xref: /linux/include/net/tcp.h (revision a35b6e4863d8289bdf4d5d5758abef6cebd210a8)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the TCP module.
8  *
9  * Version:	@(#)tcp.h	1.0.5	05/23/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  */
14 #ifndef _TCP_H
15 #define _TCP_H
16 
17 #define FASTRETRANS_DEBUG 1
18 
19 #include <linux/list.h>
20 #include <linux/tcp.h>
21 #include <linux/bug.h>
22 #include <linux/slab.h>
23 #include <linux/cache.h>
24 #include <linux/percpu.h>
25 #include <linux/skbuff.h>
26 #include <linux/kref.h>
27 #include <linux/ktime.h>
28 #include <linux/indirect_call_wrapper.h>
29 #include <linux/bits.h>
30 
31 #include <net/inet_connection_sock.h>
32 #include <net/inet_timewait_sock.h>
33 #include <net/inet_hashtables.h>
34 #include <net/checksum.h>
35 #include <net/request_sock.h>
36 #include <net/sock_reuseport.h>
37 #include <net/sock.h>
38 #include <net/snmp.h>
39 #include <net/ip.h>
40 #include <net/tcp_states.h>
41 #include <net/tcp_ao.h>
42 #include <net/inet_ecn.h>
43 #include <net/dst.h>
44 #include <net/mptcp.h>
45 #include <net/xfrm.h>
46 
47 #include <linux/seq_file.h>
48 #include <linux/memcontrol.h>
49 #include <linux/bpf-cgroup.h>
50 #include <linux/siphash.h>
51 
52 extern struct inet_hashinfo tcp_hashinfo;
53 
54 DECLARE_PER_CPU(unsigned int, tcp_orphan_count);
55 int tcp_orphan_count_sum(void);
56 
57 static inline void tcp_orphan_count_inc(void)
58 {
59 	this_cpu_inc(tcp_orphan_count);
60 }
61 
62 static inline void tcp_orphan_count_dec(void)
63 {
64 	this_cpu_dec(tcp_orphan_count);
65 }
66 
67 DECLARE_PER_CPU(u32, tcp_tw_isn);
68 
69 void tcp_time_wait(struct sock *sk, int state, int timeo);
70 
71 #define MAX_TCP_HEADER	L1_CACHE_ALIGN(128 + MAX_HEADER)
72 #define MAX_TCP_OPTION_SPACE 40
73 #define TCP_MIN_SND_MSS		48
74 #define TCP_MIN_GSO_SIZE	(TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
75 
76 /*
77  * Never offer a window over 32767 without using window scaling. Some
78  * poor stacks do signed 16bit maths!
79  */
80 #define MAX_TCP_WINDOW		32767U
81 
82 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
83 #define TCP_MIN_MSS		88U
84 
85 /* The initial MTU to use for probing */
86 #define TCP_BASE_MSS		1024
87 
88 /* probing interval, default to 10 minutes as per RFC4821 */
89 #define TCP_PROBE_INTERVAL	600
90 
91 /* Specify interval when tcp mtu probing will stop */
92 #define TCP_PROBE_THRESHOLD	8
93 
94 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
95 #define TCP_FASTRETRANS_THRESH 3
96 
97 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
98 #define TCP_MAX_QUICKACKS	16U
99 
100 /* Maximal number of window scale according to RFC1323 */
101 #define TCP_MAX_WSCALE		14U
102 
103 /* Default sending frequency of accurate ECN option per RTT */
104 #define TCP_ACCECN_OPTION_BEACON	3
105 
106 /* urg_data states */
107 #define TCP_URG_VALID	0x0100
108 #define TCP_URG_NOTYET	0x0200
109 #define TCP_URG_READ	0x0400
110 
111 #define TCP_RETR1	3	/*
112 				 * This is how many retries it does before it
113 				 * tries to figure out if the gateway is
114 				 * down. Minimal RFC value is 3; it corresponds
115 				 * to ~3sec-8min depending on RTO.
116 				 */
117 
118 #define TCP_RETR2	15	/*
119 				 * This should take at least
120 				 * 90 minutes to time out.
121 				 * RFC1122 says that the limit is 100 sec.
122 				 * 15 is ~13-30min depending on RTO.
123 				 */
124 
125 #define TCP_SYN_RETRIES	 6	/* This is how many retries are done
126 				 * when active opening a connection.
127 				 * RFC1122 says the minimum retry MUST
128 				 * be at least 180secs.  Nevertheless
129 				 * this value is corresponding to
130 				 * 63secs of retransmission with the
131 				 * current initial RTO.
132 				 */
133 
134 #define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
135 				 * when passive opening a connection.
136 				 * This is corresponding to 31secs of
137 				 * retransmission with the current
138 				 * initial RTO.
139 				 */
140 
141 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
142 				  * state, about 60 seconds	*/
143 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
144                                  /* BSD style FIN_WAIT2 deadlock breaker.
145 				  * It used to be 3min, new value is 60sec,
146 				  * to combine FIN-WAIT-2 timeout with
147 				  * TIME-WAIT timer.
148 				  */
149 #define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */
150 
151 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
152 static_assert((1 << ATO_BITS) > TCP_DELACK_MAX);
153 
154 #if HZ >= 100
155 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
156 #define TCP_ATO_MIN	((unsigned)(HZ/25))
157 #else
158 #define TCP_DELACK_MIN	4U
159 #define TCP_ATO_MIN	4U
160 #endif
161 #define TCP_RTO_MAX_SEC 120
162 #define TCP_RTO_MAX	((unsigned)(TCP_RTO_MAX_SEC * HZ))
163 #define TCP_RTO_MIN	((unsigned)(HZ / 5))
164 #define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
165 
166 #define TCP_TIMEOUT_MIN_US (2*USEC_PER_MSEC) /* Min TCP timeout in microsecs */
167 
168 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
169 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
170 						 * used as a fallback RTO for the
171 						 * initial data transmission if no
172 						 * valid RTT sample has been acquired,
173 						 * most likely due to retrans in 3WHS.
174 						 */
175 
176 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
177 					                 * for local resources.
178 					                 */
179 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
180 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
181 #define TCP_KEEPALIVE_INTVL	(75*HZ)
182 
183 #define MAX_TCP_KEEPIDLE	32767
184 #define MAX_TCP_KEEPINTVL	32767
185 #define MAX_TCP_KEEPCNT		127
186 #define MAX_TCP_SYNCNT		127
187 
188 /* Ensure that TCP PAWS checks are relaxed after ~2147 seconds
189  * to avoid overflows. This assumes a clock smaller than 1 Mhz.
190  * Default clock is 1 Khz, tcp_usec_ts uses 1 Mhz.
191  */
192 #define TCP_PAWS_WRAP (INT_MAX / USEC_PER_SEC)
193 
194 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
195 					 * after this time. It should be equal
196 					 * (or greater than) TCP_TIMEWAIT_LEN
197 					 * to provide reliability equal to one
198 					 * provided by timewait state.
199 					 */
200 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
201 					 * timestamps. It must be less than
202 					 * minimal timewait lifetime.
203 					 */
204 /*
205  *	TCP option
206  */
207 
208 #define TCPOPT_NOP		1	/* Padding */
209 #define TCPOPT_EOL		0	/* End of options */
210 #define TCPOPT_MSS		2	/* Segment size negotiating */
211 #define TCPOPT_WINDOW		3	/* Window scaling */
212 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
213 #define TCPOPT_SACK             5       /* SACK Block */
214 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
215 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
216 #define TCPOPT_AO		29	/* Authentication Option (RFC5925) */
217 #define TCPOPT_MPTCP		30	/* Multipath TCP (RFC6824) */
218 #define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
219 #define TCPOPT_ACCECN0		172	/* 0xAC: Accurate ECN Order 0 */
220 #define TCPOPT_ACCECN1		174	/* 0xAE: Accurate ECN Order 1 */
221 #define TCPOPT_EXP		254	/* Experimental */
222 /* Magic number to be after the option value for sharing TCP
223  * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
224  */
225 #define TCPOPT_FASTOPEN_MAGIC	0xF989
226 #define TCPOPT_SMC_MAGIC	0xE2D4C3D9
227 
228 /*
229  *     TCP option lengths
230  */
231 
232 #define TCPOLEN_MSS            4
233 #define TCPOLEN_WINDOW         3
234 #define TCPOLEN_SACK_PERM      2
235 #define TCPOLEN_TIMESTAMP      10
236 #define TCPOLEN_MD5SIG         18
237 #define TCPOLEN_FASTOPEN_BASE  2
238 #define TCPOLEN_ACCECN_BASE    2
239 #define TCPOLEN_EXP_FASTOPEN_BASE  4
240 #define TCPOLEN_EXP_SMC_BASE   6
241 
242 /* But this is what stacks really send out. */
243 #define TCPOLEN_TSTAMP_ALIGNED		12
244 #define TCPOLEN_WSCALE_ALIGNED		4
245 #define TCPOLEN_SACKPERM_ALIGNED	4
246 #define TCPOLEN_SACK_BASE		2
247 #define TCPOLEN_SACK_BASE_ALIGNED	4
248 #define TCPOLEN_SACK_PERBLOCK		8
249 #define TCPOLEN_MD5SIG_ALIGNED		20
250 #define TCPOLEN_MSS_ALIGNED		4
251 #define TCPOLEN_EXP_SMC_BASE_ALIGNED	8
252 #define TCPOLEN_ACCECN_PERFIELD		3
253 
254 /* Maximum number of byte counters in AccECN option + size */
255 #define TCP_ACCECN_NUMFIELDS		3
256 #define TCP_ACCECN_MAXSIZE		(TCPOLEN_ACCECN_BASE + \
257 					 TCPOLEN_ACCECN_PERFIELD * \
258 					 TCP_ACCECN_NUMFIELDS)
259 #define TCP_ACCECN_SAFETY_SHIFT		1 /* SAFETY_FACTOR in accecn draft */
260 
261 /* Flags in tp->nonagle */
262 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
263 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
264 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
265 
266 /* TCP thin-stream limits */
267 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
268 
269 /* TCP initial congestion window as per rfc6928 */
270 #define TCP_INIT_CWND		10
271 
272 /* Bit Flags for sysctl_tcp_fastopen */
273 #define	TFO_CLIENT_ENABLE	1
274 #define	TFO_SERVER_ENABLE	2
275 #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
276 
277 /* Accept SYN data w/o any cookie option */
278 #define	TFO_SERVER_COOKIE_NOT_REQD	0x200
279 
280 /* Force enable TFO on all listeners, i.e., not requiring the
281  * TCP_FASTOPEN socket option.
282  */
283 #define	TFO_SERVER_WO_SOCKOPT1	0x400
284 
285 
286 /* sysctl variables for tcp */
287 extern int sysctl_tcp_max_orphans;
288 extern long sysctl_tcp_mem[3];
289 
290 #define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
291 #define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
292 #define TCP_RACK_NO_DUPTHRESH    0x4 /* Do not use DUPACK threshold in RACK */
293 
294 DECLARE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
295 
296 extern struct percpu_counter tcp_sockets_allocated;
297 extern unsigned long tcp_memory_pressure;
298 
299 /* optimized version of sk_under_memory_pressure() for TCP sockets */
300 static inline bool tcp_under_memory_pressure(const struct sock *sk)
301 {
302 	if (mem_cgroup_sk_enabled(sk) &&
303 	    mem_cgroup_sk_under_memory_pressure(sk))
304 		return true;
305 
306 	if (sk->sk_bypass_prot_mem)
307 		return false;
308 
309 	return READ_ONCE(tcp_memory_pressure);
310 }
311 /*
312  * The next routines deal with comparing 32 bit unsigned ints
313  * and worry about wraparound (automatic with unsigned arithmetic).
314  */
315 
316 static inline bool before(__u32 seq1, __u32 seq2)
317 {
318         return (__s32)(seq1-seq2) < 0;
319 }
320 #define after(seq2, seq1) 	before(seq1, seq2)
321 
322 /* is s2<=s1<=s3 ? */
323 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
324 {
325 	return seq3 - seq2 >= seq1 - seq2;
326 }
327 
328 static inline void tcp_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
329 {
330 	sk_wmem_queued_add(sk, -skb->truesize);
331 	if (!skb_zcopy_pure(skb))
332 		sk_mem_uncharge(sk, skb->truesize);
333 	else
334 		sk_mem_uncharge(sk, SKB_TRUESIZE(skb_end_offset(skb)));
335 	__kfree_skb(skb);
336 }
337 
338 void sk_forced_mem_schedule(struct sock *sk, int size);
339 
340 bool tcp_check_oom(const struct sock *sk, int shift);
341 
342 
343 extern struct proto tcp_prot;
344 
345 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
346 #define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
347 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
348 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
349 
350 /*
351  * TCP splice context
352  */
353 struct tcp_splice_state {
354 	struct pipe_inode_info *pipe;
355 	size_t len;
356 	unsigned int flags;
357 };
358 
359 void tcp_tsq_work_init(void);
360 
361 int tcp_v4_err(struct sk_buff *skb, u32);
362 
363 void tcp_shutdown(struct sock *sk, int how);
364 
365 int tcp_v4_early_demux(struct sk_buff *skb);
366 int tcp_v4_rcv(struct sk_buff *skb);
367 
368 void tcp_remove_empty_skb(struct sock *sk);
369 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
370 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
371 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
372 			 size_t size, struct ubuf_info *uarg);
373 void tcp_splice_eof(struct socket *sock);
374 int tcp_send_mss(struct sock *sk, int *size_goal, int flags);
375 int tcp_wmem_schedule(struct sock *sk, int copy);
376 void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle,
377 	      int size_goal);
378 void tcp_release_cb(struct sock *sk);
379 void tcp_wfree(struct sk_buff *skb);
380 void tcp_write_timer_handler(struct sock *sk);
381 void tcp_delack_timer_handler(struct sock *sk);
382 int tcp_ioctl(struct sock *sk, int cmd, int *karg);
383 enum skb_drop_reason tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
384 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
385 void tcp_rcvbuf_grow(struct sock *sk, u32 newval);
386 void tcp_rcv_space_adjust(struct sock *sk);
387 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
388 void tcp_twsk_destructor(struct sock *sk);
389 void tcp_twsk_purge(struct list_head *net_exit_list);
390 int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
391 			 unsigned int offset, size_t len);
392 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
393 			struct pipe_inode_info *pipe, size_t len,
394 			unsigned int flags);
395 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
396 				     bool force_schedule);
397 
398 static inline void tcp_dec_quickack_mode(struct sock *sk)
399 {
400 	struct inet_connection_sock *icsk = inet_csk(sk);
401 
402 	if (icsk->icsk_ack.quick) {
403 		/* How many ACKs S/ACKing new data have we sent? */
404 		const unsigned int pkts = inet_csk_ack_scheduled(sk) ? 1 : 0;
405 
406 		if (pkts >= icsk->icsk_ack.quick) {
407 			icsk->icsk_ack.quick = 0;
408 			/* Leaving quickack mode we deflate ATO. */
409 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
410 		} else
411 			icsk->icsk_ack.quick -= pkts;
412 	}
413 }
414 
415 #define	TCP_ECN_MODE_RFC3168	BIT(0)
416 #define	TCP_ECN_QUEUE_CWR	BIT(1)
417 #define	TCP_ECN_DEMAND_CWR	BIT(2)
418 #define	TCP_ECN_SEEN		BIT(3)
419 #define	TCP_ECN_MODE_ACCECN	BIT(4)
420 
421 #define	TCP_ECN_DISABLED	0
422 #define	TCP_ECN_MODE_PENDING	(TCP_ECN_MODE_RFC3168 | TCP_ECN_MODE_ACCECN)
423 #define	TCP_ECN_MODE_ANY	(TCP_ECN_MODE_RFC3168 | TCP_ECN_MODE_ACCECN)
424 
425 static inline bool tcp_ecn_mode_any(const struct tcp_sock *tp)
426 {
427 	return tp->ecn_flags & TCP_ECN_MODE_ANY;
428 }
429 
430 static inline bool tcp_ecn_mode_rfc3168(const struct tcp_sock *tp)
431 {
432 	return (tp->ecn_flags & TCP_ECN_MODE_ANY) == TCP_ECN_MODE_RFC3168;
433 }
434 
435 static inline bool tcp_ecn_mode_accecn(const struct tcp_sock *tp)
436 {
437 	return (tp->ecn_flags & TCP_ECN_MODE_ANY) == TCP_ECN_MODE_ACCECN;
438 }
439 
440 static inline bool tcp_ecn_disabled(const struct tcp_sock *tp)
441 {
442 	return !tcp_ecn_mode_any(tp);
443 }
444 
445 static inline bool tcp_ecn_mode_pending(const struct tcp_sock *tp)
446 {
447 	return (tp->ecn_flags & TCP_ECN_MODE_PENDING) == TCP_ECN_MODE_PENDING;
448 }
449 
450 static inline void tcp_ecn_mode_set(struct tcp_sock *tp, u8 mode)
451 {
452 	tp->ecn_flags &= ~TCP_ECN_MODE_ANY;
453 	tp->ecn_flags |= mode;
454 }
455 
456 enum tcp_tw_status {
457 	TCP_TW_SUCCESS = 0,
458 	TCP_TW_RST = 1,
459 	TCP_TW_ACK = 2,
460 	TCP_TW_SYN = 3,
461 	TCP_TW_ACK_OOW = 4
462 };
463 
464 
465 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
466 					      struct sk_buff *skb,
467 					      const struct tcphdr *th,
468 					      u32 *tw_isn,
469 					      enum skb_drop_reason *drop_reason);
470 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
471 			   struct request_sock *req, bool fastopen,
472 			   bool *lost_race, enum skb_drop_reason *drop_reason);
473 enum skb_drop_reason tcp_child_process(struct sock *parent, struct sock *child,
474 				       struct sk_buff *skb);
475 void tcp_enter_loss(struct sock *sk);
476 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag);
477 void tcp_clear_retrans(struct tcp_sock *tp);
478 void tcp_update_pacing_rate(struct sock *sk);
479 void tcp_set_rto(struct sock *sk);
480 void tcp_update_metrics(struct sock *sk);
481 void tcp_init_metrics(struct sock *sk);
482 void tcp_metrics_init(void);
483 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
484 void __tcp_close(struct sock *sk, long timeout);
485 void tcp_close(struct sock *sk, long timeout);
486 void tcp_init_sock(struct sock *sk);
487 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb);
488 __poll_t tcp_poll(struct file *file, struct socket *sock,
489 		      struct poll_table_struct *wait);
490 int do_tcp_getsockopt(struct sock *sk, int level,
491 		      int optname, sockptr_t optval, sockptr_t optlen);
492 int tcp_getsockopt(struct sock *sk, int level, int optname,
493 		   char __user *optval, int __user *optlen);
494 bool tcp_bpf_bypass_getsockopt(int level, int optname);
495 int do_tcp_setsockopt(struct sock *sk, int level, int optname,
496 		      sockptr_t optval, unsigned int optlen);
497 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
498 		   unsigned int optlen);
499 void tcp_reset_keepalive_timer(struct sock *sk, unsigned long timeout);
500 void tcp_set_keepalive(struct sock *sk, int val);
501 void tcp_syn_ack_timeout(const struct request_sock *req);
502 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
503 		int flags, int *addr_len);
504 int tcp_set_rcvlowat(struct sock *sk, int val);
505 int tcp_set_window_clamp(struct sock *sk, int val);
506 void tcp_update_recv_tstamps(struct sk_buff *skb,
507 			     struct scm_timestamping_internal *tss);
508 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
509 			struct scm_timestamping_internal *tss);
510 void tcp_data_ready(struct sock *sk);
511 #ifdef CONFIG_MMU
512 int tcp_mmap(struct file *file, struct socket *sock,
513 	     struct vm_area_struct *vma);
514 #endif
515 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
516 		       struct tcp_options_received *opt_rx,
517 		       int estab, struct tcp_fastopen_cookie *foc);
518 
519 /*
520  *	BPF SKB-less helpers
521  */
522 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
523 			 struct tcphdr *th, u32 *cookie);
524 u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
525 			 struct tcphdr *th, u32 *cookie);
526 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss);
527 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
528 			  const struct tcp_request_sock_ops *af_ops,
529 			  struct sock *sk, struct tcphdr *th);
530 /*
531  *	TCP v4 functions exported for the inet6 API
532  */
533 
534 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
535 void tcp_v4_mtu_reduced(struct sock *sk);
536 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
537 void tcp_ld_RTO_revert(struct sock *sk, u32 seq);
538 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
539 struct sock *tcp_create_openreq_child(const struct sock *sk,
540 				      struct request_sock *req,
541 				      struct sk_buff *skb);
542 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
543 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
544 				  struct request_sock *req,
545 				  struct dst_entry *dst,
546 				  struct request_sock *req_unhash,
547 				  bool *own_req);
548 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
549 int tcp_v4_connect(struct sock *sk, struct sockaddr_unsized *uaddr, int addr_len);
550 int tcp_connect(struct sock *sk);
551 enum tcp_synack_type {
552 	TCP_SYNACK_NORMAL,
553 	TCP_SYNACK_FASTOPEN,
554 	TCP_SYNACK_COOKIE,
555 	TCP_SYNACK_RETRANS,
556 };
557 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
558 				struct request_sock *req,
559 				struct tcp_fastopen_cookie *foc,
560 				enum tcp_synack_type synack_type,
561 				struct sk_buff *syn_skb);
562 int tcp_disconnect(struct sock *sk, int flags);
563 
564 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
565 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
566 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
567 
568 /* From syncookies.c */
569 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
570 				 struct request_sock *req,
571 				 struct dst_entry *dst);
572 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th);
573 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
574 struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
575 					    struct sock *sk, struct sk_buff *skb,
576 					    struct tcp_options_received *tcp_opt,
577 					    int mss, u32 tsoff);
578 
579 #if IS_ENABLED(CONFIG_BPF)
580 struct bpf_tcp_req_attrs {
581 	u32 rcv_tsval;
582 	u32 rcv_tsecr;
583 	u16 mss;
584 	u8 rcv_wscale;
585 	u8 snd_wscale;
586 	u8 ecn_ok;
587 	u8 wscale_ok;
588 	u8 sack_ok;
589 	u8 tstamp_ok;
590 	u8 usec_ts_ok;
591 	u8 reserved[3];
592 };
593 #endif
594 
595 #ifdef CONFIG_SYN_COOKIES
596 
597 /* Syncookies use a monotonic timer which increments every 60 seconds.
598  * This counter is used both as a hash input and partially encoded into
599  * the cookie value.  A cookie is only validated further if the delta
600  * between the current counter value and the encoded one is less than this,
601  * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
602  * the counter advances immediately after a cookie is generated).
603  */
604 #define MAX_SYNCOOKIE_AGE	2
605 #define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
606 #define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
607 
608 /* syncookies: remember time of last synqueue overflow
609  * But do not dirty this field too often (once per second is enough)
610  * It is racy as we do not hold a lock, but race is very minor.
611  */
612 static inline void tcp_synq_overflow(const struct sock *sk)
613 {
614 	unsigned int last_overflow;
615 	unsigned int now = jiffies;
616 
617 	if (sk->sk_reuseport) {
618 		struct sock_reuseport *reuse;
619 
620 		reuse = rcu_dereference(sk->sk_reuseport_cb);
621 		if (likely(reuse)) {
622 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
623 			if (!time_between32(now, last_overflow,
624 					    last_overflow + HZ))
625 				WRITE_ONCE(reuse->synq_overflow_ts, now);
626 			return;
627 		}
628 	}
629 
630 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
631 	if (!time_between32(now, last_overflow, last_overflow + HZ))
632 		WRITE_ONCE(tcp_sk_rw(sk)->rx_opt.ts_recent_stamp, now);
633 }
634 
635 /* syncookies: no recent synqueue overflow on this listening socket? */
636 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
637 {
638 	unsigned int last_overflow;
639 	unsigned int now = jiffies;
640 
641 	if (sk->sk_reuseport) {
642 		struct sock_reuseport *reuse;
643 
644 		reuse = rcu_dereference(sk->sk_reuseport_cb);
645 		if (likely(reuse)) {
646 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
647 			return !time_between32(now, last_overflow - HZ,
648 					       last_overflow +
649 					       TCP_SYNCOOKIE_VALID);
650 		}
651 	}
652 
653 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
654 
655 	/* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
656 	 * then we're under synflood. However, we have to use
657 	 * 'last_overflow - HZ' as lower bound. That's because a concurrent
658 	 * tcp_synq_overflow() could update .ts_recent_stamp after we read
659 	 * jiffies but before we store .ts_recent_stamp into last_overflow,
660 	 * which could lead to rejecting a valid syncookie.
661 	 */
662 	return !time_between32(now, last_overflow - HZ,
663 			       last_overflow + TCP_SYNCOOKIE_VALID);
664 }
665 
666 static inline u32 tcp_cookie_time(void)
667 {
668 	u64 val = get_jiffies_64();
669 
670 	do_div(val, TCP_SYNCOOKIE_PERIOD);
671 	return val;
672 }
673 
674 /* Convert one nsec 64bit timestamp to ts (ms or usec resolution) */
675 static inline u64 tcp_ns_to_ts(bool usec_ts, u64 val)
676 {
677 	if (usec_ts)
678 		return div_u64(val, NSEC_PER_USEC);
679 
680 	return div_u64(val, NSEC_PER_MSEC);
681 }
682 
683 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
684 			      u16 *mssp);
685 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
686 u64 cookie_init_timestamp(struct request_sock *req, u64 now);
687 bool cookie_timestamp_decode(const struct net *net,
688 			     struct tcp_options_received *opt);
689 
690 static inline bool cookie_ecn_ok(const struct net *net, const struct dst_entry *dst)
691 {
692 	return READ_ONCE(net->ipv4.sysctl_tcp_ecn) ||
693 		dst_feature(dst, RTAX_FEATURE_ECN);
694 }
695 
696 #if IS_ENABLED(CONFIG_BPF)
697 static inline bool cookie_bpf_ok(struct sk_buff *skb)
698 {
699 	return skb->sk;
700 }
701 
702 struct request_sock *cookie_bpf_check(struct sock *sk, struct sk_buff *skb);
703 #else
704 static inline bool cookie_bpf_ok(struct sk_buff *skb)
705 {
706 	return false;
707 }
708 
709 static inline struct request_sock *cookie_bpf_check(struct net *net, struct sock *sk,
710 						    struct sk_buff *skb)
711 {
712 	return NULL;
713 }
714 #endif
715 
716 /* From net/ipv6/syncookies.c */
717 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th);
718 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
719 
720 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
721 			      const struct tcphdr *th, u16 *mssp);
722 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
723 #endif
724 /* tcp_output.c */
725 
726 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb);
727 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb);
728 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
729 			       int nonagle);
730 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
731 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
732 void tcp_retransmit_timer(struct sock *sk);
733 void tcp_xmit_retransmit_queue(struct sock *);
734 void tcp_simple_retransmit(struct sock *);
735 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
736 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
737 enum tcp_queue {
738 	TCP_FRAG_IN_WRITE_QUEUE,
739 	TCP_FRAG_IN_RTX_QUEUE,
740 };
741 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
742 		 struct sk_buff *skb, u32 len,
743 		 unsigned int mss_now, gfp_t gfp);
744 
745 void tcp_send_probe0(struct sock *);
746 int tcp_write_wakeup(struct sock *, int mib);
747 void tcp_send_fin(struct sock *sk);
748 void tcp_send_active_reset(struct sock *sk, gfp_t priority,
749 			   enum sk_rst_reason reason);
750 int tcp_send_synack(struct sock *);
751 void tcp_push_one(struct sock *, unsigned int mss_now);
752 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt, u16 flags);
753 void tcp_send_ack(struct sock *sk);
754 void tcp_send_delayed_ack(struct sock *sk);
755 void tcp_send_loss_probe(struct sock *sk);
756 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
757 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
758 			     const struct sk_buff *next_skb);
759 
760 /* tcp_input.c */
761 void tcp_rearm_rto(struct sock *sk);
762 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
763 void tcp_done_with_error(struct sock *sk, int err);
764 void tcp_reset(struct sock *sk, struct sk_buff *skb);
765 void tcp_fin(struct sock *sk);
766 void __tcp_check_space(struct sock *sk);
767 static inline void tcp_check_space(struct sock *sk)
768 {
769 	/* pairs with tcp_poll() */
770 	smp_mb();
771 
772 	if (sk->sk_socket && test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
773 		__tcp_check_space(sk);
774 }
775 void tcp_sack_compress_send_ack(struct sock *sk);
776 
777 static inline void tcp_cleanup_skb(struct sk_buff *skb)
778 {
779 	skb_dst_drop(skb);
780 	secpath_reset(skb);
781 }
782 
783 static inline void tcp_add_receive_queue(struct sock *sk, struct sk_buff *skb)
784 {
785 	DEBUG_NET_WARN_ON_ONCE(skb_dst(skb));
786 	DEBUG_NET_WARN_ON_ONCE(secpath_exists(skb));
787 	__skb_queue_tail(&sk->sk_receive_queue, skb);
788 }
789 
790 /* tcp_timer.c */
791 void tcp_init_xmit_timers(struct sock *);
792 static inline void tcp_clear_xmit_timers(struct sock *sk)
793 {
794 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
795 		__sock_put(sk);
796 
797 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
798 		__sock_put(sk);
799 
800 	inet_csk_clear_xmit_timers(sk);
801 }
802 
803 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
804 unsigned int tcp_current_mss(struct sock *sk);
805 u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when);
806 
807 /* Bound MSS / TSO packet size with the half of the window */
808 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
809 {
810 	int cutoff;
811 
812 	/* When peer uses tiny windows, there is no use in packetizing
813 	 * to sub-MSS pieces for the sake of SWS or making sure there
814 	 * are enough packets in the pipe for fast recovery.
815 	 *
816 	 * On the other hand, for extremely large MSS devices, handling
817 	 * smaller than MSS windows in this way does make sense.
818 	 */
819 	if (tp->max_window > TCP_MSS_DEFAULT)
820 		cutoff = (tp->max_window >> 1);
821 	else
822 		cutoff = tp->max_window;
823 
824 	if (cutoff && pktsize > cutoff)
825 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
826 	else
827 		return pktsize;
828 }
829 
830 /* tcp.c */
831 void tcp_get_info(struct sock *, struct tcp_info *);
832 void tcp_rate_check_app_limited(struct sock *sk);
833 
834 /* Read 'sendfile()'-style from a TCP socket */
835 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
836 		  sk_read_actor_t recv_actor);
837 int tcp_read_sock_noack(struct sock *sk, read_descriptor_t *desc,
838 			sk_read_actor_t recv_actor, bool noack,
839 			u32 *copied_seq);
840 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor);
841 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off);
842 void tcp_read_done(struct sock *sk, size_t len);
843 
844 void tcp_initialize_rcv_mss(struct sock *sk);
845 
846 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
847 int tcp_mss_to_mtu(struct sock *sk, int mss);
848 void tcp_mtup_init(struct sock *sk);
849 
850 static inline unsigned int tcp_rto_max(const struct sock *sk)
851 {
852 	return READ_ONCE(inet_csk(sk)->icsk_rto_max);
853 }
854 
855 static inline void tcp_bound_rto(struct sock *sk)
856 {
857 	inet_csk(sk)->icsk_rto = min(inet_csk(sk)->icsk_rto, tcp_rto_max(sk));
858 }
859 
860 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
861 {
862 	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
863 }
864 
865 static inline unsigned long tcp_reqsk_timeout(struct request_sock *req)
866 {
867 	u64 timeout = (u64)req->timeout << req->num_timeout;
868 
869 	return (unsigned long)min_t(u64, timeout,
870 				    tcp_rto_max(req->rsk_listener));
871 }
872 
873 u32 tcp_delack_max(const struct sock *sk);
874 
875 /* Compute the actual rto_min value */
876 static inline u32 tcp_rto_min(const struct sock *sk)
877 {
878 	const struct dst_entry *dst = __sk_dst_get(sk);
879 	u32 rto_min = READ_ONCE(inet_csk(sk)->icsk_rto_min);
880 
881 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
882 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
883 	return rto_min;
884 }
885 
886 static inline u32 tcp_rto_min_us(const struct sock *sk)
887 {
888 	return jiffies_to_usecs(tcp_rto_min(sk));
889 }
890 
891 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
892 {
893 	return dst_metric_locked(dst, RTAX_CC_ALGO);
894 }
895 
896 /* Minimum RTT in usec. ~0 means not available. */
897 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
898 {
899 	return minmax_get(&tp->rtt_min);
900 }
901 
902 /* Compute the actual receive window we are currently advertising.
903  * Rcv_nxt can be after the window if our peer push more data
904  * than the offered window.
905  */
906 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
907 {
908 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
909 
910 	if (win < 0)
911 		win = 0;
912 	return (u32) win;
913 }
914 
915 /* Choose a new window, without checks for shrinking, and without
916  * scaling applied to the result.  The caller does these things
917  * if necessary.  This is a "raw" window selection.
918  */
919 u32 __tcp_select_window(struct sock *sk);
920 
921 void tcp_send_window_probe(struct sock *sk);
922 
923 /* TCP uses 32bit jiffies to save some space.
924  * Note that this is different from tcp_time_stamp, which
925  * historically has been the same until linux-4.13.
926  */
927 #define tcp_jiffies32 ((u32)jiffies)
928 
929 /*
930  * Deliver a 32bit value for TCP timestamp option (RFC 7323)
931  * It is no longer tied to jiffies, but to 1 ms clock.
932  * Note: double check if you want to use tcp_jiffies32 instead of this.
933  */
934 #define TCP_TS_HZ	1000
935 
936 static inline u64 tcp_clock_ns(void)
937 {
938 	return ktime_get_ns();
939 }
940 
941 static inline u64 tcp_clock_us(void)
942 {
943 	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
944 }
945 
946 static inline u64 tcp_clock_ms(void)
947 {
948 	return div_u64(tcp_clock_ns(), NSEC_PER_MSEC);
949 }
950 
951 /* TCP Timestamp included in TS option (RFC 1323) can either use ms
952  * or usec resolution. Each socket carries a flag to select one or other
953  * resolution, as the route attribute could change anytime.
954  * Each flow must stick to initial resolution.
955  */
956 static inline u32 tcp_clock_ts(bool usec_ts)
957 {
958 	return usec_ts ? tcp_clock_us() : tcp_clock_ms();
959 }
960 
961 static inline u32 tcp_time_stamp_ms(const struct tcp_sock *tp)
962 {
963 	return div_u64(tp->tcp_mstamp, USEC_PER_MSEC);
964 }
965 
966 static inline u32 tcp_time_stamp_ts(const struct tcp_sock *tp)
967 {
968 	if (tp->tcp_usec_ts)
969 		return tp->tcp_mstamp;
970 	return tcp_time_stamp_ms(tp);
971 }
972 
973 void tcp_mstamp_refresh(struct tcp_sock *tp);
974 
975 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
976 {
977 	return max_t(s64, t1 - t0, 0);
978 }
979 
980 /* provide the departure time in us unit */
981 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
982 {
983 	return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
984 }
985 
986 /* Provide skb TSval in usec or ms unit */
987 static inline u32 tcp_skb_timestamp_ts(bool usec_ts, const struct sk_buff *skb)
988 {
989 	if (usec_ts)
990 		return tcp_skb_timestamp_us(skb);
991 
992 	return div_u64(skb->skb_mstamp_ns, NSEC_PER_MSEC);
993 }
994 
995 static inline u32 tcp_tw_tsval(const struct tcp_timewait_sock *tcptw)
996 {
997 	return tcp_clock_ts(tcptw->tw_sk.tw_usec_ts) + tcptw->tw_ts_offset;
998 }
999 
1000 static inline u32 tcp_rsk_tsval(const struct tcp_request_sock *treq)
1001 {
1002 	return tcp_clock_ts(treq->req_usec_ts) + treq->ts_off;
1003 }
1004 
1005 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
1006 
1007 #define TCPHDR_FIN	BIT(0)
1008 #define TCPHDR_SYN	BIT(1)
1009 #define TCPHDR_RST	BIT(2)
1010 #define TCPHDR_PSH	BIT(3)
1011 #define TCPHDR_ACK	BIT(4)
1012 #define TCPHDR_URG	BIT(5)
1013 #define TCPHDR_ECE	BIT(6)
1014 #define TCPHDR_CWR	BIT(7)
1015 #define TCPHDR_AE	BIT(8)
1016 #define TCPHDR_FLAGS_MASK (TCPHDR_FIN | TCPHDR_SYN | TCPHDR_RST | \
1017 			   TCPHDR_PSH | TCPHDR_ACK | TCPHDR_URG | \
1018 			   TCPHDR_ECE | TCPHDR_CWR | TCPHDR_AE)
1019 #define tcp_flags_ntohs(th) (ntohs(*(__be16 *)&tcp_flag_word(th)) & \
1020 			    TCPHDR_FLAGS_MASK)
1021 
1022 #define TCPHDR_ACE (TCPHDR_ECE | TCPHDR_CWR | TCPHDR_AE)
1023 #define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
1024 #define TCPHDR_SYNACK_ACCECN (TCPHDR_SYN | TCPHDR_ACK | TCPHDR_CWR)
1025 
1026 #define TCP_ACCECN_CEP_ACE_MASK 0x7
1027 #define TCP_ACCECN_ACE_MAX_DELTA 6
1028 
1029 /* To avoid/detect middlebox interference, not all counters start at 0.
1030  * See draft-ietf-tcpm-accurate-ecn for the latest values.
1031  */
1032 #define TCP_ACCECN_CEP_INIT_OFFSET 5
1033 #define TCP_ACCECN_E1B_INIT_OFFSET 1
1034 #define TCP_ACCECN_E0B_INIT_OFFSET 1
1035 #define TCP_ACCECN_CEB_INIT_OFFSET 0
1036 
1037 /* State flags for sacked in struct tcp_skb_cb */
1038 enum tcp_skb_cb_sacked_flags {
1039 	TCPCB_SACKED_ACKED	= (1 << 0),	/* SKB ACK'd by a SACK block	*/
1040 	TCPCB_SACKED_RETRANS	= (1 << 1),	/* SKB retransmitted		*/
1041 	TCPCB_LOST		= (1 << 2),	/* SKB is lost			*/
1042 	TCPCB_TAGBITS		= (TCPCB_SACKED_ACKED | TCPCB_SACKED_RETRANS |
1043 				   TCPCB_LOST),	/* All tag bits			*/
1044 	TCPCB_REPAIRED		= (1 << 4),	/* SKB repaired (no skb_mstamp_ns)	*/
1045 	TCPCB_EVER_RETRANS	= (1 << 7),	/* Ever retransmitted frame	*/
1046 	TCPCB_RETRANS		= (TCPCB_SACKED_RETRANS | TCPCB_EVER_RETRANS |
1047 				   TCPCB_REPAIRED),
1048 };
1049 
1050 /* This is what the send packet queuing engine uses to pass
1051  * TCP per-packet control information to the transmission code.
1052  * We also store the host-order sequence numbers in here too.
1053  * This is 44 bytes if IPV6 is enabled.
1054  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
1055  */
1056 struct tcp_skb_cb {
1057 	__u32		seq;		/* Starting sequence number	*/
1058 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
1059 	union {
1060 		/* Note :
1061 		 * 	  tcp_gso_segs/size are used in write queue only,
1062 		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
1063 		 */
1064 		struct {
1065 			u16	tcp_gso_segs;
1066 			u16	tcp_gso_size;
1067 		};
1068 	};
1069 	__u16		tcp_flags;	/* TCP header flags (tcp[12-13])*/
1070 
1071 	__u8		sacked;		/* State flags for SACK.	*/
1072 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
1073 #define TSTAMP_ACK_SK	0x1
1074 #define TSTAMP_ACK_BPF	0x2
1075 	__u8		txstamp_ack:2,	/* Record TX timestamp for ack? */
1076 			eor:1,		/* Is skb MSG_EOR marked? */
1077 			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
1078 			unused:4;
1079 	__u32		ack_seq;	/* Sequence number ACK'd	*/
1080 	union {
1081 		struct {
1082 #define TCPCB_DELIVERED_CE_MASK ((1U<<20) - 1)
1083 			/* There is space for up to 24 bytes */
1084 			__u32 is_app_limited:1, /* cwnd not fully used? */
1085 			      delivered_ce:20,
1086 			      unused:11;
1087 			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
1088 			__u32 delivered;
1089 			/* start of send pipeline phase */
1090 			u64 first_tx_mstamp;
1091 			/* when we reached the "delivered" count */
1092 			u64 delivered_mstamp;
1093 		} tx;   /* only used for outgoing skbs */
1094 		union {
1095 			struct inet_skb_parm	h4;
1096 #if IS_ENABLED(CONFIG_IPV6)
1097 			struct inet6_skb_parm	h6;
1098 #endif
1099 		} header;	/* For incoming skbs */
1100 	};
1101 };
1102 
1103 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
1104 
1105 extern const struct inet_connection_sock_af_ops ipv4_specific;
1106 
1107 #if IS_ENABLED(CONFIG_IPV6)
1108 /* This is the variant of inet6_iif() that must be used by TCP,
1109  * as TCP moves IP6CB into a different location in skb->cb[]
1110  */
1111 static inline int tcp_v6_iif(const struct sk_buff *skb)
1112 {
1113 	return TCP_SKB_CB(skb)->header.h6.iif;
1114 }
1115 
1116 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
1117 {
1118 	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
1119 
1120 	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
1121 }
1122 
1123 /* TCP_SKB_CB reference means this can not be used from early demux */
1124 static inline int tcp_v6_sdif(const struct sk_buff *skb)
1125 {
1126 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
1127 	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
1128 		return TCP_SKB_CB(skb)->header.h6.iif;
1129 #endif
1130 	return 0;
1131 }
1132 
1133 extern const struct inet_connection_sock_af_ops ipv6_specific;
1134 
1135 INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb));
1136 INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb));
1137 void tcp_v6_early_demux(struct sk_buff *skb);
1138 
1139 #endif
1140 
1141 /* TCP_SKB_CB reference means this can not be used from early demux */
1142 static inline int tcp_v4_sdif(struct sk_buff *skb)
1143 {
1144 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
1145 	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
1146 		return TCP_SKB_CB(skb)->header.h4.iif;
1147 #endif
1148 	return 0;
1149 }
1150 
1151 /* Due to TSO, an SKB can be composed of multiple actual
1152  * packets.  To keep these tracked properly, we use this.
1153  */
1154 static inline int tcp_skb_pcount(const struct sk_buff *skb)
1155 {
1156 	return TCP_SKB_CB(skb)->tcp_gso_segs;
1157 }
1158 
1159 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
1160 {
1161 	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
1162 }
1163 
1164 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
1165 {
1166 	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
1167 }
1168 
1169 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
1170 static inline int tcp_skb_mss(const struct sk_buff *skb)
1171 {
1172 	return TCP_SKB_CB(skb)->tcp_gso_size;
1173 }
1174 
1175 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
1176 {
1177 	return likely(!TCP_SKB_CB(skb)->eor);
1178 }
1179 
1180 static inline bool tcp_skb_can_collapse(const struct sk_buff *to,
1181 					const struct sk_buff *from)
1182 {
1183 	/* skb_cmp_decrypted() not needed, use tcp_write_collapse_fence() */
1184 	return likely(tcp_skb_can_collapse_to(to) &&
1185 		      mptcp_skb_can_collapse(to, from) &&
1186 		      skb_pure_zcopy_same(to, from) &&
1187 		      skb_frags_readable(to) == skb_frags_readable(from));
1188 }
1189 
1190 static inline bool tcp_skb_can_collapse_rx(const struct sk_buff *to,
1191 					   const struct sk_buff *from)
1192 {
1193 	return likely(mptcp_skb_can_collapse(to, from) &&
1194 		      !skb_cmp_decrypted(to, from));
1195 }
1196 
1197 /* Events passed to congestion control interface */
1198 enum tcp_ca_event {
1199 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
1200 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
1201 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
1202 	CA_EVENT_LOSS,		/* loss timeout */
1203 	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
1204 	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
1205 };
1206 
1207 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
1208 enum tcp_ca_ack_event_flags {
1209 	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
1210 	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
1211 	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
1212 };
1213 
1214 /*
1215  * Interface for adding new TCP congestion control handlers
1216  */
1217 #define TCP_CA_NAME_MAX	16
1218 #define TCP_CA_MAX	128
1219 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
1220 
1221 #define TCP_CA_UNSPEC	0
1222 
1223 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
1224 #define TCP_CONG_NON_RESTRICTED		BIT(0)
1225 /* Requires ECN/ECT set on all packets */
1226 #define TCP_CONG_NEEDS_ECN		BIT(1)
1227 /* Require successfully negotiated AccECN capability */
1228 #define TCP_CONG_NEEDS_ACCECN		BIT(2)
1229 /* Use ECT(1) instead of ECT(0) while the CA is uninitialized */
1230 #define TCP_CONG_ECT_1_NEGOTIATION	BIT(3)
1231 /* Cannot fallback to RFC3168 during AccECN negotiation */
1232 #define TCP_CONG_NO_FALLBACK_RFC3168	BIT(4)
1233 #define TCP_CONG_MASK  (TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN | \
1234 			TCP_CONG_NEEDS_ACCECN | TCP_CONG_ECT_1_NEGOTIATION | \
1235 			TCP_CONG_NO_FALLBACK_RFC3168)
1236 
1237 union tcp_cc_info;
1238 
1239 struct ack_sample {
1240 	u32 pkts_acked;
1241 	s32 rtt_us;
1242 	u32 in_flight;
1243 };
1244 
1245 /* A rate sample measures the number of (original/retransmitted) data
1246  * packets delivered "delivered" over an interval of time "interval_us".
1247  * The tcp_rate.c code fills in the rate sample, and congestion
1248  * control modules that define a cong_control function to run at the end
1249  * of ACK processing can optionally chose to consult this sample when
1250  * setting cwnd and pacing rate.
1251  * A sample is invalid if "delivered" or "interval_us" is negative.
1252  */
1253 struct rate_sample {
1254 	u64  prior_mstamp; /* starting timestamp for interval */
1255 	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
1256 	u32  prior_delivered_ce;/* tp->delivered_ce at "prior_mstamp" */
1257 	s32  delivered;		/* number of packets delivered over interval */
1258 	s32  delivered_ce;	/* number of packets delivered w/ CE marks*/
1259 	long interval_us;	/* time for tp->delivered to incr "delivered" */
1260 	u32 snd_interval_us;	/* snd interval for delivered packets */
1261 	u32 rcv_interval_us;	/* rcv interval for delivered packets */
1262 	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
1263 	int  losses;		/* number of packets marked lost upon ACK */
1264 	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
1265 	u32  prior_in_flight;	/* in flight before this ACK */
1266 	u32  last_end_seq;	/* end_seq of most recently ACKed packet */
1267 	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
1268 	bool is_retrans;	/* is sample from retransmission? */
1269 	bool is_ack_delayed;	/* is this (likely) a delayed ACK? */
1270 };
1271 
1272 struct tcp_congestion_ops {
1273 /* fast path fields are put first to fill one cache line */
1274 
1275 	/* A congestion control (CC) must provide one of either:
1276 	 *
1277 	 * (a) a cong_avoid function, if the CC wants to use the core TCP
1278 	 *     stack's default functionality to implement a "classic"
1279 	 *     (Reno/CUBIC-style) response to packet loss, RFC3168 ECN,
1280 	 *     idle periods, pacing rate computations, etc.
1281 	 *
1282 	 * (b) a cong_control function, if the CC wants custom behavior and
1283 	 *      complete control of all congestion control behaviors.
1284 	 */
1285 	/* (a) "classic" response: calculate new cwnd.
1286 	 */
1287 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1288 	/* (b) "custom" response: call when packets are delivered to update
1289 	 * cwnd and pacing rate, after all the ca_state processing.
1290 	 */
1291 	void (*cong_control)(struct sock *sk, u32 ack, int flag, const struct rate_sample *rs);
1292 
1293 	/* return slow start threshold (required) */
1294 	u32 (*ssthresh)(struct sock *sk);
1295 
1296 	/* call before changing ca_state (optional) */
1297 	void (*set_state)(struct sock *sk, u8 new_state);
1298 
1299 	/* call when cwnd event occurs (optional) */
1300 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1301 
1302 	/* call when ack arrives (optional) */
1303 	void (*in_ack_event)(struct sock *sk, u32 flags);
1304 
1305 	/* hook for packet ack accounting (optional) */
1306 	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1307 
1308 	/* override sysctl_tcp_min_tso_segs (optional) */
1309 	u32 (*min_tso_segs)(struct sock *sk);
1310 
1311 	/* new value of cwnd after loss (required) */
1312 	u32  (*undo_cwnd)(struct sock *sk);
1313 	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
1314 	u32 (*sndbuf_expand)(struct sock *sk);
1315 
1316 /* control/slow paths put last */
1317 	/* get info for inet_diag (optional) */
1318 	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1319 			   union tcp_cc_info *info);
1320 
1321 	char 			name[TCP_CA_NAME_MAX];
1322 	struct module		*owner;
1323 	struct list_head	list;
1324 	u32			key;
1325 	u32			flags;
1326 
1327 	/* initialize private data (optional) */
1328 	void (*init)(struct sock *sk);
1329 	/* cleanup private data  (optional) */
1330 	void (*release)(struct sock *sk);
1331 } ____cacheline_aligned_in_smp;
1332 
1333 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1334 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1335 int tcp_update_congestion_control(struct tcp_congestion_ops *type,
1336 				  struct tcp_congestion_ops *old_type);
1337 int tcp_validate_congestion_control(struct tcp_congestion_ops *ca);
1338 
1339 void tcp_assign_congestion_control(struct sock *sk);
1340 void tcp_init_congestion_control(struct sock *sk);
1341 void tcp_cleanup_congestion_control(struct sock *sk);
1342 int tcp_set_default_congestion_control(struct net *net, const char *name);
1343 void tcp_get_default_congestion_control(struct net *net, char *name);
1344 void tcp_get_available_congestion_control(char *buf, size_t len);
1345 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1346 int tcp_set_allowed_congestion_control(char *allowed);
1347 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1348 			       bool cap_net_admin);
1349 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1350 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1351 
1352 u32 tcp_reno_ssthresh(struct sock *sk);
1353 u32 tcp_reno_undo_cwnd(struct sock *sk);
1354 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1355 extern struct tcp_congestion_ops tcp_reno;
1356 
1357 struct tcp_congestion_ops *tcp_ca_find(const char *name);
1358 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1359 u32 tcp_ca_get_key_by_name(const char *name, bool *ecn_ca);
1360 #ifdef CONFIG_INET
1361 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1362 #else
1363 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1364 {
1365 	return NULL;
1366 }
1367 #endif
1368 
1369 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1370 {
1371 	const struct inet_connection_sock *icsk = inet_csk(sk);
1372 
1373 	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1374 }
1375 
1376 static inline bool tcp_ca_needs_accecn(const struct sock *sk)
1377 {
1378 	const struct inet_connection_sock *icsk = inet_csk(sk);
1379 
1380 	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ACCECN;
1381 }
1382 
1383 static inline bool tcp_ca_ect_1_negotiation(const struct sock *sk)
1384 {
1385 	const struct inet_connection_sock *icsk = inet_csk(sk);
1386 
1387 	return icsk->icsk_ca_ops->flags & TCP_CONG_ECT_1_NEGOTIATION;
1388 }
1389 
1390 static inline bool tcp_ca_no_fallback_rfc3168(const struct sock *sk)
1391 {
1392 	const struct inet_connection_sock *icsk = inet_csk(sk);
1393 
1394 	return icsk->icsk_ca_ops->flags & TCP_CONG_NO_FALLBACK_RFC3168;
1395 }
1396 
1397 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1398 {
1399 	const struct inet_connection_sock *icsk = inet_csk(sk);
1400 
1401 	if (icsk->icsk_ca_ops->cwnd_event)
1402 		icsk->icsk_ca_ops->cwnd_event(sk, event);
1403 }
1404 
1405 /* From tcp_cong.c */
1406 void tcp_set_ca_state(struct sock *sk, const u8 ca_state);
1407 
1408 
1409 static inline bool tcp_skb_sent_after(u64 t1, u64 t2, u32 seq1, u32 seq2)
1410 {
1411 	return t1 > t2 || (t1 == t2 && after(seq1, seq2));
1412 }
1413 
1414 /* These functions determine how the current flow behaves in respect of SACK
1415  * handling. SACK is negotiated with the peer, and therefore it can vary
1416  * between different flows.
1417  *
1418  * tcp_is_sack - SACK enabled
1419  * tcp_is_reno - No SACK
1420  */
1421 static inline int tcp_is_sack(const struct tcp_sock *tp)
1422 {
1423 	return likely(tp->rx_opt.sack_ok);
1424 }
1425 
1426 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1427 {
1428 	return !tcp_is_sack(tp);
1429 }
1430 
1431 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1432 {
1433 	return tp->sacked_out + tp->lost_out;
1434 }
1435 
1436 /* This determines how many packets are "in the network" to the best
1437  * of our knowledge.  In many cases it is conservative, but where
1438  * detailed information is available from the receiver (via SACK
1439  * blocks etc.) we can make more aggressive calculations.
1440  *
1441  * Use this for decisions involving congestion control, use just
1442  * tp->packets_out to determine if the send queue is empty or not.
1443  *
1444  * Read this equation as:
1445  *
1446  *	"Packets sent once on transmission queue" MINUS
1447  *	"Packets left network, but not honestly ACKed yet" PLUS
1448  *	"Packets fast retransmitted"
1449  */
1450 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1451 {
1452 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1453 }
1454 
1455 #define TCP_INFINITE_SSTHRESH	0x7fffffff
1456 
1457 static inline u32 tcp_snd_cwnd(const struct tcp_sock *tp)
1458 {
1459 	return tp->snd_cwnd;
1460 }
1461 
1462 static inline void tcp_snd_cwnd_set(struct tcp_sock *tp, u32 val)
1463 {
1464 	WARN_ON_ONCE((int)val <= 0);
1465 	tp->snd_cwnd = val;
1466 }
1467 
1468 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1469 {
1470 	return tcp_snd_cwnd(tp) < tp->snd_ssthresh;
1471 }
1472 
1473 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1474 {
1475 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1476 }
1477 
1478 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1479 {
1480 	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1481 	       (1 << inet_csk(sk)->icsk_ca_state);
1482 }
1483 
1484 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1485  * The exception is cwnd reduction phase, when cwnd is decreasing towards
1486  * ssthresh.
1487  */
1488 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1489 {
1490 	const struct tcp_sock *tp = tcp_sk(sk);
1491 
1492 	if (tcp_in_cwnd_reduction(sk))
1493 		return tp->snd_ssthresh;
1494 	else
1495 		return max(tp->snd_ssthresh,
1496 			   ((tcp_snd_cwnd(tp) >> 1) +
1497 			    (tcp_snd_cwnd(tp) >> 2)));
1498 }
1499 
1500 /* Use define here intentionally to get WARN_ON location shown at the caller */
1501 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1502 
1503 void tcp_enter_cwr(struct sock *sk);
1504 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1505 
1506 /* The maximum number of MSS of available cwnd for which TSO defers
1507  * sending if not using sysctl_tcp_tso_win_divisor.
1508  */
1509 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1510 {
1511 	return 3;
1512 }
1513 
1514 /* Returns end sequence number of the receiver's advertised window */
1515 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1516 {
1517 	return tp->snd_una + tp->snd_wnd;
1518 }
1519 
1520 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1521  * flexible approach. The RFC suggests cwnd should not be raised unless
1522  * it was fully used previously. And that's exactly what we do in
1523  * congestion avoidance mode. But in slow start we allow cwnd to grow
1524  * as long as the application has used half the cwnd.
1525  * Example :
1526  *    cwnd is 10 (IW10), but application sends 9 frames.
1527  *    We allow cwnd to reach 18 when all frames are ACKed.
1528  * This check is safe because it's as aggressive as slow start which already
1529  * risks 100% overshoot. The advantage is that we discourage application to
1530  * either send more filler packets or data to artificially blow up the cwnd
1531  * usage, and allow application-limited process to probe bw more aggressively.
1532  */
1533 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1534 {
1535 	const struct tcp_sock *tp = tcp_sk(sk);
1536 
1537 	if (tp->is_cwnd_limited)
1538 		return true;
1539 
1540 	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1541 	if (tcp_in_slow_start(tp))
1542 		return tcp_snd_cwnd(tp) < 2 * tp->max_packets_out;
1543 
1544 	return false;
1545 }
1546 
1547 /* BBR congestion control needs pacing.
1548  * Same remark for SO_MAX_PACING_RATE.
1549  * sch_fq packet scheduler is efficiently handling pacing,
1550  * but is not always installed/used.
1551  * Return true if TCP stack should pace packets itself.
1552  */
1553 static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1554 {
1555 	return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1556 }
1557 
1558 /* Estimates in how many jiffies next packet for this flow can be sent.
1559  * Scheduling a retransmit timer too early would be silly.
1560  */
1561 static inline unsigned long tcp_pacing_delay(const struct sock *sk)
1562 {
1563 	s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache;
1564 
1565 	return delay > 0 ? nsecs_to_jiffies(delay) : 0;
1566 }
1567 
1568 static inline void tcp_reset_xmit_timer(struct sock *sk,
1569 					const int what,
1570 					unsigned long when,
1571 					bool pace_delay)
1572 {
1573 	if (pace_delay)
1574 		when += tcp_pacing_delay(sk);
1575 	inet_csk_reset_xmit_timer(sk, what, when,
1576 				  tcp_rto_max(sk));
1577 }
1578 
1579 /* Something is really bad, we could not queue an additional packet,
1580  * because qdisc is full or receiver sent a 0 window, or we are paced.
1581  * We do not want to add fuel to the fire, or abort too early,
1582  * so make sure the timer we arm now is at least 200ms in the future,
1583  * regardless of current icsk_rto value (as it could be ~2ms)
1584  */
1585 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1586 {
1587 	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1588 }
1589 
1590 /* Variant of inet_csk_rto_backoff() used for zero window probes */
1591 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1592 					    unsigned long max_when)
1593 {
1594 	u8 backoff = min_t(u8, ilog2(TCP_RTO_MAX / TCP_RTO_MIN) + 1,
1595 			   inet_csk(sk)->icsk_backoff);
1596 	u64 when = (u64)tcp_probe0_base(sk) << backoff;
1597 
1598 	return (unsigned long)min_t(u64, when, max_when);
1599 }
1600 
1601 static inline void tcp_check_probe_timer(struct sock *sk)
1602 {
1603 	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1604 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1605 				     tcp_probe0_base(sk), true);
1606 }
1607 
1608 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1609 {
1610 	tp->snd_wl1 = seq;
1611 }
1612 
1613 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1614 {
1615 	tp->snd_wl1 = seq;
1616 }
1617 
1618 /*
1619  * Calculate(/check) TCP checksum
1620  */
1621 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1622 				   __be32 daddr, __wsum base)
1623 {
1624 	return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1625 }
1626 
1627 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1628 {
1629 	return !skb_csum_unnecessary(skb) &&
1630 		__skb_checksum_complete(skb);
1631 }
1632 
1633 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb,
1634 		     enum skb_drop_reason *reason);
1635 
1636 static inline int tcp_filter(struct sock *sk, struct sk_buff *skb,
1637 			     enum skb_drop_reason *reason)
1638 {
1639 	const struct tcphdr *th = (const struct tcphdr *)skb->data;
1640 
1641 	return sk_filter_trim_cap(sk, skb, __tcp_hdrlen(th), reason);
1642 }
1643 
1644 void tcp_set_state(struct sock *sk, int state);
1645 void tcp_done(struct sock *sk);
1646 int tcp_abort(struct sock *sk, int err);
1647 
1648 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1649 {
1650 	rx_opt->dsack = 0;
1651 	rx_opt->num_sacks = 0;
1652 }
1653 
1654 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1655 
1656 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1657 {
1658 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1659 	struct tcp_sock *tp = tcp_sk(sk);
1660 	s32 delta;
1661 
1662 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) ||
1663 	    tp->packets_out || ca_ops->cong_control)
1664 		return;
1665 	delta = tcp_jiffies32 - tp->lsndtime;
1666 	if (delta > inet_csk(sk)->icsk_rto)
1667 		tcp_cwnd_restart(sk, delta);
1668 }
1669 
1670 /* Determine a window scaling and initial window to offer. */
1671 void tcp_select_initial_window(const struct sock *sk, int __space,
1672 			       __u32 mss, __u32 *rcv_wnd,
1673 			       __u32 *window_clamp, int wscale_ok,
1674 			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1675 
1676 static inline int __tcp_win_from_space(u8 scaling_ratio, int space)
1677 {
1678 	s64 scaled_space = (s64)space * scaling_ratio;
1679 
1680 	return scaled_space >> TCP_RMEM_TO_WIN_SCALE;
1681 }
1682 
1683 static inline int tcp_win_from_space(const struct sock *sk, int space)
1684 {
1685 	return __tcp_win_from_space(tcp_sk(sk)->scaling_ratio, space);
1686 }
1687 
1688 /* inverse of __tcp_win_from_space() */
1689 static inline int __tcp_space_from_win(u8 scaling_ratio, int win)
1690 {
1691 	u64 val = (u64)win << TCP_RMEM_TO_WIN_SCALE;
1692 
1693 	do_div(val, scaling_ratio);
1694 	return val;
1695 }
1696 
1697 static inline int tcp_space_from_win(const struct sock *sk, int win)
1698 {
1699 	return __tcp_space_from_win(tcp_sk(sk)->scaling_ratio, win);
1700 }
1701 
1702 /* Assume a 50% default for skb->len/skb->truesize ratio.
1703  * This may be adjusted later in tcp_measure_rcv_mss().
1704  */
1705 #define TCP_DEFAULT_SCALING_RATIO (1 << (TCP_RMEM_TO_WIN_SCALE - 1))
1706 
1707 static inline void tcp_scaling_ratio_init(struct sock *sk)
1708 {
1709 	tcp_sk(sk)->scaling_ratio = TCP_DEFAULT_SCALING_RATIO;
1710 }
1711 
1712 /* Note: caller must be prepared to deal with negative returns */
1713 static inline int tcp_space(const struct sock *sk)
1714 {
1715 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1716 				  READ_ONCE(sk->sk_backlog.len) -
1717 				  atomic_read(&sk->sk_rmem_alloc));
1718 }
1719 
1720 static inline int tcp_full_space(const struct sock *sk)
1721 {
1722 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1723 }
1724 
1725 static inline void __tcp_adjust_rcv_ssthresh(struct sock *sk, u32 new_ssthresh)
1726 {
1727 	int unused_mem = sk_unused_reserved_mem(sk);
1728 	struct tcp_sock *tp = tcp_sk(sk);
1729 
1730 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, new_ssthresh);
1731 	if (unused_mem)
1732 		tp->rcv_ssthresh = max_t(u32, tp->rcv_ssthresh,
1733 					 tcp_win_from_space(sk, unused_mem));
1734 }
1735 
1736 static inline void tcp_adjust_rcv_ssthresh(struct sock *sk)
1737 {
1738 	__tcp_adjust_rcv_ssthresh(sk, 4U * tcp_sk(sk)->advmss);
1739 }
1740 
1741 void tcp_cleanup_rbuf(struct sock *sk, int copied);
1742 void __tcp_cleanup_rbuf(struct sock *sk, int copied);
1743 
1744 
1745 /* We provision sk_rcvbuf around 200% of sk_rcvlowat.
1746  * If 87.5 % (7/8) of the space has been consumed, we want to override
1747  * SO_RCVLOWAT constraint, since we are receiving skbs with too small
1748  * len/truesize ratio.
1749  */
1750 static inline bool tcp_rmem_pressure(const struct sock *sk)
1751 {
1752 	int rcvbuf, threshold;
1753 
1754 	if (tcp_under_memory_pressure(sk))
1755 		return true;
1756 
1757 	rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1758 	threshold = rcvbuf - (rcvbuf >> 3);
1759 
1760 	return atomic_read(&sk->sk_rmem_alloc) > threshold;
1761 }
1762 
1763 static inline bool tcp_epollin_ready(const struct sock *sk, int target)
1764 {
1765 	const struct tcp_sock *tp = tcp_sk(sk);
1766 	int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq);
1767 
1768 	if (avail <= 0)
1769 		return false;
1770 
1771 	return (avail >= target) || tcp_rmem_pressure(sk) ||
1772 	       (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss);
1773 }
1774 
1775 extern void tcp_openreq_init_rwin(struct request_sock *req,
1776 				  const struct sock *sk_listener,
1777 				  const struct dst_entry *dst);
1778 
1779 void tcp_enter_memory_pressure(struct sock *sk);
1780 void tcp_leave_memory_pressure(struct sock *sk);
1781 
1782 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1783 {
1784 	struct net *net = sock_net((struct sock *)tp);
1785 	int val;
1786 
1787 	/* Paired with WRITE_ONCE() in tcp_sock_set_keepintvl()
1788 	 * and do_tcp_setsockopt().
1789 	 */
1790 	val = READ_ONCE(tp->keepalive_intvl);
1791 
1792 	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_intvl);
1793 }
1794 
1795 static inline int keepalive_time_when(const struct tcp_sock *tp)
1796 {
1797 	struct net *net = sock_net((struct sock *)tp);
1798 	int val;
1799 
1800 	/* Paired with WRITE_ONCE() in tcp_sock_set_keepidle_locked() */
1801 	val = READ_ONCE(tp->keepalive_time);
1802 
1803 	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_time);
1804 }
1805 
1806 static inline int keepalive_probes(const struct tcp_sock *tp)
1807 {
1808 	struct net *net = sock_net((struct sock *)tp);
1809 	int val;
1810 
1811 	/* Paired with WRITE_ONCE() in tcp_sock_set_keepcnt()
1812 	 * and do_tcp_setsockopt().
1813 	 */
1814 	val = READ_ONCE(tp->keepalive_probes);
1815 
1816 	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_probes);
1817 }
1818 
1819 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1820 {
1821 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1822 
1823 	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1824 			  tcp_jiffies32 - tp->rcv_tstamp);
1825 }
1826 
1827 static inline int tcp_fin_time(const struct sock *sk)
1828 {
1829 	int fin_timeout = tcp_sk(sk)->linger2 ? :
1830 		READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fin_timeout);
1831 	const int rto = inet_csk(sk)->icsk_rto;
1832 
1833 	if (fin_timeout < (rto << 2) - (rto >> 1))
1834 		fin_timeout = (rto << 2) - (rto >> 1);
1835 
1836 	return fin_timeout;
1837 }
1838 
1839 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1840 				  int paws_win)
1841 {
1842 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1843 		return true;
1844 	if (unlikely(!time_before32(ktime_get_seconds(),
1845 				    rx_opt->ts_recent_stamp + TCP_PAWS_WRAP)))
1846 		return true;
1847 	/*
1848 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1849 	 * then following tcp messages have valid values. Ignore 0 value,
1850 	 * or else 'negative' tsval might forbid us to accept their packets.
1851 	 */
1852 	if (!rx_opt->ts_recent)
1853 		return true;
1854 	return false;
1855 }
1856 
1857 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1858 				   int rst)
1859 {
1860 	if (tcp_paws_check(rx_opt, 0))
1861 		return false;
1862 
1863 	/* RST segments are not recommended to carry timestamp,
1864 	   and, if they do, it is recommended to ignore PAWS because
1865 	   "their cleanup function should take precedence over timestamps."
1866 	   Certainly, it is mistake. It is necessary to understand the reasons
1867 	   of this constraint to relax it: if peer reboots, clock may go
1868 	   out-of-sync and half-open connections will not be reset.
1869 	   Actually, the problem would be not existing if all
1870 	   the implementations followed draft about maintaining clock
1871 	   via reboots. Linux-2.2 DOES NOT!
1872 
1873 	   However, we can relax time bounds for RST segments to MSL.
1874 	 */
1875 	if (rst && !time_before32(ktime_get_seconds(),
1876 				  rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1877 		return false;
1878 	return true;
1879 }
1880 
1881 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
1882 {
1883 	u32 ace;
1884 
1885 	/* mptcp hooks are only on the slow path */
1886 	if (sk_is_mptcp((struct sock *)tp))
1887 		return;
1888 
1889 	ace = tcp_ecn_mode_accecn(tp) ?
1890 	      ((tp->delivered_ce + TCP_ACCECN_CEP_INIT_OFFSET) &
1891 	       TCP_ACCECN_CEP_ACE_MASK) : 0;
1892 
1893 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
1894 			       (ace << 22) |
1895 			       ntohl(TCP_FLAG_ACK) |
1896 			       snd_wnd);
1897 }
1898 
1899 static inline void tcp_fast_path_on(struct tcp_sock *tp)
1900 {
1901 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
1902 }
1903 
1904 static inline void tcp_fast_path_check(struct sock *sk)
1905 {
1906 	struct tcp_sock *tp = tcp_sk(sk);
1907 
1908 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
1909 	    tp->rcv_wnd &&
1910 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
1911 	    !tp->urg_data)
1912 		tcp_fast_path_on(tp);
1913 }
1914 
1915 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1916 			  int mib_idx, u32 *last_oow_ack_time);
1917 
1918 static inline void tcp_mib_init(struct net *net)
1919 {
1920 	/* See RFC 2012 */
1921 	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1922 	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1923 	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1924 	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1925 }
1926 
1927 /* from STCP */
1928 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1929 {
1930 	tp->retransmit_skb_hint = NULL;
1931 }
1932 
1933 #define tcp_md5_addr tcp_ao_addr
1934 
1935 /* - key database */
1936 struct tcp_md5sig_key {
1937 	struct hlist_node	node;
1938 	u8			keylen;
1939 	u8			family; /* AF_INET or AF_INET6 */
1940 	u8			prefixlen;
1941 	u8			flags;
1942 	union tcp_md5_addr	addr;
1943 	int			l3index; /* set if key added with L3 scope */
1944 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1945 	struct rcu_head		rcu;
1946 };
1947 
1948 /* - sock block */
1949 struct tcp_md5sig_info {
1950 	struct hlist_head	head;
1951 	struct rcu_head		rcu;
1952 };
1953 
1954 /* - pseudo header */
1955 struct tcp4_pseudohdr {
1956 	__be32		saddr;
1957 	__be32		daddr;
1958 	__u8		pad;
1959 	__u8		protocol;
1960 	__be16		len;
1961 };
1962 
1963 struct tcp6_pseudohdr {
1964 	struct in6_addr	saddr;
1965 	struct in6_addr daddr;
1966 	__be32		len;
1967 	__be32		protocol;	/* including padding */
1968 };
1969 
1970 /*
1971  * struct tcp_sigpool - per-CPU pool of ahash_requests
1972  * @scratch: per-CPU temporary area, that can be used between
1973  *	     tcp_sigpool_start() and tcp_sigpool_end() to perform
1974  *	     crypto request
1975  * @req: pre-allocated ahash request
1976  */
1977 struct tcp_sigpool {
1978 	void *scratch;
1979 	struct ahash_request *req;
1980 };
1981 
1982 int tcp_sigpool_alloc_ahash(const char *alg, size_t scratch_size);
1983 void tcp_sigpool_get(unsigned int id);
1984 void tcp_sigpool_release(unsigned int id);
1985 int tcp_sigpool_hash_skb_data(struct tcp_sigpool *hp,
1986 			      const struct sk_buff *skb,
1987 			      unsigned int header_len);
1988 
1989 /**
1990  * tcp_sigpool_start - disable bh and start using tcp_sigpool_ahash
1991  * @id: tcp_sigpool that was previously allocated by tcp_sigpool_alloc_ahash()
1992  * @c: returned tcp_sigpool for usage (uninitialized on failure)
1993  *
1994  * Returns: 0 on success, error otherwise.
1995  */
1996 int tcp_sigpool_start(unsigned int id, struct tcp_sigpool *c);
1997 /**
1998  * tcp_sigpool_end - enable bh and stop using tcp_sigpool
1999  * @c: tcp_sigpool context that was returned by tcp_sigpool_start()
2000  */
2001 void tcp_sigpool_end(struct tcp_sigpool *c);
2002 size_t tcp_sigpool_algo(unsigned int id, char *buf, size_t buf_len);
2003 /* - functions */
2004 void tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
2005 			 const struct sock *sk, const struct sk_buff *skb);
2006 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
2007 		   int family, u8 prefixlen, int l3index, u8 flags,
2008 		   const u8 *newkey, u8 newkeylen);
2009 int tcp_md5_key_copy(struct sock *sk, const union tcp_md5_addr *addr,
2010 		     int family, u8 prefixlen, int l3index,
2011 		     struct tcp_md5sig_key *key);
2012 
2013 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
2014 		   int family, u8 prefixlen, int l3index, u8 flags);
2015 void tcp_clear_md5_list(struct sock *sk);
2016 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
2017 					 const struct sock *addr_sk);
2018 
2019 #ifdef CONFIG_TCP_MD5SIG
2020 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
2021 					   const union tcp_md5_addr *addr,
2022 					   int family, bool any_l3index);
2023 static inline struct tcp_md5sig_key *
2024 tcp_md5_do_lookup(const struct sock *sk, int l3index,
2025 		  const union tcp_md5_addr *addr, int family)
2026 {
2027 	if (!static_branch_unlikely(&tcp_md5_needed.key))
2028 		return NULL;
2029 	return __tcp_md5_do_lookup(sk, l3index, addr, family, false);
2030 }
2031 
2032 static inline struct tcp_md5sig_key *
2033 tcp_md5_do_lookup_any_l3index(const struct sock *sk,
2034 			      const union tcp_md5_addr *addr, int family)
2035 {
2036 	if (!static_branch_unlikely(&tcp_md5_needed.key))
2037 		return NULL;
2038 	return __tcp_md5_do_lookup(sk, 0, addr, family, true);
2039 }
2040 
2041 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
2042 void tcp_md5_destruct_sock(struct sock *sk);
2043 #else
2044 static inline struct tcp_md5sig_key *
2045 tcp_md5_do_lookup(const struct sock *sk, int l3index,
2046 		  const union tcp_md5_addr *addr, int family)
2047 {
2048 	return NULL;
2049 }
2050 
2051 static inline struct tcp_md5sig_key *
2052 tcp_md5_do_lookup_any_l3index(const struct sock *sk,
2053 			      const union tcp_md5_addr *addr, int family)
2054 {
2055 	return NULL;
2056 }
2057 
2058 #define tcp_twsk_md5_key(twsk)	NULL
2059 static inline void tcp_md5_destruct_sock(struct sock *sk)
2060 {
2061 }
2062 #endif
2063 
2064 struct md5_ctx;
2065 void tcp_md5_hash_skb_data(struct md5_ctx *ctx, const struct sk_buff *skb,
2066 			   unsigned int header_len);
2067 void tcp_md5_hash_key(struct md5_ctx *ctx, const struct tcp_md5sig_key *key);
2068 
2069 /* From tcp_fastopen.c */
2070 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
2071 			    struct tcp_fastopen_cookie *cookie);
2072 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
2073 			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
2074 			    u16 try_exp);
2075 struct tcp_fastopen_request {
2076 	/* Fast Open cookie. Size 0 means a cookie request */
2077 	struct tcp_fastopen_cookie	cookie;
2078 	struct msghdr			*data;  /* data in MSG_FASTOPEN */
2079 	size_t				size;
2080 	int				copied;	/* queued in tcp_connect() */
2081 	struct ubuf_info		*uarg;
2082 };
2083 void tcp_free_fastopen_req(struct tcp_sock *tp);
2084 void tcp_fastopen_destroy_cipher(struct sock *sk);
2085 void tcp_fastopen_ctx_destroy(struct net *net);
2086 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
2087 			      void *primary_key, void *backup_key);
2088 int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
2089 			    u64 *key);
2090 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
2091 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
2092 			      struct request_sock *req,
2093 			      struct tcp_fastopen_cookie *foc,
2094 			      const struct dst_entry *dst);
2095 void tcp_fastopen_init_key_once(struct net *net);
2096 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
2097 			     struct tcp_fastopen_cookie *cookie);
2098 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
2099 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
2100 #define TCP_FASTOPEN_KEY_MAX 2
2101 #define TCP_FASTOPEN_KEY_BUF_LENGTH \
2102 	(TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
2103 
2104 /* Fastopen key context */
2105 struct tcp_fastopen_context {
2106 	siphash_key_t	key[TCP_FASTOPEN_KEY_MAX];
2107 	int		num;
2108 	struct rcu_head	rcu;
2109 };
2110 
2111 void tcp_fastopen_active_disable(struct sock *sk);
2112 bool tcp_fastopen_active_should_disable(struct sock *sk);
2113 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
2114 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
2115 
2116 /* Caller needs to wrap with rcu_read_(un)lock() */
2117 static inline
2118 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
2119 {
2120 	struct tcp_fastopen_context *ctx;
2121 
2122 	ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
2123 	if (!ctx)
2124 		ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
2125 	return ctx;
2126 }
2127 
2128 static inline
2129 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
2130 			       const struct tcp_fastopen_cookie *orig)
2131 {
2132 	if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
2133 	    orig->len == foc->len &&
2134 	    !memcmp(orig->val, foc->val, foc->len))
2135 		return true;
2136 	return false;
2137 }
2138 
2139 static inline
2140 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
2141 {
2142 	return ctx->num;
2143 }
2144 
2145 /* Latencies incurred by various limits for a sender. They are
2146  * chronograph-like stats that are mutually exclusive.
2147  */
2148 enum tcp_chrono {
2149 	TCP_CHRONO_UNSPEC,
2150 	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
2151 	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
2152 	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
2153 	__TCP_CHRONO_MAX,
2154 };
2155 
2156 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
2157 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
2158 
2159 /* This helper is needed, because skb->tcp_tsorted_anchor uses
2160  * the same memory storage than skb->destructor/_skb_refdst
2161  */
2162 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
2163 {
2164 	skb->destructor = NULL;
2165 	skb->_skb_refdst = 0UL;
2166 }
2167 
2168 #define tcp_skb_tsorted_save(skb) {		\
2169 	unsigned long _save = skb->_skb_refdst;	\
2170 	skb->_skb_refdst = 0UL;
2171 
2172 #define tcp_skb_tsorted_restore(skb)		\
2173 	skb->_skb_refdst = _save;		\
2174 }
2175 
2176 void tcp_write_queue_purge(struct sock *sk);
2177 
2178 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
2179 {
2180 	return skb_rb_first(&sk->tcp_rtx_queue);
2181 }
2182 
2183 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
2184 {
2185 	return skb_rb_last(&sk->tcp_rtx_queue);
2186 }
2187 
2188 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
2189 {
2190 	return skb_peek_tail(&sk->sk_write_queue);
2191 }
2192 
2193 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
2194 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
2195 
2196 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
2197 {
2198 	return skb_peek(&sk->sk_write_queue);
2199 }
2200 
2201 static inline bool tcp_skb_is_last(const struct sock *sk,
2202 				   const struct sk_buff *skb)
2203 {
2204 	return skb_queue_is_last(&sk->sk_write_queue, skb);
2205 }
2206 
2207 /**
2208  * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue
2209  * @sk: socket
2210  *
2211  * Since the write queue can have a temporary empty skb in it,
2212  * we must not use "return skb_queue_empty(&sk->sk_write_queue)"
2213  */
2214 static inline bool tcp_write_queue_empty(const struct sock *sk)
2215 {
2216 	const struct tcp_sock *tp = tcp_sk(sk);
2217 
2218 	return tp->write_seq == tp->snd_nxt;
2219 }
2220 
2221 static inline bool tcp_rtx_queue_empty(const struct sock *sk)
2222 {
2223 	return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
2224 }
2225 
2226 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
2227 {
2228 	return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
2229 }
2230 
2231 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
2232 {
2233 	__skb_queue_tail(&sk->sk_write_queue, skb);
2234 
2235 	/* Queue it, remembering where we must start sending. */
2236 	if (sk->sk_write_queue.next == skb)
2237 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
2238 }
2239 
2240 /* Insert new before skb on the write queue of sk.  */
2241 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
2242 						  struct sk_buff *skb,
2243 						  struct sock *sk)
2244 {
2245 	__skb_queue_before(&sk->sk_write_queue, skb, new);
2246 }
2247 
2248 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
2249 {
2250 	tcp_skb_tsorted_anchor_cleanup(skb);
2251 	__skb_unlink(skb, &sk->sk_write_queue);
2252 }
2253 
2254 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
2255 
2256 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
2257 {
2258 	tcp_skb_tsorted_anchor_cleanup(skb);
2259 	rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
2260 }
2261 
2262 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
2263 {
2264 	list_del(&skb->tcp_tsorted_anchor);
2265 	tcp_rtx_queue_unlink(skb, sk);
2266 	tcp_wmem_free_skb(sk, skb);
2267 }
2268 
2269 static inline void tcp_write_collapse_fence(struct sock *sk)
2270 {
2271 	struct sk_buff *skb = tcp_write_queue_tail(sk);
2272 
2273 	if (skb)
2274 		TCP_SKB_CB(skb)->eor = 1;
2275 }
2276 
2277 static inline void tcp_push_pending_frames(struct sock *sk)
2278 {
2279 	if (tcp_send_head(sk)) {
2280 		struct tcp_sock *tp = tcp_sk(sk);
2281 
2282 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
2283 	}
2284 }
2285 
2286 /* Start sequence of the skb just after the highest skb with SACKed
2287  * bit, valid only if sacked_out > 0 or when the caller has ensured
2288  * validity by itself.
2289  */
2290 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
2291 {
2292 	if (!tp->sacked_out)
2293 		return tp->snd_una;
2294 
2295 	if (tp->highest_sack == NULL)
2296 		return tp->snd_nxt;
2297 
2298 	return TCP_SKB_CB(tp->highest_sack)->seq;
2299 }
2300 
2301 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
2302 {
2303 	tcp_sk(sk)->highest_sack = skb_rb_next(skb);
2304 }
2305 
2306 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
2307 {
2308 	return tcp_sk(sk)->highest_sack;
2309 }
2310 
2311 static inline void tcp_highest_sack_reset(struct sock *sk)
2312 {
2313 	tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
2314 }
2315 
2316 /* Called when old skb is about to be deleted and replaced by new skb */
2317 static inline void tcp_highest_sack_replace(struct sock *sk,
2318 					    struct sk_buff *old,
2319 					    struct sk_buff *new)
2320 {
2321 	if (old == tcp_highest_sack(sk))
2322 		tcp_sk(sk)->highest_sack = new;
2323 }
2324 
2325 /* This helper checks if socket has IP_TRANSPARENT set */
2326 static inline bool inet_sk_transparent(const struct sock *sk)
2327 {
2328 	switch (sk->sk_state) {
2329 	case TCP_TIME_WAIT:
2330 		return inet_twsk(sk)->tw_transparent;
2331 	case TCP_NEW_SYN_RECV:
2332 		return inet_rsk(inet_reqsk(sk))->no_srccheck;
2333 	}
2334 	return inet_test_bit(TRANSPARENT, sk);
2335 }
2336 
2337 /* Determines whether this is a thin stream (which may suffer from
2338  * increased latency). Used to trigger latency-reducing mechanisms.
2339  */
2340 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
2341 {
2342 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
2343 }
2344 
2345 /* /proc */
2346 enum tcp_seq_states {
2347 	TCP_SEQ_STATE_LISTENING,
2348 	TCP_SEQ_STATE_ESTABLISHED,
2349 };
2350 
2351 void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
2352 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
2353 void tcp_seq_stop(struct seq_file *seq, void *v);
2354 
2355 struct tcp_seq_afinfo {
2356 	sa_family_t			family;
2357 };
2358 
2359 struct tcp_iter_state {
2360 	struct seq_net_private	p;
2361 	enum tcp_seq_states	state;
2362 	struct sock		*syn_wait_sk;
2363 	int			bucket, offset, sbucket, num;
2364 	loff_t			last_pos;
2365 };
2366 
2367 extern struct request_sock_ops tcp_request_sock_ops;
2368 extern struct request_sock_ops tcp6_request_sock_ops;
2369 
2370 void tcp_v4_destroy_sock(struct sock *sk);
2371 
2372 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
2373 				netdev_features_t features);
2374 struct sk_buff *tcp_gro_lookup(struct list_head *head, struct tcphdr *th);
2375 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb,
2376 				struct tcphdr *th);
2377 INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff));
2378 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb));
2379 #ifdef CONFIG_INET
2380 void tcp_gro_complete(struct sk_buff *skb);
2381 #else
2382 static inline void tcp_gro_complete(struct sk_buff *skb) { }
2383 #endif
2384 
2385 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
2386 
2387 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
2388 {
2389 	struct net *net = sock_net((struct sock *)tp);
2390 	u32 val;
2391 
2392 	val = READ_ONCE(tp->notsent_lowat);
2393 
2394 	return val ?: READ_ONCE(net->ipv4.sysctl_tcp_notsent_lowat);
2395 }
2396 
2397 bool tcp_stream_memory_free(const struct sock *sk, int wake);
2398 
2399 #ifdef CONFIG_PROC_FS
2400 int tcp4_proc_init(void);
2401 void tcp4_proc_exit(void);
2402 #endif
2403 
2404 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
2405 int tcp_conn_request(struct request_sock_ops *rsk_ops,
2406 		     const struct tcp_request_sock_ops *af_ops,
2407 		     struct sock *sk, struct sk_buff *skb);
2408 
2409 /* TCP af-specific functions */
2410 struct tcp_sock_af_ops {
2411 #ifdef CONFIG_TCP_MD5SIG
2412 	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
2413 						const struct sock *addr_sk);
2414 	void		(*calc_md5_hash)(char *location,
2415 					 const struct tcp_md5sig_key *md5,
2416 					 const struct sock *sk,
2417 					 const struct sk_buff *skb);
2418 	int		(*md5_parse)(struct sock *sk,
2419 				     int optname,
2420 				     sockptr_t optval,
2421 				     int optlen);
2422 #endif
2423 #ifdef CONFIG_TCP_AO
2424 	int (*ao_parse)(struct sock *sk, int optname, sockptr_t optval, int optlen);
2425 	struct tcp_ao_key *(*ao_lookup)(const struct sock *sk,
2426 					struct sock *addr_sk,
2427 					int sndid, int rcvid);
2428 	int (*ao_calc_key_sk)(struct tcp_ao_key *mkt, u8 *key,
2429 			      const struct sock *sk,
2430 			      __be32 sisn, __be32 disn, bool send);
2431 	int (*calc_ao_hash)(char *location, struct tcp_ao_key *ao,
2432 			    const struct sock *sk, const struct sk_buff *skb,
2433 			    const u8 *tkey, int hash_offset, u32 sne);
2434 #endif
2435 };
2436 
2437 struct tcp_request_sock_ops {
2438 	u16 mss_clamp;
2439 #ifdef CONFIG_TCP_MD5SIG
2440 	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
2441 						 const struct sock *addr_sk);
2442 	void		(*calc_md5_hash) (char *location,
2443 					  const struct tcp_md5sig_key *md5,
2444 					  const struct sock *sk,
2445 					  const struct sk_buff *skb);
2446 #endif
2447 #ifdef CONFIG_TCP_AO
2448 	struct tcp_ao_key *(*ao_lookup)(const struct sock *sk,
2449 					struct request_sock *req,
2450 					int sndid, int rcvid);
2451 	int (*ao_calc_key)(struct tcp_ao_key *mkt, u8 *key, struct request_sock *sk);
2452 	int (*ao_synack_hash)(char *ao_hash, struct tcp_ao_key *mkt,
2453 			      struct request_sock *req, const struct sk_buff *skb,
2454 			      int hash_offset, u32 sne);
2455 #endif
2456 #ifdef CONFIG_SYN_COOKIES
2457 	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
2458 				 __u16 *mss);
2459 #endif
2460 	struct dst_entry *(*route_req)(const struct sock *sk,
2461 				       struct sk_buff *skb,
2462 				       struct flowi *fl,
2463 				       struct request_sock *req,
2464 				       u32 tw_isn);
2465 	u32 (*init_seq)(const struct sk_buff *skb);
2466 	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
2467 	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
2468 			   struct flowi *fl, struct request_sock *req,
2469 			   struct tcp_fastopen_cookie *foc,
2470 			   enum tcp_synack_type synack_type,
2471 			   struct sk_buff *syn_skb);
2472 };
2473 
2474 extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
2475 #if IS_ENABLED(CONFIG_IPV6)
2476 extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
2477 #endif
2478 
2479 #ifdef CONFIG_SYN_COOKIES
2480 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2481 					 const struct sock *sk, struct sk_buff *skb,
2482 					 __u16 *mss)
2483 {
2484 	tcp_synq_overflow(sk);
2485 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
2486 	return ops->cookie_init_seq(skb, mss);
2487 }
2488 #else
2489 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2490 					 const struct sock *sk, struct sk_buff *skb,
2491 					 __u16 *mss)
2492 {
2493 	return 0;
2494 }
2495 #endif
2496 
2497 struct tcp_key {
2498 	union {
2499 		struct {
2500 			struct tcp_ao_key *ao_key;
2501 			char *traffic_key;
2502 			u32 sne;
2503 			u8 rcv_next;
2504 		};
2505 		struct tcp_md5sig_key *md5_key;
2506 	};
2507 	enum {
2508 		TCP_KEY_NONE = 0,
2509 		TCP_KEY_MD5,
2510 		TCP_KEY_AO,
2511 	} type;
2512 };
2513 
2514 static inline void tcp_get_current_key(const struct sock *sk,
2515 				       struct tcp_key *out)
2516 {
2517 #if defined(CONFIG_TCP_AO) || defined(CONFIG_TCP_MD5SIG)
2518 	const struct tcp_sock *tp = tcp_sk(sk);
2519 #endif
2520 
2521 #ifdef CONFIG_TCP_AO
2522 	if (static_branch_unlikely(&tcp_ao_needed.key)) {
2523 		struct tcp_ao_info *ao;
2524 
2525 		ao = rcu_dereference_protected(tp->ao_info,
2526 					       lockdep_sock_is_held(sk));
2527 		if (ao) {
2528 			out->ao_key = READ_ONCE(ao->current_key);
2529 			out->type = TCP_KEY_AO;
2530 			return;
2531 		}
2532 	}
2533 #endif
2534 #ifdef CONFIG_TCP_MD5SIG
2535 	if (static_branch_unlikely(&tcp_md5_needed.key) &&
2536 	    rcu_access_pointer(tp->md5sig_info)) {
2537 		out->md5_key = tp->af_specific->md5_lookup(sk, sk);
2538 		if (out->md5_key) {
2539 			out->type = TCP_KEY_MD5;
2540 			return;
2541 		}
2542 	}
2543 #endif
2544 	out->type = TCP_KEY_NONE;
2545 }
2546 
2547 static inline bool tcp_key_is_md5(const struct tcp_key *key)
2548 {
2549 	if (static_branch_tcp_md5())
2550 		return key->type == TCP_KEY_MD5;
2551 	return false;
2552 }
2553 
2554 static inline bool tcp_key_is_ao(const struct tcp_key *key)
2555 {
2556 	if (static_branch_tcp_ao())
2557 		return key->type == TCP_KEY_AO;
2558 	return false;
2559 }
2560 
2561 int tcpv4_offload_init(void);
2562 
2563 void tcp_v4_init(void);
2564 void tcp_init(void);
2565 
2566 /* tcp_recovery.c */
2567 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2568 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2569 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2570 				u32 reo_wnd);
2571 extern bool tcp_rack_mark_lost(struct sock *sk);
2572 extern void tcp_rack_reo_timeout(struct sock *sk);
2573 
2574 /* tcp_plb.c */
2575 
2576 /*
2577  * Scaling factor for fractions in PLB. For example, tcp_plb_update_state
2578  * expects cong_ratio which represents fraction of traffic that experienced
2579  * congestion over a single RTT. In order to avoid floating point operations,
2580  * this fraction should be mapped to (1 << TCP_PLB_SCALE) and passed in.
2581  */
2582 #define TCP_PLB_SCALE 8
2583 
2584 /* State for PLB (Protective Load Balancing) for a single TCP connection. */
2585 struct tcp_plb_state {
2586 	u8	consec_cong_rounds:5, /* consecutive congested rounds */
2587 		unused:3;
2588 	u32	pause_until; /* jiffies32 when PLB can resume rerouting */
2589 };
2590 
2591 static inline void tcp_plb_init(const struct sock *sk,
2592 				struct tcp_plb_state *plb)
2593 {
2594 	plb->consec_cong_rounds = 0;
2595 	plb->pause_until = 0;
2596 }
2597 void tcp_plb_update_state(const struct sock *sk, struct tcp_plb_state *plb,
2598 			  const int cong_ratio);
2599 void tcp_plb_check_rehash(struct sock *sk, struct tcp_plb_state *plb);
2600 void tcp_plb_update_state_upon_rto(struct sock *sk, struct tcp_plb_state *plb);
2601 
2602 static inline void tcp_warn_once(const struct sock *sk, bool cond, const char *str)
2603 {
2604 	WARN_ONCE(cond,
2605 		  "%scwn:%u out:%u sacked:%u lost:%u retrans:%u tlp_high_seq:%u sk_state:%u ca_state:%u advmss:%u mss_cache:%u pmtu:%u\n",
2606 		  str,
2607 		  tcp_snd_cwnd(tcp_sk(sk)),
2608 		  tcp_sk(sk)->packets_out, tcp_sk(sk)->sacked_out,
2609 		  tcp_sk(sk)->lost_out, tcp_sk(sk)->retrans_out,
2610 		  tcp_sk(sk)->tlp_high_seq, sk->sk_state,
2611 		  inet_csk(sk)->icsk_ca_state,
2612 		  tcp_sk(sk)->advmss, tcp_sk(sk)->mss_cache,
2613 		  inet_csk(sk)->icsk_pmtu_cookie);
2614 }
2615 
2616 /* At how many usecs into the future should the RTO fire? */
2617 static inline s64 tcp_rto_delta_us(const struct sock *sk)
2618 {
2619 	const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2620 	u32 rto = inet_csk(sk)->icsk_rto;
2621 
2622 	if (likely(skb)) {
2623 		u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2624 
2625 		return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2626 	} else {
2627 		tcp_warn_once(sk, 1, "rtx queue empty: ");
2628 		return jiffies_to_usecs(rto);
2629 	}
2630 
2631 }
2632 
2633 /*
2634  * Save and compile IPv4 options, return a pointer to it
2635  */
2636 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2637 							 struct sk_buff *skb)
2638 {
2639 	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2640 	struct ip_options_rcu *dopt = NULL;
2641 
2642 	if (opt->optlen) {
2643 		int opt_size = sizeof(*dopt) + opt->optlen;
2644 
2645 		dopt = kmalloc(opt_size, GFP_ATOMIC);
2646 		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2647 			kfree(dopt);
2648 			dopt = NULL;
2649 		}
2650 	}
2651 	return dopt;
2652 }
2653 
2654 /* locally generated TCP pure ACKs have skb->truesize == 2
2655  * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2656  * This is much faster than dissecting the packet to find out.
2657  * (Think of GRE encapsulations, IPv4, IPv6, ...)
2658  */
2659 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2660 {
2661 	return skb->truesize == 2;
2662 }
2663 
2664 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2665 {
2666 	skb->truesize = 2;
2667 }
2668 
2669 static inline int tcp_inq(struct sock *sk)
2670 {
2671 	struct tcp_sock *tp = tcp_sk(sk);
2672 	int answ;
2673 
2674 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2675 		answ = 0;
2676 	} else if (sock_flag(sk, SOCK_URGINLINE) ||
2677 		   !tp->urg_data ||
2678 		   before(tp->urg_seq, tp->copied_seq) ||
2679 		   !before(tp->urg_seq, tp->rcv_nxt)) {
2680 
2681 		answ = tp->rcv_nxt - tp->copied_seq;
2682 
2683 		/* Subtract 1, if FIN was received */
2684 		if (answ && sock_flag(sk, SOCK_DONE))
2685 			answ--;
2686 	} else {
2687 		answ = tp->urg_seq - tp->copied_seq;
2688 	}
2689 
2690 	return answ;
2691 }
2692 
2693 int tcp_peek_len(struct socket *sock);
2694 
2695 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2696 {
2697 	u16 segs_in;
2698 
2699 	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2700 
2701 	/* We update these fields while other threads might
2702 	 * read them from tcp_get_info()
2703 	 */
2704 	WRITE_ONCE(tp->segs_in, tp->segs_in + segs_in);
2705 	if (skb->len > tcp_hdrlen(skb))
2706 		WRITE_ONCE(tp->data_segs_in, tp->data_segs_in + segs_in);
2707 }
2708 
2709 /*
2710  * TCP listen path runs lockless.
2711  * We forced "struct sock" to be const qualified to make sure
2712  * we don't modify one of its field by mistake.
2713  * Here, we increment sk_drops which is an atomic_t, so we can safely
2714  * make sock writable again.
2715  */
2716 static inline void tcp_listendrop(const struct sock *sk)
2717 {
2718 	sk_drops_inc((struct sock *)sk);
2719 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2720 }
2721 
2722 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2723 
2724 /*
2725  * Interface for adding Upper Level Protocols over TCP
2726  */
2727 
2728 #define TCP_ULP_NAME_MAX	16
2729 #define TCP_ULP_MAX		128
2730 #define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2731 
2732 struct tcp_ulp_ops {
2733 	struct list_head	list;
2734 
2735 	/* initialize ulp */
2736 	int (*init)(struct sock *sk);
2737 	/* update ulp */
2738 	void (*update)(struct sock *sk, struct proto *p,
2739 		       void (*write_space)(struct sock *sk));
2740 	/* cleanup ulp */
2741 	void (*release)(struct sock *sk);
2742 	/* diagnostic */
2743 	int (*get_info)(struct sock *sk, struct sk_buff *skb, bool net_admin);
2744 	size_t (*get_info_size)(const struct sock *sk, bool net_admin);
2745 	/* clone ulp */
2746 	void (*clone)(const struct request_sock *req, struct sock *newsk,
2747 		      const gfp_t priority);
2748 
2749 	char		name[TCP_ULP_NAME_MAX];
2750 	struct module	*owner;
2751 };
2752 int tcp_register_ulp(struct tcp_ulp_ops *type);
2753 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2754 int tcp_set_ulp(struct sock *sk, const char *name);
2755 void tcp_get_available_ulp(char *buf, size_t len);
2756 void tcp_cleanup_ulp(struct sock *sk);
2757 void tcp_update_ulp(struct sock *sk, struct proto *p,
2758 		    void (*write_space)(struct sock *sk));
2759 
2760 #define MODULE_ALIAS_TCP_ULP(name)				\
2761 	MODULE_INFO(alias, name);		\
2762 	MODULE_INFO(alias, "tcp-ulp-" name)
2763 
2764 #ifdef CONFIG_NET_SOCK_MSG
2765 struct sk_msg;
2766 struct sk_psock;
2767 
2768 #ifdef CONFIG_BPF_SYSCALL
2769 int tcp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore);
2770 void tcp_bpf_clone(const struct sock *sk, struct sock *newsk);
2771 #ifdef CONFIG_BPF_STREAM_PARSER
2772 struct strparser;
2773 int tcp_bpf_strp_read_sock(struct strparser *strp, read_descriptor_t *desc,
2774 			   sk_read_actor_t recv_actor);
2775 #endif /* CONFIG_BPF_STREAM_PARSER */
2776 #endif /* CONFIG_BPF_SYSCALL */
2777 
2778 #ifdef CONFIG_INET
2779 void tcp_eat_skb(struct sock *sk, struct sk_buff *skb);
2780 #else
2781 static inline void tcp_eat_skb(struct sock *sk, struct sk_buff *skb)
2782 {
2783 }
2784 #endif
2785 
2786 int tcp_bpf_sendmsg_redir(struct sock *sk, bool ingress,
2787 			  struct sk_msg *msg, u32 bytes, int flags);
2788 #endif /* CONFIG_NET_SOCK_MSG */
2789 
2790 #if !defined(CONFIG_BPF_SYSCALL) || !defined(CONFIG_NET_SOCK_MSG)
2791 static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk)
2792 {
2793 }
2794 #endif
2795 
2796 #ifdef CONFIG_CGROUP_BPF
2797 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2798 				      struct sk_buff *skb,
2799 				      unsigned int end_offset)
2800 {
2801 	skops->skb = skb;
2802 	skops->skb_data_end = skb->data + end_offset;
2803 }
2804 #else
2805 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2806 				      struct sk_buff *skb,
2807 				      unsigned int end_offset)
2808 {
2809 }
2810 #endif
2811 
2812 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2813  * is < 0, then the BPF op failed (for example if the loaded BPF
2814  * program does not support the chosen operation or there is no BPF
2815  * program loaded).
2816  */
2817 #ifdef CONFIG_BPF
2818 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2819 {
2820 	struct bpf_sock_ops_kern sock_ops;
2821 	int ret;
2822 
2823 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2824 	if (sk_fullsock(sk)) {
2825 		sock_ops.is_fullsock = 1;
2826 		sock_ops.is_locked_tcp_sock = 1;
2827 		sock_owned_by_me(sk);
2828 	}
2829 
2830 	sock_ops.sk = sk;
2831 	sock_ops.op = op;
2832 	if (nargs > 0)
2833 		memcpy(sock_ops.args, args, nargs * sizeof(*args));
2834 
2835 	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2836 	if (ret == 0)
2837 		ret = sock_ops.reply;
2838 	else
2839 		ret = -1;
2840 	return ret;
2841 }
2842 
2843 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2844 {
2845 	u32 args[2] = {arg1, arg2};
2846 
2847 	return tcp_call_bpf(sk, op, 2, args);
2848 }
2849 
2850 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2851 				    u32 arg3)
2852 {
2853 	u32 args[3] = {arg1, arg2, arg3};
2854 
2855 	return tcp_call_bpf(sk, op, 3, args);
2856 }
2857 
2858 #else
2859 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2860 {
2861 	return -EPERM;
2862 }
2863 
2864 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2865 {
2866 	return -EPERM;
2867 }
2868 
2869 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2870 				    u32 arg3)
2871 {
2872 	return -EPERM;
2873 }
2874 
2875 #endif
2876 
2877 static inline u32 tcp_timeout_init(struct sock *sk)
2878 {
2879 	int timeout;
2880 
2881 	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2882 
2883 	if (timeout <= 0)
2884 		timeout = TCP_TIMEOUT_INIT;
2885 	return min_t(int, timeout, TCP_RTO_MAX);
2886 }
2887 
2888 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2889 {
2890 	int rwnd;
2891 
2892 	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2893 
2894 	if (rwnd < 0)
2895 		rwnd = 0;
2896 	return rwnd;
2897 }
2898 
2899 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2900 {
2901 	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2902 }
2903 
2904 static inline void tcp_bpf_rtt(struct sock *sk, long mrtt, u32 srtt)
2905 {
2906 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2907 		tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_RTT_CB, mrtt, srtt);
2908 }
2909 
2910 #if IS_ENABLED(CONFIG_SMC)
2911 extern struct static_key_false tcp_have_smc;
2912 #endif
2913 
2914 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2915 void clean_acked_data_enable(struct tcp_sock *tp,
2916 			     void (*cad)(struct sock *sk, u32 ack_seq));
2917 void clean_acked_data_disable(struct tcp_sock *tp);
2918 void clean_acked_data_flush(void);
2919 #endif
2920 
2921 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2922 static inline void tcp_add_tx_delay(struct sk_buff *skb,
2923 				    const struct tcp_sock *tp)
2924 {
2925 	if (static_branch_unlikely(&tcp_tx_delay_enabled))
2926 		skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2927 }
2928 
2929 /* Compute Earliest Departure Time for some control packets
2930  * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2931  */
2932 static inline u64 tcp_transmit_time(const struct sock *sk)
2933 {
2934 	if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2935 		u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2936 			tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2937 
2938 		return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2939 	}
2940 	return 0;
2941 }
2942 
2943 static inline int tcp_parse_auth_options(const struct tcphdr *th,
2944 		const u8 **md5_hash, const struct tcp_ao_hdr **aoh)
2945 {
2946 	const u8 *md5_tmp, *ao_tmp;
2947 	int ret;
2948 
2949 	ret = tcp_do_parse_auth_options(th, &md5_tmp, &ao_tmp);
2950 	if (ret)
2951 		return ret;
2952 
2953 	if (md5_hash)
2954 		*md5_hash = md5_tmp;
2955 
2956 	if (aoh) {
2957 		if (!ao_tmp)
2958 			*aoh = NULL;
2959 		else
2960 			*aoh = (struct tcp_ao_hdr *)(ao_tmp - 2);
2961 	}
2962 
2963 	return 0;
2964 }
2965 
2966 static inline bool tcp_ao_required(struct sock *sk, const void *saddr,
2967 				   int family, int l3index, bool stat_inc)
2968 {
2969 #ifdef CONFIG_TCP_AO
2970 	struct tcp_ao_info *ao_info;
2971 	struct tcp_ao_key *ao_key;
2972 
2973 	if (!static_branch_unlikely(&tcp_ao_needed.key))
2974 		return false;
2975 
2976 	ao_info = rcu_dereference_check(tcp_sk(sk)->ao_info,
2977 					lockdep_sock_is_held(sk));
2978 	if (!ao_info)
2979 		return false;
2980 
2981 	ao_key = tcp_ao_do_lookup(sk, l3index, saddr, family, -1, -1);
2982 	if (ao_info->ao_required || ao_key) {
2983 		if (stat_inc) {
2984 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOREQUIRED);
2985 			atomic64_inc(&ao_info->counters.ao_required);
2986 		}
2987 		return true;
2988 	}
2989 #endif
2990 	return false;
2991 }
2992 
2993 enum skb_drop_reason tcp_inbound_hash(struct sock *sk,
2994 		const struct request_sock *req, const struct sk_buff *skb,
2995 		const void *saddr, const void *daddr,
2996 		int family, int dif, int sdif);
2997 
2998 #endif	/* _TCP_H */
2999