1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * fs/fs-writeback.c
4 *
5 * Copyright (C) 2002, Linus Torvalds.
6 *
7 * Contains all the functions related to writing back and waiting
8 * upon dirty inodes against superblocks, and writing back dirty
9 * pages against inodes. ie: data writeback. Writeout of the
10 * inode itself is not handled here.
11 *
12 * 10Apr2002 Andrew Morton
13 * Split out of fs/inode.c
14 * Additions for address_space-based writeback
15 */
16
17 #include <linux/kernel.h>
18 #include <linux/export.h>
19 #include <linux/spinlock.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/fs.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/kthread.h>
26 #include <linux/writeback.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/tracepoint.h>
30 #include <linux/device.h>
31 #include <linux/memcontrol.h>
32 #include "internal.h"
33
34 /*
35 * 4MB minimal write chunk size
36 */
37 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_SHIFT - 10))
38
39 /*
40 * Passed into wb_writeback(), essentially a subset of writeback_control
41 */
42 struct wb_writeback_work {
43 long nr_pages;
44 struct super_block *sb;
45 enum writeback_sync_modes sync_mode;
46 unsigned int tagged_writepages:1;
47 unsigned int for_kupdate:1;
48 unsigned int range_cyclic:1;
49 unsigned int for_background:1;
50 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
51 unsigned int auto_free:1; /* free on completion */
52 enum wb_reason reason; /* why was writeback initiated? */
53
54 struct list_head list; /* pending work list */
55 struct wb_completion *done; /* set if the caller waits */
56 };
57
58 /*
59 * If an inode is constantly having its pages dirtied, but then the
60 * updates stop dirtytime_expire_interval seconds in the past, it's
61 * possible for the worst case time between when an inode has its
62 * timestamps updated and when they finally get written out to be two
63 * dirtytime_expire_intervals. We set the default to 12 hours (in
64 * seconds), which means most of the time inodes will have their
65 * timestamps written to disk after 12 hours, but in the worst case a
66 * few inodes might not their timestamps updated for 24 hours.
67 */
68 static unsigned int dirtytime_expire_interval = 12 * 60 * 60;
69
wb_inode(struct list_head * head)70 static inline struct inode *wb_inode(struct list_head *head)
71 {
72 return list_entry(head, struct inode, i_io_list);
73 }
74
75 /*
76 * Include the creation of the trace points after defining the
77 * wb_writeback_work structure and inline functions so that the definition
78 * remains local to this file.
79 */
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/writeback.h>
82
83 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
84
wb_io_lists_populated(struct bdi_writeback * wb)85 static bool wb_io_lists_populated(struct bdi_writeback *wb)
86 {
87 if (wb_has_dirty_io(wb)) {
88 return false;
89 } else {
90 set_bit(WB_has_dirty_io, &wb->state);
91 WARN_ON_ONCE(!wb->avg_write_bandwidth);
92 atomic_long_add(wb->avg_write_bandwidth,
93 &wb->bdi->tot_write_bandwidth);
94 return true;
95 }
96 }
97
wb_io_lists_depopulated(struct bdi_writeback * wb)98 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
99 {
100 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
101 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
102 clear_bit(WB_has_dirty_io, &wb->state);
103 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
104 &wb->bdi->tot_write_bandwidth) < 0);
105 }
106 }
107
108 /**
109 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
110 * @inode: inode to be moved
111 * @wb: target bdi_writeback
112 * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
113 *
114 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
115 * Returns %true if @inode is the first occupant of the !dirty_time IO
116 * lists; otherwise, %false.
117 */
inode_io_list_move_locked(struct inode * inode,struct bdi_writeback * wb,struct list_head * head)118 static bool inode_io_list_move_locked(struct inode *inode,
119 struct bdi_writeback *wb,
120 struct list_head *head)
121 {
122 assert_spin_locked(&wb->list_lock);
123 assert_spin_locked(&inode->i_lock);
124 WARN_ON_ONCE(inode->i_state & I_FREEING);
125
126 list_move(&inode->i_io_list, head);
127
128 /* dirty_time doesn't count as dirty_io until expiration */
129 if (head != &wb->b_dirty_time)
130 return wb_io_lists_populated(wb);
131
132 wb_io_lists_depopulated(wb);
133 return false;
134 }
135
wb_wakeup(struct bdi_writeback * wb)136 static void wb_wakeup(struct bdi_writeback *wb)
137 {
138 spin_lock_irq(&wb->work_lock);
139 if (test_bit(WB_registered, &wb->state))
140 mod_delayed_work(bdi_wq, &wb->dwork, 0);
141 spin_unlock_irq(&wb->work_lock);
142 }
143
144 /*
145 * This function is used when the first inode for this wb is marked dirty. It
146 * wakes-up the corresponding bdi thread which should then take care of the
147 * periodic background write-out of dirty inodes. Since the write-out would
148 * starts only 'dirty_writeback_interval' centisecs from now anyway, we just
149 * set up a timer which wakes the bdi thread up later.
150 *
151 * Note, we wouldn't bother setting up the timer, but this function is on the
152 * fast-path (used by '__mark_inode_dirty()'), so we save few context switches
153 * by delaying the wake-up.
154 *
155 * We have to be careful not to postpone flush work if it is scheduled for
156 * earlier. Thus we use queue_delayed_work().
157 */
wb_wakeup_delayed(struct bdi_writeback * wb)158 static void wb_wakeup_delayed(struct bdi_writeback *wb)
159 {
160 unsigned long timeout;
161
162 timeout = msecs_to_jiffies(dirty_writeback_interval * 10);
163 spin_lock_irq(&wb->work_lock);
164 if (test_bit(WB_registered, &wb->state))
165 queue_delayed_work(bdi_wq, &wb->dwork, timeout);
166 spin_unlock_irq(&wb->work_lock);
167 }
168
finish_writeback_work(struct wb_writeback_work * work)169 static void finish_writeback_work(struct wb_writeback_work *work)
170 {
171 struct wb_completion *done = work->done;
172
173 if (work->auto_free)
174 kfree(work);
175 if (done) {
176 wait_queue_head_t *waitq = done->waitq;
177
178 /* @done can't be accessed after the following dec */
179 if (atomic_dec_and_test(&done->cnt))
180 wake_up_all(waitq);
181 }
182 }
183
wb_queue_work(struct bdi_writeback * wb,struct wb_writeback_work * work)184 static void wb_queue_work(struct bdi_writeback *wb,
185 struct wb_writeback_work *work)
186 {
187 trace_writeback_queue(wb, work);
188
189 if (work->done)
190 atomic_inc(&work->done->cnt);
191
192 spin_lock_irq(&wb->work_lock);
193
194 if (test_bit(WB_registered, &wb->state)) {
195 list_add_tail(&work->list, &wb->work_list);
196 mod_delayed_work(bdi_wq, &wb->dwork, 0);
197 } else
198 finish_writeback_work(work);
199
200 spin_unlock_irq(&wb->work_lock);
201 }
202
203 /**
204 * wb_wait_for_completion - wait for completion of bdi_writeback_works
205 * @done: target wb_completion
206 *
207 * Wait for one or more work items issued to @bdi with their ->done field
208 * set to @done, which should have been initialized with
209 * DEFINE_WB_COMPLETION(). This function returns after all such work items
210 * are completed. Work items which are waited upon aren't freed
211 * automatically on completion.
212 */
wb_wait_for_completion(struct wb_completion * done)213 void wb_wait_for_completion(struct wb_completion *done)
214 {
215 atomic_dec(&done->cnt); /* put down the initial count */
216 wait_event(*done->waitq, !atomic_read(&done->cnt));
217 }
218
219 #ifdef CONFIG_CGROUP_WRITEBACK
220
221 /*
222 * Parameters for foreign inode detection, see wbc_detach_inode() to see
223 * how they're used.
224 *
225 * These paramters are inherently heuristical as the detection target
226 * itself is fuzzy. All we want to do is detaching an inode from the
227 * current owner if it's being written to by some other cgroups too much.
228 *
229 * The current cgroup writeback is built on the assumption that multiple
230 * cgroups writing to the same inode concurrently is very rare and a mode
231 * of operation which isn't well supported. As such, the goal is not
232 * taking too long when a different cgroup takes over an inode while
233 * avoiding too aggressive flip-flops from occasional foreign writes.
234 *
235 * We record, very roughly, 2s worth of IO time history and if more than
236 * half of that is foreign, trigger the switch. The recording is quantized
237 * to 16 slots. To avoid tiny writes from swinging the decision too much,
238 * writes smaller than 1/8 of avg size are ignored.
239 */
240 #define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */
241 #define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */
242 #define WB_FRN_TIME_CUT_DIV 8 /* ignore rounds < avg / 8 */
243 #define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */
244
245 #define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */
246 #define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
247 /* each slot's duration is 2s / 16 */
248 #define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2)
249 /* if foreign slots >= 8, switch */
250 #define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1)
251 /* one round can affect upto 5 slots */
252 #define WB_FRN_MAX_IN_FLIGHT 1024 /* don't queue too many concurrently */
253
254 /*
255 * Maximum inodes per isw. A specific value has been chosen to make
256 * struct inode_switch_wbs_context fit into 1024 bytes kmalloc.
257 */
258 #define WB_MAX_INODES_PER_ISW ((1024UL - sizeof(struct inode_switch_wbs_context)) \
259 / sizeof(struct inode *))
260
261 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
262 static struct workqueue_struct *isw_wq;
263
__inode_attach_wb(struct inode * inode,struct folio * folio)264 void __inode_attach_wb(struct inode *inode, struct folio *folio)
265 {
266 struct backing_dev_info *bdi = inode_to_bdi(inode);
267 struct bdi_writeback *wb = NULL;
268
269 if (inode_cgwb_enabled(inode)) {
270 struct cgroup_subsys_state *memcg_css;
271
272 if (folio) {
273 memcg_css = mem_cgroup_css_from_folio(folio);
274 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
275 } else {
276 /* must pin memcg_css, see wb_get_create() */
277 memcg_css = task_get_css(current, memory_cgrp_id);
278 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
279 css_put(memcg_css);
280 }
281 }
282
283 if (!wb)
284 wb = &bdi->wb;
285
286 /*
287 * There may be multiple instances of this function racing to
288 * update the same inode. Use cmpxchg() to tell the winner.
289 */
290 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
291 wb_put(wb);
292 }
293
294 /**
295 * inode_cgwb_move_to_attached - put the inode onto wb->b_attached list
296 * @inode: inode of interest with i_lock held
297 * @wb: target bdi_writeback
298 *
299 * Remove the inode from wb's io lists and if necessarily put onto b_attached
300 * list. Only inodes attached to cgwb's are kept on this list.
301 */
inode_cgwb_move_to_attached(struct inode * inode,struct bdi_writeback * wb)302 static void inode_cgwb_move_to_attached(struct inode *inode,
303 struct bdi_writeback *wb)
304 {
305 assert_spin_locked(&wb->list_lock);
306 assert_spin_locked(&inode->i_lock);
307 WARN_ON_ONCE(inode->i_state & I_FREEING);
308
309 inode->i_state &= ~I_SYNC_QUEUED;
310 if (wb != &wb->bdi->wb)
311 list_move(&inode->i_io_list, &wb->b_attached);
312 else
313 list_del_init(&inode->i_io_list);
314 wb_io_lists_depopulated(wb);
315 }
316
317 /**
318 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
319 * @inode: inode of interest with i_lock held
320 *
321 * Returns @inode's wb with its list_lock held. @inode->i_lock must be
322 * held on entry and is released on return. The returned wb is guaranteed
323 * to stay @inode's associated wb until its list_lock is released.
324 */
325 static struct bdi_writeback *
locked_inode_to_wb_and_lock_list(struct inode * inode)326 locked_inode_to_wb_and_lock_list(struct inode *inode)
327 __releases(&inode->i_lock)
328 __acquires(&wb->list_lock)
329 {
330 while (true) {
331 struct bdi_writeback *wb = inode_to_wb(inode);
332
333 /*
334 * inode_to_wb() association is protected by both
335 * @inode->i_lock and @wb->list_lock but list_lock nests
336 * outside i_lock. Drop i_lock and verify that the
337 * association hasn't changed after acquiring list_lock.
338 */
339 wb_get(wb);
340 spin_unlock(&inode->i_lock);
341 spin_lock(&wb->list_lock);
342
343 /* i_wb may have changed inbetween, can't use inode_to_wb() */
344 if (likely(wb == inode->i_wb)) {
345 wb_put(wb); /* @inode already has ref */
346 return wb;
347 }
348
349 spin_unlock(&wb->list_lock);
350 wb_put(wb);
351 cpu_relax();
352 spin_lock(&inode->i_lock);
353 }
354 }
355
356 /**
357 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
358 * @inode: inode of interest
359 *
360 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
361 * on entry.
362 */
inode_to_wb_and_lock_list(struct inode * inode)363 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
364 __acquires(&wb->list_lock)
365 {
366 spin_lock(&inode->i_lock);
367 return locked_inode_to_wb_and_lock_list(inode);
368 }
369
370 struct inode_switch_wbs_context {
371 /* List of queued switching contexts for the wb */
372 struct llist_node list;
373
374 /*
375 * Multiple inodes can be switched at once. The switching procedure
376 * consists of two parts, separated by a RCU grace period. To make
377 * sure that the second part is executed for each inode gone through
378 * the first part, all inode pointers are placed into a NULL-terminated
379 * array embedded into struct inode_switch_wbs_context. Otherwise
380 * an inode could be left in a non-consistent state.
381 */
382 struct inode *inodes[];
383 };
384
bdi_down_write_wb_switch_rwsem(struct backing_dev_info * bdi)385 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
386 {
387 down_write(&bdi->wb_switch_rwsem);
388 }
389
bdi_up_write_wb_switch_rwsem(struct backing_dev_info * bdi)390 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
391 {
392 up_write(&bdi->wb_switch_rwsem);
393 }
394
inode_do_switch_wbs(struct inode * inode,struct bdi_writeback * old_wb,struct bdi_writeback * new_wb)395 static bool inode_do_switch_wbs(struct inode *inode,
396 struct bdi_writeback *old_wb,
397 struct bdi_writeback *new_wb)
398 {
399 struct address_space *mapping = inode->i_mapping;
400 XA_STATE(xas, &mapping->i_pages, 0);
401 struct folio *folio;
402 bool switched = false;
403
404 spin_lock(&inode->i_lock);
405 xa_lock_irq(&mapping->i_pages);
406
407 /*
408 * Once I_FREEING or I_WILL_FREE are visible under i_lock, the eviction
409 * path owns the inode and we shouldn't modify ->i_io_list.
410 */
411 if (unlikely(inode->i_state & (I_FREEING | I_WILL_FREE)))
412 goto skip_switch;
413
414 trace_inode_switch_wbs(inode, old_wb, new_wb);
415
416 /*
417 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points
418 * to possibly dirty folios while PAGECACHE_TAG_WRITEBACK points to
419 * folios actually under writeback.
420 */
421 xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
422 if (folio_test_dirty(folio)) {
423 long nr = folio_nr_pages(folio);
424 wb_stat_mod(old_wb, WB_RECLAIMABLE, -nr);
425 wb_stat_mod(new_wb, WB_RECLAIMABLE, nr);
426 }
427 }
428
429 xas_set(&xas, 0);
430 xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
431 long nr = folio_nr_pages(folio);
432 WARN_ON_ONCE(!folio_test_writeback(folio));
433 wb_stat_mod(old_wb, WB_WRITEBACK, -nr);
434 wb_stat_mod(new_wb, WB_WRITEBACK, nr);
435 }
436
437 if (mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) {
438 atomic_dec(&old_wb->writeback_inodes);
439 atomic_inc(&new_wb->writeback_inodes);
440 }
441
442 wb_get(new_wb);
443
444 /*
445 * Transfer to @new_wb's IO list if necessary. If the @inode is dirty,
446 * the specific list @inode was on is ignored and the @inode is put on
447 * ->b_dirty which is always correct including from ->b_dirty_time.
448 * If the @inode was clean, it means it was on the b_attached list, so
449 * move it onto the b_attached list of @new_wb.
450 */
451 if (!list_empty(&inode->i_io_list)) {
452 inode->i_wb = new_wb;
453
454 if (inode->i_state & I_DIRTY_ALL) {
455 /*
456 * We need to keep b_dirty list sorted by
457 * dirtied_time_when. However properly sorting the
458 * inode in the list gets too expensive when switching
459 * many inodes. So just attach inode at the end of the
460 * dirty list and clobber the dirtied_time_when.
461 */
462 inode->dirtied_time_when = jiffies;
463 inode_io_list_move_locked(inode, new_wb,
464 &new_wb->b_dirty);
465 } else {
466 inode_cgwb_move_to_attached(inode, new_wb);
467 }
468 } else {
469 inode->i_wb = new_wb;
470 }
471
472 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
473 inode->i_wb_frn_winner = 0;
474 inode->i_wb_frn_avg_time = 0;
475 inode->i_wb_frn_history = 0;
476 switched = true;
477 skip_switch:
478 /*
479 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
480 * ensures that the new wb is visible if they see !I_WB_SWITCH.
481 */
482 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
483
484 xa_unlock_irq(&mapping->i_pages);
485 spin_unlock(&inode->i_lock);
486
487 return switched;
488 }
489
process_inode_switch_wbs(struct bdi_writeback * new_wb,struct inode_switch_wbs_context * isw)490 static void process_inode_switch_wbs(struct bdi_writeback *new_wb,
491 struct inode_switch_wbs_context *isw)
492 {
493 struct backing_dev_info *bdi = inode_to_bdi(isw->inodes[0]);
494 struct bdi_writeback *old_wb = isw->inodes[0]->i_wb;
495 unsigned long nr_switched = 0;
496 struct inode **inodep;
497
498 /*
499 * If @inode switches cgwb membership while sync_inodes_sb() is
500 * being issued, sync_inodes_sb() might miss it. Synchronize.
501 */
502 down_read(&bdi->wb_switch_rwsem);
503
504 inodep = isw->inodes;
505 /*
506 * By the time control reaches here, RCU grace period has passed
507 * since I_WB_SWITCH assertion and all wb stat update transactions
508 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
509 * synchronizing against the i_pages lock.
510 *
511 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
512 * gives us exclusion against all wb related operations on @inode
513 * including IO list manipulations and stat updates.
514 */
515 relock:
516 if (old_wb < new_wb) {
517 spin_lock(&old_wb->list_lock);
518 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
519 } else {
520 spin_lock(&new_wb->list_lock);
521 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
522 }
523
524 while (*inodep) {
525 WARN_ON_ONCE((*inodep)->i_wb != old_wb);
526 if (inode_do_switch_wbs(*inodep, old_wb, new_wb))
527 nr_switched++;
528 inodep++;
529 if (*inodep && need_resched()) {
530 spin_unlock(&new_wb->list_lock);
531 spin_unlock(&old_wb->list_lock);
532 cond_resched();
533 goto relock;
534 }
535 }
536
537 spin_unlock(&new_wb->list_lock);
538 spin_unlock(&old_wb->list_lock);
539
540 up_read(&bdi->wb_switch_rwsem);
541
542 if (nr_switched) {
543 wb_wakeup(new_wb);
544 wb_put_many(old_wb, nr_switched);
545 }
546
547 for (inodep = isw->inodes; *inodep; inodep++)
548 iput(*inodep);
549 wb_put(new_wb);
550 kfree(isw);
551 atomic_dec(&isw_nr_in_flight);
552 }
553
inode_switch_wbs_work_fn(struct work_struct * work)554 void inode_switch_wbs_work_fn(struct work_struct *work)
555 {
556 struct bdi_writeback *new_wb = container_of(work, struct bdi_writeback,
557 switch_work);
558 struct inode_switch_wbs_context *isw, *next_isw;
559 struct llist_node *list;
560
561 /*
562 * Grab out reference to wb so that it cannot get freed under us
563 * after we process all the isw items.
564 */
565 wb_get(new_wb);
566 while (1) {
567 list = llist_del_all(&new_wb->switch_wbs_ctxs);
568 /* Nothing to do? */
569 if (!list)
570 break;
571 /*
572 * In addition to synchronizing among switchers, I_WB_SWITCH
573 * tells the RCU protected stat update paths to grab the i_page
574 * lock so that stat transfer can synchronize against them.
575 * Let's continue after I_WB_SWITCH is guaranteed to be
576 * visible.
577 */
578 synchronize_rcu();
579
580 llist_for_each_entry_safe(isw, next_isw, list, list)
581 process_inode_switch_wbs(new_wb, isw);
582 }
583 wb_put(new_wb);
584 }
585
inode_prepare_wbs_switch(struct inode * inode,struct bdi_writeback * new_wb)586 static bool inode_prepare_wbs_switch(struct inode *inode,
587 struct bdi_writeback *new_wb)
588 {
589 /*
590 * Paired with smp_mb() in cgroup_writeback_umount().
591 * isw_nr_in_flight must be increased before checking SB_ACTIVE and
592 * grabbing an inode, otherwise isw_nr_in_flight can be observed as 0
593 * in cgroup_writeback_umount() and the isw_wq will be not flushed.
594 */
595 smp_mb();
596
597 if (IS_DAX(inode))
598 return false;
599
600 /* while holding I_WB_SWITCH, no one else can update the association */
601 spin_lock(&inode->i_lock);
602 if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
603 inode->i_state & (I_WB_SWITCH | I_FREEING | I_WILL_FREE) ||
604 inode_to_wb(inode) == new_wb) {
605 spin_unlock(&inode->i_lock);
606 return false;
607 }
608 inode->i_state |= I_WB_SWITCH;
609 __iget(inode);
610 spin_unlock(&inode->i_lock);
611
612 return true;
613 }
614
wb_queue_isw(struct bdi_writeback * wb,struct inode_switch_wbs_context * isw)615 static void wb_queue_isw(struct bdi_writeback *wb,
616 struct inode_switch_wbs_context *isw)
617 {
618 if (llist_add(&isw->list, &wb->switch_wbs_ctxs))
619 queue_work(isw_wq, &wb->switch_work);
620 }
621
622 /**
623 * inode_switch_wbs - change the wb association of an inode
624 * @inode: target inode
625 * @new_wb_id: ID of the new wb
626 *
627 * Switch @inode's wb association to the wb identified by @new_wb_id. The
628 * switching is performed asynchronously and may fail silently.
629 */
inode_switch_wbs(struct inode * inode,int new_wb_id)630 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
631 {
632 struct backing_dev_info *bdi = inode_to_bdi(inode);
633 struct cgroup_subsys_state *memcg_css;
634 struct inode_switch_wbs_context *isw;
635 struct bdi_writeback *new_wb = NULL;
636
637 /* noop if seems to be already in progress */
638 if (inode->i_state & I_WB_SWITCH)
639 return;
640
641 /* avoid queueing a new switch if too many are already in flight */
642 if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT)
643 return;
644
645 isw = kzalloc(struct_size(isw, inodes, 2), GFP_ATOMIC);
646 if (!isw)
647 return;
648
649 atomic_inc(&isw_nr_in_flight);
650
651 /* find and pin the new wb */
652 rcu_read_lock();
653 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
654 if (memcg_css && !css_tryget(memcg_css))
655 memcg_css = NULL;
656 rcu_read_unlock();
657 if (!memcg_css)
658 goto out_free;
659
660 new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
661 css_put(memcg_css);
662 if (!new_wb)
663 goto out_free;
664
665 if (!inode_prepare_wbs_switch(inode, new_wb))
666 goto out_free;
667
668 isw->inodes[0] = inode;
669
670 trace_inode_switch_wbs_queue(inode->i_wb, new_wb, 1);
671 wb_queue_isw(new_wb, isw);
672 return;
673
674 out_free:
675 atomic_dec(&isw_nr_in_flight);
676 if (new_wb)
677 wb_put(new_wb);
678 kfree(isw);
679 }
680
isw_prepare_wbs_switch(struct bdi_writeback * new_wb,struct inode_switch_wbs_context * isw,struct list_head * list,int * nr)681 static bool isw_prepare_wbs_switch(struct bdi_writeback *new_wb,
682 struct inode_switch_wbs_context *isw,
683 struct list_head *list, int *nr)
684 {
685 struct inode *inode;
686
687 list_for_each_entry(inode, list, i_io_list) {
688 if (!inode_prepare_wbs_switch(inode, new_wb))
689 continue;
690
691 isw->inodes[*nr] = inode;
692 (*nr)++;
693
694 if (*nr >= WB_MAX_INODES_PER_ISW - 1)
695 return true;
696 }
697 return false;
698 }
699
700 /**
701 * cleanup_offline_cgwb - detach associated inodes
702 * @wb: target wb
703 *
704 * Switch all inodes attached to @wb to a nearest living ancestor's wb in order
705 * to eventually release the dying @wb. Returns %true if not all inodes were
706 * switched and the function has to be restarted.
707 */
cleanup_offline_cgwb(struct bdi_writeback * wb)708 bool cleanup_offline_cgwb(struct bdi_writeback *wb)
709 {
710 struct cgroup_subsys_state *memcg_css;
711 struct inode_switch_wbs_context *isw;
712 struct bdi_writeback *new_wb;
713 int nr;
714 bool restart = false;
715
716 isw = kzalloc(struct_size(isw, inodes, WB_MAX_INODES_PER_ISW),
717 GFP_KERNEL);
718 if (!isw)
719 return restart;
720
721 atomic_inc(&isw_nr_in_flight);
722
723 for (memcg_css = wb->memcg_css->parent; memcg_css;
724 memcg_css = memcg_css->parent) {
725 new_wb = wb_get_create(wb->bdi, memcg_css, GFP_KERNEL);
726 if (new_wb)
727 break;
728 }
729 if (unlikely(!new_wb))
730 new_wb = &wb->bdi->wb; /* wb_get() is noop for bdi's wb */
731
732 nr = 0;
733 spin_lock(&wb->list_lock);
734 /*
735 * In addition to the inodes that have completed writeback, also switch
736 * cgwbs for those inodes only with dirty timestamps. Otherwise, those
737 * inodes won't be written back for a long time when lazytime is
738 * enabled, and thus pinning the dying cgwbs. It won't break the
739 * bandwidth restrictions, as writeback of inode metadata is not
740 * accounted for.
741 */
742 restart = isw_prepare_wbs_switch(new_wb, isw, &wb->b_attached, &nr);
743 if (!restart)
744 restart = isw_prepare_wbs_switch(new_wb, isw, &wb->b_dirty_time,
745 &nr);
746 spin_unlock(&wb->list_lock);
747
748 /* no attached inodes? bail out */
749 if (nr == 0) {
750 atomic_dec(&isw_nr_in_flight);
751 wb_put(new_wb);
752 kfree(isw);
753 return restart;
754 }
755
756 trace_inode_switch_wbs_queue(wb, new_wb, nr);
757 wb_queue_isw(new_wb, isw);
758
759 return restart;
760 }
761
762 /**
763 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
764 * @wbc: writeback_control of interest
765 * @inode: target inode
766 *
767 * @inode is locked and about to be written back under the control of @wbc.
768 * Record @inode's writeback context into @wbc and unlock the i_lock. On
769 * writeback completion, wbc_detach_inode() should be called. This is used
770 * to track the cgroup writeback context.
771 */
wbc_attach_and_unlock_inode(struct writeback_control * wbc,struct inode * inode)772 static void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
773 struct inode *inode)
774 __releases(&inode->i_lock)
775 {
776 if (!inode_cgwb_enabled(inode)) {
777 spin_unlock(&inode->i_lock);
778 return;
779 }
780
781 wbc->wb = inode_to_wb(inode);
782 wbc->inode = inode;
783
784 wbc->wb_id = wbc->wb->memcg_css->id;
785 wbc->wb_lcand_id = inode->i_wb_frn_winner;
786 wbc->wb_tcand_id = 0;
787 wbc->wb_bytes = 0;
788 wbc->wb_lcand_bytes = 0;
789 wbc->wb_tcand_bytes = 0;
790
791 wb_get(wbc->wb);
792 spin_unlock(&inode->i_lock);
793
794 /*
795 * A dying wb indicates that either the blkcg associated with the
796 * memcg changed or the associated memcg is dying. In the first
797 * case, a replacement wb should already be available and we should
798 * refresh the wb immediately. In the second case, trying to
799 * refresh will keep failing.
800 */
801 if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css)))
802 inode_switch_wbs(inode, wbc->wb_id);
803 }
804
805 /**
806 * wbc_attach_fdatawrite_inode - associate wbc and inode for fdatawrite
807 * @wbc: writeback_control of interest
808 * @inode: target inode
809 *
810 * This function is to be used by __filemap_fdatawrite_range(), which is an
811 * alternative entry point into writeback code, and first ensures @inode is
812 * associated with a bdi_writeback and attaches it to @wbc.
813 */
wbc_attach_fdatawrite_inode(struct writeback_control * wbc,struct inode * inode)814 void wbc_attach_fdatawrite_inode(struct writeback_control *wbc,
815 struct inode *inode)
816 {
817 spin_lock(&inode->i_lock);
818 inode_attach_wb(inode, NULL);
819 wbc_attach_and_unlock_inode(wbc, inode);
820 }
821 EXPORT_SYMBOL_GPL(wbc_attach_fdatawrite_inode);
822
823 /**
824 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
825 * @wbc: writeback_control of the just finished writeback
826 *
827 * To be called after a writeback attempt of an inode finishes and undoes
828 * wbc_attach_and_unlock_inode(). Can be called under any context.
829 *
830 * As concurrent write sharing of an inode is expected to be very rare and
831 * memcg only tracks page ownership on first-use basis severely confining
832 * the usefulness of such sharing, cgroup writeback tracks ownership
833 * per-inode. While the support for concurrent write sharing of an inode
834 * is deemed unnecessary, an inode being written to by different cgroups at
835 * different points in time is a lot more common, and, more importantly,
836 * charging only by first-use can too readily lead to grossly incorrect
837 * behaviors (single foreign page can lead to gigabytes of writeback to be
838 * incorrectly attributed).
839 *
840 * To resolve this issue, cgroup writeback detects the majority dirtier of
841 * an inode and transfers the ownership to it. To avoid unnecessary
842 * oscillation, the detection mechanism keeps track of history and gives
843 * out the switch verdict only if the foreign usage pattern is stable over
844 * a certain amount of time and/or writeback attempts.
845 *
846 * On each writeback attempt, @wbc tries to detect the majority writer
847 * using Boyer-Moore majority vote algorithm. In addition to the byte
848 * count from the majority voting, it also counts the bytes written for the
849 * current wb and the last round's winner wb (max of last round's current
850 * wb, the winner from two rounds ago, and the last round's majority
851 * candidate). Keeping track of the historical winner helps the algorithm
852 * to semi-reliably detect the most active writer even when it's not the
853 * absolute majority.
854 *
855 * Once the winner of the round is determined, whether the winner is
856 * foreign or not and how much IO time the round consumed is recorded in
857 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is
858 * over a certain threshold, the switch verdict is given.
859 */
wbc_detach_inode(struct writeback_control * wbc)860 void wbc_detach_inode(struct writeback_control *wbc)
861 {
862 struct bdi_writeback *wb = wbc->wb;
863 struct inode *inode = wbc->inode;
864 unsigned long avg_time, max_bytes, max_time;
865 u16 history;
866 int max_id;
867
868 if (!wb)
869 return;
870
871 history = inode->i_wb_frn_history;
872 avg_time = inode->i_wb_frn_avg_time;
873
874 /* pick the winner of this round */
875 if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
876 wbc->wb_bytes >= wbc->wb_tcand_bytes) {
877 max_id = wbc->wb_id;
878 max_bytes = wbc->wb_bytes;
879 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
880 max_id = wbc->wb_lcand_id;
881 max_bytes = wbc->wb_lcand_bytes;
882 } else {
883 max_id = wbc->wb_tcand_id;
884 max_bytes = wbc->wb_tcand_bytes;
885 }
886
887 /*
888 * Calculate the amount of IO time the winner consumed and fold it
889 * into the running average kept per inode. If the consumed IO
890 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
891 * deciding whether to switch or not. This is to prevent one-off
892 * small dirtiers from skewing the verdict.
893 */
894 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
895 wb->avg_write_bandwidth);
896 if (avg_time)
897 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
898 (avg_time >> WB_FRN_TIME_AVG_SHIFT);
899 else
900 avg_time = max_time; /* immediate catch up on first run */
901
902 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
903 int slots;
904
905 /*
906 * The switch verdict is reached if foreign wb's consume
907 * more than a certain proportion of IO time in a
908 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot
909 * history mask where each bit represents one sixteenth of
910 * the period. Determine the number of slots to shift into
911 * history from @max_time.
912 */
913 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
914 (unsigned long)WB_FRN_HIST_MAX_SLOTS);
915 history <<= slots;
916 if (wbc->wb_id != max_id)
917 history |= (1U << slots) - 1;
918
919 if (history)
920 trace_inode_foreign_history(inode, wbc, history);
921
922 /*
923 * Switch if the current wb isn't the consistent winner.
924 * If there are multiple closely competing dirtiers, the
925 * inode may switch across them repeatedly over time, which
926 * is okay. The main goal is avoiding keeping an inode on
927 * the wrong wb for an extended period of time.
928 */
929 if (hweight16(history) > WB_FRN_HIST_THR_SLOTS)
930 inode_switch_wbs(inode, max_id);
931 }
932
933 /*
934 * Multiple instances of this function may race to update the
935 * following fields but we don't mind occassional inaccuracies.
936 */
937 inode->i_wb_frn_winner = max_id;
938 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
939 inode->i_wb_frn_history = history;
940
941 wb_put(wbc->wb);
942 wbc->wb = NULL;
943 }
944 EXPORT_SYMBOL_GPL(wbc_detach_inode);
945
946 /**
947 * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership
948 * @wbc: writeback_control of the writeback in progress
949 * @folio: folio being written out
950 * @bytes: number of bytes being written out
951 *
952 * @bytes from @folio are about to written out during the writeback
953 * controlled by @wbc. Keep the book for foreign inode detection. See
954 * wbc_detach_inode().
955 */
wbc_account_cgroup_owner(struct writeback_control * wbc,struct folio * folio,size_t bytes)956 void wbc_account_cgroup_owner(struct writeback_control *wbc, struct folio *folio,
957 size_t bytes)
958 {
959 struct cgroup_subsys_state *css;
960 int id;
961
962 /*
963 * pageout() path doesn't attach @wbc to the inode being written
964 * out. This is intentional as we don't want the function to block
965 * behind a slow cgroup. Ultimately, we want pageout() to kick off
966 * regular writeback instead of writing things out itself.
967 */
968 if (!wbc->wb || wbc->no_cgroup_owner)
969 return;
970
971 css = mem_cgroup_css_from_folio(folio);
972 /* dead cgroups shouldn't contribute to inode ownership arbitration */
973 if (!(css->flags & CSS_ONLINE))
974 return;
975
976 id = css->id;
977
978 if (id == wbc->wb_id) {
979 wbc->wb_bytes += bytes;
980 return;
981 }
982
983 if (id == wbc->wb_lcand_id)
984 wbc->wb_lcand_bytes += bytes;
985
986 /* Boyer-Moore majority vote algorithm */
987 if (!wbc->wb_tcand_bytes)
988 wbc->wb_tcand_id = id;
989 if (id == wbc->wb_tcand_id)
990 wbc->wb_tcand_bytes += bytes;
991 else
992 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
993 }
994 EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner);
995
996 /**
997 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
998 * @wb: target bdi_writeback to split @nr_pages to
999 * @nr_pages: number of pages to write for the whole bdi
1000 *
1001 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
1002 * relation to the total write bandwidth of all wb's w/ dirty inodes on
1003 * @wb->bdi.
1004 */
wb_split_bdi_pages(struct bdi_writeback * wb,long nr_pages)1005 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
1006 {
1007 unsigned long this_bw = wb->avg_write_bandwidth;
1008 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
1009
1010 if (nr_pages == LONG_MAX)
1011 return LONG_MAX;
1012
1013 /*
1014 * This may be called on clean wb's and proportional distribution
1015 * may not make sense, just use the original @nr_pages in those
1016 * cases. In general, we wanna err on the side of writing more.
1017 */
1018 if (!tot_bw || this_bw >= tot_bw)
1019 return nr_pages;
1020 else
1021 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
1022 }
1023
1024 /**
1025 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
1026 * @bdi: target backing_dev_info
1027 * @base_work: wb_writeback_work to issue
1028 * @skip_if_busy: skip wb's which already have writeback in progress
1029 *
1030 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
1031 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's
1032 * distributed to the busy wbs according to each wb's proportion in the
1033 * total active write bandwidth of @bdi.
1034 */
bdi_split_work_to_wbs(struct backing_dev_info * bdi,struct wb_writeback_work * base_work,bool skip_if_busy)1035 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
1036 struct wb_writeback_work *base_work,
1037 bool skip_if_busy)
1038 {
1039 struct bdi_writeback *last_wb = NULL;
1040 struct bdi_writeback *wb = list_entry(&bdi->wb_list,
1041 struct bdi_writeback, bdi_node);
1042
1043 might_sleep();
1044 restart:
1045 rcu_read_lock();
1046 list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
1047 DEFINE_WB_COMPLETION(fallback_work_done, bdi);
1048 struct wb_writeback_work fallback_work;
1049 struct wb_writeback_work *work;
1050 long nr_pages;
1051
1052 if (last_wb) {
1053 wb_put(last_wb);
1054 last_wb = NULL;
1055 }
1056
1057 /* SYNC_ALL writes out I_DIRTY_TIME too */
1058 if (!wb_has_dirty_io(wb) &&
1059 (base_work->sync_mode == WB_SYNC_NONE ||
1060 list_empty(&wb->b_dirty_time)))
1061 continue;
1062 if (skip_if_busy && writeback_in_progress(wb))
1063 continue;
1064
1065 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
1066
1067 work = kmalloc(sizeof(*work), GFP_ATOMIC);
1068 if (work) {
1069 *work = *base_work;
1070 work->nr_pages = nr_pages;
1071 work->auto_free = 1;
1072 wb_queue_work(wb, work);
1073 continue;
1074 }
1075
1076 /*
1077 * If wb_tryget fails, the wb has been shutdown, skip it.
1078 *
1079 * Pin @wb so that it stays on @bdi->wb_list. This allows
1080 * continuing iteration from @wb after dropping and
1081 * regrabbing rcu read lock.
1082 */
1083 if (!wb_tryget(wb))
1084 continue;
1085
1086 /* alloc failed, execute synchronously using on-stack fallback */
1087 work = &fallback_work;
1088 *work = *base_work;
1089 work->nr_pages = nr_pages;
1090 work->auto_free = 0;
1091 work->done = &fallback_work_done;
1092
1093 wb_queue_work(wb, work);
1094 last_wb = wb;
1095
1096 rcu_read_unlock();
1097 wb_wait_for_completion(&fallback_work_done);
1098 goto restart;
1099 }
1100 rcu_read_unlock();
1101
1102 if (last_wb)
1103 wb_put(last_wb);
1104 }
1105
1106 /**
1107 * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs
1108 * @bdi_id: target bdi id
1109 * @memcg_id: target memcg css id
1110 * @reason: reason why some writeback work initiated
1111 * @done: target wb_completion
1112 *
1113 * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id
1114 * with the specified parameters.
1115 */
cgroup_writeback_by_id(u64 bdi_id,int memcg_id,enum wb_reason reason,struct wb_completion * done)1116 int cgroup_writeback_by_id(u64 bdi_id, int memcg_id,
1117 enum wb_reason reason, struct wb_completion *done)
1118 {
1119 struct backing_dev_info *bdi;
1120 struct cgroup_subsys_state *memcg_css;
1121 struct bdi_writeback *wb;
1122 struct wb_writeback_work *work;
1123 unsigned long dirty;
1124 int ret;
1125
1126 /* lookup bdi and memcg */
1127 bdi = bdi_get_by_id(bdi_id);
1128 if (!bdi)
1129 return -ENOENT;
1130
1131 rcu_read_lock();
1132 memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys);
1133 if (memcg_css && !css_tryget(memcg_css))
1134 memcg_css = NULL;
1135 rcu_read_unlock();
1136 if (!memcg_css) {
1137 ret = -ENOENT;
1138 goto out_bdi_put;
1139 }
1140
1141 /*
1142 * And find the associated wb. If the wb isn't there already
1143 * there's nothing to flush, don't create one.
1144 */
1145 wb = wb_get_lookup(bdi, memcg_css);
1146 if (!wb) {
1147 ret = -ENOENT;
1148 goto out_css_put;
1149 }
1150
1151 /*
1152 * The caller is attempting to write out most of
1153 * the currently dirty pages. Let's take the current dirty page
1154 * count and inflate it by 25% which should be large enough to
1155 * flush out most dirty pages while avoiding getting livelocked by
1156 * concurrent dirtiers.
1157 *
1158 * BTW the memcg stats are flushed periodically and this is best-effort
1159 * estimation, so some potential error is ok.
1160 */
1161 dirty = memcg_page_state(mem_cgroup_from_css(memcg_css), NR_FILE_DIRTY);
1162 dirty = dirty * 10 / 8;
1163
1164 /* issue the writeback work */
1165 work = kzalloc(sizeof(*work), GFP_NOWAIT);
1166 if (work) {
1167 work->nr_pages = dirty;
1168 work->sync_mode = WB_SYNC_NONE;
1169 work->range_cyclic = 1;
1170 work->reason = reason;
1171 work->done = done;
1172 work->auto_free = 1;
1173 wb_queue_work(wb, work);
1174 ret = 0;
1175 } else {
1176 ret = -ENOMEM;
1177 }
1178
1179 wb_put(wb);
1180 out_css_put:
1181 css_put(memcg_css);
1182 out_bdi_put:
1183 bdi_put(bdi);
1184 return ret;
1185 }
1186
1187 /**
1188 * cgroup_writeback_umount - flush inode wb switches for umount
1189 * @sb: target super_block
1190 *
1191 * This function is called when a super_block is about to be destroyed and
1192 * flushes in-flight inode wb switches. An inode wb switch goes through
1193 * RCU and then workqueue, so the two need to be flushed in order to ensure
1194 * that all previously scheduled switches are finished. As wb switches are
1195 * rare occurrences and synchronize_rcu() can take a while, perform
1196 * flushing iff wb switches are in flight.
1197 */
cgroup_writeback_umount(struct super_block * sb)1198 void cgroup_writeback_umount(struct super_block *sb)
1199 {
1200
1201 if (!(sb->s_bdi->capabilities & BDI_CAP_WRITEBACK))
1202 return;
1203
1204 /*
1205 * SB_ACTIVE should be reliably cleared before checking
1206 * isw_nr_in_flight, see generic_shutdown_super().
1207 */
1208 smp_mb();
1209
1210 if (atomic_read(&isw_nr_in_flight)) {
1211 /*
1212 * Use rcu_barrier() to wait for all pending callbacks to
1213 * ensure that all in-flight wb switches are in the workqueue.
1214 */
1215 rcu_barrier();
1216 flush_workqueue(isw_wq);
1217 }
1218 }
1219
cgroup_writeback_init(void)1220 static int __init cgroup_writeback_init(void)
1221 {
1222 isw_wq = alloc_workqueue("inode_switch_wbs", WQ_PERCPU, 0);
1223 if (!isw_wq)
1224 return -ENOMEM;
1225 return 0;
1226 }
1227 fs_initcall(cgroup_writeback_init);
1228
1229 #else /* CONFIG_CGROUP_WRITEBACK */
1230
bdi_down_write_wb_switch_rwsem(struct backing_dev_info * bdi)1231 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
bdi_up_write_wb_switch_rwsem(struct backing_dev_info * bdi)1232 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1233
inode_cgwb_move_to_attached(struct inode * inode,struct bdi_writeback * wb)1234 static void inode_cgwb_move_to_attached(struct inode *inode,
1235 struct bdi_writeback *wb)
1236 {
1237 assert_spin_locked(&wb->list_lock);
1238 assert_spin_locked(&inode->i_lock);
1239 WARN_ON_ONCE(inode->i_state & I_FREEING);
1240
1241 inode->i_state &= ~I_SYNC_QUEUED;
1242 list_del_init(&inode->i_io_list);
1243 wb_io_lists_depopulated(wb);
1244 }
1245
1246 static struct bdi_writeback *
locked_inode_to_wb_and_lock_list(struct inode * inode)1247 locked_inode_to_wb_and_lock_list(struct inode *inode)
1248 __releases(&inode->i_lock)
1249 __acquires(&wb->list_lock)
1250 {
1251 struct bdi_writeback *wb = inode_to_wb(inode);
1252
1253 spin_unlock(&inode->i_lock);
1254 spin_lock(&wb->list_lock);
1255 return wb;
1256 }
1257
inode_to_wb_and_lock_list(struct inode * inode)1258 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
1259 __acquires(&wb->list_lock)
1260 {
1261 struct bdi_writeback *wb = inode_to_wb(inode);
1262
1263 spin_lock(&wb->list_lock);
1264 return wb;
1265 }
1266
wb_split_bdi_pages(struct bdi_writeback * wb,long nr_pages)1267 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
1268 {
1269 return nr_pages;
1270 }
1271
bdi_split_work_to_wbs(struct backing_dev_info * bdi,struct wb_writeback_work * base_work,bool skip_if_busy)1272 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
1273 struct wb_writeback_work *base_work,
1274 bool skip_if_busy)
1275 {
1276 might_sleep();
1277
1278 if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
1279 base_work->auto_free = 0;
1280 wb_queue_work(&bdi->wb, base_work);
1281 }
1282 }
1283
wbc_attach_and_unlock_inode(struct writeback_control * wbc,struct inode * inode)1284 static inline void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
1285 struct inode *inode)
1286 __releases(&inode->i_lock)
1287 {
1288 spin_unlock(&inode->i_lock);
1289 }
1290
1291 #endif /* CONFIG_CGROUP_WRITEBACK */
1292
1293 /*
1294 * Add in the number of potentially dirty inodes, because each inode
1295 * write can dirty pagecache in the underlying blockdev.
1296 */
get_nr_dirty_pages(void)1297 static unsigned long get_nr_dirty_pages(void)
1298 {
1299 return global_node_page_state(NR_FILE_DIRTY) +
1300 get_nr_dirty_inodes();
1301 }
1302
wb_start_writeback(struct bdi_writeback * wb,enum wb_reason reason)1303 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
1304 {
1305 if (!wb_has_dirty_io(wb))
1306 return;
1307
1308 /*
1309 * All callers of this function want to start writeback of all
1310 * dirty pages. Places like vmscan can call this at a very
1311 * high frequency, causing pointless allocations of tons of
1312 * work items and keeping the flusher threads busy retrieving
1313 * that work. Ensure that we only allow one of them pending and
1314 * inflight at the time.
1315 */
1316 if (test_bit(WB_start_all, &wb->state) ||
1317 test_and_set_bit(WB_start_all, &wb->state))
1318 return;
1319
1320 wb->start_all_reason = reason;
1321 wb_wakeup(wb);
1322 }
1323
1324 /**
1325 * wb_start_background_writeback - start background writeback
1326 * @wb: bdi_writback to write from
1327 *
1328 * Description:
1329 * This makes sure WB_SYNC_NONE background writeback happens. When
1330 * this function returns, it is only guaranteed that for given wb
1331 * some IO is happening if we are over background dirty threshold.
1332 * Caller need not hold sb s_umount semaphore.
1333 */
wb_start_background_writeback(struct bdi_writeback * wb)1334 void wb_start_background_writeback(struct bdi_writeback *wb)
1335 {
1336 /*
1337 * We just wake up the flusher thread. It will perform background
1338 * writeback as soon as there is no other work to do.
1339 */
1340 trace_writeback_wake_background(wb);
1341 wb_wakeup(wb);
1342 }
1343
1344 /*
1345 * Remove the inode from the writeback list it is on.
1346 */
inode_io_list_del(struct inode * inode)1347 void inode_io_list_del(struct inode *inode)
1348 {
1349 struct bdi_writeback *wb;
1350
1351 wb = inode_to_wb_and_lock_list(inode);
1352 spin_lock(&inode->i_lock);
1353
1354 inode->i_state &= ~I_SYNC_QUEUED;
1355 list_del_init(&inode->i_io_list);
1356 wb_io_lists_depopulated(wb);
1357
1358 spin_unlock(&inode->i_lock);
1359 spin_unlock(&wb->list_lock);
1360 }
1361 EXPORT_SYMBOL(inode_io_list_del);
1362
1363 /*
1364 * mark an inode as under writeback on the sb
1365 */
sb_mark_inode_writeback(struct inode * inode)1366 void sb_mark_inode_writeback(struct inode *inode)
1367 {
1368 struct super_block *sb = inode->i_sb;
1369 unsigned long flags;
1370
1371 if (list_empty(&inode->i_wb_list)) {
1372 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1373 if (list_empty(&inode->i_wb_list)) {
1374 list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1375 trace_sb_mark_inode_writeback(inode);
1376 }
1377 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1378 }
1379 }
1380
1381 /*
1382 * clear an inode as under writeback on the sb
1383 */
sb_clear_inode_writeback(struct inode * inode)1384 void sb_clear_inode_writeback(struct inode *inode)
1385 {
1386 struct super_block *sb = inode->i_sb;
1387 unsigned long flags;
1388
1389 if (!list_empty(&inode->i_wb_list)) {
1390 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1391 if (!list_empty(&inode->i_wb_list)) {
1392 list_del_init(&inode->i_wb_list);
1393 trace_sb_clear_inode_writeback(inode);
1394 }
1395 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1396 }
1397 }
1398
1399 /*
1400 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1401 * furthest end of its superblock's dirty-inode list.
1402 *
1403 * Before stamping the inode's ->dirtied_when, we check to see whether it is
1404 * already the most-recently-dirtied inode on the b_dirty list. If that is
1405 * the case then the inode must have been redirtied while it was being written
1406 * out and we don't reset its dirtied_when.
1407 */
redirty_tail_locked(struct inode * inode,struct bdi_writeback * wb)1408 static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb)
1409 {
1410 assert_spin_locked(&inode->i_lock);
1411
1412 inode->i_state &= ~I_SYNC_QUEUED;
1413 /*
1414 * When the inode is being freed just don't bother with dirty list
1415 * tracking. Flush worker will ignore this inode anyway and it will
1416 * trigger assertions in inode_io_list_move_locked().
1417 */
1418 if (inode->i_state & I_FREEING) {
1419 list_del_init(&inode->i_io_list);
1420 wb_io_lists_depopulated(wb);
1421 return;
1422 }
1423 if (!list_empty(&wb->b_dirty)) {
1424 struct inode *tail;
1425
1426 tail = wb_inode(wb->b_dirty.next);
1427 if (time_before(inode->dirtied_when, tail->dirtied_when))
1428 inode->dirtied_when = jiffies;
1429 }
1430 inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1431 }
1432
redirty_tail(struct inode * inode,struct bdi_writeback * wb)1433 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1434 {
1435 spin_lock(&inode->i_lock);
1436 redirty_tail_locked(inode, wb);
1437 spin_unlock(&inode->i_lock);
1438 }
1439
1440 /*
1441 * requeue inode for re-scanning after bdi->b_io list is exhausted.
1442 */
requeue_io(struct inode * inode,struct bdi_writeback * wb)1443 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1444 {
1445 inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1446 }
1447
inode_sync_complete(struct inode * inode)1448 static void inode_sync_complete(struct inode *inode)
1449 {
1450 assert_spin_locked(&inode->i_lock);
1451
1452 inode->i_state &= ~I_SYNC;
1453 /* If inode is clean an unused, put it into LRU now... */
1454 inode_add_lru(inode);
1455 /* Called with inode->i_lock which ensures memory ordering. */
1456 inode_wake_up_bit(inode, __I_SYNC);
1457 }
1458
inode_dirtied_after(struct inode * inode,unsigned long t)1459 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1460 {
1461 bool ret = time_after(inode->dirtied_when, t);
1462 #ifndef CONFIG_64BIT
1463 /*
1464 * For inodes being constantly redirtied, dirtied_when can get stuck.
1465 * It _appears_ to be in the future, but is actually in distant past.
1466 * This test is necessary to prevent such wrapped-around relative times
1467 * from permanently stopping the whole bdi writeback.
1468 */
1469 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1470 #endif
1471 return ret;
1472 }
1473
1474 /*
1475 * Move expired (dirtied before dirtied_before) dirty inodes from
1476 * @delaying_queue to @dispatch_queue.
1477 */
move_expired_inodes(struct list_head * delaying_queue,struct list_head * dispatch_queue,unsigned long dirtied_before)1478 static int move_expired_inodes(struct list_head *delaying_queue,
1479 struct list_head *dispatch_queue,
1480 unsigned long dirtied_before)
1481 {
1482 LIST_HEAD(tmp);
1483 struct list_head *pos, *node;
1484 struct super_block *sb = NULL;
1485 struct inode *inode;
1486 int do_sb_sort = 0;
1487 int moved = 0;
1488
1489 while (!list_empty(delaying_queue)) {
1490 inode = wb_inode(delaying_queue->prev);
1491 if (inode_dirtied_after(inode, dirtied_before))
1492 break;
1493 spin_lock(&inode->i_lock);
1494 list_move(&inode->i_io_list, &tmp);
1495 moved++;
1496 inode->i_state |= I_SYNC_QUEUED;
1497 spin_unlock(&inode->i_lock);
1498 if (sb_is_blkdev_sb(inode->i_sb))
1499 continue;
1500 if (sb && sb != inode->i_sb)
1501 do_sb_sort = 1;
1502 sb = inode->i_sb;
1503 }
1504
1505 /* just one sb in list, splice to dispatch_queue and we're done */
1506 if (!do_sb_sort) {
1507 list_splice(&tmp, dispatch_queue);
1508 goto out;
1509 }
1510
1511 /*
1512 * Although inode's i_io_list is moved from 'tmp' to 'dispatch_queue',
1513 * we don't take inode->i_lock here because it is just a pointless overhead.
1514 * Inode is already marked as I_SYNC_QUEUED so writeback list handling is
1515 * fully under our control.
1516 */
1517 while (!list_empty(&tmp)) {
1518 sb = wb_inode(tmp.prev)->i_sb;
1519 list_for_each_prev_safe(pos, node, &tmp) {
1520 inode = wb_inode(pos);
1521 if (inode->i_sb == sb)
1522 list_move(&inode->i_io_list, dispatch_queue);
1523 }
1524 }
1525 out:
1526 return moved;
1527 }
1528
1529 /*
1530 * Queue all expired dirty inodes for io, eldest first.
1531 * Before
1532 * newly dirtied b_dirty b_io b_more_io
1533 * =============> gf edc BA
1534 * After
1535 * newly dirtied b_dirty b_io b_more_io
1536 * =============> g fBAedc
1537 * |
1538 * +--> dequeue for IO
1539 */
queue_io(struct bdi_writeback * wb,struct wb_writeback_work * work,unsigned long dirtied_before)1540 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work,
1541 unsigned long dirtied_before)
1542 {
1543 int moved;
1544 unsigned long time_expire_jif = dirtied_before;
1545
1546 assert_spin_locked(&wb->list_lock);
1547 list_splice_init(&wb->b_more_io, &wb->b_io);
1548 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, dirtied_before);
1549 if (!work->for_sync)
1550 time_expire_jif = jiffies - dirtytime_expire_interval * HZ;
1551 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1552 time_expire_jif);
1553 if (moved)
1554 wb_io_lists_populated(wb);
1555 trace_writeback_queue_io(wb, work, dirtied_before, moved);
1556 }
1557
write_inode(struct inode * inode,struct writeback_control * wbc)1558 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1559 {
1560 int ret;
1561
1562 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1563 trace_writeback_write_inode_start(inode, wbc);
1564 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1565 trace_writeback_write_inode(inode, wbc);
1566 return ret;
1567 }
1568 return 0;
1569 }
1570
1571 /*
1572 * Wait for writeback on an inode to complete. Called with i_lock held.
1573 * Caller must make sure inode cannot go away when we drop i_lock.
1574 */
inode_wait_for_writeback(struct inode * inode)1575 void inode_wait_for_writeback(struct inode *inode)
1576 {
1577 struct wait_bit_queue_entry wqe;
1578 struct wait_queue_head *wq_head;
1579
1580 assert_spin_locked(&inode->i_lock);
1581
1582 if (!(inode->i_state & I_SYNC))
1583 return;
1584
1585 wq_head = inode_bit_waitqueue(&wqe, inode, __I_SYNC);
1586 for (;;) {
1587 prepare_to_wait_event(wq_head, &wqe.wq_entry, TASK_UNINTERRUPTIBLE);
1588 /* Checking I_SYNC with inode->i_lock guarantees memory ordering. */
1589 if (!(inode->i_state & I_SYNC))
1590 break;
1591 spin_unlock(&inode->i_lock);
1592 schedule();
1593 spin_lock(&inode->i_lock);
1594 }
1595 finish_wait(wq_head, &wqe.wq_entry);
1596 }
1597
1598 /*
1599 * Sleep until I_SYNC is cleared. This function must be called with i_lock
1600 * held and drops it. It is aimed for callers not holding any inode reference
1601 * so once i_lock is dropped, inode can go away.
1602 */
inode_sleep_on_writeback(struct inode * inode)1603 static void inode_sleep_on_writeback(struct inode *inode)
1604 __releases(inode->i_lock)
1605 {
1606 struct wait_bit_queue_entry wqe;
1607 struct wait_queue_head *wq_head;
1608 bool sleep;
1609
1610 assert_spin_locked(&inode->i_lock);
1611
1612 wq_head = inode_bit_waitqueue(&wqe, inode, __I_SYNC);
1613 prepare_to_wait_event(wq_head, &wqe.wq_entry, TASK_UNINTERRUPTIBLE);
1614 /* Checking I_SYNC with inode->i_lock guarantees memory ordering. */
1615 sleep = !!(inode->i_state & I_SYNC);
1616 spin_unlock(&inode->i_lock);
1617 if (sleep)
1618 schedule();
1619 finish_wait(wq_head, &wqe.wq_entry);
1620 }
1621
1622 /*
1623 * Find proper writeback list for the inode depending on its current state and
1624 * possibly also change of its state while we were doing writeback. Here we
1625 * handle things such as livelock prevention or fairness of writeback among
1626 * inodes. This function can be called only by flusher thread - noone else
1627 * processes all inodes in writeback lists and requeueing inodes behind flusher
1628 * thread's back can have unexpected consequences.
1629 */
requeue_inode(struct inode * inode,struct bdi_writeback * wb,struct writeback_control * wbc,unsigned long dirtied_before)1630 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1631 struct writeback_control *wbc,
1632 unsigned long dirtied_before)
1633 {
1634 if (inode->i_state & I_FREEING)
1635 return;
1636
1637 /*
1638 * Sync livelock prevention. Each inode is tagged and synced in one
1639 * shot. If still dirty, it will be redirty_tail()'ed below. Update
1640 * the dirty time to prevent enqueue and sync it again.
1641 */
1642 if ((inode->i_state & I_DIRTY) &&
1643 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1644 inode->dirtied_when = jiffies;
1645
1646 if (wbc->pages_skipped) {
1647 /*
1648 * Writeback is not making progress due to locked buffers.
1649 * Skip this inode for now. Although having skipped pages
1650 * is odd for clean inodes, it can happen for some
1651 * filesystems so handle that gracefully.
1652 */
1653 if (inode->i_state & I_DIRTY_ALL)
1654 redirty_tail_locked(inode, wb);
1655 else
1656 inode_cgwb_move_to_attached(inode, wb);
1657 return;
1658 }
1659
1660 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1661 /*
1662 * We didn't write back all the pages. nfs_writepages()
1663 * sometimes bales out without doing anything.
1664 */
1665 if (wbc->nr_to_write <= 0 &&
1666 !inode_dirtied_after(inode, dirtied_before)) {
1667 /* Slice used up. Queue for next turn. */
1668 requeue_io(inode, wb);
1669 } else {
1670 /*
1671 * Writeback blocked by something other than
1672 * congestion. Delay the inode for some time to
1673 * avoid spinning on the CPU (100% iowait)
1674 * retrying writeback of the dirty page/inode
1675 * that cannot be performed immediately.
1676 */
1677 redirty_tail_locked(inode, wb);
1678 }
1679 } else if (inode->i_state & I_DIRTY) {
1680 /*
1681 * Filesystems can dirty the inode during writeback operations,
1682 * such as delayed allocation during submission or metadata
1683 * updates after data IO completion.
1684 */
1685 redirty_tail_locked(inode, wb);
1686 } else if (inode->i_state & I_DIRTY_TIME) {
1687 inode->dirtied_when = jiffies;
1688 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1689 inode->i_state &= ~I_SYNC_QUEUED;
1690 } else {
1691 /* The inode is clean. Remove from writeback lists. */
1692 inode_cgwb_move_to_attached(inode, wb);
1693 }
1694 }
1695
1696 /*
1697 * Write out an inode and its dirty pages (or some of its dirty pages, depending
1698 * on @wbc->nr_to_write), and clear the relevant dirty flags from i_state.
1699 *
1700 * This doesn't remove the inode from the writeback list it is on, except
1701 * potentially to move it from b_dirty_time to b_dirty due to timestamp
1702 * expiration. The caller is otherwise responsible for writeback list handling.
1703 *
1704 * The caller is also responsible for setting the I_SYNC flag beforehand and
1705 * calling inode_sync_complete() to clear it afterwards.
1706 */
1707 static int
__writeback_single_inode(struct inode * inode,struct writeback_control * wbc)1708 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1709 {
1710 struct address_space *mapping = inode->i_mapping;
1711 long nr_to_write = wbc->nr_to_write;
1712 unsigned dirty;
1713 int ret;
1714
1715 WARN_ON(!(inode->i_state & I_SYNC));
1716
1717 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1718
1719 ret = do_writepages(mapping, wbc);
1720
1721 /*
1722 * Make sure to wait on the data before writing out the metadata.
1723 * This is important for filesystems that modify metadata on data
1724 * I/O completion. We don't do it for sync(2) writeback because it has a
1725 * separate, external IO completion path and ->sync_fs for guaranteeing
1726 * inode metadata is written back correctly.
1727 */
1728 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1729 int err = filemap_fdatawait(mapping);
1730 if (ret == 0)
1731 ret = err;
1732 }
1733
1734 /*
1735 * If the inode has dirty timestamps and we need to write them, call
1736 * mark_inode_dirty_sync() to notify the filesystem about it and to
1737 * change I_DIRTY_TIME into I_DIRTY_SYNC.
1738 */
1739 if ((inode->i_state & I_DIRTY_TIME) &&
1740 (wbc->sync_mode == WB_SYNC_ALL ||
1741 time_after(jiffies, inode->dirtied_time_when +
1742 dirtytime_expire_interval * HZ))) {
1743 trace_writeback_lazytime(inode);
1744 mark_inode_dirty_sync(inode);
1745 }
1746
1747 /*
1748 * Get and clear the dirty flags from i_state. This needs to be done
1749 * after calling writepages because some filesystems may redirty the
1750 * inode during writepages due to delalloc. It also needs to be done
1751 * after handling timestamp expiration, as that may dirty the inode too.
1752 */
1753 spin_lock(&inode->i_lock);
1754 dirty = inode->i_state & I_DIRTY;
1755 inode->i_state &= ~dirty;
1756
1757 /*
1758 * Paired with smp_mb() in __mark_inode_dirty(). This allows
1759 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1760 * either they see the I_DIRTY bits cleared or we see the dirtied
1761 * inode.
1762 *
1763 * I_DIRTY_PAGES is always cleared together above even if @mapping
1764 * still has dirty pages. The flag is reinstated after smp_mb() if
1765 * necessary. This guarantees that either __mark_inode_dirty()
1766 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1767 */
1768 smp_mb();
1769
1770 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1771 inode->i_state |= I_DIRTY_PAGES;
1772 else if (unlikely(inode->i_state & I_PINNING_NETFS_WB)) {
1773 if (!(inode->i_state & I_DIRTY_PAGES)) {
1774 inode->i_state &= ~I_PINNING_NETFS_WB;
1775 wbc->unpinned_netfs_wb = true;
1776 dirty |= I_PINNING_NETFS_WB; /* Cause write_inode */
1777 }
1778 }
1779
1780 spin_unlock(&inode->i_lock);
1781
1782 /* Don't write the inode if only I_DIRTY_PAGES was set */
1783 if (dirty & ~I_DIRTY_PAGES) {
1784 int err = write_inode(inode, wbc);
1785 if (ret == 0)
1786 ret = err;
1787 }
1788 wbc->unpinned_netfs_wb = false;
1789 trace_writeback_single_inode(inode, wbc, nr_to_write);
1790 return ret;
1791 }
1792
1793 /*
1794 * Write out an inode's dirty data and metadata on-demand, i.e. separately from
1795 * the regular batched writeback done by the flusher threads in
1796 * writeback_sb_inodes(). @wbc controls various aspects of the write, such as
1797 * whether it is a data-integrity sync (%WB_SYNC_ALL) or not (%WB_SYNC_NONE).
1798 *
1799 * To prevent the inode from going away, either the caller must have a reference
1800 * to the inode, or the inode must have I_WILL_FREE or I_FREEING set.
1801 */
writeback_single_inode(struct inode * inode,struct writeback_control * wbc)1802 static int writeback_single_inode(struct inode *inode,
1803 struct writeback_control *wbc)
1804 {
1805 struct bdi_writeback *wb;
1806 int ret = 0;
1807
1808 spin_lock(&inode->i_lock);
1809 if (!icount_read(inode))
1810 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1811 else
1812 WARN_ON(inode->i_state & I_WILL_FREE);
1813
1814 if (inode->i_state & I_SYNC) {
1815 /*
1816 * Writeback is already running on the inode. For WB_SYNC_NONE,
1817 * that's enough and we can just return. For WB_SYNC_ALL, we
1818 * must wait for the existing writeback to complete, then do
1819 * writeback again if there's anything left.
1820 */
1821 if (wbc->sync_mode != WB_SYNC_ALL)
1822 goto out;
1823 inode_wait_for_writeback(inode);
1824 }
1825 WARN_ON(inode->i_state & I_SYNC);
1826 /*
1827 * If the inode is already fully clean, then there's nothing to do.
1828 *
1829 * For data-integrity syncs we also need to check whether any pages are
1830 * still under writeback, e.g. due to prior WB_SYNC_NONE writeback. If
1831 * there are any such pages, we'll need to wait for them.
1832 */
1833 if (!(inode->i_state & I_DIRTY_ALL) &&
1834 (wbc->sync_mode != WB_SYNC_ALL ||
1835 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1836 goto out;
1837 inode->i_state |= I_SYNC;
1838 wbc_attach_and_unlock_inode(wbc, inode);
1839
1840 ret = __writeback_single_inode(inode, wbc);
1841
1842 wbc_detach_inode(wbc);
1843
1844 wb = inode_to_wb_and_lock_list(inode);
1845 spin_lock(&inode->i_lock);
1846 /*
1847 * If the inode is freeing, its i_io_list shoudn't be updated
1848 * as it can be finally deleted at this moment.
1849 */
1850 if (!(inode->i_state & I_FREEING)) {
1851 /*
1852 * If the inode is now fully clean, then it can be safely
1853 * removed from its writeback list (if any). Otherwise the
1854 * flusher threads are responsible for the writeback lists.
1855 */
1856 if (!(inode->i_state & I_DIRTY_ALL))
1857 inode_cgwb_move_to_attached(inode, wb);
1858 else if (!(inode->i_state & I_SYNC_QUEUED)) {
1859 if ((inode->i_state & I_DIRTY))
1860 redirty_tail_locked(inode, wb);
1861 else if (inode->i_state & I_DIRTY_TIME) {
1862 inode->dirtied_when = jiffies;
1863 inode_io_list_move_locked(inode,
1864 wb,
1865 &wb->b_dirty_time);
1866 }
1867 }
1868 }
1869
1870 spin_unlock(&wb->list_lock);
1871 inode_sync_complete(inode);
1872 out:
1873 spin_unlock(&inode->i_lock);
1874 return ret;
1875 }
1876
writeback_chunk_size(struct bdi_writeback * wb,struct wb_writeback_work * work)1877 static long writeback_chunk_size(struct bdi_writeback *wb,
1878 struct wb_writeback_work *work)
1879 {
1880 long pages;
1881
1882 /*
1883 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1884 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1885 * here avoids calling into writeback_inodes_wb() more than once.
1886 *
1887 * The intended call sequence for WB_SYNC_ALL writeback is:
1888 *
1889 * wb_writeback()
1890 * writeback_sb_inodes() <== called only once
1891 * write_cache_pages() <== called once for each inode
1892 * (quickly) tag currently dirty pages
1893 * (maybe slowly) sync all tagged pages
1894 */
1895 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1896 pages = LONG_MAX;
1897 else {
1898 pages = min(wb->avg_write_bandwidth / 2,
1899 global_wb_domain.dirty_limit / DIRTY_SCOPE);
1900 pages = min(pages, work->nr_pages);
1901 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1902 MIN_WRITEBACK_PAGES);
1903 }
1904
1905 return pages;
1906 }
1907
1908 /*
1909 * Write a portion of b_io inodes which belong to @sb.
1910 *
1911 * Return the number of pages and/or inodes written.
1912 *
1913 * NOTE! This is called with wb->list_lock held, and will
1914 * unlock and relock that for each inode it ends up doing
1915 * IO for.
1916 */
writeback_sb_inodes(struct super_block * sb,struct bdi_writeback * wb,struct wb_writeback_work * work)1917 static long writeback_sb_inodes(struct super_block *sb,
1918 struct bdi_writeback *wb,
1919 struct wb_writeback_work *work)
1920 {
1921 struct writeback_control wbc = {
1922 .sync_mode = work->sync_mode,
1923 .tagged_writepages = work->tagged_writepages,
1924 .for_kupdate = work->for_kupdate,
1925 .for_background = work->for_background,
1926 .for_sync = work->for_sync,
1927 .range_cyclic = work->range_cyclic,
1928 .range_start = 0,
1929 .range_end = LLONG_MAX,
1930 };
1931 unsigned long start_time = jiffies;
1932 long write_chunk;
1933 long total_wrote = 0; /* count both pages and inodes */
1934 unsigned long dirtied_before = jiffies;
1935
1936 if (work->for_kupdate)
1937 dirtied_before = jiffies -
1938 msecs_to_jiffies(dirty_expire_interval * 10);
1939
1940 while (!list_empty(&wb->b_io)) {
1941 struct inode *inode = wb_inode(wb->b_io.prev);
1942 struct bdi_writeback *tmp_wb;
1943 long wrote;
1944
1945 if (inode->i_sb != sb) {
1946 if (work->sb) {
1947 /*
1948 * We only want to write back data for this
1949 * superblock, move all inodes not belonging
1950 * to it back onto the dirty list.
1951 */
1952 redirty_tail(inode, wb);
1953 continue;
1954 }
1955
1956 /*
1957 * The inode belongs to a different superblock.
1958 * Bounce back to the caller to unpin this and
1959 * pin the next superblock.
1960 */
1961 break;
1962 }
1963
1964 /*
1965 * Don't bother with new inodes or inodes being freed, first
1966 * kind does not need periodic writeout yet, and for the latter
1967 * kind writeout is handled by the freer.
1968 */
1969 spin_lock(&inode->i_lock);
1970 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1971 redirty_tail_locked(inode, wb);
1972 spin_unlock(&inode->i_lock);
1973 continue;
1974 }
1975 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1976 /*
1977 * If this inode is locked for writeback and we are not
1978 * doing writeback-for-data-integrity, move it to
1979 * b_more_io so that writeback can proceed with the
1980 * other inodes on s_io.
1981 *
1982 * We'll have another go at writing back this inode
1983 * when we completed a full scan of b_io.
1984 */
1985 requeue_io(inode, wb);
1986 spin_unlock(&inode->i_lock);
1987 trace_writeback_sb_inodes_requeue(inode);
1988 continue;
1989 }
1990 spin_unlock(&wb->list_lock);
1991
1992 /*
1993 * We already requeued the inode if it had I_SYNC set and we
1994 * are doing WB_SYNC_NONE writeback. So this catches only the
1995 * WB_SYNC_ALL case.
1996 */
1997 if (inode->i_state & I_SYNC) {
1998 /* Wait for I_SYNC. This function drops i_lock... */
1999 inode_sleep_on_writeback(inode);
2000 /* Inode may be gone, start again */
2001 spin_lock(&wb->list_lock);
2002 continue;
2003 }
2004 inode->i_state |= I_SYNC;
2005 wbc_attach_and_unlock_inode(&wbc, inode);
2006
2007 write_chunk = writeback_chunk_size(wb, work);
2008 wbc.nr_to_write = write_chunk;
2009 wbc.pages_skipped = 0;
2010
2011 /*
2012 * We use I_SYNC to pin the inode in memory. While it is set
2013 * evict_inode() will wait so the inode cannot be freed.
2014 */
2015 __writeback_single_inode(inode, &wbc);
2016
2017 wbc_detach_inode(&wbc);
2018 work->nr_pages -= write_chunk - wbc.nr_to_write;
2019 wrote = write_chunk - wbc.nr_to_write - wbc.pages_skipped;
2020 wrote = wrote < 0 ? 0 : wrote;
2021 total_wrote += wrote;
2022
2023 if (need_resched()) {
2024 /*
2025 * We're trying to balance between building up a nice
2026 * long list of IOs to improve our merge rate, and
2027 * getting those IOs out quickly for anyone throttling
2028 * in balance_dirty_pages(). cond_resched() doesn't
2029 * unplug, so get our IOs out the door before we
2030 * give up the CPU.
2031 */
2032 blk_flush_plug(current->plug, false);
2033 cond_resched();
2034 }
2035
2036 /*
2037 * Requeue @inode if still dirty. Be careful as @inode may
2038 * have been switched to another wb in the meantime.
2039 */
2040 tmp_wb = inode_to_wb_and_lock_list(inode);
2041 spin_lock(&inode->i_lock);
2042 if (!(inode->i_state & I_DIRTY_ALL))
2043 total_wrote++;
2044 requeue_inode(inode, tmp_wb, &wbc, dirtied_before);
2045 inode_sync_complete(inode);
2046 spin_unlock(&inode->i_lock);
2047
2048 if (unlikely(tmp_wb != wb)) {
2049 spin_unlock(&tmp_wb->list_lock);
2050 spin_lock(&wb->list_lock);
2051 }
2052
2053 /*
2054 * bail out to wb_writeback() often enough to check
2055 * background threshold and other termination conditions.
2056 */
2057 if (total_wrote) {
2058 if (time_is_before_jiffies(start_time + HZ / 10UL))
2059 break;
2060 if (work->nr_pages <= 0)
2061 break;
2062 }
2063 }
2064 return total_wrote;
2065 }
2066
__writeback_inodes_wb(struct bdi_writeback * wb,struct wb_writeback_work * work)2067 static long __writeback_inodes_wb(struct bdi_writeback *wb,
2068 struct wb_writeback_work *work)
2069 {
2070 unsigned long start_time = jiffies;
2071 long wrote = 0;
2072
2073 while (!list_empty(&wb->b_io)) {
2074 struct inode *inode = wb_inode(wb->b_io.prev);
2075 struct super_block *sb = inode->i_sb;
2076
2077 if (!super_trylock_shared(sb)) {
2078 /*
2079 * super_trylock_shared() may fail consistently due to
2080 * s_umount being grabbed by someone else. Don't use
2081 * requeue_io() to avoid busy retrying the inode/sb.
2082 */
2083 redirty_tail(inode, wb);
2084 continue;
2085 }
2086 wrote += writeback_sb_inodes(sb, wb, work);
2087 up_read(&sb->s_umount);
2088
2089 /* refer to the same tests at the end of writeback_sb_inodes */
2090 if (wrote) {
2091 if (time_is_before_jiffies(start_time + HZ / 10UL))
2092 break;
2093 if (work->nr_pages <= 0)
2094 break;
2095 }
2096 }
2097 /* Leave any unwritten inodes on b_io */
2098 return wrote;
2099 }
2100
writeback_inodes_wb(struct bdi_writeback * wb,long nr_pages,enum wb_reason reason)2101 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
2102 enum wb_reason reason)
2103 {
2104 struct wb_writeback_work work = {
2105 .nr_pages = nr_pages,
2106 .sync_mode = WB_SYNC_NONE,
2107 .range_cyclic = 1,
2108 .reason = reason,
2109 };
2110 struct blk_plug plug;
2111
2112 blk_start_plug(&plug);
2113 spin_lock(&wb->list_lock);
2114 if (list_empty(&wb->b_io))
2115 queue_io(wb, &work, jiffies);
2116 __writeback_inodes_wb(wb, &work);
2117 spin_unlock(&wb->list_lock);
2118 blk_finish_plug(&plug);
2119
2120 return nr_pages - work.nr_pages;
2121 }
2122
2123 /*
2124 * Explicit flushing or periodic writeback of "old" data.
2125 *
2126 * Define "old": the first time one of an inode's pages is dirtied, we mark the
2127 * dirtying-time in the inode's address_space. So this periodic writeback code
2128 * just walks the superblock inode list, writing back any inodes which are
2129 * older than a specific point in time.
2130 *
2131 * Try to run once per dirty_writeback_interval. But if a writeback event
2132 * takes longer than a dirty_writeback_interval interval, then leave a
2133 * one-second gap.
2134 *
2135 * dirtied_before takes precedence over nr_to_write. So we'll only write back
2136 * all dirty pages if they are all attached to "old" mappings.
2137 */
wb_writeback(struct bdi_writeback * wb,struct wb_writeback_work * work)2138 static long wb_writeback(struct bdi_writeback *wb,
2139 struct wb_writeback_work *work)
2140 {
2141 long nr_pages = work->nr_pages;
2142 unsigned long dirtied_before = jiffies;
2143 struct inode *inode;
2144 long progress;
2145 struct blk_plug plug;
2146 bool queued = false;
2147
2148 blk_start_plug(&plug);
2149 for (;;) {
2150 /*
2151 * Stop writeback when nr_pages has been consumed
2152 */
2153 if (work->nr_pages <= 0)
2154 break;
2155
2156 /*
2157 * Background writeout and kupdate-style writeback may
2158 * run forever. Stop them if there is other work to do
2159 * so that e.g. sync can proceed. They'll be restarted
2160 * after the other works are all done.
2161 */
2162 if ((work->for_background || work->for_kupdate) &&
2163 !list_empty(&wb->work_list))
2164 break;
2165
2166 /*
2167 * For background writeout, stop when we are below the
2168 * background dirty threshold
2169 */
2170 if (work->for_background && !wb_over_bg_thresh(wb))
2171 break;
2172
2173
2174 spin_lock(&wb->list_lock);
2175
2176 trace_writeback_start(wb, work);
2177 if (list_empty(&wb->b_io)) {
2178 /*
2179 * Kupdate and background works are special and we want
2180 * to include all inodes that need writing. Livelock
2181 * avoidance is handled by these works yielding to any
2182 * other work so we are safe.
2183 */
2184 if (work->for_kupdate) {
2185 dirtied_before = jiffies -
2186 msecs_to_jiffies(dirty_expire_interval *
2187 10);
2188 } else if (work->for_background)
2189 dirtied_before = jiffies;
2190
2191 queue_io(wb, work, dirtied_before);
2192 queued = true;
2193 }
2194 if (work->sb)
2195 progress = writeback_sb_inodes(work->sb, wb, work);
2196 else
2197 progress = __writeback_inodes_wb(wb, work);
2198 trace_writeback_written(wb, work);
2199
2200 /*
2201 * Did we write something? Try for more
2202 *
2203 * Dirty inodes are moved to b_io for writeback in batches.
2204 * The completion of the current batch does not necessarily
2205 * mean the overall work is done. So we keep looping as long
2206 * as made some progress on cleaning pages or inodes.
2207 */
2208 if (progress || !queued) {
2209 spin_unlock(&wb->list_lock);
2210 continue;
2211 }
2212
2213 /*
2214 * No more inodes for IO, bail
2215 */
2216 if (list_empty(&wb->b_more_io)) {
2217 spin_unlock(&wb->list_lock);
2218 break;
2219 }
2220
2221 /*
2222 * Nothing written. Wait for some inode to
2223 * become available for writeback. Otherwise
2224 * we'll just busyloop.
2225 */
2226 trace_writeback_wait(wb, work);
2227 inode = wb_inode(wb->b_more_io.prev);
2228 spin_lock(&inode->i_lock);
2229 spin_unlock(&wb->list_lock);
2230 /* This function drops i_lock... */
2231 inode_sleep_on_writeback(inode);
2232 }
2233 blk_finish_plug(&plug);
2234
2235 return nr_pages - work->nr_pages;
2236 }
2237
2238 /*
2239 * Return the next wb_writeback_work struct that hasn't been processed yet.
2240 */
get_next_work_item(struct bdi_writeback * wb)2241 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
2242 {
2243 struct wb_writeback_work *work = NULL;
2244
2245 spin_lock_irq(&wb->work_lock);
2246 if (!list_empty(&wb->work_list)) {
2247 work = list_entry(wb->work_list.next,
2248 struct wb_writeback_work, list);
2249 list_del_init(&work->list);
2250 }
2251 spin_unlock_irq(&wb->work_lock);
2252 return work;
2253 }
2254
wb_check_background_flush(struct bdi_writeback * wb)2255 static long wb_check_background_flush(struct bdi_writeback *wb)
2256 {
2257 if (wb_over_bg_thresh(wb)) {
2258
2259 struct wb_writeback_work work = {
2260 .nr_pages = LONG_MAX,
2261 .sync_mode = WB_SYNC_NONE,
2262 .for_background = 1,
2263 .range_cyclic = 1,
2264 .reason = WB_REASON_BACKGROUND,
2265 };
2266
2267 return wb_writeback(wb, &work);
2268 }
2269
2270 return 0;
2271 }
2272
wb_check_old_data_flush(struct bdi_writeback * wb)2273 static long wb_check_old_data_flush(struct bdi_writeback *wb)
2274 {
2275 unsigned long expired;
2276 long nr_pages;
2277
2278 /*
2279 * When set to zero, disable periodic writeback
2280 */
2281 if (!dirty_writeback_interval)
2282 return 0;
2283
2284 expired = wb->last_old_flush +
2285 msecs_to_jiffies(dirty_writeback_interval * 10);
2286 if (time_before(jiffies, expired))
2287 return 0;
2288
2289 wb->last_old_flush = jiffies;
2290 nr_pages = get_nr_dirty_pages();
2291
2292 if (nr_pages) {
2293 struct wb_writeback_work work = {
2294 .nr_pages = nr_pages,
2295 .sync_mode = WB_SYNC_NONE,
2296 .for_kupdate = 1,
2297 .range_cyclic = 1,
2298 .reason = WB_REASON_PERIODIC,
2299 };
2300
2301 return wb_writeback(wb, &work);
2302 }
2303
2304 return 0;
2305 }
2306
wb_check_start_all(struct bdi_writeback * wb)2307 static long wb_check_start_all(struct bdi_writeback *wb)
2308 {
2309 long nr_pages;
2310
2311 if (!test_bit(WB_start_all, &wb->state))
2312 return 0;
2313
2314 nr_pages = get_nr_dirty_pages();
2315 if (nr_pages) {
2316 struct wb_writeback_work work = {
2317 .nr_pages = wb_split_bdi_pages(wb, nr_pages),
2318 .sync_mode = WB_SYNC_NONE,
2319 .range_cyclic = 1,
2320 .reason = wb->start_all_reason,
2321 };
2322
2323 nr_pages = wb_writeback(wb, &work);
2324 }
2325
2326 clear_bit(WB_start_all, &wb->state);
2327 return nr_pages;
2328 }
2329
2330
2331 /*
2332 * Retrieve work items and do the writeback they describe
2333 */
wb_do_writeback(struct bdi_writeback * wb)2334 static long wb_do_writeback(struct bdi_writeback *wb)
2335 {
2336 struct wb_writeback_work *work;
2337 long wrote = 0;
2338
2339 set_bit(WB_writeback_running, &wb->state);
2340 while ((work = get_next_work_item(wb)) != NULL) {
2341 trace_writeback_exec(wb, work);
2342 wrote += wb_writeback(wb, work);
2343 finish_writeback_work(work);
2344 }
2345
2346 /*
2347 * Check for a flush-everything request
2348 */
2349 wrote += wb_check_start_all(wb);
2350
2351 /*
2352 * Check for periodic writeback, kupdated() style
2353 */
2354 wrote += wb_check_old_data_flush(wb);
2355 wrote += wb_check_background_flush(wb);
2356 clear_bit(WB_writeback_running, &wb->state);
2357
2358 return wrote;
2359 }
2360
2361 /*
2362 * Handle writeback of dirty data for the device backed by this bdi. Also
2363 * reschedules periodically and does kupdated style flushing.
2364 */
wb_workfn(struct work_struct * work)2365 void wb_workfn(struct work_struct *work)
2366 {
2367 struct bdi_writeback *wb = container_of(to_delayed_work(work),
2368 struct bdi_writeback, dwork);
2369 long pages_written;
2370
2371 set_worker_desc("flush-%s", bdi_dev_name(wb->bdi));
2372
2373 if (likely(!current_is_workqueue_rescuer() ||
2374 !test_bit(WB_registered, &wb->state))) {
2375 /*
2376 * The normal path. Keep writing back @wb until its
2377 * work_list is empty. Note that this path is also taken
2378 * if @wb is shutting down even when we're running off the
2379 * rescuer as work_list needs to be drained.
2380 */
2381 do {
2382 pages_written = wb_do_writeback(wb);
2383 trace_writeback_pages_written(pages_written);
2384 } while (!list_empty(&wb->work_list));
2385 } else {
2386 /*
2387 * bdi_wq can't get enough workers and we're running off
2388 * the emergency worker. Don't hog it. Hopefully, 1024 is
2389 * enough for efficient IO.
2390 */
2391 pages_written = writeback_inodes_wb(wb, 1024,
2392 WB_REASON_FORKER_THREAD);
2393 trace_writeback_pages_written(pages_written);
2394 }
2395
2396 if (!list_empty(&wb->work_list))
2397 wb_wakeup(wb);
2398 else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
2399 wb_wakeup_delayed(wb);
2400 }
2401
2402 /*
2403 * Start writeback of all dirty pages on this bdi.
2404 */
__wakeup_flusher_threads_bdi(struct backing_dev_info * bdi,enum wb_reason reason)2405 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2406 enum wb_reason reason)
2407 {
2408 struct bdi_writeback *wb;
2409
2410 if (!bdi_has_dirty_io(bdi))
2411 return;
2412
2413 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2414 wb_start_writeback(wb, reason);
2415 }
2416
wakeup_flusher_threads_bdi(struct backing_dev_info * bdi,enum wb_reason reason)2417 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2418 enum wb_reason reason)
2419 {
2420 rcu_read_lock();
2421 __wakeup_flusher_threads_bdi(bdi, reason);
2422 rcu_read_unlock();
2423 }
2424
2425 /*
2426 * Wakeup the flusher threads to start writeback of all currently dirty pages
2427 */
wakeup_flusher_threads(enum wb_reason reason)2428 void wakeup_flusher_threads(enum wb_reason reason)
2429 {
2430 struct backing_dev_info *bdi;
2431
2432 /*
2433 * If we are expecting writeback progress we must submit plugged IO.
2434 */
2435 blk_flush_plug(current->plug, true);
2436
2437 rcu_read_lock();
2438 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2439 __wakeup_flusher_threads_bdi(bdi, reason);
2440 rcu_read_unlock();
2441 }
2442
2443 /*
2444 * Wake up bdi's periodically to make sure dirtytime inodes gets
2445 * written back periodically. We deliberately do *not* check the
2446 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2447 * kernel to be constantly waking up once there are any dirtytime
2448 * inodes on the system. So instead we define a separate delayed work
2449 * function which gets called much more rarely. (By default, only
2450 * once every 12 hours.)
2451 *
2452 * If there is any other write activity going on in the file system,
2453 * this function won't be necessary. But if the only thing that has
2454 * happened on the file system is a dirtytime inode caused by an atime
2455 * update, we need this infrastructure below to make sure that inode
2456 * eventually gets pushed out to disk.
2457 */
2458 static void wakeup_dirtytime_writeback(struct work_struct *w);
2459 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2460
wakeup_dirtytime_writeback(struct work_struct * w)2461 static void wakeup_dirtytime_writeback(struct work_struct *w)
2462 {
2463 struct backing_dev_info *bdi;
2464
2465 rcu_read_lock();
2466 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2467 struct bdi_writeback *wb;
2468
2469 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2470 if (!list_empty(&wb->b_dirty_time))
2471 wb_wakeup(wb);
2472 }
2473 rcu_read_unlock();
2474 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2475 }
2476
dirtytime_interval_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)2477 static int dirtytime_interval_handler(const struct ctl_table *table, int write,
2478 void *buffer, size_t *lenp, loff_t *ppos)
2479 {
2480 int ret;
2481
2482 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2483 if (ret == 0 && write)
2484 mod_delayed_work(system_percpu_wq, &dirtytime_work, 0);
2485 return ret;
2486 }
2487
2488 static const struct ctl_table vm_fs_writeback_table[] = {
2489 {
2490 .procname = "dirtytime_expire_seconds",
2491 .data = &dirtytime_expire_interval,
2492 .maxlen = sizeof(dirtytime_expire_interval),
2493 .mode = 0644,
2494 .proc_handler = dirtytime_interval_handler,
2495 .extra1 = SYSCTL_ZERO,
2496 },
2497 };
2498
start_dirtytime_writeback(void)2499 static int __init start_dirtytime_writeback(void)
2500 {
2501 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2502 register_sysctl_init("vm", vm_fs_writeback_table);
2503 return 0;
2504 }
2505 __initcall(start_dirtytime_writeback);
2506
2507 /**
2508 * __mark_inode_dirty - internal function to mark an inode dirty
2509 *
2510 * @inode: inode to mark
2511 * @flags: what kind of dirty, e.g. I_DIRTY_SYNC. This can be a combination of
2512 * multiple I_DIRTY_* flags, except that I_DIRTY_TIME can't be combined
2513 * with I_DIRTY_PAGES.
2514 *
2515 * Mark an inode as dirty. We notify the filesystem, then update the inode's
2516 * dirty flags. Then, if needed we add the inode to the appropriate dirty list.
2517 *
2518 * Most callers should use mark_inode_dirty() or mark_inode_dirty_sync()
2519 * instead of calling this directly.
2520 *
2521 * CAREFUL! We only add the inode to the dirty list if it is hashed or if it
2522 * refers to a blockdev. Unhashed inodes will never be added to the dirty list
2523 * even if they are later hashed, as they will have been marked dirty already.
2524 *
2525 * In short, ensure you hash any inodes _before_ you start marking them dirty.
2526 *
2527 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2528 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
2529 * the kernel-internal blockdev inode represents the dirtying time of the
2530 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
2531 * page->mapping->host, so the page-dirtying time is recorded in the internal
2532 * blockdev inode.
2533 */
__mark_inode_dirty(struct inode * inode,int flags)2534 void __mark_inode_dirty(struct inode *inode, int flags)
2535 {
2536 struct super_block *sb = inode->i_sb;
2537 int dirtytime = 0;
2538 struct bdi_writeback *wb = NULL;
2539
2540 trace_writeback_mark_inode_dirty(inode, flags);
2541
2542 if (flags & I_DIRTY_INODE) {
2543 /*
2544 * Inode timestamp update will piggback on this dirtying.
2545 * We tell ->dirty_inode callback that timestamps need to
2546 * be updated by setting I_DIRTY_TIME in flags.
2547 */
2548 if (inode->i_state & I_DIRTY_TIME) {
2549 spin_lock(&inode->i_lock);
2550 if (inode->i_state & I_DIRTY_TIME) {
2551 inode->i_state &= ~I_DIRTY_TIME;
2552 flags |= I_DIRTY_TIME;
2553 }
2554 spin_unlock(&inode->i_lock);
2555 }
2556
2557 /*
2558 * Notify the filesystem about the inode being dirtied, so that
2559 * (if needed) it can update on-disk fields and journal the
2560 * inode. This is only needed when the inode itself is being
2561 * dirtied now. I.e. it's only needed for I_DIRTY_INODE, not
2562 * for just I_DIRTY_PAGES or I_DIRTY_TIME.
2563 */
2564 trace_writeback_dirty_inode_start(inode, flags);
2565 if (sb->s_op->dirty_inode)
2566 sb->s_op->dirty_inode(inode,
2567 flags & (I_DIRTY_INODE | I_DIRTY_TIME));
2568 trace_writeback_dirty_inode(inode, flags);
2569
2570 /* I_DIRTY_INODE supersedes I_DIRTY_TIME. */
2571 flags &= ~I_DIRTY_TIME;
2572 } else {
2573 /*
2574 * Else it's either I_DIRTY_PAGES, I_DIRTY_TIME, or nothing.
2575 * (We don't support setting both I_DIRTY_PAGES and I_DIRTY_TIME
2576 * in one call to __mark_inode_dirty().)
2577 */
2578 dirtytime = flags & I_DIRTY_TIME;
2579 WARN_ON_ONCE(dirtytime && flags != I_DIRTY_TIME);
2580 }
2581
2582 /*
2583 * Paired with smp_mb() in __writeback_single_inode() for the
2584 * following lockless i_state test. See there for details.
2585 */
2586 smp_mb();
2587
2588 if ((inode->i_state & flags) == flags)
2589 return;
2590
2591 spin_lock(&inode->i_lock);
2592 if ((inode->i_state & flags) != flags) {
2593 const int was_dirty = inode->i_state & I_DIRTY;
2594
2595 inode_attach_wb(inode, NULL);
2596
2597 inode->i_state |= flags;
2598
2599 /*
2600 * Grab inode's wb early because it requires dropping i_lock and we
2601 * need to make sure following checks happen atomically with dirty
2602 * list handling so that we don't move inodes under flush worker's
2603 * hands.
2604 */
2605 if (!was_dirty) {
2606 wb = locked_inode_to_wb_and_lock_list(inode);
2607 spin_lock(&inode->i_lock);
2608 }
2609
2610 /*
2611 * If the inode is queued for writeback by flush worker, just
2612 * update its dirty state. Once the flush worker is done with
2613 * the inode it will place it on the appropriate superblock
2614 * list, based upon its state.
2615 */
2616 if (inode->i_state & I_SYNC_QUEUED)
2617 goto out_unlock;
2618
2619 /*
2620 * Only add valid (hashed) inodes to the superblock's
2621 * dirty list. Add blockdev inodes as well.
2622 */
2623 if (!S_ISBLK(inode->i_mode)) {
2624 if (inode_unhashed(inode))
2625 goto out_unlock;
2626 }
2627 if (inode->i_state & I_FREEING)
2628 goto out_unlock;
2629
2630 /*
2631 * If the inode was already on b_dirty/b_io/b_more_io, don't
2632 * reposition it (that would break b_dirty time-ordering).
2633 */
2634 if (!was_dirty) {
2635 struct list_head *dirty_list;
2636 bool wakeup_bdi = false;
2637
2638 inode->dirtied_when = jiffies;
2639 if (dirtytime)
2640 inode->dirtied_time_when = jiffies;
2641
2642 if (inode->i_state & I_DIRTY)
2643 dirty_list = &wb->b_dirty;
2644 else
2645 dirty_list = &wb->b_dirty_time;
2646
2647 wakeup_bdi = inode_io_list_move_locked(inode, wb,
2648 dirty_list);
2649
2650 /*
2651 * If this is the first dirty inode for this bdi,
2652 * we have to wake-up the corresponding bdi thread
2653 * to make sure background write-back happens
2654 * later.
2655 */
2656 if (wakeup_bdi &&
2657 (wb->bdi->capabilities & BDI_CAP_WRITEBACK))
2658 wb_wakeup_delayed(wb);
2659
2660 spin_unlock(&wb->list_lock);
2661 spin_unlock(&inode->i_lock);
2662 trace_writeback_dirty_inode_enqueue(inode);
2663
2664 return;
2665 }
2666 }
2667 out_unlock:
2668 if (wb)
2669 spin_unlock(&wb->list_lock);
2670 spin_unlock(&inode->i_lock);
2671 }
2672 EXPORT_SYMBOL(__mark_inode_dirty);
2673
2674 /*
2675 * The @s_sync_lock is used to serialise concurrent sync operations
2676 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2677 * Concurrent callers will block on the s_sync_lock rather than doing contending
2678 * walks. The queueing maintains sync(2) required behaviour as all the IO that
2679 * has been issued up to the time this function is enter is guaranteed to be
2680 * completed by the time we have gained the lock and waited for all IO that is
2681 * in progress regardless of the order callers are granted the lock.
2682 */
wait_sb_inodes(struct super_block * sb)2683 static void wait_sb_inodes(struct super_block *sb)
2684 {
2685 LIST_HEAD(sync_list);
2686
2687 /*
2688 * We need to be protected against the filesystem going from
2689 * r/o to r/w or vice versa.
2690 */
2691 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2692
2693 mutex_lock(&sb->s_sync_lock);
2694
2695 /*
2696 * Splice the writeback list onto a temporary list to avoid waiting on
2697 * inodes that have started writeback after this point.
2698 *
2699 * Use rcu_read_lock() to keep the inodes around until we have a
2700 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2701 * the local list because inodes can be dropped from either by writeback
2702 * completion.
2703 */
2704 rcu_read_lock();
2705 spin_lock_irq(&sb->s_inode_wblist_lock);
2706 list_splice_init(&sb->s_inodes_wb, &sync_list);
2707
2708 /*
2709 * Data integrity sync. Must wait for all pages under writeback, because
2710 * there may have been pages dirtied before our sync call, but which had
2711 * writeout started before we write it out. In which case, the inode
2712 * may not be on the dirty list, but we still have to wait for that
2713 * writeout.
2714 */
2715 while (!list_empty(&sync_list)) {
2716 struct inode *inode = list_first_entry(&sync_list, struct inode,
2717 i_wb_list);
2718 struct address_space *mapping = inode->i_mapping;
2719
2720 /*
2721 * Move each inode back to the wb list before we drop the lock
2722 * to preserve consistency between i_wb_list and the mapping
2723 * writeback tag. Writeback completion is responsible to remove
2724 * the inode from either list once the writeback tag is cleared.
2725 */
2726 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2727
2728 /*
2729 * The mapping can appear untagged while still on-list since we
2730 * do not have the mapping lock. Skip it here, wb completion
2731 * will remove it.
2732 */
2733 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2734 continue;
2735
2736 spin_unlock_irq(&sb->s_inode_wblist_lock);
2737
2738 spin_lock(&inode->i_lock);
2739 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2740 spin_unlock(&inode->i_lock);
2741
2742 spin_lock_irq(&sb->s_inode_wblist_lock);
2743 continue;
2744 }
2745 __iget(inode);
2746 spin_unlock(&inode->i_lock);
2747 rcu_read_unlock();
2748
2749 /*
2750 * We keep the error status of individual mapping so that
2751 * applications can catch the writeback error using fsync(2).
2752 * See filemap_fdatawait_keep_errors() for details.
2753 */
2754 filemap_fdatawait_keep_errors(mapping);
2755
2756 cond_resched();
2757
2758 iput(inode);
2759
2760 rcu_read_lock();
2761 spin_lock_irq(&sb->s_inode_wblist_lock);
2762 }
2763 spin_unlock_irq(&sb->s_inode_wblist_lock);
2764 rcu_read_unlock();
2765 mutex_unlock(&sb->s_sync_lock);
2766 }
2767
__writeback_inodes_sb_nr(struct super_block * sb,unsigned long nr,enum wb_reason reason,bool skip_if_busy)2768 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2769 enum wb_reason reason, bool skip_if_busy)
2770 {
2771 struct backing_dev_info *bdi = sb->s_bdi;
2772 DEFINE_WB_COMPLETION(done, bdi);
2773 struct wb_writeback_work work = {
2774 .sb = sb,
2775 .sync_mode = WB_SYNC_NONE,
2776 .tagged_writepages = 1,
2777 .done = &done,
2778 .nr_pages = nr,
2779 .reason = reason,
2780 };
2781
2782 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2783 return;
2784 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2785
2786 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2787 wb_wait_for_completion(&done);
2788 }
2789
2790 /**
2791 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
2792 * @sb: the superblock
2793 * @nr: the number of pages to write
2794 * @reason: reason why some writeback work initiated
2795 *
2796 * Start writeback on some inodes on this super_block. No guarantees are made
2797 * on how many (if any) will be written, and this function does not wait
2798 * for IO completion of submitted IO.
2799 */
writeback_inodes_sb_nr(struct super_block * sb,unsigned long nr,enum wb_reason reason)2800 void writeback_inodes_sb_nr(struct super_block *sb,
2801 unsigned long nr,
2802 enum wb_reason reason)
2803 {
2804 __writeback_inodes_sb_nr(sb, nr, reason, false);
2805 }
2806 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2807
2808 /**
2809 * writeback_inodes_sb - writeback dirty inodes from given super_block
2810 * @sb: the superblock
2811 * @reason: reason why some writeback work was initiated
2812 *
2813 * Start writeback on some inodes on this super_block. No guarantees are made
2814 * on how many (if any) will be written, and this function does not wait
2815 * for IO completion of submitted IO.
2816 */
writeback_inodes_sb(struct super_block * sb,enum wb_reason reason)2817 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2818 {
2819 writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2820 }
2821 EXPORT_SYMBOL(writeback_inodes_sb);
2822
2823 /**
2824 * try_to_writeback_inodes_sb - try to start writeback if none underway
2825 * @sb: the superblock
2826 * @reason: reason why some writeback work was initiated
2827 *
2828 * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2829 */
try_to_writeback_inodes_sb(struct super_block * sb,enum wb_reason reason)2830 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2831 {
2832 if (!down_read_trylock(&sb->s_umount))
2833 return;
2834
2835 __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2836 up_read(&sb->s_umount);
2837 }
2838 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2839
2840 /**
2841 * sync_inodes_sb - sync sb inode pages
2842 * @sb: the superblock
2843 *
2844 * This function writes and waits on any dirty inode belonging to this
2845 * super_block.
2846 */
sync_inodes_sb(struct super_block * sb)2847 void sync_inodes_sb(struct super_block *sb)
2848 {
2849 struct backing_dev_info *bdi = sb->s_bdi;
2850 DEFINE_WB_COMPLETION(done, bdi);
2851 struct wb_writeback_work work = {
2852 .sb = sb,
2853 .sync_mode = WB_SYNC_ALL,
2854 .nr_pages = LONG_MAX,
2855 .range_cyclic = 0,
2856 .done = &done,
2857 .reason = WB_REASON_SYNC,
2858 .for_sync = 1,
2859 };
2860
2861 /*
2862 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2863 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2864 * bdi_has_dirty() need to be written out too.
2865 */
2866 if (bdi == &noop_backing_dev_info)
2867 return;
2868 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2869
2870 /* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2871 bdi_down_write_wb_switch_rwsem(bdi);
2872 bdi_split_work_to_wbs(bdi, &work, false);
2873 wb_wait_for_completion(&done);
2874 bdi_up_write_wb_switch_rwsem(bdi);
2875
2876 wait_sb_inodes(sb);
2877 }
2878 EXPORT_SYMBOL(sync_inodes_sb);
2879
2880 /**
2881 * write_inode_now - write an inode to disk
2882 * @inode: inode to write to disk
2883 * @sync: whether the write should be synchronous or not
2884 *
2885 * This function commits an inode to disk immediately if it is dirty. This is
2886 * primarily needed by knfsd.
2887 *
2888 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2889 */
write_inode_now(struct inode * inode,int sync)2890 int write_inode_now(struct inode *inode, int sync)
2891 {
2892 struct writeback_control wbc = {
2893 .nr_to_write = LONG_MAX,
2894 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2895 .range_start = 0,
2896 .range_end = LLONG_MAX,
2897 };
2898
2899 if (!mapping_can_writeback(inode->i_mapping))
2900 wbc.nr_to_write = 0;
2901
2902 might_sleep();
2903 return writeback_single_inode(inode, &wbc);
2904 }
2905 EXPORT_SYMBOL(write_inode_now);
2906
2907 /**
2908 * sync_inode_metadata - write an inode to disk
2909 * @inode: the inode to sync
2910 * @wait: wait for I/O to complete.
2911 *
2912 * Write an inode to disk and adjust its dirty state after completion.
2913 *
2914 * Note: only writes the actual inode, no associated data or other metadata.
2915 */
sync_inode_metadata(struct inode * inode,int wait)2916 int sync_inode_metadata(struct inode *inode, int wait)
2917 {
2918 struct writeback_control wbc = {
2919 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2920 .nr_to_write = 0, /* metadata-only */
2921 };
2922
2923 return writeback_single_inode(inode, &wbc);
2924 }
2925 EXPORT_SYMBOL(sync_inode_metadata);
2926