xref: /linux/net/bridge/br_netfilter_hooks.c (revision d69eb204c255c35abd9e8cb621484e8074c75eaa)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Handle firewalling
4  *	Linux ethernet bridge
5  *
6  *	Authors:
7  *	Lennert Buytenhek		<buytenh@gnu.org>
8  *	Bart De Schuymer		<bdschuym@pandora.be>
9  *
10  *	Lennert dedicates this file to Kerstin Wurdinger.
11  */
12 
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/slab.h>
16 #include <linux/ip.h>
17 #include <linux/netdevice.h>
18 #include <linux/skbuff.h>
19 #include <linux/if_arp.h>
20 #include <linux/if_ether.h>
21 #include <linux/if_vlan.h>
22 #include <linux/if_pppox.h>
23 #include <linux/ppp_defs.h>
24 #include <linux/netfilter_bridge.h>
25 #include <uapi/linux/netfilter_bridge.h>
26 #include <linux/netfilter_ipv4.h>
27 #include <linux/netfilter_ipv6.h>
28 #include <linux/netfilter_arp.h>
29 #include <linux/in_route.h>
30 #include <linux/rculist.h>
31 #include <linux/inetdevice.h>
32 
33 #include <net/ip.h>
34 #include <net/ipv6.h>
35 #include <net/addrconf.h>
36 #include <net/dst_metadata.h>
37 #include <net/route.h>
38 #include <net/netfilter/br_netfilter.h>
39 #include <net/netns/generic.h>
40 #include <net/inet_dscp.h>
41 
42 #include <linux/uaccess.h>
43 #include "br_private.h"
44 #ifdef CONFIG_SYSCTL
45 #include <linux/sysctl.h>
46 #endif
47 
48 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
49 #include <net/netfilter/nf_conntrack_core.h>
50 #endif
51 
52 static unsigned int brnf_net_id __read_mostly;
53 
54 struct brnf_net {
55 	bool enabled;
56 
57 #ifdef CONFIG_SYSCTL
58 	struct ctl_table_header *ctl_hdr;
59 #endif
60 
61 	/* default value is 1 */
62 	int call_iptables;
63 	int call_ip6tables;
64 	int call_arptables;
65 
66 	/* default value is 0 */
67 	int filter_vlan_tagged;
68 	int filter_pppoe_tagged;
69 	int pass_vlan_indev;
70 };
71 
72 #define IS_IP(skb) \
73 	(!skb_vlan_tag_present(skb) && skb->protocol == htons(ETH_P_IP))
74 
75 #define IS_IPV6(skb) \
76 	(!skb_vlan_tag_present(skb) && skb->protocol == htons(ETH_P_IPV6))
77 
78 #define IS_ARP(skb) \
79 	(!skb_vlan_tag_present(skb) && skb->protocol == htons(ETH_P_ARP))
80 
vlan_proto(const struct sk_buff * skb)81 static inline __be16 vlan_proto(const struct sk_buff *skb)
82 {
83 	if (skb_vlan_tag_present(skb))
84 		return skb->protocol;
85 	else if (skb->protocol == htons(ETH_P_8021Q))
86 		return vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
87 	else
88 		return 0;
89 }
90 
is_vlan_ip(const struct sk_buff * skb,const struct net * net)91 static inline bool is_vlan_ip(const struct sk_buff *skb, const struct net *net)
92 {
93 	struct brnf_net *brnet = net_generic(net, brnf_net_id);
94 
95 	return vlan_proto(skb) == htons(ETH_P_IP) && brnet->filter_vlan_tagged;
96 }
97 
is_vlan_ipv6(const struct sk_buff * skb,const struct net * net)98 static inline bool is_vlan_ipv6(const struct sk_buff *skb,
99 				const struct net *net)
100 {
101 	struct brnf_net *brnet = net_generic(net, brnf_net_id);
102 
103 	return vlan_proto(skb) == htons(ETH_P_IPV6) &&
104 	       brnet->filter_vlan_tagged;
105 }
106 
is_vlan_arp(const struct sk_buff * skb,const struct net * net)107 static inline bool is_vlan_arp(const struct sk_buff *skb, const struct net *net)
108 {
109 	struct brnf_net *brnet = net_generic(net, brnf_net_id);
110 
111 	return vlan_proto(skb) == htons(ETH_P_ARP) && brnet->filter_vlan_tagged;
112 }
113 
pppoe_proto(const struct sk_buff * skb)114 static inline __be16 pppoe_proto(const struct sk_buff *skb)
115 {
116 	return *((__be16 *)(skb_mac_header(skb) + ETH_HLEN +
117 			    sizeof(struct pppoe_hdr)));
118 }
119 
is_pppoe_ip(const struct sk_buff * skb,const struct net * net)120 static inline bool is_pppoe_ip(const struct sk_buff *skb, const struct net *net)
121 {
122 	struct brnf_net *brnet = net_generic(net, brnf_net_id);
123 
124 	return skb->protocol == htons(ETH_P_PPP_SES) &&
125 	       pppoe_proto(skb) == htons(PPP_IP) && brnet->filter_pppoe_tagged;
126 }
127 
is_pppoe_ipv6(const struct sk_buff * skb,const struct net * net)128 static inline bool is_pppoe_ipv6(const struct sk_buff *skb,
129 				 const struct net *net)
130 {
131 	struct brnf_net *brnet = net_generic(net, brnf_net_id);
132 
133 	return skb->protocol == htons(ETH_P_PPP_SES) &&
134 	       pppoe_proto(skb) == htons(PPP_IPV6) &&
135 	       brnet->filter_pppoe_tagged;
136 }
137 
138 /* largest possible L2 header, see br_nf_dev_queue_xmit() */
139 #define NF_BRIDGE_MAX_MAC_HEADER_LENGTH (PPPOE_SES_HLEN + ETH_HLEN)
140 
141 struct brnf_frag_data {
142 	local_lock_t bh_lock;
143 	char mac[NF_BRIDGE_MAX_MAC_HEADER_LENGTH];
144 	u8 encap_size;
145 	u8 size;
146 	u16 vlan_tci;
147 	__be16 vlan_proto;
148 };
149 
150 static DEFINE_PER_CPU(struct brnf_frag_data, brnf_frag_data_storage) = {
151 	.bh_lock = INIT_LOCAL_LOCK(bh_lock),
152 };
153 
nf_bridge_info_free(struct sk_buff * skb)154 static void nf_bridge_info_free(struct sk_buff *skb)
155 {
156 	skb_ext_del(skb, SKB_EXT_BRIDGE_NF);
157 }
158 
bridge_parent(const struct net_device * dev)159 static inline struct net_device *bridge_parent(const struct net_device *dev)
160 {
161 	struct net_bridge_port *port;
162 
163 	port = br_port_get_rcu(dev);
164 	return port ? port->br->dev : NULL;
165 }
166 
nf_bridge_unshare(struct sk_buff * skb)167 static inline struct nf_bridge_info *nf_bridge_unshare(struct sk_buff *skb)
168 {
169 	return skb_ext_add(skb, SKB_EXT_BRIDGE_NF);
170 }
171 
nf_bridge_encap_header_len(const struct sk_buff * skb)172 unsigned int nf_bridge_encap_header_len(const struct sk_buff *skb)
173 {
174 	switch (skb->protocol) {
175 	case __cpu_to_be16(ETH_P_8021Q):
176 		return VLAN_HLEN;
177 	case __cpu_to_be16(ETH_P_PPP_SES):
178 		return PPPOE_SES_HLEN;
179 	default:
180 		return 0;
181 	}
182 }
183 
nf_bridge_pull_encap_header(struct sk_buff * skb)184 static inline void nf_bridge_pull_encap_header(struct sk_buff *skb)
185 {
186 	unsigned int len = nf_bridge_encap_header_len(skb);
187 
188 	skb_pull(skb, len);
189 	skb->network_header += len;
190 }
191 
nf_bridge_pull_encap_header_rcsum(struct sk_buff * skb)192 static inline void nf_bridge_pull_encap_header_rcsum(struct sk_buff *skb)
193 {
194 	unsigned int len = nf_bridge_encap_header_len(skb);
195 
196 	skb_pull_rcsum(skb, len);
197 	skb->network_header += len;
198 }
199 
200 /* When handing a packet over to the IP layer
201  * check whether we have a skb that is in the
202  * expected format
203  */
204 
br_validate_ipv4(struct net * net,struct sk_buff * skb)205 static int br_validate_ipv4(struct net *net, struct sk_buff *skb)
206 {
207 	const struct iphdr *iph;
208 	u32 len;
209 
210 	if (!pskb_may_pull(skb, sizeof(struct iphdr)))
211 		goto inhdr_error;
212 
213 	iph = ip_hdr(skb);
214 
215 	/* Basic sanity checks */
216 	if (iph->ihl < 5 || iph->version != 4)
217 		goto inhdr_error;
218 
219 	if (!pskb_may_pull(skb, iph->ihl*4))
220 		goto inhdr_error;
221 
222 	iph = ip_hdr(skb);
223 	if (unlikely(ip_fast_csum((u8 *)iph, iph->ihl)))
224 		goto csum_error;
225 
226 	len = skb_ip_totlen(skb);
227 	if (skb->len < len) {
228 		__IP_INC_STATS(net, IPSTATS_MIB_INTRUNCATEDPKTS);
229 		goto drop;
230 	} else if (len < (iph->ihl*4))
231 		goto inhdr_error;
232 
233 	if (pskb_trim_rcsum(skb, len)) {
234 		__IP_INC_STATS(net, IPSTATS_MIB_INDISCARDS);
235 		goto drop;
236 	}
237 
238 	memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
239 	/* We should really parse IP options here but until
240 	 * somebody who actually uses IP options complains to
241 	 * us we'll just silently ignore the options because
242 	 * we're lazy!
243 	 */
244 	return 0;
245 
246 csum_error:
247 	__IP_INC_STATS(net, IPSTATS_MIB_CSUMERRORS);
248 inhdr_error:
249 	__IP_INC_STATS(net, IPSTATS_MIB_INHDRERRORS);
250 drop:
251 	return -1;
252 }
253 
nf_bridge_update_protocol(struct sk_buff * skb)254 void nf_bridge_update_protocol(struct sk_buff *skb)
255 {
256 	const struct nf_bridge_info *nf_bridge = nf_bridge_info_get(skb);
257 
258 	switch (nf_bridge->orig_proto) {
259 	case BRNF_PROTO_8021Q:
260 		skb->protocol = htons(ETH_P_8021Q);
261 		break;
262 	case BRNF_PROTO_PPPOE:
263 		skb->protocol = htons(ETH_P_PPP_SES);
264 		break;
265 	case BRNF_PROTO_UNCHANGED:
266 		break;
267 	}
268 }
269 
270 /* Obtain the correct destination MAC address, while preserving the original
271  * source MAC address. If we already know this address, we just copy it. If we
272  * don't, we use the neighbour framework to find out. In both cases, we make
273  * sure that br_handle_frame_finish() is called afterwards.
274  */
br_nf_pre_routing_finish_bridge(struct net * net,struct sock * sk,struct sk_buff * skb)275 int br_nf_pre_routing_finish_bridge(struct net *net, struct sock *sk, struct sk_buff *skb)
276 {
277 	struct neighbour *neigh;
278 	struct dst_entry *dst;
279 
280 	skb->dev = bridge_parent(skb->dev);
281 	if (!skb->dev)
282 		goto free_skb;
283 	dst = skb_dst(skb);
284 	neigh = dst_neigh_lookup_skb(dst, skb);
285 	if (neigh) {
286 		struct nf_bridge_info *nf_bridge = nf_bridge_info_get(skb);
287 		int ret;
288 
289 		if ((READ_ONCE(neigh->nud_state) & NUD_CONNECTED) &&
290 		    READ_ONCE(neigh->hh.hh_len)) {
291 			struct net_device *br_indev;
292 
293 			br_indev = nf_bridge_get_physindev(skb, net);
294 			if (!br_indev) {
295 				neigh_release(neigh);
296 				goto free_skb;
297 			}
298 
299 			neigh_hh_bridge(&neigh->hh, skb);
300 			skb->dev = br_indev;
301 
302 			ret = br_handle_frame_finish(net, sk, skb);
303 		} else {
304 			/* the neighbour function below overwrites the complete
305 			 * MAC header, so we save the Ethernet source address and
306 			 * protocol number.
307 			 */
308 			skb_copy_from_linear_data_offset(skb,
309 							 -(ETH_HLEN-ETH_ALEN),
310 							 nf_bridge->neigh_header,
311 							 ETH_HLEN-ETH_ALEN);
312 			/* tell br_dev_xmit to continue with forwarding */
313 			nf_bridge->bridged_dnat = 1;
314 			/* FIXME Need to refragment */
315 			ret = READ_ONCE(neigh->output)(neigh, skb);
316 		}
317 		neigh_release(neigh);
318 		return ret;
319 	}
320 free_skb:
321 	kfree_skb(skb);
322 	return 0;
323 }
324 
325 static inline bool
br_nf_ipv4_daddr_was_changed(const struct sk_buff * skb,const struct nf_bridge_info * nf_bridge)326 br_nf_ipv4_daddr_was_changed(const struct sk_buff *skb,
327 			     const struct nf_bridge_info *nf_bridge)
328 {
329 	return ip_hdr(skb)->daddr != nf_bridge->ipv4_daddr;
330 }
331 
332 /* This requires some explaining. If DNAT has taken place,
333  * we will need to fix up the destination Ethernet address.
334  * This is also true when SNAT takes place (for the reply direction).
335  *
336  * There are two cases to consider:
337  * 1. The packet was DNAT'ed to a device in the same bridge
338  *    port group as it was received on. We can still bridge
339  *    the packet.
340  * 2. The packet was DNAT'ed to a different device, either
341  *    a non-bridged device or another bridge port group.
342  *    The packet will need to be routed.
343  *
344  * The correct way of distinguishing between these two cases is to
345  * call ip_route_input() and to look at skb->dst->dev, which is
346  * changed to the destination device if ip_route_input() succeeds.
347  *
348  * Let's first consider the case that ip_route_input() succeeds:
349  *
350  * If the output device equals the logical bridge device the packet
351  * came in on, we can consider this bridging. The corresponding MAC
352  * address will be obtained in br_nf_pre_routing_finish_bridge.
353  * Otherwise, the packet is considered to be routed and we just
354  * change the destination MAC address so that the packet will
355  * later be passed up to the IP stack to be routed. For a redirected
356  * packet, ip_route_input() will give back the localhost as output device,
357  * which differs from the bridge device.
358  *
359  * Let's now consider the case that ip_route_input() fails:
360  *
361  * This can be because the destination address is martian, in which case
362  * the packet will be dropped.
363  * If IP forwarding is disabled, ip_route_input() will fail, while
364  * ip_route_output_key() can return success. The source
365  * address for ip_route_output_key() is set to zero, so ip_route_output_key()
366  * thinks we're handling a locally generated packet and won't care
367  * if IP forwarding is enabled. If the output device equals the logical bridge
368  * device, we proceed as if ip_route_input() succeeded. If it differs from the
369  * logical bridge port or if ip_route_output_key() fails we drop the packet.
370  */
br_nf_pre_routing_finish(struct net * net,struct sock * sk,struct sk_buff * skb)371 static int br_nf_pre_routing_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
372 {
373 	struct nf_bridge_info *nf_bridge = nf_bridge_info_get(skb);
374 	struct net_device *dev = skb->dev, *br_indev;
375 	const struct iphdr *iph = ip_hdr(skb);
376 	enum skb_drop_reason reason;
377 	struct rtable *rt;
378 
379 	br_indev = nf_bridge_get_physindev(skb, net);
380 	if (!br_indev) {
381 		kfree_skb(skb);
382 		return 0;
383 	}
384 
385 	nf_bridge->frag_max_size = IPCB(skb)->frag_max_size;
386 
387 	if (nf_bridge->pkt_otherhost) {
388 		skb->pkt_type = PACKET_OTHERHOST;
389 		nf_bridge->pkt_otherhost = false;
390 	}
391 	nf_bridge->in_prerouting = 0;
392 	if (br_nf_ipv4_daddr_was_changed(skb, nf_bridge)) {
393 		reason = ip_route_input(skb, iph->daddr, iph->saddr,
394 					ip4h_dscp(iph), dev);
395 		if (reason) {
396 			kfree_skb_reason(skb, reason);
397 			return 0;
398 		} else {
399 			if (skb_dst(skb)->dev == dev) {
400 				skb->dev = br_indev;
401 				nf_bridge_update_protocol(skb);
402 				nf_bridge_push_encap_header(skb);
403 				br_nf_hook_thresh(NF_BR_PRE_ROUTING,
404 						  net, sk, skb, skb->dev,
405 						  NULL,
406 						  br_nf_pre_routing_finish_bridge);
407 				return 0;
408 			}
409 			ether_addr_copy(eth_hdr(skb)->h_dest, dev->dev_addr);
410 			skb->pkt_type = PACKET_HOST;
411 		}
412 	} else {
413 		rt = bridge_parent_rtable(br_indev);
414 		if (!rt) {
415 			kfree_skb(skb);
416 			return 0;
417 		}
418 		skb_dst_drop(skb);
419 		skb_dst_set_noref(skb, &rt->dst);
420 	}
421 
422 	skb->dev = br_indev;
423 	nf_bridge_update_protocol(skb);
424 	nf_bridge_push_encap_header(skb);
425 	br_nf_hook_thresh(NF_BR_PRE_ROUTING, net, sk, skb, skb->dev, NULL,
426 			  br_handle_frame_finish);
427 	return 0;
428 }
429 
brnf_get_logical_dev(struct sk_buff * skb,const struct net_device * dev,const struct net * net)430 static struct net_device *brnf_get_logical_dev(struct sk_buff *skb,
431 					       const struct net_device *dev,
432 					       const struct net *net)
433 {
434 	struct net_device *vlan, *br;
435 	struct brnf_net *brnet = net_generic(net, brnf_net_id);
436 
437 	br = bridge_parent(dev);
438 
439 	if (brnet->pass_vlan_indev == 0 || !skb_vlan_tag_present(skb))
440 		return br;
441 
442 	vlan = __vlan_find_dev_deep_rcu(br, skb->vlan_proto,
443 				    skb_vlan_tag_get(skb) & VLAN_VID_MASK);
444 
445 	return vlan ? vlan : br;
446 }
447 
448 /* Some common code for IPv4/IPv6 */
setup_pre_routing(struct sk_buff * skb,const struct net * net)449 struct net_device *setup_pre_routing(struct sk_buff *skb, const struct net *net)
450 {
451 	struct nf_bridge_info *nf_bridge = nf_bridge_info_get(skb);
452 
453 	if (skb->pkt_type == PACKET_OTHERHOST) {
454 		skb->pkt_type = PACKET_HOST;
455 		nf_bridge->pkt_otherhost = true;
456 	}
457 
458 	nf_bridge->in_prerouting = 1;
459 	nf_bridge->physinif = skb->dev->ifindex;
460 	skb->dev = brnf_get_logical_dev(skb, skb->dev, net);
461 
462 	if (skb->protocol == htons(ETH_P_8021Q))
463 		nf_bridge->orig_proto = BRNF_PROTO_8021Q;
464 	else if (skb->protocol == htons(ETH_P_PPP_SES))
465 		nf_bridge->orig_proto = BRNF_PROTO_PPPOE;
466 
467 	/* Must drop socket now because of tproxy. */
468 	skb_orphan(skb);
469 	return skb->dev;
470 }
471 
472 /* Direct IPv6 traffic to br_nf_pre_routing_ipv6.
473  * Replicate the checks that IPv4 does on packet reception.
474  * Set skb->dev to the bridge device (i.e. parent of the
475  * receiving device) to make netfilter happy, the REDIRECT
476  * target in particular.  Save the original destination IP
477  * address to be able to detect DNAT afterwards. */
br_nf_pre_routing(void * priv,struct sk_buff * skb,const struct nf_hook_state * state)478 static unsigned int br_nf_pre_routing(void *priv,
479 				      struct sk_buff *skb,
480 				      const struct nf_hook_state *state)
481 {
482 	struct nf_bridge_info *nf_bridge;
483 	struct net_bridge_port *p;
484 	struct net_bridge *br;
485 	__u32 len = nf_bridge_encap_header_len(skb);
486 	struct brnf_net *brnet;
487 
488 	if (unlikely(!pskb_may_pull(skb, len)))
489 		return NF_DROP_REASON(skb, SKB_DROP_REASON_PKT_TOO_SMALL, 0);
490 
491 	p = br_port_get_rcu(state->in);
492 	if (p == NULL)
493 		return NF_DROP_REASON(skb, SKB_DROP_REASON_DEV_READY, 0);
494 	br = p->br;
495 
496 	brnet = net_generic(state->net, brnf_net_id);
497 	if (IS_IPV6(skb) || is_vlan_ipv6(skb, state->net) ||
498 	    is_pppoe_ipv6(skb, state->net)) {
499 		if (!brnet->call_ip6tables &&
500 		    !br_opt_get(br, BROPT_NF_CALL_IP6TABLES))
501 			return NF_ACCEPT;
502 		if (!ipv6_mod_enabled()) {
503 			pr_warn_once("Module ipv6 is disabled, so call_ip6tables is not supported.");
504 			return NF_DROP_REASON(skb, SKB_DROP_REASON_IPV6DISABLED, 0);
505 		}
506 
507 		nf_bridge_pull_encap_header_rcsum(skb);
508 		return br_nf_pre_routing_ipv6(priv, skb, state);
509 	}
510 
511 	if (!brnet->call_iptables && !br_opt_get(br, BROPT_NF_CALL_IPTABLES))
512 		return NF_ACCEPT;
513 
514 	if (!IS_IP(skb) && !is_vlan_ip(skb, state->net) &&
515 	    !is_pppoe_ip(skb, state->net))
516 		return NF_ACCEPT;
517 
518 	nf_bridge_pull_encap_header_rcsum(skb);
519 
520 	if (br_validate_ipv4(state->net, skb))
521 		return NF_DROP_REASON(skb, SKB_DROP_REASON_IP_INHDR, 0);
522 
523 	if (!nf_bridge_alloc(skb))
524 		return NF_DROP_REASON(skb, SKB_DROP_REASON_NOMEM, 0);
525 	if (!setup_pre_routing(skb, state->net))
526 		return NF_DROP_REASON(skb, SKB_DROP_REASON_DEV_READY, 0);
527 
528 	nf_bridge = nf_bridge_info_get(skb);
529 	nf_bridge->ipv4_daddr = ip_hdr(skb)->daddr;
530 
531 	skb->protocol = htons(ETH_P_IP);
532 	skb->transport_header = skb->network_header + ip_hdr(skb)->ihl * 4;
533 
534 	NF_HOOK(NFPROTO_IPV4, NF_INET_PRE_ROUTING, state->net, state->sk, skb,
535 		skb->dev, NULL,
536 		br_nf_pre_routing_finish);
537 
538 	return NF_STOLEN;
539 }
540 
541 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
542 /* conntracks' nf_confirm logic cannot handle cloned skbs referencing
543  * the same nf_conn entry, which will happen for multicast (broadcast)
544  * Frames on bridges.
545  *
546  * Example:
547  *      macvlan0
548  *      br0
549  *  ethX  ethY
550  *
551  * ethX (or Y) receives multicast or broadcast packet containing
552  * an IP packet, not yet in conntrack table.
553  *
554  * 1. skb passes through bridge and fake-ip (br_netfilter)Prerouting.
555  *    -> skb->_nfct now references a unconfirmed entry
556  * 2. skb is broad/mcast packet. bridge now passes clones out on each bridge
557  *    interface.
558  * 3. skb gets passed up the stack.
559  * 4. In macvlan case, macvlan driver retains clone(s) of the mcast skb
560  *    and schedules a work queue to send them out on the lower devices.
561  *
562  *    The clone skb->_nfct is not a copy, it is the same entry as the
563  *    original skb.  The macvlan rx handler then returns RX_HANDLER_PASS.
564  * 5. Normal conntrack hooks (in NF_INET_LOCAL_IN) confirm the orig skb.
565  *
566  * The Macvlan broadcast worker and normal confirm path will race.
567  *
568  * This race will not happen if step 2 already confirmed a clone. In that
569  * case later steps perform skb_clone() with skb->_nfct already confirmed (in
570  * hash table).  This works fine.
571  *
572  * But such confirmation won't happen when eb/ip/nftables rules dropped the
573  * packets before they reached the nf_confirm step in postrouting.
574  *
575  * Work around this problem by explicit confirmation of the entry at
576  * LOCAL_IN time, before upper layer has a chance to clone the unconfirmed
577  * entry.
578  *
579  */
br_nf_local_in(void * priv,struct sk_buff * skb,const struct nf_hook_state * state)580 static unsigned int br_nf_local_in(void *priv,
581 				   struct sk_buff *skb,
582 				   const struct nf_hook_state *state)
583 {
584 	bool promisc = BR_INPUT_SKB_CB(skb)->promisc;
585 	struct nf_conntrack *nfct = skb_nfct(skb);
586 	const struct nf_ct_hook *ct_hook;
587 	struct nf_conn *ct;
588 	int ret;
589 
590 	if (promisc) {
591 		nf_reset_ct(skb);
592 		return NF_ACCEPT;
593 	}
594 
595 	if (!nfct || skb->pkt_type == PACKET_HOST)
596 		return NF_ACCEPT;
597 
598 	ct = container_of(nfct, struct nf_conn, ct_general);
599 	if (likely(nf_ct_is_confirmed(ct)))
600 		return NF_ACCEPT;
601 
602 	if (WARN_ON_ONCE(refcount_read(&nfct->use) != 1)) {
603 		nf_reset_ct(skb);
604 		return NF_ACCEPT;
605 	}
606 
607 	WARN_ON_ONCE(skb_shared(skb));
608 
609 	/* We can't call nf_confirm here, it would create a dependency
610 	 * on nf_conntrack module.
611 	 */
612 	ct_hook = rcu_dereference(nf_ct_hook);
613 	if (!ct_hook) {
614 		skb->_nfct = 0ul;
615 		nf_conntrack_put(nfct);
616 		return NF_ACCEPT;
617 	}
618 
619 	nf_bridge_pull_encap_header(skb);
620 	ret = ct_hook->confirm(skb);
621 	switch (ret & NF_VERDICT_MASK) {
622 	case NF_STOLEN:
623 		return NF_STOLEN;
624 	default:
625 		nf_bridge_push_encap_header(skb);
626 		break;
627 	}
628 
629 	return ret;
630 }
631 #endif
632 
633 /* PF_BRIDGE/FORWARD *************************************************/
br_nf_forward_finish(struct net * net,struct sock * sk,struct sk_buff * skb)634 static int br_nf_forward_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
635 {
636 	struct nf_bridge_info *nf_bridge = nf_bridge_info_get(skb);
637 	struct net_device *in;
638 
639 	if (!IS_ARP(skb) && !is_vlan_arp(skb, net)) {
640 
641 		if (skb->protocol == htons(ETH_P_IP))
642 			nf_bridge->frag_max_size = IPCB(skb)->frag_max_size;
643 
644 		if (skb->protocol == htons(ETH_P_IPV6))
645 			nf_bridge->frag_max_size = IP6CB(skb)->frag_max_size;
646 
647 		in = nf_bridge_get_physindev(skb, net);
648 		if (!in) {
649 			kfree_skb(skb);
650 			return 0;
651 		}
652 		if (nf_bridge->pkt_otherhost) {
653 			skb->pkt_type = PACKET_OTHERHOST;
654 			nf_bridge->pkt_otherhost = false;
655 		}
656 		nf_bridge_update_protocol(skb);
657 	} else {
658 		in = *((struct net_device **)(skb->cb));
659 	}
660 	nf_bridge_push_encap_header(skb);
661 
662 	br_nf_hook_thresh(NF_BR_FORWARD, net, sk, skb, in, skb->dev,
663 			  br_forward_finish);
664 	return 0;
665 }
666 
667 
br_nf_forward_ip(struct sk_buff * skb,const struct nf_hook_state * state,u8 pf)668 static unsigned int br_nf_forward_ip(struct sk_buff *skb,
669 				     const struct nf_hook_state *state,
670 				     u8 pf)
671 {
672 	struct nf_bridge_info *nf_bridge;
673 	struct net_device *parent;
674 
675 	nf_bridge = nf_bridge_info_get(skb);
676 	if (!nf_bridge)
677 		return NF_ACCEPT;
678 
679 	/* Need exclusive nf_bridge_info since we might have multiple
680 	 * different physoutdevs. */
681 	if (!nf_bridge_unshare(skb))
682 		return NF_DROP_REASON(skb, SKB_DROP_REASON_NOMEM, 0);
683 
684 	nf_bridge = nf_bridge_info_get(skb);
685 	if (!nf_bridge)
686 		return NF_DROP_REASON(skb, SKB_DROP_REASON_NOMEM, 0);
687 
688 	parent = bridge_parent(state->out);
689 	if (!parent)
690 		return NF_DROP_REASON(skb, SKB_DROP_REASON_DEV_READY, 0);
691 
692 	nf_bridge_pull_encap_header(skb);
693 
694 	if (skb->pkt_type == PACKET_OTHERHOST) {
695 		skb->pkt_type = PACKET_HOST;
696 		nf_bridge->pkt_otherhost = true;
697 	}
698 
699 	if (pf == NFPROTO_IPV4) {
700 		if (br_validate_ipv4(state->net, skb))
701 			return NF_DROP_REASON(skb, SKB_DROP_REASON_IP_INHDR, 0);
702 		IPCB(skb)->frag_max_size = nf_bridge->frag_max_size;
703 		skb->protocol = htons(ETH_P_IP);
704 	} else if (pf == NFPROTO_IPV6) {
705 		if (br_validate_ipv6(state->net, skb))
706 			return NF_DROP_REASON(skb, SKB_DROP_REASON_IP_INHDR, 0);
707 		IP6CB(skb)->frag_max_size = nf_bridge->frag_max_size;
708 		skb->protocol = htons(ETH_P_IPV6);
709 	} else {
710 		WARN_ON_ONCE(1);
711 		return NF_DROP;
712 	}
713 
714 	nf_bridge->physoutdev = skb->dev;
715 
716 	NF_HOOK(pf, NF_INET_FORWARD, state->net, NULL, skb,
717 		brnf_get_logical_dev(skb, state->in, state->net),
718 		parent,	br_nf_forward_finish);
719 
720 	return NF_STOLEN;
721 }
722 
br_nf_forward_arp(struct sk_buff * skb,const struct nf_hook_state * state)723 static unsigned int br_nf_forward_arp(struct sk_buff *skb,
724 				      const struct nf_hook_state *state)
725 {
726 	struct net_bridge_port *p;
727 	struct net_bridge *br;
728 	struct net_device **d = (struct net_device **)(skb->cb);
729 	struct brnf_net *brnet;
730 
731 	p = br_port_get_rcu(state->out);
732 	if (p == NULL)
733 		return NF_ACCEPT;
734 	br = p->br;
735 
736 	brnet = net_generic(state->net, brnf_net_id);
737 	if (!brnet->call_arptables && !br_opt_get(br, BROPT_NF_CALL_ARPTABLES))
738 		return NF_ACCEPT;
739 
740 	if (is_vlan_arp(skb, state->net))
741 		nf_bridge_pull_encap_header(skb);
742 
743 	if (unlikely(!pskb_may_pull(skb, sizeof(struct arphdr))))
744 		return NF_DROP_REASON(skb, SKB_DROP_REASON_PKT_TOO_SMALL, 0);
745 
746 	if (arp_hdr(skb)->ar_pln != 4) {
747 		if (is_vlan_arp(skb, state->net))
748 			nf_bridge_push_encap_header(skb);
749 		return NF_ACCEPT;
750 	}
751 	*d = state->in;
752 	NF_HOOK(NFPROTO_ARP, NF_ARP_FORWARD, state->net, state->sk, skb,
753 		state->in, state->out, br_nf_forward_finish);
754 
755 	return NF_STOLEN;
756 }
757 
758 /* This is the 'purely bridged' case.  For IP, we pass the packet to
759  * netfilter with indev and outdev set to the bridge device,
760  * but we are still able to filter on the 'real' indev/outdev
761  * because of the physdev module. For ARP, indev and outdev are the
762  * bridge ports.
763  */
br_nf_forward(void * priv,struct sk_buff * skb,const struct nf_hook_state * state)764 static unsigned int br_nf_forward(void *priv,
765 				  struct sk_buff *skb,
766 				  const struct nf_hook_state *state)
767 {
768 	if (IS_IP(skb) || is_vlan_ip(skb, state->net) ||
769 	    is_pppoe_ip(skb, state->net))
770 		return br_nf_forward_ip(skb, state, NFPROTO_IPV4);
771 	if (IS_IPV6(skb) || is_vlan_ipv6(skb, state->net) ||
772 	    is_pppoe_ipv6(skb, state->net))
773 		return br_nf_forward_ip(skb, state, NFPROTO_IPV6);
774 	if (IS_ARP(skb) || is_vlan_arp(skb, state->net))
775 		return br_nf_forward_arp(skb, state);
776 
777 	return NF_ACCEPT;
778 }
779 
br_nf_push_frag_xmit(struct net * net,struct sock * sk,struct sk_buff * skb)780 static int br_nf_push_frag_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
781 {
782 	struct brnf_frag_data *data;
783 	int err;
784 
785 	data = this_cpu_ptr(&brnf_frag_data_storage);
786 	err = skb_cow_head(skb, data->size);
787 
788 	if (err) {
789 		kfree_skb(skb);
790 		return 0;
791 	}
792 
793 	if (data->vlan_proto)
794 		__vlan_hwaccel_put_tag(skb, data->vlan_proto, data->vlan_tci);
795 
796 	skb_copy_to_linear_data_offset(skb, -data->size, data->mac, data->size);
797 	__skb_push(skb, data->encap_size);
798 
799 	nf_bridge_info_free(skb);
800 	return br_dev_queue_push_xmit(net, sk, skb);
801 }
802 
803 static int
br_nf_ip_fragment(struct net * net,struct sock * sk,struct sk_buff * skb,int (* output)(struct net *,struct sock *,struct sk_buff *))804 br_nf_ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
805 		  int (*output)(struct net *, struct sock *, struct sk_buff *))
806 {
807 	unsigned int mtu = ip_skb_dst_mtu(sk, skb);
808 	struct iphdr *iph = ip_hdr(skb);
809 
810 	if (unlikely(((iph->frag_off & htons(IP_DF)) && !skb->ignore_df) ||
811 		     (IPCB(skb)->frag_max_size &&
812 		      IPCB(skb)->frag_max_size > mtu))) {
813 		IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
814 		kfree_skb(skb);
815 		return -EMSGSIZE;
816 	}
817 
818 	return ip_do_fragment(net, sk, skb, output);
819 }
820 
nf_bridge_mtu_reduction(const struct sk_buff * skb)821 static unsigned int nf_bridge_mtu_reduction(const struct sk_buff *skb)
822 {
823 	const struct nf_bridge_info *nf_bridge = nf_bridge_info_get(skb);
824 
825 	if (nf_bridge->orig_proto == BRNF_PROTO_PPPOE)
826 		return PPPOE_SES_HLEN;
827 	return 0;
828 }
829 
br_nf_dev_queue_xmit(struct net * net,struct sock * sk,struct sk_buff * skb)830 static int br_nf_dev_queue_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
831 {
832 	struct nf_bridge_info *nf_bridge = nf_bridge_info_get(skb);
833 	unsigned int mtu, mtu_reserved;
834 	int ret;
835 
836 	mtu_reserved = nf_bridge_mtu_reduction(skb);
837 	mtu = skb->dev->mtu;
838 
839 	if (nf_bridge->pkt_otherhost) {
840 		skb->pkt_type = PACKET_OTHERHOST;
841 		nf_bridge->pkt_otherhost = false;
842 	}
843 
844 	if (nf_bridge->frag_max_size && nf_bridge->frag_max_size < mtu)
845 		mtu = nf_bridge->frag_max_size;
846 
847 	nf_bridge_update_protocol(skb);
848 	nf_bridge_push_encap_header(skb);
849 
850 	if (skb_is_gso(skb) || skb->len + mtu_reserved <= mtu) {
851 		nf_bridge_info_free(skb);
852 		return br_dev_queue_push_xmit(net, sk, skb);
853 	}
854 
855 	/* Fragmentation on metadata/template dst is not supported */
856 	if (unlikely(!skb_valid_dst(skb)))
857 		goto drop;
858 
859 	/* This is wrong! We should preserve the original fragment
860 	 * boundaries by preserving frag_list rather than refragmenting.
861 	 */
862 	if (IS_ENABLED(CONFIG_NF_DEFRAG_IPV4) &&
863 	    skb->protocol == htons(ETH_P_IP)) {
864 		struct brnf_frag_data *data;
865 
866 		if (br_validate_ipv4(net, skb))
867 			goto drop;
868 
869 		IPCB(skb)->frag_max_size = nf_bridge->frag_max_size;
870 
871 		local_lock_nested_bh(&brnf_frag_data_storage.bh_lock);
872 		data = this_cpu_ptr(&brnf_frag_data_storage);
873 
874 		if (skb_vlan_tag_present(skb)) {
875 			data->vlan_tci = skb->vlan_tci;
876 			data->vlan_proto = skb->vlan_proto;
877 		} else {
878 			data->vlan_proto = 0;
879 		}
880 
881 		data->encap_size = nf_bridge_encap_header_len(skb);
882 		data->size = ETH_HLEN + data->encap_size;
883 
884 		skb_copy_from_linear_data_offset(skb, -data->size, data->mac,
885 						 data->size);
886 
887 		ret = br_nf_ip_fragment(net, sk, skb, br_nf_push_frag_xmit);
888 		local_unlock_nested_bh(&brnf_frag_data_storage.bh_lock);
889 		return ret;
890 	}
891 	if (IS_ENABLED(CONFIG_NF_DEFRAG_IPV6) &&
892 	    skb->protocol == htons(ETH_P_IPV6)) {
893 		const struct nf_ipv6_ops *v6ops = nf_get_ipv6_ops();
894 		struct brnf_frag_data *data;
895 
896 		if (br_validate_ipv6(net, skb))
897 			goto drop;
898 
899 		IP6CB(skb)->frag_max_size = nf_bridge->frag_max_size;
900 
901 		local_lock_nested_bh(&brnf_frag_data_storage.bh_lock);
902 		data = this_cpu_ptr(&brnf_frag_data_storage);
903 		data->encap_size = nf_bridge_encap_header_len(skb);
904 		data->size = ETH_HLEN + data->encap_size;
905 
906 		skb_copy_from_linear_data_offset(skb, -data->size, data->mac,
907 						 data->size);
908 
909 		if (v6ops) {
910 			ret = v6ops->fragment(net, sk, skb, br_nf_push_frag_xmit);
911 			local_unlock_nested_bh(&brnf_frag_data_storage.bh_lock);
912 			return ret;
913 		}
914 		local_unlock_nested_bh(&brnf_frag_data_storage.bh_lock);
915 
916 		kfree_skb(skb);
917 		return -EMSGSIZE;
918 	}
919 	nf_bridge_info_free(skb);
920 	return br_dev_queue_push_xmit(net, sk, skb);
921  drop:
922 	kfree_skb(skb);
923 	return 0;
924 }
925 
926 /* PF_BRIDGE/POST_ROUTING ********************************************/
br_nf_post_routing(void * priv,struct sk_buff * skb,const struct nf_hook_state * state)927 static unsigned int br_nf_post_routing(void *priv,
928 				       struct sk_buff *skb,
929 				       const struct nf_hook_state *state)
930 {
931 	struct nf_bridge_info *nf_bridge = nf_bridge_info_get(skb);
932 	struct net_device *realoutdev = bridge_parent(skb->dev);
933 	u_int8_t pf;
934 
935 	/* if nf_bridge is set, but ->physoutdev is NULL, this packet came in
936 	 * on a bridge, but was delivered locally and is now being routed:
937 	 *
938 	 * POST_ROUTING was already invoked from the ip stack.
939 	 */
940 	if (!nf_bridge || !nf_bridge->physoutdev)
941 		return NF_ACCEPT;
942 
943 	if (!realoutdev)
944 		return NF_DROP_REASON(skb, SKB_DROP_REASON_DEV_READY, 0);
945 
946 	if (IS_IP(skb) || is_vlan_ip(skb, state->net) ||
947 	    is_pppoe_ip(skb, state->net))
948 		pf = NFPROTO_IPV4;
949 	else if (IS_IPV6(skb) || is_vlan_ipv6(skb, state->net) ||
950 		 is_pppoe_ipv6(skb, state->net))
951 		pf = NFPROTO_IPV6;
952 	else
953 		return NF_ACCEPT;
954 
955 	if (skb->pkt_type == PACKET_OTHERHOST) {
956 		skb->pkt_type = PACKET_HOST;
957 		nf_bridge->pkt_otherhost = true;
958 	}
959 
960 	nf_bridge_pull_encap_header(skb);
961 	if (pf == NFPROTO_IPV4)
962 		skb->protocol = htons(ETH_P_IP);
963 	else
964 		skb->protocol = htons(ETH_P_IPV6);
965 
966 	NF_HOOK(pf, NF_INET_POST_ROUTING, state->net, state->sk, skb,
967 		NULL, realoutdev,
968 		br_nf_dev_queue_xmit);
969 
970 	return NF_STOLEN;
971 }
972 
973 /* IP/SABOTAGE *****************************************************/
974 /* Don't hand locally destined packets to PF_INET(6)/PRE_ROUTING
975  * for the second time. */
ip_sabotage_in(void * priv,struct sk_buff * skb,const struct nf_hook_state * state)976 static unsigned int ip_sabotage_in(void *priv,
977 				   struct sk_buff *skb,
978 				   const struct nf_hook_state *state)
979 {
980 	struct nf_bridge_info *nf_bridge = nf_bridge_info_get(skb);
981 
982 	if (nf_bridge) {
983 		if (nf_bridge->sabotage_in_done)
984 			return NF_ACCEPT;
985 
986 		if (!nf_bridge->in_prerouting &&
987 		    !netif_is_l3_master(skb->dev) &&
988 		    !netif_is_l3_slave(skb->dev)) {
989 			nf_bridge->sabotage_in_done = 1;
990 			state->okfn(state->net, state->sk, skb);
991 			return NF_STOLEN;
992 		}
993 	}
994 
995 	return NF_ACCEPT;
996 }
997 
998 /* This is called when br_netfilter has called into iptables/netfilter,
999  * and DNAT has taken place on a bridge-forwarded packet.
1000  *
1001  * neigh->output has created a new MAC header, with local br0 MAC
1002  * as saddr.
1003  *
1004  * This restores the original MAC saddr of the bridged packet
1005  * before invoking bridge forward logic to transmit the packet.
1006  */
br_nf_pre_routing_finish_bridge_slow(struct sk_buff * skb)1007 static void br_nf_pre_routing_finish_bridge_slow(struct sk_buff *skb)
1008 {
1009 	struct nf_bridge_info *nf_bridge = nf_bridge_info_get(skb);
1010 	struct net_device *br_indev;
1011 
1012 	br_indev = nf_bridge_get_physindev(skb, dev_net(skb->dev));
1013 	if (!br_indev) {
1014 		kfree_skb(skb);
1015 		return;
1016 	}
1017 
1018 	skb_pull(skb, ETH_HLEN);
1019 	nf_bridge->bridged_dnat = 0;
1020 
1021 	BUILD_BUG_ON(sizeof(nf_bridge->neigh_header) != (ETH_HLEN - ETH_ALEN));
1022 
1023 	skb_copy_to_linear_data_offset(skb, -(ETH_HLEN - ETH_ALEN),
1024 				       nf_bridge->neigh_header,
1025 				       ETH_HLEN - ETH_ALEN);
1026 	skb->dev = br_indev;
1027 
1028 	nf_bridge->physoutdev = NULL;
1029 	br_handle_frame_finish(dev_net(skb->dev), NULL, skb);
1030 }
1031 
br_nf_dev_xmit(struct sk_buff * skb)1032 static int br_nf_dev_xmit(struct sk_buff *skb)
1033 {
1034 	const struct nf_bridge_info *nf_bridge = nf_bridge_info_get(skb);
1035 
1036 	if (nf_bridge && nf_bridge->bridged_dnat) {
1037 		br_nf_pre_routing_finish_bridge_slow(skb);
1038 		return 1;
1039 	}
1040 	return 0;
1041 }
1042 
1043 static const struct nf_br_ops br_ops = {
1044 	.br_dev_xmit_hook =	br_nf_dev_xmit,
1045 };
1046 
1047 /* For br_nf_post_routing, we need (prio = NF_BR_PRI_LAST), because
1048  * br_dev_queue_push_xmit is called afterwards */
1049 static const struct nf_hook_ops br_nf_ops[] = {
1050 	{
1051 		.hook = br_nf_pre_routing,
1052 		.pf = NFPROTO_BRIDGE,
1053 		.hooknum = NF_BR_PRE_ROUTING,
1054 		.priority = NF_BR_PRI_BRNF,
1055 	},
1056 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
1057 	{
1058 		.hook = br_nf_local_in,
1059 		.pf = NFPROTO_BRIDGE,
1060 		.hooknum = NF_BR_LOCAL_IN,
1061 		.priority = NF_BR_PRI_LAST,
1062 	},
1063 #endif
1064 	{
1065 		.hook = br_nf_forward,
1066 		.pf = NFPROTO_BRIDGE,
1067 		.hooknum = NF_BR_FORWARD,
1068 		.priority = NF_BR_PRI_BRNF,
1069 	},
1070 	{
1071 		.hook = br_nf_post_routing,
1072 		.pf = NFPROTO_BRIDGE,
1073 		.hooknum = NF_BR_POST_ROUTING,
1074 		.priority = NF_BR_PRI_LAST,
1075 	},
1076 	{
1077 		.hook = ip_sabotage_in,
1078 		.pf = NFPROTO_IPV4,
1079 		.hooknum = NF_INET_PRE_ROUTING,
1080 		.priority = NF_IP_PRI_FIRST,
1081 	},
1082 	{
1083 		.hook = ip_sabotage_in,
1084 		.pf = NFPROTO_IPV6,
1085 		.hooknum = NF_INET_PRE_ROUTING,
1086 		.priority = NF_IP6_PRI_FIRST,
1087 	},
1088 };
1089 
brnf_device_event(struct notifier_block * unused,unsigned long event,void * ptr)1090 static int brnf_device_event(struct notifier_block *unused, unsigned long event,
1091 			     void *ptr)
1092 {
1093 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1094 	struct brnf_net *brnet;
1095 	struct net *net;
1096 	int ret;
1097 
1098 	if (event != NETDEV_REGISTER || !netif_is_bridge_master(dev))
1099 		return NOTIFY_DONE;
1100 
1101 	ASSERT_RTNL();
1102 
1103 	net = dev_net(dev);
1104 	brnet = net_generic(net, brnf_net_id);
1105 	if (brnet->enabled)
1106 		return NOTIFY_OK;
1107 
1108 	ret = nf_register_net_hooks(net, br_nf_ops, ARRAY_SIZE(br_nf_ops));
1109 	if (ret)
1110 		return NOTIFY_BAD;
1111 
1112 	brnet->enabled = true;
1113 	return NOTIFY_OK;
1114 }
1115 
1116 static struct notifier_block brnf_notifier __read_mostly = {
1117 	.notifier_call = brnf_device_event,
1118 };
1119 
1120 /* recursively invokes nf_hook_slow (again), skipping already-called
1121  * hooks (< NF_BR_PRI_BRNF).
1122  *
1123  * Called with rcu read lock held.
1124  */
br_nf_hook_thresh(unsigned int hook,struct net * net,struct sock * sk,struct sk_buff * skb,struct net_device * indev,struct net_device * outdev,int (* okfn)(struct net *,struct sock *,struct sk_buff *))1125 int br_nf_hook_thresh(unsigned int hook, struct net *net,
1126 		      struct sock *sk, struct sk_buff *skb,
1127 		      struct net_device *indev,
1128 		      struct net_device *outdev,
1129 		      int (*okfn)(struct net *, struct sock *,
1130 				  struct sk_buff *))
1131 {
1132 	const struct nf_hook_entries *e;
1133 	struct nf_hook_state state;
1134 	struct nf_hook_ops **ops;
1135 	unsigned int i;
1136 	int ret;
1137 
1138 	e = rcu_dereference(net->nf.hooks_bridge[hook]);
1139 	if (!e)
1140 		return okfn(net, sk, skb);
1141 
1142 	ops = nf_hook_entries_get_hook_ops(e);
1143 	for (i = 0; i < e->num_hook_entries; i++) {
1144 		/* These hooks have already been called */
1145 		if (ops[i]->priority < NF_BR_PRI_BRNF)
1146 			continue;
1147 
1148 		/* These hooks have not been called yet, run them. */
1149 		if (ops[i]->priority > NF_BR_PRI_BRNF)
1150 			break;
1151 
1152 		/* take a closer look at NF_BR_PRI_BRNF. */
1153 		if (ops[i]->hook == br_nf_pre_routing) {
1154 			/* This hook diverted the skb to this function,
1155 			 * hooks after this have not been run yet.
1156 			 */
1157 			i++;
1158 			break;
1159 		}
1160 	}
1161 
1162 	nf_hook_state_init(&state, hook, NFPROTO_BRIDGE, indev, outdev,
1163 			   sk, net, okfn);
1164 
1165 	ret = nf_hook_slow(skb, &state, e, i);
1166 	if (ret == 1)
1167 		ret = okfn(net, sk, skb);
1168 
1169 	return ret;
1170 }
1171 
1172 #ifdef CONFIG_SYSCTL
1173 static
brnf_sysctl_call_tables(const struct ctl_table * ctl,int write,void * buffer,size_t * lenp,loff_t * ppos)1174 int brnf_sysctl_call_tables(const struct ctl_table *ctl, int write,
1175 			    void *buffer, size_t *lenp, loff_t *ppos)
1176 {
1177 	int ret;
1178 
1179 	ret = proc_dointvec(ctl, write, buffer, lenp, ppos);
1180 
1181 	if (write && *(int *)(ctl->data))
1182 		*(int *)(ctl->data) = 1;
1183 	return ret;
1184 }
1185 
1186 static struct ctl_table brnf_table[] = {
1187 	{
1188 		.procname	= "bridge-nf-call-arptables",
1189 		.maxlen		= sizeof(int),
1190 		.mode		= 0644,
1191 		.proc_handler	= brnf_sysctl_call_tables,
1192 	},
1193 	{
1194 		.procname	= "bridge-nf-call-iptables",
1195 		.maxlen		= sizeof(int),
1196 		.mode		= 0644,
1197 		.proc_handler	= brnf_sysctl_call_tables,
1198 	},
1199 	{
1200 		.procname	= "bridge-nf-call-ip6tables",
1201 		.maxlen		= sizeof(int),
1202 		.mode		= 0644,
1203 		.proc_handler	= brnf_sysctl_call_tables,
1204 	},
1205 	{
1206 		.procname	= "bridge-nf-filter-vlan-tagged",
1207 		.maxlen		= sizeof(int),
1208 		.mode		= 0644,
1209 		.proc_handler	= brnf_sysctl_call_tables,
1210 	},
1211 	{
1212 		.procname	= "bridge-nf-filter-pppoe-tagged",
1213 		.maxlen		= sizeof(int),
1214 		.mode		= 0644,
1215 		.proc_handler	= brnf_sysctl_call_tables,
1216 	},
1217 	{
1218 		.procname	= "bridge-nf-pass-vlan-input-dev",
1219 		.maxlen		= sizeof(int),
1220 		.mode		= 0644,
1221 		.proc_handler	= brnf_sysctl_call_tables,
1222 	},
1223 };
1224 
br_netfilter_sysctl_default(struct brnf_net * brnf)1225 static inline void br_netfilter_sysctl_default(struct brnf_net *brnf)
1226 {
1227 	brnf->call_iptables = 1;
1228 	brnf->call_ip6tables = 1;
1229 	brnf->call_arptables = 1;
1230 	brnf->filter_vlan_tagged = 0;
1231 	brnf->filter_pppoe_tagged = 0;
1232 	brnf->pass_vlan_indev = 0;
1233 }
1234 
br_netfilter_sysctl_init_net(struct net * net)1235 static int br_netfilter_sysctl_init_net(struct net *net)
1236 {
1237 	struct ctl_table *table = brnf_table;
1238 	struct brnf_net *brnet;
1239 
1240 	if (!net_eq(net, &init_net)) {
1241 		table = kmemdup(table, sizeof(brnf_table), GFP_KERNEL);
1242 		if (!table)
1243 			return -ENOMEM;
1244 	}
1245 
1246 	brnet = net_generic(net, brnf_net_id);
1247 	table[0].data = &brnet->call_arptables;
1248 	table[1].data = &brnet->call_iptables;
1249 	table[2].data = &brnet->call_ip6tables;
1250 	table[3].data = &brnet->filter_vlan_tagged;
1251 	table[4].data = &brnet->filter_pppoe_tagged;
1252 	table[5].data = &brnet->pass_vlan_indev;
1253 
1254 	br_netfilter_sysctl_default(brnet);
1255 
1256 	brnet->ctl_hdr = register_net_sysctl_sz(net, "net/bridge", table,
1257 						ARRAY_SIZE(brnf_table));
1258 	if (!brnet->ctl_hdr) {
1259 		if (!net_eq(net, &init_net))
1260 			kfree(table);
1261 
1262 		return -ENOMEM;
1263 	}
1264 
1265 	return 0;
1266 }
1267 
br_netfilter_sysctl_exit_net(struct net * net,struct brnf_net * brnet)1268 static void br_netfilter_sysctl_exit_net(struct net *net,
1269 					 struct brnf_net *brnet)
1270 {
1271 	const struct ctl_table *table = brnet->ctl_hdr->ctl_table_arg;
1272 
1273 	unregister_net_sysctl_table(brnet->ctl_hdr);
1274 	if (!net_eq(net, &init_net))
1275 		kfree(table);
1276 }
1277 
brnf_init_net(struct net * net)1278 static int __net_init brnf_init_net(struct net *net)
1279 {
1280 	return br_netfilter_sysctl_init_net(net);
1281 }
1282 #endif
1283 
brnf_exit_net(struct net * net)1284 static void __net_exit brnf_exit_net(struct net *net)
1285 {
1286 	struct brnf_net *brnet;
1287 
1288 	brnet = net_generic(net, brnf_net_id);
1289 	if (brnet->enabled) {
1290 		nf_unregister_net_hooks(net, br_nf_ops, ARRAY_SIZE(br_nf_ops));
1291 		brnet->enabled = false;
1292 	}
1293 
1294 #ifdef CONFIG_SYSCTL
1295 	br_netfilter_sysctl_exit_net(net, brnet);
1296 #endif
1297 }
1298 
1299 static struct pernet_operations brnf_net_ops __read_mostly = {
1300 #ifdef CONFIG_SYSCTL
1301 	.init = brnf_init_net,
1302 #endif
1303 	.exit = brnf_exit_net,
1304 	.id   = &brnf_net_id,
1305 	.size = sizeof(struct brnf_net),
1306 };
1307 
br_netfilter_init(void)1308 static int __init br_netfilter_init(void)
1309 {
1310 	int ret;
1311 
1312 	ret = register_pernet_subsys(&brnf_net_ops);
1313 	if (ret < 0)
1314 		return ret;
1315 
1316 	ret = register_netdevice_notifier(&brnf_notifier);
1317 	if (ret < 0) {
1318 		unregister_pernet_subsys(&brnf_net_ops);
1319 		return ret;
1320 	}
1321 
1322 	RCU_INIT_POINTER(nf_br_ops, &br_ops);
1323 	printk(KERN_NOTICE "Bridge firewalling registered\n");
1324 	return 0;
1325 }
1326 
br_netfilter_fini(void)1327 static void __exit br_netfilter_fini(void)
1328 {
1329 	RCU_INIT_POINTER(nf_br_ops, NULL);
1330 	unregister_netdevice_notifier(&brnf_notifier);
1331 	unregister_pernet_subsys(&brnf_net_ops);
1332 }
1333 
1334 module_init(br_netfilter_init);
1335 module_exit(br_netfilter_fini);
1336 
1337 MODULE_LICENSE("GPL");
1338 MODULE_AUTHOR("Lennert Buytenhek <buytenh@gnu.org>");
1339 MODULE_AUTHOR("Bart De Schuymer <bdschuym@pandora.be>");
1340 MODULE_DESCRIPTION("Linux ethernet netfilter firewall bridge");
1341