifier);
2013 		dentry = res;
2014 	}
2015 out:
2016 	trace_nfs_lookup_exit(dir, dentry, flags, PTR_ERR_OR_ZERO(res));
2017 	nfs_free_fattr(fattr);
2018 	nfs_free_fhandle(fhandle);
2019 	return res;
2020 }
2021 EXPORT_SYMBOL_GPL(nfs_lookup);
2022 
nfs_d_prune_case_insensitive_aliases(struct inode * inode)2023 void nfs_d_prune_case_insensitive_aliases(struct inode *inode)
2024 {
2025 	/* Case insensitive server? Revalidate dentries */
2026 	if (inode && nfs_server_capable(inode, NFS_CAP_CASE_INSENSITIVE))
2027 		d_prune_aliases(inode);
2028 }
2029 EXPORT_SYMBOL_GPL(nfs_d_prune_case_insensitive_aliases);
2030 
2031 #if IS_ENABLED(CONFIG_NFS_V4)
2032 static int nfs4_lookup_revalidate(struct inode *, const struct qstr *,
2033 				  struct dentry *, unsigned int);
2034 
2035 const struct dentry_operations nfs4_dentry_operations = {
2036 	.d_revalidate	= nfs4_lookup_revalidate,
2037 	.d_weak_revalidate	= nfs_weak_revalidate,
2038 	.d_delete	= nfs_dentry_delete,
2039 	.d_iput		= nfs_dentry_iput,
2040 	.d_automount	= nfs_d_automount,
2041 	.d_release	= nfs_d_release,
2042 };
2043 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
2044 
create_nfs_open_context(struct dentry * dentry,int open_flags,struct file * filp)2045 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
2046 {
2047 	return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
2048 }
2049 
do_open(struct inode * inode,struct file * filp)2050 static int do_open(struct inode *inode, struct file *filp)
2051 {
2052 	nfs_fscache_open_file(inode, filp);
2053 	return 0;
2054 }
2055 
nfs_finish_open(struct nfs_open_context * ctx,struct dentry * dentry,struct file * file,unsigned open_flags)2056 static int nfs_finish_open(struct nfs_open_context *ctx,
2057 			   struct dentry *dentry,
2058 			   struct file *file, unsigned open_flags)
2059 {
2060 	int err;
2061 
2062 	err = finish_open(file, dentry, do_open);
2063 	if (err)
2064 		goto out;
2065 	if (S_ISREG(file_inode(file)->i_mode))
2066 		nfs_file_set_open_context(file, ctx);
2067 	else
2068 		err = -EOPENSTALE;
2069 out:
2070 	return err;
2071 }
2072 
nfs_atomic_open(struct inode * dir,struct dentry * dentry,struct file * file,unsigned open_flags,umode_t mode)2073 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
2074 		    struct file *file, unsigned open_flags,
2075 		    umode_t mode)
2076 {
2077 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
2078 	struct nfs_open_context *ctx;
2079 	struct dentry *res;
2080 	struct iattr attr = { .ia_valid = ATTR_OPEN };
2081 	struct inode *inode;
2082 	unsigned int lookup_flags = 0;
2083 	unsigned long dir_verifier;
2084 	bool switched = false;
2085 	int created = 0;
2086 	int err;
2087 
2088 	/* Expect a negative dentry */
2089 	BUG_ON(d_inode(dentry));
2090 
2091 	dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
2092 			dir->i_sb->s_id, dir->i_ino, dentry);
2093 
2094 	err = nfs_check_flags(open_flags);
2095 	if (err)
2096 		return err;
2097 
2098 	/* NFS only supports OPEN on regular files */
2099 	if ((open_flags & O_DIRECTORY)) {
2100 		if (!d_in_lookup(dentry)) {
2101 			/*
2102 			 * Hashed negative dentry with O_DIRECTORY: dentry was
2103 			 * revalidated and is fine, no need to perform lookup
2104 			 * again
2105 			 */
2106 			return -ENOENT;
2107 		}
2108 		lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
2109 		goto no_open;
2110 	}
2111 
2112 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
2113 		return -ENAMETOOLONG;
2114 
2115 	if (open_flags & O_CREAT) {
2116 		struct nfs_server *server = NFS_SERVER(dir);
2117 
2118 		if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
2119 			mode &= ~current_umask();
2120 
2121 		attr.ia_valid |= ATTR_MODE;
2122 		attr.ia_mode = mode;
2123 	}
2124 	if (open_flags & O_TRUNC) {
2125 		attr.ia_valid |= ATTR_SIZE;
2126 		attr.ia_size = 0;
2127 	}
2128 
2129 	if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
2130 		d_drop(dentry);
2131 		switched = true;
2132 		dentry = d_alloc_parallel(dentry->d_parent,
2133 					  &dentry->d_name, &wq);
2134 		if (IS_ERR(dentry))
2135 			return PTR_ERR(dentry);
2136 		if (unlikely(!d_in_lookup(dentry)))
2137 			return finish_no_open(file, dentry);
2138 	}
2139 
2140 	ctx = create_nfs_open_context(dentry, open_flags, file);
2141 	err = PTR_ERR(ctx);
2142 	if (IS_ERR(ctx))
2143 		goto out;
2144 
2145 	trace_nfs_atomic_open_enter(dir, ctx, open_flags);
2146 	inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created);
2147 	if (created)
2148 		file->f_mode |= FMODE_CREATED;
2149 	if (IS_ERR(inode)) {
2150 		err = PTR_ERR(inode);
2151 		trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
2152 		put_nfs_open_context(ctx);
2153 		d_drop(dentry);
2154 		switch (err) {
2155 		case -ENOENT:
2156 			if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
2157 				dir_verifier = inode_peek_iversion_raw(dir);
2158 			else
2159 				dir_verifier = nfs_save_change_attribute(dir);
2160 			nfs_set_verifier(dentry, dir_verifier);
2161 			d_splice_alias(NULL, dentry);
2162 			break;
2163 		case -EISDIR:
2164 		case -ENOTDIR:
2165 			goto no_open;
2166 		case -ELOOP:
2167 			if (!(open_flags & O_NOFOLLOW))
2168 				goto no_open;
2169 			break;
2170 			/* case -EINVAL: */
2171 		default:
2172 			break;
2173 		}
2174 		goto out;
2175 	}
2176 	file->f_mode |= FMODE_CAN_ODIRECT;
2177 
2178 	err = nfs_finish_open(ctx, ctx->dentry, file, open_flags);
2179 	trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
2180 	put_nfs_open_context(ctx);
2181 out:
2182 	if (unlikely(switched)) {
2183 		d_lookup_done(dentry);
2184 		dput(dentry);
2185 	}
2186 	return err;
2187 
2188 no_open:
2189 	res = nfs_lookup(dir, dentry, lookup_flags);
2190 	if (!res) {
2191 		inode = d_inode(dentry);
2192 		if ((lookup_flags & LOOKUP_DIRECTORY) && inode &&
2193 		    !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)))
2194 			res = ERR_PTR(-ENOTDIR);
2195 		else if (inode && S_ISREG(inode->i_mode))
2196 			res = ERR_PTR(-EOPENSTALE);
2197 	} else if (!IS_ERR(res)) {
2198 		inode = d_inode(res);
2199 		if ((lookup_flags & LOOKUP_DIRECTORY) && inode &&
2200 		    !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))) {
2201 			dput(res);
2202 			res = ERR_PTR(-ENOTDIR);
2203 		} else if (inode && S_ISREG(inode->i_mode)) {
2204 			dput(res);
2205 			res = ERR_PTR(-EOPENSTALE);
2206 		}
2207 	}
2208 	if (switched) {
2209 		d_lookup_done(dentry);
2210 		if (!res)
2211 			res = dentry;
2212 		else
2213 			dput(dentry);
2214 	}
2215 	return finish_no_open(file, res);
2216 }
2217 EXPORT_SYMBOL_GPL(nfs_atomic_open);
2218 
2219 static int
nfs_lookup_revalidate_delegated_parent(struct inode * dir,struct dentry * dentry,struct inode * inode)2220 nfs_lookup_revalidate_delegated_parent(struct inode *dir, struct dentry *dentry,
2221 				       struct inode *inode)
2222 {
2223 	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
2224 }
2225 
2226 static int
nfs4_lookup_revalidate(struct inode * dir,const struct qstr * name,struct dentry * dentry,unsigned int flags)2227 nfs4_lookup_revalidate(struct inode *dir, const struct qstr *name,
2228 		       struct dentry *dentry, unsigned int flags)
2229 {
2230 	struct inode *inode;
2231 
2232 	if (__nfs_lookup_revalidate(dentry, flags))
2233 		return -ECHILD;
2234 
2235 	trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
2236 
2237 	if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
2238 		goto full_reval;
2239 	if (d_mountpoint(dentry))
2240 		goto full_reval;
2241 
2242 	inode = d_inode(dentry);
2243 
2244 	/* We can't create new files in nfs_open_revalidate(), so we
2245 	 * optimize away revalidation of negative dentries.
2246 	 */
2247 	if (inode == NULL)
2248 		goto full_reval;
2249 
2250 	if (nfs_verifier_is_delegated(dentry))
2251 		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
2252 
2253 	if (nfs_have_directory_delegation(dir))
2254 		return nfs_lookup_revalidate_delegated_parent(dir, dentry, inode);
2255 
2256 	/* NFS only supports OPEN on regular files */
2257 	if (!S_ISREG(inode->i_mode))
2258 		goto full_reval;
2259 
2260 	/* We cannot do exclusive creation on a positive dentry */
2261 	if (flags & (LOOKUP_EXCL | LOOKUP_REVAL))
2262 		goto reval_dentry;
2263 
2264 	/* Check if the directory changed */
2265 	if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU))
2266 		goto reval_dentry;
2267 
2268 	/* Let f_op->open() actually open (and revalidate) the file */
2269 	return 1;
2270 reval_dentry:
2271 	if (flags & LOOKUP_RCU)
2272 		return -ECHILD;
2273 	return nfs_lookup_revalidate_dentry(dir, name, dentry, inode, flags);
2274 
2275 full_reval:
2276 	return nfs_do_lookup_revalidate(dir, name, dentry, flags);
2277 }
2278 
2279 #endif /* CONFIG_NFSV4 */
2280 
nfs_atomic_open_v23(struct inode * dir,struct dentry * dentry,struct file * file,unsigned int open_flags,umode_t mode)2281 int nfs_atomic_open_v23(struct inode *dir, struct dentry *dentry,
2282 			struct file *file, unsigned int open_flags,
2283 			umode_t mode)
2284 {
2285 	struct dentry *res = NULL;
2286 	/* Same as look+open from lookup_open(), but with different O_TRUNC
2287 	 * handling.
2288 	 */
2289 	int error = 0;
2290 
2291 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
2292 		return -ENAMETOOLONG;
2293 
2294 	if (open_flags & O_CREAT) {
2295 		error = nfs_do_create(dir, dentry, mode, open_flags);
2296 		if (!error) {
2297 			file->f_mode |= FMODE_CREATED;
2298 			return finish_open(file, dentry, NULL);
2299 		} else if (error != -EEXIST || open_flags & O_EXCL)
2300 			return error;
2301 	}
2302 	if (d_in_lookup(dentry)) {
2303 		/* The only flags nfs_lookup considers are
2304 		 * LOOKUP_EXCL and LOOKUP_RENAME_TARGET, and
2305 		 * we want those to be zero so the lookup isn't skipped.
2306 		 */
2307 		res = nfs_lookup(dir, dentry, 0);
2308 	}
2309 	return finish_no_open(file, res);
2310 
2311 }
2312 EXPORT_SYMBOL_GPL(nfs_atomic_open_v23);
2313 
2314 struct dentry *
nfs_add_or_obtain(struct dentry * dentry,struct nfs_fh * fhandle,struct nfs_fattr * fattr)2315 nfs_add_or_obtain(struct dentry *dentry, struct nfs_fh *fhandle,
2316 				struct nfs_fattr *fattr)
2317 {
2318 	struct dentry *parent = dget_parent(dentry);
2319 	struct inode *dir = d_inode(parent);
2320 	struct inode *inode;
2321 	struct dentry *d;
2322 	int error;
2323 
2324 	d_drop(dentry);
2325 
2326 	if (fhandle->size == 0) {
2327 		error = NFS_PROTO(dir)->lookup(dir, dentry, &dentry->d_name,
2328 					       fhandle, fattr);
2329 		if (error)
2330 			goto out_error;
2331 	}
2332 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2333 	if (!(fattr->valid & NFS_ATTR_FATTR)) {
2334 		struct nfs_server *server = NFS_SB(dentry->d_sb);
2335 		error = server->nfs_client->rpc_ops->getattr(server, fhandle,
2336 				fattr, NULL);
2337 		if (error < 0)
2338 			goto out_error;
2339 	}
2340 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
2341 	d = d_splice_alias(inode, dentry);
2342 out:
2343 	dput(parent);
2344 	return d;
2345 out_error:
2346 	d = ERR_PTR(error);
2347 	goto out;
2348 }
2349 EXPORT_SYMBOL_GPL(nfs_add_or_obtain);
2350 
2351 /*
2352  * Code common to create, mkdir, and mknod.
2353  */
nfs_instantiate(struct dentry * dentry,struct nfs_fh * fhandle,struct nfs_fattr * fattr)2354 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
2355 				struct nfs_fattr *fattr)
2356 {
2357 	struct dentry *d;
2358 
2359 	d = nfs_add_or_obtain(dentry, fhandle, fattr);
2360 	if (IS_ERR(d))
2361 		return PTR_ERR(d);
2362 
2363 	/* Callers don't care */
2364 	dput(d);
2365 	return 0;
2366 }
2367 EXPORT_SYMBOL_GPL(nfs_instantiate);
2368 
2369 /*
2370  * Following a failed create operation, we drop the dentry rather
2371  * than retain a negative dentry. This avoids a problem in the event
2372  * that the operation succeeded on the server, but an error in the
2373  * reply path made it appear to have failed.
2374  */
nfs_do_create(struct inode * dir,struct dentry * dentry,umode_t mode,int open_flags)2375 static int nfs_do_create(struct inode *dir, struct dentry *dentry,
2376 			 umode_t mode, int open_flags)
2377 {
2378 	struct iattr attr;
2379 	int error;
2380 
2381 	open_flags |= O_CREAT;
2382 
2383 	dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
2384 			dir->i_sb->s_id, dir->i_ino, dentry);
2385 
2386 	attr.ia_mode = mode;
2387 	attr.ia_valid = ATTR_MODE;
2388 	if (open_flags & O_TRUNC) {
2389 		attr.ia_size = 0;
2390 		attr.ia_valid |= ATTR_SIZE;
2391 	}
2392 
2393 	trace_nfs_create_enter(dir, dentry, open_flags);
2394 	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
2395 	trace_nfs_create_exit(dir, dentry, open_flags, error);
2396 	if (error != 0)
2397 		goto out_err;
2398 	return 0;
2399 out_err:
2400 	d_drop(dentry);
2401 	return error;
2402 }
2403 
nfs_create(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)2404 int nfs_create(struct mnt_idmap *idmap, struct inode *dir,
2405 	       struct dentry *dentry, umode_t mode, bool excl)
2406 {
2407 	return nfs_do_create(dir, dentry, mode, excl ? O_EXCL : 0);
2408 }
2409 EXPORT_SYMBOL_GPL(nfs_create);
2410 
2411 /*
2412  * See comments for nfs_proc_create regarding failed operations.
2413  */
2414 int
nfs_mknod(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,dev_t rdev)2415 nfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
2416 	  struct dentry *dentry, umode_t mode, dev_t rdev)
2417 {
2418 	struct iattr attr;
2419 	int status;
2420 
2421 	dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
2422 			dir->i_sb->s_id, dir->i_ino, dentry);
2423 
2424 	attr.ia_mode = mode;
2425 	attr.ia_valid = ATTR_MODE;
2426 
2427 	trace_nfs_mknod_enter(dir, dentry);
2428 	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
2429 	trace_nfs_mknod_exit(dir, dentry, status);
2430 	if (status != 0)
2431 		goto out_err;
2432 	return 0;
2433 out_err:
2434 	d_drop(dentry);
2435 	return status;
2436 }
2437 EXPORT_SYMBOL_GPL(nfs_mknod);
2438 
2439 /*
2440  * See comments for nfs_proc_create regarding failed operations.
2441  */
nfs_mkdir(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode)2442 struct dentry *nfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
2443 			 struct dentry *dentry, umode_t mode)
2444 {
2445 	struct iattr attr;
2446 	struct dentry *ret;
2447 
2448 	dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
2449 			dir->i_sb->s_id, dir->i_ino, dentry);
2450 
2451 	attr.ia_valid = ATTR_MODE;
2452 	attr.ia_mode = mode | S_IFDIR;
2453 
2454 	trace_nfs_mkdir_enter(dir, dentry);
2455 	ret = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
2456 	trace_nfs_mkdir_exit(dir, dentry, PTR_ERR_OR_ZERO(ret));
2457 	return ret;
2458 }
2459 EXPORT_SYMBOL_GPL(nfs_mkdir);
2460 
nfs_dentry_handle_enoent(struct dentry * dentry)2461 static void nfs_dentry_handle_enoent(struct dentry *dentry)
2462 {
2463 	if (simple_positive(dentry))
2464 		d_delete(dentry);
2465 }
2466 
nfs_dentry_remove_handle_error(struct inode * dir,struct dentry * dentry,int error)2467 static void nfs_dentry_remove_handle_error(struct inode *dir,
2468 					   struct dentry *dentry, int error)
2469 {
2470 	switch (error) {
2471 	case -ENOENT:
2472 		if (d_really_is_positive(dentry))
2473 			d_delete(dentry);
2474 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2475 		break;
2476 	case 0:
2477 		nfs_d_prune_case_insensitive_aliases(d_inode(dentry));
2478 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2479 	}
2480 }
2481 
nfs_rmdir(struct inode * dir,struct dentry * dentry)2482 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
2483 {
2484 	int error;
2485 
2486 	dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
2487 			dir->i_sb->s_id, dir->i_ino, dentry);
2488 
2489 	trace_nfs_rmdir_enter(dir, dentry);
2490 	if (d_really_is_positive(dentry)) {
2491 		down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2492 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2493 		/* Ensure the VFS deletes this inode */
2494 		switch (error) {
2495 		case 0:
2496 			clear_nlink(d_inode(dentry));
2497 			break;
2498 		case -ENOENT:
2499 			nfs_dentry_handle_enoent(dentry);
2500 		}
2501 		up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2502 	} else
2503 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2504 	nfs_dentry_remove_handle_error(dir, dentry, error);
2505 	trace_nfs_rmdir_exit(dir, dentry, error);
2506 
2507 	return error;
2508 }
2509 EXPORT_SYMBOL_GPL(nfs_rmdir);
2510 
2511 /*
2512  * Remove a file after making sure there are no pending writes,
2513  * and after checking that the file has only one user.
2514  *
2515  * We invalidate the attribute cache and free the inode prior to the operation
2516  * to avoid possible races if the server reuses the inode.
2517  */
nfs_safe_remove(struct dentry * dentry)2518 static int nfs_safe_remove(struct dentry *dentry)
2519 {
2520 	struct inode *dir = d_inode(dentry->d_parent);
2521 	struct inode *inode = d_inode(dentry);
2522 	int error = -EBUSY;
2523 
2524 	dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
2525 
2526 	/* If the dentry was sillyrenamed, we simply call d_delete() */
2527 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
2528 		error = 0;
2529 		goto out;
2530 	}
2531 
2532 	trace_nfs_remove_enter(dir, dentry);
2533 	if (inode != NULL) {
2534 		unsigned long gencount = READ_ONCE(NFS_I(inode)->attr_gencount);
2535 
2536 		error = NFS_PROTO(dir)->remove(dir, dentry);
2537 		if (error == 0)
2538 			nfs_drop_nlink(inode, gencount);
2539 	} else
2540 		error = NFS_PROTO(dir)->remove(dir, dentry);
2541 	if (error == -ENOENT)
2542 		nfs_dentry_handle_enoent(dentry);
2543 	trace_nfs_remove_exit(dir, dentry, error);
2544 out:
2545 	return error;
2546 }
2547 
2548 /*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
2549  *  belongs to an active ".nfs..." file and we return -EBUSY.
2550  *
2551  *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
2552  */
nfs_unlink(struct inode * dir,struct dentry * dentry)2553 int nfs_unlink(struct inode *dir, struct dentry *dentry)
2554 {
2555 	int error;
2556 
2557 	dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
2558 		dir->i_ino, dentry);
2559 
2560 	trace_nfs_unlink_enter(dir, dentry);
2561 	spin_lock(&dentry->d_lock);
2562 	if (d_count(dentry) > 1 && !test_bit(NFS_INO_PRESERVE_UNLINKED,
2563 					     &NFS_I(d_inode(dentry))->flags)) {
2564 		spin_unlock(&dentry->d_lock);
2565 		/* Start asynchronous writeout of the inode */
2566 		write_inode_now(d_inode(dentry), 0);
2567 		error = nfs_sillyrename(dir, dentry);
2568 		goto out;
2569 	}
2570 	/* We must prevent any concurrent open until the unlink
2571 	 * completes.  ->d_revalidate will wait for ->d_fsdata
2572 	 * to clear.  We set it here to ensure no lookup succeeds until
2573 	 * the unlink is complete on the server.
2574 	 */
2575 	error = -ETXTBSY;
2576 	if (WARN_ON(dentry->d_flags & DCACHE_NFSFS_RENAMED) ||
2577 	    WARN_ON(dentry->d_fsdata == NFS_FSDATA_BLOCKED)) {
2578 		spin_unlock(&dentry->d_lock);
2579 		goto out;
2580 	}
2581 	block_revalidate(dentry);
2582 
2583 	spin_unlock(&dentry->d_lock);
2584 	error = nfs_safe_remove(dentry);
2585 	nfs_dentry_remove_handle_error(dir, dentry, error);
2586 	unblock_revalidate(dentry);
2587 out:
2588 	trace_nfs_unlink_exit(dir, dentry, error);
2589 	return error;
2590 }
2591 EXPORT_SYMBOL_GPL(nfs_unlink);
2592 
2593 /*
2594  * To create a symbolic link, most file systems instantiate a new inode,
2595  * add a page to it containing the path, then write it out to the disk
2596  * using prepare_write/commit_write.
2597  *
2598  * Unfortunately the NFS client can't create the in-core inode first
2599  * because it needs a file handle to create an in-core inode (see
2600  * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
2601  * symlink request has completed on the server.
2602  *
2603  * So instead we allocate a raw page, copy the symname into it, then do
2604  * the SYMLINK request with the page as the buffer.  If it succeeds, we
2605  * now have a new file handle and can instantiate an in-core NFS inode
2606  * and move the raw page into its mapping.
2607  */
nfs_symlink(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,const char * symname)2608 int nfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
2609 		struct dentry *dentry, const char *symname)
2610 {
2611 	struct folio *folio;
2612 	char *kaddr;
2613 	struct iattr attr;
2614 	unsigned int pathlen = strlen(symname);
2615 	int error;
2616 
2617 	dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
2618 		dir->i_ino, dentry, symname);
2619 
2620 	if (pathlen > PAGE_SIZE)
2621 		return -ENAMETOOLONG;
2622 
2623 	attr.ia_mode = S_IFLNK | S_IRWXUGO;
2624 	attr.ia_valid = ATTR_MODE;
2625 
2626 	folio = folio_alloc(GFP_USER, 0);
2627 	if (!folio)
2628 		return -ENOMEM;
2629 
2630 	kaddr = folio_address(folio);
2631 	memcpy(kaddr, symname, pathlen);
2632 	if (pathlen < PAGE_SIZE)
2633 		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
2634 
2635 	trace_nfs_symlink_enter(dir, dentry);
2636 	error = NFS_PROTO(dir)->symlink(dir, dentry, folio, pathlen, &attr);
2637 	trace_nfs_symlink_exit(dir, dentry, error);
2638 	if (error != 0) {
2639 		dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
2640 			dir->i_sb->s_id, dir->i_ino,
2641 			dentry, symname, error);
2642 		d_drop(dentry);
2643 		folio_put(folio);
2644 		return error;
2645 	}
2646 
2647 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2648 
2649 	/*
2650 	 * No big deal if we can't add this page to the page cache here.
2651 	 * READLINK will get the missing page from the server if needed.
2652 	 */
2653 	if (filemap_add_folio(d_inode(dentry)->i_mapping, folio, 0,
2654 							GFP_KERNEL) == 0) {
2655 		folio_mark_uptodate(folio);
2656 		folio_unlock(folio);
2657 	}
2658 
2659 	folio_put(folio);
2660 	return 0;
2661 }
2662 EXPORT_SYMBOL_GPL(nfs_symlink);
2663 
2664 int
nfs_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)2665 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2666 {
2667 	struct inode *inode = d_inode(old_dentry);
2668 	int error;
2669 
2670 	dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
2671 		old_dentry, dentry);
2672 
2673 	trace_nfs_link_enter(inode, dir, dentry);
2674 	d_drop(dentry);
2675 	if (S_ISREG(inode->i_mode))
2676 		nfs_sync_inode(inode);
2677 	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
2678 	if (error == 0) {
2679 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2680 		ihold(inode);
2681 		d_add(dentry, inode);
2682 	}
2683 	trace_nfs_link_exit(inode, dir, dentry, error);
2684 	return error;
2685 }
2686 EXPORT_SYMBOL_GPL(nfs_link);
2687 
2688 static void
nfs_unblock_rename(struct rpc_task * task,struct nfs_renamedata * data)2689 nfs_unblock_rename(struct rpc_task *task, struct nfs_renamedata *data)
2690 {
2691 	struct dentry *new_dentry = data->new_dentry;
2692 
2693 	unblock_revalidate(new_dentry);
2694 }
2695 
nfs_rename_is_unsafe_cross_dir(struct dentry * old_dentry,struct dentry * new_dentry)2696 static bool nfs_rename_is_unsafe_cross_dir(struct dentry *old_dentry,
2697 					   struct dentry *new_dentry)
2698 {
2699 	struct nfs_server *server = NFS_SB(old_dentry->d_sb);
2700 
2701 	if (old_dentry->d_parent != new_dentry->d_parent)
2702 		return false;
2703 	if (server->fh_expire_type & NFS_FH_RENAME_UNSAFE)
2704 		return !(server->fh_expire_type & NFS_FH_NOEXPIRE_WITH_OPEN);
2705 	return true;
2706 }
2707 
2708 /*
2709  * RENAME
2710  * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2711  * different file handle for the same inode after a rename (e.g. when
2712  * moving to a different directory). A fail-safe method to do so would
2713  * be to look up old_dir/old_name, create a link to new_dir/new_name and
2714  * rename the old file using the sillyrename stuff. This way, the original
2715  * file in old_dir will go away when the last process iput()s the inode.
2716  *
2717  * FIXED.
2718  *
2719  * It actually works quite well. One needs to have the possibility for
2720  * at least one ".nfs..." file in each directory the file ever gets
2721  * moved or linked to which happens automagically with the new
2722  * implementation that only depends on the dcache stuff instead of
2723  * using the inode layer
2724  *
2725  * Unfortunately, things are a little more complicated than indicated
2726  * above. For a cross-directory move, we want to make sure we can get
2727  * rid of the old inode after the operation.  This means there must be
2728  * no pending writes (if it's a file), and the use count must be 1.
2729  * If these conditions are met, we can drop the dentries before doing
2730  * the rename.
2731  */
nfs_rename(struct mnt_idmap * idmap,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)2732 int nfs_rename(struct mnt_idmap *idmap, struct inode *old_dir,
2733 	       struct dentry *old_dentry, struct inode *new_dir,
2734 	       struct dentry *new_dentry, unsigned int flags)
2735 {
2736 	struct inode *old_inode = d_inode(old_dentry);
2737 	struct inode *new_inode = d_inode(new_dentry);
2738 	unsigned long new_gencount = 0;
2739 	struct dentry *dentry = NULL;
2740 	struct rpc_task *task;
2741 	bool must_unblock = false;
2742 	int error = -EBUSY;
2743 
2744 	if (flags)
2745 		return -EINVAL;
2746 
2747 	dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2748 		 old_dentry, new_dentry,
2749 		 d_count(new_dentry));
2750 
2751 	trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2752 	/*
2753 	 * For non-directories, check whether the target is busy and if so,
2754 	 * make a copy of the dentry and then do a silly-rename. If the
2755 	 * silly-rename succeeds, the copied dentry is hashed and becomes
2756 	 * the new target.
2757 	 */
2758 	if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2759 		/* We must prevent any concurrent open until the unlink
2760 		 * completes.  ->d_revalidate will wait for ->d_fsdata
2761 		 * to clear.  We set it here to ensure no lookup succeeds until
2762 		 * the unlink is complete on the server.
2763 		 */
2764 		error = -ETXTBSY;
2765 		if (WARN_ON(new_dentry->d_flags & DCACHE_NFSFS_RENAMED) ||
2766 		    WARN_ON(new_dentry->d_fsdata == NFS_FSDATA_BLOCKED))
2767 			goto out;
2768 
2769 		spin_lock(&new_dentry->d_lock);
2770 		if (d_count(new_dentry) > 2) {
2771 			int err;
2772 
2773 			spin_unlock(&new_dentry->d_lock);
2774 
2775 			/* copy the target dentry's name */
2776 			dentry = d_alloc(new_dentry->d_parent,
2777 					 &new_dentry->d_name);
2778 			if (!dentry)
2779 				goto out;
2780 
2781 			/* silly-rename the existing target ... */
2782 			err = nfs_sillyrename(new_dir, new_dentry);
2783 			if (err)
2784 				goto out;
2785 
2786 			new_dentry = dentry;
2787 			new_inode = NULL;
2788 		} else {
2789 			block_revalidate(new_dentry);
2790 			must_unblock = true;
2791 			new_gencount = NFS_I(new_inode)->attr_gencount;
2792 			spin_unlock(&new_dentry->d_lock);
2793 		}
2794 
2795 	}
2796 
2797 	if (S_ISREG(old_inode->i_mode) &&
2798 	    nfs_rename_is_unsafe_cross_dir(old_dentry, new_dentry))
2799 		nfs_sync_inode(old_inode);
2800 	task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry,
2801 				must_unblock ? nfs_unblock_rename : NULL);
2802 	if (IS_ERR(task)) {
2803 		if (must_unblock)
2804 			unblock_revalidate(new_dentry);
2805 		error = PTR_ERR(task);
2806 		goto out;
2807 	}
2808 
2809 	error = rpc_wait_for_completion_task(task);
2810 	if (error != 0) {
2811 		((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1;
2812 		/* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2813 		smp_wmb();
2814 	} else
2815 		error = task->tk_status;
2816 	rpc_put_task(task);
2817 	/* Ensure the inode attributes are revalidated */
2818 	if (error == 0) {
2819 		spin_lock(&old_inode->i_lock);
2820 		NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter();
2821 		nfs_set_cache_invalid(old_inode, NFS_INO_INVALID_CHANGE |
2822 							 NFS_INO_INVALID_CTIME |
2823 							 NFS_INO_REVAL_FORCED);
2824 		spin_unlock(&old_inode->i_lock);
2825 	}
2826 out:
2827 	trace_nfs_rename_exit(old_dir, old_dentry,
2828 			new_dir, new_dentry, error);
2829 	if (!error) {
2830 		if (new_inode != NULL)
2831 			nfs_drop_nlink(new_inode, new_gencount);
2832 		/*
2833 		 * The d_move() should be here instead of in an async RPC completion
2834 		 * handler because we need the proper locks to move the dentry.  If
2835 		 * we're interrupted by a signal, the async RPC completion handler
2836 		 * should mark the directories for revalidation.
2837 		 */
2838 		d_move(old_dentry, new_dentry);
2839 		nfs_set_verifier(old_dentry,
2840 					nfs_save_change_attribute(new_dir));
2841 	} else if (error == -ENOENT)
2842 		nfs_dentry_handle_enoent(old_dentry);
2843 
2844 	/* new dentry created? */
2845 	if (dentry)
2846 		dput(dentry);
2847 	return error;
2848 }
2849 EXPORT_SYMBOL_GPL(nfs_rename);
2850 
2851 static DEFINE_SPINLOCK(nfs_access_lru_lock);
2852 static LIST_HEAD(nfs_access_lru_list);
2853 static atomic_long_t nfs_access_nr_entries;
2854 
2855 static unsigned long nfs_access_max_cachesize = 4*1024*1024;
2856 module_param(nfs_access_max_cachesize, ulong, 0644);
2857 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2858 
nfs_access_free_entry(struct nfs_access_entry * entry)2859 static void nfs_access_free_entry(struct nfs_access_entry *entry)
2860 {
2861 	put_group_info(entry->group_info);
2862 	kfree_rcu(entry, rcu_head);
2863 	smp_mb__before_atomic();
2864 	atomic_long_dec(&nfs_access_nr_entries);
2865 	smp_mb__after_atomic();
2866 }
2867 
nfs_access_free_list(struct list_head * head)2868 static void nfs_access_free_list(struct list_head *head)
2869 {
2870 	struct nfs_access_entry *cache;
2871 
2872 	while (!list_empty(head)) {
2873 		cache = list_entry(head->next, struct nfs_access_entry, lru);
2874 		list_del(&cache->lru);
2875 		nfs_access_free_entry(cache);
2876 	}
2877 }
2878 
2879 static unsigned long
nfs_do_access_cache_scan(unsigned int nr_to_scan)2880 nfs_do_access_cache_scan(unsigned int nr_to_scan)
2881 {
2882 	LIST_HEAD(head);
2883 	struct nfs_inode *nfsi, *next;
2884 	struct nfs_access_entry *cache;
2885 	long freed = 0;
2886 
2887 	spin_lock(&nfs_access_lru_lock);
2888 	list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2889 		struct inode *inode;
2890 
2891 		if (nr_to_scan-- == 0)
2892 			break;
2893 		inode = &nfsi->vfs_inode;
2894 		spin_lock(&inode->i_lock);
2895 		if (list_empty(&nfsi->access_cache_entry_lru))
2896 			goto remove_lru_entry;
2897 		cache = list_entry(nfsi->access_cache_entry_lru.next,
2898 				struct nfs_access_entry, lru);
2899 		list_move(&cache->lru, &head);
2900 		rb_erase(&cache->rb_node, &nfsi->access_cache);
2901 		freed++;
2902 		if (!list_empty(&nfsi->access_cache_entry_lru))
2903 			list_move_tail(&nfsi->access_cache_inode_lru,
2904 					&nfs_access_lru_list);
2905 		else {
2906 remove_lru_entry:
2907 			list_del_init(&nfsi->access_cache_inode_lru);
2908 			smp_mb__before_atomic();
2909 			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2910 			smp_mb__after_atomic();
2911 		}
2912 		spin_unlock(&inode->i_lock);
2913 	}
2914 	spin_unlock(&nfs_access_lru_lock);
2915 	nfs_access_free_list(&head);
2916 	return freed;
2917 }
2918 
2919 unsigned long
nfs_access_cache_scan(struct shrinker * shrink,struct shrink_control * sc)2920 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2921 {
2922 	int nr_to_scan = sc->nr_to_scan;
2923 	gfp_t gfp_mask = sc->gfp_mask;
2924 
2925 	if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2926 		return SHRINK_STOP;
2927 	return nfs_do_access_cache_scan(nr_to_scan);
2928 }
2929 
2930 
2931 unsigned long
nfs_access_cache_count(struct shrinker * shrink,struct shrink_control * sc)2932 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2933 {
2934 	return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2935 }
2936 
2937 static void
nfs_access_cache_enforce_limit(void)2938 nfs_access_cache_enforce_limit(void)
2939 {
2940 	long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2941 	unsigned long diff;
2942 	unsigned int nr_to_scan;
2943 
2944 	if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2945 		return;
2946 	nr_to_scan = 100;
2947 	diff = nr_entries - nfs_access_max_cachesize;
2948 	if (diff < nr_to_scan)
2949 		nr_to_scan = diff;
2950 	nfs_do_access_cache_scan(nr_to_scan);
2951 }
2952 
__nfs_access_zap_cache(struct nfs_inode * nfsi,struct list_head * head)2953 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2954 {
2955 	struct rb_root *root_node = &nfsi->access_cache;
2956 	struct rb_node *n;
2957 	struct nfs_access_entry *entry;
2958 
2959 	/* Unhook entries from the cache */
2960 	while ((n = rb_first(root_node)) != NULL) {
2961 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2962 		rb_erase(n, root_node);
2963 		list_move(&entry->lru, head);
2964 	}
2965 	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2966 }
2967 
nfs_access_zap_cache(struct inode * inode)2968 void nfs_access_zap_cache(struct inode *inode)
2969 {
2970 	LIST_HEAD(head);
2971 
2972 	if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2973 		return;
2974 	/* Remove from global LRU init */
2975 	spin_lock(&nfs_access_lru_lock);
2976 	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2977 		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2978 
2979 	spin_lock(&inode->i_lock);
2980 	__nfs_access_zap_cache(NFS_I(inode), &head);
2981 	spin_unlock(&inode->i_lock);
2982 	spin_unlock(&nfs_access_lru_lock);
2983 	nfs_access_free_list(&head);
2984 }
2985 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2986 
access_cmp(const struct cred * a,const struct nfs_access_entry * b)2987 static int access_cmp(const struct cred *a, const struct nfs_access_entry *b)
2988 {
2989 	struct group_info *ga, *gb;
2990 	int g;
2991 
2992 	if (uid_lt(a->fsuid, b->fsuid))
2993 		return -1;
2994 	if (uid_gt(a->fsuid, b->fsuid))
2995 		return 1;
2996 
2997 	if (gid_lt(a->fsgid, b->fsgid))
2998 		return -1;
2999 	if (gid_gt(a->fsgid, b->fsgid))
3000 		return 1;
3001 
3002 	ga = a->group_info;
3003 	gb = b->group_info;
3004 	if (ga == gb)
3005 		return 0;
3006 	if (ga == NULL)
3007 		return -1;
3008 	if (gb == NULL)
3009 		return 1;
3010 	if (ga->ngroups < gb->ngroups)
3011 		return -1;
3012 	if (ga->ngroups > gb->ngroups)
3013 		return 1;
3014 
3015 	for (g = 0; g < ga->ngroups; g++) {
3016 		if (gid_lt(ga->gid[g], gb->gid[g]))
3017 			return -1;
3018 		if (gid_gt(ga->gid[g], gb->gid[g]))
3019 			return 1;
3020 	}
3021 	return 0;
3022 }
3023 
nfs_access_search_rbtree(struct inode * inode,const struct cred * cred)3024 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred)
3025 {
3026 	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
3027 
3028 	while (n != NULL) {
3029 		struct nfs_access_entry *entry =
3030 			rb_entry(n, struct nfs_access_entry, rb_node);
3031 		int cmp = access_cmp(cred, entry);
3032 
3033 		if (cmp < 0)
3034 			n = n->rb_left;
3035 		else if (cmp > 0)
3036 			n = n->rb_right;
3037 		else
3038 			return entry;
3039 	}
3040 	return NULL;
3041 }
3042 
nfs_access_login_time(const struct task_struct * task,const struct cred * cred)3043 static u64 nfs_access_login_time(const struct task_struct *task,
3044 				 const struct cred *cred)
3045 {
3046 	const struct task_struct *parent;
3047 	const struct cred *pcred;
3048 	u64 ret;
3049 
3050 	rcu_read_lock();
3051 	for (;;) {
3052 		parent = rcu_dereference(task->real_parent);
3053 		pcred = __task_cred(parent);
3054 		if (parent == task || cred_fscmp(pcred, cred) != 0)
3055 			break;
3056 		task = parent;
3057 	}
3058 	ret = task->start_time;
3059 	rcu_read_unlock();
3060 	return ret;
3061 }
3062 
nfs_access_get_cached_locked(struct inode * inode,const struct cred * cred,u32 * mask,bool may_block)3063 static int nfs_access_get_cached_locked(struct inode *inode, const struct cred *cred, u32 *mask, bool may_block)
3064 {
3065 	struct nfs_inode *nfsi = NFS_I(inode);
3066 	u64 login_time = nfs_access_login_time(current, cred);
3067 	struct nfs_access_entry *cache;
3068 	bool retry = true;
3069 	int err;
3070 
3071 	spin_lock(&inode->i_lock);
3072 	for(;;) {
3073 		if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
3074 			goto out_zap;
3075 		cache = nfs_access_search_rbtree(inode, cred);
3076 		err = -ENOENT;
3077 		if (cache == NULL)
3078 			goto out;
3079 		/* Found an entry, is our attribute cache valid? */
3080 		if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
3081 			break;
3082 		if (!retry)
3083 			break;
3084 		err = -ECHILD;
3085 		if (!may_block)
3086 			goto out;
3087 		spin_unlock(&inode->i_lock);
3088 		err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
3089 		if (err)
3090 			return err;
3091 		spin_lock(&inode->i_lock);
3092 		retry = false;
3093 	}
3094 	err = -ENOENT;
3095 	if ((s64)(login_time - cache->timestamp) > 0)
3096 		goto out;
3097 	*mask = cache->mask;
3098 	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
3099 	err = 0;
3100 out:
3101 	spin_unlock(&inode->i_lock);
3102 	return err;
3103 out_zap:
3104 	spin_unlock(&inode->i_lock);
3105 	nfs_access_zap_cache(inode);
3106 	return -ENOENT;
3107 }
3108 
nfs_access_get_cached_rcu(struct inode * inode,const struct cred * cred,u32 * mask)3109 static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, u32 *mask)
3110 {
3111 	/* Only check the most recently returned cache entry,
3112 	 * but do it without locking.
3113 	 */
3114 	struct nfs_inode *nfsi = NFS_I(inode);
3115 	u64 login_time = nfs_access_login_time(current, cred);
3116 	struct nfs_access_entry *cache;
3117 	int err = -ECHILD;
3118 	struct list_head *lh;
3119 
3120 	rcu_read_lock();
3121 	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
3122 		goto out;
3123 	lh = rcu_dereference(list_tail_rcu(&nfsi->access_cache_entry_lru));
3124 	cache = list_entry(lh, struct nfs_access_entry, lru);
3125 	if (lh == &nfsi->access_cache_entry_lru ||
3126 	    access_cmp(cred, cache) != 0)
3127 		cache = NULL;
3128 	if (cache == NULL)
3129 		goto out;
3130 	if ((s64)(login_time - cache->timestamp) > 0)
3131 		goto out;
3132 	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
3133 		goto out;
3134 	*mask = cache->mask;
3135 	err = 0;
3136 out:
3137 	rcu_read_unlock();
3138 	return err;
3139 }
3140 
nfs_access_get_cached(struct inode * inode,const struct cred * cred,u32 * mask,bool may_block)3141 int nfs_access_get_cached(struct inode *inode, const struct cred *cred,
3142 			  u32 *mask, bool may_block)
3143 {
3144 	int status;
3145 
3146 	status = nfs_access_get_cached_rcu(inode, cred, mask);
3147 	if (status != 0)
3148 		status = nfs_access_get_cached_locked(inode, cred, mask,
3149 		    may_block);
3150 
3151 	return status;
3152 }
3153 EXPORT_SYMBOL_GPL(nfs_access_get_cached);
3154 
nfs_access_add_rbtree(struct inode * inode,struct nfs_access_entry * set,const struct cred * cred)3155 static void nfs_access_add_rbtree(struct inode *inode,
3156 				  struct nfs_access_entry *set,
3157 				  const struct cred *cred)
3158 {
3159 	struct nfs_inode *nfsi = NFS_I(inode);
3160 	struct rb_root *root_node = &nfsi->access_cache;
3161 	struct rb_node **p = &root_node->rb_node;
3162 	struct rb_node *parent = NULL;
3163 	struct nfs_access_entry *entry;
3164 	int cmp;
3165 
3166 	spin_lock(&inode->i_lock);
3167 	while (*p != NULL) {
3168 		parent = *p;
3169 		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
3170 		cmp = access_cmp(cred, entry);
3171 
3172 		if (cmp < 0)
3173 			p = &parent->rb_left;
3174 		else if (cmp > 0)
3175 			p = &parent->rb_right;
3176 		else
3177 			goto found;
3178 	}
3179 	rb_link_node(&set->rb_node, parent, p);
3180 	rb_insert_color(&set->rb_node, root_node);
3181 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
3182 	spin_unlock(&inode->i_lock);
3183 	return;
3184 found:
3185 	rb_replace_node(parent, &set->rb_node, root_node);
3186 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
3187 	list_del(&entry->lru);
3188 	spin_unlock(&inode->i_lock);
3189 	nfs_access_free_entry(entry);
3190 }
3191 
nfs_access_add_cache(struct inode * inode,struct nfs_access_entry * set,const struct cred * cred)3192 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set,
3193 			  const struct cred *cred)
3194 {
3195 	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
3196 	if (cache == NULL)
3197 		return;
3198 	RB_CLEAR_NODE(&cache->rb_node);
3199 	cache->fsuid = cred->fsuid;
3200 	cache->fsgid = cred->fsgid;
3201 	cache->group_info = get_group_info(cred->group_info);
3202 	cache->mask = set->mask;
3203 	cache->timestamp = ktime_get_ns();
3204 
3205 	/* The above field assignments must be visible
3206 	 * before this item appears on the lru.  We cannot easily
3207 	 * use rcu_assign_pointer, so just force the memory barrier.
3208 	 */
3209 	smp_wmb();
3210 	nfs_access_add_rbtree(inode, cache, cred);
3211 
3212 	/* Update accounting */
3213 	smp_mb__before_atomic();
3214 	atomic_long_inc(&nfs_access_nr_entries);
3215 	smp_mb__after_atomic();
3216 
3217 	/* Add inode to global LRU list */
3218 	if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
3219 		spin_lock(&nfs_access_lru_lock);
3220 		if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
3221 			list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
3222 					&nfs_access_lru_list);
3223 		spin_unlock(&nfs_access_lru_lock);
3224 	}
3225 	nfs_access_cache_enforce_limit();
3226 }
3227 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
3228 
3229 #define NFS_MAY_READ (NFS_ACCESS_READ)
3230 #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \
3231 		NFS_ACCESS_EXTEND | \
3232 		NFS_ACCESS_DELETE)
3233 #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \
3234 		NFS_ACCESS_EXTEND)
3235 #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE
3236 #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP)
3237 #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE)
3238 static int
nfs_access_calc_mask(u32 access_result,umode_t umode)3239 nfs_access_calc_mask(u32 access_result, umode_t umode)
3240 {
3241 	int mask = 0;
3242 
3243 	if (access_result & NFS_MAY_READ)
3244 		mask |= MAY_READ;
3245 	if (S_ISDIR(umode)) {
3246 		if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE)
3247 			mask |= MAY_WRITE;
3248 		if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP)
3249 			mask |= MAY_EXEC;
3250 	} else if (S_ISREG(umode)) {
3251 		if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE)
3252 			mask |= MAY_WRITE;
3253 		if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE)
3254 			mask |= MAY_EXEC;
3255 	} else if (access_result & NFS_MAY_WRITE)
3256 			mask |= MAY_WRITE;
3257 	return mask;
3258 }
3259 
nfs_access_set_mask(struct nfs_access_entry * entry,u32 access_result)3260 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
3261 {
3262 	entry->mask = access_result;
3263 }
3264 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
3265 
nfs_do_access(struct inode * inode,const struct cred * cred,int mask)3266 static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask)
3267 {
3268 	struct nfs_access_entry cache;
3269 	bool may_block = (mask & MAY_NOT_BLOCK) == 0;
3270 	int cache_mask = -1;
3271 	int status;
3272 
3273 	trace_nfs_access_enter(inode);
3274 
3275 	status = nfs_access_get_cached(inode, cred, &cache.mask, may_block);
3276 	if (status == 0)
3277 		goto out_cached;
3278 
3279 	status = -ECHILD;
3280 	if (!may_block)
3281 		goto out;
3282 
3283 	/*
3284 	 * Determine which access bits we want to ask for...
3285 	 */
3286 	cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND |
3287 		     nfs_access_xattr_mask(NFS_SERVER(inode));
3288 	if (S_ISDIR(inode->i_mode))
3289 		cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP;
3290 	else
3291 		cache.mask |= NFS_ACCESS_EXECUTE;
3292 	status = NFS_PROTO(inode)->access(inode, &cache, cred);
3293 	if (status != 0) {
3294 		if (status == -ESTALE) {
3295 			if (!S_ISDIR(inode->i_mode))
3296 				nfs_set_inode_stale(inode);
3297 			else
3298 				nfs_zap_caches(inode);
3299 		}
3300 		goto out;
3301 	}
3302 	nfs_access_add_cache(inode, &cache, cred);
3303 out_cached:
3304 	cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode);
3305 	if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
3306 		status = -EACCES;
3307 out:
3308 	trace_nfs_access_exit(inode, mask, cache_mask, status);
3309 	return status;
3310 }
3311 
nfs_open_permission_mask(int openflags)3312 static int nfs_open_permission_mask(int openflags)
3313 {
3314 	int mask = 0;
3315 
3316 	if (openflags & __FMODE_EXEC) {
3317 		/* ONLY check exec rights */
3318 		mask = MAY_EXEC;
3319 	} else {
3320 		if ((openflags & O_ACCMODE) != O_WRONLY)
3321 			mask |= MAY_READ;
3322 		if ((openflags & O_ACCMODE) != O_RDONLY)
3323 			mask |= MAY_WRITE;
3324 	}
3325 
3326 	return mask;
3327 }
3328 
nfs_may_open(struct inode * inode,const struct cred * cred,int openflags)3329 int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags)
3330 {
3331 	return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
3332 }
3333 EXPORT_SYMBOL_GPL(nfs_may_open);
3334 
nfs_execute_ok(struct inode * inode,int mask)3335 static int nfs_execute_ok(struct inode *inode, int mask)
3336 {
3337 	struct nfs_server *server = NFS_SERVER(inode);
3338 	int ret = 0;
3339 
3340 	if (S_ISDIR(inode->i_mode))
3341 		return 0;
3342 	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_MODE)) {
3343 		if (mask & MAY_NOT_BLOCK)
3344 			return -ECHILD;
3345 		ret = __nfs_revalidate_inode(server, inode);
3346 	}
3347 	if (ret == 0 && !execute_ok(inode))
3348 		ret = -EACCES;
3349 	return ret;
3350 }
3351 
nfs_permission(struct mnt_idmap * idmap,struct inode * inode,int mask)3352 int nfs_permission(struct mnt_idmap *idmap,
3353 		   struct inode *inode,
3354 		   int mask)
3355 {
3356 	const struct cred *cred = current_cred();
3357 	int res = 0;
3358 
3359 	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
3360 
3361 	if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
3362 		goto out;
3363 	/* Is this sys_access() ? */
3364 	if (mask & (MAY_ACCESS | MAY_CHDIR))
3365 		goto force_lookup;
3366 
3367 	switch (inode->i_mode & S_IFMT) {
3368 		case S_IFLNK:
3369 			goto out;
3370 		case S_IFREG:
3371 			if ((mask & MAY_OPEN) &&
3372 			   nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
3373 				return 0;
3374 			break;
3375 		case S_IFDIR:
3376 			/*
3377 			 * Optimize away all write operations, since the server
3378 			 * will check permissions when we perform the op.
3379 			 */
3380 			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
3381 				goto out;
3382 	}
3383 
3384 force_lookup:
3385 	if (!NFS_PROTO(inode)->access)
3386 		goto out_notsup;
3387 
3388 	res = nfs_do_access(inode, cred, mask);
3389 out:
3390 	if (!res && (mask & MAY_EXEC))
3391 		res = nfs_execute_ok(inode, mask);
3392 
3393 	dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
3394 		inode->i_sb->s_id, inode->i_ino, mask, res);
3395 	return res;
3396 out_notsup:
3397 	if (mask & MAY_NOT_BLOCK)
3398 		return -ECHILD;
3399 
3400 	res = nfs_revalidate_inode(inode, NFS_INO_INVALID_MODE |
3401 						  NFS_INO_INVALID_OTHER);
3402 	if (res == 0)
3403 		res = generic_permission(&nop_mnt_idmap, inode, mask);
3404 	goto out;
3405 }
3406 EXPORT_SYMBOL_GPL(nfs_permission);
3407