1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Data Access Monitor
4 *
5 * Author: SeongJae Park <sj@kernel.org>
6 */
7
8 #define pr_fmt(fmt) "damon: " fmt
9
10 #include <linux/damon.h>
11 #include <linux/delay.h>
12 #include <linux/kthread.h>
13 #include <linux/memcontrol.h>
14 #include <linux/mm.h>
15 #include <linux/psi.h>
16 #include <linux/slab.h>
17 #include <linux/string.h>
18 #include <linux/string_choices.h>
19
20 #define CREATE_TRACE_POINTS
21 #include <trace/events/damon.h>
22
23 static DEFINE_MUTEX(damon_lock);
24 static int nr_running_ctxs;
25 static bool running_exclusive_ctxs;
26
27 static DEFINE_MUTEX(damon_ops_lock);
28 static struct damon_operations damon_registered_ops[NR_DAMON_OPS];
29
30 static struct kmem_cache *damon_region_cache __ro_after_init;
31
32 /* Should be called under damon_ops_lock with id smaller than NR_DAMON_OPS */
__damon_is_registered_ops(enum damon_ops_id id)33 static bool __damon_is_registered_ops(enum damon_ops_id id)
34 {
35 struct damon_operations empty_ops = {};
36
37 if (!memcmp(&empty_ops, &damon_registered_ops[id], sizeof(empty_ops)))
38 return false;
39 return true;
40 }
41
42 /**
43 * damon_is_registered_ops() - Check if a given damon_operations is registered.
44 * @id: Id of the damon_operations to check if registered.
45 *
46 * Return: true if the ops is set, false otherwise.
47 */
damon_is_registered_ops(enum damon_ops_id id)48 bool damon_is_registered_ops(enum damon_ops_id id)
49 {
50 bool registered;
51
52 if (id >= NR_DAMON_OPS)
53 return false;
54 mutex_lock(&damon_ops_lock);
55 registered = __damon_is_registered_ops(id);
56 mutex_unlock(&damon_ops_lock);
57 return registered;
58 }
59
60 /**
61 * damon_register_ops() - Register a monitoring operations set to DAMON.
62 * @ops: monitoring operations set to register.
63 *
64 * This function registers a monitoring operations set of valid &struct
65 * damon_operations->id so that others can find and use them later.
66 *
67 * Return: 0 on success, negative error code otherwise.
68 */
damon_register_ops(struct damon_operations * ops)69 int damon_register_ops(struct damon_operations *ops)
70 {
71 int err = 0;
72
73 if (ops->id >= NR_DAMON_OPS)
74 return -EINVAL;
75
76 mutex_lock(&damon_ops_lock);
77 /* Fail for already registered ops */
78 if (__damon_is_registered_ops(ops->id))
79 err = -EINVAL;
80 else
81 damon_registered_ops[ops->id] = *ops;
82 mutex_unlock(&damon_ops_lock);
83 return err;
84 }
85
86 /**
87 * damon_select_ops() - Select a monitoring operations to use with the context.
88 * @ctx: monitoring context to use the operations.
89 * @id: id of the registered monitoring operations to select.
90 *
91 * This function finds registered monitoring operations set of @id and make
92 * @ctx to use it.
93 *
94 * Return: 0 on success, negative error code otherwise.
95 */
damon_select_ops(struct damon_ctx * ctx,enum damon_ops_id id)96 int damon_select_ops(struct damon_ctx *ctx, enum damon_ops_id id)
97 {
98 int err = 0;
99
100 if (id >= NR_DAMON_OPS)
101 return -EINVAL;
102
103 mutex_lock(&damon_ops_lock);
104 if (!__damon_is_registered_ops(id))
105 err = -EINVAL;
106 else
107 ctx->ops = damon_registered_ops[id];
108 mutex_unlock(&damon_ops_lock);
109 return err;
110 }
111
112 /*
113 * Construct a damon_region struct
114 *
115 * Returns the pointer to the new struct if success, or NULL otherwise
116 */
damon_new_region(unsigned long start,unsigned long end)117 struct damon_region *damon_new_region(unsigned long start, unsigned long end)
118 {
119 struct damon_region *region;
120
121 region = kmem_cache_alloc(damon_region_cache, GFP_KERNEL);
122 if (!region)
123 return NULL;
124
125 region->ar.start = start;
126 region->ar.end = end;
127 region->nr_accesses = 0;
128 region->nr_accesses_bp = 0;
129 INIT_LIST_HEAD(®ion->list);
130
131 region->age = 0;
132 region->last_nr_accesses = 0;
133
134 return region;
135 }
136
damon_add_region(struct damon_region * r,struct damon_target * t)137 void damon_add_region(struct damon_region *r, struct damon_target *t)
138 {
139 list_add_tail(&r->list, &t->regions_list);
140 t->nr_regions++;
141 }
142
damon_del_region(struct damon_region * r,struct damon_target * t)143 static void damon_del_region(struct damon_region *r, struct damon_target *t)
144 {
145 list_del(&r->list);
146 t->nr_regions--;
147 }
148
damon_free_region(struct damon_region * r)149 static void damon_free_region(struct damon_region *r)
150 {
151 kmem_cache_free(damon_region_cache, r);
152 }
153
damon_destroy_region(struct damon_region * r,struct damon_target * t)154 void damon_destroy_region(struct damon_region *r, struct damon_target *t)
155 {
156 damon_del_region(r, t);
157 damon_free_region(r);
158 }
159
160 /*
161 * Check whether a region is intersecting an address range
162 *
163 * Returns true if it is.
164 */
damon_intersect(struct damon_region * r,struct damon_addr_range * re)165 static bool damon_intersect(struct damon_region *r,
166 struct damon_addr_range *re)
167 {
168 return !(r->ar.end <= re->start || re->end <= r->ar.start);
169 }
170
171 /*
172 * Fill holes in regions with new regions.
173 */
damon_fill_regions_holes(struct damon_region * first,struct damon_region * last,struct damon_target * t)174 static int damon_fill_regions_holes(struct damon_region *first,
175 struct damon_region *last, struct damon_target *t)
176 {
177 struct damon_region *r = first;
178
179 damon_for_each_region_from(r, t) {
180 struct damon_region *next, *newr;
181
182 if (r == last)
183 break;
184 next = damon_next_region(r);
185 if (r->ar.end != next->ar.start) {
186 newr = damon_new_region(r->ar.end, next->ar.start);
187 if (!newr)
188 return -ENOMEM;
189 damon_insert_region(newr, r, next, t);
190 }
191 }
192 return 0;
193 }
194
195 /*
196 * damon_set_regions() - Set regions of a target for given address ranges.
197 * @t: the given target.
198 * @ranges: array of new monitoring target ranges.
199 * @nr_ranges: length of @ranges.
200 * @min_sz_region: minimum region size.
201 *
202 * This function adds new regions to, or modify existing regions of a
203 * monitoring target to fit in specific ranges.
204 *
205 * Return: 0 if success, or negative error code otherwise.
206 */
damon_set_regions(struct damon_target * t,struct damon_addr_range * ranges,unsigned int nr_ranges,unsigned long min_sz_region)207 int damon_set_regions(struct damon_target *t, struct damon_addr_range *ranges,
208 unsigned int nr_ranges, unsigned long min_sz_region)
209 {
210 struct damon_region *r, *next;
211 unsigned int i;
212 int err;
213
214 /* Remove regions which are not in the new ranges */
215 damon_for_each_region_safe(r, next, t) {
216 for (i = 0; i < nr_ranges; i++) {
217 if (damon_intersect(r, &ranges[i]))
218 break;
219 }
220 if (i == nr_ranges)
221 damon_destroy_region(r, t);
222 }
223
224 r = damon_first_region(t);
225 /* Add new regions or resize existing regions to fit in the ranges */
226 for (i = 0; i < nr_ranges; i++) {
227 struct damon_region *first = NULL, *last, *newr;
228 struct damon_addr_range *range;
229
230 range = &ranges[i];
231 /* Get the first/last regions intersecting with the range */
232 damon_for_each_region_from(r, t) {
233 if (damon_intersect(r, range)) {
234 if (!first)
235 first = r;
236 last = r;
237 }
238 if (r->ar.start >= range->end)
239 break;
240 }
241 if (!first) {
242 /* no region intersects with this range */
243 newr = damon_new_region(
244 ALIGN_DOWN(range->start,
245 min_sz_region),
246 ALIGN(range->end, min_sz_region));
247 if (!newr)
248 return -ENOMEM;
249 damon_insert_region(newr, damon_prev_region(r), r, t);
250 } else {
251 /* resize intersecting regions to fit in this range */
252 first->ar.start = ALIGN_DOWN(range->start,
253 min_sz_region);
254 last->ar.end = ALIGN(range->end, min_sz_region);
255
256 /* fill possible holes in the range */
257 err = damon_fill_regions_holes(first, last, t);
258 if (err)
259 return err;
260 }
261 }
262 return 0;
263 }
264
damos_new_filter(enum damos_filter_type type,bool matching,bool allow)265 struct damos_filter *damos_new_filter(enum damos_filter_type type,
266 bool matching, bool allow)
267 {
268 struct damos_filter *filter;
269
270 filter = kmalloc(sizeof(*filter), GFP_KERNEL);
271 if (!filter)
272 return NULL;
273 filter->type = type;
274 filter->matching = matching;
275 filter->allow = allow;
276 INIT_LIST_HEAD(&filter->list);
277 return filter;
278 }
279
280 /**
281 * damos_filter_for_ops() - Return if the filter is ops-hndled one.
282 * @type: type of the filter.
283 *
284 * Return: true if the filter of @type needs to be handled by ops layer, false
285 * otherwise.
286 */
damos_filter_for_ops(enum damos_filter_type type)287 bool damos_filter_for_ops(enum damos_filter_type type)
288 {
289 switch (type) {
290 case DAMOS_FILTER_TYPE_ADDR:
291 case DAMOS_FILTER_TYPE_TARGET:
292 return false;
293 default:
294 break;
295 }
296 return true;
297 }
298
damos_add_filter(struct damos * s,struct damos_filter * f)299 void damos_add_filter(struct damos *s, struct damos_filter *f)
300 {
301 if (damos_filter_for_ops(f->type))
302 list_add_tail(&f->list, &s->ops_filters);
303 else
304 list_add_tail(&f->list, &s->core_filters);
305 }
306
damos_del_filter(struct damos_filter * f)307 static void damos_del_filter(struct damos_filter *f)
308 {
309 list_del(&f->list);
310 }
311
damos_free_filter(struct damos_filter * f)312 static void damos_free_filter(struct damos_filter *f)
313 {
314 kfree(f);
315 }
316
damos_destroy_filter(struct damos_filter * f)317 void damos_destroy_filter(struct damos_filter *f)
318 {
319 damos_del_filter(f);
320 damos_free_filter(f);
321 }
322
damos_new_quota_goal(enum damos_quota_goal_metric metric,unsigned long target_value)323 struct damos_quota_goal *damos_new_quota_goal(
324 enum damos_quota_goal_metric metric,
325 unsigned long target_value)
326 {
327 struct damos_quota_goal *goal;
328
329 goal = kmalloc(sizeof(*goal), GFP_KERNEL);
330 if (!goal)
331 return NULL;
332 goal->metric = metric;
333 goal->target_value = target_value;
334 INIT_LIST_HEAD(&goal->list);
335 return goal;
336 }
337
damos_add_quota_goal(struct damos_quota * q,struct damos_quota_goal * g)338 void damos_add_quota_goal(struct damos_quota *q, struct damos_quota_goal *g)
339 {
340 list_add_tail(&g->list, &q->goals);
341 }
342
damos_del_quota_goal(struct damos_quota_goal * g)343 static void damos_del_quota_goal(struct damos_quota_goal *g)
344 {
345 list_del(&g->list);
346 }
347
damos_free_quota_goal(struct damos_quota_goal * g)348 static void damos_free_quota_goal(struct damos_quota_goal *g)
349 {
350 kfree(g);
351 }
352
damos_destroy_quota_goal(struct damos_quota_goal * g)353 void damos_destroy_quota_goal(struct damos_quota_goal *g)
354 {
355 damos_del_quota_goal(g);
356 damos_free_quota_goal(g);
357 }
358
359 /* initialize fields of @quota that normally API users wouldn't set */
damos_quota_init(struct damos_quota * quota)360 static struct damos_quota *damos_quota_init(struct damos_quota *quota)
361 {
362 quota->esz = 0;
363 quota->total_charged_sz = 0;
364 quota->total_charged_ns = 0;
365 quota->charged_sz = 0;
366 quota->charged_from = 0;
367 quota->charge_target_from = NULL;
368 quota->charge_addr_from = 0;
369 quota->esz_bp = 0;
370 return quota;
371 }
372
damon_new_scheme(struct damos_access_pattern * pattern,enum damos_action action,unsigned long apply_interval_us,struct damos_quota * quota,struct damos_watermarks * wmarks,int target_nid)373 struct damos *damon_new_scheme(struct damos_access_pattern *pattern,
374 enum damos_action action,
375 unsigned long apply_interval_us,
376 struct damos_quota *quota,
377 struct damos_watermarks *wmarks,
378 int target_nid)
379 {
380 struct damos *scheme;
381
382 scheme = kmalloc(sizeof(*scheme), GFP_KERNEL);
383 if (!scheme)
384 return NULL;
385 scheme->pattern = *pattern;
386 scheme->action = action;
387 scheme->apply_interval_us = apply_interval_us;
388 /*
389 * next_apply_sis will be set when kdamond starts. While kdamond is
390 * running, it will also updated when it is added to the DAMON context,
391 * or damon_attrs are updated.
392 */
393 scheme->next_apply_sis = 0;
394 scheme->walk_completed = false;
395 INIT_LIST_HEAD(&scheme->core_filters);
396 INIT_LIST_HEAD(&scheme->ops_filters);
397 scheme->stat = (struct damos_stat){};
398 INIT_LIST_HEAD(&scheme->list);
399
400 scheme->quota = *(damos_quota_init(quota));
401 /* quota.goals should be separately set by caller */
402 INIT_LIST_HEAD(&scheme->quota.goals);
403
404 scheme->wmarks = *wmarks;
405 scheme->wmarks.activated = true;
406
407 scheme->migrate_dests = (struct damos_migrate_dests){};
408 scheme->target_nid = target_nid;
409
410 return scheme;
411 }
412
damos_set_next_apply_sis(struct damos * s,struct damon_ctx * ctx)413 static void damos_set_next_apply_sis(struct damos *s, struct damon_ctx *ctx)
414 {
415 unsigned long sample_interval = ctx->attrs.sample_interval ?
416 ctx->attrs.sample_interval : 1;
417 unsigned long apply_interval = s->apply_interval_us ?
418 s->apply_interval_us : ctx->attrs.aggr_interval;
419
420 s->next_apply_sis = ctx->passed_sample_intervals +
421 apply_interval / sample_interval;
422 }
423
damon_add_scheme(struct damon_ctx * ctx,struct damos * s)424 void damon_add_scheme(struct damon_ctx *ctx, struct damos *s)
425 {
426 list_add_tail(&s->list, &ctx->schemes);
427 damos_set_next_apply_sis(s, ctx);
428 }
429
damon_del_scheme(struct damos * s)430 static void damon_del_scheme(struct damos *s)
431 {
432 list_del(&s->list);
433 }
434
damon_free_scheme(struct damos * s)435 static void damon_free_scheme(struct damos *s)
436 {
437 kfree(s);
438 }
439
damon_destroy_scheme(struct damos * s)440 void damon_destroy_scheme(struct damos *s)
441 {
442 struct damos_quota_goal *g, *g_next;
443 struct damos_filter *f, *next;
444
445 damos_for_each_quota_goal_safe(g, g_next, &s->quota)
446 damos_destroy_quota_goal(g);
447
448 damos_for_each_core_filter_safe(f, next, s)
449 damos_destroy_filter(f);
450
451 damos_for_each_ops_filter_safe(f, next, s)
452 damos_destroy_filter(f);
453
454 kfree(s->migrate_dests.node_id_arr);
455 kfree(s->migrate_dests.weight_arr);
456 damon_del_scheme(s);
457 damon_free_scheme(s);
458 }
459
460 /*
461 * Construct a damon_target struct
462 *
463 * Returns the pointer to the new struct if success, or NULL otherwise
464 */
damon_new_target(void)465 struct damon_target *damon_new_target(void)
466 {
467 struct damon_target *t;
468
469 t = kmalloc(sizeof(*t), GFP_KERNEL);
470 if (!t)
471 return NULL;
472
473 t->pid = NULL;
474 t->nr_regions = 0;
475 INIT_LIST_HEAD(&t->regions_list);
476 INIT_LIST_HEAD(&t->list);
477 t->obsolete = false;
478
479 return t;
480 }
481
damon_add_target(struct damon_ctx * ctx,struct damon_target * t)482 void damon_add_target(struct damon_ctx *ctx, struct damon_target *t)
483 {
484 list_add_tail(&t->list, &ctx->adaptive_targets);
485 }
486
damon_targets_empty(struct damon_ctx * ctx)487 bool damon_targets_empty(struct damon_ctx *ctx)
488 {
489 return list_empty(&ctx->adaptive_targets);
490 }
491
damon_del_target(struct damon_target * t)492 static void damon_del_target(struct damon_target *t)
493 {
494 list_del(&t->list);
495 }
496
damon_free_target(struct damon_target * t)497 void damon_free_target(struct damon_target *t)
498 {
499 struct damon_region *r, *next;
500
501 damon_for_each_region_safe(r, next, t)
502 damon_free_region(r);
503 kfree(t);
504 }
505
damon_destroy_target(struct damon_target * t,struct damon_ctx * ctx)506 void damon_destroy_target(struct damon_target *t, struct damon_ctx *ctx)
507 {
508
509 if (ctx && ctx->ops.cleanup_target)
510 ctx->ops.cleanup_target(t);
511
512 damon_del_target(t);
513 damon_free_target(t);
514 }
515
damon_nr_regions(struct damon_target * t)516 unsigned int damon_nr_regions(struct damon_target *t)
517 {
518 return t->nr_regions;
519 }
520
damon_new_ctx(void)521 struct damon_ctx *damon_new_ctx(void)
522 {
523 struct damon_ctx *ctx;
524
525 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
526 if (!ctx)
527 return NULL;
528
529 init_completion(&ctx->kdamond_started);
530
531 ctx->attrs.sample_interval = 5 * 1000;
532 ctx->attrs.aggr_interval = 100 * 1000;
533 ctx->attrs.ops_update_interval = 60 * 1000 * 1000;
534
535 ctx->passed_sample_intervals = 0;
536 /* These will be set from kdamond_init_ctx() */
537 ctx->next_aggregation_sis = 0;
538 ctx->next_ops_update_sis = 0;
539
540 mutex_init(&ctx->kdamond_lock);
541 INIT_LIST_HEAD(&ctx->call_controls);
542 mutex_init(&ctx->call_controls_lock);
543 mutex_init(&ctx->walk_control_lock);
544
545 ctx->attrs.min_nr_regions = 10;
546 ctx->attrs.max_nr_regions = 1000;
547
548 ctx->addr_unit = 1;
549 ctx->min_sz_region = DAMON_MIN_REGION;
550
551 INIT_LIST_HEAD(&ctx->adaptive_targets);
552 INIT_LIST_HEAD(&ctx->schemes);
553
554 return ctx;
555 }
556
damon_destroy_targets(struct damon_ctx * ctx)557 static void damon_destroy_targets(struct damon_ctx *ctx)
558 {
559 struct damon_target *t, *next_t;
560
561 damon_for_each_target_safe(t, next_t, ctx)
562 damon_destroy_target(t, ctx);
563 }
564
damon_destroy_ctx(struct damon_ctx * ctx)565 void damon_destroy_ctx(struct damon_ctx *ctx)
566 {
567 struct damos *s, *next_s;
568
569 damon_destroy_targets(ctx);
570
571 damon_for_each_scheme_safe(s, next_s, ctx)
572 damon_destroy_scheme(s);
573
574 kfree(ctx);
575 }
576
damon_attrs_equals(const struct damon_attrs * attrs1,const struct damon_attrs * attrs2)577 static bool damon_attrs_equals(const struct damon_attrs *attrs1,
578 const struct damon_attrs *attrs2)
579 {
580 const struct damon_intervals_goal *ig1 = &attrs1->intervals_goal;
581 const struct damon_intervals_goal *ig2 = &attrs2->intervals_goal;
582
583 return attrs1->sample_interval == attrs2->sample_interval &&
584 attrs1->aggr_interval == attrs2->aggr_interval &&
585 attrs1->ops_update_interval == attrs2->ops_update_interval &&
586 attrs1->min_nr_regions == attrs2->min_nr_regions &&
587 attrs1->max_nr_regions == attrs2->max_nr_regions &&
588 ig1->access_bp == ig2->access_bp &&
589 ig1->aggrs == ig2->aggrs &&
590 ig1->min_sample_us == ig2->min_sample_us &&
591 ig1->max_sample_us == ig2->max_sample_us;
592 }
593
damon_age_for_new_attrs(unsigned int age,struct damon_attrs * old_attrs,struct damon_attrs * new_attrs)594 static unsigned int damon_age_for_new_attrs(unsigned int age,
595 struct damon_attrs *old_attrs, struct damon_attrs *new_attrs)
596 {
597 return age * old_attrs->aggr_interval / new_attrs->aggr_interval;
598 }
599
600 /* convert access ratio in bp (per 10,000) to nr_accesses */
damon_accesses_bp_to_nr_accesses(unsigned int accesses_bp,struct damon_attrs * attrs)601 static unsigned int damon_accesses_bp_to_nr_accesses(
602 unsigned int accesses_bp, struct damon_attrs *attrs)
603 {
604 return accesses_bp * damon_max_nr_accesses(attrs) / 10000;
605 }
606
607 /*
608 * Convert nr_accesses to access ratio in bp (per 10,000).
609 *
610 * Callers should ensure attrs.aggr_interval is not zero, like
611 * damon_update_monitoring_results() does . Otherwise, divide-by-zero would
612 * happen.
613 */
damon_nr_accesses_to_accesses_bp(unsigned int nr_accesses,struct damon_attrs * attrs)614 static unsigned int damon_nr_accesses_to_accesses_bp(
615 unsigned int nr_accesses, struct damon_attrs *attrs)
616 {
617 return nr_accesses * 10000 / damon_max_nr_accesses(attrs);
618 }
619
damon_nr_accesses_for_new_attrs(unsigned int nr_accesses,struct damon_attrs * old_attrs,struct damon_attrs * new_attrs)620 static unsigned int damon_nr_accesses_for_new_attrs(unsigned int nr_accesses,
621 struct damon_attrs *old_attrs, struct damon_attrs *new_attrs)
622 {
623 return damon_accesses_bp_to_nr_accesses(
624 damon_nr_accesses_to_accesses_bp(
625 nr_accesses, old_attrs),
626 new_attrs);
627 }
628
damon_update_monitoring_result(struct damon_region * r,struct damon_attrs * old_attrs,struct damon_attrs * new_attrs,bool aggregating)629 static void damon_update_monitoring_result(struct damon_region *r,
630 struct damon_attrs *old_attrs, struct damon_attrs *new_attrs,
631 bool aggregating)
632 {
633 if (!aggregating) {
634 r->nr_accesses = damon_nr_accesses_for_new_attrs(
635 r->nr_accesses, old_attrs, new_attrs);
636 r->nr_accesses_bp = r->nr_accesses * 10000;
637 } else {
638 /*
639 * if this is called in the middle of the aggregation, reset
640 * the aggregations we made so far for this aggregation
641 * interval. In other words, make the status like
642 * kdamond_reset_aggregated() is called.
643 */
644 r->last_nr_accesses = damon_nr_accesses_for_new_attrs(
645 r->last_nr_accesses, old_attrs, new_attrs);
646 r->nr_accesses_bp = r->last_nr_accesses * 10000;
647 r->nr_accesses = 0;
648 }
649 r->age = damon_age_for_new_attrs(r->age, old_attrs, new_attrs);
650 }
651
652 /*
653 * region->nr_accesses is the number of sampling intervals in the last
654 * aggregation interval that access to the region has found, and region->age is
655 * the number of aggregation intervals that its access pattern has maintained.
656 * For the reason, the real meaning of the two fields depend on current
657 * sampling interval and aggregation interval. This function updates
658 * ->nr_accesses and ->age of given damon_ctx's regions for new damon_attrs.
659 */
damon_update_monitoring_results(struct damon_ctx * ctx,struct damon_attrs * new_attrs,bool aggregating)660 static void damon_update_monitoring_results(struct damon_ctx *ctx,
661 struct damon_attrs *new_attrs, bool aggregating)
662 {
663 struct damon_attrs *old_attrs = &ctx->attrs;
664 struct damon_target *t;
665 struct damon_region *r;
666
667 /* if any interval is zero, simply forgive conversion */
668 if (!old_attrs->sample_interval || !old_attrs->aggr_interval ||
669 !new_attrs->sample_interval ||
670 !new_attrs->aggr_interval)
671 return;
672
673 damon_for_each_target(t, ctx)
674 damon_for_each_region(r, t)
675 damon_update_monitoring_result(
676 r, old_attrs, new_attrs, aggregating);
677 }
678
679 /*
680 * damon_valid_intervals_goal() - return if the intervals goal of @attrs is
681 * valid.
682 */
damon_valid_intervals_goal(struct damon_attrs * attrs)683 static bool damon_valid_intervals_goal(struct damon_attrs *attrs)
684 {
685 struct damon_intervals_goal *goal = &attrs->intervals_goal;
686
687 /* tuning is disabled */
688 if (!goal->aggrs)
689 return true;
690 if (goal->min_sample_us > goal->max_sample_us)
691 return false;
692 if (attrs->sample_interval < goal->min_sample_us ||
693 goal->max_sample_us < attrs->sample_interval)
694 return false;
695 return true;
696 }
697
698 /**
699 * damon_set_attrs() - Set attributes for the monitoring.
700 * @ctx: monitoring context
701 * @attrs: monitoring attributes
702 *
703 * This function should be called while the kdamond is not running, an access
704 * check results aggregation is not ongoing (e.g., from damon_call().
705 *
706 * Every time interval is in micro-seconds.
707 *
708 * Return: 0 on success, negative error code otherwise.
709 */
damon_set_attrs(struct damon_ctx * ctx,struct damon_attrs * attrs)710 int damon_set_attrs(struct damon_ctx *ctx, struct damon_attrs *attrs)
711 {
712 unsigned long sample_interval = attrs->sample_interval ?
713 attrs->sample_interval : 1;
714 struct damos *s;
715 bool aggregating = ctx->passed_sample_intervals <
716 ctx->next_aggregation_sis;
717
718 if (!damon_valid_intervals_goal(attrs))
719 return -EINVAL;
720
721 if (attrs->min_nr_regions < 3)
722 return -EINVAL;
723 if (attrs->min_nr_regions > attrs->max_nr_regions)
724 return -EINVAL;
725 if (attrs->sample_interval > attrs->aggr_interval)
726 return -EINVAL;
727
728 /* calls from core-external doesn't set this. */
729 if (!attrs->aggr_samples)
730 attrs->aggr_samples = attrs->aggr_interval / sample_interval;
731
732 ctx->next_aggregation_sis = ctx->passed_sample_intervals +
733 attrs->aggr_interval / sample_interval;
734 ctx->next_ops_update_sis = ctx->passed_sample_intervals +
735 attrs->ops_update_interval / sample_interval;
736
737 damon_update_monitoring_results(ctx, attrs, aggregating);
738 ctx->attrs = *attrs;
739
740 damon_for_each_scheme(s, ctx)
741 damos_set_next_apply_sis(s, ctx);
742
743 return 0;
744 }
745
746 /**
747 * damon_set_schemes() - Set data access monitoring based operation schemes.
748 * @ctx: monitoring context
749 * @schemes: array of the schemes
750 * @nr_schemes: number of entries in @schemes
751 *
752 * This function should not be called while the kdamond of the context is
753 * running.
754 */
damon_set_schemes(struct damon_ctx * ctx,struct damos ** schemes,ssize_t nr_schemes)755 void damon_set_schemes(struct damon_ctx *ctx, struct damos **schemes,
756 ssize_t nr_schemes)
757 {
758 struct damos *s, *next;
759 ssize_t i;
760
761 damon_for_each_scheme_safe(s, next, ctx)
762 damon_destroy_scheme(s);
763 for (i = 0; i < nr_schemes; i++)
764 damon_add_scheme(ctx, schemes[i]);
765 }
766
damos_nth_quota_goal(int n,struct damos_quota * q)767 static struct damos_quota_goal *damos_nth_quota_goal(
768 int n, struct damos_quota *q)
769 {
770 struct damos_quota_goal *goal;
771 int i = 0;
772
773 damos_for_each_quota_goal(goal, q) {
774 if (i++ == n)
775 return goal;
776 }
777 return NULL;
778 }
779
damos_commit_quota_goal_union(struct damos_quota_goal * dst,struct damos_quota_goal * src)780 static void damos_commit_quota_goal_union(
781 struct damos_quota_goal *dst, struct damos_quota_goal *src)
782 {
783 switch (dst->metric) {
784 case DAMOS_QUOTA_NODE_MEM_USED_BP:
785 case DAMOS_QUOTA_NODE_MEM_FREE_BP:
786 dst->nid = src->nid;
787 break;
788 case DAMOS_QUOTA_NODE_MEMCG_USED_BP:
789 case DAMOS_QUOTA_NODE_MEMCG_FREE_BP:
790 dst->nid = src->nid;
791 dst->memcg_id = src->memcg_id;
792 break;
793 default:
794 break;
795 }
796 }
797
damos_commit_quota_goal(struct damos_quota_goal * dst,struct damos_quota_goal * src)798 static void damos_commit_quota_goal(
799 struct damos_quota_goal *dst, struct damos_quota_goal *src)
800 {
801 dst->metric = src->metric;
802 dst->target_value = src->target_value;
803 if (dst->metric == DAMOS_QUOTA_USER_INPUT)
804 dst->current_value = src->current_value;
805 /* keep last_psi_total as is, since it will be updated in next cycle */
806 damos_commit_quota_goal_union(dst, src);
807 }
808
809 /**
810 * damos_commit_quota_goals() - Commit DAMOS quota goals to another quota.
811 * @dst: The commit destination DAMOS quota.
812 * @src: The commit source DAMOS quota.
813 *
814 * Copies user-specified parameters for quota goals from @src to @dst. Users
815 * should use this function for quota goals-level parameters update of running
816 * DAMON contexts, instead of manual in-place updates.
817 *
818 * This function should be called from parameters-update safe context, like
819 * damon_call().
820 */
damos_commit_quota_goals(struct damos_quota * dst,struct damos_quota * src)821 int damos_commit_quota_goals(struct damos_quota *dst, struct damos_quota *src)
822 {
823 struct damos_quota_goal *dst_goal, *next, *src_goal, *new_goal;
824 int i = 0, j = 0;
825
826 damos_for_each_quota_goal_safe(dst_goal, next, dst) {
827 src_goal = damos_nth_quota_goal(i++, src);
828 if (src_goal)
829 damos_commit_quota_goal(dst_goal, src_goal);
830 else
831 damos_destroy_quota_goal(dst_goal);
832 }
833 damos_for_each_quota_goal_safe(src_goal, next, src) {
834 if (j++ < i)
835 continue;
836 new_goal = damos_new_quota_goal(
837 src_goal->metric, src_goal->target_value);
838 if (!new_goal)
839 return -ENOMEM;
840 damos_commit_quota_goal(new_goal, src_goal);
841 damos_add_quota_goal(dst, new_goal);
842 }
843 return 0;
844 }
845
damos_commit_quota(struct damos_quota * dst,struct damos_quota * src)846 static int damos_commit_quota(struct damos_quota *dst, struct damos_quota *src)
847 {
848 int err;
849
850 dst->reset_interval = src->reset_interval;
851 dst->ms = src->ms;
852 dst->sz = src->sz;
853 err = damos_commit_quota_goals(dst, src);
854 if (err)
855 return err;
856 dst->weight_sz = src->weight_sz;
857 dst->weight_nr_accesses = src->weight_nr_accesses;
858 dst->weight_age = src->weight_age;
859 return 0;
860 }
861
damos_nth_core_filter(int n,struct damos * s)862 static struct damos_filter *damos_nth_core_filter(int n, struct damos *s)
863 {
864 struct damos_filter *filter;
865 int i = 0;
866
867 damos_for_each_core_filter(filter, s) {
868 if (i++ == n)
869 return filter;
870 }
871 return NULL;
872 }
873
damos_nth_ops_filter(int n,struct damos * s)874 static struct damos_filter *damos_nth_ops_filter(int n, struct damos *s)
875 {
876 struct damos_filter *filter;
877 int i = 0;
878
879 damos_for_each_ops_filter(filter, s) {
880 if (i++ == n)
881 return filter;
882 }
883 return NULL;
884 }
885
damos_commit_filter_arg(struct damos_filter * dst,struct damos_filter * src)886 static void damos_commit_filter_arg(
887 struct damos_filter *dst, struct damos_filter *src)
888 {
889 switch (dst->type) {
890 case DAMOS_FILTER_TYPE_MEMCG:
891 dst->memcg_id = src->memcg_id;
892 break;
893 case DAMOS_FILTER_TYPE_ADDR:
894 dst->addr_range = src->addr_range;
895 break;
896 case DAMOS_FILTER_TYPE_TARGET:
897 dst->target_idx = src->target_idx;
898 break;
899 case DAMOS_FILTER_TYPE_HUGEPAGE_SIZE:
900 dst->sz_range = src->sz_range;
901 break;
902 default:
903 break;
904 }
905 }
906
damos_commit_filter(struct damos_filter * dst,struct damos_filter * src)907 static void damos_commit_filter(
908 struct damos_filter *dst, struct damos_filter *src)
909 {
910 dst->type = src->type;
911 dst->matching = src->matching;
912 dst->allow = src->allow;
913 damos_commit_filter_arg(dst, src);
914 }
915
damos_commit_core_filters(struct damos * dst,struct damos * src)916 static int damos_commit_core_filters(struct damos *dst, struct damos *src)
917 {
918 struct damos_filter *dst_filter, *next, *src_filter, *new_filter;
919 int i = 0, j = 0;
920
921 damos_for_each_core_filter_safe(dst_filter, next, dst) {
922 src_filter = damos_nth_core_filter(i++, src);
923 if (src_filter)
924 damos_commit_filter(dst_filter, src_filter);
925 else
926 damos_destroy_filter(dst_filter);
927 }
928
929 damos_for_each_core_filter_safe(src_filter, next, src) {
930 if (j++ < i)
931 continue;
932
933 new_filter = damos_new_filter(
934 src_filter->type, src_filter->matching,
935 src_filter->allow);
936 if (!new_filter)
937 return -ENOMEM;
938 damos_commit_filter_arg(new_filter, src_filter);
939 damos_add_filter(dst, new_filter);
940 }
941 return 0;
942 }
943
damos_commit_ops_filters(struct damos * dst,struct damos * src)944 static int damos_commit_ops_filters(struct damos *dst, struct damos *src)
945 {
946 struct damos_filter *dst_filter, *next, *src_filter, *new_filter;
947 int i = 0, j = 0;
948
949 damos_for_each_ops_filter_safe(dst_filter, next, dst) {
950 src_filter = damos_nth_ops_filter(i++, src);
951 if (src_filter)
952 damos_commit_filter(dst_filter, src_filter);
953 else
954 damos_destroy_filter(dst_filter);
955 }
956
957 damos_for_each_ops_filter_safe(src_filter, next, src) {
958 if (j++ < i)
959 continue;
960
961 new_filter = damos_new_filter(
962 src_filter->type, src_filter->matching,
963 src_filter->allow);
964 if (!new_filter)
965 return -ENOMEM;
966 damos_commit_filter_arg(new_filter, src_filter);
967 damos_add_filter(dst, new_filter);
968 }
969 return 0;
970 }
971
972 /**
973 * damos_filters_default_reject() - decide whether to reject memory that didn't
974 * match with any given filter.
975 * @filters: Given DAMOS filters of a group.
976 */
damos_filters_default_reject(struct list_head * filters)977 static bool damos_filters_default_reject(struct list_head *filters)
978 {
979 struct damos_filter *last_filter;
980
981 if (list_empty(filters))
982 return false;
983 last_filter = list_last_entry(filters, struct damos_filter, list);
984 return last_filter->allow;
985 }
986
damos_set_filters_default_reject(struct damos * s)987 static void damos_set_filters_default_reject(struct damos *s)
988 {
989 if (!list_empty(&s->ops_filters))
990 s->core_filters_default_reject = false;
991 else
992 s->core_filters_default_reject =
993 damos_filters_default_reject(&s->core_filters);
994 s->ops_filters_default_reject =
995 damos_filters_default_reject(&s->ops_filters);
996 }
997
damos_commit_dests(struct damos_migrate_dests * dst,struct damos_migrate_dests * src)998 static int damos_commit_dests(struct damos_migrate_dests *dst,
999 struct damos_migrate_dests *src)
1000 {
1001 if (dst->nr_dests != src->nr_dests) {
1002 kfree(dst->node_id_arr);
1003 kfree(dst->weight_arr);
1004
1005 dst->node_id_arr = kmalloc_array(src->nr_dests,
1006 sizeof(*dst->node_id_arr), GFP_KERNEL);
1007 if (!dst->node_id_arr) {
1008 dst->weight_arr = NULL;
1009 return -ENOMEM;
1010 }
1011
1012 dst->weight_arr = kmalloc_array(src->nr_dests,
1013 sizeof(*dst->weight_arr), GFP_KERNEL);
1014 if (!dst->weight_arr) {
1015 /* ->node_id_arr will be freed by scheme destruction */
1016 return -ENOMEM;
1017 }
1018 }
1019
1020 dst->nr_dests = src->nr_dests;
1021 for (int i = 0; i < src->nr_dests; i++) {
1022 dst->node_id_arr[i] = src->node_id_arr[i];
1023 dst->weight_arr[i] = src->weight_arr[i];
1024 }
1025
1026 return 0;
1027 }
1028
damos_commit_filters(struct damos * dst,struct damos * src)1029 static int damos_commit_filters(struct damos *dst, struct damos *src)
1030 {
1031 int err;
1032
1033 err = damos_commit_core_filters(dst, src);
1034 if (err)
1035 return err;
1036 err = damos_commit_ops_filters(dst, src);
1037 if (err)
1038 return err;
1039 damos_set_filters_default_reject(dst);
1040 return 0;
1041 }
1042
damon_nth_scheme(int n,struct damon_ctx * ctx)1043 static struct damos *damon_nth_scheme(int n, struct damon_ctx *ctx)
1044 {
1045 struct damos *s;
1046 int i = 0;
1047
1048 damon_for_each_scheme(s, ctx) {
1049 if (i++ == n)
1050 return s;
1051 }
1052 return NULL;
1053 }
1054
damos_commit(struct damos * dst,struct damos * src)1055 static int damos_commit(struct damos *dst, struct damos *src)
1056 {
1057 int err;
1058
1059 dst->pattern = src->pattern;
1060 dst->action = src->action;
1061 dst->apply_interval_us = src->apply_interval_us;
1062
1063 err = damos_commit_quota(&dst->quota, &src->quota);
1064 if (err)
1065 return err;
1066
1067 dst->wmarks = src->wmarks;
1068 dst->target_nid = src->target_nid;
1069
1070 err = damos_commit_dests(&dst->migrate_dests, &src->migrate_dests);
1071 if (err)
1072 return err;
1073
1074 err = damos_commit_filters(dst, src);
1075 return err;
1076 }
1077
damon_commit_schemes(struct damon_ctx * dst,struct damon_ctx * src)1078 static int damon_commit_schemes(struct damon_ctx *dst, struct damon_ctx *src)
1079 {
1080 struct damos *dst_scheme, *next, *src_scheme, *new_scheme;
1081 int i = 0, j = 0, err;
1082
1083 damon_for_each_scheme_safe(dst_scheme, next, dst) {
1084 src_scheme = damon_nth_scheme(i++, src);
1085 if (src_scheme) {
1086 err = damos_commit(dst_scheme, src_scheme);
1087 if (err)
1088 return err;
1089 } else {
1090 damon_destroy_scheme(dst_scheme);
1091 }
1092 }
1093
1094 damon_for_each_scheme_safe(src_scheme, next, src) {
1095 if (j++ < i)
1096 continue;
1097 new_scheme = damon_new_scheme(&src_scheme->pattern,
1098 src_scheme->action,
1099 src_scheme->apply_interval_us,
1100 &src_scheme->quota, &src_scheme->wmarks,
1101 NUMA_NO_NODE);
1102 if (!new_scheme)
1103 return -ENOMEM;
1104 err = damos_commit(new_scheme, src_scheme);
1105 if (err) {
1106 damon_destroy_scheme(new_scheme);
1107 return err;
1108 }
1109 damon_add_scheme(dst, new_scheme);
1110 }
1111 return 0;
1112 }
1113
damon_nth_target(int n,struct damon_ctx * ctx)1114 static struct damon_target *damon_nth_target(int n, struct damon_ctx *ctx)
1115 {
1116 struct damon_target *t;
1117 int i = 0;
1118
1119 damon_for_each_target(t, ctx) {
1120 if (i++ == n)
1121 return t;
1122 }
1123 return NULL;
1124 }
1125
1126 /*
1127 * The caller should ensure the regions of @src are
1128 * 1. valid (end >= src) and
1129 * 2. sorted by starting address.
1130 *
1131 * If @src has no region, @dst keeps current regions.
1132 */
damon_commit_target_regions(struct damon_target * dst,struct damon_target * src,unsigned long src_min_sz_region)1133 static int damon_commit_target_regions(struct damon_target *dst,
1134 struct damon_target *src, unsigned long src_min_sz_region)
1135 {
1136 struct damon_region *src_region;
1137 struct damon_addr_range *ranges;
1138 int i = 0, err;
1139
1140 damon_for_each_region(src_region, src)
1141 i++;
1142 if (!i)
1143 return 0;
1144
1145 ranges = kmalloc_array(i, sizeof(*ranges), GFP_KERNEL | __GFP_NOWARN);
1146 if (!ranges)
1147 return -ENOMEM;
1148 i = 0;
1149 damon_for_each_region(src_region, src)
1150 ranges[i++] = src_region->ar;
1151 err = damon_set_regions(dst, ranges, i, src_min_sz_region);
1152 kfree(ranges);
1153 return err;
1154 }
1155
damon_commit_target(struct damon_target * dst,bool dst_has_pid,struct damon_target * src,bool src_has_pid,unsigned long src_min_sz_region)1156 static int damon_commit_target(
1157 struct damon_target *dst, bool dst_has_pid,
1158 struct damon_target *src, bool src_has_pid,
1159 unsigned long src_min_sz_region)
1160 {
1161 int err;
1162
1163 err = damon_commit_target_regions(dst, src, src_min_sz_region);
1164 if (err)
1165 return err;
1166 if (dst_has_pid)
1167 put_pid(dst->pid);
1168 if (src_has_pid)
1169 get_pid(src->pid);
1170 dst->pid = src->pid;
1171 return 0;
1172 }
1173
damon_commit_targets(struct damon_ctx * dst,struct damon_ctx * src)1174 static int damon_commit_targets(
1175 struct damon_ctx *dst, struct damon_ctx *src)
1176 {
1177 struct damon_target *dst_target, *next, *src_target, *new_target;
1178 int i = 0, j = 0, err;
1179
1180 damon_for_each_target_safe(dst_target, next, dst) {
1181 src_target = damon_nth_target(i++, src);
1182 /*
1183 * If src target is obsolete, do not commit the parameters to
1184 * the dst target, and further remove the dst target.
1185 */
1186 if (src_target && !src_target->obsolete) {
1187 err = damon_commit_target(
1188 dst_target, damon_target_has_pid(dst),
1189 src_target, damon_target_has_pid(src),
1190 src->min_sz_region);
1191 if (err)
1192 return err;
1193 } else {
1194 struct damos *s;
1195
1196 damon_destroy_target(dst_target, dst);
1197 damon_for_each_scheme(s, dst) {
1198 if (s->quota.charge_target_from == dst_target) {
1199 s->quota.charge_target_from = NULL;
1200 s->quota.charge_addr_from = 0;
1201 }
1202 }
1203 }
1204 }
1205
1206 damon_for_each_target_safe(src_target, next, src) {
1207 if (j++ < i)
1208 continue;
1209 /* target to remove has no matching dst */
1210 if (src_target->obsolete)
1211 return -EINVAL;
1212 new_target = damon_new_target();
1213 if (!new_target)
1214 return -ENOMEM;
1215 err = damon_commit_target(new_target, false,
1216 src_target, damon_target_has_pid(src),
1217 src->min_sz_region);
1218 if (err) {
1219 damon_destroy_target(new_target, NULL);
1220 return err;
1221 }
1222 damon_add_target(dst, new_target);
1223 }
1224 return 0;
1225 }
1226
1227 /**
1228 * damon_commit_ctx() - Commit parameters of a DAMON context to another.
1229 * @dst: The commit destination DAMON context.
1230 * @src: The commit source DAMON context.
1231 *
1232 * This function copies user-specified parameters from @src to @dst and update
1233 * the internal status and results accordingly. Users should use this function
1234 * for context-level parameters update of running context, instead of manual
1235 * in-place updates.
1236 *
1237 * This function should be called from parameters-update safe context, like
1238 * damon_call().
1239 */
damon_commit_ctx(struct damon_ctx * dst,struct damon_ctx * src)1240 int damon_commit_ctx(struct damon_ctx *dst, struct damon_ctx *src)
1241 {
1242 int err;
1243
1244 err = damon_commit_schemes(dst, src);
1245 if (err)
1246 return err;
1247 err = damon_commit_targets(dst, src);
1248 if (err)
1249 return err;
1250 /*
1251 * schemes and targets should be updated first, since
1252 * 1. damon_set_attrs() updates monitoring results of targets and
1253 * next_apply_sis of schemes, and
1254 * 2. ops update should be done after pid handling is done (target
1255 * committing require putting pids).
1256 */
1257 if (!damon_attrs_equals(&dst->attrs, &src->attrs)) {
1258 err = damon_set_attrs(dst, &src->attrs);
1259 if (err)
1260 return err;
1261 }
1262 dst->ops = src->ops;
1263 dst->addr_unit = src->addr_unit;
1264 dst->min_sz_region = src->min_sz_region;
1265
1266 return 0;
1267 }
1268
1269 /**
1270 * damon_nr_running_ctxs() - Return number of currently running contexts.
1271 */
damon_nr_running_ctxs(void)1272 int damon_nr_running_ctxs(void)
1273 {
1274 int nr_ctxs;
1275
1276 mutex_lock(&damon_lock);
1277 nr_ctxs = nr_running_ctxs;
1278 mutex_unlock(&damon_lock);
1279
1280 return nr_ctxs;
1281 }
1282
1283 /* Returns the size upper limit for each monitoring region */
damon_region_sz_limit(struct damon_ctx * ctx)1284 static unsigned long damon_region_sz_limit(struct damon_ctx *ctx)
1285 {
1286 struct damon_target *t;
1287 struct damon_region *r;
1288 unsigned long sz = 0;
1289
1290 damon_for_each_target(t, ctx) {
1291 damon_for_each_region(r, t)
1292 sz += damon_sz_region(r);
1293 }
1294
1295 if (ctx->attrs.min_nr_regions)
1296 sz /= ctx->attrs.min_nr_regions;
1297 if (sz < ctx->min_sz_region)
1298 sz = ctx->min_sz_region;
1299
1300 return sz;
1301 }
1302
1303 static int kdamond_fn(void *data);
1304
1305 /*
1306 * __damon_start() - Starts monitoring with given context.
1307 * @ctx: monitoring context
1308 *
1309 * This function should be called while damon_lock is hold.
1310 *
1311 * Return: 0 on success, negative error code otherwise.
1312 */
__damon_start(struct damon_ctx * ctx)1313 static int __damon_start(struct damon_ctx *ctx)
1314 {
1315 int err = -EBUSY;
1316
1317 mutex_lock(&ctx->kdamond_lock);
1318 if (!ctx->kdamond) {
1319 err = 0;
1320 reinit_completion(&ctx->kdamond_started);
1321 ctx->kdamond = kthread_run(kdamond_fn, ctx, "kdamond.%d",
1322 nr_running_ctxs);
1323 if (IS_ERR(ctx->kdamond)) {
1324 err = PTR_ERR(ctx->kdamond);
1325 ctx->kdamond = NULL;
1326 } else {
1327 wait_for_completion(&ctx->kdamond_started);
1328 }
1329 }
1330 mutex_unlock(&ctx->kdamond_lock);
1331
1332 return err;
1333 }
1334
1335 /**
1336 * damon_start() - Starts the monitorings for a given group of contexts.
1337 * @ctxs: an array of the pointers for contexts to start monitoring
1338 * @nr_ctxs: size of @ctxs
1339 * @exclusive: exclusiveness of this contexts group
1340 *
1341 * This function starts a group of monitoring threads for a group of monitoring
1342 * contexts. One thread per each context is created and run in parallel. The
1343 * caller should handle synchronization between the threads by itself. If
1344 * @exclusive is true and a group of threads that created by other
1345 * 'damon_start()' call is currently running, this function does nothing but
1346 * returns -EBUSY.
1347 *
1348 * Return: 0 on success, negative error code otherwise.
1349 */
damon_start(struct damon_ctx ** ctxs,int nr_ctxs,bool exclusive)1350 int damon_start(struct damon_ctx **ctxs, int nr_ctxs, bool exclusive)
1351 {
1352 int i;
1353 int err = 0;
1354
1355 mutex_lock(&damon_lock);
1356 if ((exclusive && nr_running_ctxs) ||
1357 (!exclusive && running_exclusive_ctxs)) {
1358 mutex_unlock(&damon_lock);
1359 return -EBUSY;
1360 }
1361
1362 for (i = 0; i < nr_ctxs; i++) {
1363 err = __damon_start(ctxs[i]);
1364 if (err)
1365 break;
1366 nr_running_ctxs++;
1367 }
1368 if (exclusive && nr_running_ctxs)
1369 running_exclusive_ctxs = true;
1370 mutex_unlock(&damon_lock);
1371
1372 return err;
1373 }
1374
1375 /*
1376 * __damon_stop() - Stops monitoring of a given context.
1377 * @ctx: monitoring context
1378 *
1379 * Return: 0 on success, negative error code otherwise.
1380 */
__damon_stop(struct damon_ctx * ctx)1381 static int __damon_stop(struct damon_ctx *ctx)
1382 {
1383 struct task_struct *tsk;
1384
1385 mutex_lock(&ctx->kdamond_lock);
1386 tsk = ctx->kdamond;
1387 if (tsk) {
1388 get_task_struct(tsk);
1389 mutex_unlock(&ctx->kdamond_lock);
1390 kthread_stop_put(tsk);
1391 return 0;
1392 }
1393 mutex_unlock(&ctx->kdamond_lock);
1394
1395 return -EPERM;
1396 }
1397
1398 /**
1399 * damon_stop() - Stops the monitorings for a given group of contexts.
1400 * @ctxs: an array of the pointers for contexts to stop monitoring
1401 * @nr_ctxs: size of @ctxs
1402 *
1403 * Return: 0 on success, negative error code otherwise.
1404 */
damon_stop(struct damon_ctx ** ctxs,int nr_ctxs)1405 int damon_stop(struct damon_ctx **ctxs, int nr_ctxs)
1406 {
1407 int i, err = 0;
1408
1409 for (i = 0; i < nr_ctxs; i++) {
1410 /* nr_running_ctxs is decremented in kdamond_fn */
1411 err = __damon_stop(ctxs[i]);
1412 if (err)
1413 break;
1414 }
1415 return err;
1416 }
1417
1418 /**
1419 * damon_is_running() - Returns if a given DAMON context is running.
1420 * @ctx: The DAMON context to see if running.
1421 *
1422 * Return: true if @ctx is running, false otherwise.
1423 */
damon_is_running(struct damon_ctx * ctx)1424 bool damon_is_running(struct damon_ctx *ctx)
1425 {
1426 bool running;
1427
1428 mutex_lock(&ctx->kdamond_lock);
1429 running = ctx->kdamond != NULL;
1430 mutex_unlock(&ctx->kdamond_lock);
1431 return running;
1432 }
1433
1434 /*
1435 * damon_call_handle_inactive_ctx() - handle DAMON call request that added to
1436 * an inactive context.
1437 * @ctx: The inactive DAMON context.
1438 * @control: Control variable of the call request.
1439 *
1440 * This function is called in a case that @control is added to @ctx but @ctx is
1441 * not running (inactive). See if @ctx handled @control or not, and cleanup
1442 * @control if it was not handled.
1443 *
1444 * Returns 0 if @control was handled by @ctx, negative error code otherwise.
1445 */
damon_call_handle_inactive_ctx(struct damon_ctx * ctx,struct damon_call_control * control)1446 static int damon_call_handle_inactive_ctx(
1447 struct damon_ctx *ctx, struct damon_call_control *control)
1448 {
1449 struct damon_call_control *c;
1450
1451 mutex_lock(&ctx->call_controls_lock);
1452 list_for_each_entry(c, &ctx->call_controls, list) {
1453 if (c == control) {
1454 list_del(&control->list);
1455 mutex_unlock(&ctx->call_controls_lock);
1456 return -EINVAL;
1457 }
1458 }
1459 mutex_unlock(&ctx->call_controls_lock);
1460 return 0;
1461 }
1462
1463 /**
1464 * damon_call() - Invoke a given function on DAMON worker thread (kdamond).
1465 * @ctx: DAMON context to call the function for.
1466 * @control: Control variable of the call request.
1467 *
1468 * Ask DAMON worker thread (kdamond) of @ctx to call a function with an
1469 * argument data that respectively passed via &damon_call_control->fn and
1470 * &damon_call_control->data of @control. If &damon_call_control->repeat of
1471 * @control is unset, further wait until the kdamond finishes handling of the
1472 * request. Otherwise, return as soon as the request is made.
1473 *
1474 * The kdamond executes the function with the argument in the main loop, just
1475 * after a sampling of the iteration is finished. The function can hence
1476 * safely access the internal data of the &struct damon_ctx without additional
1477 * synchronization. The return value of the function will be saved in
1478 * &damon_call_control->return_code.
1479 *
1480 * Return: 0 on success, negative error code otherwise.
1481 */
damon_call(struct damon_ctx * ctx,struct damon_call_control * control)1482 int damon_call(struct damon_ctx *ctx, struct damon_call_control *control)
1483 {
1484 if (!control->repeat)
1485 init_completion(&control->completion);
1486 control->canceled = false;
1487 INIT_LIST_HEAD(&control->list);
1488
1489 mutex_lock(&ctx->call_controls_lock);
1490 list_add_tail(&control->list, &ctx->call_controls);
1491 mutex_unlock(&ctx->call_controls_lock);
1492 if (!damon_is_running(ctx))
1493 return damon_call_handle_inactive_ctx(ctx, control);
1494 if (control->repeat)
1495 return 0;
1496 wait_for_completion(&control->completion);
1497 if (control->canceled)
1498 return -ECANCELED;
1499 return 0;
1500 }
1501
1502 /**
1503 * damos_walk() - Invoke a given functions while DAMOS walk regions.
1504 * @ctx: DAMON context to call the functions for.
1505 * @control: Control variable of the walk request.
1506 *
1507 * Ask DAMON worker thread (kdamond) of @ctx to call a function for each region
1508 * that the kdamond will apply DAMOS action to, and wait until the kdamond
1509 * finishes handling of the request.
1510 *
1511 * The kdamond executes the given function in the main loop, for each region
1512 * just after it applied any DAMOS actions of @ctx to it. The invocation is
1513 * made only within one &damos->apply_interval_us since damos_walk()
1514 * invocation, for each scheme. The given callback function can hence safely
1515 * access the internal data of &struct damon_ctx and &struct damon_region that
1516 * each of the scheme will apply the action for next interval, without
1517 * additional synchronizations against the kdamond. If every scheme of @ctx
1518 * passed at least one &damos->apply_interval_us, kdamond marks the request as
1519 * completed so that damos_walk() can wakeup and return.
1520 *
1521 * Return: 0 on success, negative error code otherwise.
1522 */
damos_walk(struct damon_ctx * ctx,struct damos_walk_control * control)1523 int damos_walk(struct damon_ctx *ctx, struct damos_walk_control *control)
1524 {
1525 init_completion(&control->completion);
1526 control->canceled = false;
1527 mutex_lock(&ctx->walk_control_lock);
1528 if (ctx->walk_control) {
1529 mutex_unlock(&ctx->walk_control_lock);
1530 return -EBUSY;
1531 }
1532 ctx->walk_control = control;
1533 mutex_unlock(&ctx->walk_control_lock);
1534 if (!damon_is_running(ctx))
1535 return -EINVAL;
1536 wait_for_completion(&control->completion);
1537 if (control->canceled)
1538 return -ECANCELED;
1539 return 0;
1540 }
1541
1542 /*
1543 * Warn and fix corrupted ->nr_accesses[_bp] for investigations and preventing
1544 * the problem being propagated.
1545 */
damon_warn_fix_nr_accesses_corruption(struct damon_region * r)1546 static void damon_warn_fix_nr_accesses_corruption(struct damon_region *r)
1547 {
1548 if (r->nr_accesses_bp == r->nr_accesses * 10000)
1549 return;
1550 WARN_ONCE(true, "invalid nr_accesses_bp at reset: %u %u\n",
1551 r->nr_accesses_bp, r->nr_accesses);
1552 r->nr_accesses_bp = r->nr_accesses * 10000;
1553 }
1554
1555 /*
1556 * Reset the aggregated monitoring results ('nr_accesses' of each region).
1557 */
kdamond_reset_aggregated(struct damon_ctx * c)1558 static void kdamond_reset_aggregated(struct damon_ctx *c)
1559 {
1560 struct damon_target *t;
1561 unsigned int ti = 0; /* target's index */
1562
1563 damon_for_each_target(t, c) {
1564 struct damon_region *r;
1565
1566 damon_for_each_region(r, t) {
1567 trace_damon_aggregated(ti, r, damon_nr_regions(t));
1568 damon_warn_fix_nr_accesses_corruption(r);
1569 r->last_nr_accesses = r->nr_accesses;
1570 r->nr_accesses = 0;
1571 }
1572 ti++;
1573 }
1574 }
1575
damon_get_intervals_score(struct damon_ctx * c)1576 static unsigned long damon_get_intervals_score(struct damon_ctx *c)
1577 {
1578 struct damon_target *t;
1579 struct damon_region *r;
1580 unsigned long sz_region, max_access_events = 0, access_events = 0;
1581 unsigned long target_access_events;
1582 unsigned long goal_bp = c->attrs.intervals_goal.access_bp;
1583
1584 damon_for_each_target(t, c) {
1585 damon_for_each_region(r, t) {
1586 sz_region = damon_sz_region(r);
1587 max_access_events += sz_region * c->attrs.aggr_samples;
1588 access_events += sz_region * r->nr_accesses;
1589 }
1590 }
1591 target_access_events = max_access_events * goal_bp / 10000;
1592 target_access_events = target_access_events ? : 1;
1593 return access_events * 10000 / target_access_events;
1594 }
1595
1596 static unsigned long damon_feed_loop_next_input(unsigned long last_input,
1597 unsigned long score);
1598
damon_get_intervals_adaptation_bp(struct damon_ctx * c)1599 static unsigned long damon_get_intervals_adaptation_bp(struct damon_ctx *c)
1600 {
1601 unsigned long score_bp, adaptation_bp;
1602
1603 score_bp = damon_get_intervals_score(c);
1604 adaptation_bp = damon_feed_loop_next_input(100000000, score_bp) /
1605 10000;
1606 /*
1607 * adaptaion_bp ranges from 1 to 20,000. Avoid too rapid reduction of
1608 * the intervals by rescaling [1,10,000] to [5000, 10,000].
1609 */
1610 if (adaptation_bp <= 10000)
1611 adaptation_bp = 5000 + adaptation_bp / 2;
1612 return adaptation_bp;
1613 }
1614
kdamond_tune_intervals(struct damon_ctx * c)1615 static void kdamond_tune_intervals(struct damon_ctx *c)
1616 {
1617 unsigned long adaptation_bp;
1618 struct damon_attrs new_attrs;
1619 struct damon_intervals_goal *goal;
1620
1621 adaptation_bp = damon_get_intervals_adaptation_bp(c);
1622 if (adaptation_bp == 10000)
1623 return;
1624
1625 new_attrs = c->attrs;
1626 goal = &c->attrs.intervals_goal;
1627 new_attrs.sample_interval = min(goal->max_sample_us,
1628 c->attrs.sample_interval * adaptation_bp / 10000);
1629 new_attrs.sample_interval = max(goal->min_sample_us,
1630 new_attrs.sample_interval);
1631 new_attrs.aggr_interval = new_attrs.sample_interval *
1632 c->attrs.aggr_samples;
1633 trace_damon_monitor_intervals_tune(new_attrs.sample_interval);
1634 damon_set_attrs(c, &new_attrs);
1635 }
1636
1637 static void damon_split_region_at(struct damon_target *t,
1638 struct damon_region *r, unsigned long sz_r);
1639
__damos_valid_target(struct damon_region * r,struct damos * s)1640 static bool __damos_valid_target(struct damon_region *r, struct damos *s)
1641 {
1642 unsigned long sz;
1643 unsigned int nr_accesses = r->nr_accesses_bp / 10000;
1644
1645 sz = damon_sz_region(r);
1646 return s->pattern.min_sz_region <= sz &&
1647 sz <= s->pattern.max_sz_region &&
1648 s->pattern.min_nr_accesses <= nr_accesses &&
1649 nr_accesses <= s->pattern.max_nr_accesses &&
1650 s->pattern.min_age_region <= r->age &&
1651 r->age <= s->pattern.max_age_region;
1652 }
1653
damos_valid_target(struct damon_ctx * c,struct damon_target * t,struct damon_region * r,struct damos * s)1654 static bool damos_valid_target(struct damon_ctx *c, struct damon_target *t,
1655 struct damon_region *r, struct damos *s)
1656 {
1657 bool ret = __damos_valid_target(r, s);
1658
1659 if (!ret || !s->quota.esz || !c->ops.get_scheme_score)
1660 return ret;
1661
1662 return c->ops.get_scheme_score(c, t, r, s) >= s->quota.min_score;
1663 }
1664
1665 /*
1666 * damos_skip_charged_region() - Check if the given region or starting part of
1667 * it is already charged for the DAMOS quota.
1668 * @t: The target of the region.
1669 * @rp: The pointer to the region.
1670 * @s: The scheme to be applied.
1671 * @min_sz_region: minimum region size.
1672 *
1673 * If a quota of a scheme has exceeded in a quota charge window, the scheme's
1674 * action would applied to only a part of the target access pattern fulfilling
1675 * regions. To avoid applying the scheme action to only already applied
1676 * regions, DAMON skips applying the scheme action to the regions that charged
1677 * in the previous charge window.
1678 *
1679 * This function checks if a given region should be skipped or not for the
1680 * reason. If only the starting part of the region has previously charged,
1681 * this function splits the region into two so that the second one covers the
1682 * area that not charged in the previous charge widnow and saves the second
1683 * region in *rp and returns false, so that the caller can apply DAMON action
1684 * to the second one.
1685 *
1686 * Return: true if the region should be entirely skipped, false otherwise.
1687 */
damos_skip_charged_region(struct damon_target * t,struct damon_region ** rp,struct damos * s,unsigned long min_sz_region)1688 static bool damos_skip_charged_region(struct damon_target *t,
1689 struct damon_region **rp, struct damos *s, unsigned long min_sz_region)
1690 {
1691 struct damon_region *r = *rp;
1692 struct damos_quota *quota = &s->quota;
1693 unsigned long sz_to_skip;
1694
1695 /* Skip previously charged regions */
1696 if (quota->charge_target_from) {
1697 if (t != quota->charge_target_from)
1698 return true;
1699 if (r == damon_last_region(t)) {
1700 quota->charge_target_from = NULL;
1701 quota->charge_addr_from = 0;
1702 return true;
1703 }
1704 if (quota->charge_addr_from &&
1705 r->ar.end <= quota->charge_addr_from)
1706 return true;
1707
1708 if (quota->charge_addr_from && r->ar.start <
1709 quota->charge_addr_from) {
1710 sz_to_skip = ALIGN_DOWN(quota->charge_addr_from -
1711 r->ar.start, min_sz_region);
1712 if (!sz_to_skip) {
1713 if (damon_sz_region(r) <= min_sz_region)
1714 return true;
1715 sz_to_skip = min_sz_region;
1716 }
1717 damon_split_region_at(t, r, sz_to_skip);
1718 r = damon_next_region(r);
1719 *rp = r;
1720 }
1721 quota->charge_target_from = NULL;
1722 quota->charge_addr_from = 0;
1723 }
1724 return false;
1725 }
1726
damos_update_stat(struct damos * s,unsigned long sz_tried,unsigned long sz_applied,unsigned long sz_ops_filter_passed)1727 static void damos_update_stat(struct damos *s,
1728 unsigned long sz_tried, unsigned long sz_applied,
1729 unsigned long sz_ops_filter_passed)
1730 {
1731 s->stat.nr_tried++;
1732 s->stat.sz_tried += sz_tried;
1733 if (sz_applied)
1734 s->stat.nr_applied++;
1735 s->stat.sz_applied += sz_applied;
1736 s->stat.sz_ops_filter_passed += sz_ops_filter_passed;
1737 }
1738
damos_filter_match(struct damon_ctx * ctx,struct damon_target * t,struct damon_region * r,struct damos_filter * filter,unsigned long min_sz_region)1739 static bool damos_filter_match(struct damon_ctx *ctx, struct damon_target *t,
1740 struct damon_region *r, struct damos_filter *filter,
1741 unsigned long min_sz_region)
1742 {
1743 bool matched = false;
1744 struct damon_target *ti;
1745 int target_idx = 0;
1746 unsigned long start, end;
1747
1748 switch (filter->type) {
1749 case DAMOS_FILTER_TYPE_TARGET:
1750 damon_for_each_target(ti, ctx) {
1751 if (ti == t)
1752 break;
1753 target_idx++;
1754 }
1755 matched = target_idx == filter->target_idx;
1756 break;
1757 case DAMOS_FILTER_TYPE_ADDR:
1758 start = ALIGN_DOWN(filter->addr_range.start, min_sz_region);
1759 end = ALIGN_DOWN(filter->addr_range.end, min_sz_region);
1760
1761 /* inside the range */
1762 if (start <= r->ar.start && r->ar.end <= end) {
1763 matched = true;
1764 break;
1765 }
1766 /* outside of the range */
1767 if (r->ar.end <= start || end <= r->ar.start) {
1768 matched = false;
1769 break;
1770 }
1771 /* start before the range and overlap */
1772 if (r->ar.start < start) {
1773 damon_split_region_at(t, r, start - r->ar.start);
1774 matched = false;
1775 break;
1776 }
1777 /* start inside the range */
1778 damon_split_region_at(t, r, end - r->ar.start);
1779 matched = true;
1780 break;
1781 default:
1782 return false;
1783 }
1784
1785 return matched == filter->matching;
1786 }
1787
damos_filter_out(struct damon_ctx * ctx,struct damon_target * t,struct damon_region * r,struct damos * s)1788 static bool damos_filter_out(struct damon_ctx *ctx, struct damon_target *t,
1789 struct damon_region *r, struct damos *s)
1790 {
1791 struct damos_filter *filter;
1792
1793 s->core_filters_allowed = false;
1794 damos_for_each_core_filter(filter, s) {
1795 if (damos_filter_match(ctx, t, r, filter, ctx->min_sz_region)) {
1796 if (filter->allow)
1797 s->core_filters_allowed = true;
1798 return !filter->allow;
1799 }
1800 }
1801 return s->core_filters_default_reject;
1802 }
1803
1804 /*
1805 * damos_walk_call_walk() - Call &damos_walk_control->walk_fn.
1806 * @ctx: The context of &damon_ctx->walk_control.
1807 * @t: The monitoring target of @r that @s will be applied.
1808 * @r: The region of @t that @s will be applied.
1809 * @s: The scheme of @ctx that will be applied to @r.
1810 *
1811 * This function is called from kdamond whenever it asked the operation set to
1812 * apply a DAMOS scheme action to a region. If a DAMOS walk request is
1813 * installed by damos_walk() and not yet uninstalled, invoke it.
1814 */
damos_walk_call_walk(struct damon_ctx * ctx,struct damon_target * t,struct damon_region * r,struct damos * s,unsigned long sz_filter_passed)1815 static void damos_walk_call_walk(struct damon_ctx *ctx, struct damon_target *t,
1816 struct damon_region *r, struct damos *s,
1817 unsigned long sz_filter_passed)
1818 {
1819 struct damos_walk_control *control;
1820
1821 if (s->walk_completed)
1822 return;
1823
1824 control = ctx->walk_control;
1825 if (!control)
1826 return;
1827
1828 control->walk_fn(control->data, ctx, t, r, s, sz_filter_passed);
1829 }
1830
1831 /*
1832 * damos_walk_complete() - Complete DAMOS walk request if all walks are done.
1833 * @ctx: The context of &damon_ctx->walk_control.
1834 * @s: A scheme of @ctx that all walks are now done.
1835 *
1836 * This function is called when kdamond finished applying the action of a DAMOS
1837 * scheme to all regions that eligible for the given &damos->apply_interval_us.
1838 * If every scheme of @ctx including @s now finished walking for at least one
1839 * &damos->apply_interval_us, this function makrs the handling of the given
1840 * DAMOS walk request is done, so that damos_walk() can wake up and return.
1841 */
damos_walk_complete(struct damon_ctx * ctx,struct damos * s)1842 static void damos_walk_complete(struct damon_ctx *ctx, struct damos *s)
1843 {
1844 struct damos *siter;
1845 struct damos_walk_control *control;
1846
1847 control = ctx->walk_control;
1848 if (!control)
1849 return;
1850
1851 s->walk_completed = true;
1852 /* if all schemes completed, signal completion to walker */
1853 damon_for_each_scheme(siter, ctx) {
1854 if (!siter->walk_completed)
1855 return;
1856 }
1857 damon_for_each_scheme(siter, ctx)
1858 siter->walk_completed = false;
1859
1860 complete(&control->completion);
1861 ctx->walk_control = NULL;
1862 }
1863
1864 /*
1865 * damos_walk_cancel() - Cancel the current DAMOS walk request.
1866 * @ctx: The context of &damon_ctx->walk_control.
1867 *
1868 * This function is called when @ctx is deactivated by DAMOS watermarks, DAMOS
1869 * walk is requested but there is no DAMOS scheme to walk for, or the kdamond
1870 * is already out of the main loop and therefore gonna be terminated, and hence
1871 * cannot continue the walks. This function therefore marks the walk request
1872 * as canceled, so that damos_walk() can wake up and return.
1873 */
damos_walk_cancel(struct damon_ctx * ctx)1874 static void damos_walk_cancel(struct damon_ctx *ctx)
1875 {
1876 struct damos_walk_control *control;
1877
1878 mutex_lock(&ctx->walk_control_lock);
1879 control = ctx->walk_control;
1880 mutex_unlock(&ctx->walk_control_lock);
1881
1882 if (!control)
1883 return;
1884 control->canceled = true;
1885 complete(&control->completion);
1886 mutex_lock(&ctx->walk_control_lock);
1887 ctx->walk_control = NULL;
1888 mutex_unlock(&ctx->walk_control_lock);
1889 }
1890
damos_apply_scheme(struct damon_ctx * c,struct damon_target * t,struct damon_region * r,struct damos * s)1891 static void damos_apply_scheme(struct damon_ctx *c, struct damon_target *t,
1892 struct damon_region *r, struct damos *s)
1893 {
1894 struct damos_quota *quota = &s->quota;
1895 unsigned long sz = damon_sz_region(r);
1896 struct timespec64 begin, end;
1897 unsigned long sz_applied = 0;
1898 unsigned long sz_ops_filter_passed = 0;
1899 /*
1900 * We plan to support multiple context per kdamond, as DAMON sysfs
1901 * implies with 'nr_contexts' file. Nevertheless, only single context
1902 * per kdamond is supported for now. So, we can simply use '0' context
1903 * index here.
1904 */
1905 unsigned int cidx = 0;
1906 struct damos *siter; /* schemes iterator */
1907 unsigned int sidx = 0;
1908 struct damon_target *titer; /* targets iterator */
1909 unsigned int tidx = 0;
1910 bool do_trace = false;
1911
1912 /* get indices for trace_damos_before_apply() */
1913 if (trace_damos_before_apply_enabled()) {
1914 damon_for_each_scheme(siter, c) {
1915 if (siter == s)
1916 break;
1917 sidx++;
1918 }
1919 damon_for_each_target(titer, c) {
1920 if (titer == t)
1921 break;
1922 tidx++;
1923 }
1924 do_trace = true;
1925 }
1926
1927 if (c->ops.apply_scheme) {
1928 if (quota->esz && quota->charged_sz + sz > quota->esz) {
1929 sz = ALIGN_DOWN(quota->esz - quota->charged_sz,
1930 c->min_sz_region);
1931 if (!sz)
1932 goto update_stat;
1933 damon_split_region_at(t, r, sz);
1934 }
1935 if (damos_filter_out(c, t, r, s))
1936 return;
1937 ktime_get_coarse_ts64(&begin);
1938 trace_damos_before_apply(cidx, sidx, tidx, r,
1939 damon_nr_regions(t), do_trace);
1940 sz_applied = c->ops.apply_scheme(c, t, r, s,
1941 &sz_ops_filter_passed);
1942 damos_walk_call_walk(c, t, r, s, sz_ops_filter_passed);
1943 ktime_get_coarse_ts64(&end);
1944 quota->total_charged_ns += timespec64_to_ns(&end) -
1945 timespec64_to_ns(&begin);
1946 quota->charged_sz += sz;
1947 if (quota->esz && quota->charged_sz >= quota->esz) {
1948 quota->charge_target_from = t;
1949 quota->charge_addr_from = r->ar.end + 1;
1950 }
1951 }
1952 if (s->action != DAMOS_STAT)
1953 r->age = 0;
1954
1955 update_stat:
1956 damos_update_stat(s, sz, sz_applied, sz_ops_filter_passed);
1957 }
1958
damon_do_apply_schemes(struct damon_ctx * c,struct damon_target * t,struct damon_region * r)1959 static void damon_do_apply_schemes(struct damon_ctx *c,
1960 struct damon_target *t,
1961 struct damon_region *r)
1962 {
1963 struct damos *s;
1964
1965 damon_for_each_scheme(s, c) {
1966 struct damos_quota *quota = &s->quota;
1967
1968 if (c->passed_sample_intervals < s->next_apply_sis)
1969 continue;
1970
1971 if (!s->wmarks.activated)
1972 continue;
1973
1974 /* Check the quota */
1975 if (quota->esz && quota->charged_sz >= quota->esz)
1976 continue;
1977
1978 if (damos_skip_charged_region(t, &r, s, c->min_sz_region))
1979 continue;
1980
1981 if (!damos_valid_target(c, t, r, s))
1982 continue;
1983
1984 damos_apply_scheme(c, t, r, s);
1985 }
1986 }
1987
1988 /*
1989 * damon_feed_loop_next_input() - get next input to achieve a target score.
1990 * @last_input The last input.
1991 * @score Current score that made with @last_input.
1992 *
1993 * Calculate next input to achieve the target score, based on the last input
1994 * and current score. Assuming the input and the score are positively
1995 * proportional, calculate how much compensation should be added to or
1996 * subtracted from the last input as a proportion of the last input. Avoid
1997 * next input always being zero by setting it non-zero always. In short form
1998 * (assuming support of float and signed calculations), the algorithm is as
1999 * below.
2000 *
2001 * next_input = max(last_input * ((goal - current) / goal + 1), 1)
2002 *
2003 * For simple implementation, we assume the target score is always 10,000. The
2004 * caller should adjust @score for this.
2005 *
2006 * Returns next input that assumed to achieve the target score.
2007 */
damon_feed_loop_next_input(unsigned long last_input,unsigned long score)2008 static unsigned long damon_feed_loop_next_input(unsigned long last_input,
2009 unsigned long score)
2010 {
2011 const unsigned long goal = 10000;
2012 /* Set minimum input as 10000 to avoid compensation be zero */
2013 const unsigned long min_input = 10000;
2014 unsigned long score_goal_diff, compensation;
2015 bool over_achieving = score > goal;
2016
2017 if (score == goal)
2018 return last_input;
2019 if (score >= goal * 2)
2020 return min_input;
2021
2022 if (over_achieving)
2023 score_goal_diff = score - goal;
2024 else
2025 score_goal_diff = goal - score;
2026
2027 if (last_input < ULONG_MAX / score_goal_diff)
2028 compensation = last_input * score_goal_diff / goal;
2029 else
2030 compensation = last_input / goal * score_goal_diff;
2031
2032 if (over_achieving)
2033 return max(last_input - compensation, min_input);
2034 if (last_input < ULONG_MAX - compensation)
2035 return last_input + compensation;
2036 return ULONG_MAX;
2037 }
2038
2039 #ifdef CONFIG_PSI
2040
damos_get_some_mem_psi_total(void)2041 static u64 damos_get_some_mem_psi_total(void)
2042 {
2043 if (static_branch_likely(&psi_disabled))
2044 return 0;
2045 return div_u64(psi_system.total[PSI_AVGS][PSI_MEM * 2],
2046 NSEC_PER_USEC);
2047 }
2048
2049 #else /* CONFIG_PSI */
2050
damos_get_some_mem_psi_total(void)2051 static inline u64 damos_get_some_mem_psi_total(void)
2052 {
2053 return 0;
2054 };
2055
2056 #endif /* CONFIG_PSI */
2057
2058 #ifdef CONFIG_NUMA
damos_get_node_mem_bp(struct damos_quota_goal * goal)2059 static __kernel_ulong_t damos_get_node_mem_bp(
2060 struct damos_quota_goal *goal)
2061 {
2062 struct sysinfo i;
2063 __kernel_ulong_t numerator;
2064
2065 si_meminfo_node(&i, goal->nid);
2066 if (goal->metric == DAMOS_QUOTA_NODE_MEM_USED_BP)
2067 numerator = i.totalram - i.freeram;
2068 else /* DAMOS_QUOTA_NODE_MEM_FREE_BP */
2069 numerator = i.freeram;
2070 return numerator * 10000 / i.totalram;
2071 }
2072
damos_get_node_memcg_used_bp(struct damos_quota_goal * goal)2073 static unsigned long damos_get_node_memcg_used_bp(
2074 struct damos_quota_goal *goal)
2075 {
2076 struct mem_cgroup *memcg;
2077 struct lruvec *lruvec;
2078 unsigned long used_pages, numerator;
2079 struct sysinfo i;
2080
2081 rcu_read_lock();
2082 memcg = mem_cgroup_from_id(goal->memcg_id);
2083 if (!memcg || !mem_cgroup_tryget(memcg)) {
2084 rcu_read_unlock();
2085 if (goal->metric == DAMOS_QUOTA_NODE_MEMCG_USED_BP)
2086 return 0;
2087 else /* DAMOS_QUOTA_NODE_MEMCG_FREE_BP */
2088 return 10000;
2089 }
2090 rcu_read_unlock();
2091
2092 mem_cgroup_flush_stats(memcg);
2093 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(goal->nid));
2094 used_pages = lruvec_page_state(lruvec, NR_ACTIVE_ANON);
2095 used_pages += lruvec_page_state(lruvec, NR_INACTIVE_ANON);
2096 used_pages += lruvec_page_state(lruvec, NR_ACTIVE_FILE);
2097 used_pages += lruvec_page_state(lruvec, NR_INACTIVE_FILE);
2098
2099 mem_cgroup_put(memcg);
2100
2101 si_meminfo_node(&i, goal->nid);
2102 if (goal->metric == DAMOS_QUOTA_NODE_MEMCG_USED_BP)
2103 numerator = used_pages;
2104 else /* DAMOS_QUOTA_NODE_MEMCG_FREE_BP */
2105 numerator = i.totalram - used_pages;
2106 return numerator * 10000 / i.totalram;
2107 }
2108 #else
damos_get_node_mem_bp(struct damos_quota_goal * goal)2109 static __kernel_ulong_t damos_get_node_mem_bp(
2110 struct damos_quota_goal *goal)
2111 {
2112 return 0;
2113 }
2114
damos_get_node_memcg_used_bp(struct damos_quota_goal * goal)2115 static unsigned long damos_get_node_memcg_used_bp(
2116 struct damos_quota_goal *goal)
2117 {
2118 return 0;
2119 }
2120 #endif
2121
2122
damos_set_quota_goal_current_value(struct damos_quota_goal * goal)2123 static void damos_set_quota_goal_current_value(struct damos_quota_goal *goal)
2124 {
2125 u64 now_psi_total;
2126
2127 switch (goal->metric) {
2128 case DAMOS_QUOTA_USER_INPUT:
2129 /* User should already set goal->current_value */
2130 break;
2131 case DAMOS_QUOTA_SOME_MEM_PSI_US:
2132 now_psi_total = damos_get_some_mem_psi_total();
2133 goal->current_value = now_psi_total - goal->last_psi_total;
2134 goal->last_psi_total = now_psi_total;
2135 break;
2136 case DAMOS_QUOTA_NODE_MEM_USED_BP:
2137 case DAMOS_QUOTA_NODE_MEM_FREE_BP:
2138 goal->current_value = damos_get_node_mem_bp(goal);
2139 break;
2140 case DAMOS_QUOTA_NODE_MEMCG_USED_BP:
2141 case DAMOS_QUOTA_NODE_MEMCG_FREE_BP:
2142 goal->current_value = damos_get_node_memcg_used_bp(goal);
2143 break;
2144 default:
2145 break;
2146 }
2147 }
2148
2149 /* Return the highest score since it makes schemes least aggressive */
damos_quota_score(struct damos_quota * quota)2150 static unsigned long damos_quota_score(struct damos_quota *quota)
2151 {
2152 struct damos_quota_goal *goal;
2153 unsigned long highest_score = 0;
2154
2155 damos_for_each_quota_goal(goal, quota) {
2156 damos_set_quota_goal_current_value(goal);
2157 highest_score = max(highest_score,
2158 goal->current_value * 10000 /
2159 goal->target_value);
2160 }
2161
2162 return highest_score;
2163 }
2164
2165 /*
2166 * Called only if quota->ms, or quota->sz are set, or quota->goals is not empty
2167 */
damos_set_effective_quota(struct damos_quota * quota)2168 static void damos_set_effective_quota(struct damos_quota *quota)
2169 {
2170 unsigned long throughput;
2171 unsigned long esz = ULONG_MAX;
2172
2173 if (!quota->ms && list_empty("a->goals)) {
2174 quota->esz = quota->sz;
2175 return;
2176 }
2177
2178 if (!list_empty("a->goals)) {
2179 unsigned long score = damos_quota_score(quota);
2180
2181 quota->esz_bp = damon_feed_loop_next_input(
2182 max(quota->esz_bp, 10000UL),
2183 score);
2184 esz = quota->esz_bp / 10000;
2185 }
2186
2187 if (quota->ms) {
2188 if (quota->total_charged_ns)
2189 throughput = mult_frac(quota->total_charged_sz, 1000000,
2190 quota->total_charged_ns);
2191 else
2192 throughput = PAGE_SIZE * 1024;
2193 esz = min(throughput * quota->ms, esz);
2194 }
2195
2196 if (quota->sz && quota->sz < esz)
2197 esz = quota->sz;
2198
2199 quota->esz = esz;
2200 }
2201
damos_trace_esz(struct damon_ctx * c,struct damos * s,struct damos_quota * quota)2202 static void damos_trace_esz(struct damon_ctx *c, struct damos *s,
2203 struct damos_quota *quota)
2204 {
2205 unsigned int cidx = 0, sidx = 0;
2206 struct damos *siter;
2207
2208 damon_for_each_scheme(siter, c) {
2209 if (siter == s)
2210 break;
2211 sidx++;
2212 }
2213 trace_damos_esz(cidx, sidx, quota->esz);
2214 }
2215
damos_adjust_quota(struct damon_ctx * c,struct damos * s)2216 static void damos_adjust_quota(struct damon_ctx *c, struct damos *s)
2217 {
2218 struct damos_quota *quota = &s->quota;
2219 struct damon_target *t;
2220 struct damon_region *r;
2221 unsigned long cumulated_sz, cached_esz;
2222 unsigned int score, max_score = 0;
2223
2224 if (!quota->ms && !quota->sz && list_empty("a->goals))
2225 return;
2226
2227 /* First charge window */
2228 if (!quota->total_charged_sz && !quota->charged_from) {
2229 quota->charged_from = jiffies;
2230 damos_set_effective_quota(quota);
2231 }
2232
2233 /* New charge window starts */
2234 if (time_after_eq(jiffies, quota->charged_from +
2235 msecs_to_jiffies(quota->reset_interval))) {
2236 if (quota->esz && quota->charged_sz >= quota->esz)
2237 s->stat.qt_exceeds++;
2238 quota->total_charged_sz += quota->charged_sz;
2239 quota->charged_from = jiffies;
2240 quota->charged_sz = 0;
2241 if (trace_damos_esz_enabled())
2242 cached_esz = quota->esz;
2243 damos_set_effective_quota(quota);
2244 if (trace_damos_esz_enabled() && quota->esz != cached_esz)
2245 damos_trace_esz(c, s, quota);
2246 }
2247
2248 if (!c->ops.get_scheme_score)
2249 return;
2250
2251 /* Fill up the score histogram */
2252 memset(c->regions_score_histogram, 0,
2253 sizeof(*c->regions_score_histogram) *
2254 (DAMOS_MAX_SCORE + 1));
2255 damon_for_each_target(t, c) {
2256 damon_for_each_region(r, t) {
2257 if (!__damos_valid_target(r, s))
2258 continue;
2259 score = c->ops.get_scheme_score(c, t, r, s);
2260 c->regions_score_histogram[score] +=
2261 damon_sz_region(r);
2262 if (score > max_score)
2263 max_score = score;
2264 }
2265 }
2266
2267 /* Set the min score limit */
2268 for (cumulated_sz = 0, score = max_score; ; score--) {
2269 cumulated_sz += c->regions_score_histogram[score];
2270 if (cumulated_sz >= quota->esz || !score)
2271 break;
2272 }
2273 quota->min_score = score;
2274 }
2275
kdamond_apply_schemes(struct damon_ctx * c)2276 static void kdamond_apply_schemes(struct damon_ctx *c)
2277 {
2278 struct damon_target *t;
2279 struct damon_region *r, *next_r;
2280 struct damos *s;
2281 unsigned long sample_interval = c->attrs.sample_interval ?
2282 c->attrs.sample_interval : 1;
2283 bool has_schemes_to_apply = false;
2284
2285 damon_for_each_scheme(s, c) {
2286 if (c->passed_sample_intervals < s->next_apply_sis)
2287 continue;
2288
2289 if (!s->wmarks.activated)
2290 continue;
2291
2292 has_schemes_to_apply = true;
2293
2294 damos_adjust_quota(c, s);
2295 }
2296
2297 if (!has_schemes_to_apply)
2298 return;
2299
2300 mutex_lock(&c->walk_control_lock);
2301 damon_for_each_target(t, c) {
2302 damon_for_each_region_safe(r, next_r, t)
2303 damon_do_apply_schemes(c, t, r);
2304 }
2305
2306 damon_for_each_scheme(s, c) {
2307 if (c->passed_sample_intervals < s->next_apply_sis)
2308 continue;
2309 damos_walk_complete(c, s);
2310 s->next_apply_sis = c->passed_sample_intervals +
2311 (s->apply_interval_us ? s->apply_interval_us :
2312 c->attrs.aggr_interval) / sample_interval;
2313 s->last_applied = NULL;
2314 }
2315 mutex_unlock(&c->walk_control_lock);
2316 }
2317
2318 /*
2319 * Merge two adjacent regions into one region
2320 */
damon_merge_two_regions(struct damon_target * t,struct damon_region * l,struct damon_region * r)2321 static void damon_merge_two_regions(struct damon_target *t,
2322 struct damon_region *l, struct damon_region *r)
2323 {
2324 unsigned long sz_l = damon_sz_region(l), sz_r = damon_sz_region(r);
2325
2326 l->nr_accesses = (l->nr_accesses * sz_l + r->nr_accesses * sz_r) /
2327 (sz_l + sz_r);
2328 l->nr_accesses_bp = l->nr_accesses * 10000;
2329 l->age = (l->age * sz_l + r->age * sz_r) / (sz_l + sz_r);
2330 l->ar.end = r->ar.end;
2331 damon_destroy_region(r, t);
2332 }
2333
2334 /*
2335 * Merge adjacent regions having similar access frequencies
2336 *
2337 * t target affected by this merge operation
2338 * thres '->nr_accesses' diff threshold for the merge
2339 * sz_limit size upper limit of each region
2340 */
damon_merge_regions_of(struct damon_target * t,unsigned int thres,unsigned long sz_limit)2341 static void damon_merge_regions_of(struct damon_target *t, unsigned int thres,
2342 unsigned long sz_limit)
2343 {
2344 struct damon_region *r, *prev = NULL, *next;
2345
2346 damon_for_each_region_safe(r, next, t) {
2347 if (abs(r->nr_accesses - r->last_nr_accesses) > thres)
2348 r->age = 0;
2349 else if ((r->nr_accesses == 0) != (r->last_nr_accesses == 0))
2350 r->age = 0;
2351 else
2352 r->age++;
2353
2354 if (prev && prev->ar.end == r->ar.start &&
2355 abs(prev->nr_accesses - r->nr_accesses) <= thres &&
2356 damon_sz_region(prev) + damon_sz_region(r) <= sz_limit)
2357 damon_merge_two_regions(t, prev, r);
2358 else
2359 prev = r;
2360 }
2361 }
2362
2363 /*
2364 * Merge adjacent regions having similar access frequencies
2365 *
2366 * threshold '->nr_accesses' diff threshold for the merge
2367 * sz_limit size upper limit of each region
2368 *
2369 * This function merges monitoring target regions which are adjacent and their
2370 * access frequencies are similar. This is for minimizing the monitoring
2371 * overhead under the dynamically changeable access pattern. If a merge was
2372 * unnecessarily made, later 'kdamond_split_regions()' will revert it.
2373 *
2374 * The total number of regions could be higher than the user-defined limit,
2375 * max_nr_regions for some cases. For example, the user can update
2376 * max_nr_regions to a number that lower than the current number of regions
2377 * while DAMON is running. For such a case, repeat merging until the limit is
2378 * met while increasing @threshold up to possible maximum level.
2379 */
kdamond_merge_regions(struct damon_ctx * c,unsigned int threshold,unsigned long sz_limit)2380 static void kdamond_merge_regions(struct damon_ctx *c, unsigned int threshold,
2381 unsigned long sz_limit)
2382 {
2383 struct damon_target *t;
2384 unsigned int nr_regions;
2385 unsigned int max_thres;
2386
2387 max_thres = c->attrs.aggr_interval /
2388 (c->attrs.sample_interval ? c->attrs.sample_interval : 1);
2389 do {
2390 nr_regions = 0;
2391 damon_for_each_target(t, c) {
2392 damon_merge_regions_of(t, threshold, sz_limit);
2393 nr_regions += damon_nr_regions(t);
2394 }
2395 threshold = max(1, threshold * 2);
2396 } while (nr_regions > c->attrs.max_nr_regions &&
2397 threshold / 2 < max_thres);
2398 }
2399
2400 /*
2401 * Split a region in two
2402 *
2403 * r the region to be split
2404 * sz_r size of the first sub-region that will be made
2405 */
damon_split_region_at(struct damon_target * t,struct damon_region * r,unsigned long sz_r)2406 static void damon_split_region_at(struct damon_target *t,
2407 struct damon_region *r, unsigned long sz_r)
2408 {
2409 struct damon_region *new;
2410
2411 new = damon_new_region(r->ar.start + sz_r, r->ar.end);
2412 if (!new)
2413 return;
2414
2415 r->ar.end = new->ar.start;
2416
2417 new->age = r->age;
2418 new->last_nr_accesses = r->last_nr_accesses;
2419 new->nr_accesses_bp = r->nr_accesses_bp;
2420 new->nr_accesses = r->nr_accesses;
2421
2422 damon_insert_region(new, r, damon_next_region(r), t);
2423 }
2424
2425 /* Split every region in the given target into 'nr_subs' regions */
damon_split_regions_of(struct damon_target * t,int nr_subs,unsigned long min_sz_region)2426 static void damon_split_regions_of(struct damon_target *t, int nr_subs,
2427 unsigned long min_sz_region)
2428 {
2429 struct damon_region *r, *next;
2430 unsigned long sz_region, sz_sub = 0;
2431 int i;
2432
2433 damon_for_each_region_safe(r, next, t) {
2434 sz_region = damon_sz_region(r);
2435
2436 for (i = 0; i < nr_subs - 1 &&
2437 sz_region > 2 * min_sz_region; i++) {
2438 /*
2439 * Randomly select size of left sub-region to be at
2440 * least 10 percent and at most 90% of original region
2441 */
2442 sz_sub = ALIGN_DOWN(damon_rand(1, 10) *
2443 sz_region / 10, min_sz_region);
2444 /* Do not allow blank region */
2445 if (sz_sub == 0 || sz_sub >= sz_region)
2446 continue;
2447
2448 damon_split_region_at(t, r, sz_sub);
2449 sz_region = sz_sub;
2450 }
2451 }
2452 }
2453
2454 /*
2455 * Split every target region into randomly-sized small regions
2456 *
2457 * This function splits every target region into random-sized small regions if
2458 * current total number of the regions is equal or smaller than half of the
2459 * user-specified maximum number of regions. This is for maximizing the
2460 * monitoring accuracy under the dynamically changeable access patterns. If a
2461 * split was unnecessarily made, later 'kdamond_merge_regions()' will revert
2462 * it.
2463 */
kdamond_split_regions(struct damon_ctx * ctx)2464 static void kdamond_split_regions(struct damon_ctx *ctx)
2465 {
2466 struct damon_target *t;
2467 unsigned int nr_regions = 0;
2468 static unsigned int last_nr_regions;
2469 int nr_subregions = 2;
2470
2471 damon_for_each_target(t, ctx)
2472 nr_regions += damon_nr_regions(t);
2473
2474 if (nr_regions > ctx->attrs.max_nr_regions / 2)
2475 return;
2476
2477 /* Maybe the middle of the region has different access frequency */
2478 if (last_nr_regions == nr_regions &&
2479 nr_regions < ctx->attrs.max_nr_regions / 3)
2480 nr_subregions = 3;
2481
2482 damon_for_each_target(t, ctx)
2483 damon_split_regions_of(t, nr_subregions, ctx->min_sz_region);
2484
2485 last_nr_regions = nr_regions;
2486 }
2487
2488 /*
2489 * Check whether current monitoring should be stopped
2490 *
2491 * The monitoring is stopped when either the user requested to stop, or all
2492 * monitoring targets are invalid.
2493 *
2494 * Returns true if need to stop current monitoring.
2495 */
kdamond_need_stop(struct damon_ctx * ctx)2496 static bool kdamond_need_stop(struct damon_ctx *ctx)
2497 {
2498 struct damon_target *t;
2499
2500 if (kthread_should_stop())
2501 return true;
2502
2503 if (!ctx->ops.target_valid)
2504 return false;
2505
2506 damon_for_each_target(t, ctx) {
2507 if (ctx->ops.target_valid(t))
2508 return false;
2509 }
2510
2511 return true;
2512 }
2513
damos_get_wmark_metric_value(enum damos_wmark_metric metric,unsigned long * metric_value)2514 static int damos_get_wmark_metric_value(enum damos_wmark_metric metric,
2515 unsigned long *metric_value)
2516 {
2517 switch (metric) {
2518 case DAMOS_WMARK_FREE_MEM_RATE:
2519 *metric_value = global_zone_page_state(NR_FREE_PAGES) * 1000 /
2520 totalram_pages();
2521 return 0;
2522 default:
2523 break;
2524 }
2525 return -EINVAL;
2526 }
2527
2528 /*
2529 * Returns zero if the scheme is active. Else, returns time to wait for next
2530 * watermark check in micro-seconds.
2531 */
damos_wmark_wait_us(struct damos * scheme)2532 static unsigned long damos_wmark_wait_us(struct damos *scheme)
2533 {
2534 unsigned long metric;
2535
2536 if (damos_get_wmark_metric_value(scheme->wmarks.metric, &metric))
2537 return 0;
2538
2539 /* higher than high watermark or lower than low watermark */
2540 if (metric > scheme->wmarks.high || scheme->wmarks.low > metric) {
2541 if (scheme->wmarks.activated)
2542 pr_debug("deactivate a scheme (%d) for %s wmark\n",
2543 scheme->action,
2544 str_high_low(metric > scheme->wmarks.high));
2545 scheme->wmarks.activated = false;
2546 return scheme->wmarks.interval;
2547 }
2548
2549 /* inactive and higher than middle watermark */
2550 if ((scheme->wmarks.high >= metric && metric >= scheme->wmarks.mid) &&
2551 !scheme->wmarks.activated)
2552 return scheme->wmarks.interval;
2553
2554 if (!scheme->wmarks.activated)
2555 pr_debug("activate a scheme (%d)\n", scheme->action);
2556 scheme->wmarks.activated = true;
2557 return 0;
2558 }
2559
kdamond_usleep(unsigned long usecs)2560 static void kdamond_usleep(unsigned long usecs)
2561 {
2562 if (usecs >= USLEEP_RANGE_UPPER_BOUND)
2563 schedule_timeout_idle(usecs_to_jiffies(usecs));
2564 else
2565 usleep_range_idle(usecs, usecs + 1);
2566 }
2567
2568 /*
2569 * kdamond_call() - handle damon_call_control objects.
2570 * @ctx: The &struct damon_ctx of the kdamond.
2571 * @cancel: Whether to cancel the invocation of the function.
2572 *
2573 * If there are &struct damon_call_control requests that registered via
2574 * &damon_call() on @ctx, do or cancel the invocation of the function depending
2575 * on @cancel. @cancel is set when the kdamond is already out of the main loop
2576 * and therefore will be terminated.
2577 */
kdamond_call(struct damon_ctx * ctx,bool cancel)2578 static void kdamond_call(struct damon_ctx *ctx, bool cancel)
2579 {
2580 struct damon_call_control *control;
2581 LIST_HEAD(repeat_controls);
2582 int ret = 0;
2583
2584 while (true) {
2585 mutex_lock(&ctx->call_controls_lock);
2586 control = list_first_entry_or_null(&ctx->call_controls,
2587 struct damon_call_control, list);
2588 mutex_unlock(&ctx->call_controls_lock);
2589 if (!control)
2590 break;
2591 if (cancel) {
2592 control->canceled = true;
2593 } else {
2594 ret = control->fn(control->data);
2595 control->return_code = ret;
2596 }
2597 mutex_lock(&ctx->call_controls_lock);
2598 list_del(&control->list);
2599 mutex_unlock(&ctx->call_controls_lock);
2600 if (!control->repeat) {
2601 complete(&control->completion);
2602 } else if (control->canceled && control->dealloc_on_cancel) {
2603 kfree(control);
2604 continue;
2605 } else {
2606 list_add(&control->list, &repeat_controls);
2607 }
2608 }
2609 control = list_first_entry_or_null(&repeat_controls,
2610 struct damon_call_control, list);
2611 if (!control || cancel)
2612 return;
2613 mutex_lock(&ctx->call_controls_lock);
2614 list_add_tail(&control->list, &ctx->call_controls);
2615 mutex_unlock(&ctx->call_controls_lock);
2616 }
2617
2618 /* Returns negative error code if it's not activated but should return */
kdamond_wait_activation(struct damon_ctx * ctx)2619 static int kdamond_wait_activation(struct damon_ctx *ctx)
2620 {
2621 struct damos *s;
2622 unsigned long wait_time;
2623 unsigned long min_wait_time = 0;
2624 bool init_wait_time = false;
2625
2626 while (!kdamond_need_stop(ctx)) {
2627 damon_for_each_scheme(s, ctx) {
2628 wait_time = damos_wmark_wait_us(s);
2629 if (!init_wait_time || wait_time < min_wait_time) {
2630 init_wait_time = true;
2631 min_wait_time = wait_time;
2632 }
2633 }
2634 if (!min_wait_time)
2635 return 0;
2636
2637 kdamond_usleep(min_wait_time);
2638
2639 kdamond_call(ctx, false);
2640 damos_walk_cancel(ctx);
2641 }
2642 return -EBUSY;
2643 }
2644
kdamond_init_ctx(struct damon_ctx * ctx)2645 static void kdamond_init_ctx(struct damon_ctx *ctx)
2646 {
2647 unsigned long sample_interval = ctx->attrs.sample_interval ?
2648 ctx->attrs.sample_interval : 1;
2649 unsigned long apply_interval;
2650 struct damos *scheme;
2651
2652 ctx->passed_sample_intervals = 0;
2653 ctx->next_aggregation_sis = ctx->attrs.aggr_interval / sample_interval;
2654 ctx->next_ops_update_sis = ctx->attrs.ops_update_interval /
2655 sample_interval;
2656 ctx->next_intervals_tune_sis = ctx->next_aggregation_sis *
2657 ctx->attrs.intervals_goal.aggrs;
2658
2659 damon_for_each_scheme(scheme, ctx) {
2660 apply_interval = scheme->apply_interval_us ?
2661 scheme->apply_interval_us : ctx->attrs.aggr_interval;
2662 scheme->next_apply_sis = apply_interval / sample_interval;
2663 damos_set_filters_default_reject(scheme);
2664 }
2665 }
2666
2667 /*
2668 * The monitoring daemon that runs as a kernel thread
2669 */
kdamond_fn(void * data)2670 static int kdamond_fn(void *data)
2671 {
2672 struct damon_ctx *ctx = data;
2673 struct damon_target *t;
2674 struct damon_region *r, *next;
2675 unsigned int max_nr_accesses = 0;
2676 unsigned long sz_limit = 0;
2677
2678 pr_debug("kdamond (%d) starts\n", current->pid);
2679
2680 complete(&ctx->kdamond_started);
2681 kdamond_init_ctx(ctx);
2682
2683 if (ctx->ops.init)
2684 ctx->ops.init(ctx);
2685 ctx->regions_score_histogram = kmalloc_array(DAMOS_MAX_SCORE + 1,
2686 sizeof(*ctx->regions_score_histogram), GFP_KERNEL);
2687 if (!ctx->regions_score_histogram)
2688 goto done;
2689
2690 sz_limit = damon_region_sz_limit(ctx);
2691
2692 while (!kdamond_need_stop(ctx)) {
2693 /*
2694 * ctx->attrs and ctx->next_{aggregation,ops_update}_sis could
2695 * be changed from kdamond_call(). Read the values here, and
2696 * use those for this iteration. That is, damon_set_attrs()
2697 * updated new values are respected from next iteration.
2698 */
2699 unsigned long next_aggregation_sis = ctx->next_aggregation_sis;
2700 unsigned long next_ops_update_sis = ctx->next_ops_update_sis;
2701 unsigned long sample_interval = ctx->attrs.sample_interval;
2702
2703 if (kdamond_wait_activation(ctx))
2704 break;
2705
2706 if (ctx->ops.prepare_access_checks)
2707 ctx->ops.prepare_access_checks(ctx);
2708
2709 kdamond_usleep(sample_interval);
2710 ctx->passed_sample_intervals++;
2711
2712 if (ctx->ops.check_accesses)
2713 max_nr_accesses = ctx->ops.check_accesses(ctx);
2714
2715 if (ctx->passed_sample_intervals >= next_aggregation_sis)
2716 kdamond_merge_regions(ctx,
2717 max_nr_accesses / 10,
2718 sz_limit);
2719
2720 /*
2721 * do kdamond_call() and kdamond_apply_schemes() after
2722 * kdamond_merge_regions() if possible, to reduce overhead
2723 */
2724 kdamond_call(ctx, false);
2725 if (!list_empty(&ctx->schemes))
2726 kdamond_apply_schemes(ctx);
2727 else
2728 damos_walk_cancel(ctx);
2729
2730 sample_interval = ctx->attrs.sample_interval ?
2731 ctx->attrs.sample_interval : 1;
2732 if (ctx->passed_sample_intervals >= next_aggregation_sis) {
2733 if (ctx->attrs.intervals_goal.aggrs &&
2734 ctx->passed_sample_intervals >=
2735 ctx->next_intervals_tune_sis) {
2736 /*
2737 * ctx->next_aggregation_sis might be updated
2738 * from kdamond_call(). In the case,
2739 * damon_set_attrs() which will be called from
2740 * kdamond_tune_interval() may wrongly think
2741 * this is in the middle of the current
2742 * aggregation, and make aggregation
2743 * information reset for all regions. Then,
2744 * following kdamond_reset_aggregated() call
2745 * will make the region information invalid,
2746 * particularly for ->nr_accesses_bp.
2747 *
2748 * Reset ->next_aggregation_sis to avoid that.
2749 * It will anyway correctly updated after this
2750 * if caluse.
2751 */
2752 ctx->next_aggregation_sis =
2753 next_aggregation_sis;
2754 ctx->next_intervals_tune_sis +=
2755 ctx->attrs.aggr_samples *
2756 ctx->attrs.intervals_goal.aggrs;
2757 kdamond_tune_intervals(ctx);
2758 sample_interval = ctx->attrs.sample_interval ?
2759 ctx->attrs.sample_interval : 1;
2760
2761 }
2762 ctx->next_aggregation_sis = next_aggregation_sis +
2763 ctx->attrs.aggr_interval / sample_interval;
2764
2765 kdamond_reset_aggregated(ctx);
2766 kdamond_split_regions(ctx);
2767 }
2768
2769 if (ctx->passed_sample_intervals >= next_ops_update_sis) {
2770 ctx->next_ops_update_sis = next_ops_update_sis +
2771 ctx->attrs.ops_update_interval /
2772 sample_interval;
2773 if (ctx->ops.update)
2774 ctx->ops.update(ctx);
2775 sz_limit = damon_region_sz_limit(ctx);
2776 }
2777 }
2778 done:
2779 damon_for_each_target(t, ctx) {
2780 damon_for_each_region_safe(r, next, t)
2781 damon_destroy_region(r, t);
2782 }
2783
2784 if (ctx->ops.cleanup)
2785 ctx->ops.cleanup(ctx);
2786 kfree(ctx->regions_score_histogram);
2787 kdamond_call(ctx, true);
2788
2789 pr_debug("kdamond (%d) finishes\n", current->pid);
2790 mutex_lock(&ctx->kdamond_lock);
2791 ctx->kdamond = NULL;
2792 mutex_unlock(&ctx->kdamond_lock);
2793
2794 damos_walk_cancel(ctx);
2795
2796 mutex_lock(&damon_lock);
2797 nr_running_ctxs--;
2798 if (!nr_running_ctxs && running_exclusive_ctxs)
2799 running_exclusive_ctxs = false;
2800 mutex_unlock(&damon_lock);
2801
2802 damon_destroy_targets(ctx);
2803 return 0;
2804 }
2805
2806 /*
2807 * struct damon_system_ram_region - System RAM resource address region of
2808 * [@start, @end).
2809 * @start: Start address of the region (inclusive).
2810 * @end: End address of the region (exclusive).
2811 */
2812 struct damon_system_ram_region {
2813 unsigned long start;
2814 unsigned long end;
2815 };
2816
walk_system_ram(struct resource * res,void * arg)2817 static int walk_system_ram(struct resource *res, void *arg)
2818 {
2819 struct damon_system_ram_region *a = arg;
2820
2821 if (a->end - a->start < resource_size(res)) {
2822 a->start = res->start;
2823 a->end = res->end;
2824 }
2825 return 0;
2826 }
2827
2828 /*
2829 * Find biggest 'System RAM' resource and store its start and end address in
2830 * @start and @end, respectively. If no System RAM is found, returns false.
2831 */
damon_find_biggest_system_ram(unsigned long * start,unsigned long * end)2832 static bool damon_find_biggest_system_ram(unsigned long *start,
2833 unsigned long *end)
2834
2835 {
2836 struct damon_system_ram_region arg = {};
2837
2838 walk_system_ram_res(0, ULONG_MAX, &arg, walk_system_ram);
2839 if (arg.end <= arg.start)
2840 return false;
2841
2842 *start = arg.start;
2843 *end = arg.end;
2844 return true;
2845 }
2846
2847 /**
2848 * damon_set_region_biggest_system_ram_default() - Set the region of the given
2849 * monitoring target as requested, or biggest 'System RAM'.
2850 * @t: The monitoring target to set the region.
2851 * @start: The pointer to the start address of the region.
2852 * @end: The pointer to the end address of the region.
2853 * @min_sz_region: Minimum region size.
2854 *
2855 * This function sets the region of @t as requested by @start and @end. If the
2856 * values of @start and @end are zero, however, this function finds the biggest
2857 * 'System RAM' resource and sets the region to cover the resource. In the
2858 * latter case, this function saves the start and end addresses of the resource
2859 * in @start and @end, respectively.
2860 *
2861 * Return: 0 on success, negative error code otherwise.
2862 */
damon_set_region_biggest_system_ram_default(struct damon_target * t,unsigned long * start,unsigned long * end,unsigned long min_sz_region)2863 int damon_set_region_biggest_system_ram_default(struct damon_target *t,
2864 unsigned long *start, unsigned long *end,
2865 unsigned long min_sz_region)
2866 {
2867 struct damon_addr_range addr_range;
2868
2869 if (*start > *end)
2870 return -EINVAL;
2871
2872 if (!*start && !*end &&
2873 !damon_find_biggest_system_ram(start, end))
2874 return -EINVAL;
2875
2876 addr_range.start = *start;
2877 addr_range.end = *end;
2878 return damon_set_regions(t, &addr_range, 1, min_sz_region);
2879 }
2880
2881 /*
2882 * damon_moving_sum() - Calculate an inferred moving sum value.
2883 * @mvsum: Inferred sum of the last @len_window values.
2884 * @nomvsum: Non-moving sum of the last discrete @len_window window values.
2885 * @len_window: The number of last values to take care of.
2886 * @new_value: New value that will be added to the pseudo moving sum.
2887 *
2888 * Moving sum (moving average * window size) is good for handling noise, but
2889 * the cost of keeping past values can be high for arbitrary window size. This
2890 * function implements a lightweight pseudo moving sum function that doesn't
2891 * keep the past window values.
2892 *
2893 * It simply assumes there was no noise in the past, and get the no-noise
2894 * assumed past value to drop from @nomvsum and @len_window. @nomvsum is a
2895 * non-moving sum of the last window. For example, if @len_window is 10 and we
2896 * have 25 values, @nomvsum is the sum of the 11th to 20th values of the 25
2897 * values. Hence, this function simply drops @nomvsum / @len_window from
2898 * given @mvsum and add @new_value.
2899 *
2900 * For example, if @len_window is 10 and @nomvsum is 50, the last 10 values for
2901 * the last window could be vary, e.g., 0, 10, 0, 10, 0, 10, 0, 0, 0, 20. For
2902 * calculating next moving sum with a new value, we should drop 0 from 50 and
2903 * add the new value. However, this function assumes it got value 5 for each
2904 * of the last ten times. Based on the assumption, when the next value is
2905 * measured, it drops the assumed past value, 5 from the current sum, and add
2906 * the new value to get the updated pseduo-moving average.
2907 *
2908 * This means the value could have errors, but the errors will be disappeared
2909 * for every @len_window aligned calls. For example, if @len_window is 10, the
2910 * pseudo moving sum with 11th value to 19th value would have an error. But
2911 * the sum with 20th value will not have the error.
2912 *
2913 * Return: Pseudo-moving average after getting the @new_value.
2914 */
damon_moving_sum(unsigned int mvsum,unsigned int nomvsum,unsigned int len_window,unsigned int new_value)2915 static unsigned int damon_moving_sum(unsigned int mvsum, unsigned int nomvsum,
2916 unsigned int len_window, unsigned int new_value)
2917 {
2918 return mvsum - nomvsum / len_window + new_value;
2919 }
2920
2921 /**
2922 * damon_update_region_access_rate() - Update the access rate of a region.
2923 * @r: The DAMON region to update for its access check result.
2924 * @accessed: Whether the region has accessed during last sampling interval.
2925 * @attrs: The damon_attrs of the DAMON context.
2926 *
2927 * Update the access rate of a region with the region's last sampling interval
2928 * access check result.
2929 *
2930 * Usually this will be called by &damon_operations->check_accesses callback.
2931 */
damon_update_region_access_rate(struct damon_region * r,bool accessed,struct damon_attrs * attrs)2932 void damon_update_region_access_rate(struct damon_region *r, bool accessed,
2933 struct damon_attrs *attrs)
2934 {
2935 unsigned int len_window = 1;
2936
2937 /*
2938 * sample_interval can be zero, but cannot be larger than
2939 * aggr_interval, owing to validation of damon_set_attrs().
2940 */
2941 if (attrs->sample_interval)
2942 len_window = damon_max_nr_accesses(attrs);
2943 r->nr_accesses_bp = damon_moving_sum(r->nr_accesses_bp,
2944 r->last_nr_accesses * 10000, len_window,
2945 accessed ? 10000 : 0);
2946
2947 if (accessed)
2948 r->nr_accesses++;
2949 }
2950
2951 /**
2952 * damon_initialized() - Return if DAMON is ready to be used.
2953 *
2954 * Return: true if DAMON is ready to be used, false otherwise.
2955 */
damon_initialized(void)2956 bool damon_initialized(void)
2957 {
2958 return damon_region_cache != NULL;
2959 }
2960
damon_init(void)2961 static int __init damon_init(void)
2962 {
2963 damon_region_cache = KMEM_CACHE(damon_region, 0);
2964 if (unlikely(!damon_region_cache)) {
2965 pr_err("creating damon_region_cache fails\n");
2966 return -ENOMEM;
2967 }
2968
2969 return 0;
2970 }
2971
2972 subsys_initcall(damon_init);
2973
2974 #include "tests/core-kunit.h"
2975