1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/nfs/direct.c
4 *
5 * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
6 *
7 * High-performance uncached I/O for the Linux NFS client
8 *
9 * There are important applications whose performance or correctness
10 * depends on uncached access to file data. Database clusters
11 * (multiple copies of the same instance running on separate hosts)
12 * implement their own cache coherency protocol that subsumes file
13 * system cache protocols. Applications that process datasets
14 * considerably larger than the client's memory do not always benefit
15 * from a local cache. A streaming video server, for instance, has no
16 * need to cache the contents of a file.
17 *
18 * When an application requests uncached I/O, all read and write requests
19 * are made directly to the server; data stored or fetched via these
20 * requests is not cached in the Linux page cache. The client does not
21 * correct unaligned requests from applications. All requested bytes are
22 * held on permanent storage before a direct write system call returns to
23 * an application.
24 *
25 * Solaris implements an uncached I/O facility called directio() that
26 * is used for backups and sequential I/O to very large files. Solaris
27 * also supports uncaching whole NFS partitions with "-o forcedirectio,"
28 * an undocumented mount option.
29 *
30 * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
31 * help from Andrew Morton.
32 *
33 * 18 Dec 2001 Initial implementation for 2.4 --cel
34 * 08 Jul 2002 Version for 2.4.19, with bug fixes --trondmy
35 * 08 Jun 2003 Port to 2.5 APIs --cel
36 * 31 Mar 2004 Handle direct I/O without VFS support --cel
37 * 15 Sep 2004 Parallel async reads --cel
38 * 04 May 2005 support O_DIRECT with aio --cel
39 *
40 */
41
42 #include <linux/errno.h>
43 #include <linux/sched.h>
44 #include <linux/kernel.h>
45 #include <linux/file.h>
46 #include <linux/pagemap.h>
47 #include <linux/kref.h>
48 #include <linux/slab.h>
49 #include <linux/task_io_accounting_ops.h>
50 #include <linux/module.h>
51
52 #include <linux/nfs_fs.h>
53 #include <linux/nfs_page.h>
54 #include <linux/sunrpc/clnt.h>
55
56 #include <linux/uaccess.h>
57 #include <linux/atomic.h>
58
59 #include "delegation.h"
60 #include "internal.h"
61 #include "iostat.h"
62 #include "pnfs.h"
63 #include "fscache.h"
64 #include "nfstrace.h"
65
66 #define NFSDBG_FACILITY NFSDBG_VFS
67
68 static struct kmem_cache *nfs_direct_cachep;
69
70 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops;
71 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops;
72 static void nfs_direct_write_complete(struct nfs_direct_req *dreq);
73 static void nfs_direct_write_schedule_work(struct work_struct *work);
74
get_dreq(struct nfs_direct_req * dreq)75 static inline void get_dreq(struct nfs_direct_req *dreq)
76 {
77 atomic_inc(&dreq->io_count);
78 }
79
put_dreq(struct nfs_direct_req * dreq)80 static inline int put_dreq(struct nfs_direct_req *dreq)
81 {
82 return atomic_dec_and_test(&dreq->io_count);
83 }
84
85 static void
nfs_direct_handle_truncated(struct nfs_direct_req * dreq,const struct nfs_pgio_header * hdr,ssize_t dreq_len)86 nfs_direct_handle_truncated(struct nfs_direct_req *dreq,
87 const struct nfs_pgio_header *hdr,
88 ssize_t dreq_len)
89 {
90 if (!(test_bit(NFS_IOHDR_ERROR, &hdr->flags) ||
91 test_bit(NFS_IOHDR_EOF, &hdr->flags)))
92 return;
93 if (dreq->max_count >= dreq_len) {
94 dreq->max_count = dreq_len;
95 if (dreq->count > dreq_len)
96 dreq->count = dreq_len;
97 }
98
99 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) && !dreq->error)
100 dreq->error = hdr->error;
101 }
102
103 static void
nfs_direct_count_bytes(struct nfs_direct_req * dreq,const struct nfs_pgio_header * hdr)104 nfs_direct_count_bytes(struct nfs_direct_req *dreq,
105 const struct nfs_pgio_header *hdr)
106 {
107 loff_t hdr_end = hdr->io_start + hdr->good_bytes;
108 ssize_t dreq_len = 0;
109
110 if (hdr_end > dreq->io_start)
111 dreq_len = hdr_end - dreq->io_start;
112
113 nfs_direct_handle_truncated(dreq, hdr, dreq_len);
114
115 if (dreq_len > dreq->max_count)
116 dreq_len = dreq->max_count;
117
118 if (dreq->count < dreq_len)
119 dreq->count = dreq_len;
120 }
121
nfs_direct_truncate_request(struct nfs_direct_req * dreq,struct nfs_page * req)122 static void nfs_direct_truncate_request(struct nfs_direct_req *dreq,
123 struct nfs_page *req)
124 {
125 loff_t offs = req_offset(req);
126 size_t req_start = (size_t)(offs - dreq->io_start);
127
128 if (req_start < dreq->max_count)
129 dreq->max_count = req_start;
130 if (req_start < dreq->count)
131 dreq->count = req_start;
132 }
133
nfs_direct_file_adjust_size_locked(struct inode * inode,loff_t offset,size_t count)134 static void nfs_direct_file_adjust_size_locked(struct inode *inode,
135 loff_t offset, size_t count)
136 {
137 loff_t newsize = offset + (loff_t)count;
138 loff_t oldsize = i_size_read(inode);
139
140 if (newsize > oldsize) {
141 i_size_write(inode, newsize);
142 NFS_I(inode)->cache_validity &= ~NFS_INO_INVALID_SIZE;
143 trace_nfs_size_grow(inode, newsize);
144 nfs_inc_stats(inode, NFSIOS_EXTENDWRITE);
145 }
146 }
147
148 /**
149 * nfs_swap_rw - NFS address space operation for swap I/O
150 * @iocb: target I/O control block
151 * @iter: I/O buffer
152 *
153 * Perform IO to the swap-file. This is much like direct IO.
154 */
nfs_swap_rw(struct kiocb * iocb,struct iov_iter * iter)155 int nfs_swap_rw(struct kiocb *iocb, struct iov_iter *iter)
156 {
157 ssize_t ret;
158
159 if (iov_iter_rw(iter) == READ)
160 ret = nfs_file_direct_read(iocb, iter, true);
161 else
162 ret = nfs_file_direct_write(iocb, iter, true);
163 if (ret < 0)
164 return ret;
165 return 0;
166 }
167
nfs_direct_release_pages(struct page ** pages,unsigned int npages)168 static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
169 {
170 unsigned int i;
171 for (i = 0; i < npages; i++)
172 put_page(pages[i]);
173 }
174
nfs_init_cinfo_from_dreq(struct nfs_commit_info * cinfo,struct nfs_direct_req * dreq)175 void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo,
176 struct nfs_direct_req *dreq)
177 {
178 cinfo->inode = dreq->inode;
179 cinfo->mds = &dreq->mds_cinfo;
180 cinfo->ds = &dreq->ds_cinfo;
181 cinfo->dreq = dreq;
182 cinfo->completion_ops = &nfs_direct_commit_completion_ops;
183 }
184
nfs_direct_req_alloc(void)185 static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
186 {
187 struct nfs_direct_req *dreq;
188
189 dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL);
190 if (!dreq)
191 return NULL;
192
193 kref_init(&dreq->kref);
194 kref_get(&dreq->kref);
195 init_completion(&dreq->completion);
196 INIT_LIST_HEAD(&dreq->mds_cinfo.list);
197 pnfs_init_ds_commit_info(&dreq->ds_cinfo);
198 INIT_WORK(&dreq->work, nfs_direct_write_schedule_work);
199 spin_lock_init(&dreq->lock);
200
201 return dreq;
202 }
203
nfs_direct_req_free(struct kref * kref)204 static void nfs_direct_req_free(struct kref *kref)
205 {
206 struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
207
208 pnfs_release_ds_info(&dreq->ds_cinfo, dreq->inode);
209 if (dreq->l_ctx != NULL)
210 nfs_put_lock_context(dreq->l_ctx);
211 if (dreq->ctx != NULL)
212 put_nfs_open_context(dreq->ctx);
213 kmem_cache_free(nfs_direct_cachep, dreq);
214 }
215
nfs_direct_req_release(struct nfs_direct_req * dreq)216 static void nfs_direct_req_release(struct nfs_direct_req *dreq)
217 {
218 kref_put(&dreq->kref, nfs_direct_req_free);
219 }
220
nfs_dreq_bytes_left(struct nfs_direct_req * dreq,loff_t offset)221 ssize_t nfs_dreq_bytes_left(struct nfs_direct_req *dreq, loff_t offset)
222 {
223 loff_t start = offset - dreq->io_start;
224 return dreq->max_count - start;
225 }
226 EXPORT_SYMBOL_GPL(nfs_dreq_bytes_left);
227
228 /*
229 * Collects and returns the final error value/byte-count.
230 */
nfs_direct_wait(struct nfs_direct_req * dreq)231 static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
232 {
233 ssize_t result = -EIOCBQUEUED;
234
235 /* Async requests don't wait here */
236 if (dreq->iocb)
237 goto out;
238
239 result = wait_for_completion_killable(&dreq->completion);
240
241 if (!result) {
242 result = dreq->count;
243 WARN_ON_ONCE(dreq->count < 0);
244 }
245 if (!result)
246 result = dreq->error;
247
248 out:
249 return (ssize_t) result;
250 }
251
252 /*
253 * Synchronous I/O uses a stack-allocated iocb. Thus we can't trust
254 * the iocb is still valid here if this is a synchronous request.
255 */
nfs_direct_complete(struct nfs_direct_req * dreq)256 static void nfs_direct_complete(struct nfs_direct_req *dreq)
257 {
258 struct inode *inode = dreq->inode;
259
260 inode_dio_end(inode);
261
262 if (dreq->iocb) {
263 long res = (long) dreq->error;
264 if (dreq->count != 0) {
265 res = (long) dreq->count;
266 WARN_ON_ONCE(dreq->count < 0);
267 }
268 dreq->iocb->ki_complete(dreq->iocb, res);
269 }
270
271 complete(&dreq->completion);
272
273 nfs_direct_req_release(dreq);
274 }
275
nfs_direct_read_completion(struct nfs_pgio_header * hdr)276 static void nfs_direct_read_completion(struct nfs_pgio_header *hdr)
277 {
278 unsigned long bytes = 0;
279 struct nfs_direct_req *dreq = hdr->dreq;
280
281 spin_lock(&dreq->lock);
282 if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) {
283 spin_unlock(&dreq->lock);
284 goto out_put;
285 }
286
287 nfs_direct_count_bytes(dreq, hdr);
288 spin_unlock(&dreq->lock);
289
290 nfs_update_delegated_atime(dreq->inode);
291
292 while (!list_empty(&hdr->pages)) {
293 struct nfs_page *req = nfs_list_entry(hdr->pages.next);
294 struct page *page = req->wb_page;
295
296 if (!PageCompound(page) && bytes < hdr->good_bytes &&
297 (dreq->flags == NFS_ODIRECT_SHOULD_DIRTY))
298 set_page_dirty(page);
299 bytes += req->wb_bytes;
300 nfs_list_remove_request(req);
301 nfs_release_request(req);
302 }
303 out_put:
304 if (put_dreq(dreq))
305 nfs_direct_complete(dreq);
306 hdr->release(hdr);
307 }
308
nfs_read_sync_pgio_error(struct list_head * head,int error)309 static void nfs_read_sync_pgio_error(struct list_head *head, int error)
310 {
311 struct nfs_page *req;
312
313 while (!list_empty(head)) {
314 req = nfs_list_entry(head->next);
315 nfs_list_remove_request(req);
316 nfs_release_request(req);
317 }
318 }
319
nfs_direct_pgio_init(struct nfs_pgio_header * hdr)320 static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr)
321 {
322 get_dreq(hdr->dreq);
323 set_bit(NFS_IOHDR_ODIRECT, &hdr->flags);
324 }
325
326 static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = {
327 .error_cleanup = nfs_read_sync_pgio_error,
328 .init_hdr = nfs_direct_pgio_init,
329 .completion = nfs_direct_read_completion,
330 };
331
332 /*
333 * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
334 * operation. If nfs_readdata_alloc() or get_user_pages() fails,
335 * bail and stop sending more reads. Read length accounting is
336 * handled automatically by nfs_direct_read_result(). Otherwise, if
337 * no requests have been sent, just return an error.
338 */
339
nfs_direct_read_schedule_iovec(struct nfs_direct_req * dreq,struct iov_iter * iter,loff_t pos)340 static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq,
341 struct iov_iter *iter,
342 loff_t pos)
343 {
344 struct nfs_pageio_descriptor desc;
345 struct inode *inode = dreq->inode;
346 ssize_t result = -EINVAL;
347 size_t requested_bytes = 0;
348 size_t rsize = max_t(size_t, NFS_SERVER(inode)->rsize, PAGE_SIZE);
349
350 nfs_pageio_init_read(&desc, dreq->inode, false,
351 &nfs_direct_read_completion_ops);
352 get_dreq(dreq);
353 desc.pg_dreq = dreq;
354 inode_dio_begin(inode);
355
356 while (iov_iter_count(iter)) {
357 struct page **pagevec;
358 size_t bytes;
359 size_t pgbase;
360 unsigned npages, i;
361
362 result = iov_iter_get_pages_alloc2(iter, &pagevec,
363 rsize, &pgbase);
364 if (result < 0)
365 break;
366
367 bytes = result;
368 npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
369 for (i = 0; i < npages; i++) {
370 struct nfs_page *req;
371 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
372 /* XXX do we need to do the eof zeroing found in async_filler? */
373 req = nfs_page_create_from_page(dreq->ctx, pagevec[i],
374 pgbase, pos, req_len);
375 if (IS_ERR(req)) {
376 result = PTR_ERR(req);
377 break;
378 }
379 if (!nfs_pageio_add_request(&desc, req)) {
380 result = desc.pg_error;
381 nfs_release_request(req);
382 break;
383 }
384 pgbase = 0;
385 bytes -= req_len;
386 requested_bytes += req_len;
387 pos += req_len;
388 }
389 nfs_direct_release_pages(pagevec, npages);
390 kvfree(pagevec);
391 if (result < 0)
392 break;
393 }
394
395 nfs_pageio_complete(&desc);
396
397 /*
398 * If no bytes were started, return the error, and let the
399 * generic layer handle the completion.
400 */
401 if (requested_bytes == 0) {
402 inode_dio_end(inode);
403 nfs_direct_req_release(dreq);
404 return result < 0 ? result : -EIO;
405 }
406
407 if (put_dreq(dreq))
408 nfs_direct_complete(dreq);
409 return requested_bytes;
410 }
411
412 /**
413 * nfs_file_direct_read - file direct read operation for NFS files
414 * @iocb: target I/O control block
415 * @iter: vector of user buffers into which to read data
416 * @swap: flag indicating this is swap IO, not O_DIRECT IO
417 *
418 * We use this function for direct reads instead of calling
419 * generic_file_aio_read() in order to avoid gfar's check to see if
420 * the request starts before the end of the file. For that check
421 * to work, we must generate a GETATTR before each direct read, and
422 * even then there is a window between the GETATTR and the subsequent
423 * READ where the file size could change. Our preference is simply
424 * to do all reads the application wants, and the server will take
425 * care of managing the end of file boundary.
426 *
427 * This function also eliminates unnecessarily updating the file's
428 * atime locally, as the NFS server sets the file's atime, and this
429 * client must read the updated atime from the server back into its
430 * cache.
431 */
nfs_file_direct_read(struct kiocb * iocb,struct iov_iter * iter,bool swap)432 ssize_t nfs_file_direct_read(struct kiocb *iocb, struct iov_iter *iter,
433 bool swap)
434 {
435 struct file *file = iocb->ki_filp;
436 struct address_space *mapping = file->f_mapping;
437 struct inode *inode = mapping->host;
438 struct nfs_direct_req *dreq;
439 struct nfs_lock_context *l_ctx;
440 ssize_t result, requested;
441 size_t count = iov_iter_count(iter);
442 nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count);
443
444 dfprintk(FILE, "NFS: direct read(%pD2, %zd@%Ld)\n",
445 file, count, (long long) iocb->ki_pos);
446
447 result = 0;
448 if (!count)
449 goto out;
450
451 task_io_account_read(count);
452
453 result = -ENOMEM;
454 dreq = nfs_direct_req_alloc();
455 if (dreq == NULL)
456 goto out;
457
458 dreq->inode = inode;
459 dreq->max_count = count;
460 dreq->io_start = iocb->ki_pos;
461 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
462 l_ctx = nfs_get_lock_context(dreq->ctx);
463 if (IS_ERR(l_ctx)) {
464 result = PTR_ERR(l_ctx);
465 nfs_direct_req_release(dreq);
466 goto out_release;
467 }
468 dreq->l_ctx = l_ctx;
469 if (!is_sync_kiocb(iocb))
470 dreq->iocb = iocb;
471
472 if (user_backed_iter(iter))
473 dreq->flags = NFS_ODIRECT_SHOULD_DIRTY;
474
475 if (!swap) {
476 result = nfs_start_io_direct(inode);
477 if (result) {
478 /* release the reference that would usually be
479 * consumed by nfs_direct_read_schedule_iovec()
480 */
481 nfs_direct_req_release(dreq);
482 goto out_release;
483 }
484 }
485
486 NFS_I(inode)->read_io += count;
487 requested = nfs_direct_read_schedule_iovec(dreq, iter, iocb->ki_pos);
488
489 if (!swap)
490 nfs_end_io_direct(inode);
491
492 if (requested > 0) {
493 result = nfs_direct_wait(dreq);
494 if (result > 0) {
495 requested -= result;
496 iocb->ki_pos += result;
497 }
498 iov_iter_revert(iter, requested);
499 } else {
500 result = requested;
501 }
502
503 out_release:
504 nfs_direct_req_release(dreq);
505 out:
506 return result;
507 }
508
nfs_direct_add_page_head(struct list_head * list,struct nfs_page * req)509 static void nfs_direct_add_page_head(struct list_head *list,
510 struct nfs_page *req)
511 {
512 struct nfs_page *head = req->wb_head;
513
514 if (!list_empty(&head->wb_list) || !nfs_lock_request(head))
515 return;
516 if (!list_empty(&head->wb_list)) {
517 nfs_unlock_request(head);
518 return;
519 }
520 list_add(&head->wb_list, list);
521 kref_get(&head->wb_kref);
522 kref_get(&head->wb_kref);
523 }
524
nfs_direct_join_group(struct list_head * list,struct nfs_commit_info * cinfo,struct inode * inode)525 static void nfs_direct_join_group(struct list_head *list,
526 struct nfs_commit_info *cinfo,
527 struct inode *inode)
528 {
529 struct nfs_page *req, *subreq;
530
531 list_for_each_entry(req, list, wb_list) {
532 if (req->wb_head != req) {
533 nfs_direct_add_page_head(&req->wb_list, req);
534 continue;
535 }
536 subreq = req->wb_this_page;
537 if (subreq == req)
538 continue;
539 do {
540 /*
541 * Remove subrequests from this list before freeing
542 * them in the call to nfs_join_page_group().
543 */
544 if (!list_empty(&subreq->wb_list)) {
545 nfs_list_remove_request(subreq);
546 nfs_release_request(subreq);
547 }
548 } while ((subreq = subreq->wb_this_page) != req);
549 nfs_join_page_group(req, cinfo, inode);
550 }
551 }
552
553 static void
nfs_direct_write_scan_commit_list(struct inode * inode,struct list_head * list,struct nfs_commit_info * cinfo)554 nfs_direct_write_scan_commit_list(struct inode *inode,
555 struct list_head *list,
556 struct nfs_commit_info *cinfo)
557 {
558 mutex_lock(&NFS_I(cinfo->inode)->commit_mutex);
559 pnfs_recover_commit_reqs(list, cinfo);
560 nfs_scan_commit_list(&cinfo->mds->list, list, cinfo, 0);
561 mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex);
562 }
563
nfs_direct_write_reschedule(struct nfs_direct_req * dreq)564 static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
565 {
566 struct nfs_pageio_descriptor desc;
567 struct nfs_page *req;
568 LIST_HEAD(reqs);
569 struct nfs_commit_info cinfo;
570
571 nfs_init_cinfo_from_dreq(&cinfo, dreq);
572 nfs_direct_write_scan_commit_list(dreq->inode, &reqs, &cinfo);
573
574 nfs_direct_join_group(&reqs, &cinfo, dreq->inode);
575
576 nfs_clear_pnfs_ds_commit_verifiers(&dreq->ds_cinfo);
577 get_dreq(dreq);
578
579 nfs_pageio_init_write(&desc, dreq->inode, FLUSH_STABLE, false,
580 &nfs_direct_write_completion_ops);
581 desc.pg_dreq = dreq;
582
583 while (!list_empty(&reqs)) {
584 req = nfs_list_entry(reqs.next);
585 /* Bump the transmission count */
586 req->wb_nio++;
587 if (!nfs_pageio_add_request(&desc, req)) {
588 spin_lock(&dreq->lock);
589 if (dreq->error < 0) {
590 desc.pg_error = dreq->error;
591 } else if (desc.pg_error != -EAGAIN) {
592 dreq->flags = 0;
593 if (!desc.pg_error)
594 desc.pg_error = -EIO;
595 dreq->error = desc.pg_error;
596 } else
597 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
598 spin_unlock(&dreq->lock);
599 break;
600 }
601 nfs_release_request(req);
602 }
603 nfs_pageio_complete(&desc);
604
605 while (!list_empty(&reqs)) {
606 req = nfs_list_entry(reqs.next);
607 nfs_list_remove_request(req);
608 nfs_unlock_and_release_request(req);
609 if (desc.pg_error == -EAGAIN) {
610 nfs_mark_request_commit(req, NULL, &cinfo, 0);
611 } else {
612 spin_lock(&dreq->lock);
613 nfs_direct_truncate_request(dreq, req);
614 spin_unlock(&dreq->lock);
615 nfs_release_request(req);
616 }
617 }
618
619 if (put_dreq(dreq))
620 nfs_direct_write_complete(dreq);
621 }
622
nfs_direct_commit_complete(struct nfs_commit_data * data)623 static void nfs_direct_commit_complete(struct nfs_commit_data *data)
624 {
625 const struct nfs_writeverf *verf = data->res.verf;
626 struct nfs_direct_req *dreq = data->dreq;
627 struct nfs_commit_info cinfo;
628 struct nfs_page *req;
629 int status = data->task.tk_status;
630
631 trace_nfs_direct_commit_complete(dreq);
632
633 spin_lock(&dreq->lock);
634 if (status < 0) {
635 /* Errors in commit are fatal */
636 dreq->error = status;
637 dreq->flags = NFS_ODIRECT_DONE;
638 } else {
639 status = dreq->error;
640 }
641 spin_unlock(&dreq->lock);
642
643 nfs_init_cinfo_from_dreq(&cinfo, dreq);
644
645 while (!list_empty(&data->pages)) {
646 req = nfs_list_entry(data->pages.next);
647 nfs_list_remove_request(req);
648 if (status < 0) {
649 spin_lock(&dreq->lock);
650 nfs_direct_truncate_request(dreq, req);
651 spin_unlock(&dreq->lock);
652 nfs_release_request(req);
653 } else if (!nfs_write_match_verf(verf, req)) {
654 spin_lock(&dreq->lock);
655 if (dreq->flags == 0)
656 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
657 spin_unlock(&dreq->lock);
658 /*
659 * Despite the reboot, the write was successful,
660 * so reset wb_nio.
661 */
662 req->wb_nio = 0;
663 nfs_mark_request_commit(req, NULL, &cinfo, 0);
664 } else
665 nfs_release_request(req);
666 nfs_unlock_and_release_request(req);
667 }
668
669 if (nfs_commit_end(cinfo.mds))
670 nfs_direct_write_complete(dreq);
671 }
672
nfs_direct_resched_write(struct nfs_commit_info * cinfo,struct nfs_page * req)673 static void nfs_direct_resched_write(struct nfs_commit_info *cinfo,
674 struct nfs_page *req)
675 {
676 struct nfs_direct_req *dreq = cinfo->dreq;
677
678 trace_nfs_direct_resched_write(dreq);
679
680 spin_lock(&dreq->lock);
681 if (dreq->flags != NFS_ODIRECT_DONE)
682 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
683 spin_unlock(&dreq->lock);
684 nfs_mark_request_commit(req, NULL, cinfo, 0);
685 }
686
687 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = {
688 .completion = nfs_direct_commit_complete,
689 .resched_write = nfs_direct_resched_write,
690 };
691
nfs_direct_commit_schedule(struct nfs_direct_req * dreq)692 static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
693 {
694 int res;
695 struct nfs_commit_info cinfo;
696 LIST_HEAD(mds_list);
697
698 nfs_init_cinfo_from_dreq(&cinfo, dreq);
699 nfs_commit_begin(cinfo.mds);
700 nfs_scan_commit(dreq->inode, &mds_list, &cinfo);
701 res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo);
702 if (res < 0) { /* res == -ENOMEM */
703 spin_lock(&dreq->lock);
704 if (dreq->flags == 0)
705 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
706 spin_unlock(&dreq->lock);
707 }
708 if (nfs_commit_end(cinfo.mds))
709 nfs_direct_write_complete(dreq);
710 }
711
nfs_direct_write_clear_reqs(struct nfs_direct_req * dreq)712 static void nfs_direct_write_clear_reqs(struct nfs_direct_req *dreq)
713 {
714 struct nfs_commit_info cinfo;
715 struct nfs_page *req;
716 LIST_HEAD(reqs);
717
718 nfs_init_cinfo_from_dreq(&cinfo, dreq);
719 nfs_direct_write_scan_commit_list(dreq->inode, &reqs, &cinfo);
720
721 while (!list_empty(&reqs)) {
722 req = nfs_list_entry(reqs.next);
723 nfs_list_remove_request(req);
724 nfs_direct_truncate_request(dreq, req);
725 nfs_release_request(req);
726 nfs_unlock_and_release_request(req);
727 }
728 }
729
nfs_direct_write_schedule_work(struct work_struct * work)730 static void nfs_direct_write_schedule_work(struct work_struct *work)
731 {
732 struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work);
733 int flags = dreq->flags;
734
735 dreq->flags = 0;
736 switch (flags) {
737 case NFS_ODIRECT_DO_COMMIT:
738 nfs_direct_commit_schedule(dreq);
739 break;
740 case NFS_ODIRECT_RESCHED_WRITES:
741 nfs_direct_write_reschedule(dreq);
742 break;
743 default:
744 nfs_direct_write_clear_reqs(dreq);
745 nfs_zap_mapping(dreq->inode, dreq->inode->i_mapping);
746 nfs_direct_complete(dreq);
747 }
748 }
749
nfs_direct_write_complete(struct nfs_direct_req * dreq)750 static void nfs_direct_write_complete(struct nfs_direct_req *dreq)
751 {
752 trace_nfs_direct_write_complete(dreq);
753 queue_work(nfsiod_workqueue, &dreq->work); /* Calls nfs_direct_write_schedule_work */
754 }
755
nfs_direct_write_completion(struct nfs_pgio_header * hdr)756 static void nfs_direct_write_completion(struct nfs_pgio_header *hdr)
757 {
758 struct nfs_direct_req *dreq = hdr->dreq;
759 struct nfs_commit_info cinfo;
760 struct nfs_page *req = nfs_list_entry(hdr->pages.next);
761 struct inode *inode = dreq->inode;
762 int flags = NFS_ODIRECT_DONE;
763
764 trace_nfs_direct_write_completion(dreq);
765
766 nfs_init_cinfo_from_dreq(&cinfo, dreq);
767
768 spin_lock(&dreq->lock);
769 if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) {
770 spin_unlock(&dreq->lock);
771 goto out_put;
772 }
773
774 nfs_direct_count_bytes(dreq, hdr);
775 if (test_bit(NFS_IOHDR_UNSTABLE_WRITES, &hdr->flags) &&
776 !test_bit(NFS_IOHDR_ERROR, &hdr->flags)) {
777 if (!dreq->flags)
778 dreq->flags = NFS_ODIRECT_DO_COMMIT;
779 flags = dreq->flags;
780 }
781 spin_unlock(&dreq->lock);
782
783 spin_lock(&inode->i_lock);
784 nfs_direct_file_adjust_size_locked(inode, dreq->io_start, dreq->count);
785 nfs_update_delegated_mtime_locked(dreq->inode);
786 spin_unlock(&inode->i_lock);
787
788 while (!list_empty(&hdr->pages)) {
789
790 req = nfs_list_entry(hdr->pages.next);
791 nfs_list_remove_request(req);
792 if (flags == NFS_ODIRECT_DO_COMMIT) {
793 kref_get(&req->wb_kref);
794 memcpy(&req->wb_verf, &hdr->verf.verifier,
795 sizeof(req->wb_verf));
796 nfs_mark_request_commit(req, hdr->lseg, &cinfo,
797 hdr->ds_commit_idx);
798 } else if (flags == NFS_ODIRECT_RESCHED_WRITES) {
799 kref_get(&req->wb_kref);
800 nfs_mark_request_commit(req, NULL, &cinfo, 0);
801 }
802 nfs_unlock_and_release_request(req);
803 }
804
805 out_put:
806 if (put_dreq(dreq))
807 nfs_direct_write_complete(dreq);
808 hdr->release(hdr);
809 }
810
nfs_write_sync_pgio_error(struct list_head * head,int error)811 static void nfs_write_sync_pgio_error(struct list_head *head, int error)
812 {
813 struct nfs_page *req;
814
815 while (!list_empty(head)) {
816 req = nfs_list_entry(head->next);
817 nfs_list_remove_request(req);
818 nfs_unlock_and_release_request(req);
819 }
820 }
821
nfs_direct_write_reschedule_io(struct nfs_pgio_header * hdr)822 static void nfs_direct_write_reschedule_io(struct nfs_pgio_header *hdr)
823 {
824 struct nfs_direct_req *dreq = hdr->dreq;
825 struct nfs_page *req;
826 struct nfs_commit_info cinfo;
827
828 trace_nfs_direct_write_reschedule_io(dreq);
829
830 nfs_init_cinfo_from_dreq(&cinfo, dreq);
831 spin_lock(&dreq->lock);
832 if (dreq->error == 0)
833 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
834 set_bit(NFS_IOHDR_REDO, &hdr->flags);
835 spin_unlock(&dreq->lock);
836 while (!list_empty(&hdr->pages)) {
837 req = nfs_list_entry(hdr->pages.next);
838 nfs_list_remove_request(req);
839 nfs_unlock_request(req);
840 nfs_mark_request_commit(req, NULL, &cinfo, 0);
841 }
842 }
843
844 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = {
845 .error_cleanup = nfs_write_sync_pgio_error,
846 .init_hdr = nfs_direct_pgio_init,
847 .completion = nfs_direct_write_completion,
848 .reschedule_io = nfs_direct_write_reschedule_io,
849 };
850
851
852 /*
853 * NB: Return the value of the first error return code. Subsequent
854 * errors after the first one are ignored.
855 */
856 /*
857 * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
858 * operation. If nfs_writedata_alloc() or get_user_pages() fails,
859 * bail and stop sending more writes. Write length accounting is
860 * handled automatically by nfs_direct_write_result(). Otherwise, if
861 * no requests have been sent, just return an error.
862 */
nfs_direct_write_schedule_iovec(struct nfs_direct_req * dreq,struct iov_iter * iter,loff_t pos,int ioflags)863 static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq,
864 struct iov_iter *iter,
865 loff_t pos, int ioflags)
866 {
867 struct nfs_pageio_descriptor desc;
868 struct inode *inode = dreq->inode;
869 struct nfs_commit_info cinfo;
870 ssize_t result = 0;
871 size_t requested_bytes = 0;
872 size_t wsize = max_t(size_t, NFS_SERVER(inode)->wsize, PAGE_SIZE);
873 bool defer = false;
874
875 trace_nfs_direct_write_schedule_iovec(dreq);
876
877 nfs_pageio_init_write(&desc, inode, ioflags, false,
878 &nfs_direct_write_completion_ops);
879 desc.pg_dreq = dreq;
880 get_dreq(dreq);
881 inode_dio_begin(inode);
882
883 NFS_I(inode)->write_io += iov_iter_count(iter);
884 while (iov_iter_count(iter)) {
885 struct page **pagevec;
886 size_t bytes;
887 size_t pgbase;
888 unsigned npages, i;
889
890 result = iov_iter_get_pages_alloc2(iter, &pagevec,
891 wsize, &pgbase);
892 if (result < 0)
893 break;
894
895 bytes = result;
896 npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
897 for (i = 0; i < npages; i++) {
898 struct nfs_page *req;
899 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
900
901 req = nfs_page_create_from_page(dreq->ctx, pagevec[i],
902 pgbase, pos, req_len);
903 if (IS_ERR(req)) {
904 result = PTR_ERR(req);
905 break;
906 }
907
908 if (desc.pg_error < 0) {
909 nfs_free_request(req);
910 result = desc.pg_error;
911 break;
912 }
913
914 pgbase = 0;
915 bytes -= req_len;
916 requested_bytes += req_len;
917 pos += req_len;
918
919 if (defer) {
920 nfs_mark_request_commit(req, NULL, &cinfo, 0);
921 continue;
922 }
923
924 nfs_lock_request(req);
925 if (nfs_pageio_add_request(&desc, req))
926 continue;
927
928 /* Exit on hard errors */
929 if (desc.pg_error < 0 && desc.pg_error != -EAGAIN) {
930 result = desc.pg_error;
931 nfs_unlock_and_release_request(req);
932 break;
933 }
934
935 /* If the error is soft, defer remaining requests */
936 nfs_init_cinfo_from_dreq(&cinfo, dreq);
937 spin_lock(&dreq->lock);
938 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
939 spin_unlock(&dreq->lock);
940 nfs_unlock_request(req);
941 nfs_mark_request_commit(req, NULL, &cinfo, 0);
942 desc.pg_error = 0;
943 defer = true;
944 }
945 nfs_direct_release_pages(pagevec, npages);
946 kvfree(pagevec);
947 if (result < 0)
948 break;
949 }
950 nfs_pageio_complete(&desc);
951
952 /*
953 * If no bytes were started, return the error, and let the
954 * generic layer handle the completion.
955 */
956 if (requested_bytes == 0) {
957 inode_dio_end(inode);
958 nfs_direct_req_release(dreq);
959 return result < 0 ? result : -EIO;
960 }
961
962 if (put_dreq(dreq))
963 nfs_direct_write_complete(dreq);
964 return requested_bytes;
965 }
966
967 /**
968 * nfs_file_direct_write - file direct write operation for NFS files
969 * @iocb: target I/O control block
970 * @iter: vector of user buffers from which to write data
971 * @swap: flag indicating this is swap IO, not O_DIRECT IO
972 *
973 * We use this function for direct writes instead of calling
974 * generic_file_aio_write() in order to avoid taking the inode
975 * semaphore and updating the i_size. The NFS server will set
976 * the new i_size and this client must read the updated size
977 * back into its cache. We let the server do generic write
978 * parameter checking and report problems.
979 *
980 * We eliminate local atime updates, see direct read above.
981 *
982 * We avoid unnecessary page cache invalidations for normal cached
983 * readers of this file.
984 *
985 * Note that O_APPEND is not supported for NFS direct writes, as there
986 * is no atomic O_APPEND write facility in the NFS protocol.
987 */
nfs_file_direct_write(struct kiocb * iocb,struct iov_iter * iter,bool swap)988 ssize_t nfs_file_direct_write(struct kiocb *iocb, struct iov_iter *iter,
989 bool swap)
990 {
991 ssize_t result, requested;
992 size_t count;
993 struct file *file = iocb->ki_filp;
994 struct address_space *mapping = file->f_mapping;
995 struct inode *inode = mapping->host;
996 struct nfs_direct_req *dreq;
997 struct nfs_lock_context *l_ctx;
998 loff_t pos, end;
999
1000 dfprintk(FILE, "NFS: direct write(%pD2, %zd@%Ld)\n",
1001 file, iov_iter_count(iter), (long long) iocb->ki_pos);
1002
1003 if (swap)
1004 /* bypass generic checks */
1005 result = iov_iter_count(iter);
1006 else
1007 result = generic_write_checks(iocb, iter);
1008 if (result <= 0)
1009 return result;
1010 count = result;
1011 nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count);
1012
1013 pos = iocb->ki_pos;
1014 end = (pos + iov_iter_count(iter) - 1) >> PAGE_SHIFT;
1015
1016 task_io_account_write(count);
1017
1018 result = -ENOMEM;
1019 dreq = nfs_direct_req_alloc();
1020 if (!dreq)
1021 goto out;
1022
1023 dreq->inode = inode;
1024 dreq->max_count = count;
1025 dreq->io_start = pos;
1026 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
1027 l_ctx = nfs_get_lock_context(dreq->ctx);
1028 if (IS_ERR(l_ctx)) {
1029 result = PTR_ERR(l_ctx);
1030 nfs_direct_req_release(dreq);
1031 goto out_release;
1032 }
1033 dreq->l_ctx = l_ctx;
1034 if (!is_sync_kiocb(iocb))
1035 dreq->iocb = iocb;
1036 pnfs_init_ds_commit_info_ops(&dreq->ds_cinfo, inode);
1037
1038 if (swap) {
1039 requested = nfs_direct_write_schedule_iovec(dreq, iter, pos,
1040 FLUSH_STABLE);
1041 } else {
1042 result = nfs_start_io_direct(inode);
1043 if (result) {
1044 /* release the reference that would usually be
1045 * consumed by nfs_direct_write_schedule_iovec()
1046 */
1047 nfs_direct_req_release(dreq);
1048 goto out_release;
1049 }
1050
1051 requested = nfs_direct_write_schedule_iovec(dreq, iter, pos,
1052 FLUSH_COND_STABLE);
1053
1054 if (mapping->nrpages) {
1055 invalidate_inode_pages2_range(mapping,
1056 pos >> PAGE_SHIFT, end);
1057 }
1058
1059 nfs_end_io_direct(inode);
1060 }
1061
1062 if (requested > 0) {
1063 result = nfs_direct_wait(dreq);
1064 if (result > 0) {
1065 requested -= result;
1066 iocb->ki_pos = pos + result;
1067 /* XXX: should check the generic_write_sync retval */
1068 generic_write_sync(iocb, result);
1069 }
1070 iov_iter_revert(iter, requested);
1071 } else {
1072 result = requested;
1073 }
1074 nfs_fscache_invalidate(inode, FSCACHE_INVAL_DIO_WRITE);
1075 out_release:
1076 nfs_direct_req_release(dreq);
1077 out:
1078 return result;
1079 }
1080
1081 /**
1082 * nfs_init_directcache - create a slab cache for nfs_direct_req structures
1083 *
1084 */
nfs_init_directcache(void)1085 int __init nfs_init_directcache(void)
1086 {
1087 nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
1088 sizeof(struct nfs_direct_req),
1089 0, SLAB_RECLAIM_ACCOUNT,
1090 NULL);
1091 if (nfs_direct_cachep == NULL)
1092 return -ENOMEM;
1093
1094 return 0;
1095 }
1096
1097 /**
1098 * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
1099 *
1100 */
nfs_destroy_directcache(void)1101 void nfs_destroy_directcache(void)
1102 {
1103 kmem_cache_destroy(nfs_direct_cachep);
1104 }
1105