1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/nfs/direct.c
4 *
5 * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
6 *
7 * High-performance uncached I/O for the Linux NFS client
8 *
9 * There are important applications whose performance or correctness
10 * depends on uncached access to file data. Database clusters
11 * (multiple copies of the same instance running on separate hosts)
12 * implement their own cache coherency protocol that subsumes file
13 * system cache protocols. Applications that process datasets
14 * considerably larger than the client's memory do not always benefit
15 * from a local cache. A streaming video server, for instance, has no
16 * need to cache the contents of a file.
17 *
18 * When an application requests uncached I/O, all read and write requests
19 * are made directly to the server; data stored or fetched via these
20 * requests is not cached in the Linux page cache. The client does not
21 * correct unaligned requests from applications. All requested bytes are
22 * held on permanent storage before a direct write system call returns to
23 * an application.
24 *
25 * Solaris implements an uncached I/O facility called directio() that
26 * is used for backups and sequential I/O to very large files. Solaris
27 * also supports uncaching whole NFS partitions with "-o forcedirectio,"
28 * an undocumented mount option.
29 *
30 * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
31 * help from Andrew Morton.
32 *
33 * 18 Dec 2001 Initial implementation for 2.4 --cel
34 * 08 Jul 2002 Version for 2.4.19, with bug fixes --trondmy
35 * 08 Jun 2003 Port to 2.5 APIs --cel
36 * 31 Mar 2004 Handle direct I/O without VFS support --cel
37 * 15 Sep 2004 Parallel async reads --cel
38 * 04 May 2005 support O_DIRECT with aio --cel
39 *
40 */
41
42 #include <linux/errno.h>
43 #include <linux/sched.h>
44 #include <linux/kernel.h>
45 #include <linux/file.h>
46 #include <linux/pagemap.h>
47 #include <linux/kref.h>
48 #include <linux/slab.h>
49 #include <linux/task_io_accounting_ops.h>
50 #include <linux/module.h>
51
52 #include <linux/nfs_fs.h>
53 #include <linux/nfs_page.h>
54 #include <linux/sunrpc/clnt.h>
55
56 #include <linux/uaccess.h>
57 #include <linux/atomic.h>
58
59 #include "internal.h"
60 #include "iostat.h"
61 #include "pnfs.h"
62 #include "fscache.h"
63 #include "nfstrace.h"
64
65 #define NFSDBG_FACILITY NFSDBG_VFS
66
67 static struct kmem_cache *nfs_direct_cachep;
68
69 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops;
70 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops;
71 static void nfs_direct_write_complete(struct nfs_direct_req *dreq);
72 static void nfs_direct_write_schedule_work(struct work_struct *work);
73
get_dreq(struct nfs_direct_req * dreq)74 static inline void get_dreq(struct nfs_direct_req *dreq)
75 {
76 atomic_inc(&dreq->io_count);
77 }
78
put_dreq(struct nfs_direct_req * dreq)79 static inline int put_dreq(struct nfs_direct_req *dreq)
80 {
81 return atomic_dec_and_test(&dreq->io_count);
82 }
83
84 static void
nfs_direct_handle_truncated(struct nfs_direct_req * dreq,const struct nfs_pgio_header * hdr,ssize_t dreq_len)85 nfs_direct_handle_truncated(struct nfs_direct_req *dreq,
86 const struct nfs_pgio_header *hdr,
87 ssize_t dreq_len)
88 {
89 if (!(test_bit(NFS_IOHDR_ERROR, &hdr->flags) ||
90 test_bit(NFS_IOHDR_EOF, &hdr->flags)))
91 return;
92 if (dreq->max_count >= dreq_len) {
93 dreq->max_count = dreq_len;
94 if (dreq->count > dreq_len)
95 dreq->count = dreq_len;
96 }
97
98 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) && !dreq->error)
99 dreq->error = hdr->error;
100 }
101
102 static void
nfs_direct_count_bytes(struct nfs_direct_req * dreq,const struct nfs_pgio_header * hdr)103 nfs_direct_count_bytes(struct nfs_direct_req *dreq,
104 const struct nfs_pgio_header *hdr)
105 {
106 loff_t hdr_end = hdr->io_start + hdr->good_bytes;
107 ssize_t dreq_len = 0;
108
109 if (hdr_end > dreq->io_start)
110 dreq_len = hdr_end - dreq->io_start;
111
112 nfs_direct_handle_truncated(dreq, hdr, dreq_len);
113
114 if (dreq_len > dreq->max_count)
115 dreq_len = dreq->max_count;
116
117 if (dreq->count < dreq_len)
118 dreq->count = dreq_len;
119 }
120
nfs_direct_truncate_request(struct nfs_direct_req * dreq,struct nfs_page * req)121 static void nfs_direct_truncate_request(struct nfs_direct_req *dreq,
122 struct nfs_page *req)
123 {
124 loff_t offs = req_offset(req);
125 size_t req_start = (size_t)(offs - dreq->io_start);
126
127 if (req_start < dreq->max_count)
128 dreq->max_count = req_start;
129 if (req_start < dreq->count)
130 dreq->count = req_start;
131 }
132
133 /**
134 * nfs_swap_rw - NFS address space operation for swap I/O
135 * @iocb: target I/O control block
136 * @iter: I/O buffer
137 *
138 * Perform IO to the swap-file. This is much like direct IO.
139 */
nfs_swap_rw(struct kiocb * iocb,struct iov_iter * iter)140 int nfs_swap_rw(struct kiocb *iocb, struct iov_iter *iter)
141 {
142 ssize_t ret;
143
144 if (iov_iter_rw(iter) == READ)
145 ret = nfs_file_direct_read(iocb, iter, true);
146 else
147 ret = nfs_file_direct_write(iocb, iter, true);
148 if (ret < 0)
149 return ret;
150 return 0;
151 }
152
nfs_direct_release_pages(struct page ** pages,unsigned int npages)153 static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
154 {
155 unsigned int i;
156 for (i = 0; i < npages; i++)
157 put_page(pages[i]);
158 }
159
nfs_init_cinfo_from_dreq(struct nfs_commit_info * cinfo,struct nfs_direct_req * dreq)160 void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo,
161 struct nfs_direct_req *dreq)
162 {
163 cinfo->inode = dreq->inode;
164 cinfo->mds = &dreq->mds_cinfo;
165 cinfo->ds = &dreq->ds_cinfo;
166 cinfo->dreq = dreq;
167 cinfo->completion_ops = &nfs_direct_commit_completion_ops;
168 }
169
nfs_direct_req_alloc(void)170 static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
171 {
172 struct nfs_direct_req *dreq;
173
174 dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL);
175 if (!dreq)
176 return NULL;
177
178 kref_init(&dreq->kref);
179 kref_get(&dreq->kref);
180 init_completion(&dreq->completion);
181 INIT_LIST_HEAD(&dreq->mds_cinfo.list);
182 pnfs_init_ds_commit_info(&dreq->ds_cinfo);
183 INIT_WORK(&dreq->work, nfs_direct_write_schedule_work);
184 spin_lock_init(&dreq->lock);
185
186 return dreq;
187 }
188
nfs_direct_req_free(struct kref * kref)189 static void nfs_direct_req_free(struct kref *kref)
190 {
191 struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
192
193 pnfs_release_ds_info(&dreq->ds_cinfo, dreq->inode);
194 if (dreq->l_ctx != NULL)
195 nfs_put_lock_context(dreq->l_ctx);
196 if (dreq->ctx != NULL)
197 put_nfs_open_context(dreq->ctx);
198 kmem_cache_free(nfs_direct_cachep, dreq);
199 }
200
nfs_direct_req_release(struct nfs_direct_req * dreq)201 static void nfs_direct_req_release(struct nfs_direct_req *dreq)
202 {
203 kref_put(&dreq->kref, nfs_direct_req_free);
204 }
205
nfs_dreq_bytes_left(struct nfs_direct_req * dreq,loff_t offset)206 ssize_t nfs_dreq_bytes_left(struct nfs_direct_req *dreq, loff_t offset)
207 {
208 loff_t start = offset - dreq->io_start;
209 return dreq->max_count - start;
210 }
211 EXPORT_SYMBOL_GPL(nfs_dreq_bytes_left);
212
213 /*
214 * Collects and returns the final error value/byte-count.
215 */
nfs_direct_wait(struct nfs_direct_req * dreq)216 static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
217 {
218 ssize_t result = -EIOCBQUEUED;
219
220 /* Async requests don't wait here */
221 if (dreq->iocb)
222 goto out;
223
224 result = wait_for_completion_killable(&dreq->completion);
225
226 if (!result) {
227 result = dreq->count;
228 WARN_ON_ONCE(dreq->count < 0);
229 }
230 if (!result)
231 result = dreq->error;
232
233 out:
234 return (ssize_t) result;
235 }
236
237 /*
238 * Synchronous I/O uses a stack-allocated iocb. Thus we can't trust
239 * the iocb is still valid here if this is a synchronous request.
240 */
nfs_direct_complete(struct nfs_direct_req * dreq)241 static void nfs_direct_complete(struct nfs_direct_req *dreq)
242 {
243 struct inode *inode = dreq->inode;
244
245 inode_dio_end(inode);
246
247 if (dreq->iocb) {
248 long res = (long) dreq->error;
249 if (dreq->count != 0) {
250 res = (long) dreq->count;
251 WARN_ON_ONCE(dreq->count < 0);
252 }
253 dreq->iocb->ki_complete(dreq->iocb, res);
254 }
255
256 complete(&dreq->completion);
257
258 nfs_direct_req_release(dreq);
259 }
260
nfs_direct_read_completion(struct nfs_pgio_header * hdr)261 static void nfs_direct_read_completion(struct nfs_pgio_header *hdr)
262 {
263 unsigned long bytes = 0;
264 struct nfs_direct_req *dreq = hdr->dreq;
265
266 spin_lock(&dreq->lock);
267 if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) {
268 spin_unlock(&dreq->lock);
269 goto out_put;
270 }
271
272 nfs_direct_count_bytes(dreq, hdr);
273 spin_unlock(&dreq->lock);
274
275 while (!list_empty(&hdr->pages)) {
276 struct nfs_page *req = nfs_list_entry(hdr->pages.next);
277 struct page *page = req->wb_page;
278
279 if (!PageCompound(page) && bytes < hdr->good_bytes &&
280 (dreq->flags == NFS_ODIRECT_SHOULD_DIRTY))
281 set_page_dirty(page);
282 bytes += req->wb_bytes;
283 nfs_list_remove_request(req);
284 nfs_release_request(req);
285 }
286 out_put:
287 if (put_dreq(dreq))
288 nfs_direct_complete(dreq);
289 hdr->release(hdr);
290 }
291
nfs_read_sync_pgio_error(struct list_head * head,int error)292 static void nfs_read_sync_pgio_error(struct list_head *head, int error)
293 {
294 struct nfs_page *req;
295
296 while (!list_empty(head)) {
297 req = nfs_list_entry(head->next);
298 nfs_list_remove_request(req);
299 nfs_release_request(req);
300 }
301 }
302
nfs_direct_pgio_init(struct nfs_pgio_header * hdr)303 static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr)
304 {
305 get_dreq(hdr->dreq);
306 }
307
308 static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = {
309 .error_cleanup = nfs_read_sync_pgio_error,
310 .init_hdr = nfs_direct_pgio_init,
311 .completion = nfs_direct_read_completion,
312 };
313
314 /*
315 * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
316 * operation. If nfs_readdata_alloc() or get_user_pages() fails,
317 * bail and stop sending more reads. Read length accounting is
318 * handled automatically by nfs_direct_read_result(). Otherwise, if
319 * no requests have been sent, just return an error.
320 */
321
nfs_direct_read_schedule_iovec(struct nfs_direct_req * dreq,struct iov_iter * iter,loff_t pos)322 static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq,
323 struct iov_iter *iter,
324 loff_t pos)
325 {
326 struct nfs_pageio_descriptor desc;
327 struct inode *inode = dreq->inode;
328 ssize_t result = -EINVAL;
329 size_t requested_bytes = 0;
330 size_t rsize = max_t(size_t, NFS_SERVER(inode)->rsize, PAGE_SIZE);
331
332 nfs_pageio_init_read(&desc, dreq->inode, false,
333 &nfs_direct_read_completion_ops);
334 get_dreq(dreq);
335 desc.pg_dreq = dreq;
336 inode_dio_begin(inode);
337
338 while (iov_iter_count(iter)) {
339 struct page **pagevec;
340 size_t bytes;
341 size_t pgbase;
342 unsigned npages, i;
343
344 result = iov_iter_get_pages_alloc2(iter, &pagevec,
345 rsize, &pgbase);
346 if (result < 0)
347 break;
348
349 bytes = result;
350 npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
351 for (i = 0; i < npages; i++) {
352 struct nfs_page *req;
353 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
354 /* XXX do we need to do the eof zeroing found in async_filler? */
355 req = nfs_page_create_from_page(dreq->ctx, pagevec[i],
356 pgbase, pos, req_len);
357 if (IS_ERR(req)) {
358 result = PTR_ERR(req);
359 break;
360 }
361 if (!nfs_pageio_add_request(&desc, req)) {
362 result = desc.pg_error;
363 nfs_release_request(req);
364 break;
365 }
366 pgbase = 0;
367 bytes -= req_len;
368 requested_bytes += req_len;
369 pos += req_len;
370 }
371 nfs_direct_release_pages(pagevec, npages);
372 kvfree(pagevec);
373 if (result < 0)
374 break;
375 }
376
377 nfs_pageio_complete(&desc);
378
379 /*
380 * If no bytes were started, return the error, and let the
381 * generic layer handle the completion.
382 */
383 if (requested_bytes == 0) {
384 inode_dio_end(inode);
385 nfs_direct_req_release(dreq);
386 return result < 0 ? result : -EIO;
387 }
388
389 if (put_dreq(dreq))
390 nfs_direct_complete(dreq);
391 return requested_bytes;
392 }
393
394 /**
395 * nfs_file_direct_read - file direct read operation for NFS files
396 * @iocb: target I/O control block
397 * @iter: vector of user buffers into which to read data
398 * @swap: flag indicating this is swap IO, not O_DIRECT IO
399 *
400 * We use this function for direct reads instead of calling
401 * generic_file_aio_read() in order to avoid gfar's check to see if
402 * the request starts before the end of the file. For that check
403 * to work, we must generate a GETATTR before each direct read, and
404 * even then there is a window between the GETATTR and the subsequent
405 * READ where the file size could change. Our preference is simply
406 * to do all reads the application wants, and the server will take
407 * care of managing the end of file boundary.
408 *
409 * This function also eliminates unnecessarily updating the file's
410 * atime locally, as the NFS server sets the file's atime, and this
411 * client must read the updated atime from the server back into its
412 * cache.
413 */
nfs_file_direct_read(struct kiocb * iocb,struct iov_iter * iter,bool swap)414 ssize_t nfs_file_direct_read(struct kiocb *iocb, struct iov_iter *iter,
415 bool swap)
416 {
417 struct file *file = iocb->ki_filp;
418 struct address_space *mapping = file->f_mapping;
419 struct inode *inode = mapping->host;
420 struct nfs_direct_req *dreq;
421 struct nfs_lock_context *l_ctx;
422 ssize_t result, requested;
423 size_t count = iov_iter_count(iter);
424 nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count);
425
426 dfprintk(FILE, "NFS: direct read(%pD2, %zd@%Ld)\n",
427 file, count, (long long) iocb->ki_pos);
428
429 result = 0;
430 if (!count)
431 goto out;
432
433 task_io_account_read(count);
434
435 result = -ENOMEM;
436 dreq = nfs_direct_req_alloc();
437 if (dreq == NULL)
438 goto out;
439
440 dreq->inode = inode;
441 dreq->max_count = count;
442 dreq->io_start = iocb->ki_pos;
443 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
444 l_ctx = nfs_get_lock_context(dreq->ctx);
445 if (IS_ERR(l_ctx)) {
446 result = PTR_ERR(l_ctx);
447 nfs_direct_req_release(dreq);
448 goto out_release;
449 }
450 dreq->l_ctx = l_ctx;
451 if (!is_sync_kiocb(iocb))
452 dreq->iocb = iocb;
453
454 if (user_backed_iter(iter))
455 dreq->flags = NFS_ODIRECT_SHOULD_DIRTY;
456
457 if (!swap) {
458 result = nfs_start_io_direct(inode);
459 if (result) {
460 /* release the reference that would usually be
461 * consumed by nfs_direct_read_schedule_iovec()
462 */
463 nfs_direct_req_release(dreq);
464 goto out_release;
465 }
466 }
467
468 NFS_I(inode)->read_io += count;
469 requested = nfs_direct_read_schedule_iovec(dreq, iter, iocb->ki_pos);
470
471 if (!swap)
472 nfs_end_io_direct(inode);
473
474 if (requested > 0) {
475 result = nfs_direct_wait(dreq);
476 if (result > 0) {
477 requested -= result;
478 iocb->ki_pos += result;
479 }
480 iov_iter_revert(iter, requested);
481 } else {
482 result = requested;
483 }
484
485 out_release:
486 nfs_direct_req_release(dreq);
487 out:
488 return result;
489 }
490
nfs_direct_add_page_head(struct list_head * list,struct nfs_page * req)491 static void nfs_direct_add_page_head(struct list_head *list,
492 struct nfs_page *req)
493 {
494 struct nfs_page *head = req->wb_head;
495
496 if (!list_empty(&head->wb_list) || !nfs_lock_request(head))
497 return;
498 if (!list_empty(&head->wb_list)) {
499 nfs_unlock_request(head);
500 return;
501 }
502 list_add(&head->wb_list, list);
503 kref_get(&head->wb_kref);
504 kref_get(&head->wb_kref);
505 }
506
nfs_direct_join_group(struct list_head * list,struct nfs_commit_info * cinfo,struct inode * inode)507 static void nfs_direct_join_group(struct list_head *list,
508 struct nfs_commit_info *cinfo,
509 struct inode *inode)
510 {
511 struct nfs_page *req, *subreq;
512
513 list_for_each_entry(req, list, wb_list) {
514 if (req->wb_head != req) {
515 nfs_direct_add_page_head(&req->wb_list, req);
516 continue;
517 }
518 subreq = req->wb_this_page;
519 if (subreq == req)
520 continue;
521 do {
522 /*
523 * Remove subrequests from this list before freeing
524 * them in the call to nfs_join_page_group().
525 */
526 if (!list_empty(&subreq->wb_list)) {
527 nfs_list_remove_request(subreq);
528 nfs_release_request(subreq);
529 }
530 } while ((subreq = subreq->wb_this_page) != req);
531 nfs_join_page_group(req, cinfo, inode);
532 }
533 }
534
535 static void
nfs_direct_write_scan_commit_list(struct inode * inode,struct list_head * list,struct nfs_commit_info * cinfo)536 nfs_direct_write_scan_commit_list(struct inode *inode,
537 struct list_head *list,
538 struct nfs_commit_info *cinfo)
539 {
540 mutex_lock(&NFS_I(cinfo->inode)->commit_mutex);
541 pnfs_recover_commit_reqs(list, cinfo);
542 nfs_scan_commit_list(&cinfo->mds->list, list, cinfo, 0);
543 mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex);
544 }
545
nfs_direct_write_reschedule(struct nfs_direct_req * dreq)546 static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
547 {
548 struct nfs_pageio_descriptor desc;
549 struct nfs_page *req;
550 LIST_HEAD(reqs);
551 struct nfs_commit_info cinfo;
552
553 nfs_init_cinfo_from_dreq(&cinfo, dreq);
554 nfs_direct_write_scan_commit_list(dreq->inode, &reqs, &cinfo);
555
556 nfs_direct_join_group(&reqs, &cinfo, dreq->inode);
557
558 nfs_clear_pnfs_ds_commit_verifiers(&dreq->ds_cinfo);
559 get_dreq(dreq);
560
561 nfs_pageio_init_write(&desc, dreq->inode, FLUSH_STABLE, false,
562 &nfs_direct_write_completion_ops);
563 desc.pg_dreq = dreq;
564
565 while (!list_empty(&reqs)) {
566 req = nfs_list_entry(reqs.next);
567 /* Bump the transmission count */
568 req->wb_nio++;
569 if (!nfs_pageio_add_request(&desc, req)) {
570 spin_lock(&dreq->lock);
571 if (dreq->error < 0) {
572 desc.pg_error = dreq->error;
573 } else if (desc.pg_error != -EAGAIN) {
574 dreq->flags = 0;
575 if (!desc.pg_error)
576 desc.pg_error = -EIO;
577 dreq->error = desc.pg_error;
578 } else
579 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
580 spin_unlock(&dreq->lock);
581 break;
582 }
583 nfs_release_request(req);
584 }
585 nfs_pageio_complete(&desc);
586
587 while (!list_empty(&reqs)) {
588 req = nfs_list_entry(reqs.next);
589 nfs_list_remove_request(req);
590 nfs_unlock_and_release_request(req);
591 if (desc.pg_error == -EAGAIN) {
592 nfs_mark_request_commit(req, NULL, &cinfo, 0);
593 } else {
594 spin_lock(&dreq->lock);
595 nfs_direct_truncate_request(dreq, req);
596 spin_unlock(&dreq->lock);
597 nfs_release_request(req);
598 }
599 }
600
601 if (put_dreq(dreq))
602 nfs_direct_write_complete(dreq);
603 }
604
nfs_direct_commit_complete(struct nfs_commit_data * data)605 static void nfs_direct_commit_complete(struct nfs_commit_data *data)
606 {
607 const struct nfs_writeverf *verf = data->res.verf;
608 struct nfs_direct_req *dreq = data->dreq;
609 struct nfs_commit_info cinfo;
610 struct nfs_page *req;
611 int status = data->task.tk_status;
612
613 trace_nfs_direct_commit_complete(dreq);
614
615 spin_lock(&dreq->lock);
616 if (status < 0) {
617 /* Errors in commit are fatal */
618 dreq->error = status;
619 dreq->flags = NFS_ODIRECT_DONE;
620 } else {
621 status = dreq->error;
622 }
623 spin_unlock(&dreq->lock);
624
625 nfs_init_cinfo_from_dreq(&cinfo, dreq);
626
627 while (!list_empty(&data->pages)) {
628 req = nfs_list_entry(data->pages.next);
629 nfs_list_remove_request(req);
630 if (status < 0) {
631 spin_lock(&dreq->lock);
632 nfs_direct_truncate_request(dreq, req);
633 spin_unlock(&dreq->lock);
634 nfs_release_request(req);
635 } else if (!nfs_write_match_verf(verf, req)) {
636 spin_lock(&dreq->lock);
637 if (dreq->flags == 0)
638 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
639 spin_unlock(&dreq->lock);
640 /*
641 * Despite the reboot, the write was successful,
642 * so reset wb_nio.
643 */
644 req->wb_nio = 0;
645 nfs_mark_request_commit(req, NULL, &cinfo, 0);
646 } else
647 nfs_release_request(req);
648 nfs_unlock_and_release_request(req);
649 }
650
651 if (nfs_commit_end(cinfo.mds))
652 nfs_direct_write_complete(dreq);
653 }
654
nfs_direct_resched_write(struct nfs_commit_info * cinfo,struct nfs_page * req)655 static void nfs_direct_resched_write(struct nfs_commit_info *cinfo,
656 struct nfs_page *req)
657 {
658 struct nfs_direct_req *dreq = cinfo->dreq;
659
660 trace_nfs_direct_resched_write(dreq);
661
662 spin_lock(&dreq->lock);
663 if (dreq->flags != NFS_ODIRECT_DONE)
664 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
665 spin_unlock(&dreq->lock);
666 nfs_mark_request_commit(req, NULL, cinfo, 0);
667 }
668
669 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = {
670 .completion = nfs_direct_commit_complete,
671 .resched_write = nfs_direct_resched_write,
672 };
673
nfs_direct_commit_schedule(struct nfs_direct_req * dreq)674 static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
675 {
676 int res;
677 struct nfs_commit_info cinfo;
678 LIST_HEAD(mds_list);
679
680 nfs_init_cinfo_from_dreq(&cinfo, dreq);
681 nfs_commit_begin(cinfo.mds);
682 nfs_scan_commit(dreq->inode, &mds_list, &cinfo);
683 res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo);
684 if (res < 0) { /* res == -ENOMEM */
685 spin_lock(&dreq->lock);
686 if (dreq->flags == 0)
687 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
688 spin_unlock(&dreq->lock);
689 }
690 if (nfs_commit_end(cinfo.mds))
691 nfs_direct_write_complete(dreq);
692 }
693
nfs_direct_write_clear_reqs(struct nfs_direct_req * dreq)694 static void nfs_direct_write_clear_reqs(struct nfs_direct_req *dreq)
695 {
696 struct nfs_commit_info cinfo;
697 struct nfs_page *req;
698 LIST_HEAD(reqs);
699
700 nfs_init_cinfo_from_dreq(&cinfo, dreq);
701 nfs_direct_write_scan_commit_list(dreq->inode, &reqs, &cinfo);
702
703 while (!list_empty(&reqs)) {
704 req = nfs_list_entry(reqs.next);
705 nfs_list_remove_request(req);
706 nfs_direct_truncate_request(dreq, req);
707 nfs_release_request(req);
708 nfs_unlock_and_release_request(req);
709 }
710 }
711
nfs_direct_write_schedule_work(struct work_struct * work)712 static void nfs_direct_write_schedule_work(struct work_struct *work)
713 {
714 struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work);
715 int flags = dreq->flags;
716
717 dreq->flags = 0;
718 switch (flags) {
719 case NFS_ODIRECT_DO_COMMIT:
720 nfs_direct_commit_schedule(dreq);
721 break;
722 case NFS_ODIRECT_RESCHED_WRITES:
723 nfs_direct_write_reschedule(dreq);
724 break;
725 default:
726 nfs_direct_write_clear_reqs(dreq);
727 nfs_zap_mapping(dreq->inode, dreq->inode->i_mapping);
728 nfs_direct_complete(dreq);
729 }
730 }
731
nfs_direct_write_complete(struct nfs_direct_req * dreq)732 static void nfs_direct_write_complete(struct nfs_direct_req *dreq)
733 {
734 trace_nfs_direct_write_complete(dreq);
735 queue_work(nfsiod_workqueue, &dreq->work); /* Calls nfs_direct_write_schedule_work */
736 }
737
nfs_direct_write_completion(struct nfs_pgio_header * hdr)738 static void nfs_direct_write_completion(struct nfs_pgio_header *hdr)
739 {
740 struct nfs_direct_req *dreq = hdr->dreq;
741 struct nfs_commit_info cinfo;
742 struct nfs_page *req = nfs_list_entry(hdr->pages.next);
743 int flags = NFS_ODIRECT_DONE;
744
745 trace_nfs_direct_write_completion(dreq);
746
747 nfs_init_cinfo_from_dreq(&cinfo, dreq);
748
749 spin_lock(&dreq->lock);
750 if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) {
751 spin_unlock(&dreq->lock);
752 goto out_put;
753 }
754
755 nfs_direct_count_bytes(dreq, hdr);
756 if (test_bit(NFS_IOHDR_UNSTABLE_WRITES, &hdr->flags) &&
757 !test_bit(NFS_IOHDR_ERROR, &hdr->flags)) {
758 if (!dreq->flags)
759 dreq->flags = NFS_ODIRECT_DO_COMMIT;
760 flags = dreq->flags;
761 }
762 spin_unlock(&dreq->lock);
763
764 while (!list_empty(&hdr->pages)) {
765
766 req = nfs_list_entry(hdr->pages.next);
767 nfs_list_remove_request(req);
768 if (flags == NFS_ODIRECT_DO_COMMIT) {
769 kref_get(&req->wb_kref);
770 memcpy(&req->wb_verf, &hdr->verf.verifier,
771 sizeof(req->wb_verf));
772 nfs_mark_request_commit(req, hdr->lseg, &cinfo,
773 hdr->ds_commit_idx);
774 } else if (flags == NFS_ODIRECT_RESCHED_WRITES) {
775 kref_get(&req->wb_kref);
776 nfs_mark_request_commit(req, NULL, &cinfo, 0);
777 }
778 nfs_unlock_and_release_request(req);
779 }
780
781 out_put:
782 if (put_dreq(dreq))
783 nfs_direct_write_complete(dreq);
784 hdr->release(hdr);
785 }
786
nfs_write_sync_pgio_error(struct list_head * head,int error)787 static void nfs_write_sync_pgio_error(struct list_head *head, int error)
788 {
789 struct nfs_page *req;
790
791 while (!list_empty(head)) {
792 req = nfs_list_entry(head->next);
793 nfs_list_remove_request(req);
794 nfs_unlock_and_release_request(req);
795 }
796 }
797
nfs_direct_write_reschedule_io(struct nfs_pgio_header * hdr)798 static void nfs_direct_write_reschedule_io(struct nfs_pgio_header *hdr)
799 {
800 struct nfs_direct_req *dreq = hdr->dreq;
801 struct nfs_page *req;
802 struct nfs_commit_info cinfo;
803
804 trace_nfs_direct_write_reschedule_io(dreq);
805
806 nfs_init_cinfo_from_dreq(&cinfo, dreq);
807 spin_lock(&dreq->lock);
808 if (dreq->error == 0)
809 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
810 set_bit(NFS_IOHDR_REDO, &hdr->flags);
811 spin_unlock(&dreq->lock);
812 while (!list_empty(&hdr->pages)) {
813 req = nfs_list_entry(hdr->pages.next);
814 nfs_list_remove_request(req);
815 nfs_unlock_request(req);
816 nfs_mark_request_commit(req, NULL, &cinfo, 0);
817 }
818 }
819
820 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = {
821 .error_cleanup = nfs_write_sync_pgio_error,
822 .init_hdr = nfs_direct_pgio_init,
823 .completion = nfs_direct_write_completion,
824 .reschedule_io = nfs_direct_write_reschedule_io,
825 };
826
827
828 /*
829 * NB: Return the value of the first error return code. Subsequent
830 * errors after the first one are ignored.
831 */
832 /*
833 * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
834 * operation. If nfs_writedata_alloc() or get_user_pages() fails,
835 * bail and stop sending more writes. Write length accounting is
836 * handled automatically by nfs_direct_write_result(). Otherwise, if
837 * no requests have been sent, just return an error.
838 */
nfs_direct_write_schedule_iovec(struct nfs_direct_req * dreq,struct iov_iter * iter,loff_t pos,int ioflags)839 static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq,
840 struct iov_iter *iter,
841 loff_t pos, int ioflags)
842 {
843 struct nfs_pageio_descriptor desc;
844 struct inode *inode = dreq->inode;
845 struct nfs_commit_info cinfo;
846 ssize_t result = 0;
847 size_t requested_bytes = 0;
848 size_t wsize = max_t(size_t, NFS_SERVER(inode)->wsize, PAGE_SIZE);
849 bool defer = false;
850
851 trace_nfs_direct_write_schedule_iovec(dreq);
852
853 nfs_pageio_init_write(&desc, inode, ioflags, false,
854 &nfs_direct_write_completion_ops);
855 desc.pg_dreq = dreq;
856 get_dreq(dreq);
857 inode_dio_begin(inode);
858
859 NFS_I(inode)->write_io += iov_iter_count(iter);
860 while (iov_iter_count(iter)) {
861 struct page **pagevec;
862 size_t bytes;
863 size_t pgbase;
864 unsigned npages, i;
865
866 result = iov_iter_get_pages_alloc2(iter, &pagevec,
867 wsize, &pgbase);
868 if (result < 0)
869 break;
870
871 bytes = result;
872 npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
873 for (i = 0; i < npages; i++) {
874 struct nfs_page *req;
875 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
876
877 req = nfs_page_create_from_page(dreq->ctx, pagevec[i],
878 pgbase, pos, req_len);
879 if (IS_ERR(req)) {
880 result = PTR_ERR(req);
881 break;
882 }
883
884 if (desc.pg_error < 0) {
885 nfs_free_request(req);
886 result = desc.pg_error;
887 break;
888 }
889
890 pgbase = 0;
891 bytes -= req_len;
892 requested_bytes += req_len;
893 pos += req_len;
894
895 if (defer) {
896 nfs_mark_request_commit(req, NULL, &cinfo, 0);
897 continue;
898 }
899
900 nfs_lock_request(req);
901 if (nfs_pageio_add_request(&desc, req))
902 continue;
903
904 /* Exit on hard errors */
905 if (desc.pg_error < 0 && desc.pg_error != -EAGAIN) {
906 result = desc.pg_error;
907 nfs_unlock_and_release_request(req);
908 break;
909 }
910
911 /* If the error is soft, defer remaining requests */
912 nfs_init_cinfo_from_dreq(&cinfo, dreq);
913 spin_lock(&dreq->lock);
914 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
915 spin_unlock(&dreq->lock);
916 nfs_unlock_request(req);
917 nfs_mark_request_commit(req, NULL, &cinfo, 0);
918 desc.pg_error = 0;
919 defer = true;
920 }
921 nfs_direct_release_pages(pagevec, npages);
922 kvfree(pagevec);
923 if (result < 0)
924 break;
925 }
926 nfs_pageio_complete(&desc);
927
928 /*
929 * If no bytes were started, return the error, and let the
930 * generic layer handle the completion.
931 */
932 if (requested_bytes == 0) {
933 inode_dio_end(inode);
934 nfs_direct_req_release(dreq);
935 return result < 0 ? result : -EIO;
936 }
937
938 if (put_dreq(dreq))
939 nfs_direct_write_complete(dreq);
940 return requested_bytes;
941 }
942
943 /**
944 * nfs_file_direct_write - file direct write operation for NFS files
945 * @iocb: target I/O control block
946 * @iter: vector of user buffers from which to write data
947 * @swap: flag indicating this is swap IO, not O_DIRECT IO
948 *
949 * We use this function for direct writes instead of calling
950 * generic_file_aio_write() in order to avoid taking the inode
951 * semaphore and updating the i_size. The NFS server will set
952 * the new i_size and this client must read the updated size
953 * back into its cache. We let the server do generic write
954 * parameter checking and report problems.
955 *
956 * We eliminate local atime updates, see direct read above.
957 *
958 * We avoid unnecessary page cache invalidations for normal cached
959 * readers of this file.
960 *
961 * Note that O_APPEND is not supported for NFS direct writes, as there
962 * is no atomic O_APPEND write facility in the NFS protocol.
963 */
nfs_file_direct_write(struct kiocb * iocb,struct iov_iter * iter,bool swap)964 ssize_t nfs_file_direct_write(struct kiocb *iocb, struct iov_iter *iter,
965 bool swap)
966 {
967 ssize_t result, requested;
968 size_t count;
969 struct file *file = iocb->ki_filp;
970 struct address_space *mapping = file->f_mapping;
971 struct inode *inode = mapping->host;
972 struct nfs_direct_req *dreq;
973 struct nfs_lock_context *l_ctx;
974 loff_t pos, end;
975
976 dfprintk(FILE, "NFS: direct write(%pD2, %zd@%Ld)\n",
977 file, iov_iter_count(iter), (long long) iocb->ki_pos);
978
979 if (swap)
980 /* bypass generic checks */
981 result = iov_iter_count(iter);
982 else
983 result = generic_write_checks(iocb, iter);
984 if (result <= 0)
985 return result;
986 count = result;
987 nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count);
988
989 pos = iocb->ki_pos;
990 end = (pos + iov_iter_count(iter) - 1) >> PAGE_SHIFT;
991
992 task_io_account_write(count);
993
994 result = -ENOMEM;
995 dreq = nfs_direct_req_alloc();
996 if (!dreq)
997 goto out;
998
999 dreq->inode = inode;
1000 dreq->max_count = count;
1001 dreq->io_start = pos;
1002 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
1003 l_ctx = nfs_get_lock_context(dreq->ctx);
1004 if (IS_ERR(l_ctx)) {
1005 result = PTR_ERR(l_ctx);
1006 nfs_direct_req_release(dreq);
1007 goto out_release;
1008 }
1009 dreq->l_ctx = l_ctx;
1010 if (!is_sync_kiocb(iocb))
1011 dreq->iocb = iocb;
1012 pnfs_init_ds_commit_info_ops(&dreq->ds_cinfo, inode);
1013
1014 if (swap) {
1015 requested = nfs_direct_write_schedule_iovec(dreq, iter, pos,
1016 FLUSH_STABLE);
1017 } else {
1018 result = nfs_start_io_direct(inode);
1019 if (result) {
1020 /* release the reference that would usually be
1021 * consumed by nfs_direct_write_schedule_iovec()
1022 */
1023 nfs_direct_req_release(dreq);
1024 goto out_release;
1025 }
1026
1027 requested = nfs_direct_write_schedule_iovec(dreq, iter, pos,
1028 FLUSH_COND_STABLE);
1029
1030 if (mapping->nrpages) {
1031 invalidate_inode_pages2_range(mapping,
1032 pos >> PAGE_SHIFT, end);
1033 }
1034
1035 nfs_end_io_direct(inode);
1036 }
1037
1038 if (requested > 0) {
1039 result = nfs_direct_wait(dreq);
1040 if (result > 0) {
1041 requested -= result;
1042 iocb->ki_pos = pos + result;
1043 /* XXX: should check the generic_write_sync retval */
1044 generic_write_sync(iocb, result);
1045 }
1046 iov_iter_revert(iter, requested);
1047 } else {
1048 result = requested;
1049 }
1050 nfs_fscache_invalidate(inode, FSCACHE_INVAL_DIO_WRITE);
1051 out_release:
1052 nfs_direct_req_release(dreq);
1053 out:
1054 return result;
1055 }
1056
1057 /**
1058 * nfs_init_directcache - create a slab cache for nfs_direct_req structures
1059 *
1060 */
nfs_init_directcache(void)1061 int __init nfs_init_directcache(void)
1062 {
1063 nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
1064 sizeof(struct nfs_direct_req),
1065 0, SLAB_RECLAIM_ACCOUNT,
1066 NULL);
1067 if (nfs_direct_cachep == NULL)
1068 return -ENOMEM;
1069
1070 return 0;
1071 }
1072
1073 /**
1074 * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
1075 *
1076 */
nfs_destroy_directcache(void)1077 void nfs_destroy_directcache(void)
1078 {
1079 kmem_cache_destroy(nfs_direct_cachep);
1080 }
1081