xref: /linux/drivers/net/ethernet/netronome/nfp/flower/offload.c (revision a1ff5a7d78a036d6c2178ee5acd6ba4946243800)
1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
2 /* Copyright (C) 2017-2018 Netronome Systems, Inc. */
3 
4 #include <linux/skbuff.h>
5 #include <net/devlink.h>
6 #include <net/pkt_cls.h>
7 
8 #include "cmsg.h"
9 #include "main.h"
10 #include "conntrack.h"
11 #include "../nfpcore/nfp_cpp.h"
12 #include "../nfpcore/nfp_nsp.h"
13 #include "../nfp_app.h"
14 #include "../nfp_main.h"
15 #include "../nfp_net.h"
16 #include "../nfp_port.h"
17 
18 #define NFP_FLOWER_SUPPORTED_TCPFLAGS \
19 	(TCPHDR_FIN | TCPHDR_SYN | TCPHDR_RST | \
20 	 TCPHDR_PSH | TCPHDR_URG)
21 
22 #define NFP_FLOWER_SUPPORTED_CTLFLAGS \
23 	(FLOW_DIS_IS_FRAGMENT | \
24 	 FLOW_DIS_FIRST_FRAG)
25 
26 #define NFP_FLOWER_WHITELIST_DISSECTOR \
27 	(BIT_ULL(FLOW_DISSECTOR_KEY_CONTROL) | \
28 	 BIT_ULL(FLOW_DISSECTOR_KEY_BASIC) | \
29 	 BIT_ULL(FLOW_DISSECTOR_KEY_IPV4_ADDRS) | \
30 	 BIT_ULL(FLOW_DISSECTOR_KEY_IPV6_ADDRS) | \
31 	 BIT_ULL(FLOW_DISSECTOR_KEY_TCP) | \
32 	 BIT_ULL(FLOW_DISSECTOR_KEY_PORTS) | \
33 	 BIT_ULL(FLOW_DISSECTOR_KEY_ETH_ADDRS) | \
34 	 BIT_ULL(FLOW_DISSECTOR_KEY_VLAN) | \
35 	 BIT_ULL(FLOW_DISSECTOR_KEY_CVLAN) | \
36 	 BIT_ULL(FLOW_DISSECTOR_KEY_ENC_KEYID) | \
37 	 BIT_ULL(FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS) | \
38 	 BIT_ULL(FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS) | \
39 	 BIT_ULL(FLOW_DISSECTOR_KEY_ENC_CONTROL) | \
40 	 BIT_ULL(FLOW_DISSECTOR_KEY_ENC_PORTS) | \
41 	 BIT_ULL(FLOW_DISSECTOR_KEY_ENC_OPTS) | \
42 	 BIT_ULL(FLOW_DISSECTOR_KEY_ENC_IP) | \
43 	 BIT_ULL(FLOW_DISSECTOR_KEY_MPLS) | \
44 	 BIT_ULL(FLOW_DISSECTOR_KEY_CT) | \
45 	 BIT_ULL(FLOW_DISSECTOR_KEY_META) | \
46 	 BIT_ULL(FLOW_DISSECTOR_KEY_IP))
47 
48 #define NFP_FLOWER_WHITELIST_TUN_DISSECTOR \
49 	(BIT_ULL(FLOW_DISSECTOR_KEY_ENC_CONTROL) | \
50 	 BIT_ULL(FLOW_DISSECTOR_KEY_ENC_KEYID) | \
51 	 BIT_ULL(FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS) | \
52 	 BIT_ULL(FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS) | \
53 	 BIT_ULL(FLOW_DISSECTOR_KEY_ENC_OPTS) | \
54 	 BIT_ULL(FLOW_DISSECTOR_KEY_ENC_PORTS) | \
55 	 BIT_ULL(FLOW_DISSECTOR_KEY_ENC_IP))
56 
57 #define NFP_FLOWER_WHITELIST_TUN_DISSECTOR_R \
58 	(BIT_ULL(FLOW_DISSECTOR_KEY_ENC_CONTROL) | \
59 	 BIT_ULL(FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS))
60 
61 #define NFP_FLOWER_WHITELIST_TUN_DISSECTOR_V6_R \
62 	(BIT_ULL(FLOW_DISSECTOR_KEY_ENC_CONTROL) | \
63 	 BIT_ULL(FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS))
64 
65 #define NFP_FLOWER_MERGE_FIELDS \
66 	(NFP_FLOWER_LAYER_PORT | \
67 	 NFP_FLOWER_LAYER_MAC | \
68 	 NFP_FLOWER_LAYER_TP | \
69 	 NFP_FLOWER_LAYER_IPV4 | \
70 	 NFP_FLOWER_LAYER_IPV6)
71 
72 #define NFP_FLOWER_PRE_TUN_RULE_FIELDS \
73 	(NFP_FLOWER_LAYER_EXT_META | \
74 	 NFP_FLOWER_LAYER_PORT | \
75 	 NFP_FLOWER_LAYER_MAC | \
76 	 NFP_FLOWER_LAYER_IPV4 | \
77 	 NFP_FLOWER_LAYER_IPV6)
78 
79 struct nfp_flower_merge_check {
80 	union {
81 		struct {
82 			__be16 tci;
83 			struct nfp_flower_mac_mpls l2;
84 			struct nfp_flower_tp_ports l4;
85 			union {
86 				struct nfp_flower_ipv4 ipv4;
87 				struct nfp_flower_ipv6 ipv6;
88 			};
89 		};
90 		unsigned long vals[8];
91 	};
92 };
93 
94 int
nfp_flower_xmit_flow(struct nfp_app * app,struct nfp_fl_payload * nfp_flow,u8 mtype)95 nfp_flower_xmit_flow(struct nfp_app *app, struct nfp_fl_payload *nfp_flow,
96 		     u8 mtype)
97 {
98 	u32 meta_len, key_len, mask_len, act_len, tot_len;
99 	struct sk_buff *skb;
100 	unsigned char *msg;
101 
102 	meta_len =  sizeof(struct nfp_fl_rule_metadata);
103 	key_len = nfp_flow->meta.key_len;
104 	mask_len = nfp_flow->meta.mask_len;
105 	act_len = nfp_flow->meta.act_len;
106 
107 	tot_len = meta_len + key_len + mask_len + act_len;
108 
109 	/* Convert to long words as firmware expects
110 	 * lengths in units of NFP_FL_LW_SIZ.
111 	 */
112 	nfp_flow->meta.key_len >>= NFP_FL_LW_SIZ;
113 	nfp_flow->meta.mask_len >>= NFP_FL_LW_SIZ;
114 	nfp_flow->meta.act_len >>= NFP_FL_LW_SIZ;
115 
116 	skb = nfp_flower_cmsg_alloc(app, tot_len, mtype, GFP_KERNEL);
117 	if (!skb)
118 		return -ENOMEM;
119 
120 	msg = nfp_flower_cmsg_get_data(skb);
121 	memcpy(msg, &nfp_flow->meta, meta_len);
122 	memcpy(&msg[meta_len], nfp_flow->unmasked_data, key_len);
123 	memcpy(&msg[meta_len + key_len], nfp_flow->mask_data, mask_len);
124 	memcpy(&msg[meta_len + key_len + mask_len],
125 	       nfp_flow->action_data, act_len);
126 
127 	/* Convert back to bytes as software expects
128 	 * lengths in units of bytes.
129 	 */
130 	nfp_flow->meta.key_len <<= NFP_FL_LW_SIZ;
131 	nfp_flow->meta.mask_len <<= NFP_FL_LW_SIZ;
132 	nfp_flow->meta.act_len <<= NFP_FL_LW_SIZ;
133 
134 	nfp_ctrl_tx(app->ctrl, skb);
135 
136 	return 0;
137 }
138 
nfp_flower_check_higher_than_mac(struct flow_rule * rule)139 static bool nfp_flower_check_higher_than_mac(struct flow_rule *rule)
140 {
141 	return flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_IPV4_ADDRS) ||
142 	       flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_IPV6_ADDRS) ||
143 	       flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS) ||
144 	       flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ICMP);
145 }
146 
nfp_flower_check_higher_than_l3(struct flow_rule * rule)147 static bool nfp_flower_check_higher_than_l3(struct flow_rule *rule)
148 {
149 	return flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS) ||
150 	       flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ICMP);
151 }
152 
153 static int
nfp_flower_calc_opt_layer(struct flow_dissector_key_enc_opts * enc_opts,u32 * key_layer_two,int * key_size,bool ipv6,struct netlink_ext_ack * extack)154 nfp_flower_calc_opt_layer(struct flow_dissector_key_enc_opts *enc_opts,
155 			  u32 *key_layer_two, int *key_size, bool ipv6,
156 			  struct netlink_ext_ack *extack)
157 {
158 	if (enc_opts->len > NFP_FL_MAX_GENEVE_OPT_KEY ||
159 	    (ipv6 && enc_opts->len > NFP_FL_MAX_GENEVE_OPT_KEY_V6)) {
160 		NL_SET_ERR_MSG_MOD(extack, "unsupported offload: geneve options exceed maximum length");
161 		return -EOPNOTSUPP;
162 	}
163 
164 	if (enc_opts->len > 0) {
165 		*key_layer_two |= NFP_FLOWER_LAYER2_GENEVE_OP;
166 		*key_size += sizeof(struct nfp_flower_geneve_options);
167 	}
168 
169 	return 0;
170 }
171 
172 static int
nfp_flower_calc_udp_tun_layer(struct flow_dissector_key_ports * enc_ports,struct flow_dissector_key_enc_opts * enc_op,u32 * key_layer_two,u8 * key_layer,int * key_size,struct nfp_flower_priv * priv,enum nfp_flower_tun_type * tun_type,bool ipv6,struct netlink_ext_ack * extack)173 nfp_flower_calc_udp_tun_layer(struct flow_dissector_key_ports *enc_ports,
174 			      struct flow_dissector_key_enc_opts *enc_op,
175 			      u32 *key_layer_two, u8 *key_layer, int *key_size,
176 			      struct nfp_flower_priv *priv,
177 			      enum nfp_flower_tun_type *tun_type, bool ipv6,
178 			      struct netlink_ext_ack *extack)
179 {
180 	int err;
181 
182 	switch (enc_ports->dst) {
183 	case htons(IANA_VXLAN_UDP_PORT):
184 		*tun_type = NFP_FL_TUNNEL_VXLAN;
185 		*key_layer |= NFP_FLOWER_LAYER_VXLAN;
186 
187 		if (ipv6) {
188 			*key_layer |= NFP_FLOWER_LAYER_EXT_META;
189 			*key_size += sizeof(struct nfp_flower_ext_meta);
190 			*key_layer_two |= NFP_FLOWER_LAYER2_TUN_IPV6;
191 			*key_size += sizeof(struct nfp_flower_ipv6_udp_tun);
192 		} else {
193 			*key_size += sizeof(struct nfp_flower_ipv4_udp_tun);
194 		}
195 
196 		if (enc_op) {
197 			NL_SET_ERR_MSG_MOD(extack, "unsupported offload: encap options not supported on vxlan tunnels");
198 			return -EOPNOTSUPP;
199 		}
200 		break;
201 	case htons(GENEVE_UDP_PORT):
202 		if (!(priv->flower_ext_feats & NFP_FL_FEATS_GENEVE)) {
203 			NL_SET_ERR_MSG_MOD(extack, "unsupported offload: loaded firmware does not support geneve offload");
204 			return -EOPNOTSUPP;
205 		}
206 		*tun_type = NFP_FL_TUNNEL_GENEVE;
207 		*key_layer |= NFP_FLOWER_LAYER_EXT_META;
208 		*key_size += sizeof(struct nfp_flower_ext_meta);
209 		*key_layer_two |= NFP_FLOWER_LAYER2_GENEVE;
210 
211 		if (ipv6) {
212 			*key_layer_two |= NFP_FLOWER_LAYER2_TUN_IPV6;
213 			*key_size += sizeof(struct nfp_flower_ipv6_udp_tun);
214 		} else {
215 			*key_size += sizeof(struct nfp_flower_ipv4_udp_tun);
216 		}
217 
218 		if (!enc_op)
219 			break;
220 		if (!(priv->flower_ext_feats & NFP_FL_FEATS_GENEVE_OPT)) {
221 			NL_SET_ERR_MSG_MOD(extack, "unsupported offload: loaded firmware does not support geneve option offload");
222 			return -EOPNOTSUPP;
223 		}
224 		err = nfp_flower_calc_opt_layer(enc_op, key_layer_two, key_size,
225 						ipv6, extack);
226 		if (err)
227 			return err;
228 		break;
229 	default:
230 		NL_SET_ERR_MSG_MOD(extack, "unsupported offload: tunnel type unknown");
231 		return -EOPNOTSUPP;
232 	}
233 
234 	return 0;
235 }
236 
237 int
nfp_flower_calculate_key_layers(struct nfp_app * app,struct net_device * netdev,struct nfp_fl_key_ls * ret_key_ls,struct flow_rule * rule,enum nfp_flower_tun_type * tun_type,struct netlink_ext_ack * extack)238 nfp_flower_calculate_key_layers(struct nfp_app *app,
239 				struct net_device *netdev,
240 				struct nfp_fl_key_ls *ret_key_ls,
241 				struct flow_rule *rule,
242 				enum nfp_flower_tun_type *tun_type,
243 				struct netlink_ext_ack *extack)
244 {
245 	struct flow_dissector *dissector = rule->match.dissector;
246 	struct flow_match_basic basic = { NULL, NULL};
247 	struct nfp_flower_priv *priv = app->priv;
248 	u32 key_layer_two;
249 	u8 key_layer;
250 	int key_size;
251 	int err;
252 
253 	if (dissector->used_keys & ~NFP_FLOWER_WHITELIST_DISSECTOR) {
254 		NL_SET_ERR_MSG_MOD(extack, "unsupported offload: match not supported");
255 		return -EOPNOTSUPP;
256 	}
257 
258 	/* If any tun dissector is used then the required set must be used. */
259 	if (dissector->used_keys & NFP_FLOWER_WHITELIST_TUN_DISSECTOR &&
260 	    (dissector->used_keys & NFP_FLOWER_WHITELIST_TUN_DISSECTOR_V6_R)
261 	    != NFP_FLOWER_WHITELIST_TUN_DISSECTOR_V6_R &&
262 	    (dissector->used_keys & NFP_FLOWER_WHITELIST_TUN_DISSECTOR_R)
263 	    != NFP_FLOWER_WHITELIST_TUN_DISSECTOR_R) {
264 		NL_SET_ERR_MSG_MOD(extack, "unsupported offload: tunnel match not supported");
265 		return -EOPNOTSUPP;
266 	}
267 
268 	key_layer_two = 0;
269 	key_layer = NFP_FLOWER_LAYER_PORT;
270 	key_size = sizeof(struct nfp_flower_meta_tci) +
271 		   sizeof(struct nfp_flower_in_port);
272 
273 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS) ||
274 	    flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_MPLS)) {
275 		key_layer |= NFP_FLOWER_LAYER_MAC;
276 		key_size += sizeof(struct nfp_flower_mac_mpls);
277 	}
278 
279 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
280 		struct flow_match_vlan vlan;
281 
282 		flow_rule_match_vlan(rule, &vlan);
283 		if (!(priv->flower_ext_feats & NFP_FL_FEATS_VLAN_PCP) &&
284 		    vlan.key->vlan_priority) {
285 			NL_SET_ERR_MSG_MOD(extack, "unsupported offload: loaded firmware does not support VLAN PCP offload");
286 			return -EOPNOTSUPP;
287 		}
288 		if (priv->flower_ext_feats & NFP_FL_FEATS_VLAN_QINQ &&
289 		    !(key_layer_two & NFP_FLOWER_LAYER2_QINQ)) {
290 			key_layer |= NFP_FLOWER_LAYER_EXT_META;
291 			key_size += sizeof(struct nfp_flower_ext_meta);
292 			key_size += sizeof(struct nfp_flower_vlan);
293 			key_layer_two |= NFP_FLOWER_LAYER2_QINQ;
294 		}
295 	}
296 
297 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CVLAN)) {
298 		struct flow_match_vlan cvlan;
299 
300 		if (!(priv->flower_ext_feats & NFP_FL_FEATS_VLAN_QINQ)) {
301 			NL_SET_ERR_MSG_MOD(extack, "unsupported offload: loaded firmware does not support VLAN QinQ offload");
302 			return -EOPNOTSUPP;
303 		}
304 
305 		flow_rule_match_vlan(rule, &cvlan);
306 		if (!(key_layer_two & NFP_FLOWER_LAYER2_QINQ)) {
307 			key_layer |= NFP_FLOWER_LAYER_EXT_META;
308 			key_size += sizeof(struct nfp_flower_ext_meta);
309 			key_size += sizeof(struct nfp_flower_vlan);
310 			key_layer_two |= NFP_FLOWER_LAYER2_QINQ;
311 		}
312 	}
313 
314 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_CONTROL)) {
315 		struct flow_match_enc_opts enc_op = { NULL, NULL };
316 		struct flow_match_ipv4_addrs ipv4_addrs;
317 		struct flow_match_ipv6_addrs ipv6_addrs;
318 		struct flow_match_control enc_ctl;
319 		struct flow_match_ports enc_ports;
320 		bool ipv6_tun = false;
321 
322 		flow_rule_match_enc_control(rule, &enc_ctl);
323 
324 		if (flow_rule_has_enc_control_flags(enc_ctl.mask->flags,
325 						    extack))
326 			return -EOPNOTSUPP;
327 
328 		if (enc_ctl.mask->addr_type != 0xffff) {
329 			NL_SET_ERR_MSG_MOD(extack, "unsupported offload: wildcarded protocols on tunnels are not supported");
330 			return -EOPNOTSUPP;
331 		}
332 
333 		ipv6_tun = enc_ctl.key->addr_type ==
334 				FLOW_DISSECTOR_KEY_IPV6_ADDRS;
335 		if (ipv6_tun &&
336 		    !(priv->flower_ext_feats & NFP_FL_FEATS_IPV6_TUN)) {
337 			NL_SET_ERR_MSG_MOD(extack, "unsupported offload: firmware does not support IPv6 tunnels");
338 			return -EOPNOTSUPP;
339 		}
340 
341 		if (!ipv6_tun &&
342 		    enc_ctl.key->addr_type != FLOW_DISSECTOR_KEY_IPV4_ADDRS) {
343 			NL_SET_ERR_MSG_MOD(extack, "unsupported offload: tunnel address type not IPv4 or IPv6");
344 			return -EOPNOTSUPP;
345 		}
346 
347 		if (ipv6_tun) {
348 			flow_rule_match_enc_ipv6_addrs(rule, &ipv6_addrs);
349 			if (memchr_inv(&ipv6_addrs.mask->dst, 0xff,
350 				       sizeof(ipv6_addrs.mask->dst))) {
351 				NL_SET_ERR_MSG_MOD(extack, "unsupported offload: only an exact match IPv6 destination address is supported");
352 				return -EOPNOTSUPP;
353 			}
354 		} else {
355 			flow_rule_match_enc_ipv4_addrs(rule, &ipv4_addrs);
356 			if (ipv4_addrs.mask->dst != cpu_to_be32(~0)) {
357 				NL_SET_ERR_MSG_MOD(extack, "unsupported offload: only an exact match IPv4 destination address is supported");
358 				return -EOPNOTSUPP;
359 			}
360 		}
361 
362 		if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_OPTS))
363 			flow_rule_match_enc_opts(rule, &enc_op);
364 
365 		if (!flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_PORTS)) {
366 			/* Check if GRE, which has no enc_ports */
367 			if (!netif_is_gretap(netdev) && !netif_is_ip6gretap(netdev)) {
368 				NL_SET_ERR_MSG_MOD(extack, "unsupported offload: an exact match on L4 destination port is required for non-GRE tunnels");
369 				return -EOPNOTSUPP;
370 			}
371 
372 			*tun_type = NFP_FL_TUNNEL_GRE;
373 			key_layer |= NFP_FLOWER_LAYER_EXT_META;
374 			key_size += sizeof(struct nfp_flower_ext_meta);
375 			key_layer_two |= NFP_FLOWER_LAYER2_GRE;
376 
377 			if (ipv6_tun) {
378 				key_layer_two |= NFP_FLOWER_LAYER2_TUN_IPV6;
379 				key_size +=
380 					sizeof(struct nfp_flower_ipv6_gre_tun);
381 			} else {
382 				key_size +=
383 					sizeof(struct nfp_flower_ipv4_gre_tun);
384 			}
385 
386 			if (enc_op.key) {
387 				NL_SET_ERR_MSG_MOD(extack, "unsupported offload: encap options not supported on GRE tunnels");
388 				return -EOPNOTSUPP;
389 			}
390 		} else {
391 			flow_rule_match_enc_ports(rule, &enc_ports);
392 			if (enc_ports.mask->dst != cpu_to_be16(~0)) {
393 				NL_SET_ERR_MSG_MOD(extack, "unsupported offload: only an exact match L4 destination port is supported");
394 				return -EOPNOTSUPP;
395 			}
396 
397 			err = nfp_flower_calc_udp_tun_layer(enc_ports.key,
398 							    enc_op.key,
399 							    &key_layer_two,
400 							    &key_layer,
401 							    &key_size, priv,
402 							    tun_type, ipv6_tun,
403 							    extack);
404 			if (err)
405 				return err;
406 
407 			/* Ensure the ingress netdev matches the expected
408 			 * tun type.
409 			 */
410 			if (!nfp_fl_netdev_is_tunnel_type(netdev, *tun_type)) {
411 				NL_SET_ERR_MSG_MOD(extack, "unsupported offload: ingress netdev does not match the expected tunnel type");
412 				return -EOPNOTSUPP;
413 			}
414 		}
415 	}
416 
417 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC))
418 		flow_rule_match_basic(rule, &basic);
419 
420 	if (basic.mask && basic.mask->n_proto) {
421 		/* Ethernet type is present in the key. */
422 		switch (basic.key->n_proto) {
423 		case cpu_to_be16(ETH_P_IP):
424 			key_layer |= NFP_FLOWER_LAYER_IPV4;
425 			key_size += sizeof(struct nfp_flower_ipv4);
426 			break;
427 
428 		case cpu_to_be16(ETH_P_IPV6):
429 			key_layer |= NFP_FLOWER_LAYER_IPV6;
430 			key_size += sizeof(struct nfp_flower_ipv6);
431 			break;
432 
433 		/* Currently we do not offload ARP
434 		 * because we rely on it to get to the host.
435 		 */
436 		case cpu_to_be16(ETH_P_ARP):
437 			NL_SET_ERR_MSG_MOD(extack, "unsupported offload: ARP not supported");
438 			return -EOPNOTSUPP;
439 
440 		case cpu_to_be16(ETH_P_MPLS_UC):
441 		case cpu_to_be16(ETH_P_MPLS_MC):
442 			if (!(key_layer & NFP_FLOWER_LAYER_MAC)) {
443 				key_layer |= NFP_FLOWER_LAYER_MAC;
444 				key_size += sizeof(struct nfp_flower_mac_mpls);
445 			}
446 			break;
447 
448 		/* Will be included in layer 2. */
449 		case cpu_to_be16(ETH_P_8021Q):
450 			break;
451 
452 		default:
453 			NL_SET_ERR_MSG_MOD(extack, "unsupported offload: match on given EtherType is not supported");
454 			return -EOPNOTSUPP;
455 		}
456 	} else if (nfp_flower_check_higher_than_mac(rule)) {
457 		NL_SET_ERR_MSG_MOD(extack, "unsupported offload: cannot match above L2 without specified EtherType");
458 		return -EOPNOTSUPP;
459 	}
460 
461 	if (basic.mask && basic.mask->ip_proto) {
462 		switch (basic.key->ip_proto) {
463 		case IPPROTO_TCP:
464 		case IPPROTO_UDP:
465 		case IPPROTO_SCTP:
466 		case IPPROTO_ICMP:
467 		case IPPROTO_ICMPV6:
468 			key_layer |= NFP_FLOWER_LAYER_TP;
469 			key_size += sizeof(struct nfp_flower_tp_ports);
470 			break;
471 		}
472 	}
473 
474 	if (!(key_layer & NFP_FLOWER_LAYER_TP) &&
475 	    nfp_flower_check_higher_than_l3(rule)) {
476 		NL_SET_ERR_MSG_MOD(extack, "unsupported offload: cannot match on L4 information without specified IP protocol type");
477 		return -EOPNOTSUPP;
478 	}
479 
480 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_TCP)) {
481 		struct flow_match_tcp tcp;
482 		u32 tcp_flags;
483 
484 		flow_rule_match_tcp(rule, &tcp);
485 		tcp_flags = be16_to_cpu(tcp.key->flags);
486 
487 		if (tcp_flags & ~NFP_FLOWER_SUPPORTED_TCPFLAGS) {
488 			NL_SET_ERR_MSG_MOD(extack, "unsupported offload: no match support for selected TCP flags");
489 			return -EOPNOTSUPP;
490 		}
491 
492 		/* We only support PSH and URG flags when either
493 		 * FIN, SYN or RST is present as well.
494 		 */
495 		if ((tcp_flags & (TCPHDR_PSH | TCPHDR_URG)) &&
496 		    !(tcp_flags & (TCPHDR_FIN | TCPHDR_SYN | TCPHDR_RST))) {
497 			NL_SET_ERR_MSG_MOD(extack, "unsupported offload: PSH and URG is only supported when used with FIN, SYN or RST");
498 			return -EOPNOTSUPP;
499 		}
500 
501 		/* We need to store TCP flags in the either the IPv4 or IPv6 key
502 		 * space, thus we need to ensure we include a IPv4/IPv6 key
503 		 * layer if we have not done so already.
504 		 */
505 		if (!basic.key) {
506 			NL_SET_ERR_MSG_MOD(extack, "unsupported offload: match on TCP flags requires a match on L3 protocol");
507 			return -EOPNOTSUPP;
508 		}
509 
510 		if (!(key_layer & NFP_FLOWER_LAYER_IPV4) &&
511 		    !(key_layer & NFP_FLOWER_LAYER_IPV6)) {
512 			switch (basic.key->n_proto) {
513 			case cpu_to_be16(ETH_P_IP):
514 				key_layer |= NFP_FLOWER_LAYER_IPV4;
515 				key_size += sizeof(struct nfp_flower_ipv4);
516 				break;
517 
518 			case cpu_to_be16(ETH_P_IPV6):
519 					key_layer |= NFP_FLOWER_LAYER_IPV6;
520 				key_size += sizeof(struct nfp_flower_ipv6);
521 				break;
522 
523 			default:
524 				NL_SET_ERR_MSG_MOD(extack, "unsupported offload: match on TCP flags requires a match on IPv4/IPv6");
525 				return -EOPNOTSUPP;
526 			}
527 		}
528 	}
529 
530 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) {
531 		struct flow_match_control ctl;
532 
533 		flow_rule_match_control(rule, &ctl);
534 
535 		if (!flow_rule_is_supp_control_flags(NFP_FLOWER_SUPPORTED_CTLFLAGS,
536 						     ctl.mask->flags, extack))
537 			return -EOPNOTSUPP;
538 	}
539 
540 	ret_key_ls->key_layer = key_layer;
541 	ret_key_ls->key_layer_two = key_layer_two;
542 	ret_key_ls->key_size = key_size;
543 
544 	return 0;
545 }
546 
547 struct nfp_fl_payload *
nfp_flower_allocate_new(struct nfp_fl_key_ls * key_layer)548 nfp_flower_allocate_new(struct nfp_fl_key_ls *key_layer)
549 {
550 	struct nfp_fl_payload *flow_pay;
551 
552 	flow_pay = kmalloc(sizeof(*flow_pay), GFP_KERNEL);
553 	if (!flow_pay)
554 		return NULL;
555 
556 	flow_pay->meta.key_len = key_layer->key_size;
557 	flow_pay->unmasked_data = kmalloc(key_layer->key_size, GFP_KERNEL);
558 	if (!flow_pay->unmasked_data)
559 		goto err_free_flow;
560 
561 	flow_pay->meta.mask_len = key_layer->key_size;
562 	flow_pay->mask_data = kmalloc(key_layer->key_size, GFP_KERNEL);
563 	if (!flow_pay->mask_data)
564 		goto err_free_unmasked;
565 
566 	flow_pay->action_data = kmalloc(NFP_FL_MAX_A_SIZ, GFP_KERNEL);
567 	if (!flow_pay->action_data)
568 		goto err_free_mask;
569 
570 	flow_pay->nfp_tun_ipv4_addr = 0;
571 	flow_pay->nfp_tun_ipv6 = NULL;
572 	flow_pay->meta.flags = 0;
573 	INIT_LIST_HEAD(&flow_pay->linked_flows);
574 	flow_pay->in_hw = false;
575 	flow_pay->pre_tun_rule.dev = NULL;
576 
577 	return flow_pay;
578 
579 err_free_mask:
580 	kfree(flow_pay->mask_data);
581 err_free_unmasked:
582 	kfree(flow_pay->unmasked_data);
583 err_free_flow:
584 	kfree(flow_pay);
585 	return NULL;
586 }
587 
588 static int
nfp_flower_update_merge_with_actions(struct nfp_fl_payload * flow,struct nfp_flower_merge_check * merge,u8 * last_act_id,int * act_out)589 nfp_flower_update_merge_with_actions(struct nfp_fl_payload *flow,
590 				     struct nfp_flower_merge_check *merge,
591 				     u8 *last_act_id, int *act_out)
592 {
593 	struct nfp_fl_set_ipv6_tc_hl_fl *ipv6_tc_hl_fl;
594 	struct nfp_fl_set_ip4_ttl_tos *ipv4_ttl_tos;
595 	struct nfp_fl_set_ip4_addrs *ipv4_add;
596 	struct nfp_fl_set_ipv6_addr *ipv6_add;
597 	struct nfp_fl_push_vlan *push_vlan;
598 	struct nfp_fl_pre_tunnel *pre_tun;
599 	struct nfp_fl_set_tport *tport;
600 	struct nfp_fl_set_eth *eth;
601 	struct nfp_fl_act_head *a;
602 	unsigned int act_off = 0;
603 	bool ipv6_tun = false;
604 	u8 act_id = 0;
605 	u8 *ports;
606 	int i;
607 
608 	while (act_off < flow->meta.act_len) {
609 		a = (struct nfp_fl_act_head *)&flow->action_data[act_off];
610 		act_id = a->jump_id;
611 
612 		switch (act_id) {
613 		case NFP_FL_ACTION_OPCODE_OUTPUT:
614 			if (act_out)
615 				(*act_out)++;
616 			break;
617 		case NFP_FL_ACTION_OPCODE_PUSH_VLAN:
618 			push_vlan = (struct nfp_fl_push_vlan *)a;
619 			if (push_vlan->vlan_tci)
620 				merge->tci = cpu_to_be16(0xffff);
621 			break;
622 		case NFP_FL_ACTION_OPCODE_POP_VLAN:
623 			merge->tci = cpu_to_be16(0);
624 			break;
625 		case NFP_FL_ACTION_OPCODE_SET_TUNNEL:
626 			/* New tunnel header means l2 to l4 can be matched. */
627 			eth_broadcast_addr(&merge->l2.mac_dst[0]);
628 			eth_broadcast_addr(&merge->l2.mac_src[0]);
629 			memset(&merge->l4, 0xff,
630 			       sizeof(struct nfp_flower_tp_ports));
631 			if (ipv6_tun)
632 				memset(&merge->ipv6, 0xff,
633 				       sizeof(struct nfp_flower_ipv6));
634 			else
635 				memset(&merge->ipv4, 0xff,
636 				       sizeof(struct nfp_flower_ipv4));
637 			break;
638 		case NFP_FL_ACTION_OPCODE_SET_ETHERNET:
639 			eth = (struct nfp_fl_set_eth *)a;
640 			for (i = 0; i < ETH_ALEN; i++)
641 				merge->l2.mac_dst[i] |= eth->eth_addr_mask[i];
642 			for (i = 0; i < ETH_ALEN; i++)
643 				merge->l2.mac_src[i] |=
644 					eth->eth_addr_mask[ETH_ALEN + i];
645 			break;
646 		case NFP_FL_ACTION_OPCODE_SET_IPV4_ADDRS:
647 			ipv4_add = (struct nfp_fl_set_ip4_addrs *)a;
648 			merge->ipv4.ipv4_src |= ipv4_add->ipv4_src_mask;
649 			merge->ipv4.ipv4_dst |= ipv4_add->ipv4_dst_mask;
650 			break;
651 		case NFP_FL_ACTION_OPCODE_SET_IPV4_TTL_TOS:
652 			ipv4_ttl_tos = (struct nfp_fl_set_ip4_ttl_tos *)a;
653 			merge->ipv4.ip_ext.ttl |= ipv4_ttl_tos->ipv4_ttl_mask;
654 			merge->ipv4.ip_ext.tos |= ipv4_ttl_tos->ipv4_tos_mask;
655 			break;
656 		case NFP_FL_ACTION_OPCODE_SET_IPV6_SRC:
657 			ipv6_add = (struct nfp_fl_set_ipv6_addr *)a;
658 			for (i = 0; i < 4; i++)
659 				merge->ipv6.ipv6_src.in6_u.u6_addr32[i] |=
660 					ipv6_add->ipv6[i].mask;
661 			break;
662 		case NFP_FL_ACTION_OPCODE_SET_IPV6_DST:
663 			ipv6_add = (struct nfp_fl_set_ipv6_addr *)a;
664 			for (i = 0; i < 4; i++)
665 				merge->ipv6.ipv6_dst.in6_u.u6_addr32[i] |=
666 					ipv6_add->ipv6[i].mask;
667 			break;
668 		case NFP_FL_ACTION_OPCODE_SET_IPV6_TC_HL_FL:
669 			ipv6_tc_hl_fl = (struct nfp_fl_set_ipv6_tc_hl_fl *)a;
670 			merge->ipv6.ip_ext.ttl |=
671 				ipv6_tc_hl_fl->ipv6_hop_limit_mask;
672 			merge->ipv6.ip_ext.tos |= ipv6_tc_hl_fl->ipv6_tc_mask;
673 			merge->ipv6.ipv6_flow_label_exthdr |=
674 				ipv6_tc_hl_fl->ipv6_label_mask;
675 			break;
676 		case NFP_FL_ACTION_OPCODE_SET_UDP:
677 		case NFP_FL_ACTION_OPCODE_SET_TCP:
678 			tport = (struct nfp_fl_set_tport *)a;
679 			ports = (u8 *)&merge->l4.port_src;
680 			for (i = 0; i < 4; i++)
681 				ports[i] |= tport->tp_port_mask[i];
682 			break;
683 		case NFP_FL_ACTION_OPCODE_PRE_TUNNEL:
684 			pre_tun = (struct nfp_fl_pre_tunnel *)a;
685 			ipv6_tun = be16_to_cpu(pre_tun->flags) &
686 					NFP_FL_PRE_TUN_IPV6;
687 			break;
688 		case NFP_FL_ACTION_OPCODE_PRE_LAG:
689 		case NFP_FL_ACTION_OPCODE_PUSH_GENEVE:
690 			break;
691 		default:
692 			return -EOPNOTSUPP;
693 		}
694 
695 		act_off += a->len_lw << NFP_FL_LW_SIZ;
696 	}
697 
698 	if (last_act_id)
699 		*last_act_id = act_id;
700 
701 	return 0;
702 }
703 
704 static int
nfp_flower_populate_merge_match(struct nfp_fl_payload * flow,struct nfp_flower_merge_check * merge,bool extra_fields)705 nfp_flower_populate_merge_match(struct nfp_fl_payload *flow,
706 				struct nfp_flower_merge_check *merge,
707 				bool extra_fields)
708 {
709 	struct nfp_flower_meta_tci *meta_tci;
710 	u8 *mask = flow->mask_data;
711 	u8 key_layer, match_size;
712 
713 	memset(merge, 0, sizeof(struct nfp_flower_merge_check));
714 
715 	meta_tci = (struct nfp_flower_meta_tci *)mask;
716 	key_layer = meta_tci->nfp_flow_key_layer;
717 
718 	if (key_layer & ~NFP_FLOWER_MERGE_FIELDS && !extra_fields)
719 		return -EOPNOTSUPP;
720 
721 	merge->tci = meta_tci->tci;
722 	mask += sizeof(struct nfp_flower_meta_tci);
723 
724 	if (key_layer & NFP_FLOWER_LAYER_EXT_META)
725 		mask += sizeof(struct nfp_flower_ext_meta);
726 
727 	mask += sizeof(struct nfp_flower_in_port);
728 
729 	if (key_layer & NFP_FLOWER_LAYER_MAC) {
730 		match_size = sizeof(struct nfp_flower_mac_mpls);
731 		memcpy(&merge->l2, mask, match_size);
732 		mask += match_size;
733 	}
734 
735 	if (key_layer & NFP_FLOWER_LAYER_TP) {
736 		match_size = sizeof(struct nfp_flower_tp_ports);
737 		memcpy(&merge->l4, mask, match_size);
738 		mask += match_size;
739 	}
740 
741 	if (key_layer & NFP_FLOWER_LAYER_IPV4) {
742 		match_size = sizeof(struct nfp_flower_ipv4);
743 		memcpy(&merge->ipv4, mask, match_size);
744 	}
745 
746 	if (key_layer & NFP_FLOWER_LAYER_IPV6) {
747 		match_size = sizeof(struct nfp_flower_ipv6);
748 		memcpy(&merge->ipv6, mask, match_size);
749 	}
750 
751 	return 0;
752 }
753 
754 static int
nfp_flower_can_merge(struct nfp_fl_payload * sub_flow1,struct nfp_fl_payload * sub_flow2)755 nfp_flower_can_merge(struct nfp_fl_payload *sub_flow1,
756 		     struct nfp_fl_payload *sub_flow2)
757 {
758 	/* Two flows can be merged if sub_flow2 only matches on bits that are
759 	 * either matched by sub_flow1 or set by a sub_flow1 action. This
760 	 * ensures that every packet that hits sub_flow1 and recirculates is
761 	 * guaranteed to hit sub_flow2.
762 	 */
763 	struct nfp_flower_merge_check sub_flow1_merge, sub_flow2_merge;
764 	int err, act_out = 0;
765 	u8 last_act_id = 0;
766 
767 	err = nfp_flower_populate_merge_match(sub_flow1, &sub_flow1_merge,
768 					      true);
769 	if (err)
770 		return err;
771 
772 	err = nfp_flower_populate_merge_match(sub_flow2, &sub_flow2_merge,
773 					      false);
774 	if (err)
775 		return err;
776 
777 	err = nfp_flower_update_merge_with_actions(sub_flow1, &sub_flow1_merge,
778 						   &last_act_id, &act_out);
779 	if (err)
780 		return err;
781 
782 	/* Must only be 1 output action and it must be the last in sequence. */
783 	if (act_out != 1 || last_act_id != NFP_FL_ACTION_OPCODE_OUTPUT)
784 		return -EOPNOTSUPP;
785 
786 	/* Reject merge if sub_flow2 matches on something that is not matched
787 	 * on or set in an action by sub_flow1.
788 	 */
789 	err = bitmap_andnot(sub_flow2_merge.vals, sub_flow2_merge.vals,
790 			    sub_flow1_merge.vals,
791 			    sizeof(struct nfp_flower_merge_check) * 8);
792 	if (err)
793 		return -EINVAL;
794 
795 	return 0;
796 }
797 
798 static unsigned int
nfp_flower_copy_pre_actions(char * act_dst,char * act_src,int len,bool * tunnel_act)799 nfp_flower_copy_pre_actions(char *act_dst, char *act_src, int len,
800 			    bool *tunnel_act)
801 {
802 	unsigned int act_off = 0, act_len;
803 	struct nfp_fl_act_head *a;
804 	u8 act_id = 0;
805 
806 	while (act_off < len) {
807 		a = (struct nfp_fl_act_head *)&act_src[act_off];
808 		act_len = a->len_lw << NFP_FL_LW_SIZ;
809 		act_id = a->jump_id;
810 
811 		switch (act_id) {
812 		case NFP_FL_ACTION_OPCODE_PRE_TUNNEL:
813 			if (tunnel_act)
814 				*tunnel_act = true;
815 			fallthrough;
816 		case NFP_FL_ACTION_OPCODE_PRE_LAG:
817 			memcpy(act_dst + act_off, act_src + act_off, act_len);
818 			break;
819 		default:
820 			return act_off;
821 		}
822 
823 		act_off += act_len;
824 	}
825 
826 	return act_off;
827 }
828 
829 static int
nfp_fl_verify_post_tun_acts(char * acts,int len,struct nfp_fl_push_vlan ** vlan)830 nfp_fl_verify_post_tun_acts(char *acts, int len, struct nfp_fl_push_vlan **vlan)
831 {
832 	struct nfp_fl_act_head *a;
833 	unsigned int act_off = 0;
834 
835 	while (act_off < len) {
836 		a = (struct nfp_fl_act_head *)&acts[act_off];
837 
838 		if (a->jump_id == NFP_FL_ACTION_OPCODE_PUSH_VLAN && !act_off)
839 			*vlan = (struct nfp_fl_push_vlan *)a;
840 		else if (a->jump_id != NFP_FL_ACTION_OPCODE_OUTPUT)
841 			return -EOPNOTSUPP;
842 
843 		act_off += a->len_lw << NFP_FL_LW_SIZ;
844 	}
845 
846 	/* Ensure any VLAN push also has an egress action. */
847 	if (*vlan && act_off <= sizeof(struct nfp_fl_push_vlan))
848 		return -EOPNOTSUPP;
849 
850 	return 0;
851 }
852 
853 static int
nfp_fl_push_vlan_after_tun(char * acts,int len,struct nfp_fl_push_vlan * vlan)854 nfp_fl_push_vlan_after_tun(char *acts, int len, struct nfp_fl_push_vlan *vlan)
855 {
856 	struct nfp_fl_set_tun *tun;
857 	struct nfp_fl_act_head *a;
858 	unsigned int act_off = 0;
859 
860 	while (act_off < len) {
861 		a = (struct nfp_fl_act_head *)&acts[act_off];
862 
863 		if (a->jump_id == NFP_FL_ACTION_OPCODE_SET_TUNNEL) {
864 			tun = (struct nfp_fl_set_tun *)a;
865 			tun->outer_vlan_tpid = vlan->vlan_tpid;
866 			tun->outer_vlan_tci = vlan->vlan_tci;
867 
868 			return 0;
869 		}
870 
871 		act_off += a->len_lw << NFP_FL_LW_SIZ;
872 	}
873 
874 	/* Return error if no tunnel action is found. */
875 	return -EOPNOTSUPP;
876 }
877 
878 static int
nfp_flower_merge_action(struct nfp_fl_payload * sub_flow1,struct nfp_fl_payload * sub_flow2,struct nfp_fl_payload * merge_flow)879 nfp_flower_merge_action(struct nfp_fl_payload *sub_flow1,
880 			struct nfp_fl_payload *sub_flow2,
881 			struct nfp_fl_payload *merge_flow)
882 {
883 	unsigned int sub1_act_len, sub2_act_len, pre_off1, pre_off2;
884 	struct nfp_fl_push_vlan *post_tun_push_vlan = NULL;
885 	bool tunnel_act = false;
886 	char *merge_act;
887 	int err;
888 
889 	/* The last action of sub_flow1 must be output - do not merge this. */
890 	sub1_act_len = sub_flow1->meta.act_len - sizeof(struct nfp_fl_output);
891 	sub2_act_len = sub_flow2->meta.act_len;
892 
893 	if (!sub2_act_len)
894 		return -EINVAL;
895 
896 	if (sub1_act_len + sub2_act_len > NFP_FL_MAX_A_SIZ)
897 		return -EINVAL;
898 
899 	/* A shortcut can only be applied if there is a single action. */
900 	if (sub1_act_len)
901 		merge_flow->meta.shortcut = cpu_to_be32(NFP_FL_SC_ACT_NULL);
902 	else
903 		merge_flow->meta.shortcut = sub_flow2->meta.shortcut;
904 
905 	merge_flow->meta.act_len = sub1_act_len + sub2_act_len;
906 	merge_act = merge_flow->action_data;
907 
908 	/* Copy any pre-actions to the start of merge flow action list. */
909 	pre_off1 = nfp_flower_copy_pre_actions(merge_act,
910 					       sub_flow1->action_data,
911 					       sub1_act_len, &tunnel_act);
912 	merge_act += pre_off1;
913 	sub1_act_len -= pre_off1;
914 	pre_off2 = nfp_flower_copy_pre_actions(merge_act,
915 					       sub_flow2->action_data,
916 					       sub2_act_len, NULL);
917 	merge_act += pre_off2;
918 	sub2_act_len -= pre_off2;
919 
920 	/* FW does a tunnel push when egressing, therefore, if sub_flow 1 pushes
921 	 * a tunnel, there are restrictions on what sub_flow 2 actions lead to a
922 	 * valid merge.
923 	 */
924 	if (tunnel_act) {
925 		char *post_tun_acts = &sub_flow2->action_data[pre_off2];
926 
927 		err = nfp_fl_verify_post_tun_acts(post_tun_acts, sub2_act_len,
928 						  &post_tun_push_vlan);
929 		if (err)
930 			return err;
931 
932 		if (post_tun_push_vlan) {
933 			pre_off2 += sizeof(*post_tun_push_vlan);
934 			sub2_act_len -= sizeof(*post_tun_push_vlan);
935 		}
936 	}
937 
938 	/* Copy remaining actions from sub_flows 1 and 2. */
939 	memcpy(merge_act, sub_flow1->action_data + pre_off1, sub1_act_len);
940 
941 	if (post_tun_push_vlan) {
942 		/* Update tunnel action in merge to include VLAN push. */
943 		err = nfp_fl_push_vlan_after_tun(merge_act, sub1_act_len,
944 						 post_tun_push_vlan);
945 		if (err)
946 			return err;
947 
948 		merge_flow->meta.act_len -= sizeof(*post_tun_push_vlan);
949 	}
950 
951 	merge_act += sub1_act_len;
952 	memcpy(merge_act, sub_flow2->action_data + pre_off2, sub2_act_len);
953 
954 	return 0;
955 }
956 
957 /* Flow link code should only be accessed under RTNL. */
nfp_flower_unlink_flow(struct nfp_fl_payload_link * link)958 static void nfp_flower_unlink_flow(struct nfp_fl_payload_link *link)
959 {
960 	list_del(&link->merge_flow.list);
961 	list_del(&link->sub_flow.list);
962 	kfree(link);
963 }
964 
nfp_flower_unlink_flows(struct nfp_fl_payload * merge_flow,struct nfp_fl_payload * sub_flow)965 static void nfp_flower_unlink_flows(struct nfp_fl_payload *merge_flow,
966 				    struct nfp_fl_payload *sub_flow)
967 {
968 	struct nfp_fl_payload_link *link;
969 
970 	list_for_each_entry(link, &merge_flow->linked_flows, merge_flow.list)
971 		if (link->sub_flow.flow == sub_flow) {
972 			nfp_flower_unlink_flow(link);
973 			return;
974 		}
975 }
976 
nfp_flower_link_flows(struct nfp_fl_payload * merge_flow,struct nfp_fl_payload * sub_flow)977 static int nfp_flower_link_flows(struct nfp_fl_payload *merge_flow,
978 				 struct nfp_fl_payload *sub_flow)
979 {
980 	struct nfp_fl_payload_link *link;
981 
982 	link = kmalloc(sizeof(*link), GFP_KERNEL);
983 	if (!link)
984 		return -ENOMEM;
985 
986 	link->merge_flow.flow = merge_flow;
987 	list_add_tail(&link->merge_flow.list, &merge_flow->linked_flows);
988 	link->sub_flow.flow = sub_flow;
989 	list_add_tail(&link->sub_flow.list, &sub_flow->linked_flows);
990 
991 	return 0;
992 }
993 
994 /**
995  * nfp_flower_merge_offloaded_flows() - Merge 2 existing flows to single flow.
996  * @app:	Pointer to the APP handle
997  * @sub_flow1:	Initial flow matched to produce merge hint
998  * @sub_flow2:	Post recirculation flow matched in merge hint
999  *
1000  * Combines 2 flows (if valid) to a single flow, removing the initial from hw
1001  * and offloading the new, merged flow.
1002  *
1003  * Return: negative value on error, 0 in success.
1004  */
nfp_flower_merge_offloaded_flows(struct nfp_app * app,struct nfp_fl_payload * sub_flow1,struct nfp_fl_payload * sub_flow2)1005 int nfp_flower_merge_offloaded_flows(struct nfp_app *app,
1006 				     struct nfp_fl_payload *sub_flow1,
1007 				     struct nfp_fl_payload *sub_flow2)
1008 {
1009 	struct nfp_flower_priv *priv = app->priv;
1010 	struct nfp_fl_payload *merge_flow;
1011 	struct nfp_fl_key_ls merge_key_ls;
1012 	struct nfp_merge_info *merge_info;
1013 	u64 parent_ctx = 0;
1014 	int err;
1015 
1016 	if (sub_flow1 == sub_flow2 ||
1017 	    nfp_flower_is_merge_flow(sub_flow1) ||
1018 	    nfp_flower_is_merge_flow(sub_flow2))
1019 		return -EINVAL;
1020 
1021 	/* Check if the two flows are already merged */
1022 	parent_ctx = (u64)(be32_to_cpu(sub_flow1->meta.host_ctx_id)) << 32;
1023 	parent_ctx |= (u64)(be32_to_cpu(sub_flow2->meta.host_ctx_id));
1024 	if (rhashtable_lookup_fast(&priv->merge_table,
1025 				   &parent_ctx, merge_table_params)) {
1026 		nfp_flower_cmsg_warn(app, "The two flows are already merged.\n");
1027 		return 0;
1028 	}
1029 
1030 	err = nfp_flower_can_merge(sub_flow1, sub_flow2);
1031 	if (err)
1032 		return err;
1033 
1034 	merge_key_ls.key_size = sub_flow1->meta.key_len;
1035 
1036 	merge_flow = nfp_flower_allocate_new(&merge_key_ls);
1037 	if (!merge_flow)
1038 		return -ENOMEM;
1039 
1040 	merge_flow->tc_flower_cookie = (unsigned long)merge_flow;
1041 	merge_flow->ingress_dev = sub_flow1->ingress_dev;
1042 
1043 	memcpy(merge_flow->unmasked_data, sub_flow1->unmasked_data,
1044 	       sub_flow1->meta.key_len);
1045 	memcpy(merge_flow->mask_data, sub_flow1->mask_data,
1046 	       sub_flow1->meta.mask_len);
1047 
1048 	err = nfp_flower_merge_action(sub_flow1, sub_flow2, merge_flow);
1049 	if (err)
1050 		goto err_destroy_merge_flow;
1051 
1052 	err = nfp_flower_link_flows(merge_flow, sub_flow1);
1053 	if (err)
1054 		goto err_destroy_merge_flow;
1055 
1056 	err = nfp_flower_link_flows(merge_flow, sub_flow2);
1057 	if (err)
1058 		goto err_unlink_sub_flow1;
1059 
1060 	err = nfp_compile_flow_metadata(app, merge_flow->tc_flower_cookie, merge_flow,
1061 					merge_flow->ingress_dev, NULL);
1062 	if (err)
1063 		goto err_unlink_sub_flow2;
1064 
1065 	err = rhashtable_insert_fast(&priv->flow_table, &merge_flow->fl_node,
1066 				     nfp_flower_table_params);
1067 	if (err)
1068 		goto err_release_metadata;
1069 
1070 	merge_info = kmalloc(sizeof(*merge_info), GFP_KERNEL);
1071 	if (!merge_info) {
1072 		err = -ENOMEM;
1073 		goto err_remove_rhash;
1074 	}
1075 	merge_info->parent_ctx = parent_ctx;
1076 	err = rhashtable_insert_fast(&priv->merge_table, &merge_info->ht_node,
1077 				     merge_table_params);
1078 	if (err)
1079 		goto err_destroy_merge_info;
1080 
1081 	err = nfp_flower_xmit_flow(app, merge_flow,
1082 				   NFP_FLOWER_CMSG_TYPE_FLOW_MOD);
1083 	if (err)
1084 		goto err_remove_merge_info;
1085 
1086 	merge_flow->in_hw = true;
1087 	sub_flow1->in_hw = false;
1088 
1089 	return 0;
1090 
1091 err_remove_merge_info:
1092 	WARN_ON_ONCE(rhashtable_remove_fast(&priv->merge_table,
1093 					    &merge_info->ht_node,
1094 					    merge_table_params));
1095 err_destroy_merge_info:
1096 	kfree(merge_info);
1097 err_remove_rhash:
1098 	WARN_ON_ONCE(rhashtable_remove_fast(&priv->flow_table,
1099 					    &merge_flow->fl_node,
1100 					    nfp_flower_table_params));
1101 err_release_metadata:
1102 	nfp_modify_flow_metadata(app, merge_flow);
1103 err_unlink_sub_flow2:
1104 	nfp_flower_unlink_flows(merge_flow, sub_flow2);
1105 err_unlink_sub_flow1:
1106 	nfp_flower_unlink_flows(merge_flow, sub_flow1);
1107 err_destroy_merge_flow:
1108 	kfree(merge_flow->action_data);
1109 	kfree(merge_flow->mask_data);
1110 	kfree(merge_flow->unmasked_data);
1111 	kfree(merge_flow);
1112 	return err;
1113 }
1114 
1115 /**
1116  * nfp_flower_validate_pre_tun_rule()
1117  * @app:	Pointer to the APP handle
1118  * @flow:	Pointer to NFP flow representation of rule
1119  * @key_ls:	Pointer to NFP key layers structure
1120  * @extack:	Netlink extended ACK report
1121  *
1122  * Verifies the flow as a pre-tunnel rule.
1123  *
1124  * Return: negative value on error, 0 if verified.
1125  */
1126 static int
nfp_flower_validate_pre_tun_rule(struct nfp_app * app,struct nfp_fl_payload * flow,struct nfp_fl_key_ls * key_ls,struct netlink_ext_ack * extack)1127 nfp_flower_validate_pre_tun_rule(struct nfp_app *app,
1128 				 struct nfp_fl_payload *flow,
1129 				 struct nfp_fl_key_ls *key_ls,
1130 				 struct netlink_ext_ack *extack)
1131 {
1132 	struct nfp_flower_priv *priv = app->priv;
1133 	struct nfp_flower_meta_tci *meta_tci;
1134 	struct nfp_flower_mac_mpls *mac;
1135 	u8 *ext = flow->unmasked_data;
1136 	struct nfp_fl_act_head *act;
1137 	u8 *mask = flow->mask_data;
1138 	bool vlan = false;
1139 	int act_offset;
1140 	u8 key_layer;
1141 
1142 	meta_tci = (struct nfp_flower_meta_tci *)flow->unmasked_data;
1143 	key_layer = key_ls->key_layer;
1144 	if (!(priv->flower_ext_feats & NFP_FL_FEATS_VLAN_QINQ)) {
1145 		if (meta_tci->tci & cpu_to_be16(NFP_FLOWER_MASK_VLAN_PRESENT)) {
1146 			u16 vlan_tci = be16_to_cpu(meta_tci->tci);
1147 
1148 			vlan_tci &= ~NFP_FLOWER_MASK_VLAN_PRESENT;
1149 			flow->pre_tun_rule.vlan_tci = cpu_to_be16(vlan_tci);
1150 			vlan = true;
1151 		} else {
1152 			flow->pre_tun_rule.vlan_tci = cpu_to_be16(0xffff);
1153 		}
1154 	}
1155 
1156 	if (key_layer & ~NFP_FLOWER_PRE_TUN_RULE_FIELDS) {
1157 		NL_SET_ERR_MSG_MOD(extack, "unsupported pre-tunnel rule: too many match fields");
1158 		return -EOPNOTSUPP;
1159 	} else if (key_ls->key_layer_two & ~NFP_FLOWER_LAYER2_QINQ) {
1160 		NL_SET_ERR_MSG_MOD(extack, "unsupported pre-tunnel rule: non-vlan in extended match fields");
1161 		return -EOPNOTSUPP;
1162 	}
1163 
1164 	if (!(key_layer & NFP_FLOWER_LAYER_MAC)) {
1165 		NL_SET_ERR_MSG_MOD(extack, "unsupported pre-tunnel rule: MAC fields match required");
1166 		return -EOPNOTSUPP;
1167 	}
1168 
1169 	if (!(key_layer & NFP_FLOWER_LAYER_IPV4) &&
1170 	    !(key_layer & NFP_FLOWER_LAYER_IPV6)) {
1171 		NL_SET_ERR_MSG_MOD(extack, "unsupported pre-tunnel rule: match on ipv4/ipv6 eth_type must be present");
1172 		return -EOPNOTSUPP;
1173 	}
1174 
1175 	if (key_layer & NFP_FLOWER_LAYER_IPV6)
1176 		flow->pre_tun_rule.is_ipv6 = true;
1177 	else
1178 		flow->pre_tun_rule.is_ipv6 = false;
1179 
1180 	/* Skip fields known to exist. */
1181 	mask += sizeof(struct nfp_flower_meta_tci);
1182 	ext += sizeof(struct nfp_flower_meta_tci);
1183 	if (key_ls->key_layer_two) {
1184 		mask += sizeof(struct nfp_flower_ext_meta);
1185 		ext += sizeof(struct nfp_flower_ext_meta);
1186 	}
1187 	mask += sizeof(struct nfp_flower_in_port);
1188 	ext += sizeof(struct nfp_flower_in_port);
1189 
1190 	/* Ensure destination MAC address is fully matched. */
1191 	mac = (struct nfp_flower_mac_mpls *)mask;
1192 	if (!is_broadcast_ether_addr(&mac->mac_dst[0])) {
1193 		NL_SET_ERR_MSG_MOD(extack, "unsupported pre-tunnel rule: dest MAC field must not be masked");
1194 		return -EOPNOTSUPP;
1195 	}
1196 
1197 	/* Ensure source MAC address is fully matched. This is only needed
1198 	 * for firmware with the DECAP_V2 feature enabled. Don't do this
1199 	 * for firmware without this feature to keep old behaviour.
1200 	 */
1201 	if (priv->flower_ext_feats & NFP_FL_FEATS_DECAP_V2) {
1202 		mac = (struct nfp_flower_mac_mpls *)mask;
1203 		if (!is_broadcast_ether_addr(&mac->mac_src[0])) {
1204 			NL_SET_ERR_MSG_MOD(extack,
1205 					   "unsupported pre-tunnel rule: source MAC field must not be masked");
1206 			return -EOPNOTSUPP;
1207 		}
1208 	}
1209 
1210 	if (mac->mpls_lse) {
1211 		NL_SET_ERR_MSG_MOD(extack, "unsupported pre-tunnel rule: MPLS not supported");
1212 		return -EOPNOTSUPP;
1213 	}
1214 
1215 	/* Ensure destination MAC address matches pre_tun_dev. */
1216 	mac = (struct nfp_flower_mac_mpls *)ext;
1217 	if (memcmp(&mac->mac_dst[0], flow->pre_tun_rule.dev->dev_addr, 6)) {
1218 		NL_SET_ERR_MSG_MOD(extack,
1219 				   "unsupported pre-tunnel rule: dest MAC must match output dev MAC");
1220 		return -EOPNOTSUPP;
1221 	}
1222 
1223 	/* Save mac addresses in pre_tun_rule entry for later use */
1224 	memcpy(&flow->pre_tun_rule.loc_mac, &mac->mac_dst[0], ETH_ALEN);
1225 	memcpy(&flow->pre_tun_rule.rem_mac, &mac->mac_src[0], ETH_ALEN);
1226 
1227 	mask += sizeof(struct nfp_flower_mac_mpls);
1228 	ext += sizeof(struct nfp_flower_mac_mpls);
1229 	if (key_layer & NFP_FLOWER_LAYER_IPV4 ||
1230 	    key_layer & NFP_FLOWER_LAYER_IPV6) {
1231 		/* Flags and proto fields have same offset in IPv4 and IPv6. */
1232 		int ip_flags = offsetof(struct nfp_flower_ipv4, ip_ext.flags);
1233 		int ip_proto = offsetof(struct nfp_flower_ipv4, ip_ext.proto);
1234 		int size;
1235 		int i;
1236 
1237 		size = key_layer & NFP_FLOWER_LAYER_IPV4 ?
1238 			sizeof(struct nfp_flower_ipv4) :
1239 			sizeof(struct nfp_flower_ipv6);
1240 
1241 
1242 		/* Ensure proto and flags are the only IP layer fields. */
1243 		for (i = 0; i < size; i++)
1244 			if (mask[i] && i != ip_flags && i != ip_proto) {
1245 				NL_SET_ERR_MSG_MOD(extack, "unsupported pre-tunnel rule: only flags and proto can be matched in ip header");
1246 				return -EOPNOTSUPP;
1247 			}
1248 		ext += size;
1249 		mask += size;
1250 	}
1251 
1252 	if ((priv->flower_ext_feats & NFP_FL_FEATS_VLAN_QINQ)) {
1253 		if (key_ls->key_layer_two & NFP_FLOWER_LAYER2_QINQ) {
1254 			struct nfp_flower_vlan *vlan_tags;
1255 			u16 vlan_tpid;
1256 			u16 vlan_tci;
1257 
1258 			vlan_tags = (struct nfp_flower_vlan *)ext;
1259 
1260 			vlan_tci = be16_to_cpu(vlan_tags->outer_tci);
1261 			vlan_tpid = be16_to_cpu(vlan_tags->outer_tpid);
1262 
1263 			vlan_tci &= ~NFP_FLOWER_MASK_VLAN_PRESENT;
1264 			flow->pre_tun_rule.vlan_tci = cpu_to_be16(vlan_tci);
1265 			flow->pre_tun_rule.vlan_tpid = cpu_to_be16(vlan_tpid);
1266 			vlan = true;
1267 		} else {
1268 			flow->pre_tun_rule.vlan_tci = cpu_to_be16(0xffff);
1269 			flow->pre_tun_rule.vlan_tpid = cpu_to_be16(0xffff);
1270 		}
1271 	}
1272 
1273 	/* Action must be a single egress or pop_vlan and egress. */
1274 	act_offset = 0;
1275 	act = (struct nfp_fl_act_head *)&flow->action_data[act_offset];
1276 	if (vlan) {
1277 		if (act->jump_id != NFP_FL_ACTION_OPCODE_POP_VLAN) {
1278 			NL_SET_ERR_MSG_MOD(extack, "unsupported pre-tunnel rule: match on VLAN must have VLAN pop as first action");
1279 			return -EOPNOTSUPP;
1280 		}
1281 
1282 		act_offset += act->len_lw << NFP_FL_LW_SIZ;
1283 		act = (struct nfp_fl_act_head *)&flow->action_data[act_offset];
1284 	}
1285 
1286 	if (act->jump_id != NFP_FL_ACTION_OPCODE_OUTPUT) {
1287 		NL_SET_ERR_MSG_MOD(extack, "unsupported pre-tunnel rule: non egress action detected where egress was expected");
1288 		return -EOPNOTSUPP;
1289 	}
1290 
1291 	act_offset += act->len_lw << NFP_FL_LW_SIZ;
1292 
1293 	/* Ensure there are no more actions after egress. */
1294 	if (act_offset != flow->meta.act_len) {
1295 		NL_SET_ERR_MSG_MOD(extack, "unsupported pre-tunnel rule: egress is not the last action");
1296 		return -EOPNOTSUPP;
1297 	}
1298 
1299 	return 0;
1300 }
1301 
offload_pre_check(struct flow_cls_offload * flow)1302 static bool offload_pre_check(struct flow_cls_offload *flow)
1303 {
1304 	struct flow_rule *rule = flow_cls_offload_flow_rule(flow);
1305 	struct flow_dissector *dissector = rule->match.dissector;
1306 	struct flow_match_ct ct;
1307 
1308 	if (dissector->used_keys & BIT_ULL(FLOW_DISSECTOR_KEY_CT)) {
1309 		flow_rule_match_ct(rule, &ct);
1310 		/* Allow special case where CT match is all 0 */
1311 		if (memchr_inv(ct.key, 0, sizeof(*ct.key)))
1312 			return false;
1313 	}
1314 
1315 	if (flow->common.chain_index)
1316 		return false;
1317 
1318 	return true;
1319 }
1320 
1321 /**
1322  * nfp_flower_add_offload() - Adds a new flow to hardware.
1323  * @app:	Pointer to the APP handle
1324  * @netdev:	netdev structure.
1325  * @flow:	TC flower classifier offload structure.
1326  *
1327  * Adds a new flow to the repeated hash structure and action payload.
1328  *
1329  * Return: negative value on error, 0 if configured successfully.
1330  */
1331 static int
nfp_flower_add_offload(struct nfp_app * app,struct net_device * netdev,struct flow_cls_offload * flow)1332 nfp_flower_add_offload(struct nfp_app *app, struct net_device *netdev,
1333 		       struct flow_cls_offload *flow)
1334 {
1335 	struct flow_rule *rule = flow_cls_offload_flow_rule(flow);
1336 	enum nfp_flower_tun_type tun_type = NFP_FL_TUNNEL_NONE;
1337 	struct nfp_flower_priv *priv = app->priv;
1338 	struct netlink_ext_ack *extack = NULL;
1339 	struct nfp_fl_payload *flow_pay;
1340 	struct nfp_fl_key_ls *key_layer;
1341 	struct nfp_port *port = NULL;
1342 	int err;
1343 
1344 	extack = flow->common.extack;
1345 	if (nfp_netdev_is_nfp_repr(netdev))
1346 		port = nfp_port_from_netdev(netdev);
1347 
1348 	if (is_pre_ct_flow(flow))
1349 		return nfp_fl_ct_handle_pre_ct(priv, netdev, flow, extack, NULL);
1350 
1351 	if (is_post_ct_flow(flow))
1352 		return nfp_fl_ct_handle_post_ct(priv, netdev, flow, extack);
1353 
1354 	if (!offload_pre_check(flow))
1355 		return -EOPNOTSUPP;
1356 
1357 	key_layer = kmalloc(sizeof(*key_layer), GFP_KERNEL);
1358 	if (!key_layer)
1359 		return -ENOMEM;
1360 
1361 	err = nfp_flower_calculate_key_layers(app, netdev, key_layer, rule,
1362 					      &tun_type, extack);
1363 	if (err)
1364 		goto err_free_key_ls;
1365 
1366 	flow_pay = nfp_flower_allocate_new(key_layer);
1367 	if (!flow_pay) {
1368 		err = -ENOMEM;
1369 		goto err_free_key_ls;
1370 	}
1371 
1372 	err = nfp_flower_compile_flow_match(app, rule, key_layer, netdev,
1373 					    flow_pay, tun_type, extack);
1374 	if (err)
1375 		goto err_destroy_flow;
1376 
1377 	err = nfp_flower_compile_action(app, rule, netdev, flow_pay, extack);
1378 	if (err)
1379 		goto err_destroy_flow;
1380 
1381 	if (flow_pay->pre_tun_rule.dev) {
1382 		err = nfp_flower_validate_pre_tun_rule(app, flow_pay, key_layer, extack);
1383 		if (err)
1384 			goto err_destroy_flow;
1385 	}
1386 
1387 	err = nfp_compile_flow_metadata(app, flow->cookie, flow_pay, netdev, extack);
1388 	if (err)
1389 		goto err_destroy_flow;
1390 
1391 	flow_pay->tc_flower_cookie = flow->cookie;
1392 	err = rhashtable_insert_fast(&priv->flow_table, &flow_pay->fl_node,
1393 				     nfp_flower_table_params);
1394 	if (err) {
1395 		NL_SET_ERR_MSG_MOD(extack, "invalid entry: cannot insert flow into tables for offloads");
1396 		goto err_release_metadata;
1397 	}
1398 
1399 	if (flow_pay->pre_tun_rule.dev) {
1400 		if (priv->flower_ext_feats & NFP_FL_FEATS_DECAP_V2) {
1401 			struct nfp_predt_entry *predt;
1402 
1403 			predt = kzalloc(sizeof(*predt), GFP_KERNEL);
1404 			if (!predt) {
1405 				err = -ENOMEM;
1406 				goto err_remove_rhash;
1407 			}
1408 			predt->flow_pay = flow_pay;
1409 			INIT_LIST_HEAD(&predt->nn_list);
1410 			spin_lock_bh(&priv->predt_lock);
1411 			list_add(&predt->list_head, &priv->predt_list);
1412 			flow_pay->pre_tun_rule.predt = predt;
1413 			nfp_tun_link_and_update_nn_entries(app, predt);
1414 			spin_unlock_bh(&priv->predt_lock);
1415 		} else {
1416 			err = nfp_flower_xmit_pre_tun_flow(app, flow_pay);
1417 		}
1418 	} else {
1419 		err = nfp_flower_xmit_flow(app, flow_pay,
1420 					   NFP_FLOWER_CMSG_TYPE_FLOW_ADD);
1421 	}
1422 
1423 	if (err)
1424 		goto err_remove_rhash;
1425 
1426 	if (port)
1427 		port->tc_offload_cnt++;
1428 
1429 	flow_pay->in_hw = true;
1430 
1431 	/* Deallocate flow payload when flower rule has been destroyed. */
1432 	kfree(key_layer);
1433 
1434 	return 0;
1435 
1436 err_remove_rhash:
1437 	WARN_ON_ONCE(rhashtable_remove_fast(&priv->flow_table,
1438 					    &flow_pay->fl_node,
1439 					    nfp_flower_table_params));
1440 err_release_metadata:
1441 	nfp_modify_flow_metadata(app, flow_pay);
1442 err_destroy_flow:
1443 	if (flow_pay->nfp_tun_ipv6)
1444 		nfp_tunnel_put_ipv6_off(app, flow_pay->nfp_tun_ipv6);
1445 	kfree(flow_pay->action_data);
1446 	kfree(flow_pay->mask_data);
1447 	kfree(flow_pay->unmasked_data);
1448 	kfree(flow_pay);
1449 err_free_key_ls:
1450 	kfree(key_layer);
1451 	return err;
1452 }
1453 
1454 static void
nfp_flower_remove_merge_flow(struct nfp_app * app,struct nfp_fl_payload * del_sub_flow,struct nfp_fl_payload * merge_flow)1455 nfp_flower_remove_merge_flow(struct nfp_app *app,
1456 			     struct nfp_fl_payload *del_sub_flow,
1457 			     struct nfp_fl_payload *merge_flow)
1458 {
1459 	struct nfp_flower_priv *priv = app->priv;
1460 	struct nfp_fl_payload_link *link, *temp;
1461 	struct nfp_merge_info *merge_info;
1462 	struct nfp_fl_payload *origin;
1463 	u64 parent_ctx = 0;
1464 	bool mod = false;
1465 	int err;
1466 
1467 	link = list_first_entry(&merge_flow->linked_flows,
1468 				struct nfp_fl_payload_link, merge_flow.list);
1469 	origin = link->sub_flow.flow;
1470 
1471 	/* Re-add rule the merge had overwritten if it has not been deleted. */
1472 	if (origin != del_sub_flow)
1473 		mod = true;
1474 
1475 	err = nfp_modify_flow_metadata(app, merge_flow);
1476 	if (err) {
1477 		nfp_flower_cmsg_warn(app, "Metadata fail for merge flow delete.\n");
1478 		goto err_free_links;
1479 	}
1480 
1481 	if (!mod) {
1482 		err = nfp_flower_xmit_flow(app, merge_flow,
1483 					   NFP_FLOWER_CMSG_TYPE_FLOW_DEL);
1484 		if (err) {
1485 			nfp_flower_cmsg_warn(app, "Failed to delete merged flow.\n");
1486 			goto err_free_links;
1487 		}
1488 	} else {
1489 		__nfp_modify_flow_metadata(priv, origin);
1490 		err = nfp_flower_xmit_flow(app, origin,
1491 					   NFP_FLOWER_CMSG_TYPE_FLOW_MOD);
1492 		if (err)
1493 			nfp_flower_cmsg_warn(app, "Failed to revert merge flow.\n");
1494 		origin->in_hw = true;
1495 	}
1496 
1497 err_free_links:
1498 	/* Clean any links connected with the merged flow. */
1499 	list_for_each_entry_safe(link, temp, &merge_flow->linked_flows,
1500 				 merge_flow.list) {
1501 		u32 ctx_id = be32_to_cpu(link->sub_flow.flow->meta.host_ctx_id);
1502 
1503 		parent_ctx = (parent_ctx << 32) | (u64)(ctx_id);
1504 		nfp_flower_unlink_flow(link);
1505 	}
1506 
1507 	merge_info = rhashtable_lookup_fast(&priv->merge_table,
1508 					    &parent_ctx,
1509 					    merge_table_params);
1510 	if (merge_info) {
1511 		WARN_ON_ONCE(rhashtable_remove_fast(&priv->merge_table,
1512 						    &merge_info->ht_node,
1513 						    merge_table_params));
1514 		kfree(merge_info);
1515 	}
1516 
1517 	kfree(merge_flow->action_data);
1518 	kfree(merge_flow->mask_data);
1519 	kfree(merge_flow->unmasked_data);
1520 	WARN_ON_ONCE(rhashtable_remove_fast(&priv->flow_table,
1521 					    &merge_flow->fl_node,
1522 					    nfp_flower_table_params));
1523 	kfree_rcu(merge_flow, rcu);
1524 }
1525 
1526 void
nfp_flower_del_linked_merge_flows(struct nfp_app * app,struct nfp_fl_payload * sub_flow)1527 nfp_flower_del_linked_merge_flows(struct nfp_app *app,
1528 				  struct nfp_fl_payload *sub_flow)
1529 {
1530 	struct nfp_fl_payload_link *link, *temp;
1531 
1532 	/* Remove any merge flow formed from the deleted sub_flow. */
1533 	list_for_each_entry_safe(link, temp, &sub_flow->linked_flows,
1534 				 sub_flow.list)
1535 		nfp_flower_remove_merge_flow(app, sub_flow,
1536 					     link->merge_flow.flow);
1537 }
1538 
1539 /**
1540  * nfp_flower_del_offload() - Removes a flow from hardware.
1541  * @app:	Pointer to the APP handle
1542  * @netdev:	netdev structure.
1543  * @flow:	TC flower classifier offload structure
1544  *
1545  * Removes a flow from the repeated hash structure and clears the
1546  * action payload. Any flows merged from this are also deleted.
1547  *
1548  * Return: negative value on error, 0 if removed successfully.
1549  */
1550 static int
nfp_flower_del_offload(struct nfp_app * app,struct net_device * netdev,struct flow_cls_offload * flow)1551 nfp_flower_del_offload(struct nfp_app *app, struct net_device *netdev,
1552 		       struct flow_cls_offload *flow)
1553 {
1554 	struct nfp_flower_priv *priv = app->priv;
1555 	struct nfp_fl_ct_map_entry *ct_map_ent;
1556 	struct netlink_ext_ack *extack = NULL;
1557 	struct nfp_fl_payload *nfp_flow;
1558 	struct nfp_port *port = NULL;
1559 	int err;
1560 
1561 	extack = flow->common.extack;
1562 	if (nfp_netdev_is_nfp_repr(netdev))
1563 		port = nfp_port_from_netdev(netdev);
1564 
1565 	/* Check ct_map_table */
1566 	ct_map_ent = rhashtable_lookup_fast(&priv->ct_map_table, &flow->cookie,
1567 					    nfp_ct_map_params);
1568 	if (ct_map_ent) {
1569 		err = nfp_fl_ct_del_flow(ct_map_ent);
1570 		return err;
1571 	}
1572 
1573 	nfp_flow = nfp_flower_search_fl_table(app, flow->cookie, netdev);
1574 	if (!nfp_flow) {
1575 		NL_SET_ERR_MSG_MOD(extack, "invalid entry: cannot remove flow that does not exist");
1576 		return -ENOENT;
1577 	}
1578 
1579 	err = nfp_modify_flow_metadata(app, nfp_flow);
1580 	if (err)
1581 		goto err_free_merge_flow;
1582 
1583 	if (nfp_flow->nfp_tun_ipv4_addr)
1584 		nfp_tunnel_del_ipv4_off(app, nfp_flow->nfp_tun_ipv4_addr);
1585 
1586 	if (nfp_flow->nfp_tun_ipv6)
1587 		nfp_tunnel_put_ipv6_off(app, nfp_flow->nfp_tun_ipv6);
1588 
1589 	if (!nfp_flow->in_hw) {
1590 		err = 0;
1591 		goto err_free_merge_flow;
1592 	}
1593 
1594 	if (nfp_flow->pre_tun_rule.dev) {
1595 		if (priv->flower_ext_feats & NFP_FL_FEATS_DECAP_V2) {
1596 			struct nfp_predt_entry *predt;
1597 
1598 			predt = nfp_flow->pre_tun_rule.predt;
1599 			if (predt) {
1600 				spin_lock_bh(&priv->predt_lock);
1601 				nfp_tun_unlink_and_update_nn_entries(app, predt);
1602 				list_del(&predt->list_head);
1603 				spin_unlock_bh(&priv->predt_lock);
1604 				kfree(predt);
1605 			}
1606 		} else {
1607 			err = nfp_flower_xmit_pre_tun_del_flow(app, nfp_flow);
1608 		}
1609 	} else {
1610 		err = nfp_flower_xmit_flow(app, nfp_flow,
1611 					   NFP_FLOWER_CMSG_TYPE_FLOW_DEL);
1612 	}
1613 	/* Fall through on error. */
1614 
1615 err_free_merge_flow:
1616 	nfp_flower_del_linked_merge_flows(app, nfp_flow);
1617 	if (port)
1618 		port->tc_offload_cnt--;
1619 	kfree(nfp_flow->action_data);
1620 	kfree(nfp_flow->mask_data);
1621 	kfree(nfp_flow->unmasked_data);
1622 	WARN_ON_ONCE(rhashtable_remove_fast(&priv->flow_table,
1623 					    &nfp_flow->fl_node,
1624 					    nfp_flower_table_params));
1625 	kfree_rcu(nfp_flow, rcu);
1626 	return err;
1627 }
1628 
1629 static void
__nfp_flower_update_merge_stats(struct nfp_app * app,struct nfp_fl_payload * merge_flow)1630 __nfp_flower_update_merge_stats(struct nfp_app *app,
1631 				struct nfp_fl_payload *merge_flow)
1632 {
1633 	struct nfp_flower_priv *priv = app->priv;
1634 	struct nfp_fl_payload_link *link;
1635 	struct nfp_fl_payload *sub_flow;
1636 	u64 pkts, bytes, used;
1637 	u32 ctx_id;
1638 
1639 	ctx_id = be32_to_cpu(merge_flow->meta.host_ctx_id);
1640 	pkts = priv->stats[ctx_id].pkts;
1641 	/* Do not cycle subflows if no stats to distribute. */
1642 	if (!pkts)
1643 		return;
1644 	bytes = priv->stats[ctx_id].bytes;
1645 	used = priv->stats[ctx_id].used;
1646 
1647 	/* Reset stats for the merge flow. */
1648 	priv->stats[ctx_id].pkts = 0;
1649 	priv->stats[ctx_id].bytes = 0;
1650 
1651 	/* The merge flow has received stats updates from firmware.
1652 	 * Distribute these stats to all subflows that form the merge.
1653 	 * The stats will collected from TC via the subflows.
1654 	 */
1655 	list_for_each_entry(link, &merge_flow->linked_flows, merge_flow.list) {
1656 		sub_flow = link->sub_flow.flow;
1657 		ctx_id = be32_to_cpu(sub_flow->meta.host_ctx_id);
1658 		priv->stats[ctx_id].pkts += pkts;
1659 		priv->stats[ctx_id].bytes += bytes;
1660 		priv->stats[ctx_id].used = max_t(u64, used,
1661 						 priv->stats[ctx_id].used);
1662 	}
1663 }
1664 
1665 void
nfp_flower_update_merge_stats(struct nfp_app * app,struct nfp_fl_payload * sub_flow)1666 nfp_flower_update_merge_stats(struct nfp_app *app,
1667 			      struct nfp_fl_payload *sub_flow)
1668 {
1669 	struct nfp_fl_payload_link *link;
1670 
1671 	/* Get merge flows that the subflow forms to distribute their stats. */
1672 	list_for_each_entry(link, &sub_flow->linked_flows, sub_flow.list)
1673 		__nfp_flower_update_merge_stats(app, link->merge_flow.flow);
1674 }
1675 
1676 /**
1677  * nfp_flower_get_stats() - Populates flow stats obtained from hardware.
1678  * @app:	Pointer to the APP handle
1679  * @netdev:	Netdev structure.
1680  * @flow:	TC flower classifier offload structure
1681  *
1682  * Populates a flow statistics structure which which corresponds to a
1683  * specific flow.
1684  *
1685  * Return: negative value on error, 0 if stats populated successfully.
1686  */
1687 static int
nfp_flower_get_stats(struct nfp_app * app,struct net_device * netdev,struct flow_cls_offload * flow)1688 nfp_flower_get_stats(struct nfp_app *app, struct net_device *netdev,
1689 		     struct flow_cls_offload *flow)
1690 {
1691 	struct nfp_flower_priv *priv = app->priv;
1692 	struct nfp_fl_ct_map_entry *ct_map_ent;
1693 	struct netlink_ext_ack *extack = NULL;
1694 	struct nfp_fl_payload *nfp_flow;
1695 	u32 ctx_id;
1696 
1697 	/* Check ct_map table first */
1698 	ct_map_ent = rhashtable_lookup_fast(&priv->ct_map_table, &flow->cookie,
1699 					    nfp_ct_map_params);
1700 	if (ct_map_ent)
1701 		return nfp_fl_ct_stats(flow, ct_map_ent);
1702 
1703 	extack = flow->common.extack;
1704 	nfp_flow = nfp_flower_search_fl_table(app, flow->cookie, netdev);
1705 	if (!nfp_flow) {
1706 		NL_SET_ERR_MSG_MOD(extack, "invalid entry: cannot dump stats for flow that does not exist");
1707 		return -EINVAL;
1708 	}
1709 
1710 	ctx_id = be32_to_cpu(nfp_flow->meta.host_ctx_id);
1711 
1712 	spin_lock_bh(&priv->stats_lock);
1713 	/* If request is for a sub_flow, update stats from merged flows. */
1714 	if (!list_empty(&nfp_flow->linked_flows))
1715 		nfp_flower_update_merge_stats(app, nfp_flow);
1716 
1717 	flow_stats_update(&flow->stats, priv->stats[ctx_id].bytes,
1718 			  priv->stats[ctx_id].pkts, 0, priv->stats[ctx_id].used,
1719 			  FLOW_ACTION_HW_STATS_DELAYED);
1720 
1721 	priv->stats[ctx_id].pkts = 0;
1722 	priv->stats[ctx_id].bytes = 0;
1723 	spin_unlock_bh(&priv->stats_lock);
1724 
1725 	return 0;
1726 }
1727 
1728 static int
nfp_flower_repr_offload(struct nfp_app * app,struct net_device * netdev,struct flow_cls_offload * flower)1729 nfp_flower_repr_offload(struct nfp_app *app, struct net_device *netdev,
1730 			struct flow_cls_offload *flower)
1731 {
1732 	struct nfp_flower_priv *priv = app->priv;
1733 	int ret;
1734 
1735 	if (!eth_proto_is_802_3(flower->common.protocol))
1736 		return -EOPNOTSUPP;
1737 
1738 	mutex_lock(&priv->nfp_fl_lock);
1739 	switch (flower->command) {
1740 	case FLOW_CLS_REPLACE:
1741 		ret = nfp_flower_add_offload(app, netdev, flower);
1742 		break;
1743 	case FLOW_CLS_DESTROY:
1744 		ret = nfp_flower_del_offload(app, netdev, flower);
1745 		break;
1746 	case FLOW_CLS_STATS:
1747 		ret = nfp_flower_get_stats(app, netdev, flower);
1748 		break;
1749 	default:
1750 		ret = -EOPNOTSUPP;
1751 		break;
1752 	}
1753 	mutex_unlock(&priv->nfp_fl_lock);
1754 
1755 	return ret;
1756 }
1757 
nfp_flower_setup_tc_block_cb(enum tc_setup_type type,void * type_data,void * cb_priv)1758 static int nfp_flower_setup_tc_block_cb(enum tc_setup_type type,
1759 					void *type_data, void *cb_priv)
1760 {
1761 	struct flow_cls_common_offload *common = type_data;
1762 	struct nfp_repr *repr = cb_priv;
1763 
1764 	if (!tc_can_offload_extack(repr->netdev, common->extack))
1765 		return -EOPNOTSUPP;
1766 
1767 	switch (type) {
1768 	case TC_SETUP_CLSFLOWER:
1769 		return nfp_flower_repr_offload(repr->app, repr->netdev,
1770 					       type_data);
1771 	case TC_SETUP_CLSMATCHALL:
1772 		return nfp_flower_setup_qos_offload(repr->app, repr->netdev,
1773 						    type_data);
1774 	default:
1775 		return -EOPNOTSUPP;
1776 	}
1777 }
1778 
1779 static LIST_HEAD(nfp_block_cb_list);
1780 
nfp_flower_setup_tc_block(struct net_device * netdev,struct flow_block_offload * f)1781 static int nfp_flower_setup_tc_block(struct net_device *netdev,
1782 				     struct flow_block_offload *f)
1783 {
1784 	struct nfp_repr *repr = netdev_priv(netdev);
1785 	struct nfp_flower_repr_priv *repr_priv;
1786 	struct flow_block_cb *block_cb;
1787 
1788 	if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
1789 		return -EOPNOTSUPP;
1790 
1791 	repr_priv = repr->app_priv;
1792 	repr_priv->block_shared = f->block_shared;
1793 	f->driver_block_list = &nfp_block_cb_list;
1794 	f->unlocked_driver_cb = true;
1795 
1796 	switch (f->command) {
1797 	case FLOW_BLOCK_BIND:
1798 		if (flow_block_cb_is_busy(nfp_flower_setup_tc_block_cb, repr,
1799 					  &nfp_block_cb_list))
1800 			return -EBUSY;
1801 
1802 		block_cb = flow_block_cb_alloc(nfp_flower_setup_tc_block_cb,
1803 					       repr, repr, NULL);
1804 		if (IS_ERR(block_cb))
1805 			return PTR_ERR(block_cb);
1806 
1807 		flow_block_cb_add(block_cb, f);
1808 		list_add_tail(&block_cb->driver_list, &nfp_block_cb_list);
1809 		return 0;
1810 	case FLOW_BLOCK_UNBIND:
1811 		block_cb = flow_block_cb_lookup(f->block,
1812 						nfp_flower_setup_tc_block_cb,
1813 						repr);
1814 		if (!block_cb)
1815 			return -ENOENT;
1816 
1817 		flow_block_cb_remove(block_cb, f);
1818 		list_del(&block_cb->driver_list);
1819 		return 0;
1820 	default:
1821 		return -EOPNOTSUPP;
1822 	}
1823 }
1824 
nfp_flower_setup_tc(struct nfp_app * app,struct net_device * netdev,enum tc_setup_type type,void * type_data)1825 int nfp_flower_setup_tc(struct nfp_app *app, struct net_device *netdev,
1826 			enum tc_setup_type type, void *type_data)
1827 {
1828 	switch (type) {
1829 	case TC_SETUP_BLOCK:
1830 		return nfp_flower_setup_tc_block(netdev, type_data);
1831 	default:
1832 		return -EOPNOTSUPP;
1833 	}
1834 }
1835 
1836 struct nfp_flower_indr_block_cb_priv {
1837 	struct net_device *netdev;
1838 	struct nfp_app *app;
1839 	struct list_head list;
1840 };
1841 
1842 static struct nfp_flower_indr_block_cb_priv *
nfp_flower_indr_block_cb_priv_lookup(struct nfp_app * app,struct net_device * netdev)1843 nfp_flower_indr_block_cb_priv_lookup(struct nfp_app *app,
1844 				     struct net_device *netdev)
1845 {
1846 	struct nfp_flower_indr_block_cb_priv *cb_priv;
1847 	struct nfp_flower_priv *priv = app->priv;
1848 
1849 	list_for_each_entry(cb_priv, &priv->indr_block_cb_priv, list)
1850 		if (cb_priv->netdev == netdev)
1851 			return cb_priv;
1852 
1853 	return NULL;
1854 }
1855 
nfp_flower_setup_indr_block_cb(enum tc_setup_type type,void * type_data,void * cb_priv)1856 static int nfp_flower_setup_indr_block_cb(enum tc_setup_type type,
1857 					  void *type_data, void *cb_priv)
1858 {
1859 	struct nfp_flower_indr_block_cb_priv *priv = cb_priv;
1860 
1861 	switch (type) {
1862 	case TC_SETUP_CLSFLOWER:
1863 		return nfp_flower_repr_offload(priv->app, priv->netdev,
1864 					       type_data);
1865 	default:
1866 		return -EOPNOTSUPP;
1867 	}
1868 }
1869 
nfp_flower_setup_indr_tc_release(void * cb_priv)1870 void nfp_flower_setup_indr_tc_release(void *cb_priv)
1871 {
1872 	struct nfp_flower_indr_block_cb_priv *priv = cb_priv;
1873 
1874 	list_del(&priv->list);
1875 	kfree(priv);
1876 }
1877 
1878 static int
nfp_flower_setup_indr_tc_block(struct net_device * netdev,struct Qdisc * sch,struct nfp_app * app,struct flow_block_offload * f,void * data,void (* cleanup)(struct flow_block_cb * block_cb))1879 nfp_flower_setup_indr_tc_block(struct net_device *netdev, struct Qdisc *sch, struct nfp_app *app,
1880 			       struct flow_block_offload *f, void *data,
1881 			       void (*cleanup)(struct flow_block_cb *block_cb))
1882 {
1883 	struct nfp_flower_indr_block_cb_priv *cb_priv;
1884 	struct nfp_flower_priv *priv = app->priv;
1885 	struct flow_block_cb *block_cb;
1886 
1887 	if ((f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS &&
1888 	     !nfp_flower_internal_port_can_offload(app, netdev)) ||
1889 	    (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_EGRESS &&
1890 	     nfp_flower_internal_port_can_offload(app, netdev)))
1891 		return -EOPNOTSUPP;
1892 
1893 	f->unlocked_driver_cb = true;
1894 
1895 	switch (f->command) {
1896 	case FLOW_BLOCK_BIND:
1897 		cb_priv = nfp_flower_indr_block_cb_priv_lookup(app, netdev);
1898 		if (cb_priv &&
1899 		    flow_block_cb_is_busy(nfp_flower_setup_indr_block_cb,
1900 					  cb_priv,
1901 					  &nfp_block_cb_list))
1902 			return -EBUSY;
1903 
1904 		cb_priv = kmalloc(sizeof(*cb_priv), GFP_KERNEL);
1905 		if (!cb_priv)
1906 			return -ENOMEM;
1907 
1908 		cb_priv->netdev = netdev;
1909 		cb_priv->app = app;
1910 		list_add(&cb_priv->list, &priv->indr_block_cb_priv);
1911 
1912 		block_cb = flow_indr_block_cb_alloc(nfp_flower_setup_indr_block_cb,
1913 						    cb_priv, cb_priv,
1914 						    nfp_flower_setup_indr_tc_release,
1915 						    f, netdev, sch, data, app, cleanup);
1916 		if (IS_ERR(block_cb)) {
1917 			list_del(&cb_priv->list);
1918 			kfree(cb_priv);
1919 			return PTR_ERR(block_cb);
1920 		}
1921 
1922 		flow_block_cb_add(block_cb, f);
1923 		list_add_tail(&block_cb->driver_list, &nfp_block_cb_list);
1924 		return 0;
1925 	case FLOW_BLOCK_UNBIND:
1926 		cb_priv = nfp_flower_indr_block_cb_priv_lookup(app, netdev);
1927 		if (!cb_priv)
1928 			return -ENOENT;
1929 
1930 		block_cb = flow_block_cb_lookup(f->block,
1931 						nfp_flower_setup_indr_block_cb,
1932 						cb_priv);
1933 		if (!block_cb)
1934 			return -ENOENT;
1935 
1936 		flow_indr_block_cb_remove(block_cb, f);
1937 		list_del(&block_cb->driver_list);
1938 		return 0;
1939 	default:
1940 		return -EOPNOTSUPP;
1941 	}
1942 	return 0;
1943 }
1944 
1945 static int
nfp_setup_tc_no_dev(struct nfp_app * app,enum tc_setup_type type,void * data)1946 nfp_setup_tc_no_dev(struct nfp_app *app, enum tc_setup_type type, void *data)
1947 {
1948 	if (!data)
1949 		return -EOPNOTSUPP;
1950 
1951 	switch (type) {
1952 	case TC_SETUP_ACT:
1953 		return nfp_setup_tc_act_offload(app, data);
1954 	default:
1955 		return -EOPNOTSUPP;
1956 	}
1957 }
1958 
1959 int
nfp_flower_indr_setup_tc_cb(struct net_device * netdev,struct Qdisc * sch,void * cb_priv,enum tc_setup_type type,void * type_data,void * data,void (* cleanup)(struct flow_block_cb * block_cb))1960 nfp_flower_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, void *cb_priv,
1961 			    enum tc_setup_type type, void *type_data,
1962 			    void *data,
1963 			    void (*cleanup)(struct flow_block_cb *block_cb))
1964 {
1965 	if (!netdev)
1966 		return nfp_setup_tc_no_dev(cb_priv, type, data);
1967 
1968 	if (!nfp_fl_is_netdev_to_offload(netdev))
1969 		return -EOPNOTSUPP;
1970 
1971 	switch (type) {
1972 	case TC_SETUP_BLOCK:
1973 		return nfp_flower_setup_indr_tc_block(netdev, sch, cb_priv,
1974 						      type_data, data, cleanup);
1975 	default:
1976 		return -EOPNOTSUPP;
1977 	}
1978 }
1979