1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/nfs/dir.c
4 *
5 * Copyright (C) 1992 Rick Sladkey
6 *
7 * nfs directory handling functions
8 *
9 * 10 Apr 1996 Added silly rename for unlink --okir
10 * 28 Sep 1996 Improved directory cache --okir
11 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
12 * Re-implemented silly rename for unlink, newly implemented
13 * silly rename for nfs_rename() following the suggestions
14 * of Olaf Kirch (okir) found in this file.
15 * Following Linus comments on my original hack, this version
16 * depends only on the dcache stuff and doesn't touch the inode
17 * layer (iput() and friends).
18 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
19 */
20
21 #include <linux/compat.h>
22 #include <linux/module.h>
23 #include <linux/time.h>
24 #include <linux/errno.h>
25 #include <linux/stat.h>
26 #include <linux/fcntl.h>
27 #include <linux/string.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/mm.h>
31 #include <linux/sunrpc/clnt.h>
32 #include <linux/nfs_fs.h>
33 #include <linux/nfs_mount.h>
34 #include <linux/pagemap.h>
35 #include <linux/pagevec.h>
36 #include <linux/namei.h>
37 #include <linux/mount.h>
38 #include <linux/swap.h>
39 #include <linux/sched.h>
40 #include <linux/kmemleak.h>
41 #include <linux/xattr.h>
42 #include <linux/hash.h>
43
44 #include "delegation.h"
45 #include "iostat.h"
46 #include "internal.h"
47 #include "fscache.h"
48
49 #include "nfstrace.h"
50
51 /* #define NFS_DEBUG_VERBOSE 1 */
52
53 static int nfs_opendir(struct inode *, struct file *);
54 static int nfs_closedir(struct inode *, struct file *);
55 static int nfs_readdir(struct file *, struct dir_context *);
56 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
57 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
58 static void nfs_readdir_clear_array(struct folio *);
59 static int nfs_do_create(struct inode *dir, struct dentry *dentry,
60 umode_t mode, int open_flags);
61
62 const struct file_operations nfs_dir_operations = {
63 .llseek = nfs_llseek_dir,
64 .read = generic_read_dir,
65 .iterate_shared = nfs_readdir,
66 .open = nfs_opendir,
67 .release = nfs_closedir,
68 .fsync = nfs_fsync_dir,
69 .setlease = simple_nosetlease,
70 };
71
72 const struct address_space_operations nfs_dir_aops = {
73 .free_folio = nfs_readdir_clear_array,
74 };
75
76 #define NFS_INIT_DTSIZE PAGE_SIZE
77
78 static struct nfs_open_dir_context *
alloc_nfs_open_dir_context(struct inode * dir)79 alloc_nfs_open_dir_context(struct inode *dir)
80 {
81 struct nfs_inode *nfsi = NFS_I(dir);
82 struct nfs_open_dir_context *ctx;
83
84 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL_ACCOUNT);
85 if (ctx != NULL) {
86 ctx->attr_gencount = nfsi->attr_gencount;
87 ctx->dtsize = NFS_INIT_DTSIZE;
88 spin_lock(&dir->i_lock);
89 if (list_empty(&nfsi->open_files) &&
90 (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER))
91 nfs_set_cache_invalid(dir,
92 NFS_INO_INVALID_DATA |
93 NFS_INO_REVAL_FORCED);
94 list_add_tail_rcu(&ctx->list, &nfsi->open_files);
95 memcpy(ctx->verf, nfsi->cookieverf, sizeof(ctx->verf));
96 spin_unlock(&dir->i_lock);
97 return ctx;
98 }
99 return ERR_PTR(-ENOMEM);
100 }
101
put_nfs_open_dir_context(struct inode * dir,struct nfs_open_dir_context * ctx)102 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
103 {
104 spin_lock(&dir->i_lock);
105 list_del_rcu(&ctx->list);
106 spin_unlock(&dir->i_lock);
107 kfree_rcu(ctx, rcu_head);
108 }
109
110 /*
111 * Open file
112 */
113 static int
nfs_opendir(struct inode * inode,struct file * filp)114 nfs_opendir(struct inode *inode, struct file *filp)
115 {
116 int res = 0;
117 struct nfs_open_dir_context *ctx;
118
119 dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
120
121 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
122
123 ctx = alloc_nfs_open_dir_context(inode);
124 if (IS_ERR(ctx)) {
125 res = PTR_ERR(ctx);
126 goto out;
127 }
128 filp->private_data = ctx;
129 out:
130 return res;
131 }
132
133 static int
nfs_closedir(struct inode * inode,struct file * filp)134 nfs_closedir(struct inode *inode, struct file *filp)
135 {
136 put_nfs_open_dir_context(file_inode(filp), filp->private_data);
137 return 0;
138 }
139
140 struct nfs_cache_array_entry {
141 u64 cookie;
142 u64 ino;
143 const char *name;
144 unsigned int name_len;
145 unsigned char d_type;
146 };
147
148 struct nfs_cache_array {
149 u64 change_attr;
150 u64 last_cookie;
151 unsigned int size;
152 unsigned char folio_full : 1,
153 folio_is_eof : 1,
154 cookies_are_ordered : 1;
155 struct nfs_cache_array_entry array[] __counted_by(size);
156 };
157
158 struct nfs_readdir_descriptor {
159 struct file *file;
160 struct folio *folio;
161 struct dir_context *ctx;
162 pgoff_t folio_index;
163 pgoff_t folio_index_max;
164 u64 dir_cookie;
165 u64 last_cookie;
166 loff_t current_index;
167
168 __be32 verf[NFS_DIR_VERIFIER_SIZE];
169 unsigned long dir_verifier;
170 unsigned long timestamp;
171 unsigned long gencount;
172 unsigned long attr_gencount;
173 unsigned int cache_entry_index;
174 unsigned int buffer_fills;
175 unsigned int dtsize;
176 bool clear_cache;
177 bool plus;
178 bool eob;
179 bool eof;
180 };
181
nfs_set_dtsize(struct nfs_readdir_descriptor * desc,unsigned int sz)182 static void nfs_set_dtsize(struct nfs_readdir_descriptor *desc, unsigned int sz)
183 {
184 struct nfs_server *server = NFS_SERVER(file_inode(desc->file));
185 unsigned int maxsize = server->dtsize;
186
187 if (sz > maxsize)
188 sz = maxsize;
189 if (sz < NFS_MIN_FILE_IO_SIZE)
190 sz = NFS_MIN_FILE_IO_SIZE;
191 desc->dtsize = sz;
192 }
193
nfs_shrink_dtsize(struct nfs_readdir_descriptor * desc)194 static void nfs_shrink_dtsize(struct nfs_readdir_descriptor *desc)
195 {
196 nfs_set_dtsize(desc, desc->dtsize >> 1);
197 }
198
nfs_grow_dtsize(struct nfs_readdir_descriptor * desc)199 static void nfs_grow_dtsize(struct nfs_readdir_descriptor *desc)
200 {
201 nfs_set_dtsize(desc, desc->dtsize << 1);
202 }
203
nfs_readdir_folio_init_array(struct folio * folio,u64 last_cookie,u64 change_attr)204 static void nfs_readdir_folio_init_array(struct folio *folio, u64 last_cookie,
205 u64 change_attr)
206 {
207 struct nfs_cache_array *array;
208
209 array = kmap_local_folio(folio, 0);
210 array->change_attr = change_attr;
211 array->last_cookie = last_cookie;
212 array->size = 0;
213 array->folio_full = 0;
214 array->folio_is_eof = 0;
215 array->cookies_are_ordered = 1;
216 kunmap_local(array);
217 }
218
219 /*
220 * we are freeing strings created by nfs_add_to_readdir_array()
221 */
nfs_readdir_clear_array(struct folio * folio)222 static void nfs_readdir_clear_array(struct folio *folio)
223 {
224 struct nfs_cache_array *array;
225 unsigned int i;
226
227 array = kmap_local_folio(folio, 0);
228 for (i = 0; i < array->size; i++)
229 kfree(array->array[i].name);
230 array->size = 0;
231 kunmap_local(array);
232 }
233
nfs_readdir_folio_reinit_array(struct folio * folio,u64 last_cookie,u64 change_attr)234 static void nfs_readdir_folio_reinit_array(struct folio *folio, u64 last_cookie,
235 u64 change_attr)
236 {
237 nfs_readdir_clear_array(folio);
238 nfs_readdir_folio_init_array(folio, last_cookie, change_attr);
239 }
240
241 static struct folio *
nfs_readdir_folio_array_alloc(u64 last_cookie,gfp_t gfp_flags)242 nfs_readdir_folio_array_alloc(u64 last_cookie, gfp_t gfp_flags)
243 {
244 struct folio *folio = folio_alloc(gfp_flags, 0);
245 if (folio)
246 nfs_readdir_folio_init_array(folio, last_cookie, 0);
247 return folio;
248 }
249
nfs_readdir_folio_array_free(struct folio * folio)250 static void nfs_readdir_folio_array_free(struct folio *folio)
251 {
252 if (folio) {
253 nfs_readdir_clear_array(folio);
254 folio_put(folio);
255 }
256 }
257
nfs_readdir_array_index_cookie(struct nfs_cache_array * array)258 static u64 nfs_readdir_array_index_cookie(struct nfs_cache_array *array)
259 {
260 return array->size == 0 ? array->last_cookie : array->array[0].cookie;
261 }
262
nfs_readdir_array_set_eof(struct nfs_cache_array * array)263 static void nfs_readdir_array_set_eof(struct nfs_cache_array *array)
264 {
265 array->folio_is_eof = 1;
266 array->folio_full = 1;
267 }
268
nfs_readdir_array_is_full(struct nfs_cache_array * array)269 static bool nfs_readdir_array_is_full(struct nfs_cache_array *array)
270 {
271 return array->folio_full;
272 }
273
274 /*
275 * the caller is responsible for freeing qstr.name
276 * when called by nfs_readdir_add_to_array, the strings will be freed in
277 * nfs_clear_readdir_array()
278 */
nfs_readdir_copy_name(const char * name,unsigned int len)279 static const char *nfs_readdir_copy_name(const char *name, unsigned int len)
280 {
281 const char *ret = kmemdup_nul(name, len, GFP_KERNEL);
282
283 /*
284 * Avoid a kmemleak false positive. The pointer to the name is stored
285 * in a page cache page which kmemleak does not scan.
286 */
287 if (ret != NULL)
288 kmemleak_not_leak(ret);
289 return ret;
290 }
291
nfs_readdir_array_maxentries(void)292 static size_t nfs_readdir_array_maxentries(void)
293 {
294 return (PAGE_SIZE - sizeof(struct nfs_cache_array)) /
295 sizeof(struct nfs_cache_array_entry);
296 }
297
298 /*
299 * Check that the next array entry lies entirely within the page bounds
300 */
nfs_readdir_array_can_expand(struct nfs_cache_array * array)301 static int nfs_readdir_array_can_expand(struct nfs_cache_array *array)
302 {
303 if (array->folio_full)
304 return -ENOSPC;
305 if (array->size == nfs_readdir_array_maxentries()) {
306 array->folio_full = 1;
307 return -ENOSPC;
308 }
309 return 0;
310 }
311
nfs_readdir_folio_array_append(struct folio * folio,const struct nfs_entry * entry,u64 * cookie)312 static int nfs_readdir_folio_array_append(struct folio *folio,
313 const struct nfs_entry *entry,
314 u64 *cookie)
315 {
316 struct nfs_cache_array *array;
317 struct nfs_cache_array_entry *cache_entry;
318 const char *name;
319 int ret = -ENOMEM;
320
321 name = nfs_readdir_copy_name(entry->name, entry->len);
322
323 array = kmap_local_folio(folio, 0);
324 if (!name)
325 goto out;
326 ret = nfs_readdir_array_can_expand(array);
327 if (ret) {
328 kfree(name);
329 goto out;
330 }
331
332 array->size++;
333 cache_entry = &array->array[array->size - 1];
334 cache_entry->cookie = array->last_cookie;
335 cache_entry->ino = entry->ino;
336 cache_entry->d_type = entry->d_type;
337 cache_entry->name_len = entry->len;
338 cache_entry->name = name;
339 array->last_cookie = entry->cookie;
340 if (array->last_cookie <= cache_entry->cookie)
341 array->cookies_are_ordered = 0;
342 if (entry->eof != 0)
343 nfs_readdir_array_set_eof(array);
344 out:
345 *cookie = array->last_cookie;
346 kunmap_local(array);
347 return ret;
348 }
349
350 #define NFS_READDIR_COOKIE_MASK (U32_MAX >> 14)
351 /*
352 * Hash algorithm allowing content addressible access to sequences
353 * of directory cookies. Content is addressed by the value of the
354 * cookie index of the first readdir entry in a page.
355 *
356 * We select only the first 18 bits to avoid issues with excessive
357 * memory use for the page cache XArray. 18 bits should allow the caching
358 * of 262144 pages of sequences of readdir entries. Since each page holds
359 * 127 readdir entries for a typical 64-bit system, that works out to a
360 * cache of ~ 33 million entries per directory.
361 */
nfs_readdir_folio_cookie_hash(u64 cookie)362 static pgoff_t nfs_readdir_folio_cookie_hash(u64 cookie)
363 {
364 if (cookie == 0)
365 return 0;
366 return hash_64(cookie, 18);
367 }
368
nfs_readdir_folio_validate(struct folio * folio,u64 last_cookie,u64 change_attr)369 static bool nfs_readdir_folio_validate(struct folio *folio, u64 last_cookie,
370 u64 change_attr)
371 {
372 struct nfs_cache_array *array = kmap_local_folio(folio, 0);
373 int ret = true;
374
375 if (array->change_attr != change_attr)
376 ret = false;
377 if (nfs_readdir_array_index_cookie(array) != last_cookie)
378 ret = false;
379 kunmap_local(array);
380 return ret;
381 }
382
nfs_readdir_folio_unlock_and_put(struct folio * folio)383 static void nfs_readdir_folio_unlock_and_put(struct folio *folio)
384 {
385 folio_unlock(folio);
386 folio_put(folio);
387 }
388
nfs_readdir_folio_init_and_validate(struct folio * folio,u64 cookie,u64 change_attr)389 static void nfs_readdir_folio_init_and_validate(struct folio *folio, u64 cookie,
390 u64 change_attr)
391 {
392 if (folio_test_uptodate(folio)) {
393 if (nfs_readdir_folio_validate(folio, cookie, change_attr))
394 return;
395 nfs_readdir_clear_array(folio);
396 }
397 nfs_readdir_folio_init_array(folio, cookie, change_attr);
398 folio_mark_uptodate(folio);
399 }
400
nfs_readdir_folio_get_locked(struct address_space * mapping,u64 cookie,u64 change_attr)401 static struct folio *nfs_readdir_folio_get_locked(struct address_space *mapping,
402 u64 cookie, u64 change_attr)
403 {
404 pgoff_t index = nfs_readdir_folio_cookie_hash(cookie);
405 struct folio *folio;
406
407 folio = filemap_grab_folio(mapping, index);
408 if (IS_ERR(folio))
409 return NULL;
410 nfs_readdir_folio_init_and_validate(folio, cookie, change_attr);
411 return folio;
412 }
413
nfs_readdir_folio_last_cookie(struct folio * folio)414 static u64 nfs_readdir_folio_last_cookie(struct folio *folio)
415 {
416 struct nfs_cache_array *array;
417 u64 ret;
418
419 array = kmap_local_folio(folio, 0);
420 ret = array->last_cookie;
421 kunmap_local(array);
422 return ret;
423 }
424
nfs_readdir_folio_needs_filling(struct folio * folio)425 static bool nfs_readdir_folio_needs_filling(struct folio *folio)
426 {
427 struct nfs_cache_array *array;
428 bool ret;
429
430 array = kmap_local_folio(folio, 0);
431 ret = !nfs_readdir_array_is_full(array);
432 kunmap_local(array);
433 return ret;
434 }
435
nfs_readdir_folio_set_eof(struct folio * folio)436 static void nfs_readdir_folio_set_eof(struct folio *folio)
437 {
438 struct nfs_cache_array *array;
439
440 array = kmap_local_folio(folio, 0);
441 nfs_readdir_array_set_eof(array);
442 kunmap_local(array);
443 }
444
nfs_readdir_folio_get_next(struct address_space * mapping,u64 cookie,u64 change_attr)445 static struct folio *nfs_readdir_folio_get_next(struct address_space *mapping,
446 u64 cookie, u64 change_attr)
447 {
448 pgoff_t index = nfs_readdir_folio_cookie_hash(cookie);
449 struct folio *folio;
450
451 folio = __filemap_get_folio(mapping, index,
452 FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT,
453 mapping_gfp_mask(mapping));
454 if (IS_ERR(folio))
455 return NULL;
456 nfs_readdir_folio_init_and_validate(folio, cookie, change_attr);
457 if (nfs_readdir_folio_last_cookie(folio) != cookie)
458 nfs_readdir_folio_reinit_array(folio, cookie, change_attr);
459 return folio;
460 }
461
462 static inline
is_32bit_api(void)463 int is_32bit_api(void)
464 {
465 #ifdef CONFIG_COMPAT
466 return in_compat_syscall();
467 #else
468 return (BITS_PER_LONG == 32);
469 #endif
470 }
471
472 static
nfs_readdir_use_cookie(const struct file * filp)473 bool nfs_readdir_use_cookie(const struct file *filp)
474 {
475 if ((filp->f_mode & FMODE_32BITHASH) ||
476 (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
477 return false;
478 return true;
479 }
480
nfs_readdir_seek_next_array(struct nfs_cache_array * array,struct nfs_readdir_descriptor * desc)481 static void nfs_readdir_seek_next_array(struct nfs_cache_array *array,
482 struct nfs_readdir_descriptor *desc)
483 {
484 if (array->folio_full) {
485 desc->last_cookie = array->last_cookie;
486 desc->current_index += array->size;
487 desc->cache_entry_index = 0;
488 desc->folio_index++;
489 } else
490 desc->last_cookie = nfs_readdir_array_index_cookie(array);
491 }
492
nfs_readdir_rewind_search(struct nfs_readdir_descriptor * desc)493 static void nfs_readdir_rewind_search(struct nfs_readdir_descriptor *desc)
494 {
495 desc->current_index = 0;
496 desc->last_cookie = 0;
497 desc->folio_index = 0;
498 }
499
nfs_readdir_search_for_pos(struct nfs_cache_array * array,struct nfs_readdir_descriptor * desc)500 static int nfs_readdir_search_for_pos(struct nfs_cache_array *array,
501 struct nfs_readdir_descriptor *desc)
502 {
503 loff_t diff = desc->ctx->pos - desc->current_index;
504 unsigned int index;
505
506 if (diff < 0)
507 goto out_eof;
508 if (diff >= array->size) {
509 if (array->folio_is_eof)
510 goto out_eof;
511 nfs_readdir_seek_next_array(array, desc);
512 return -EAGAIN;
513 }
514
515 index = (unsigned int)diff;
516 desc->dir_cookie = array->array[index].cookie;
517 desc->cache_entry_index = index;
518 return 0;
519 out_eof:
520 desc->eof = true;
521 return -EBADCOOKIE;
522 }
523
nfs_readdir_array_cookie_in_range(struct nfs_cache_array * array,u64 cookie)524 static bool nfs_readdir_array_cookie_in_range(struct nfs_cache_array *array,
525 u64 cookie)
526 {
527 if (!array->cookies_are_ordered)
528 return true;
529 /* Optimisation for monotonically increasing cookies */
530 if (cookie >= array->last_cookie)
531 return false;
532 if (array->size && cookie < array->array[0].cookie)
533 return false;
534 return true;
535 }
536
nfs_readdir_search_for_cookie(struct nfs_cache_array * array,struct nfs_readdir_descriptor * desc)537 static int nfs_readdir_search_for_cookie(struct nfs_cache_array *array,
538 struct nfs_readdir_descriptor *desc)
539 {
540 unsigned int i;
541 int status = -EAGAIN;
542
543 if (!nfs_readdir_array_cookie_in_range(array, desc->dir_cookie))
544 goto check_eof;
545
546 for (i = 0; i < array->size; i++) {
547 if (array->array[i].cookie == desc->dir_cookie) {
548 if (nfs_readdir_use_cookie(desc->file))
549 desc->ctx->pos = desc->dir_cookie;
550 else
551 desc->ctx->pos = desc->current_index + i;
552 desc->cache_entry_index = i;
553 return 0;
554 }
555 }
556 check_eof:
557 if (array->folio_is_eof) {
558 status = -EBADCOOKIE;
559 if (desc->dir_cookie == array->last_cookie)
560 desc->eof = true;
561 } else
562 nfs_readdir_seek_next_array(array, desc);
563 return status;
564 }
565
nfs_readdir_search_array(struct nfs_readdir_descriptor * desc)566 static int nfs_readdir_search_array(struct nfs_readdir_descriptor *desc)
567 {
568 struct nfs_cache_array *array;
569 int status;
570
571 array = kmap_local_folio(desc->folio, 0);
572
573 if (desc->dir_cookie == 0)
574 status = nfs_readdir_search_for_pos(array, desc);
575 else
576 status = nfs_readdir_search_for_cookie(array, desc);
577
578 kunmap_local(array);
579 return status;
580 }
581
582 /* Fill a page with xdr information before transferring to the cache page */
nfs_readdir_xdr_filler(struct nfs_readdir_descriptor * desc,__be32 * verf,u64 cookie,struct page ** pages,size_t bufsize,__be32 * verf_res)583 static int nfs_readdir_xdr_filler(struct nfs_readdir_descriptor *desc,
584 __be32 *verf, u64 cookie,
585 struct page **pages, size_t bufsize,
586 __be32 *verf_res)
587 {
588 struct inode *inode = file_inode(desc->file);
589 struct nfs_readdir_arg arg = {
590 .dentry = file_dentry(desc->file),
591 .cred = desc->file->f_cred,
592 .verf = verf,
593 .cookie = cookie,
594 .pages = pages,
595 .page_len = bufsize,
596 .plus = desc->plus,
597 };
598 struct nfs_readdir_res res = {
599 .verf = verf_res,
600 };
601 unsigned long timestamp, gencount;
602 int error;
603
604 again:
605 timestamp = jiffies;
606 gencount = nfs_inc_attr_generation_counter();
607 desc->dir_verifier = nfs_save_change_attribute(inode);
608 error = NFS_PROTO(inode)->readdir(&arg, &res);
609 if (error < 0) {
610 /* We requested READDIRPLUS, but the server doesn't grok it */
611 if (error == -ENOTSUPP && desc->plus) {
612 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
613 desc->plus = arg.plus = false;
614 goto again;
615 }
616 goto error;
617 }
618 desc->timestamp = timestamp;
619 desc->gencount = gencount;
620 error:
621 return error;
622 }
623
xdr_decode(struct nfs_readdir_descriptor * desc,struct nfs_entry * entry,struct xdr_stream * xdr)624 static int xdr_decode(struct nfs_readdir_descriptor *desc,
625 struct nfs_entry *entry, struct xdr_stream *xdr)
626 {
627 struct inode *inode = file_inode(desc->file);
628 int error;
629
630 error = NFS_PROTO(inode)->decode_dirent(xdr, entry, desc->plus);
631 if (error)
632 return error;
633 entry->fattr->time_start = desc->timestamp;
634 entry->fattr->gencount = desc->gencount;
635 return 0;
636 }
637
638 /* Match file and dirent using either filehandle or fileid
639 * Note: caller is responsible for checking the fsid
640 */
641 static
nfs_same_file(struct dentry * dentry,struct nfs_entry * entry)642 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
643 {
644 struct inode *inode;
645 struct nfs_inode *nfsi;
646
647 if (d_really_is_negative(dentry))
648 return 0;
649
650 inode = d_inode(dentry);
651 if (is_bad_inode(inode) || NFS_STALE(inode))
652 return 0;
653
654 nfsi = NFS_I(inode);
655 if (entry->fattr->fileid != nfsi->fileid)
656 return 0;
657 if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
658 return 0;
659 return 1;
660 }
661
662 #define NFS_READDIR_CACHE_USAGE_THRESHOLD (8UL)
663
nfs_use_readdirplus(struct inode * dir,struct dir_context * ctx,unsigned int cache_hits,unsigned int cache_misses)664 static bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx,
665 unsigned int cache_hits,
666 unsigned int cache_misses)
667 {
668 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
669 return false;
670 if (NFS_SERVER(dir)->flags & NFS_MOUNT_FORCE_RDIRPLUS)
671 return true;
672 if (ctx->pos == 0 ||
673 cache_hits + cache_misses > NFS_READDIR_CACHE_USAGE_THRESHOLD)
674 return true;
675 return false;
676 }
677
678 /*
679 * This function is called by the getattr code to request the
680 * use of readdirplus to accelerate any future lookups in the same
681 * directory.
682 */
nfs_readdir_record_entry_cache_hit(struct inode * dir)683 void nfs_readdir_record_entry_cache_hit(struct inode *dir)
684 {
685 struct nfs_inode *nfsi = NFS_I(dir);
686 struct nfs_open_dir_context *ctx;
687
688 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
689 S_ISDIR(dir->i_mode)) {
690 rcu_read_lock();
691 list_for_each_entry_rcu (ctx, &nfsi->open_files, list)
692 atomic_inc(&ctx->cache_hits);
693 rcu_read_unlock();
694 }
695 }
696
697 /*
698 * This function is mainly for use by nfs_getattr().
699 *
700 * If this is an 'ls -l', we want to force use of readdirplus.
701 */
nfs_readdir_record_entry_cache_miss(struct inode * dir)702 void nfs_readdir_record_entry_cache_miss(struct inode *dir)
703 {
704 struct nfs_inode *nfsi = NFS_I(dir);
705 struct nfs_open_dir_context *ctx;
706
707 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
708 S_ISDIR(dir->i_mode)) {
709 rcu_read_lock();
710 list_for_each_entry_rcu (ctx, &nfsi->open_files, list)
711 atomic_inc(&ctx->cache_misses);
712 rcu_read_unlock();
713 }
714 }
715
nfs_lookup_advise_force_readdirplus(struct inode * dir,unsigned int flags)716 static void nfs_lookup_advise_force_readdirplus(struct inode *dir,
717 unsigned int flags)
718 {
719 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
720 return;
721 if (flags & (LOOKUP_EXCL | LOOKUP_PARENT | LOOKUP_REVAL))
722 return;
723 nfs_readdir_record_entry_cache_miss(dir);
724 }
725
726 static
nfs_prime_dcache(struct dentry * parent,struct nfs_entry * entry,unsigned long dir_verifier)727 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry,
728 unsigned long dir_verifier)
729 {
730 struct qstr filename = QSTR_INIT(entry->name, entry->len);
731 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
732 struct dentry *dentry;
733 struct dentry *alias;
734 struct inode *inode;
735 int status;
736
737 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
738 return;
739 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
740 return;
741 if (filename.len == 0)
742 return;
743 /* Validate that the name doesn't contain any illegal '\0' */
744 if (strnlen(filename.name, filename.len) != filename.len)
745 return;
746 /* ...or '/' */
747 if (strnchr(filename.name, filename.len, '/'))
748 return;
749 if (filename.name[0] == '.') {
750 if (filename.len == 1)
751 return;
752 if (filename.len == 2 && filename.name[1] == '.')
753 return;
754 }
755 filename.hash = full_name_hash(parent, filename.name, filename.len);
756
757 dentry = d_lookup(parent, &filename);
758 again:
759 if (!dentry) {
760 dentry = d_alloc_parallel(parent, &filename, &wq);
761 if (IS_ERR(dentry))
762 return;
763 }
764 if (!d_in_lookup(dentry)) {
765 /* Is there a mountpoint here? If so, just exit */
766 if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
767 &entry->fattr->fsid))
768 goto out;
769 if (nfs_same_file(dentry, entry)) {
770 if (!entry->fh->size)
771 goto out;
772 nfs_set_verifier(dentry, dir_verifier);
773 status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
774 if (!status)
775 nfs_setsecurity(d_inode(dentry), entry->fattr);
776 trace_nfs_readdir_lookup_revalidate(d_inode(parent),
777 dentry, 0, status);
778 goto out;
779 } else {
780 trace_nfs_readdir_lookup_revalidate_failed(
781 d_inode(parent), dentry, 0);
782 d_invalidate(dentry);
783 dput(dentry);
784 dentry = NULL;
785 goto again;
786 }
787 }
788 if (!entry->fh->size) {
789 d_lookup_done(dentry);
790 goto out;
791 }
792
793 nfs_set_verifier(dentry, dir_verifier);
794 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
795 alias = d_splice_alias(inode, dentry);
796 d_lookup_done(dentry);
797 if (alias) {
798 if (IS_ERR(alias))
799 goto out;
800 nfs_set_verifier(alias, dir_verifier);
801 dput(dentry);
802 dentry = alias;
803 }
804 trace_nfs_readdir_lookup(d_inode(parent), dentry, 0);
805 out:
806 dput(dentry);
807 }
808
nfs_readdir_entry_decode(struct nfs_readdir_descriptor * desc,struct nfs_entry * entry,struct xdr_stream * stream)809 static int nfs_readdir_entry_decode(struct nfs_readdir_descriptor *desc,
810 struct nfs_entry *entry,
811 struct xdr_stream *stream)
812 {
813 int ret;
814
815 if (entry->fattr->label)
816 entry->fattr->label->len = NFS4_MAXLABELLEN;
817 ret = xdr_decode(desc, entry, stream);
818 if (ret || !desc->plus)
819 return ret;
820 nfs_prime_dcache(file_dentry(desc->file), entry, desc->dir_verifier);
821 return 0;
822 }
823
824 /* Perform conversion from xdr to cache array */
nfs_readdir_folio_filler(struct nfs_readdir_descriptor * desc,struct nfs_entry * entry,struct page ** xdr_pages,unsigned int buflen,struct folio ** arrays,size_t narrays,u64 change_attr)825 static int nfs_readdir_folio_filler(struct nfs_readdir_descriptor *desc,
826 struct nfs_entry *entry,
827 struct page **xdr_pages, unsigned int buflen,
828 struct folio **arrays, size_t narrays,
829 u64 change_attr)
830 {
831 struct address_space *mapping = desc->file->f_mapping;
832 struct folio *new, *folio = *arrays;
833 struct xdr_stream stream;
834 struct folio *scratch;
835 struct xdr_buf buf;
836 u64 cookie;
837 int status;
838
839 scratch = folio_alloc(GFP_KERNEL, 0);
840 if (scratch == NULL)
841 return -ENOMEM;
842
843 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
844 xdr_set_scratch_folio(&stream, scratch);
845
846 do {
847 status = nfs_readdir_entry_decode(desc, entry, &stream);
848 if (status != 0)
849 break;
850
851 status = nfs_readdir_folio_array_append(folio, entry, &cookie);
852 if (status != -ENOSPC)
853 continue;
854
855 if (folio->mapping != mapping) {
856 if (!--narrays)
857 break;
858 new = nfs_readdir_folio_array_alloc(cookie, GFP_KERNEL);
859 if (!new)
860 break;
861 arrays++;
862 *arrays = folio = new;
863 } else {
864 new = nfs_readdir_folio_get_next(mapping, cookie,
865 change_attr);
866 if (!new)
867 break;
868 if (folio != *arrays)
869 nfs_readdir_folio_unlock_and_put(folio);
870 folio = new;
871 }
872 desc->folio_index_max++;
873 status = nfs_readdir_folio_array_append(folio, entry, &cookie);
874 } while (!status && !entry->eof);
875
876 switch (status) {
877 case -EBADCOOKIE:
878 if (!entry->eof)
879 break;
880 nfs_readdir_folio_set_eof(folio);
881 fallthrough;
882 case -EAGAIN:
883 status = 0;
884 break;
885 case -ENOSPC:
886 status = 0;
887 if (!desc->plus)
888 break;
889 while (!nfs_readdir_entry_decode(desc, entry, &stream))
890 ;
891 }
892
893 if (folio != *arrays)
894 nfs_readdir_folio_unlock_and_put(folio);
895
896 folio_put(scratch);
897 return status;
898 }
899
nfs_readdir_free_pages(struct page ** pages,size_t npages)900 static void nfs_readdir_free_pages(struct page **pages, size_t npages)
901 {
902 while (npages--)
903 put_page(pages[npages]);
904 kfree(pages);
905 }
906
907 /*
908 * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call
909 * to nfs_readdir_free_pages()
910 */
nfs_readdir_alloc_pages(size_t npages)911 static struct page **nfs_readdir_alloc_pages(size_t npages)
912 {
913 struct page **pages;
914 size_t i;
915
916 pages = kmalloc_array(npages, sizeof(*pages), GFP_KERNEL);
917 if (!pages)
918 return NULL;
919 for (i = 0; i < npages; i++) {
920 struct page *page = alloc_page(GFP_KERNEL);
921 if (page == NULL)
922 goto out_freepages;
923 pages[i] = page;
924 }
925 return pages;
926
927 out_freepages:
928 nfs_readdir_free_pages(pages, i);
929 return NULL;
930 }
931
nfs_readdir_xdr_to_array(struct nfs_readdir_descriptor * desc,__be32 * verf_arg,__be32 * verf_res,struct folio ** arrays,size_t narrays)932 static int nfs_readdir_xdr_to_array(struct nfs_readdir_descriptor *desc,
933 __be32 *verf_arg, __be32 *verf_res,
934 struct folio **arrays, size_t narrays)
935 {
936 u64 change_attr;
937 struct page **pages;
938 struct folio *folio = *arrays;
939 struct nfs_entry *entry;
940 size_t array_size;
941 struct inode *inode = file_inode(desc->file);
942 unsigned int dtsize = desc->dtsize;
943 unsigned int pglen;
944 int status = -ENOMEM;
945
946 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
947 if (!entry)
948 return -ENOMEM;
949 entry->cookie = nfs_readdir_folio_last_cookie(folio);
950 entry->fh = nfs_alloc_fhandle();
951 entry->fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode));
952 entry->server = NFS_SERVER(inode);
953 if (entry->fh == NULL || entry->fattr == NULL)
954 goto out;
955
956 array_size = (dtsize + PAGE_SIZE - 1) >> PAGE_SHIFT;
957 pages = nfs_readdir_alloc_pages(array_size);
958 if (!pages)
959 goto out;
960
961 change_attr = inode_peek_iversion_raw(inode);
962 status = nfs_readdir_xdr_filler(desc, verf_arg, entry->cookie, pages,
963 dtsize, verf_res);
964 if (status < 0)
965 goto free_pages;
966
967 pglen = status;
968 if (pglen != 0)
969 status = nfs_readdir_folio_filler(desc, entry, pages, pglen,
970 arrays, narrays, change_attr);
971 else
972 nfs_readdir_folio_set_eof(folio);
973 desc->buffer_fills++;
974
975 free_pages:
976 nfs_readdir_free_pages(pages, array_size);
977 out:
978 nfs_free_fattr(entry->fattr);
979 nfs_free_fhandle(entry->fh);
980 kfree(entry);
981 return status;
982 }
983
nfs_readdir_folio_put(struct nfs_readdir_descriptor * desc)984 static void nfs_readdir_folio_put(struct nfs_readdir_descriptor *desc)
985 {
986 folio_put(desc->folio);
987 desc->folio = NULL;
988 }
989
990 static void
nfs_readdir_folio_unlock_and_put_cached(struct nfs_readdir_descriptor * desc)991 nfs_readdir_folio_unlock_and_put_cached(struct nfs_readdir_descriptor *desc)
992 {
993 folio_unlock(desc->folio);
994 nfs_readdir_folio_put(desc);
995 }
996
997 static struct folio *
nfs_readdir_folio_get_cached(struct nfs_readdir_descriptor * desc)998 nfs_readdir_folio_get_cached(struct nfs_readdir_descriptor *desc)
999 {
1000 struct address_space *mapping = desc->file->f_mapping;
1001 u64 change_attr = inode_peek_iversion_raw(mapping->host);
1002 u64 cookie = desc->last_cookie;
1003 struct folio *folio;
1004
1005 folio = nfs_readdir_folio_get_locked(mapping, cookie, change_attr);
1006 if (!folio)
1007 return NULL;
1008 if (desc->clear_cache && !nfs_readdir_folio_needs_filling(folio))
1009 nfs_readdir_folio_reinit_array(folio, cookie, change_attr);
1010 return folio;
1011 }
1012
1013 /*
1014 * Returns 0 if desc->dir_cookie was found on page desc->page_index
1015 * and locks the page to prevent removal from the page cache.
1016 */
find_and_lock_cache_page(struct nfs_readdir_descriptor * desc)1017 static int find_and_lock_cache_page(struct nfs_readdir_descriptor *desc)
1018 {
1019 struct inode *inode = file_inode(desc->file);
1020 struct nfs_inode *nfsi = NFS_I(inode);
1021 __be32 verf[NFS_DIR_VERIFIER_SIZE];
1022 int res;
1023
1024 desc->folio = nfs_readdir_folio_get_cached(desc);
1025 if (!desc->folio)
1026 return -ENOMEM;
1027 if (nfs_readdir_folio_needs_filling(desc->folio)) {
1028 /* Grow the dtsize if we had to go back for more pages */
1029 if (desc->folio_index == desc->folio_index_max)
1030 nfs_grow_dtsize(desc);
1031 desc->folio_index_max = desc->folio_index;
1032 trace_nfs_readdir_cache_fill(desc->file, nfsi->cookieverf,
1033 desc->last_cookie,
1034 desc->folio->index, desc->dtsize);
1035 res = nfs_readdir_xdr_to_array(desc, nfsi->cookieverf, verf,
1036 &desc->folio, 1);
1037 if (res < 0) {
1038 nfs_readdir_folio_unlock_and_put_cached(desc);
1039 trace_nfs_readdir_cache_fill_done(inode, res);
1040 if (res == -EBADCOOKIE || res == -ENOTSYNC) {
1041 invalidate_inode_pages2(desc->file->f_mapping);
1042 nfs_readdir_rewind_search(desc);
1043 trace_nfs_readdir_invalidate_cache_range(
1044 inode, 0, MAX_LFS_FILESIZE);
1045 return -EAGAIN;
1046 }
1047 return res;
1048 }
1049 /*
1050 * Set the cookie verifier if the page cache was empty
1051 */
1052 if (desc->last_cookie == 0 &&
1053 memcmp(nfsi->cookieverf, verf, sizeof(nfsi->cookieverf))) {
1054 memcpy(nfsi->cookieverf, verf,
1055 sizeof(nfsi->cookieverf));
1056 invalidate_inode_pages2_range(desc->file->f_mapping, 1,
1057 -1);
1058 trace_nfs_readdir_invalidate_cache_range(
1059 inode, 1, MAX_LFS_FILESIZE);
1060 }
1061 desc->clear_cache = false;
1062 }
1063 res = nfs_readdir_search_array(desc);
1064 if (res == 0)
1065 return 0;
1066 nfs_readdir_folio_unlock_and_put_cached(desc);
1067 return res;
1068 }
1069
1070 /* Search for desc->dir_cookie from the beginning of the page cache */
readdir_search_pagecache(struct nfs_readdir_descriptor * desc)1071 static int readdir_search_pagecache(struct nfs_readdir_descriptor *desc)
1072 {
1073 int res;
1074
1075 do {
1076 res = find_and_lock_cache_page(desc);
1077 } while (res == -EAGAIN);
1078 return res;
1079 }
1080
1081 #define NFS_READDIR_CACHE_MISS_THRESHOLD (16UL)
1082
1083 /*
1084 * Once we've found the start of the dirent within a page: fill 'er up...
1085 */
nfs_do_filldir(struct nfs_readdir_descriptor * desc,const __be32 * verf)1086 static void nfs_do_filldir(struct nfs_readdir_descriptor *desc,
1087 const __be32 *verf)
1088 {
1089 struct file *file = desc->file;
1090 struct nfs_cache_array *array;
1091 unsigned int i;
1092 bool first_emit = !desc->dir_cookie;
1093
1094 array = kmap_local_folio(desc->folio, 0);
1095 for (i = desc->cache_entry_index; i < array->size; i++) {
1096 struct nfs_cache_array_entry *ent;
1097
1098 /*
1099 * nfs_readdir_handle_cache_misses return force clear at
1100 * (cache_misses > NFS_READDIR_CACHE_MISS_THRESHOLD) for
1101 * readdir heuristic, NFS_READDIR_CACHE_MISS_THRESHOLD + 1
1102 * entries need be emitted here.
1103 */
1104 if (first_emit && i > NFS_READDIR_CACHE_MISS_THRESHOLD + 2) {
1105 desc->eob = true;
1106 break;
1107 }
1108
1109 ent = &array->array[i];
1110 if (!dir_emit(desc->ctx, ent->name, ent->name_len,
1111 nfs_compat_user_ino64(ent->ino), ent->d_type)) {
1112 desc->eob = true;
1113 break;
1114 }
1115 memcpy(desc->verf, verf, sizeof(desc->verf));
1116 if (i == array->size - 1) {
1117 desc->dir_cookie = array->last_cookie;
1118 nfs_readdir_seek_next_array(array, desc);
1119 } else {
1120 desc->dir_cookie = array->array[i + 1].cookie;
1121 desc->last_cookie = array->array[0].cookie;
1122 }
1123 if (nfs_readdir_use_cookie(file))
1124 desc->ctx->pos = desc->dir_cookie;
1125 else
1126 desc->ctx->pos++;
1127 }
1128 if (array->folio_is_eof)
1129 desc->eof = !desc->eob;
1130
1131 kunmap_local(array);
1132 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %llu\n",
1133 (unsigned long long)desc->dir_cookie);
1134 }
1135
1136 /*
1137 * If we cannot find a cookie in our cache, we suspect that this is
1138 * because it points to a deleted file, so we ask the server to return
1139 * whatever it thinks is the next entry. We then feed this to filldir.
1140 * If all goes well, we should then be able to find our way round the
1141 * cache on the next call to readdir_search_pagecache();
1142 *
1143 * NOTE: we cannot add the anonymous page to the pagecache because
1144 * the data it contains might not be page aligned. Besides,
1145 * we should already have a complete representation of the
1146 * directory in the page cache by the time we get here.
1147 */
uncached_readdir(struct nfs_readdir_descriptor * desc)1148 static int uncached_readdir(struct nfs_readdir_descriptor *desc)
1149 {
1150 struct folio **arrays;
1151 size_t i, sz = 512;
1152 __be32 verf[NFS_DIR_VERIFIER_SIZE];
1153 int status = -ENOMEM;
1154
1155 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %llu\n",
1156 (unsigned long long)desc->dir_cookie);
1157
1158 arrays = kcalloc(sz, sizeof(*arrays), GFP_KERNEL);
1159 if (!arrays)
1160 goto out;
1161 arrays[0] = nfs_readdir_folio_array_alloc(desc->dir_cookie, GFP_KERNEL);
1162 if (!arrays[0])
1163 goto out;
1164
1165 desc->folio_index = 0;
1166 desc->cache_entry_index = 0;
1167 desc->last_cookie = desc->dir_cookie;
1168 desc->folio_index_max = 0;
1169
1170 trace_nfs_readdir_uncached(desc->file, desc->verf, desc->last_cookie,
1171 -1, desc->dtsize);
1172
1173 status = nfs_readdir_xdr_to_array(desc, desc->verf, verf, arrays, sz);
1174 if (status < 0) {
1175 trace_nfs_readdir_uncached_done(file_inode(desc->file), status);
1176 goto out_free;
1177 }
1178
1179 for (i = 0; !desc->eob && i < sz && arrays[i]; i++) {
1180 desc->folio = arrays[i];
1181 nfs_do_filldir(desc, verf);
1182 }
1183 desc->folio = NULL;
1184
1185 /*
1186 * Grow the dtsize if we have to go back for more pages,
1187 * or shrink it if we're reading too many.
1188 */
1189 if (!desc->eof) {
1190 if (!desc->eob)
1191 nfs_grow_dtsize(desc);
1192 else if (desc->buffer_fills == 1 &&
1193 i < (desc->folio_index_max >> 1))
1194 nfs_shrink_dtsize(desc);
1195 }
1196 out_free:
1197 for (i = 0; i < sz && arrays[i]; i++)
1198 nfs_readdir_folio_array_free(arrays[i]);
1199 out:
1200 if (!nfs_readdir_use_cookie(desc->file))
1201 nfs_readdir_rewind_search(desc);
1202 desc->folio_index_max = -1;
1203 kfree(arrays);
1204 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, status);
1205 return status;
1206 }
1207
nfs_readdir_handle_cache_misses(struct inode * inode,struct nfs_readdir_descriptor * desc,unsigned int cache_misses,bool force_clear)1208 static bool nfs_readdir_handle_cache_misses(struct inode *inode,
1209 struct nfs_readdir_descriptor *desc,
1210 unsigned int cache_misses,
1211 bool force_clear)
1212 {
1213 if (desc->ctx->pos == 0 || !desc->plus)
1214 return false;
1215 if (cache_misses <= NFS_READDIR_CACHE_MISS_THRESHOLD && !force_clear)
1216 return false;
1217 trace_nfs_readdir_force_readdirplus(inode);
1218 return true;
1219 }
1220
1221 /* The file offset position represents the dirent entry number. A
1222 last cookie cache takes care of the common case of reading the
1223 whole directory.
1224 */
nfs_readdir(struct file * file,struct dir_context * ctx)1225 static int nfs_readdir(struct file *file, struct dir_context *ctx)
1226 {
1227 struct dentry *dentry = file_dentry(file);
1228 struct inode *inode = d_inode(dentry);
1229 struct nfs_inode *nfsi = NFS_I(inode);
1230 struct nfs_open_dir_context *dir_ctx = file->private_data;
1231 struct nfs_readdir_descriptor *desc;
1232 unsigned int cache_hits, cache_misses;
1233 bool force_clear;
1234 int res;
1235
1236 dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
1237 file, (long long)ctx->pos);
1238 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
1239
1240 /*
1241 * ctx->pos points to the dirent entry number.
1242 * *desc->dir_cookie has the cookie for the next entry. We have
1243 * to either find the entry with the appropriate number or
1244 * revalidate the cookie.
1245 */
1246 nfs_revalidate_mapping(inode, file->f_mapping);
1247
1248 res = -ENOMEM;
1249 desc = kzalloc(sizeof(*desc), GFP_KERNEL);
1250 if (!desc)
1251 goto out;
1252 desc->file = file;
1253 desc->ctx = ctx;
1254 desc->folio_index_max = -1;
1255
1256 spin_lock(&file->f_lock);
1257 desc->dir_cookie = dir_ctx->dir_cookie;
1258 desc->folio_index = dir_ctx->page_index;
1259 desc->last_cookie = dir_ctx->last_cookie;
1260 desc->attr_gencount = dir_ctx->attr_gencount;
1261 desc->eof = dir_ctx->eof;
1262 nfs_set_dtsize(desc, dir_ctx->dtsize);
1263 memcpy(desc->verf, dir_ctx->verf, sizeof(desc->verf));
1264 cache_hits = atomic_xchg(&dir_ctx->cache_hits, 0);
1265 cache_misses = atomic_xchg(&dir_ctx->cache_misses, 0);
1266 force_clear = dir_ctx->force_clear;
1267 spin_unlock(&file->f_lock);
1268
1269 if (desc->eof) {
1270 res = 0;
1271 goto out_free;
1272 }
1273
1274 desc->plus = nfs_use_readdirplus(inode, ctx, cache_hits, cache_misses);
1275 force_clear = nfs_readdir_handle_cache_misses(inode, desc, cache_misses,
1276 force_clear);
1277 desc->clear_cache = force_clear;
1278
1279 do {
1280 res = readdir_search_pagecache(desc);
1281
1282 if (res == -EBADCOOKIE) {
1283 res = 0;
1284 /* This means either end of directory */
1285 if (desc->dir_cookie && !desc->eof) {
1286 /* Or that the server has 'lost' a cookie */
1287 res = uncached_readdir(desc);
1288 if (res == 0)
1289 continue;
1290 if (res == -EBADCOOKIE || res == -ENOTSYNC)
1291 res = 0;
1292 }
1293 break;
1294 }
1295 if (res == -ETOOSMALL && desc->plus) {
1296 nfs_zap_caches(inode);
1297 desc->plus = false;
1298 desc->eof = false;
1299 continue;
1300 }
1301 if (res < 0)
1302 break;
1303
1304 nfs_do_filldir(desc, nfsi->cookieverf);
1305 nfs_readdir_folio_unlock_and_put_cached(desc);
1306 if (desc->folio_index == desc->folio_index_max)
1307 desc->clear_cache = force_clear;
1308 } while (!desc->eob && !desc->eof);
1309
1310 spin_lock(&file->f_lock);
1311 dir_ctx->dir_cookie = desc->dir_cookie;
1312 dir_ctx->last_cookie = desc->last_cookie;
1313 dir_ctx->attr_gencount = desc->attr_gencount;
1314 dir_ctx->page_index = desc->folio_index;
1315 dir_ctx->force_clear = force_clear;
1316 dir_ctx->eof = desc->eof;
1317 dir_ctx->dtsize = desc->dtsize;
1318 memcpy(dir_ctx->verf, desc->verf, sizeof(dir_ctx->verf));
1319 spin_unlock(&file->f_lock);
1320 out_free:
1321 kfree(desc);
1322
1323 out:
1324 dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
1325 return res;
1326 }
1327
nfs_llseek_dir(struct file * filp,loff_t offset,int whence)1328 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
1329 {
1330 struct nfs_open_dir_context *dir_ctx = filp->private_data;
1331
1332 dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
1333 filp, offset, whence);
1334
1335 switch (whence) {
1336 default:
1337 return -EINVAL;
1338 case SEEK_SET:
1339 if (offset < 0)
1340 return -EINVAL;
1341 spin_lock(&filp->f_lock);
1342 break;
1343 case SEEK_CUR:
1344 if (offset == 0)
1345 return filp->f_pos;
1346 spin_lock(&filp->f_lock);
1347 offset += filp->f_pos;
1348 if (offset < 0) {
1349 spin_unlock(&filp->f_lock);
1350 return -EINVAL;
1351 }
1352 }
1353 if (offset != filp->f_pos) {
1354 filp->f_pos = offset;
1355 dir_ctx->page_index = 0;
1356 if (!nfs_readdir_use_cookie(filp)) {
1357 dir_ctx->dir_cookie = 0;
1358 dir_ctx->last_cookie = 0;
1359 } else {
1360 dir_ctx->dir_cookie = offset;
1361 dir_ctx->last_cookie = offset;
1362 }
1363 dir_ctx->eof = false;
1364 }
1365 spin_unlock(&filp->f_lock);
1366 return offset;
1367 }
1368
1369 /*
1370 * All directory operations under NFS are synchronous, so fsync()
1371 * is a dummy operation.
1372 */
nfs_fsync_dir(struct file * filp,loff_t start,loff_t end,int datasync)1373 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
1374 int datasync)
1375 {
1376 dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
1377
1378 nfs_inc_stats(file_inode(filp), NFSIOS_VFSFSYNC);
1379 return 0;
1380 }
1381
1382 /**
1383 * nfs_force_lookup_revalidate - Mark the directory as having changed
1384 * @dir: pointer to directory inode
1385 *
1386 * This forces the revalidation code in nfs_lookup_revalidate() to do a
1387 * full lookup on all child dentries of 'dir' whenever a change occurs
1388 * on the server that might have invalidated our dcache.
1389 *
1390 * Note that we reserve bit '0' as a tag to let us know when a dentry
1391 * was revalidated while holding a delegation on its inode.
1392 *
1393 * The caller should be holding dir->i_lock
1394 */
nfs_force_lookup_revalidate(struct inode * dir)1395 void nfs_force_lookup_revalidate(struct inode *dir)
1396 {
1397 NFS_I(dir)->cache_change_attribute += 2;
1398 }
1399 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
1400
1401 /**
1402 * nfs_verify_change_attribute - Detects NFS remote directory changes
1403 * @dir: pointer to parent directory inode
1404 * @verf: previously saved change attribute
1405 *
1406 * Return "false" if the verifiers doesn't match the change attribute.
1407 * This would usually indicate that the directory contents have changed on
1408 * the server, and that any dentries need revalidating.
1409 */
nfs_verify_change_attribute(struct inode * dir,unsigned long verf)1410 static bool nfs_verify_change_attribute(struct inode *dir, unsigned long verf)
1411 {
1412 return (verf & ~1UL) == nfs_save_change_attribute(dir);
1413 }
1414
nfs_set_verifier_delegated(unsigned long * verf)1415 static void nfs_set_verifier_delegated(unsigned long *verf)
1416 {
1417 *verf |= 1UL;
1418 }
1419
1420 #if IS_ENABLED(CONFIG_NFS_V4)
nfs_unset_verifier_delegated(unsigned long * verf)1421 static void nfs_unset_verifier_delegated(unsigned long *verf)
1422 {
1423 *verf &= ~1UL;
1424 }
1425 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1426
nfs_test_verifier_delegated(unsigned long verf)1427 static bool nfs_test_verifier_delegated(unsigned long verf)
1428 {
1429 return verf & 1;
1430 }
1431
nfs_verifier_is_delegated(struct dentry * dentry)1432 static bool nfs_verifier_is_delegated(struct dentry *dentry)
1433 {
1434 return nfs_test_verifier_delegated(dentry->d_time);
1435 }
1436
nfs_set_verifier_locked(struct dentry * dentry,unsigned long verf)1437 static void nfs_set_verifier_locked(struct dentry *dentry, unsigned long verf)
1438 {
1439 struct inode *inode = d_inode(dentry);
1440 struct inode *dir = d_inode_rcu(dentry->d_parent);
1441
1442 if (!dir || !nfs_verify_change_attribute(dir, verf))
1443 return;
1444 if (NFS_PROTO(dir)->have_delegation(dir, FMODE_READ, 0) ||
1445 (inode && NFS_PROTO(inode)->have_delegation(inode, FMODE_READ, 0)))
1446 nfs_set_verifier_delegated(&verf);
1447 dentry->d_time = verf;
1448 }
1449
1450 /**
1451 * nfs_set_verifier - save a parent directory verifier in the dentry
1452 * @dentry: pointer to dentry
1453 * @verf: verifier to save
1454 *
1455 * Saves the parent directory verifier in @dentry. If the inode has
1456 * a delegation, we also tag the dentry as having been revalidated
1457 * while holding a delegation so that we know we don't have to
1458 * look it up again after a directory change.
1459 */
nfs_set_verifier(struct dentry * dentry,unsigned long verf)1460 void nfs_set_verifier(struct dentry *dentry, unsigned long verf)
1461 {
1462
1463 spin_lock(&dentry->d_lock);
1464 nfs_set_verifier_locked(dentry, verf);
1465 spin_unlock(&dentry->d_lock);
1466 }
1467 EXPORT_SYMBOL_GPL(nfs_set_verifier);
1468
1469 #if IS_ENABLED(CONFIG_NFS_V4)
nfs_clear_verifier_file(struct inode * inode)1470 static void nfs_clear_verifier_file(struct inode *inode)
1471 {
1472 struct dentry *alias;
1473 struct inode *dir;
1474
1475 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1476 spin_lock(&alias->d_lock);
1477 dir = d_inode_rcu(alias->d_parent);
1478 if (!dir ||
1479 !NFS_PROTO(dir)->have_delegation(dir, FMODE_READ, 0))
1480 nfs_unset_verifier_delegated(&alias->d_time);
1481 spin_unlock(&alias->d_lock);
1482 }
1483 }
1484
nfs_clear_verifier_directory(struct inode * dir)1485 static void nfs_clear_verifier_directory(struct inode *dir)
1486 {
1487 struct dentry *this_parent;
1488 struct dentry *dentry;
1489 struct inode *inode;
1490
1491 if (hlist_empty(&dir->i_dentry))
1492 return;
1493 this_parent =
1494 hlist_entry(dir->i_dentry.first, struct dentry, d_u.d_alias);
1495
1496 spin_lock(&this_parent->d_lock);
1497 nfs_unset_verifier_delegated(&this_parent->d_time);
1498 dentry = d_first_child(this_parent);
1499 hlist_for_each_entry_from(dentry, d_sib) {
1500 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1501 continue;
1502 inode = d_inode_rcu(dentry);
1503 if (inode &&
1504 NFS_PROTO(inode)->have_delegation(inode, FMODE_READ, 0))
1505 continue;
1506 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1507 nfs_unset_verifier_delegated(&dentry->d_time);
1508 spin_unlock(&dentry->d_lock);
1509 }
1510 spin_unlock(&this_parent->d_lock);
1511 }
1512
1513 /**
1514 * nfs_clear_verifier_delegated - clear the dir verifier delegation tag
1515 * @inode: pointer to inode
1516 *
1517 * Iterates through the dentries in the inode alias list and clears
1518 * the tag used to indicate that the dentry has been revalidated
1519 * while holding a delegation.
1520 * This function is intended for use when the delegation is being
1521 * returned or revoked.
1522 */
nfs_clear_verifier_delegated(struct inode * inode)1523 void nfs_clear_verifier_delegated(struct inode *inode)
1524 {
1525 if (!inode)
1526 return;
1527 spin_lock(&inode->i_lock);
1528 if (S_ISREG(inode->i_mode))
1529 nfs_clear_verifier_file(inode);
1530 else if (S_ISDIR(inode->i_mode))
1531 nfs_clear_verifier_directory(inode);
1532 spin_unlock(&inode->i_lock);
1533 }
1534 EXPORT_SYMBOL_GPL(nfs_clear_verifier_delegated);
1535 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1536
nfs_dentry_verify_change(struct inode * dir,struct dentry * dentry)1537 static int nfs_dentry_verify_change(struct inode *dir, struct dentry *dentry)
1538 {
1539 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE) &&
1540 d_really_is_negative(dentry))
1541 return dentry->d_time == inode_peek_iversion_raw(dir);
1542 return nfs_verify_change_attribute(dir, dentry->d_time);
1543 }
1544
1545 /*
1546 * A check for whether or not the parent directory has changed.
1547 * In the case it has, we assume that the dentries are untrustworthy
1548 * and may need to be looked up again.
1549 * If rcu_walk prevents us from performing a full check, return 0.
1550 */
nfs_check_verifier(struct inode * dir,struct dentry * dentry,int rcu_walk)1551 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1552 int rcu_walk)
1553 {
1554 if (IS_ROOT(dentry))
1555 return 1;
1556 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1557 return 0;
1558 if (!nfs_dentry_verify_change(dir, dentry))
1559 return 0;
1560
1561 /* Revalidate nfsi->cache_change_attribute before we declare a match */
1562 if (nfs_mapping_need_revalidate_inode(dir)) {
1563 if (rcu_walk)
1564 return 0;
1565 if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
1566 return 0;
1567 }
1568 if (!nfs_dentry_verify_change(dir, dentry))
1569 return 0;
1570 return 1;
1571 }
1572
1573 /*
1574 * Use intent information to check whether or not we're going to do
1575 * an O_EXCL create using this path component.
1576 */
nfs_is_exclusive_create(struct inode * dir,unsigned int flags)1577 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1578 {
1579 if (NFS_PROTO(dir)->version == 2)
1580 return 0;
1581 return (flags & (LOOKUP_CREATE | LOOKUP_EXCL)) ==
1582 (LOOKUP_CREATE | LOOKUP_EXCL);
1583 }
1584
1585 /*
1586 * Inode and filehandle revalidation for lookups.
1587 *
1588 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1589 * or if the intent information indicates that we're about to open this
1590 * particular file and the "nocto" mount flag is not set.
1591 *
1592 */
1593 static
nfs_lookup_verify_inode(struct inode * inode,unsigned int flags)1594 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1595 {
1596 struct nfs_server *server = NFS_SERVER(inode);
1597 int ret;
1598
1599 if (IS_AUTOMOUNT(inode))
1600 return 0;
1601
1602 if (flags & LOOKUP_OPEN) {
1603 switch (inode->i_mode & S_IFMT) {
1604 case S_IFREG:
1605 /* A NFSv4 OPEN will revalidate later */
1606 if (server->caps & NFS_CAP_ATOMIC_OPEN)
1607 goto out;
1608 fallthrough;
1609 case S_IFDIR:
1610 if (server->flags & NFS_MOUNT_NOCTO)
1611 break;
1612 /* NFS close-to-open cache consistency validation */
1613 goto out_force;
1614 }
1615 }
1616
1617 /* VFS wants an on-the-wire revalidation */
1618 if (flags & LOOKUP_REVAL)
1619 goto out_force;
1620 out:
1621 if (inode->i_nlink > 0 ||
1622 (inode->i_nlink == 0 &&
1623 test_bit(NFS_INO_PRESERVE_UNLINKED, &NFS_I(inode)->flags)))
1624 return 0;
1625 else
1626 return -ESTALE;
1627 out_force:
1628 if (flags & LOOKUP_RCU)
1629 return -ECHILD;
1630 ret = __nfs_revalidate_inode(server, inode);
1631 if (ret != 0)
1632 return ret;
1633 goto out;
1634 }
1635
nfs_mark_dir_for_revalidate(struct inode * inode)1636 static void nfs_mark_dir_for_revalidate(struct inode *inode)
1637 {
1638 spin_lock(&inode->i_lock);
1639 nfs_set_cache_invalid(inode, NFS_INO_INVALID_CHANGE);
1640 spin_unlock(&inode->i_lock);
1641 }
1642
1643 /*
1644 * We judge how long we want to trust negative
1645 * dentries by looking at the parent inode mtime.
1646 *
1647 * If parent mtime has changed, we revalidate, else we wait for a
1648 * period corresponding to the parent's attribute cache timeout value.
1649 *
1650 * If LOOKUP_RCU prevents us from performing a full check, return 1
1651 * suggesting a reval is needed.
1652 *
1653 * Note that when creating a new file, or looking up a rename target,
1654 * then it shouldn't be necessary to revalidate a negative dentry.
1655 */
1656 static inline
nfs_neg_need_reval(struct inode * dir,struct dentry * dentry,unsigned int flags)1657 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1658 unsigned int flags)
1659 {
1660 if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET))
1661 return 0;
1662 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1663 return 1;
1664 /* Case insensitive server? Revalidate negative dentries */
1665 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1666 return 1;
1667 return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1668 }
1669
1670 static int
nfs_lookup_revalidate_done(struct inode * dir,struct dentry * dentry,struct inode * inode,int error)1671 nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry,
1672 struct inode *inode, int error)
1673 {
1674 switch (error) {
1675 case 1:
1676 break;
1677 case -ETIMEDOUT:
1678 if (inode && (IS_ROOT(dentry) ||
1679 NFS_SERVER(inode)->flags & NFS_MOUNT_SOFTREVAL))
1680 error = 1;
1681 break;
1682 case -ESTALE:
1683 case -ENOENT:
1684 error = 0;
1685 fallthrough;
1686 default:
1687 /*
1688 * We can't d_drop the root of a disconnected tree:
1689 * its d_hash is on the s_anon list and d_drop() would hide
1690 * it from shrink_dcache_for_unmount(), leading to busy
1691 * inodes on unmount and further oopses.
1692 */
1693 if (inode && IS_ROOT(dentry))
1694 error = 1;
1695 break;
1696 }
1697 trace_nfs_lookup_revalidate_exit(dir, dentry, 0, error);
1698 return error;
1699 }
1700
1701 static int
nfs_lookup_revalidate_negative(struct inode * dir,struct dentry * dentry,unsigned int flags)1702 nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry,
1703 unsigned int flags)
1704 {
1705 int ret = 1;
1706 if (nfs_neg_need_reval(dir, dentry, flags)) {
1707 if (flags & LOOKUP_RCU)
1708 return -ECHILD;
1709 ret = 0;
1710 }
1711 return nfs_lookup_revalidate_done(dir, dentry, NULL, ret);
1712 }
1713
1714 static int
nfs_lookup_revalidate_delegated(struct inode * dir,struct dentry * dentry,struct inode * inode)1715 nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry,
1716 struct inode *inode)
1717 {
1718 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1719 return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1720 }
1721
nfs_lookup_revalidate_dentry(struct inode * dir,const struct qstr * name,struct dentry * dentry,struct inode * inode,unsigned int flags)1722 static int nfs_lookup_revalidate_dentry(struct inode *dir, const struct qstr *name,
1723 struct dentry *dentry,
1724 struct inode *inode, unsigned int flags)
1725 {
1726 struct nfs_fh *fhandle;
1727 struct nfs_fattr *fattr;
1728 unsigned long dir_verifier;
1729 int ret;
1730
1731 trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1732
1733 ret = -ENOMEM;
1734 fhandle = nfs_alloc_fhandle();
1735 fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode));
1736 if (fhandle == NULL || fattr == NULL)
1737 goto out;
1738
1739 dir_verifier = nfs_save_change_attribute(dir);
1740 ret = NFS_PROTO(dir)->lookup(dir, dentry, name, fhandle, fattr);
1741 if (ret < 0)
1742 goto out;
1743
1744 /* Request help from readdirplus */
1745 nfs_lookup_advise_force_readdirplus(dir, flags);
1746
1747 ret = 0;
1748 if (nfs_compare_fh(NFS_FH(inode), fhandle))
1749 goto out;
1750 if (nfs_refresh_inode(inode, fattr) < 0)
1751 goto out;
1752
1753 nfs_setsecurity(inode, fattr);
1754 nfs_set_verifier(dentry, dir_verifier);
1755
1756 ret = 1;
1757 out:
1758 nfs_free_fattr(fattr);
1759 nfs_free_fhandle(fhandle);
1760
1761 /*
1762 * If the lookup failed despite the dentry change attribute being
1763 * a match, then we should revalidate the directory cache.
1764 */
1765 if (!ret && nfs_dentry_verify_change(dir, dentry))
1766 nfs_mark_dir_for_revalidate(dir);
1767 return nfs_lookup_revalidate_done(dir, dentry, inode, ret);
1768 }
1769
1770 /*
1771 * This is called every time the dcache has a lookup hit,
1772 * and we should check whether we can really trust that
1773 * lookup.
1774 *
1775 * NOTE! The hit can be a negative hit too, don't assume
1776 * we have an inode!
1777 *
1778 * If the parent directory is seen to have changed, we throw out the
1779 * cached dentry and do a new lookup.
1780 */
1781 static int
nfs_do_lookup_revalidate(struct inode * dir,const struct qstr * name,struct dentry * dentry,unsigned int flags)1782 nfs_do_lookup_revalidate(struct inode *dir, const struct qstr *name,
1783 struct dentry *dentry, unsigned int flags)
1784 {
1785 struct inode *inode;
1786 int error = 0;
1787
1788 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1789 inode = d_inode(dentry);
1790
1791 if (!inode)
1792 return nfs_lookup_revalidate_negative(dir, dentry, flags);
1793
1794 if (is_bad_inode(inode)) {
1795 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1796 __func__, dentry);
1797 goto out_bad;
1798 }
1799
1800 if ((flags & LOOKUP_RENAME_TARGET) && d_count(dentry) < 2 &&
1801 nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1802 goto out_bad;
1803
1804 if (nfs_verifier_is_delegated(dentry))
1805 return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1806
1807 /* Force a full look up iff the parent directory has changed */
1808 if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) &&
1809 nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1810 error = nfs_lookup_verify_inode(inode, flags);
1811 if (error) {
1812 if (error == -ESTALE)
1813 nfs_mark_dir_for_revalidate(dir);
1814 goto out_bad;
1815 }
1816 goto out_valid;
1817 }
1818
1819 if (flags & LOOKUP_RCU)
1820 return -ECHILD;
1821
1822 if (NFS_STALE(inode))
1823 goto out_bad;
1824
1825 return nfs_lookup_revalidate_dentry(dir, name, dentry, inode, flags);
1826 out_valid:
1827 return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1828 out_bad:
1829 if (flags & LOOKUP_RCU)
1830 return -ECHILD;
1831 return nfs_lookup_revalidate_done(dir, dentry, inode, error);
1832 }
1833
1834 static int
__nfs_lookup_revalidate(struct dentry * dentry,unsigned int flags)1835 __nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1836 {
1837 if (flags & LOOKUP_RCU) {
1838 if (dentry->d_fsdata == NFS_FSDATA_BLOCKED)
1839 return -ECHILD;
1840 } else {
1841 /* Wait for unlink to complete - see unblock_revalidate() */
1842 wait_var_event(&dentry->d_fsdata,
1843 smp_load_acquire(&dentry->d_fsdata)
1844 != NFS_FSDATA_BLOCKED);
1845 }
1846 return 0;
1847 }
1848
nfs_lookup_revalidate(struct inode * dir,const struct qstr * name,struct dentry * dentry,unsigned int flags)1849 static int nfs_lookup_revalidate(struct inode *dir, const struct qstr *name,
1850 struct dentry *dentry, unsigned int flags)
1851 {
1852 if (__nfs_lookup_revalidate(dentry, flags))
1853 return -ECHILD;
1854 return nfs_do_lookup_revalidate(dir, name, dentry, flags);
1855 }
1856
block_revalidate(struct dentry * dentry)1857 static void block_revalidate(struct dentry *dentry)
1858 {
1859 /* old devname - just in case */
1860 kfree(dentry->d_fsdata);
1861
1862 /* Any new reference that could lead to an open
1863 * will take ->d_lock in lookup_open() -> d_lookup().
1864 * Holding this lock ensures we cannot race with
1865 * __nfs_lookup_revalidate() and removes and need
1866 * for further barriers.
1867 */
1868 lockdep_assert_held(&dentry->d_lock);
1869
1870 dentry->d_fsdata = NFS_FSDATA_BLOCKED;
1871 }
1872
unblock_revalidate(struct dentry * dentry)1873 static void unblock_revalidate(struct dentry *dentry)
1874 {
1875 store_release_wake_up(&dentry->d_fsdata, NULL);
1876 }
1877
1878 /*
1879 * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1880 * when we don't really care about the dentry name. This is called when a
1881 * pathwalk ends on a dentry that was not found via a normal lookup in the
1882 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1883 *
1884 * In this situation, we just want to verify that the inode itself is OK
1885 * since the dentry might have changed on the server.
1886 */
nfs_weak_revalidate(struct dentry * dentry,unsigned int flags)1887 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1888 {
1889 struct inode *inode = d_inode(dentry);
1890 int error = 0;
1891
1892 /*
1893 * I believe we can only get a negative dentry here in the case of a
1894 * procfs-style symlink. Just assume it's correct for now, but we may
1895 * eventually need to do something more here.
1896 */
1897 if (!inode) {
1898 dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1899 __func__, dentry);
1900 return 1;
1901 }
1902
1903 if (is_bad_inode(inode)) {
1904 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1905 __func__, dentry);
1906 return 0;
1907 }
1908
1909 error = nfs_lookup_verify_inode(inode, flags);
1910 dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1911 __func__, inode->i_ino, error ? "invalid" : "valid");
1912 return !error;
1913 }
1914
1915 /*
1916 * This is called from dput() when d_count is going to 0.
1917 */
nfs_dentry_delete(const struct dentry * dentry)1918 static int nfs_dentry_delete(const struct dentry *dentry)
1919 {
1920 dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1921 dentry, dentry->d_flags);
1922
1923 /* Unhash any dentry with a stale inode */
1924 if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1925 return 1;
1926
1927 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1928 /* Unhash it, so that ->d_iput() would be called */
1929 return 1;
1930 }
1931 if (!(dentry->d_sb->s_flags & SB_ACTIVE)) {
1932 /* Unhash it, so that ancestors of killed async unlink
1933 * files will be cleaned up during umount */
1934 return 1;
1935 }
1936 return 0;
1937
1938 }
1939
1940 /* Ensure that we revalidate inode->i_nlink */
nfs_drop_nlink(struct inode * inode,unsigned long gencount)1941 static void nfs_drop_nlink(struct inode *inode, unsigned long gencount)
1942 {
1943 struct nfs_inode *nfsi = NFS_I(inode);
1944
1945 spin_lock(&inode->i_lock);
1946 /* drop the inode if we're reasonably sure this is the last link */
1947 if (inode->i_nlink > 0 && gencount == nfsi->attr_gencount)
1948 drop_nlink(inode);
1949 nfsi->attr_gencount = nfs_inc_attr_generation_counter();
1950 nfs_set_cache_invalid(
1951 inode, NFS_INO_INVALID_CHANGE | NFS_INO_INVALID_CTIME |
1952 NFS_INO_INVALID_NLINK);
1953 spin_unlock(&inode->i_lock);
1954 }
1955
1956 /*
1957 * Called when the dentry loses inode.
1958 * We use it to clean up silly-renamed files.
1959 */
nfs_dentry_iput(struct dentry * dentry,struct inode * inode)1960 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1961 {
1962 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1963 unsigned long gencount = READ_ONCE(NFS_I(inode)->attr_gencount);
1964 nfs_complete_unlink(dentry, inode);
1965 nfs_drop_nlink(inode, gencount);
1966 }
1967 iput(inode);
1968 }
1969
nfs_d_release(struct dentry * dentry)1970 static void nfs_d_release(struct dentry *dentry)
1971 {
1972 /* free cached devname value, if it survived that far */
1973 if (unlikely(dentry->d_fsdata)) {
1974 if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1975 WARN_ON(1);
1976 else
1977 kfree(dentry->d_fsdata);
1978 }
1979 }
1980
1981 const struct dentry_operations nfs_dentry_operations = {
1982 .d_revalidate = nfs_lookup_revalidate,
1983 .d_weak_revalidate = nfs_weak_revalidate,
1984 .d_delete = nfs_dentry_delete,
1985 .d_iput = nfs_dentry_iput,
1986 .d_automount = nfs_d_automount,
1987 .d_release = nfs_d_release,
1988 };
1989 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1990
nfs_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)1991 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1992 {
1993 struct dentry *res;
1994 struct inode *inode = NULL;
1995 struct nfs_fh *fhandle = NULL;
1996 struct nfs_fattr *fattr = NULL;
1997 unsigned long dir_verifier;
1998 int error;
1999
2000 dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
2001 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
2002
2003 if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
2004 return ERR_PTR(-ENAMETOOLONG);
2005
2006 /*
2007 * If we're doing an exclusive create, optimize away the lookup
2008 * but don't hash the dentry.
2009 */
2010 if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET)
2011 return NULL;
2012
2013 res = ERR_PTR(-ENOMEM);
2014 fhandle = nfs_alloc_fhandle();
2015 fattr = nfs_alloc_fattr_with_label(NFS_SERVER(dir));
2016 if (fhandle == NULL || fattr == NULL)
2017 goto out;
2018
2019 dir_verifier = nfs_save_change_attribute(dir);
2020 trace_nfs_lookup_enter(dir, dentry, flags);
2021 error = NFS_PROTO(dir)->lookup(dir, dentry, &dentry->d_name,
2022 fhandle, fattr);
2023 if (error == -ENOENT) {
2024 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
2025 dir_verifier = inode_peek_iversion_raw(dir);
2026 goto no_entry;
2027 }
2028 if (error < 0) {
2029 res = ERR_PTR(error);
2030 goto out;
2031 }
2032 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
2033 res = ERR_CAST(inode);
2034 if (IS_ERR(res))
2035 goto out;
2036
2037 /* Notify readdir to use READDIRPLUS */
2038 nfs_lookup_advise_force_readdirplus(dir, flags);
2039
2040 no_entry:
2041 nfs_set_verifier(dentry, dir_verifier);
2042 res = d_splice_alias(inode, dentry);
2043 if (res != NULL) {
2044 if (IS_ERR(res))
2045 goto out;
2046 nfs_set_verifier(res, dir_verifier);
2047 dentry = res;
2048 }
2049 out:
2050 trace_nfs_lookup_exit(dir, dentry, flags, PTR_ERR_OR_ZERO(res));
2051 nfs_free_fattr(fattr);
2052 nfs_free_fhandle(fhandle);
2053 return res;
2054 }
2055 EXPORT_SYMBOL_GPL(nfs_lookup);
2056
nfs_d_prune_case_insensitive_aliases(struct inode * inode)2057 void nfs_d_prune_case_insensitive_aliases(struct inode *inode)
2058 {
2059 /* Case insensitive server? Revalidate dentries */
2060 if (inode && nfs_server_capable(inode, NFS_CAP_CASE_INSENSITIVE))
2061 d_prune_aliases(inode);
2062 }
2063 EXPORT_SYMBOL_GPL(nfs_d_prune_case_insensitive_aliases);
2064
2065 #if IS_ENABLED(CONFIG_NFS_V4)
2066 static int nfs4_lookup_revalidate(struct inode *, const struct qstr *,
2067 struct dentry *, unsigned int);
2068
2069 const struct dentry_operations nfs4_dentry_operations = {
2070 .d_revalidate = nfs4_lookup_revalidate,
2071 .d_weak_revalidate = nfs_weak_revalidate,
2072 .d_delete = nfs_dentry_delete,
2073 .d_iput = nfs_dentry_iput,
2074 .d_automount = nfs_d_automount,
2075 .d_release = nfs_d_release,
2076 };
2077 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
2078
create_nfs_open_context(struct dentry * dentry,int open_flags,struct file * filp)2079 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
2080 {
2081 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
2082 }
2083
do_open(struct inode * inode,struct file * filp)2084 static int do_open(struct inode *inode, struct file *filp)
2085 {
2086 nfs_fscache_open_file(inode, filp);
2087 return 0;
2088 }
2089
nfs_finish_open(struct nfs_open_context * ctx,struct dentry * dentry,struct file * file,unsigned open_flags)2090 static int nfs_finish_open(struct nfs_open_context *ctx,
2091 struct dentry *dentry,
2092 struct file *file, unsigned open_flags)
2093 {
2094 int err;
2095
2096 err = finish_open(file, dentry, do_open);
2097 if (err)
2098 goto out;
2099 if (S_ISREG(file_inode(file)->i_mode))
2100 nfs_file_set_open_context(file, ctx);
2101 else
2102 err = -EOPENSTALE;
2103 out:
2104 return err;
2105 }
2106
nfs_atomic_open(struct inode * dir,struct dentry * dentry,struct file * file,unsigned open_flags,umode_t mode)2107 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
2108 struct file *file, unsigned open_flags,
2109 umode_t mode)
2110 {
2111 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
2112 struct nfs_open_context *ctx;
2113 struct dentry *res;
2114 struct iattr attr = { .ia_valid = ATTR_OPEN };
2115 struct inode *inode;
2116 unsigned int lookup_flags = 0;
2117 unsigned long dir_verifier;
2118 bool switched = false;
2119 int created = 0;
2120 int err;
2121
2122 /* Expect a negative dentry */
2123 BUG_ON(d_inode(dentry));
2124
2125 dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
2126 dir->i_sb->s_id, dir->i_ino, dentry);
2127
2128 err = nfs_check_flags(open_flags);
2129 if (err)
2130 return err;
2131
2132 /* NFS only supports OPEN on regular files */
2133 if ((open_flags & O_DIRECTORY)) {
2134 if (!d_in_lookup(dentry)) {
2135 /*
2136 * Hashed negative dentry with O_DIRECTORY: dentry was
2137 * revalidated and is fine, no need to perform lookup
2138 * again
2139 */
2140 return -ENOENT;
2141 }
2142 lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
2143 goto no_open;
2144 }
2145
2146 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
2147 return -ENAMETOOLONG;
2148
2149 if (open_flags & O_CREAT) {
2150 struct nfs_server *server = NFS_SERVER(dir);
2151
2152 if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
2153 mode &= ~current_umask();
2154
2155 attr.ia_valid |= ATTR_MODE;
2156 attr.ia_mode = mode;
2157 }
2158 if (open_flags & O_TRUNC) {
2159 attr.ia_valid |= ATTR_SIZE;
2160 attr.ia_size = 0;
2161 }
2162
2163 if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
2164 d_drop(dentry);
2165 switched = true;
2166 dentry = d_alloc_parallel(dentry->d_parent,
2167 &dentry->d_name, &wq);
2168 if (IS_ERR(dentry))
2169 return PTR_ERR(dentry);
2170 if (unlikely(!d_in_lookup(dentry)))
2171 return finish_no_open(file, dentry);
2172 }
2173
2174 ctx = create_nfs_open_context(dentry, open_flags, file);
2175 err = PTR_ERR(ctx);
2176 if (IS_ERR(ctx))
2177 goto out;
2178
2179 trace_nfs_atomic_open_enter(dir, ctx, open_flags);
2180 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created);
2181 if (created)
2182 file->f_mode |= FMODE_CREATED;
2183 if (IS_ERR(inode)) {
2184 err = PTR_ERR(inode);
2185 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
2186 put_nfs_open_context(ctx);
2187 d_drop(dentry);
2188 switch (err) {
2189 case -ENOENT:
2190 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
2191 dir_verifier = inode_peek_iversion_raw(dir);
2192 else
2193 dir_verifier = nfs_save_change_attribute(dir);
2194 nfs_set_verifier(dentry, dir_verifier);
2195 d_splice_alias(NULL, dentry);
2196 break;
2197 case -EISDIR:
2198 case -ENOTDIR:
2199 goto no_open;
2200 case -ELOOP:
2201 if (!(open_flags & O_NOFOLLOW))
2202 goto no_open;
2203 break;
2204 /* case -EINVAL: */
2205 default:
2206 break;
2207 }
2208 goto out;
2209 }
2210 file->f_mode |= FMODE_CAN_ODIRECT;
2211
2212 err = nfs_finish_open(ctx, ctx->dentry, file, open_flags);
2213 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
2214 put_nfs_open_context(ctx);
2215 out:
2216 if (unlikely(switched)) {
2217 d_lookup_done(dentry);
2218 dput(dentry);
2219 }
2220 return err;
2221
2222 no_open:
2223 res = nfs_lookup(dir, dentry, lookup_flags);
2224 if (!res) {
2225 inode = d_inode(dentry);
2226 if ((lookup_flags & LOOKUP_DIRECTORY) && inode &&
2227 !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)))
2228 res = ERR_PTR(-ENOTDIR);
2229 else if (inode && S_ISREG(inode->i_mode))
2230 res = ERR_PTR(-EOPENSTALE);
2231 } else if (!IS_ERR(res)) {
2232 inode = d_inode(res);
2233 if ((lookup_flags & LOOKUP_DIRECTORY) && inode &&
2234 !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))) {
2235 dput(res);
2236 res = ERR_PTR(-ENOTDIR);
2237 } else if (inode && S_ISREG(inode->i_mode)) {
2238 dput(res);
2239 res = ERR_PTR(-EOPENSTALE);
2240 }
2241 }
2242 if (switched) {
2243 d_lookup_done(dentry);
2244 if (!res)
2245 res = dentry;
2246 else
2247 dput(dentry);
2248 }
2249 return finish_no_open(file, res);
2250 }
2251 EXPORT_SYMBOL_GPL(nfs_atomic_open);
2252
2253 static int
nfs4_lookup_revalidate(struct inode * dir,const struct qstr * name,struct dentry * dentry,unsigned int flags)2254 nfs4_lookup_revalidate(struct inode *dir, const struct qstr *name,
2255 struct dentry *dentry, unsigned int flags)
2256 {
2257 struct inode *inode;
2258
2259 if (__nfs_lookup_revalidate(dentry, flags))
2260 return -ECHILD;
2261
2262 trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
2263
2264 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
2265 goto full_reval;
2266 if (d_mountpoint(dentry))
2267 goto full_reval;
2268
2269 inode = d_inode(dentry);
2270
2271 /* We can't create new files in nfs_open_revalidate(), so we
2272 * optimize away revalidation of negative dentries.
2273 */
2274 if (inode == NULL)
2275 goto full_reval;
2276
2277 if (nfs_verifier_is_delegated(dentry) ||
2278 nfs_have_directory_delegation(inode))
2279 return nfs_lookup_revalidate_delegated(dir, dentry, inode);
2280
2281 /* NFS only supports OPEN on regular files */
2282 if (!S_ISREG(inode->i_mode))
2283 goto full_reval;
2284
2285 /* We cannot do exclusive creation on a positive dentry */
2286 if (flags & (LOOKUP_EXCL | LOOKUP_REVAL))
2287 goto reval_dentry;
2288
2289 /* Check if the directory changed */
2290 if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU))
2291 goto reval_dentry;
2292
2293 /* Let f_op->open() actually open (and revalidate) the file */
2294 return 1;
2295 reval_dentry:
2296 if (flags & LOOKUP_RCU)
2297 return -ECHILD;
2298 return nfs_lookup_revalidate_dentry(dir, name, dentry, inode, flags);
2299
2300 full_reval:
2301 return nfs_do_lookup_revalidate(dir, name, dentry, flags);
2302 }
2303
2304 #endif /* CONFIG_NFSV4 */
2305
nfs_atomic_open_v23(struct inode * dir,struct dentry * dentry,struct file * file,unsigned int open_flags,umode_t mode)2306 int nfs_atomic_open_v23(struct inode *dir, struct dentry *dentry,
2307 struct file *file, unsigned int open_flags,
2308 umode_t mode)
2309 {
2310 struct dentry *res = NULL;
2311 /* Same as look+open from lookup_open(), but with different O_TRUNC
2312 * handling.
2313 */
2314 int error = 0;
2315
2316 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
2317 return -ENAMETOOLONG;
2318
2319 if (open_flags & O_CREAT) {
2320 error = nfs_do_create(dir, dentry, mode, open_flags);
2321 if (!error) {
2322 file->f_mode |= FMODE_CREATED;
2323 return finish_open(file, dentry, NULL);
2324 } else if (error != -EEXIST || open_flags & O_EXCL)
2325 return error;
2326 }
2327 if (d_in_lookup(dentry)) {
2328 /* The only flags nfs_lookup considers are
2329 * LOOKUP_EXCL and LOOKUP_RENAME_TARGET, and
2330 * we want those to be zero so the lookup isn't skipped.
2331 */
2332 res = nfs_lookup(dir, dentry, 0);
2333 }
2334 return finish_no_open(file, res);
2335
2336 }
2337 EXPORT_SYMBOL_GPL(nfs_atomic_open_v23);
2338
2339 struct dentry *
nfs_add_or_obtain(struct dentry * dentry,struct nfs_fh * fhandle,struct nfs_fattr * fattr)2340 nfs_add_or_obtain(struct dentry *dentry, struct nfs_fh *fhandle,
2341 struct nfs_fattr *fattr)
2342 {
2343 struct dentry *parent = dget_parent(dentry);
2344 struct inode *dir = d_inode(parent);
2345 struct inode *inode;
2346 struct dentry *d;
2347 int error;
2348
2349 d_drop(dentry);
2350
2351 if (fhandle->size == 0) {
2352 error = NFS_PROTO(dir)->lookup(dir, dentry, &dentry->d_name,
2353 fhandle, fattr);
2354 if (error)
2355 goto out_error;
2356 }
2357 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2358 if (!(fattr->valid & NFS_ATTR_FATTR)) {
2359 struct nfs_server *server = NFS_SB(dentry->d_sb);
2360 error = server->nfs_client->rpc_ops->getattr(server, fhandle,
2361 fattr, NULL);
2362 if (error < 0)
2363 goto out_error;
2364 }
2365 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
2366 d = d_splice_alias(inode, dentry);
2367 out:
2368 dput(parent);
2369 return d;
2370 out_error:
2371 d = ERR_PTR(error);
2372 goto out;
2373 }
2374 EXPORT_SYMBOL_GPL(nfs_add_or_obtain);
2375
2376 /*
2377 * Code common to create, mkdir, and mknod.
2378 */
nfs_instantiate(struct dentry * dentry,struct nfs_fh * fhandle,struct nfs_fattr * fattr)2379 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
2380 struct nfs_fattr *fattr)
2381 {
2382 struct dentry *d;
2383
2384 d = nfs_add_or_obtain(dentry, fhandle, fattr);
2385 if (IS_ERR(d))
2386 return PTR_ERR(d);
2387
2388 /* Callers don't care */
2389 dput(d);
2390 return 0;
2391 }
2392 EXPORT_SYMBOL_GPL(nfs_instantiate);
2393
2394 /*
2395 * Following a failed create operation, we drop the dentry rather
2396 * than retain a negative dentry. This avoids a problem in the event
2397 * that the operation succeeded on the server, but an error in the
2398 * reply path made it appear to have failed.
2399 */
nfs_do_create(struct inode * dir,struct dentry * dentry,umode_t mode,int open_flags)2400 static int nfs_do_create(struct inode *dir, struct dentry *dentry,
2401 umode_t mode, int open_flags)
2402 {
2403 struct iattr attr;
2404 int error;
2405
2406 open_flags |= O_CREAT;
2407
2408 dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
2409 dir->i_sb->s_id, dir->i_ino, dentry);
2410
2411 attr.ia_mode = mode;
2412 attr.ia_valid = ATTR_MODE;
2413 if (open_flags & O_TRUNC) {
2414 attr.ia_size = 0;
2415 attr.ia_valid |= ATTR_SIZE;
2416 }
2417
2418 trace_nfs_create_enter(dir, dentry, open_flags);
2419 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
2420 trace_nfs_create_exit(dir, dentry, open_flags, error);
2421 if (error != 0)
2422 goto out_err;
2423 return 0;
2424 out_err:
2425 d_drop(dentry);
2426 return error;
2427 }
2428
nfs_create(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)2429 int nfs_create(struct mnt_idmap *idmap, struct inode *dir,
2430 struct dentry *dentry, umode_t mode, bool excl)
2431 {
2432 return nfs_do_create(dir, dentry, mode, excl ? O_EXCL : 0);
2433 }
2434 EXPORT_SYMBOL_GPL(nfs_create);
2435
2436 /*
2437 * See comments for nfs_proc_create regarding failed operations.
2438 */
2439 int
nfs_mknod(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,dev_t rdev)2440 nfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
2441 struct dentry *dentry, umode_t mode, dev_t rdev)
2442 {
2443 struct iattr attr;
2444 int status;
2445
2446 dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
2447 dir->i_sb->s_id, dir->i_ino, dentry);
2448
2449 attr.ia_mode = mode;
2450 attr.ia_valid = ATTR_MODE;
2451
2452 trace_nfs_mknod_enter(dir, dentry);
2453 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
2454 trace_nfs_mknod_exit(dir, dentry, status);
2455 if (status != 0)
2456 goto out_err;
2457 return 0;
2458 out_err:
2459 d_drop(dentry);
2460 return status;
2461 }
2462 EXPORT_SYMBOL_GPL(nfs_mknod);
2463
2464 /*
2465 * See comments for nfs_proc_create regarding failed operations.
2466 */
nfs_mkdir(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode)2467 struct dentry *nfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
2468 struct dentry *dentry, umode_t mode)
2469 {
2470 struct iattr attr;
2471 struct dentry *ret;
2472
2473 dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
2474 dir->i_sb->s_id, dir->i_ino, dentry);
2475
2476 attr.ia_valid = ATTR_MODE;
2477 attr.ia_mode = mode | S_IFDIR;
2478
2479 trace_nfs_mkdir_enter(dir, dentry);
2480 ret = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
2481 trace_nfs_mkdir_exit(dir, dentry, PTR_ERR_OR_ZERO(ret));
2482 return ret;
2483 }
2484 EXPORT_SYMBOL_GPL(nfs_mkdir);
2485
nfs_dentry_handle_enoent(struct dentry * dentry)2486 static void nfs_dentry_handle_enoent(struct dentry *dentry)
2487 {
2488 if (simple_positive(dentry))
2489 d_delete(dentry);
2490 }
2491
nfs_dentry_remove_handle_error(struct inode * dir,struct dentry * dentry,int error)2492 static void nfs_dentry_remove_handle_error(struct inode *dir,
2493 struct dentry *dentry, int error)
2494 {
2495 switch (error) {
2496 case -ENOENT:
2497 if (d_really_is_positive(dentry))
2498 d_delete(dentry);
2499 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2500 break;
2501 case 0:
2502 nfs_d_prune_case_insensitive_aliases(d_inode(dentry));
2503 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2504 }
2505 }
2506
nfs_rmdir(struct inode * dir,struct dentry * dentry)2507 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
2508 {
2509 int error;
2510
2511 dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
2512 dir->i_sb->s_id, dir->i_ino, dentry);
2513
2514 trace_nfs_rmdir_enter(dir, dentry);
2515 if (d_really_is_positive(dentry)) {
2516 down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2517 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2518 /* Ensure the VFS deletes this inode */
2519 switch (error) {
2520 case 0:
2521 clear_nlink(d_inode(dentry));
2522 break;
2523 case -ENOENT:
2524 nfs_dentry_handle_enoent(dentry);
2525 }
2526 up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2527 } else
2528 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2529 nfs_dentry_remove_handle_error(dir, dentry, error);
2530 trace_nfs_rmdir_exit(dir, dentry, error);
2531
2532 return error;
2533 }
2534 EXPORT_SYMBOL_GPL(nfs_rmdir);
2535
2536 /*
2537 * Remove a file after making sure there are no pending writes,
2538 * and after checking that the file has only one user.
2539 *
2540 * We invalidate the attribute cache and free the inode prior to the operation
2541 * to avoid possible races if the server reuses the inode.
2542 */
nfs_safe_remove(struct dentry * dentry)2543 static int nfs_safe_remove(struct dentry *dentry)
2544 {
2545 struct inode *dir = d_inode(dentry->d_parent);
2546 struct inode *inode = d_inode(dentry);
2547 int error = -EBUSY;
2548
2549 dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
2550
2551 /* If the dentry was sillyrenamed, we simply call d_delete() */
2552 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
2553 error = 0;
2554 goto out;
2555 }
2556
2557 trace_nfs_remove_enter(dir, dentry);
2558 if (inode != NULL) {
2559 unsigned long gencount = READ_ONCE(NFS_I(inode)->attr_gencount);
2560
2561 error = NFS_PROTO(dir)->remove(dir, dentry);
2562 if (error == 0)
2563 nfs_drop_nlink(inode, gencount);
2564 } else
2565 error = NFS_PROTO(dir)->remove(dir, dentry);
2566 if (error == -ENOENT)
2567 nfs_dentry_handle_enoent(dentry);
2568 trace_nfs_remove_exit(dir, dentry, error);
2569 out:
2570 return error;
2571 }
2572
2573 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode
2574 * belongs to an active ".nfs..." file and we return -EBUSY.
2575 *
2576 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
2577 */
nfs_unlink(struct inode * dir,struct dentry * dentry)2578 int nfs_unlink(struct inode *dir, struct dentry *dentry)
2579 {
2580 int error;
2581
2582 dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
2583 dir->i_ino, dentry);
2584
2585 trace_nfs_unlink_enter(dir, dentry);
2586 spin_lock(&dentry->d_lock);
2587 if (d_count(dentry) > 1 && !test_bit(NFS_INO_PRESERVE_UNLINKED,
2588 &NFS_I(d_inode(dentry))->flags)) {
2589 spin_unlock(&dentry->d_lock);
2590 /* Start asynchronous writeout of the inode */
2591 write_inode_now(d_inode(dentry), 0);
2592 error = nfs_sillyrename(dir, dentry);
2593 goto out;
2594 }
2595 /* We must prevent any concurrent open until the unlink
2596 * completes. ->d_revalidate will wait for ->d_fsdata
2597 * to clear. We set it here to ensure no lookup succeeds until
2598 * the unlink is complete on the server.
2599 */
2600 error = -ETXTBSY;
2601 if (WARN_ON(dentry->d_flags & DCACHE_NFSFS_RENAMED) ||
2602 WARN_ON(dentry->d_fsdata == NFS_FSDATA_BLOCKED)) {
2603 spin_unlock(&dentry->d_lock);
2604 goto out;
2605 }
2606 block_revalidate(dentry);
2607
2608 spin_unlock(&dentry->d_lock);
2609 error = nfs_safe_remove(dentry);
2610 nfs_dentry_remove_handle_error(dir, dentry, error);
2611 unblock_revalidate(dentry);
2612 out:
2613 trace_nfs_unlink_exit(dir, dentry, error);
2614 return error;
2615 }
2616 EXPORT_SYMBOL_GPL(nfs_unlink);
2617
2618 /*
2619 * To create a symbolic link, most file systems instantiate a new inode,
2620 * add a page to it containing the path, then write it out to the disk
2621 * using prepare_write/commit_write.
2622 *
2623 * Unfortunately the NFS client can't create the in-core inode first
2624 * because it needs a file handle to create an in-core inode (see
2625 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
2626 * symlink request has completed on the server.
2627 *
2628 * So instead we allocate a raw page, copy the symname into it, then do
2629 * the SYMLINK request with the page as the buffer. If it succeeds, we
2630 * now have a new file handle and can instantiate an in-core NFS inode
2631 * and move the raw page into its mapping.
2632 */
nfs_symlink(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,const char * symname)2633 int nfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
2634 struct dentry *dentry, const char *symname)
2635 {
2636 struct folio *folio;
2637 char *kaddr;
2638 struct iattr attr;
2639 unsigned int pathlen = strlen(symname);
2640 int error;
2641
2642 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
2643 dir->i_ino, dentry, symname);
2644
2645 if (pathlen > PAGE_SIZE)
2646 return -ENAMETOOLONG;
2647
2648 attr.ia_mode = S_IFLNK | S_IRWXUGO;
2649 attr.ia_valid = ATTR_MODE;
2650
2651 folio = folio_alloc(GFP_USER, 0);
2652 if (!folio)
2653 return -ENOMEM;
2654
2655 kaddr = folio_address(folio);
2656 memcpy(kaddr, symname, pathlen);
2657 if (pathlen < PAGE_SIZE)
2658 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
2659
2660 trace_nfs_symlink_enter(dir, dentry);
2661 error = NFS_PROTO(dir)->symlink(dir, dentry, folio, pathlen, &attr);
2662 trace_nfs_symlink_exit(dir, dentry, error);
2663 if (error != 0) {
2664 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
2665 dir->i_sb->s_id, dir->i_ino,
2666 dentry, symname, error);
2667 d_drop(dentry);
2668 folio_put(folio);
2669 return error;
2670 }
2671
2672 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2673
2674 /*
2675 * No big deal if we can't add this page to the page cache here.
2676 * READLINK will get the missing page from the server if needed.
2677 */
2678 if (filemap_add_folio(d_inode(dentry)->i_mapping, folio, 0,
2679 GFP_KERNEL) == 0) {
2680 folio_mark_uptodate(folio);
2681 folio_unlock(folio);
2682 }
2683
2684 folio_put(folio);
2685 return 0;
2686 }
2687 EXPORT_SYMBOL_GPL(nfs_symlink);
2688
2689 int
nfs_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)2690 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2691 {
2692 struct inode *inode = d_inode(old_dentry);
2693 int error;
2694
2695 dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
2696 old_dentry, dentry);
2697
2698 trace_nfs_link_enter(inode, dir, dentry);
2699 d_drop(dentry);
2700 if (S_ISREG(inode->i_mode))
2701 nfs_sync_inode(inode);
2702 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
2703 if (error == 0) {
2704 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2705 ihold(inode);
2706 d_add(dentry, inode);
2707 }
2708 trace_nfs_link_exit(inode, dir, dentry, error);
2709 return error;
2710 }
2711 EXPORT_SYMBOL_GPL(nfs_link);
2712
2713 static void
nfs_unblock_rename(struct rpc_task * task,struct nfs_renamedata * data)2714 nfs_unblock_rename(struct rpc_task *task, struct nfs_renamedata *data)
2715 {
2716 struct dentry *new_dentry = data->new_dentry;
2717
2718 unblock_revalidate(new_dentry);
2719 }
2720
nfs_rename_is_unsafe_cross_dir(struct dentry * old_dentry,struct dentry * new_dentry)2721 static bool nfs_rename_is_unsafe_cross_dir(struct dentry *old_dentry,
2722 struct dentry *new_dentry)
2723 {
2724 struct nfs_server *server = NFS_SB(old_dentry->d_sb);
2725
2726 if (old_dentry->d_parent != new_dentry->d_parent)
2727 return false;
2728 if (server->fh_expire_type & NFS_FH_RENAME_UNSAFE)
2729 return !(server->fh_expire_type & NFS_FH_NOEXPIRE_WITH_OPEN);
2730 return true;
2731 }
2732
2733 /*
2734 * RENAME
2735 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2736 * different file handle for the same inode after a rename (e.g. when
2737 * moving to a different directory). A fail-safe method to do so would
2738 * be to look up old_dir/old_name, create a link to new_dir/new_name and
2739 * rename the old file using the sillyrename stuff. This way, the original
2740 * file in old_dir will go away when the last process iput()s the inode.
2741 *
2742 * FIXED.
2743 *
2744 * It actually works quite well. One needs to have the possibility for
2745 * at least one ".nfs..." file in each directory the file ever gets
2746 * moved or linked to which happens automagically with the new
2747 * implementation that only depends on the dcache stuff instead of
2748 * using the inode layer
2749 *
2750 * Unfortunately, things are a little more complicated than indicated
2751 * above. For a cross-directory move, we want to make sure we can get
2752 * rid of the old inode after the operation. This means there must be
2753 * no pending writes (if it's a file), and the use count must be 1.
2754 * If these conditions are met, we can drop the dentries before doing
2755 * the rename.
2756 */
nfs_rename(struct mnt_idmap * idmap,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)2757 int nfs_rename(struct mnt_idmap *idmap, struct inode *old_dir,
2758 struct dentry *old_dentry, struct inode *new_dir,
2759 struct dentry *new_dentry, unsigned int flags)
2760 {
2761 struct inode *old_inode = d_inode(old_dentry);
2762 struct inode *new_inode = d_inode(new_dentry);
2763 unsigned long new_gencount = 0;
2764 struct dentry *dentry = NULL;
2765 struct rpc_task *task;
2766 bool must_unblock = false;
2767 int error = -EBUSY;
2768
2769 if (flags)
2770 return -EINVAL;
2771
2772 dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2773 old_dentry, new_dentry,
2774 d_count(new_dentry));
2775
2776 trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2777 /*
2778 * For non-directories, check whether the target is busy and if so,
2779 * make a copy of the dentry and then do a silly-rename. If the
2780 * silly-rename succeeds, the copied dentry is hashed and becomes
2781 * the new target.
2782 */
2783 if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2784 /* We must prevent any concurrent open until the unlink
2785 * completes. ->d_revalidate will wait for ->d_fsdata
2786 * to clear. We set it here to ensure no lookup succeeds until
2787 * the unlink is complete on the server.
2788 */
2789 error = -ETXTBSY;
2790 if (WARN_ON(new_dentry->d_flags & DCACHE_NFSFS_RENAMED) ||
2791 WARN_ON(new_dentry->d_fsdata == NFS_FSDATA_BLOCKED))
2792 goto out;
2793
2794 spin_lock(&new_dentry->d_lock);
2795 if (d_count(new_dentry) > 2) {
2796 int err;
2797
2798 spin_unlock(&new_dentry->d_lock);
2799
2800 /* copy the target dentry's name */
2801 dentry = d_alloc(new_dentry->d_parent,
2802 &new_dentry->d_name);
2803 if (!dentry)
2804 goto out;
2805
2806 /* silly-rename the existing target ... */
2807 err = nfs_sillyrename(new_dir, new_dentry);
2808 if (err)
2809 goto out;
2810
2811 new_dentry = dentry;
2812 new_inode = NULL;
2813 } else {
2814 block_revalidate(new_dentry);
2815 must_unblock = true;
2816 new_gencount = NFS_I(new_inode)->attr_gencount;
2817 spin_unlock(&new_dentry->d_lock);
2818 }
2819
2820 }
2821
2822 if (S_ISREG(old_inode->i_mode) &&
2823 nfs_rename_is_unsafe_cross_dir(old_dentry, new_dentry))
2824 nfs_sync_inode(old_inode);
2825 task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry,
2826 must_unblock ? nfs_unblock_rename : NULL);
2827 if (IS_ERR(task)) {
2828 if (must_unblock)
2829 unblock_revalidate(new_dentry);
2830 error = PTR_ERR(task);
2831 goto out;
2832 }
2833
2834 error = rpc_wait_for_completion_task(task);
2835 if (error != 0) {
2836 ((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1;
2837 /* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2838 smp_wmb();
2839 } else
2840 error = task->tk_status;
2841 rpc_put_task(task);
2842 /* Ensure the inode attributes are revalidated */
2843 if (error == 0) {
2844 spin_lock(&old_inode->i_lock);
2845 NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter();
2846 nfs_set_cache_invalid(old_inode, NFS_INO_INVALID_CHANGE |
2847 NFS_INO_INVALID_CTIME |
2848 NFS_INO_REVAL_FORCED);
2849 spin_unlock(&old_inode->i_lock);
2850 }
2851 out:
2852 trace_nfs_rename_exit(old_dir, old_dentry,
2853 new_dir, new_dentry, error);
2854 if (!error) {
2855 if (new_inode != NULL)
2856 nfs_drop_nlink(new_inode, new_gencount);
2857 /*
2858 * The d_move() should be here instead of in an async RPC completion
2859 * handler because we need the proper locks to move the dentry. If
2860 * we're interrupted by a signal, the async RPC completion handler
2861 * should mark the directories for revalidation.
2862 */
2863 d_move(old_dentry, new_dentry);
2864 nfs_set_verifier(old_dentry,
2865 nfs_save_change_attribute(new_dir));
2866 } else if (error == -ENOENT)
2867 nfs_dentry_handle_enoent(old_dentry);
2868
2869 /* new dentry created? */
2870 if (dentry)
2871 dput(dentry);
2872 return error;
2873 }
2874 EXPORT_SYMBOL_GPL(nfs_rename);
2875
2876 static DEFINE_SPINLOCK(nfs_access_lru_lock);
2877 static LIST_HEAD(nfs_access_lru_list);
2878 static atomic_long_t nfs_access_nr_entries;
2879
2880 static unsigned long nfs_access_max_cachesize = 4*1024*1024;
2881 module_param(nfs_access_max_cachesize, ulong, 0644);
2882 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2883
nfs_access_free_entry(struct nfs_access_entry * entry)2884 static void nfs_access_free_entry(struct nfs_access_entry *entry)
2885 {
2886 put_group_info(entry->group_info);
2887 kfree_rcu(entry, rcu_head);
2888 smp_mb__before_atomic();
2889 atomic_long_dec(&nfs_access_nr_entries);
2890 smp_mb__after_atomic();
2891 }
2892
nfs_access_free_list(struct list_head * head)2893 static void nfs_access_free_list(struct list_head *head)
2894 {
2895 struct nfs_access_entry *cache;
2896
2897 while (!list_empty(head)) {
2898 cache = list_entry(head->next, struct nfs_access_entry, lru);
2899 list_del(&cache->lru);
2900 nfs_access_free_entry(cache);
2901 }
2902 }
2903
2904 static unsigned long
nfs_do_access_cache_scan(unsigned int nr_to_scan)2905 nfs_do_access_cache_scan(unsigned int nr_to_scan)
2906 {
2907 LIST_HEAD(head);
2908 struct nfs_inode *nfsi, *next;
2909 struct nfs_access_entry *cache;
2910 long freed = 0;
2911
2912 spin_lock(&nfs_access_lru_lock);
2913 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2914 struct inode *inode;
2915
2916 if (nr_to_scan-- == 0)
2917 break;
2918 inode = &nfsi->vfs_inode;
2919 spin_lock(&inode->i_lock);
2920 if (list_empty(&nfsi->access_cache_entry_lru))
2921 goto remove_lru_entry;
2922 cache = list_entry(nfsi->access_cache_entry_lru.next,
2923 struct nfs_access_entry, lru);
2924 list_move(&cache->lru, &head);
2925 rb_erase(&cache->rb_node, &nfsi->access_cache);
2926 freed++;
2927 if (!list_empty(&nfsi->access_cache_entry_lru))
2928 list_move_tail(&nfsi->access_cache_inode_lru,
2929 &nfs_access_lru_list);
2930 else {
2931 remove_lru_entry:
2932 list_del_init(&nfsi->access_cache_inode_lru);
2933 smp_mb__before_atomic();
2934 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2935 smp_mb__after_atomic();
2936 }
2937 spin_unlock(&inode->i_lock);
2938 }
2939 spin_unlock(&nfs_access_lru_lock);
2940 nfs_access_free_list(&head);
2941 return freed;
2942 }
2943
2944 unsigned long
nfs_access_cache_scan(struct shrinker * shrink,struct shrink_control * sc)2945 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2946 {
2947 int nr_to_scan = sc->nr_to_scan;
2948 gfp_t gfp_mask = sc->gfp_mask;
2949
2950 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2951 return SHRINK_STOP;
2952 return nfs_do_access_cache_scan(nr_to_scan);
2953 }
2954
2955
2956 unsigned long
nfs_access_cache_count(struct shrinker * shrink,struct shrink_control * sc)2957 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2958 {
2959 return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2960 }
2961
2962 static void
nfs_access_cache_enforce_limit(void)2963 nfs_access_cache_enforce_limit(void)
2964 {
2965 long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2966 unsigned long diff;
2967 unsigned int nr_to_scan;
2968
2969 if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2970 return;
2971 nr_to_scan = 100;
2972 diff = nr_entries - nfs_access_max_cachesize;
2973 if (diff < nr_to_scan)
2974 nr_to_scan = diff;
2975 nfs_do_access_cache_scan(nr_to_scan);
2976 }
2977
__nfs_access_zap_cache(struct nfs_inode * nfsi,struct list_head * head)2978 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2979 {
2980 struct rb_root *root_node = &nfsi->access_cache;
2981 struct rb_node *n;
2982 struct nfs_access_entry *entry;
2983
2984 /* Unhook entries from the cache */
2985 while ((n = rb_first(root_node)) != NULL) {
2986 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2987 rb_erase(n, root_node);
2988 list_move(&entry->lru, head);
2989 }
2990 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2991 }
2992
nfs_access_zap_cache(struct inode * inode)2993 void nfs_access_zap_cache(struct inode *inode)
2994 {
2995 LIST_HEAD(head);
2996
2997 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2998 return;
2999 /* Remove from global LRU init */
3000 spin_lock(&nfs_access_lru_lock);
3001 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
3002 list_del_init(&NFS_I(inode)->access_cache_inode_lru);
3003
3004 spin_lock(&inode->i_lock);
3005 __nfs_access_zap_cache(NFS_I(inode), &head);
3006 spin_unlock(&inode->i_lock);
3007 spin_unlock(&nfs_access_lru_lock);
3008 nfs_access_free_list(&head);
3009 }
3010 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
3011
access_cmp(const struct cred * a,const struct nfs_access_entry * b)3012 static int access_cmp(const struct cred *a, const struct nfs_access_entry *b)
3013 {
3014 struct group_info *ga, *gb;
3015 int g;
3016
3017 if (uid_lt(a->fsuid, b->fsuid))
3018 return -1;
3019 if (uid_gt(a->fsuid, b->fsuid))
3020 return 1;
3021
3022 if (gid_lt(a->fsgid, b->fsgid))
3023 return -1;
3024 if (gid_gt(a->fsgid, b->fsgid))
3025 return 1;
3026
3027 ga = a->group_info;
3028 gb = b->group_info;
3029 if (ga == gb)
3030 return 0;
3031 if (ga == NULL)
3032 return -1;
3033 if (gb == NULL)
3034 return 1;
3035 if (ga->ngroups < gb->ngroups)
3036 return -1;
3037 if (ga->ngroups > gb->ngroups)
3038 return 1;
3039
3040 for (g = 0; g < ga->ngroups; g++) {
3041 if (gid_lt(ga->gid[g], gb->gid[g]))
3042 return -1;
3043 if (gid_gt(ga->gid[g], gb->gid[g]))
3044 return 1;
3045 }
3046 return 0;
3047 }
3048
nfs_access_search_rbtree(struct inode * inode,const struct cred * cred)3049 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred)
3050 {
3051 struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
3052
3053 while (n != NULL) {
3054 struct nfs_access_entry *entry =
3055 rb_entry(n, struct nfs_access_entry, rb_node);
3056 int cmp = access_cmp(cred, entry);
3057
3058 if (cmp < 0)
3059 n = n->rb_left;
3060 else if (cmp > 0)
3061 n = n->rb_right;
3062 else
3063 return entry;
3064 }
3065 return NULL;
3066 }
3067
nfs_access_login_time(const struct task_struct * task,const struct cred * cred)3068 static u64 nfs_access_login_time(const struct task_struct *task,
3069 const struct cred *cred)
3070 {
3071 const struct task_struct *parent;
3072 const struct cred *pcred;
3073 u64 ret;
3074
3075 rcu_read_lock();
3076 for (;;) {
3077 parent = rcu_dereference(task->real_parent);
3078 pcred = __task_cred(parent);
3079 if (parent == task || cred_fscmp(pcred, cred) != 0)
3080 break;
3081 task = parent;
3082 }
3083 ret = task->start_time;
3084 rcu_read_unlock();
3085 return ret;
3086 }
3087
nfs_access_get_cached_locked(struct inode * inode,const struct cred * cred,u32 * mask,bool may_block)3088 static int nfs_access_get_cached_locked(struct inode *inode, const struct cred *cred, u32 *mask, bool may_block)
3089 {
3090 struct nfs_inode *nfsi = NFS_I(inode);
3091 u64 login_time = nfs_access_login_time(current, cred);
3092 struct nfs_access_entry *cache;
3093 bool retry = true;
3094 int err;
3095
3096 spin_lock(&inode->i_lock);
3097 for(;;) {
3098 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
3099 goto out_zap;
3100 cache = nfs_access_search_rbtree(inode, cred);
3101 err = -ENOENT;
3102 if (cache == NULL)
3103 goto out;
3104 /* Found an entry, is our attribute cache valid? */
3105 if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
3106 break;
3107 if (!retry)
3108 break;
3109 err = -ECHILD;
3110 if (!may_block)
3111 goto out;
3112 spin_unlock(&inode->i_lock);
3113 err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
3114 if (err)
3115 return err;
3116 spin_lock(&inode->i_lock);
3117 retry = false;
3118 }
3119 err = -ENOENT;
3120 if ((s64)(login_time - cache->timestamp) > 0)
3121 goto out;
3122 *mask = cache->mask;
3123 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
3124 err = 0;
3125 out:
3126 spin_unlock(&inode->i_lock);
3127 return err;
3128 out_zap:
3129 spin_unlock(&inode->i_lock);
3130 nfs_access_zap_cache(inode);
3131 return -ENOENT;
3132 }
3133
nfs_access_get_cached_rcu(struct inode * inode,const struct cred * cred,u32 * mask)3134 static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, u32 *mask)
3135 {
3136 /* Only check the most recently returned cache entry,
3137 * but do it without locking.
3138 */
3139 struct nfs_inode *nfsi = NFS_I(inode);
3140 u64 login_time = nfs_access_login_time(current, cred);
3141 struct nfs_access_entry *cache;
3142 int err = -ECHILD;
3143 struct list_head *lh;
3144
3145 rcu_read_lock();
3146 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
3147 goto out;
3148 lh = rcu_dereference(list_tail_rcu(&nfsi->access_cache_entry_lru));
3149 cache = list_entry(lh, struct nfs_access_entry, lru);
3150 if (lh == &nfsi->access_cache_entry_lru ||
3151 access_cmp(cred, cache) != 0)
3152 cache = NULL;
3153 if (cache == NULL)
3154 goto out;
3155 if ((s64)(login_time - cache->timestamp) > 0)
3156 goto out;
3157 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
3158 goto out;
3159 *mask = cache->mask;
3160 err = 0;
3161 out:
3162 rcu_read_unlock();
3163 return err;
3164 }
3165
nfs_access_get_cached(struct inode * inode,const struct cred * cred,u32 * mask,bool may_block)3166 int nfs_access_get_cached(struct inode *inode, const struct cred *cred,
3167 u32 *mask, bool may_block)
3168 {
3169 int status;
3170
3171 status = nfs_access_get_cached_rcu(inode, cred, mask);
3172 if (status != 0)
3173 status = nfs_access_get_cached_locked(inode, cred, mask,
3174 may_block);
3175
3176 return status;
3177 }
3178 EXPORT_SYMBOL_GPL(nfs_access_get_cached);
3179
nfs_access_add_rbtree(struct inode * inode,struct nfs_access_entry * set,const struct cred * cred)3180 static void nfs_access_add_rbtree(struct inode *inode,
3181 struct nfs_access_entry *set,
3182 const struct cred *cred)
3183 {
3184 struct nfs_inode *nfsi = NFS_I(inode);
3185 struct rb_root *root_node = &nfsi->access_cache;
3186 struct rb_node **p = &root_node->rb_node;
3187 struct rb_node *parent = NULL;
3188 struct nfs_access_entry *entry;
3189 int cmp;
3190
3191 spin_lock(&inode->i_lock);
3192 while (*p != NULL) {
3193 parent = *p;
3194 entry = rb_entry(parent, struct nfs_access_entry, rb_node);
3195 cmp = access_cmp(cred, entry);
3196
3197 if (cmp < 0)
3198 p = &parent->rb_left;
3199 else if (cmp > 0)
3200 p = &parent->rb_right;
3201 else
3202 goto found;
3203 }
3204 rb_link_node(&set->rb_node, parent, p);
3205 rb_insert_color(&set->rb_node, root_node);
3206 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
3207 spin_unlock(&inode->i_lock);
3208 return;
3209 found:
3210 rb_replace_node(parent, &set->rb_node, root_node);
3211 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
3212 list_del(&entry->lru);
3213 spin_unlock(&inode->i_lock);
3214 nfs_access_free_entry(entry);
3215 }
3216
nfs_access_add_cache(struct inode * inode,struct nfs_access_entry * set,const struct cred * cred)3217 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set,
3218 const struct cred *cred)
3219 {
3220 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
3221 if (cache == NULL)
3222 return;
3223 RB_CLEAR_NODE(&cache->rb_node);
3224 cache->fsuid = cred->fsuid;
3225 cache->fsgid = cred->fsgid;
3226 cache->group_info = get_group_info(cred->group_info);
3227 cache->mask = set->mask;
3228 cache->timestamp = ktime_get_ns();
3229
3230 /* The above field assignments must be visible
3231 * before this item appears on the lru. We cannot easily
3232 * use rcu_assign_pointer, so just force the memory barrier.
3233 */
3234 smp_wmb();
3235 nfs_access_add_rbtree(inode, cache, cred);
3236
3237 /* Update accounting */
3238 smp_mb__before_atomic();
3239 atomic_long_inc(&nfs_access_nr_entries);
3240 smp_mb__after_atomic();
3241
3242 /* Add inode to global LRU list */
3243 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
3244 spin_lock(&nfs_access_lru_lock);
3245 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
3246 list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
3247 &nfs_access_lru_list);
3248 spin_unlock(&nfs_access_lru_lock);
3249 }
3250 nfs_access_cache_enforce_limit();
3251 }
3252 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
3253
3254 #define NFS_MAY_READ (NFS_ACCESS_READ)
3255 #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \
3256 NFS_ACCESS_EXTEND | \
3257 NFS_ACCESS_DELETE)
3258 #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \
3259 NFS_ACCESS_EXTEND)
3260 #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE
3261 #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP)
3262 #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE)
3263 static int
nfs_access_calc_mask(u32 access_result,umode_t umode)3264 nfs_access_calc_mask(u32 access_result, umode_t umode)
3265 {
3266 int mask = 0;
3267
3268 if (access_result & NFS_MAY_READ)
3269 mask |= MAY_READ;
3270 if (S_ISDIR(umode)) {
3271 if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE)
3272 mask |= MAY_WRITE;
3273 if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP)
3274 mask |= MAY_EXEC;
3275 } else if (S_ISREG(umode)) {
3276 if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE)
3277 mask |= MAY_WRITE;
3278 if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE)
3279 mask |= MAY_EXEC;
3280 } else if (access_result & NFS_MAY_WRITE)
3281 mask |= MAY_WRITE;
3282 return mask;
3283 }
3284
nfs_access_set_mask(struct nfs_access_entry * entry,u32 access_result)3285 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
3286 {
3287 entry->mask = access_result;
3288 }
3289 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
3290
nfs_do_access(struct inode * inode,const struct cred * cred,int mask)3291 static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask)
3292 {
3293 struct nfs_access_entry cache;
3294 bool may_block = (mask & MAY_NOT_BLOCK) == 0;
3295 int cache_mask = -1;
3296 int status;
3297
3298 trace_nfs_access_enter(inode);
3299
3300 status = nfs_access_get_cached(inode, cred, &cache.mask, may_block);
3301 if (status == 0)
3302 goto out_cached;
3303
3304 status = -ECHILD;
3305 if (!may_block)
3306 goto out;
3307
3308 /*
3309 * Determine which access bits we want to ask for...
3310 */
3311 cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND |
3312 nfs_access_xattr_mask(NFS_SERVER(inode));
3313 if (S_ISDIR(inode->i_mode))
3314 cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP;
3315 else
3316 cache.mask |= NFS_ACCESS_EXECUTE;
3317 status = NFS_PROTO(inode)->access(inode, &cache, cred);
3318 if (status != 0) {
3319 if (status == -ESTALE) {
3320 if (!S_ISDIR(inode->i_mode))
3321 nfs_set_inode_stale(inode);
3322 else
3323 nfs_zap_caches(inode);
3324 }
3325 goto out;
3326 }
3327 nfs_access_add_cache(inode, &cache, cred);
3328 out_cached:
3329 cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode);
3330 if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
3331 status = -EACCES;
3332 out:
3333 trace_nfs_access_exit(inode, mask, cache_mask, status);
3334 return status;
3335 }
3336
nfs_open_permission_mask(int openflags)3337 static int nfs_open_permission_mask(int openflags)
3338 {
3339 int mask = 0;
3340
3341 if (openflags & __FMODE_EXEC) {
3342 /* ONLY check exec rights */
3343 mask = MAY_EXEC;
3344 } else {
3345 if ((openflags & O_ACCMODE) != O_WRONLY)
3346 mask |= MAY_READ;
3347 if ((openflags & O_ACCMODE) != O_RDONLY)
3348 mask |= MAY_WRITE;
3349 }
3350
3351 return mask;
3352 }
3353
nfs_may_open(struct inode * inode,const struct cred * cred,int openflags)3354 int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags)
3355 {
3356 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
3357 }
3358 EXPORT_SYMBOL_GPL(nfs_may_open);
3359
nfs_execute_ok(struct inode * inode,int mask)3360 static int nfs_execute_ok(struct inode *inode, int mask)
3361 {
3362 struct nfs_server *server = NFS_SERVER(inode);
3363 int ret = 0;
3364
3365 if (S_ISDIR(inode->i_mode))
3366 return 0;
3367 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_MODE)) {
3368 if (mask & MAY_NOT_BLOCK)
3369 return -ECHILD;
3370 ret = __nfs_revalidate_inode(server, inode);
3371 }
3372 if (ret == 0 && !execute_ok(inode))
3373 ret = -EACCES;
3374 return ret;
3375 }
3376
nfs_permission(struct mnt_idmap * idmap,struct inode * inode,int mask)3377 int nfs_permission(struct mnt_idmap *idmap,
3378 struct inode *inode,
3379 int mask)
3380 {
3381 const struct cred *cred = current_cred();
3382 int res = 0;
3383
3384 nfs_inc_stats(inode, NFSIOS_VFSACCESS);
3385
3386 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
3387 goto out;
3388 /* Is this sys_access() ? */
3389 if (mask & (MAY_ACCESS | MAY_CHDIR))
3390 goto force_lookup;
3391
3392 switch (inode->i_mode & S_IFMT) {
3393 case S_IFLNK:
3394 goto out;
3395 case S_IFREG:
3396 if ((mask & MAY_OPEN) &&
3397 nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
3398 return 0;
3399 break;
3400 case S_IFDIR:
3401 /*
3402 * Optimize away all write operations, since the server
3403 * will check permissions when we perform the op.
3404 */
3405 if ((mask & MAY_WRITE) && !(mask & MAY_READ))
3406 goto out;
3407 }
3408
3409 force_lookup:
3410 if (!NFS_PROTO(inode)->access)
3411 goto out_notsup;
3412
3413 res = nfs_do_access(inode, cred, mask);
3414 out:
3415 if (!res && (mask & MAY_EXEC))
3416 res = nfs_execute_ok(inode, mask);
3417
3418 dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
3419 inode->i_sb->s_id, inode->i_ino, mask, res);
3420 return res;
3421 out_notsup:
3422 if (mask & MAY_NOT_BLOCK)
3423 return -ECHILD;
3424
3425 res = nfs_revalidate_inode(inode, NFS_INO_INVALID_MODE |
3426 NFS_INO_INVALID_OTHER);
3427 if (res == 0)
3428 res = generic_permission(&nop_mnt_idmap, inode, mask);
3429 goto out;
3430 }
3431 EXPORT_SYMBOL_GPL(nfs_permission);
3432