1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Routines having to do with the 'struct sk_buff' memory handlers.
4 *
5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
6 * Florian La Roche <rzsfl@rz.uni-sb.de>
7 *
8 * Fixes:
9 * Alan Cox : Fixed the worst of the load
10 * balancer bugs.
11 * Dave Platt : Interrupt stacking fix.
12 * Richard Kooijman : Timestamp fixes.
13 * Alan Cox : Changed buffer format.
14 * Alan Cox : destructor hook for AF_UNIX etc.
15 * Linus Torvalds : Better skb_clone.
16 * Alan Cox : Added skb_copy.
17 * Alan Cox : Added all the changed routines Linus
18 * only put in the headers
19 * Ray VanTassle : Fixed --skb->lock in free
20 * Alan Cox : skb_copy copy arp field
21 * Andi Kleen : slabified it.
22 * Robert Olsson : Removed skb_head_pool
23 *
24 * NOTE:
25 * The __skb_ routines should be called with interrupts
26 * disabled, or you better be *real* sure that the operation is atomic
27 * with respect to whatever list is being frobbed (e.g. via lock_sock()
28 * or via disabling bottom half handlers, etc).
29 */
30
31 /*
32 * The functions in this file will not compile correctly with gcc 2.4.x
33 */
34
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/in.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/skbuff_ref.h>
55 #include <linux/splice.h>
56 #include <linux/cache.h>
57 #include <linux/rtnetlink.h>
58 #include <linux/init.h>
59 #include <linux/scatterlist.h>
60 #include <linux/errqueue.h>
61 #include <linux/prefetch.h>
62 #include <linux/bitfield.h>
63 #include <linux/if_vlan.h>
64 #include <linux/mpls.h>
65 #include <linux/kcov.h>
66 #include <linux/iov_iter.h>
67
68 #include <net/protocol.h>
69 #include <net/dst.h>
70 #include <net/sock.h>
71 #include <net/checksum.h>
72 #include <net/gro.h>
73 #include <net/gso.h>
74 #include <net/hotdata.h>
75 #include <net/ip6_checksum.h>
76 #include <net/xfrm.h>
77 #include <net/mpls.h>
78 #include <net/mptcp.h>
79 #include <net/mctp.h>
80 #include <net/page_pool/helpers.h>
81 #include <net/dropreason.h>
82
83 #include <linux/uaccess.h>
84 #include <trace/events/skb.h>
85 #include <linux/highmem.h>
86 #include <linux/capability.h>
87 #include <linux/user_namespace.h>
88 #include <linux/indirect_call_wrapper.h>
89 #include <linux/textsearch.h>
90
91 #include "dev.h"
92 #include "netmem_priv.h"
93 #include "sock_destructor.h"
94
95 #ifdef CONFIG_SKB_EXTENSIONS
96 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
97 #endif
98
99 #define GRO_MAX_HEAD_PAD (GRO_MAX_HEAD + NET_SKB_PAD + NET_IP_ALIGN)
100 #define SKB_SMALL_HEAD_SIZE SKB_HEAD_ALIGN(max(MAX_TCP_HEADER, \
101 GRO_MAX_HEAD_PAD))
102
103 /* We want SKB_SMALL_HEAD_CACHE_SIZE to not be a power of two.
104 * This should ensure that SKB_SMALL_HEAD_HEADROOM is a unique
105 * size, and we can differentiate heads from skb_small_head_cache
106 * vs system slabs by looking at their size (skb_end_offset()).
107 */
108 #define SKB_SMALL_HEAD_CACHE_SIZE \
109 (is_power_of_2(SKB_SMALL_HEAD_SIZE) ? \
110 (SKB_SMALL_HEAD_SIZE + L1_CACHE_BYTES) : \
111 SKB_SMALL_HEAD_SIZE)
112
113 #define SKB_SMALL_HEAD_HEADROOM \
114 SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE)
115
116 /* kcm_write_msgs() relies on casting paged frags to bio_vec to use
117 * iov_iter_bvec(). These static asserts ensure the cast is valid is long as the
118 * netmem is a page.
119 */
120 static_assert(offsetof(struct bio_vec, bv_page) ==
121 offsetof(skb_frag_t, netmem));
122 static_assert(sizeof_field(struct bio_vec, bv_page) ==
123 sizeof_field(skb_frag_t, netmem));
124
125 static_assert(offsetof(struct bio_vec, bv_len) == offsetof(skb_frag_t, len));
126 static_assert(sizeof_field(struct bio_vec, bv_len) ==
127 sizeof_field(skb_frag_t, len));
128
129 static_assert(offsetof(struct bio_vec, bv_offset) ==
130 offsetof(skb_frag_t, offset));
131 static_assert(sizeof_field(struct bio_vec, bv_offset) ==
132 sizeof_field(skb_frag_t, offset));
133
134 #undef FN
135 #define FN(reason) [SKB_DROP_REASON_##reason] = #reason,
136 static const char * const drop_reasons[] = {
137 [SKB_CONSUMED] = "CONSUMED",
138 DEFINE_DROP_REASON(FN, FN)
139 };
140
141 static const struct drop_reason_list drop_reasons_core = {
142 .reasons = drop_reasons,
143 .n_reasons = ARRAY_SIZE(drop_reasons),
144 };
145
146 const struct drop_reason_list __rcu *
147 drop_reasons_by_subsys[SKB_DROP_REASON_SUBSYS_NUM] = {
148 [SKB_DROP_REASON_SUBSYS_CORE] = RCU_INITIALIZER(&drop_reasons_core),
149 };
150 EXPORT_SYMBOL(drop_reasons_by_subsys);
151
152 /**
153 * drop_reasons_register_subsys - register another drop reason subsystem
154 * @subsys: the subsystem to register, must not be the core
155 * @list: the list of drop reasons within the subsystem, must point to
156 * a statically initialized list
157 */
drop_reasons_register_subsys(enum skb_drop_reason_subsys subsys,const struct drop_reason_list * list)158 void drop_reasons_register_subsys(enum skb_drop_reason_subsys subsys,
159 const struct drop_reason_list *list)
160 {
161 if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
162 subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
163 "invalid subsystem %d\n", subsys))
164 return;
165
166 /* must point to statically allocated memory, so INIT is OK */
167 RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], list);
168 }
169 EXPORT_SYMBOL_GPL(drop_reasons_register_subsys);
170
171 /**
172 * drop_reasons_unregister_subsys - unregister a drop reason subsystem
173 * @subsys: the subsystem to remove, must not be the core
174 *
175 * Note: This will synchronize_rcu() to ensure no users when it returns.
176 */
drop_reasons_unregister_subsys(enum skb_drop_reason_subsys subsys)177 void drop_reasons_unregister_subsys(enum skb_drop_reason_subsys subsys)
178 {
179 if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
180 subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
181 "invalid subsystem %d\n", subsys))
182 return;
183
184 RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], NULL);
185
186 synchronize_rcu();
187 }
188 EXPORT_SYMBOL_GPL(drop_reasons_unregister_subsys);
189
190 /**
191 * skb_panic - private function for out-of-line support
192 * @skb: buffer
193 * @sz: size
194 * @addr: address
195 * @msg: skb_over_panic or skb_under_panic
196 *
197 * Out-of-line support for skb_put() and skb_push().
198 * Called via the wrapper skb_over_panic() or skb_under_panic().
199 * Keep out of line to prevent kernel bloat.
200 * __builtin_return_address is not used because it is not always reliable.
201 */
skb_panic(struct sk_buff * skb,unsigned int sz,void * addr,const char msg[])202 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
203 const char msg[])
204 {
205 pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
206 msg, addr, skb->len, sz, skb->head, skb->data,
207 (unsigned long)skb->tail, (unsigned long)skb->end,
208 skb->dev ? skb->dev->name : "<NULL>");
209 BUG();
210 }
211
skb_over_panic(struct sk_buff * skb,unsigned int sz,void * addr)212 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
213 {
214 skb_panic(skb, sz, addr, __func__);
215 }
216
skb_under_panic(struct sk_buff * skb,unsigned int sz,void * addr)217 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
218 {
219 skb_panic(skb, sz, addr, __func__);
220 }
221
222 #define NAPI_SKB_CACHE_SIZE 64
223 #define NAPI_SKB_CACHE_BULK 16
224 #define NAPI_SKB_CACHE_HALF (NAPI_SKB_CACHE_SIZE / 2)
225
226 struct napi_alloc_cache {
227 local_lock_t bh_lock;
228 struct page_frag_cache page;
229 unsigned int skb_count;
230 void *skb_cache[NAPI_SKB_CACHE_SIZE];
231 };
232
233 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
234 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache) = {
235 .bh_lock = INIT_LOCAL_LOCK(bh_lock),
236 };
237
__napi_alloc_frag_align(unsigned int fragsz,unsigned int align_mask)238 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
239 {
240 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
241 void *data;
242
243 fragsz = SKB_DATA_ALIGN(fragsz);
244
245 local_lock_nested_bh(&napi_alloc_cache.bh_lock);
246 data = __page_frag_alloc_align(&nc->page, fragsz,
247 GFP_ATOMIC | __GFP_NOWARN, align_mask);
248 local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
249 return data;
250
251 }
252 EXPORT_SYMBOL(__napi_alloc_frag_align);
253
__netdev_alloc_frag_align(unsigned int fragsz,unsigned int align_mask)254 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
255 {
256 void *data;
257
258 if (in_hardirq() || irqs_disabled()) {
259 struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache);
260
261 fragsz = SKB_DATA_ALIGN(fragsz);
262 data = __page_frag_alloc_align(nc, fragsz,
263 GFP_ATOMIC | __GFP_NOWARN,
264 align_mask);
265 } else {
266 local_bh_disable();
267 data = __napi_alloc_frag_align(fragsz, align_mask);
268 local_bh_enable();
269 }
270 return data;
271 }
272 EXPORT_SYMBOL(__netdev_alloc_frag_align);
273
napi_skb_cache_get(void)274 static struct sk_buff *napi_skb_cache_get(void)
275 {
276 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
277 struct sk_buff *skb;
278
279 local_lock_nested_bh(&napi_alloc_cache.bh_lock);
280 if (unlikely(!nc->skb_count)) {
281 nc->skb_count = kmem_cache_alloc_bulk(net_hotdata.skbuff_cache,
282 GFP_ATOMIC | __GFP_NOWARN,
283 NAPI_SKB_CACHE_BULK,
284 nc->skb_cache);
285 if (unlikely(!nc->skb_count)) {
286 local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
287 return NULL;
288 }
289 }
290
291 skb = nc->skb_cache[--nc->skb_count];
292 local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
293 kasan_mempool_unpoison_object(skb, kmem_cache_size(net_hotdata.skbuff_cache));
294
295 return skb;
296 }
297
__finalize_skb_around(struct sk_buff * skb,void * data,unsigned int size)298 static inline void __finalize_skb_around(struct sk_buff *skb, void *data,
299 unsigned int size)
300 {
301 struct skb_shared_info *shinfo;
302
303 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
304
305 /* Assumes caller memset cleared SKB */
306 skb->truesize = SKB_TRUESIZE(size);
307 refcount_set(&skb->users, 1);
308 skb->head = data;
309 skb->data = data;
310 skb_reset_tail_pointer(skb);
311 skb_set_end_offset(skb, size);
312 skb->mac_header = (typeof(skb->mac_header))~0U;
313 skb->transport_header = (typeof(skb->transport_header))~0U;
314 skb->alloc_cpu = raw_smp_processor_id();
315 /* make sure we initialize shinfo sequentially */
316 shinfo = skb_shinfo(skb);
317 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
318 atomic_set(&shinfo->dataref, 1);
319
320 skb_set_kcov_handle(skb, kcov_common_handle());
321 }
322
__slab_build_skb(struct sk_buff * skb,void * data,unsigned int * size)323 static inline void *__slab_build_skb(struct sk_buff *skb, void *data,
324 unsigned int *size)
325 {
326 void *resized;
327
328 /* Must find the allocation size (and grow it to match). */
329 *size = ksize(data);
330 /* krealloc() will immediately return "data" when
331 * "ksize(data)" is requested: it is the existing upper
332 * bounds. As a result, GFP_ATOMIC will be ignored. Note
333 * that this "new" pointer needs to be passed back to the
334 * caller for use so the __alloc_size hinting will be
335 * tracked correctly.
336 */
337 resized = krealloc(data, *size, GFP_ATOMIC);
338 WARN_ON_ONCE(resized != data);
339 return resized;
340 }
341
342 /* build_skb() variant which can operate on slab buffers.
343 * Note that this should be used sparingly as slab buffers
344 * cannot be combined efficiently by GRO!
345 */
slab_build_skb(void * data)346 struct sk_buff *slab_build_skb(void *data)
347 {
348 struct sk_buff *skb;
349 unsigned int size;
350
351 skb = kmem_cache_alloc(net_hotdata.skbuff_cache,
352 GFP_ATOMIC | __GFP_NOWARN);
353 if (unlikely(!skb))
354 return NULL;
355
356 memset(skb, 0, offsetof(struct sk_buff, tail));
357 data = __slab_build_skb(skb, data, &size);
358 __finalize_skb_around(skb, data, size);
359
360 return skb;
361 }
362 EXPORT_SYMBOL(slab_build_skb);
363
364 /* Caller must provide SKB that is memset cleared */
__build_skb_around(struct sk_buff * skb,void * data,unsigned int frag_size)365 static void __build_skb_around(struct sk_buff *skb, void *data,
366 unsigned int frag_size)
367 {
368 unsigned int size = frag_size;
369
370 /* frag_size == 0 is considered deprecated now. Callers
371 * using slab buffer should use slab_build_skb() instead.
372 */
373 if (WARN_ONCE(size == 0, "Use slab_build_skb() instead"))
374 data = __slab_build_skb(skb, data, &size);
375
376 __finalize_skb_around(skb, data, size);
377 }
378
379 /**
380 * __build_skb - build a network buffer
381 * @data: data buffer provided by caller
382 * @frag_size: size of data (must not be 0)
383 *
384 * Allocate a new &sk_buff. Caller provides space holding head and
385 * skb_shared_info. @data must have been allocated from the page
386 * allocator or vmalloc(). (A @frag_size of 0 to indicate a kmalloc()
387 * allocation is deprecated, and callers should use slab_build_skb()
388 * instead.)
389 * The return is the new skb buffer.
390 * On a failure the return is %NULL, and @data is not freed.
391 * Notes :
392 * Before IO, driver allocates only data buffer where NIC put incoming frame
393 * Driver should add room at head (NET_SKB_PAD) and
394 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
395 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
396 * before giving packet to stack.
397 * RX rings only contains data buffers, not full skbs.
398 */
__build_skb(void * data,unsigned int frag_size)399 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
400 {
401 struct sk_buff *skb;
402
403 skb = kmem_cache_alloc(net_hotdata.skbuff_cache,
404 GFP_ATOMIC | __GFP_NOWARN);
405 if (unlikely(!skb))
406 return NULL;
407
408 memset(skb, 0, offsetof(struct sk_buff, tail));
409 __build_skb_around(skb, data, frag_size);
410
411 return skb;
412 }
413
414 /* build_skb() is wrapper over __build_skb(), that specifically
415 * takes care of skb->head and skb->pfmemalloc
416 */
build_skb(void * data,unsigned int frag_size)417 struct sk_buff *build_skb(void *data, unsigned int frag_size)
418 {
419 struct sk_buff *skb = __build_skb(data, frag_size);
420
421 if (likely(skb && frag_size)) {
422 skb->head_frag = 1;
423 skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
424 }
425 return skb;
426 }
427 EXPORT_SYMBOL(build_skb);
428
429 /**
430 * build_skb_around - build a network buffer around provided skb
431 * @skb: sk_buff provide by caller, must be memset cleared
432 * @data: data buffer provided by caller
433 * @frag_size: size of data
434 */
build_skb_around(struct sk_buff * skb,void * data,unsigned int frag_size)435 struct sk_buff *build_skb_around(struct sk_buff *skb,
436 void *data, unsigned int frag_size)
437 {
438 if (unlikely(!skb))
439 return NULL;
440
441 __build_skb_around(skb, data, frag_size);
442
443 if (frag_size) {
444 skb->head_frag = 1;
445 skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
446 }
447 return skb;
448 }
449 EXPORT_SYMBOL(build_skb_around);
450
451 /**
452 * __napi_build_skb - build a network buffer
453 * @data: data buffer provided by caller
454 * @frag_size: size of data
455 *
456 * Version of __build_skb() that uses NAPI percpu caches to obtain
457 * skbuff_head instead of inplace allocation.
458 *
459 * Returns a new &sk_buff on success, %NULL on allocation failure.
460 */
__napi_build_skb(void * data,unsigned int frag_size)461 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size)
462 {
463 struct sk_buff *skb;
464
465 skb = napi_skb_cache_get();
466 if (unlikely(!skb))
467 return NULL;
468
469 memset(skb, 0, offsetof(struct sk_buff, tail));
470 __build_skb_around(skb, data, frag_size);
471
472 return skb;
473 }
474
475 /**
476 * napi_build_skb - build a network buffer
477 * @data: data buffer provided by caller
478 * @frag_size: size of data
479 *
480 * Version of __napi_build_skb() that takes care of skb->head_frag
481 * and skb->pfmemalloc when the data is a page or page fragment.
482 *
483 * Returns a new &sk_buff on success, %NULL on allocation failure.
484 */
napi_build_skb(void * data,unsigned int frag_size)485 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size)
486 {
487 struct sk_buff *skb = __napi_build_skb(data, frag_size);
488
489 if (likely(skb) && frag_size) {
490 skb->head_frag = 1;
491 skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
492 }
493
494 return skb;
495 }
496 EXPORT_SYMBOL(napi_build_skb);
497
498 /*
499 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
500 * the caller if emergency pfmemalloc reserves are being used. If it is and
501 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
502 * may be used. Otherwise, the packet data may be discarded until enough
503 * memory is free
504 */
kmalloc_reserve(unsigned int * size,gfp_t flags,int node,bool * pfmemalloc)505 static void *kmalloc_reserve(unsigned int *size, gfp_t flags, int node,
506 bool *pfmemalloc)
507 {
508 bool ret_pfmemalloc = false;
509 size_t obj_size;
510 void *obj;
511
512 obj_size = SKB_HEAD_ALIGN(*size);
513 if (obj_size <= SKB_SMALL_HEAD_CACHE_SIZE &&
514 !(flags & KMALLOC_NOT_NORMAL_BITS)) {
515 obj = kmem_cache_alloc_node(net_hotdata.skb_small_head_cache,
516 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
517 node);
518 *size = SKB_SMALL_HEAD_CACHE_SIZE;
519 if (obj || !(gfp_pfmemalloc_allowed(flags)))
520 goto out;
521 /* Try again but now we are using pfmemalloc reserves */
522 ret_pfmemalloc = true;
523 obj = kmem_cache_alloc_node(net_hotdata.skb_small_head_cache, flags, node);
524 goto out;
525 }
526
527 obj_size = kmalloc_size_roundup(obj_size);
528 /* The following cast might truncate high-order bits of obj_size, this
529 * is harmless because kmalloc(obj_size >= 2^32) will fail anyway.
530 */
531 *size = (unsigned int)obj_size;
532
533 /*
534 * Try a regular allocation, when that fails and we're not entitled
535 * to the reserves, fail.
536 */
537 obj = kmalloc_node_track_caller(obj_size,
538 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
539 node);
540 if (obj || !(gfp_pfmemalloc_allowed(flags)))
541 goto out;
542
543 /* Try again but now we are using pfmemalloc reserves */
544 ret_pfmemalloc = true;
545 obj = kmalloc_node_track_caller(obj_size, flags, node);
546
547 out:
548 if (pfmemalloc)
549 *pfmemalloc = ret_pfmemalloc;
550
551 return obj;
552 }
553
554 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
555 * 'private' fields and also do memory statistics to find all the
556 * [BEEP] leaks.
557 *
558 */
559
560 /**
561 * __alloc_skb - allocate a network buffer
562 * @size: size to allocate
563 * @gfp_mask: allocation mask
564 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
565 * instead of head cache and allocate a cloned (child) skb.
566 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
567 * allocations in case the data is required for writeback
568 * @node: numa node to allocate memory on
569 *
570 * Allocate a new &sk_buff. The returned buffer has no headroom and a
571 * tail room of at least size bytes. The object has a reference count
572 * of one. The return is the buffer. On a failure the return is %NULL.
573 *
574 * Buffers may only be allocated from interrupts using a @gfp_mask of
575 * %GFP_ATOMIC.
576 */
__alloc_skb(unsigned int size,gfp_t gfp_mask,int flags,int node)577 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
578 int flags, int node)
579 {
580 struct kmem_cache *cache;
581 struct sk_buff *skb;
582 bool pfmemalloc;
583 u8 *data;
584
585 cache = (flags & SKB_ALLOC_FCLONE)
586 ? net_hotdata.skbuff_fclone_cache : net_hotdata.skbuff_cache;
587
588 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
589 gfp_mask |= __GFP_MEMALLOC;
590
591 /* Get the HEAD */
592 if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI &&
593 likely(node == NUMA_NO_NODE || node == numa_mem_id()))
594 skb = napi_skb_cache_get();
595 else
596 skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node);
597 if (unlikely(!skb))
598 return NULL;
599 prefetchw(skb);
600
601 /* We do our best to align skb_shared_info on a separate cache
602 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
603 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
604 * Both skb->head and skb_shared_info are cache line aligned.
605 */
606 data = kmalloc_reserve(&size, gfp_mask, node, &pfmemalloc);
607 if (unlikely(!data))
608 goto nodata;
609 /* kmalloc_size_roundup() might give us more room than requested.
610 * Put skb_shared_info exactly at the end of allocated zone,
611 * to allow max possible filling before reallocation.
612 */
613 prefetchw(data + SKB_WITH_OVERHEAD(size));
614
615 /*
616 * Only clear those fields we need to clear, not those that we will
617 * actually initialise below. Hence, don't put any more fields after
618 * the tail pointer in struct sk_buff!
619 */
620 memset(skb, 0, offsetof(struct sk_buff, tail));
621 __build_skb_around(skb, data, size);
622 skb->pfmemalloc = pfmemalloc;
623
624 if (flags & SKB_ALLOC_FCLONE) {
625 struct sk_buff_fclones *fclones;
626
627 fclones = container_of(skb, struct sk_buff_fclones, skb1);
628
629 skb->fclone = SKB_FCLONE_ORIG;
630 refcount_set(&fclones->fclone_ref, 1);
631 }
632
633 return skb;
634
635 nodata:
636 kmem_cache_free(cache, skb);
637 return NULL;
638 }
639 EXPORT_SYMBOL(__alloc_skb);
640
641 /**
642 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
643 * @dev: network device to receive on
644 * @len: length to allocate
645 * @gfp_mask: get_free_pages mask, passed to alloc_skb
646 *
647 * Allocate a new &sk_buff and assign it a usage count of one. The
648 * buffer has NET_SKB_PAD headroom built in. Users should allocate
649 * the headroom they think they need without accounting for the
650 * built in space. The built in space is used for optimisations.
651 *
652 * %NULL is returned if there is no free memory.
653 */
__netdev_alloc_skb(struct net_device * dev,unsigned int len,gfp_t gfp_mask)654 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
655 gfp_t gfp_mask)
656 {
657 struct page_frag_cache *nc;
658 struct sk_buff *skb;
659 bool pfmemalloc;
660 void *data;
661
662 len += NET_SKB_PAD;
663
664 /* If requested length is either too small or too big,
665 * we use kmalloc() for skb->head allocation.
666 */
667 if (len <= SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE) ||
668 len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
669 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
670 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
671 if (!skb)
672 goto skb_fail;
673 goto skb_success;
674 }
675
676 len = SKB_HEAD_ALIGN(len);
677
678 if (sk_memalloc_socks())
679 gfp_mask |= __GFP_MEMALLOC;
680
681 if (in_hardirq() || irqs_disabled()) {
682 nc = this_cpu_ptr(&netdev_alloc_cache);
683 data = page_frag_alloc(nc, len, gfp_mask);
684 pfmemalloc = page_frag_cache_is_pfmemalloc(nc);
685 } else {
686 local_bh_disable();
687 local_lock_nested_bh(&napi_alloc_cache.bh_lock);
688
689 nc = this_cpu_ptr(&napi_alloc_cache.page);
690 data = page_frag_alloc(nc, len, gfp_mask);
691 pfmemalloc = page_frag_cache_is_pfmemalloc(nc);
692
693 local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
694 local_bh_enable();
695 }
696
697 if (unlikely(!data))
698 return NULL;
699
700 skb = __build_skb(data, len);
701 if (unlikely(!skb)) {
702 skb_free_frag(data);
703 return NULL;
704 }
705
706 if (pfmemalloc)
707 skb->pfmemalloc = 1;
708 skb->head_frag = 1;
709
710 skb_success:
711 skb_reserve(skb, NET_SKB_PAD);
712 skb->dev = dev;
713
714 skb_fail:
715 return skb;
716 }
717 EXPORT_SYMBOL(__netdev_alloc_skb);
718
719 /**
720 * napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
721 * @napi: napi instance this buffer was allocated for
722 * @len: length to allocate
723 *
724 * Allocate a new sk_buff for use in NAPI receive. This buffer will
725 * attempt to allocate the head from a special reserved region used
726 * only for NAPI Rx allocation. By doing this we can save several
727 * CPU cycles by avoiding having to disable and re-enable IRQs.
728 *
729 * %NULL is returned if there is no free memory.
730 */
napi_alloc_skb(struct napi_struct * napi,unsigned int len)731 struct sk_buff *napi_alloc_skb(struct napi_struct *napi, unsigned int len)
732 {
733 gfp_t gfp_mask = GFP_ATOMIC | __GFP_NOWARN;
734 struct napi_alloc_cache *nc;
735 struct sk_buff *skb;
736 bool pfmemalloc;
737 void *data;
738
739 DEBUG_NET_WARN_ON_ONCE(!in_softirq());
740 len += NET_SKB_PAD + NET_IP_ALIGN;
741
742 /* If requested length is either too small or too big,
743 * we use kmalloc() for skb->head allocation.
744 */
745 if (len <= SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE) ||
746 len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
747 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
748 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI,
749 NUMA_NO_NODE);
750 if (!skb)
751 goto skb_fail;
752 goto skb_success;
753 }
754
755 len = SKB_HEAD_ALIGN(len);
756
757 if (sk_memalloc_socks())
758 gfp_mask |= __GFP_MEMALLOC;
759
760 local_lock_nested_bh(&napi_alloc_cache.bh_lock);
761 nc = this_cpu_ptr(&napi_alloc_cache);
762
763 data = page_frag_alloc(&nc->page, len, gfp_mask);
764 pfmemalloc = page_frag_cache_is_pfmemalloc(&nc->page);
765 local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
766
767 if (unlikely(!data))
768 return NULL;
769
770 skb = __napi_build_skb(data, len);
771 if (unlikely(!skb)) {
772 skb_free_frag(data);
773 return NULL;
774 }
775
776 if (pfmemalloc)
777 skb->pfmemalloc = 1;
778 skb->head_frag = 1;
779
780 skb_success:
781 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
782 skb->dev = napi->dev;
783
784 skb_fail:
785 return skb;
786 }
787 EXPORT_SYMBOL(napi_alloc_skb);
788
skb_add_rx_frag_netmem(struct sk_buff * skb,int i,netmem_ref netmem,int off,int size,unsigned int truesize)789 void skb_add_rx_frag_netmem(struct sk_buff *skb, int i, netmem_ref netmem,
790 int off, int size, unsigned int truesize)
791 {
792 DEBUG_NET_WARN_ON_ONCE(size > truesize);
793
794 skb_fill_netmem_desc(skb, i, netmem, off, size);
795 skb->len += size;
796 skb->data_len += size;
797 skb->truesize += truesize;
798 }
799 EXPORT_SYMBOL(skb_add_rx_frag_netmem);
800
skb_coalesce_rx_frag(struct sk_buff * skb,int i,int size,unsigned int truesize)801 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
802 unsigned int truesize)
803 {
804 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
805
806 DEBUG_NET_WARN_ON_ONCE(size > truesize);
807
808 skb_frag_size_add(frag, size);
809 skb->len += size;
810 skb->data_len += size;
811 skb->truesize += truesize;
812 }
813 EXPORT_SYMBOL(skb_coalesce_rx_frag);
814
skb_drop_list(struct sk_buff ** listp)815 static void skb_drop_list(struct sk_buff **listp)
816 {
817 kfree_skb_list(*listp);
818 *listp = NULL;
819 }
820
skb_drop_fraglist(struct sk_buff * skb)821 static inline void skb_drop_fraglist(struct sk_buff *skb)
822 {
823 skb_drop_list(&skb_shinfo(skb)->frag_list);
824 }
825
skb_clone_fraglist(struct sk_buff * skb)826 static void skb_clone_fraglist(struct sk_buff *skb)
827 {
828 struct sk_buff *list;
829
830 skb_walk_frags(skb, list)
831 skb_get(list);
832 }
833
is_pp_netmem(netmem_ref netmem)834 static bool is_pp_netmem(netmem_ref netmem)
835 {
836 return (netmem_get_pp_magic(netmem) & ~0x3UL) == PP_SIGNATURE;
837 }
838
skb_pp_cow_data(struct page_pool * pool,struct sk_buff ** pskb,unsigned int headroom)839 int skb_pp_cow_data(struct page_pool *pool, struct sk_buff **pskb,
840 unsigned int headroom)
841 {
842 #if IS_ENABLED(CONFIG_PAGE_POOL)
843 u32 size, truesize, len, max_head_size, off;
844 struct sk_buff *skb = *pskb, *nskb;
845 int err, i, head_off;
846 void *data;
847
848 /* XDP does not support fraglist so we need to linearize
849 * the skb.
850 */
851 if (skb_has_frag_list(skb))
852 return -EOPNOTSUPP;
853
854 max_head_size = SKB_WITH_OVERHEAD(PAGE_SIZE - headroom);
855 if (skb->len > max_head_size + MAX_SKB_FRAGS * PAGE_SIZE)
856 return -ENOMEM;
857
858 size = min_t(u32, skb->len, max_head_size);
859 truesize = SKB_HEAD_ALIGN(size) + headroom;
860 data = page_pool_dev_alloc_va(pool, &truesize);
861 if (!data)
862 return -ENOMEM;
863
864 nskb = napi_build_skb(data, truesize);
865 if (!nskb) {
866 page_pool_free_va(pool, data, true);
867 return -ENOMEM;
868 }
869
870 skb_reserve(nskb, headroom);
871 skb_copy_header(nskb, skb);
872 skb_mark_for_recycle(nskb);
873
874 err = skb_copy_bits(skb, 0, nskb->data, size);
875 if (err) {
876 consume_skb(nskb);
877 return err;
878 }
879 skb_put(nskb, size);
880
881 head_off = skb_headroom(nskb) - skb_headroom(skb);
882 skb_headers_offset_update(nskb, head_off);
883
884 off = size;
885 len = skb->len - off;
886 for (i = 0; i < MAX_SKB_FRAGS && off < skb->len; i++) {
887 struct page *page;
888 u32 page_off;
889
890 size = min_t(u32, len, PAGE_SIZE);
891 truesize = size;
892
893 page = page_pool_dev_alloc(pool, &page_off, &truesize);
894 if (!page) {
895 consume_skb(nskb);
896 return -ENOMEM;
897 }
898
899 skb_add_rx_frag(nskb, i, page, page_off, size, truesize);
900 err = skb_copy_bits(skb, off, page_address(page) + page_off,
901 size);
902 if (err) {
903 consume_skb(nskb);
904 return err;
905 }
906
907 len -= size;
908 off += size;
909 }
910
911 consume_skb(skb);
912 *pskb = nskb;
913
914 return 0;
915 #else
916 return -EOPNOTSUPP;
917 #endif
918 }
919 EXPORT_SYMBOL(skb_pp_cow_data);
920
skb_cow_data_for_xdp(struct page_pool * pool,struct sk_buff ** pskb,const struct bpf_prog * prog)921 int skb_cow_data_for_xdp(struct page_pool *pool, struct sk_buff **pskb,
922 const struct bpf_prog *prog)
923 {
924 if (!prog->aux->xdp_has_frags)
925 return -EINVAL;
926
927 return skb_pp_cow_data(pool, pskb, XDP_PACKET_HEADROOM);
928 }
929 EXPORT_SYMBOL(skb_cow_data_for_xdp);
930
931 #if IS_ENABLED(CONFIG_PAGE_POOL)
napi_pp_put_page(netmem_ref netmem)932 bool napi_pp_put_page(netmem_ref netmem)
933 {
934 netmem = netmem_compound_head(netmem);
935
936 /* page->pp_magic is OR'ed with PP_SIGNATURE after the allocation
937 * in order to preserve any existing bits, such as bit 0 for the
938 * head page of compound page and bit 1 for pfmemalloc page, so
939 * mask those bits for freeing side when doing below checking,
940 * and page_is_pfmemalloc() is checked in __page_pool_put_page()
941 * to avoid recycling the pfmemalloc page.
942 */
943 if (unlikely(!is_pp_netmem(netmem)))
944 return false;
945
946 page_pool_put_full_netmem(netmem_get_pp(netmem), netmem, false);
947
948 return true;
949 }
950 EXPORT_SYMBOL(napi_pp_put_page);
951 #endif
952
skb_pp_recycle(struct sk_buff * skb,void * data)953 static bool skb_pp_recycle(struct sk_buff *skb, void *data)
954 {
955 if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle)
956 return false;
957 return napi_pp_put_page(page_to_netmem(virt_to_page(data)));
958 }
959
960 /**
961 * skb_pp_frag_ref() - Increase fragment references of a page pool aware skb
962 * @skb: page pool aware skb
963 *
964 * Increase the fragment reference count (pp_ref_count) of a skb. This is
965 * intended to gain fragment references only for page pool aware skbs,
966 * i.e. when skb->pp_recycle is true, and not for fragments in a
967 * non-pp-recycling skb. It has a fallback to increase references on normal
968 * pages, as page pool aware skbs may also have normal page fragments.
969 */
skb_pp_frag_ref(struct sk_buff * skb)970 static int skb_pp_frag_ref(struct sk_buff *skb)
971 {
972 struct skb_shared_info *shinfo;
973 netmem_ref head_netmem;
974 int i;
975
976 if (!skb->pp_recycle)
977 return -EINVAL;
978
979 shinfo = skb_shinfo(skb);
980
981 for (i = 0; i < shinfo->nr_frags; i++) {
982 head_netmem = netmem_compound_head(shinfo->frags[i].netmem);
983 if (likely(is_pp_netmem(head_netmem)))
984 page_pool_ref_netmem(head_netmem);
985 else
986 page_ref_inc(netmem_to_page(head_netmem));
987 }
988 return 0;
989 }
990
skb_kfree_head(void * head,unsigned int end_offset)991 static void skb_kfree_head(void *head, unsigned int end_offset)
992 {
993 if (end_offset == SKB_SMALL_HEAD_HEADROOM)
994 kmem_cache_free(net_hotdata.skb_small_head_cache, head);
995 else
996 kfree(head);
997 }
998
skb_free_head(struct sk_buff * skb)999 static void skb_free_head(struct sk_buff *skb)
1000 {
1001 unsigned char *head = skb->head;
1002
1003 if (skb->head_frag) {
1004 if (skb_pp_recycle(skb, head))
1005 return;
1006 skb_free_frag(head);
1007 } else {
1008 skb_kfree_head(head, skb_end_offset(skb));
1009 }
1010 }
1011
skb_release_data(struct sk_buff * skb,enum skb_drop_reason reason)1012 static void skb_release_data(struct sk_buff *skb, enum skb_drop_reason reason)
1013 {
1014 struct skb_shared_info *shinfo = skb_shinfo(skb);
1015 int i;
1016
1017 if (!skb_data_unref(skb, shinfo))
1018 goto exit;
1019
1020 if (skb_zcopy(skb)) {
1021 bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS;
1022
1023 skb_zcopy_clear(skb, true);
1024 if (skip_unref)
1025 goto free_head;
1026 }
1027
1028 for (i = 0; i < shinfo->nr_frags; i++)
1029 __skb_frag_unref(&shinfo->frags[i], skb->pp_recycle);
1030
1031 free_head:
1032 if (shinfo->frag_list)
1033 kfree_skb_list_reason(shinfo->frag_list, reason);
1034
1035 skb_free_head(skb);
1036 exit:
1037 /* When we clone an SKB we copy the reycling bit. The pp_recycle
1038 * bit is only set on the head though, so in order to avoid races
1039 * while trying to recycle fragments on __skb_frag_unref() we need
1040 * to make one SKB responsible for triggering the recycle path.
1041 * So disable the recycling bit if an SKB is cloned and we have
1042 * additional references to the fragmented part of the SKB.
1043 * Eventually the last SKB will have the recycling bit set and it's
1044 * dataref set to 0, which will trigger the recycling
1045 */
1046 skb->pp_recycle = 0;
1047 }
1048
1049 /*
1050 * Free an skbuff by memory without cleaning the state.
1051 */
kfree_skbmem(struct sk_buff * skb)1052 static void kfree_skbmem(struct sk_buff *skb)
1053 {
1054 struct sk_buff_fclones *fclones;
1055
1056 switch (skb->fclone) {
1057 case SKB_FCLONE_UNAVAILABLE:
1058 kmem_cache_free(net_hotdata.skbuff_cache, skb);
1059 return;
1060
1061 case SKB_FCLONE_ORIG:
1062 fclones = container_of(skb, struct sk_buff_fclones, skb1);
1063
1064 /* We usually free the clone (TX completion) before original skb
1065 * This test would have no chance to be true for the clone,
1066 * while here, branch prediction will be good.
1067 */
1068 if (refcount_read(&fclones->fclone_ref) == 1)
1069 goto fastpath;
1070 break;
1071
1072 default: /* SKB_FCLONE_CLONE */
1073 fclones = container_of(skb, struct sk_buff_fclones, skb2);
1074 break;
1075 }
1076 if (!refcount_dec_and_test(&fclones->fclone_ref))
1077 return;
1078 fastpath:
1079 kmem_cache_free(net_hotdata.skbuff_fclone_cache, fclones);
1080 }
1081
skb_release_head_state(struct sk_buff * skb)1082 void skb_release_head_state(struct sk_buff *skb)
1083 {
1084 skb_dst_drop(skb);
1085 if (skb->destructor) {
1086 DEBUG_NET_WARN_ON_ONCE(in_hardirq());
1087 skb->destructor(skb);
1088 }
1089 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
1090 nf_conntrack_put(skb_nfct(skb));
1091 #endif
1092 skb_ext_put(skb);
1093 }
1094
1095 /* Free everything but the sk_buff shell. */
skb_release_all(struct sk_buff * skb,enum skb_drop_reason reason)1096 static void skb_release_all(struct sk_buff *skb, enum skb_drop_reason reason)
1097 {
1098 skb_release_head_state(skb);
1099 if (likely(skb->head))
1100 skb_release_data(skb, reason);
1101 }
1102
1103 /**
1104 * __kfree_skb - private function
1105 * @skb: buffer
1106 *
1107 * Free an sk_buff. Release anything attached to the buffer.
1108 * Clean the state. This is an internal helper function. Users should
1109 * always call kfree_skb
1110 */
1111
__kfree_skb(struct sk_buff * skb)1112 void __kfree_skb(struct sk_buff *skb)
1113 {
1114 skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1115 kfree_skbmem(skb);
1116 }
1117 EXPORT_SYMBOL(__kfree_skb);
1118
1119 static __always_inline
__sk_skb_reason_drop(struct sock * sk,struct sk_buff * skb,enum skb_drop_reason reason)1120 bool __sk_skb_reason_drop(struct sock *sk, struct sk_buff *skb,
1121 enum skb_drop_reason reason)
1122 {
1123 if (unlikely(!skb_unref(skb)))
1124 return false;
1125
1126 DEBUG_NET_WARN_ON_ONCE(reason == SKB_NOT_DROPPED_YET ||
1127 u32_get_bits(reason,
1128 SKB_DROP_REASON_SUBSYS_MASK) >=
1129 SKB_DROP_REASON_SUBSYS_NUM);
1130
1131 if (reason == SKB_CONSUMED)
1132 trace_consume_skb(skb, __builtin_return_address(0));
1133 else
1134 trace_kfree_skb(skb, __builtin_return_address(0), reason, sk);
1135 return true;
1136 }
1137
1138 /**
1139 * sk_skb_reason_drop - free an sk_buff with special reason
1140 * @sk: the socket to receive @skb, or NULL if not applicable
1141 * @skb: buffer to free
1142 * @reason: reason why this skb is dropped
1143 *
1144 * Drop a reference to the buffer and free it if the usage count has hit
1145 * zero. Meanwhile, pass the receiving socket and drop reason to
1146 * 'kfree_skb' tracepoint.
1147 */
1148 void __fix_address
sk_skb_reason_drop(struct sock * sk,struct sk_buff * skb,enum skb_drop_reason reason)1149 sk_skb_reason_drop(struct sock *sk, struct sk_buff *skb, enum skb_drop_reason reason)
1150 {
1151 if (__sk_skb_reason_drop(sk, skb, reason))
1152 __kfree_skb(skb);
1153 }
1154 EXPORT_SYMBOL(sk_skb_reason_drop);
1155
1156 #define KFREE_SKB_BULK_SIZE 16
1157
1158 struct skb_free_array {
1159 unsigned int skb_count;
1160 void *skb_array[KFREE_SKB_BULK_SIZE];
1161 };
1162
kfree_skb_add_bulk(struct sk_buff * skb,struct skb_free_array * sa,enum skb_drop_reason reason)1163 static void kfree_skb_add_bulk(struct sk_buff *skb,
1164 struct skb_free_array *sa,
1165 enum skb_drop_reason reason)
1166 {
1167 /* if SKB is a clone, don't handle this case */
1168 if (unlikely(skb->fclone != SKB_FCLONE_UNAVAILABLE)) {
1169 __kfree_skb(skb);
1170 return;
1171 }
1172
1173 skb_release_all(skb, reason);
1174 sa->skb_array[sa->skb_count++] = skb;
1175
1176 if (unlikely(sa->skb_count == KFREE_SKB_BULK_SIZE)) {
1177 kmem_cache_free_bulk(net_hotdata.skbuff_cache, KFREE_SKB_BULK_SIZE,
1178 sa->skb_array);
1179 sa->skb_count = 0;
1180 }
1181 }
1182
1183 void __fix_address
kfree_skb_list_reason(struct sk_buff * segs,enum skb_drop_reason reason)1184 kfree_skb_list_reason(struct sk_buff *segs, enum skb_drop_reason reason)
1185 {
1186 struct skb_free_array sa;
1187
1188 sa.skb_count = 0;
1189
1190 while (segs) {
1191 struct sk_buff *next = segs->next;
1192
1193 if (__sk_skb_reason_drop(NULL, segs, reason)) {
1194 skb_poison_list(segs);
1195 kfree_skb_add_bulk(segs, &sa, reason);
1196 }
1197
1198 segs = next;
1199 }
1200
1201 if (sa.skb_count)
1202 kmem_cache_free_bulk(net_hotdata.skbuff_cache, sa.skb_count, sa.skb_array);
1203 }
1204 EXPORT_SYMBOL(kfree_skb_list_reason);
1205
1206 /* Dump skb information and contents.
1207 *
1208 * Must only be called from net_ratelimit()-ed paths.
1209 *
1210 * Dumps whole packets if full_pkt, only headers otherwise.
1211 */
skb_dump(const char * level,const struct sk_buff * skb,bool full_pkt)1212 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
1213 {
1214 struct skb_shared_info *sh = skb_shinfo(skb);
1215 struct net_device *dev = skb->dev;
1216 struct sock *sk = skb->sk;
1217 struct sk_buff *list_skb;
1218 bool has_mac, has_trans;
1219 int headroom, tailroom;
1220 int i, len, seg_len;
1221
1222 if (full_pkt)
1223 len = skb->len;
1224 else
1225 len = min_t(int, skb->len, MAX_HEADER + 128);
1226
1227 headroom = skb_headroom(skb);
1228 tailroom = skb_tailroom(skb);
1229
1230 has_mac = skb_mac_header_was_set(skb);
1231 has_trans = skb_transport_header_was_set(skb);
1232
1233 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
1234 "mac=(%d,%d) mac_len=%u net=(%d,%d) trans=%d\n"
1235 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
1236 "csum(0x%x start=%u offset=%u ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
1237 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n"
1238 "priority=0x%x mark=0x%x alloc_cpu=%u vlan_all=0x%x\n"
1239 "encapsulation=%d inner(proto=0x%04x, mac=%u, net=%u, trans=%u)\n",
1240 level, skb->len, headroom, skb_headlen(skb), tailroom,
1241 has_mac ? skb->mac_header : -1,
1242 has_mac ? skb_mac_header_len(skb) : -1,
1243 skb->mac_len,
1244 skb->network_header,
1245 has_trans ? skb_network_header_len(skb) : -1,
1246 has_trans ? skb->transport_header : -1,
1247 sh->tx_flags, sh->nr_frags,
1248 sh->gso_size, sh->gso_type, sh->gso_segs,
1249 skb->csum, skb->csum_start, skb->csum_offset, skb->ip_summed,
1250 skb->csum_complete_sw, skb->csum_valid, skb->csum_level,
1251 skb->hash, skb->sw_hash, skb->l4_hash,
1252 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif,
1253 skb->priority, skb->mark, skb->alloc_cpu, skb->vlan_all,
1254 skb->encapsulation, skb->inner_protocol, skb->inner_mac_header,
1255 skb->inner_network_header, skb->inner_transport_header);
1256
1257 if (dev)
1258 printk("%sdev name=%s feat=%pNF\n",
1259 level, dev->name, &dev->features);
1260 if (sk)
1261 printk("%ssk family=%hu type=%u proto=%u\n",
1262 level, sk->sk_family, sk->sk_type, sk->sk_protocol);
1263
1264 if (full_pkt && headroom)
1265 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
1266 16, 1, skb->head, headroom, false);
1267
1268 seg_len = min_t(int, skb_headlen(skb), len);
1269 if (seg_len)
1270 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET,
1271 16, 1, skb->data, seg_len, false);
1272 len -= seg_len;
1273
1274 if (full_pkt && tailroom)
1275 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
1276 16, 1, skb_tail_pointer(skb), tailroom, false);
1277
1278 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
1279 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1280 u32 p_off, p_len, copied;
1281 struct page *p;
1282 u8 *vaddr;
1283
1284 if (skb_frag_is_net_iov(frag)) {
1285 printk("%sskb frag %d: not readable\n", level, i);
1286 len -= skb_frag_size(frag);
1287 if (!len)
1288 break;
1289 continue;
1290 }
1291
1292 skb_frag_foreach_page(frag, skb_frag_off(frag),
1293 skb_frag_size(frag), p, p_off, p_len,
1294 copied) {
1295 seg_len = min_t(int, p_len, len);
1296 vaddr = kmap_atomic(p);
1297 print_hex_dump(level, "skb frag: ",
1298 DUMP_PREFIX_OFFSET,
1299 16, 1, vaddr + p_off, seg_len, false);
1300 kunmap_atomic(vaddr);
1301 len -= seg_len;
1302 if (!len)
1303 break;
1304 }
1305 }
1306
1307 if (full_pkt && skb_has_frag_list(skb)) {
1308 printk("skb fraglist:\n");
1309 skb_walk_frags(skb, list_skb)
1310 skb_dump(level, list_skb, true);
1311 }
1312 }
1313 EXPORT_SYMBOL(skb_dump);
1314
1315 /**
1316 * skb_tx_error - report an sk_buff xmit error
1317 * @skb: buffer that triggered an error
1318 *
1319 * Report xmit error if a device callback is tracking this skb.
1320 * skb must be freed afterwards.
1321 */
skb_tx_error(struct sk_buff * skb)1322 void skb_tx_error(struct sk_buff *skb)
1323 {
1324 if (skb) {
1325 skb_zcopy_downgrade_managed(skb);
1326 skb_zcopy_clear(skb, true);
1327 }
1328 }
1329 EXPORT_SYMBOL(skb_tx_error);
1330
1331 #ifdef CONFIG_TRACEPOINTS
1332 /**
1333 * consume_skb - free an skbuff
1334 * @skb: buffer to free
1335 *
1336 * Drop a ref to the buffer and free it if the usage count has hit zero
1337 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
1338 * is being dropped after a failure and notes that
1339 */
consume_skb(struct sk_buff * skb)1340 void consume_skb(struct sk_buff *skb)
1341 {
1342 if (!skb_unref(skb))
1343 return;
1344
1345 trace_consume_skb(skb, __builtin_return_address(0));
1346 __kfree_skb(skb);
1347 }
1348 EXPORT_SYMBOL(consume_skb);
1349 #endif
1350
1351 /**
1352 * __consume_stateless_skb - free an skbuff, assuming it is stateless
1353 * @skb: buffer to free
1354 *
1355 * Alike consume_skb(), but this variant assumes that this is the last
1356 * skb reference and all the head states have been already dropped
1357 */
__consume_stateless_skb(struct sk_buff * skb)1358 void __consume_stateless_skb(struct sk_buff *skb)
1359 {
1360 trace_consume_skb(skb, __builtin_return_address(0));
1361 skb_release_data(skb, SKB_CONSUMED);
1362 kfree_skbmem(skb);
1363 }
1364
napi_skb_cache_put(struct sk_buff * skb)1365 static void napi_skb_cache_put(struct sk_buff *skb)
1366 {
1367 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
1368 u32 i;
1369
1370 if (!kasan_mempool_poison_object(skb))
1371 return;
1372
1373 local_lock_nested_bh(&napi_alloc_cache.bh_lock);
1374 nc->skb_cache[nc->skb_count++] = skb;
1375
1376 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
1377 for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++)
1378 kasan_mempool_unpoison_object(nc->skb_cache[i],
1379 kmem_cache_size(net_hotdata.skbuff_cache));
1380
1381 kmem_cache_free_bulk(net_hotdata.skbuff_cache, NAPI_SKB_CACHE_HALF,
1382 nc->skb_cache + NAPI_SKB_CACHE_HALF);
1383 nc->skb_count = NAPI_SKB_CACHE_HALF;
1384 }
1385 local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
1386 }
1387
__napi_kfree_skb(struct sk_buff * skb,enum skb_drop_reason reason)1388 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason)
1389 {
1390 skb_release_all(skb, reason);
1391 napi_skb_cache_put(skb);
1392 }
1393
napi_skb_free_stolen_head(struct sk_buff * skb)1394 void napi_skb_free_stolen_head(struct sk_buff *skb)
1395 {
1396 if (unlikely(skb->slow_gro)) {
1397 nf_reset_ct(skb);
1398 skb_dst_drop(skb);
1399 skb_ext_put(skb);
1400 skb_orphan(skb);
1401 skb->slow_gro = 0;
1402 }
1403 napi_skb_cache_put(skb);
1404 }
1405
napi_consume_skb(struct sk_buff * skb,int budget)1406 void napi_consume_skb(struct sk_buff *skb, int budget)
1407 {
1408 /* Zero budget indicate non-NAPI context called us, like netpoll */
1409 if (unlikely(!budget)) {
1410 dev_consume_skb_any(skb);
1411 return;
1412 }
1413
1414 DEBUG_NET_WARN_ON_ONCE(!in_softirq());
1415
1416 if (!skb_unref(skb))
1417 return;
1418
1419 /* if reaching here SKB is ready to free */
1420 trace_consume_skb(skb, __builtin_return_address(0));
1421
1422 /* if SKB is a clone, don't handle this case */
1423 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
1424 __kfree_skb(skb);
1425 return;
1426 }
1427
1428 skb_release_all(skb, SKB_CONSUMED);
1429 napi_skb_cache_put(skb);
1430 }
1431 EXPORT_SYMBOL(napi_consume_skb);
1432
1433 /* Make sure a field is contained by headers group */
1434 #define CHECK_SKB_FIELD(field) \
1435 BUILD_BUG_ON(offsetof(struct sk_buff, field) != \
1436 offsetof(struct sk_buff, headers.field)); \
1437
__copy_skb_header(struct sk_buff * new,const struct sk_buff * old)1438 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1439 {
1440 new->tstamp = old->tstamp;
1441 /* We do not copy old->sk */
1442 new->dev = old->dev;
1443 memcpy(new->cb, old->cb, sizeof(old->cb));
1444 skb_dst_copy(new, old);
1445 __skb_ext_copy(new, old);
1446 __nf_copy(new, old, false);
1447
1448 /* Note : this field could be in the headers group.
1449 * It is not yet because we do not want to have a 16 bit hole
1450 */
1451 new->queue_mapping = old->queue_mapping;
1452
1453 memcpy(&new->headers, &old->headers, sizeof(new->headers));
1454 CHECK_SKB_FIELD(protocol);
1455 CHECK_SKB_FIELD(csum);
1456 CHECK_SKB_FIELD(hash);
1457 CHECK_SKB_FIELD(priority);
1458 CHECK_SKB_FIELD(skb_iif);
1459 CHECK_SKB_FIELD(vlan_proto);
1460 CHECK_SKB_FIELD(vlan_tci);
1461 CHECK_SKB_FIELD(transport_header);
1462 CHECK_SKB_FIELD(network_header);
1463 CHECK_SKB_FIELD(mac_header);
1464 CHECK_SKB_FIELD(inner_protocol);
1465 CHECK_SKB_FIELD(inner_transport_header);
1466 CHECK_SKB_FIELD(inner_network_header);
1467 CHECK_SKB_FIELD(inner_mac_header);
1468 CHECK_SKB_FIELD(mark);
1469 #ifdef CONFIG_NETWORK_SECMARK
1470 CHECK_SKB_FIELD(secmark);
1471 #endif
1472 #ifdef CONFIG_NET_RX_BUSY_POLL
1473 CHECK_SKB_FIELD(napi_id);
1474 #endif
1475 CHECK_SKB_FIELD(alloc_cpu);
1476 #ifdef CONFIG_XPS
1477 CHECK_SKB_FIELD(sender_cpu);
1478 #endif
1479 #ifdef CONFIG_NET_SCHED
1480 CHECK_SKB_FIELD(tc_index);
1481 #endif
1482
1483 }
1484
1485 /*
1486 * You should not add any new code to this function. Add it to
1487 * __copy_skb_header above instead.
1488 */
__skb_clone(struct sk_buff * n,struct sk_buff * skb)1489 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
1490 {
1491 #define C(x) n->x = skb->x
1492
1493 n->next = n->prev = NULL;
1494 n->sk = NULL;
1495 __copy_skb_header(n, skb);
1496
1497 C(len);
1498 C(data_len);
1499 C(mac_len);
1500 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1501 n->cloned = 1;
1502 n->nohdr = 0;
1503 n->peeked = 0;
1504 C(pfmemalloc);
1505 C(pp_recycle);
1506 n->destructor = NULL;
1507 C(tail);
1508 C(end);
1509 C(head);
1510 C(head_frag);
1511 C(data);
1512 C(truesize);
1513 refcount_set(&n->users, 1);
1514
1515 atomic_inc(&(skb_shinfo(skb)->dataref));
1516 skb->cloned = 1;
1517
1518 return n;
1519 #undef C
1520 }
1521
1522 /**
1523 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1524 * @first: first sk_buff of the msg
1525 */
alloc_skb_for_msg(struct sk_buff * first)1526 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1527 {
1528 struct sk_buff *n;
1529
1530 n = alloc_skb(0, GFP_ATOMIC);
1531 if (!n)
1532 return NULL;
1533
1534 n->len = first->len;
1535 n->data_len = first->len;
1536 n->truesize = first->truesize;
1537
1538 skb_shinfo(n)->frag_list = first;
1539
1540 __copy_skb_header(n, first);
1541 n->destructor = NULL;
1542
1543 return n;
1544 }
1545 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1546
1547 /**
1548 * skb_morph - morph one skb into another
1549 * @dst: the skb to receive the contents
1550 * @src: the skb to supply the contents
1551 *
1552 * This is identical to skb_clone except that the target skb is
1553 * supplied by the user.
1554 *
1555 * The target skb is returned upon exit.
1556 */
skb_morph(struct sk_buff * dst,struct sk_buff * src)1557 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1558 {
1559 skb_release_all(dst, SKB_CONSUMED);
1560 return __skb_clone(dst, src);
1561 }
1562 EXPORT_SYMBOL_GPL(skb_morph);
1563
mm_account_pinned_pages(struct mmpin * mmp,size_t size)1564 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1565 {
1566 unsigned long max_pg, num_pg, new_pg, old_pg, rlim;
1567 struct user_struct *user;
1568
1569 if (capable(CAP_IPC_LOCK) || !size)
1570 return 0;
1571
1572 rlim = rlimit(RLIMIT_MEMLOCK);
1573 if (rlim == RLIM_INFINITY)
1574 return 0;
1575
1576 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */
1577 max_pg = rlim >> PAGE_SHIFT;
1578 user = mmp->user ? : current_user();
1579
1580 old_pg = atomic_long_read(&user->locked_vm);
1581 do {
1582 new_pg = old_pg + num_pg;
1583 if (new_pg > max_pg)
1584 return -ENOBUFS;
1585 } while (!atomic_long_try_cmpxchg(&user->locked_vm, &old_pg, new_pg));
1586
1587 if (!mmp->user) {
1588 mmp->user = get_uid(user);
1589 mmp->num_pg = num_pg;
1590 } else {
1591 mmp->num_pg += num_pg;
1592 }
1593
1594 return 0;
1595 }
1596 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1597
mm_unaccount_pinned_pages(struct mmpin * mmp)1598 void mm_unaccount_pinned_pages(struct mmpin *mmp)
1599 {
1600 if (mmp->user) {
1601 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1602 free_uid(mmp->user);
1603 }
1604 }
1605 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1606
msg_zerocopy_alloc(struct sock * sk,size_t size)1607 static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size)
1608 {
1609 struct ubuf_info_msgzc *uarg;
1610 struct sk_buff *skb;
1611
1612 WARN_ON_ONCE(!in_task());
1613
1614 skb = sock_omalloc(sk, 0, GFP_KERNEL);
1615 if (!skb)
1616 return NULL;
1617
1618 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1619 uarg = (void *)skb->cb;
1620 uarg->mmp.user = NULL;
1621
1622 if (mm_account_pinned_pages(&uarg->mmp, size)) {
1623 kfree_skb(skb);
1624 return NULL;
1625 }
1626
1627 uarg->ubuf.ops = &msg_zerocopy_ubuf_ops;
1628 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1629 uarg->len = 1;
1630 uarg->bytelen = size;
1631 uarg->zerocopy = 1;
1632 uarg->ubuf.flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN;
1633 refcount_set(&uarg->ubuf.refcnt, 1);
1634 sock_hold(sk);
1635
1636 return &uarg->ubuf;
1637 }
1638
skb_from_uarg(struct ubuf_info_msgzc * uarg)1639 static inline struct sk_buff *skb_from_uarg(struct ubuf_info_msgzc *uarg)
1640 {
1641 return container_of((void *)uarg, struct sk_buff, cb);
1642 }
1643
msg_zerocopy_realloc(struct sock * sk,size_t size,struct ubuf_info * uarg)1644 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1645 struct ubuf_info *uarg)
1646 {
1647 if (uarg) {
1648 struct ubuf_info_msgzc *uarg_zc;
1649 const u32 byte_limit = 1 << 19; /* limit to a few TSO */
1650 u32 bytelen, next;
1651
1652 /* there might be non MSG_ZEROCOPY users */
1653 if (uarg->ops != &msg_zerocopy_ubuf_ops)
1654 return NULL;
1655
1656 /* realloc only when socket is locked (TCP, UDP cork),
1657 * so uarg->len and sk_zckey access is serialized
1658 */
1659 if (!sock_owned_by_user(sk)) {
1660 WARN_ON_ONCE(1);
1661 return NULL;
1662 }
1663
1664 uarg_zc = uarg_to_msgzc(uarg);
1665 bytelen = uarg_zc->bytelen + size;
1666 if (uarg_zc->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1667 /* TCP can create new skb to attach new uarg */
1668 if (sk->sk_type == SOCK_STREAM)
1669 goto new_alloc;
1670 return NULL;
1671 }
1672
1673 next = (u32)atomic_read(&sk->sk_zckey);
1674 if ((u32)(uarg_zc->id + uarg_zc->len) == next) {
1675 if (mm_account_pinned_pages(&uarg_zc->mmp, size))
1676 return NULL;
1677 uarg_zc->len++;
1678 uarg_zc->bytelen = bytelen;
1679 atomic_set(&sk->sk_zckey, ++next);
1680
1681 /* no extra ref when appending to datagram (MSG_MORE) */
1682 if (sk->sk_type == SOCK_STREAM)
1683 net_zcopy_get(uarg);
1684
1685 return uarg;
1686 }
1687 }
1688
1689 new_alloc:
1690 return msg_zerocopy_alloc(sk, size);
1691 }
1692 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc);
1693
skb_zerocopy_notify_extend(struct sk_buff * skb,u32 lo,u16 len)1694 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1695 {
1696 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1697 u32 old_lo, old_hi;
1698 u64 sum_len;
1699
1700 old_lo = serr->ee.ee_info;
1701 old_hi = serr->ee.ee_data;
1702 sum_len = old_hi - old_lo + 1ULL + len;
1703
1704 if (sum_len >= (1ULL << 32))
1705 return false;
1706
1707 if (lo != old_hi + 1)
1708 return false;
1709
1710 serr->ee.ee_data += len;
1711 return true;
1712 }
1713
__msg_zerocopy_callback(struct ubuf_info_msgzc * uarg)1714 static void __msg_zerocopy_callback(struct ubuf_info_msgzc *uarg)
1715 {
1716 struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1717 struct sock_exterr_skb *serr;
1718 struct sock *sk = skb->sk;
1719 struct sk_buff_head *q;
1720 unsigned long flags;
1721 bool is_zerocopy;
1722 u32 lo, hi;
1723 u16 len;
1724
1725 mm_unaccount_pinned_pages(&uarg->mmp);
1726
1727 /* if !len, there was only 1 call, and it was aborted
1728 * so do not queue a completion notification
1729 */
1730 if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1731 goto release;
1732
1733 len = uarg->len;
1734 lo = uarg->id;
1735 hi = uarg->id + len - 1;
1736 is_zerocopy = uarg->zerocopy;
1737
1738 serr = SKB_EXT_ERR(skb);
1739 memset(serr, 0, sizeof(*serr));
1740 serr->ee.ee_errno = 0;
1741 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1742 serr->ee.ee_data = hi;
1743 serr->ee.ee_info = lo;
1744 if (!is_zerocopy)
1745 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1746
1747 q = &sk->sk_error_queue;
1748 spin_lock_irqsave(&q->lock, flags);
1749 tail = skb_peek_tail(q);
1750 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1751 !skb_zerocopy_notify_extend(tail, lo, len)) {
1752 __skb_queue_tail(q, skb);
1753 skb = NULL;
1754 }
1755 spin_unlock_irqrestore(&q->lock, flags);
1756
1757 sk_error_report(sk);
1758
1759 release:
1760 consume_skb(skb);
1761 sock_put(sk);
1762 }
1763
msg_zerocopy_complete(struct sk_buff * skb,struct ubuf_info * uarg,bool success)1764 static void msg_zerocopy_complete(struct sk_buff *skb, struct ubuf_info *uarg,
1765 bool success)
1766 {
1767 struct ubuf_info_msgzc *uarg_zc = uarg_to_msgzc(uarg);
1768
1769 uarg_zc->zerocopy = uarg_zc->zerocopy & success;
1770
1771 if (refcount_dec_and_test(&uarg->refcnt))
1772 __msg_zerocopy_callback(uarg_zc);
1773 }
1774
msg_zerocopy_put_abort(struct ubuf_info * uarg,bool have_uref)1775 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1776 {
1777 struct sock *sk = skb_from_uarg(uarg_to_msgzc(uarg))->sk;
1778
1779 atomic_dec(&sk->sk_zckey);
1780 uarg_to_msgzc(uarg)->len--;
1781
1782 if (have_uref)
1783 msg_zerocopy_complete(NULL, uarg, true);
1784 }
1785 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort);
1786
1787 const struct ubuf_info_ops msg_zerocopy_ubuf_ops = {
1788 .complete = msg_zerocopy_complete,
1789 };
1790 EXPORT_SYMBOL_GPL(msg_zerocopy_ubuf_ops);
1791
skb_zerocopy_iter_stream(struct sock * sk,struct sk_buff * skb,struct msghdr * msg,int len,struct ubuf_info * uarg)1792 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1793 struct msghdr *msg, int len,
1794 struct ubuf_info *uarg)
1795 {
1796 int err, orig_len = skb->len;
1797
1798 if (uarg->ops->link_skb) {
1799 err = uarg->ops->link_skb(skb, uarg);
1800 if (err)
1801 return err;
1802 } else {
1803 struct ubuf_info *orig_uarg = skb_zcopy(skb);
1804
1805 /* An skb can only point to one uarg. This edge case happens
1806 * when TCP appends to an skb, but zerocopy_realloc triggered
1807 * a new alloc.
1808 */
1809 if (orig_uarg && uarg != orig_uarg)
1810 return -EEXIST;
1811 }
1812
1813 err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len);
1814 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1815 struct sock *save_sk = skb->sk;
1816
1817 /* Streams do not free skb on error. Reset to prev state. */
1818 iov_iter_revert(&msg->msg_iter, skb->len - orig_len);
1819 skb->sk = sk;
1820 ___pskb_trim(skb, orig_len);
1821 skb->sk = save_sk;
1822 return err;
1823 }
1824
1825 skb_zcopy_set(skb, uarg, NULL);
1826 return skb->len - orig_len;
1827 }
1828 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1829
__skb_zcopy_downgrade_managed(struct sk_buff * skb)1830 void __skb_zcopy_downgrade_managed(struct sk_buff *skb)
1831 {
1832 int i;
1833
1834 skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS;
1835 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1836 skb_frag_ref(skb, i);
1837 }
1838 EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed);
1839
skb_zerocopy_clone(struct sk_buff * nskb,struct sk_buff * orig,gfp_t gfp_mask)1840 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1841 gfp_t gfp_mask)
1842 {
1843 if (skb_zcopy(orig)) {
1844 if (skb_zcopy(nskb)) {
1845 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1846 if (!gfp_mask) {
1847 WARN_ON_ONCE(1);
1848 return -ENOMEM;
1849 }
1850 if (skb_uarg(nskb) == skb_uarg(orig))
1851 return 0;
1852 if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1853 return -EIO;
1854 }
1855 skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1856 }
1857 return 0;
1858 }
1859
1860 /**
1861 * skb_copy_ubufs - copy userspace skb frags buffers to kernel
1862 * @skb: the skb to modify
1863 * @gfp_mask: allocation priority
1864 *
1865 * This must be called on skb with SKBFL_ZEROCOPY_ENABLE.
1866 * It will copy all frags into kernel and drop the reference
1867 * to userspace pages.
1868 *
1869 * If this function is called from an interrupt gfp_mask() must be
1870 * %GFP_ATOMIC.
1871 *
1872 * Returns 0 on success or a negative error code on failure
1873 * to allocate kernel memory to copy to.
1874 */
skb_copy_ubufs(struct sk_buff * skb,gfp_t gfp_mask)1875 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1876 {
1877 int num_frags = skb_shinfo(skb)->nr_frags;
1878 struct page *page, *head = NULL;
1879 int i, order, psize, new_frags;
1880 u32 d_off;
1881
1882 if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1883 return -EINVAL;
1884
1885 if (!skb_frags_readable(skb))
1886 return -EFAULT;
1887
1888 if (!num_frags)
1889 goto release;
1890
1891 /* We might have to allocate high order pages, so compute what minimum
1892 * page order is needed.
1893 */
1894 order = 0;
1895 while ((PAGE_SIZE << order) * MAX_SKB_FRAGS < __skb_pagelen(skb))
1896 order++;
1897 psize = (PAGE_SIZE << order);
1898
1899 new_frags = (__skb_pagelen(skb) + psize - 1) >> (PAGE_SHIFT + order);
1900 for (i = 0; i < new_frags; i++) {
1901 page = alloc_pages(gfp_mask | __GFP_COMP, order);
1902 if (!page) {
1903 while (head) {
1904 struct page *next = (struct page *)page_private(head);
1905 put_page(head);
1906 head = next;
1907 }
1908 return -ENOMEM;
1909 }
1910 set_page_private(page, (unsigned long)head);
1911 head = page;
1912 }
1913
1914 page = head;
1915 d_off = 0;
1916 for (i = 0; i < num_frags; i++) {
1917 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1918 u32 p_off, p_len, copied;
1919 struct page *p;
1920 u8 *vaddr;
1921
1922 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1923 p, p_off, p_len, copied) {
1924 u32 copy, done = 0;
1925 vaddr = kmap_atomic(p);
1926
1927 while (done < p_len) {
1928 if (d_off == psize) {
1929 d_off = 0;
1930 page = (struct page *)page_private(page);
1931 }
1932 copy = min_t(u32, psize - d_off, p_len - done);
1933 memcpy(page_address(page) + d_off,
1934 vaddr + p_off + done, copy);
1935 done += copy;
1936 d_off += copy;
1937 }
1938 kunmap_atomic(vaddr);
1939 }
1940 }
1941
1942 /* skb frags release userspace buffers */
1943 for (i = 0; i < num_frags; i++)
1944 skb_frag_unref(skb, i);
1945
1946 /* skb frags point to kernel buffers */
1947 for (i = 0; i < new_frags - 1; i++) {
1948 __skb_fill_netmem_desc(skb, i, page_to_netmem(head), 0, psize);
1949 head = (struct page *)page_private(head);
1950 }
1951 __skb_fill_netmem_desc(skb, new_frags - 1, page_to_netmem(head), 0,
1952 d_off);
1953 skb_shinfo(skb)->nr_frags = new_frags;
1954
1955 release:
1956 skb_zcopy_clear(skb, false);
1957 return 0;
1958 }
1959 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1960
1961 /**
1962 * skb_clone - duplicate an sk_buff
1963 * @skb: buffer to clone
1964 * @gfp_mask: allocation priority
1965 *
1966 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
1967 * copies share the same packet data but not structure. The new
1968 * buffer has a reference count of 1. If the allocation fails the
1969 * function returns %NULL otherwise the new buffer is returned.
1970 *
1971 * If this function is called from an interrupt gfp_mask() must be
1972 * %GFP_ATOMIC.
1973 */
1974
skb_clone(struct sk_buff * skb,gfp_t gfp_mask)1975 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1976 {
1977 struct sk_buff_fclones *fclones = container_of(skb,
1978 struct sk_buff_fclones,
1979 skb1);
1980 struct sk_buff *n;
1981
1982 if (skb_orphan_frags(skb, gfp_mask))
1983 return NULL;
1984
1985 if (skb->fclone == SKB_FCLONE_ORIG &&
1986 refcount_read(&fclones->fclone_ref) == 1) {
1987 n = &fclones->skb2;
1988 refcount_set(&fclones->fclone_ref, 2);
1989 n->fclone = SKB_FCLONE_CLONE;
1990 } else {
1991 if (skb_pfmemalloc(skb))
1992 gfp_mask |= __GFP_MEMALLOC;
1993
1994 n = kmem_cache_alloc(net_hotdata.skbuff_cache, gfp_mask);
1995 if (!n)
1996 return NULL;
1997
1998 n->fclone = SKB_FCLONE_UNAVAILABLE;
1999 }
2000
2001 return __skb_clone(n, skb);
2002 }
2003 EXPORT_SYMBOL(skb_clone);
2004
skb_headers_offset_update(struct sk_buff * skb,int off)2005 void skb_headers_offset_update(struct sk_buff *skb, int off)
2006 {
2007 /* Only adjust this if it actually is csum_start rather than csum */
2008 if (skb->ip_summed == CHECKSUM_PARTIAL)
2009 skb->csum_start += off;
2010 /* {transport,network,mac}_header and tail are relative to skb->head */
2011 skb->transport_header += off;
2012 skb->network_header += off;
2013 if (skb_mac_header_was_set(skb))
2014 skb->mac_header += off;
2015 skb->inner_transport_header += off;
2016 skb->inner_network_header += off;
2017 skb->inner_mac_header += off;
2018 }
2019 EXPORT_SYMBOL(skb_headers_offset_update);
2020
skb_copy_header(struct sk_buff * new,const struct sk_buff * old)2021 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
2022 {
2023 __copy_skb_header(new, old);
2024
2025 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
2026 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
2027 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
2028 }
2029 EXPORT_SYMBOL(skb_copy_header);
2030
skb_alloc_rx_flag(const struct sk_buff * skb)2031 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
2032 {
2033 if (skb_pfmemalloc(skb))
2034 return SKB_ALLOC_RX;
2035 return 0;
2036 }
2037
2038 /**
2039 * skb_copy - create private copy of an sk_buff
2040 * @skb: buffer to copy
2041 * @gfp_mask: allocation priority
2042 *
2043 * Make a copy of both an &sk_buff and its data. This is used when the
2044 * caller wishes to modify the data and needs a private copy of the
2045 * data to alter. Returns %NULL on failure or the pointer to the buffer
2046 * on success. The returned buffer has a reference count of 1.
2047 *
2048 * As by-product this function converts non-linear &sk_buff to linear
2049 * one, so that &sk_buff becomes completely private and caller is allowed
2050 * to modify all the data of returned buffer. This means that this
2051 * function is not recommended for use in circumstances when only
2052 * header is going to be modified. Use pskb_copy() instead.
2053 */
2054
skb_copy(const struct sk_buff * skb,gfp_t gfp_mask)2055 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
2056 {
2057 struct sk_buff *n;
2058 unsigned int size;
2059 int headerlen;
2060
2061 if (!skb_frags_readable(skb))
2062 return NULL;
2063
2064 if (WARN_ON_ONCE(skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST))
2065 return NULL;
2066
2067 headerlen = skb_headroom(skb);
2068 size = skb_end_offset(skb) + skb->data_len;
2069 n = __alloc_skb(size, gfp_mask,
2070 skb_alloc_rx_flag(skb), NUMA_NO_NODE);
2071 if (!n)
2072 return NULL;
2073
2074 /* Set the data pointer */
2075 skb_reserve(n, headerlen);
2076 /* Set the tail pointer and length */
2077 skb_put(n, skb->len);
2078
2079 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
2080
2081 skb_copy_header(n, skb);
2082 return n;
2083 }
2084 EXPORT_SYMBOL(skb_copy);
2085
2086 /**
2087 * __pskb_copy_fclone - create copy of an sk_buff with private head.
2088 * @skb: buffer to copy
2089 * @headroom: headroom of new skb
2090 * @gfp_mask: allocation priority
2091 * @fclone: if true allocate the copy of the skb from the fclone
2092 * cache instead of the head cache; it is recommended to set this
2093 * to true for the cases where the copy will likely be cloned
2094 *
2095 * Make a copy of both an &sk_buff and part of its data, located
2096 * in header. Fragmented data remain shared. This is used when
2097 * the caller wishes to modify only header of &sk_buff and needs
2098 * private copy of the header to alter. Returns %NULL on failure
2099 * or the pointer to the buffer on success.
2100 * The returned buffer has a reference count of 1.
2101 */
2102
__pskb_copy_fclone(struct sk_buff * skb,int headroom,gfp_t gfp_mask,bool fclone)2103 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
2104 gfp_t gfp_mask, bool fclone)
2105 {
2106 unsigned int size = skb_headlen(skb) + headroom;
2107 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
2108 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
2109
2110 if (!n)
2111 goto out;
2112
2113 /* Set the data pointer */
2114 skb_reserve(n, headroom);
2115 /* Set the tail pointer and length */
2116 skb_put(n, skb_headlen(skb));
2117 /* Copy the bytes */
2118 skb_copy_from_linear_data(skb, n->data, n->len);
2119
2120 n->truesize += skb->data_len;
2121 n->data_len = skb->data_len;
2122 n->len = skb->len;
2123
2124 if (skb_shinfo(skb)->nr_frags) {
2125 int i;
2126
2127 if (skb_orphan_frags(skb, gfp_mask) ||
2128 skb_zerocopy_clone(n, skb, gfp_mask)) {
2129 kfree_skb(n);
2130 n = NULL;
2131 goto out;
2132 }
2133 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2134 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
2135 skb_frag_ref(skb, i);
2136 }
2137 skb_shinfo(n)->nr_frags = i;
2138 }
2139
2140 if (skb_has_frag_list(skb)) {
2141 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
2142 skb_clone_fraglist(n);
2143 }
2144
2145 skb_copy_header(n, skb);
2146 out:
2147 return n;
2148 }
2149 EXPORT_SYMBOL(__pskb_copy_fclone);
2150
2151 /**
2152 * pskb_expand_head - reallocate header of &sk_buff
2153 * @skb: buffer to reallocate
2154 * @nhead: room to add at head
2155 * @ntail: room to add at tail
2156 * @gfp_mask: allocation priority
2157 *
2158 * Expands (or creates identical copy, if @nhead and @ntail are zero)
2159 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
2160 * reference count of 1. Returns zero in the case of success or error,
2161 * if expansion failed. In the last case, &sk_buff is not changed.
2162 *
2163 * All the pointers pointing into skb header may change and must be
2164 * reloaded after call to this function.
2165 */
2166
pskb_expand_head(struct sk_buff * skb,int nhead,int ntail,gfp_t gfp_mask)2167 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
2168 gfp_t gfp_mask)
2169 {
2170 unsigned int osize = skb_end_offset(skb);
2171 unsigned int size = osize + nhead + ntail;
2172 long off;
2173 u8 *data;
2174 int i;
2175
2176 BUG_ON(nhead < 0);
2177
2178 BUG_ON(skb_shared(skb));
2179
2180 skb_zcopy_downgrade_managed(skb);
2181
2182 if (skb_pfmemalloc(skb))
2183 gfp_mask |= __GFP_MEMALLOC;
2184
2185 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
2186 if (!data)
2187 goto nodata;
2188 size = SKB_WITH_OVERHEAD(size);
2189
2190 /* Copy only real data... and, alas, header. This should be
2191 * optimized for the cases when header is void.
2192 */
2193 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
2194
2195 memcpy((struct skb_shared_info *)(data + size),
2196 skb_shinfo(skb),
2197 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
2198
2199 /*
2200 * if shinfo is shared we must drop the old head gracefully, but if it
2201 * is not we can just drop the old head and let the existing refcount
2202 * be since all we did is relocate the values
2203 */
2204 if (skb_cloned(skb)) {
2205 if (skb_orphan_frags(skb, gfp_mask))
2206 goto nofrags;
2207 if (skb_zcopy(skb))
2208 refcount_inc(&skb_uarg(skb)->refcnt);
2209 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2210 skb_frag_ref(skb, i);
2211
2212 if (skb_has_frag_list(skb))
2213 skb_clone_fraglist(skb);
2214
2215 skb_release_data(skb, SKB_CONSUMED);
2216 } else {
2217 skb_free_head(skb);
2218 }
2219 off = (data + nhead) - skb->head;
2220
2221 skb->head = data;
2222 skb->head_frag = 0;
2223 skb->data += off;
2224
2225 skb_set_end_offset(skb, size);
2226 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2227 off = nhead;
2228 #endif
2229 skb->tail += off;
2230 skb_headers_offset_update(skb, nhead);
2231 skb->cloned = 0;
2232 skb->hdr_len = 0;
2233 skb->nohdr = 0;
2234 atomic_set(&skb_shinfo(skb)->dataref, 1);
2235
2236 skb_metadata_clear(skb);
2237
2238 /* It is not generally safe to change skb->truesize.
2239 * For the moment, we really care of rx path, or
2240 * when skb is orphaned (not attached to a socket).
2241 */
2242 if (!skb->sk || skb->destructor == sock_edemux)
2243 skb->truesize += size - osize;
2244
2245 return 0;
2246
2247 nofrags:
2248 skb_kfree_head(data, size);
2249 nodata:
2250 return -ENOMEM;
2251 }
2252 EXPORT_SYMBOL(pskb_expand_head);
2253
2254 /* Make private copy of skb with writable head and some headroom */
2255
skb_realloc_headroom(struct sk_buff * skb,unsigned int headroom)2256 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
2257 {
2258 struct sk_buff *skb2;
2259 int delta = headroom - skb_headroom(skb);
2260
2261 if (delta <= 0)
2262 skb2 = pskb_copy(skb, GFP_ATOMIC);
2263 else {
2264 skb2 = skb_clone(skb, GFP_ATOMIC);
2265 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
2266 GFP_ATOMIC)) {
2267 kfree_skb(skb2);
2268 skb2 = NULL;
2269 }
2270 }
2271 return skb2;
2272 }
2273 EXPORT_SYMBOL(skb_realloc_headroom);
2274
2275 /* Note: We plan to rework this in linux-6.4 */
__skb_unclone_keeptruesize(struct sk_buff * skb,gfp_t pri)2276 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
2277 {
2278 unsigned int saved_end_offset, saved_truesize;
2279 struct skb_shared_info *shinfo;
2280 int res;
2281
2282 saved_end_offset = skb_end_offset(skb);
2283 saved_truesize = skb->truesize;
2284
2285 res = pskb_expand_head(skb, 0, 0, pri);
2286 if (res)
2287 return res;
2288
2289 skb->truesize = saved_truesize;
2290
2291 if (likely(skb_end_offset(skb) == saved_end_offset))
2292 return 0;
2293
2294 /* We can not change skb->end if the original or new value
2295 * is SKB_SMALL_HEAD_HEADROOM, as it might break skb_kfree_head().
2296 */
2297 if (saved_end_offset == SKB_SMALL_HEAD_HEADROOM ||
2298 skb_end_offset(skb) == SKB_SMALL_HEAD_HEADROOM) {
2299 /* We think this path should not be taken.
2300 * Add a temporary trace to warn us just in case.
2301 */
2302 pr_err_once("__skb_unclone_keeptruesize() skb_end_offset() %u -> %u\n",
2303 saved_end_offset, skb_end_offset(skb));
2304 WARN_ON_ONCE(1);
2305 return 0;
2306 }
2307
2308 shinfo = skb_shinfo(skb);
2309
2310 /* We are about to change back skb->end,
2311 * we need to move skb_shinfo() to its new location.
2312 */
2313 memmove(skb->head + saved_end_offset,
2314 shinfo,
2315 offsetof(struct skb_shared_info, frags[shinfo->nr_frags]));
2316
2317 skb_set_end_offset(skb, saved_end_offset);
2318
2319 return 0;
2320 }
2321
2322 /**
2323 * skb_expand_head - reallocate header of &sk_buff
2324 * @skb: buffer to reallocate
2325 * @headroom: needed headroom
2326 *
2327 * Unlike skb_realloc_headroom, this one does not allocate a new skb
2328 * if possible; copies skb->sk to new skb as needed
2329 * and frees original skb in case of failures.
2330 *
2331 * It expect increased headroom and generates warning otherwise.
2332 */
2333
skb_expand_head(struct sk_buff * skb,unsigned int headroom)2334 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom)
2335 {
2336 int delta = headroom - skb_headroom(skb);
2337 int osize = skb_end_offset(skb);
2338 struct sock *sk = skb->sk;
2339
2340 if (WARN_ONCE(delta <= 0,
2341 "%s is expecting an increase in the headroom", __func__))
2342 return skb;
2343
2344 delta = SKB_DATA_ALIGN(delta);
2345 /* pskb_expand_head() might crash, if skb is shared. */
2346 if (skb_shared(skb) || !is_skb_wmem(skb)) {
2347 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
2348
2349 if (unlikely(!nskb))
2350 goto fail;
2351
2352 if (sk)
2353 skb_set_owner_w(nskb, sk);
2354 consume_skb(skb);
2355 skb = nskb;
2356 }
2357 if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC))
2358 goto fail;
2359
2360 if (sk && is_skb_wmem(skb)) {
2361 delta = skb_end_offset(skb) - osize;
2362 refcount_add(delta, &sk->sk_wmem_alloc);
2363 skb->truesize += delta;
2364 }
2365 return skb;
2366
2367 fail:
2368 kfree_skb(skb);
2369 return NULL;
2370 }
2371 EXPORT_SYMBOL(skb_expand_head);
2372
2373 /**
2374 * skb_copy_expand - copy and expand sk_buff
2375 * @skb: buffer to copy
2376 * @newheadroom: new free bytes at head
2377 * @newtailroom: new free bytes at tail
2378 * @gfp_mask: allocation priority
2379 *
2380 * Make a copy of both an &sk_buff and its data and while doing so
2381 * allocate additional space.
2382 *
2383 * This is used when the caller wishes to modify the data and needs a
2384 * private copy of the data to alter as well as more space for new fields.
2385 * Returns %NULL on failure or the pointer to the buffer
2386 * on success. The returned buffer has a reference count of 1.
2387 *
2388 * You must pass %GFP_ATOMIC as the allocation priority if this function
2389 * is called from an interrupt.
2390 */
skb_copy_expand(const struct sk_buff * skb,int newheadroom,int newtailroom,gfp_t gfp_mask)2391 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
2392 int newheadroom, int newtailroom,
2393 gfp_t gfp_mask)
2394 {
2395 /*
2396 * Allocate the copy buffer
2397 */
2398 int head_copy_len, head_copy_off;
2399 struct sk_buff *n;
2400 int oldheadroom;
2401
2402 if (!skb_frags_readable(skb))
2403 return NULL;
2404
2405 if (WARN_ON_ONCE(skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST))
2406 return NULL;
2407
2408 oldheadroom = skb_headroom(skb);
2409 n = __alloc_skb(newheadroom + skb->len + newtailroom,
2410 gfp_mask, skb_alloc_rx_flag(skb),
2411 NUMA_NO_NODE);
2412 if (!n)
2413 return NULL;
2414
2415 skb_reserve(n, newheadroom);
2416
2417 /* Set the tail pointer and length */
2418 skb_put(n, skb->len);
2419
2420 head_copy_len = oldheadroom;
2421 head_copy_off = 0;
2422 if (newheadroom <= head_copy_len)
2423 head_copy_len = newheadroom;
2424 else
2425 head_copy_off = newheadroom - head_copy_len;
2426
2427 /* Copy the linear header and data. */
2428 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
2429 skb->len + head_copy_len));
2430
2431 skb_copy_header(n, skb);
2432
2433 skb_headers_offset_update(n, newheadroom - oldheadroom);
2434
2435 return n;
2436 }
2437 EXPORT_SYMBOL(skb_copy_expand);
2438
2439 /**
2440 * __skb_pad - zero pad the tail of an skb
2441 * @skb: buffer to pad
2442 * @pad: space to pad
2443 * @free_on_error: free buffer on error
2444 *
2445 * Ensure that a buffer is followed by a padding area that is zero
2446 * filled. Used by network drivers which may DMA or transfer data
2447 * beyond the buffer end onto the wire.
2448 *
2449 * May return error in out of memory cases. The skb is freed on error
2450 * if @free_on_error is true.
2451 */
2452
__skb_pad(struct sk_buff * skb,int pad,bool free_on_error)2453 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
2454 {
2455 int err;
2456 int ntail;
2457
2458 /* If the skbuff is non linear tailroom is always zero.. */
2459 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
2460 memset(skb->data+skb->len, 0, pad);
2461 return 0;
2462 }
2463
2464 ntail = skb->data_len + pad - (skb->end - skb->tail);
2465 if (likely(skb_cloned(skb) || ntail > 0)) {
2466 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
2467 if (unlikely(err))
2468 goto free_skb;
2469 }
2470
2471 /* FIXME: The use of this function with non-linear skb's really needs
2472 * to be audited.
2473 */
2474 err = skb_linearize(skb);
2475 if (unlikely(err))
2476 goto free_skb;
2477
2478 memset(skb->data + skb->len, 0, pad);
2479 return 0;
2480
2481 free_skb:
2482 if (free_on_error)
2483 kfree_skb(skb);
2484 return err;
2485 }
2486 EXPORT_SYMBOL(__skb_pad);
2487
2488 /**
2489 * pskb_put - add data to the tail of a potentially fragmented buffer
2490 * @skb: start of the buffer to use
2491 * @tail: tail fragment of the buffer to use
2492 * @len: amount of data to add
2493 *
2494 * This function extends the used data area of the potentially
2495 * fragmented buffer. @tail must be the last fragment of @skb -- or
2496 * @skb itself. If this would exceed the total buffer size the kernel
2497 * will panic. A pointer to the first byte of the extra data is
2498 * returned.
2499 */
2500
pskb_put(struct sk_buff * skb,struct sk_buff * tail,int len)2501 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
2502 {
2503 if (tail != skb) {
2504 skb->data_len += len;
2505 skb->len += len;
2506 }
2507 return skb_put(tail, len);
2508 }
2509 EXPORT_SYMBOL_GPL(pskb_put);
2510
2511 /**
2512 * skb_put - add data to a buffer
2513 * @skb: buffer to use
2514 * @len: amount of data to add
2515 *
2516 * This function extends the used data area of the buffer. If this would
2517 * exceed the total buffer size the kernel will panic. A pointer to the
2518 * first byte of the extra data is returned.
2519 */
skb_put(struct sk_buff * skb,unsigned int len)2520 void *skb_put(struct sk_buff *skb, unsigned int len)
2521 {
2522 void *tmp = skb_tail_pointer(skb);
2523 SKB_LINEAR_ASSERT(skb);
2524 skb->tail += len;
2525 skb->len += len;
2526 if (unlikely(skb->tail > skb->end))
2527 skb_over_panic(skb, len, __builtin_return_address(0));
2528 return tmp;
2529 }
2530 EXPORT_SYMBOL(skb_put);
2531
2532 /**
2533 * skb_push - add data to the start of a buffer
2534 * @skb: buffer to use
2535 * @len: amount of data to add
2536 *
2537 * This function extends the used data area of the buffer at the buffer
2538 * start. If this would exceed the total buffer headroom the kernel will
2539 * panic. A pointer to the first byte of the extra data is returned.
2540 */
skb_push(struct sk_buff * skb,unsigned int len)2541 void *skb_push(struct sk_buff *skb, unsigned int len)
2542 {
2543 skb->data -= len;
2544 skb->len += len;
2545 if (unlikely(skb->data < skb->head))
2546 skb_under_panic(skb, len, __builtin_return_address(0));
2547 return skb->data;
2548 }
2549 EXPORT_SYMBOL(skb_push);
2550
2551 /**
2552 * skb_pull - remove data from the start of a buffer
2553 * @skb: buffer to use
2554 * @len: amount of data to remove
2555 *
2556 * This function removes data from the start of a buffer, returning
2557 * the memory to the headroom. A pointer to the next data in the buffer
2558 * is returned. Once the data has been pulled future pushes will overwrite
2559 * the old data.
2560 */
skb_pull(struct sk_buff * skb,unsigned int len)2561 void *skb_pull(struct sk_buff *skb, unsigned int len)
2562 {
2563 return skb_pull_inline(skb, len);
2564 }
2565 EXPORT_SYMBOL(skb_pull);
2566
2567 /**
2568 * skb_pull_data - remove data from the start of a buffer returning its
2569 * original position.
2570 * @skb: buffer to use
2571 * @len: amount of data to remove
2572 *
2573 * This function removes data from the start of a buffer, returning
2574 * the memory to the headroom. A pointer to the original data in the buffer
2575 * is returned after checking if there is enough data to pull. Once the
2576 * data has been pulled future pushes will overwrite the old data.
2577 */
skb_pull_data(struct sk_buff * skb,size_t len)2578 void *skb_pull_data(struct sk_buff *skb, size_t len)
2579 {
2580 void *data = skb->data;
2581
2582 if (skb->len < len)
2583 return NULL;
2584
2585 skb_pull(skb, len);
2586
2587 return data;
2588 }
2589 EXPORT_SYMBOL(skb_pull_data);
2590
2591 /**
2592 * skb_trim - remove end from a buffer
2593 * @skb: buffer to alter
2594 * @len: new length
2595 *
2596 * Cut the length of a buffer down by removing data from the tail. If
2597 * the buffer is already under the length specified it is not modified.
2598 * The skb must be linear.
2599 */
skb_trim(struct sk_buff * skb,unsigned int len)2600 void skb_trim(struct sk_buff *skb, unsigned int len)
2601 {
2602 if (skb->len > len)
2603 __skb_trim(skb, len);
2604 }
2605 EXPORT_SYMBOL(skb_trim);
2606
2607 /* Trims skb to length len. It can change skb pointers.
2608 */
2609
___pskb_trim(struct sk_buff * skb,unsigned int len)2610 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
2611 {
2612 struct sk_buff **fragp;
2613 struct sk_buff *frag;
2614 int offset = skb_headlen(skb);
2615 int nfrags = skb_shinfo(skb)->nr_frags;
2616 int i;
2617 int err;
2618
2619 if (skb_cloned(skb) &&
2620 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
2621 return err;
2622
2623 i = 0;
2624 if (offset >= len)
2625 goto drop_pages;
2626
2627 for (; i < nfrags; i++) {
2628 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2629
2630 if (end < len) {
2631 offset = end;
2632 continue;
2633 }
2634
2635 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
2636
2637 drop_pages:
2638 skb_shinfo(skb)->nr_frags = i;
2639
2640 for (; i < nfrags; i++)
2641 skb_frag_unref(skb, i);
2642
2643 if (skb_has_frag_list(skb))
2644 skb_drop_fraglist(skb);
2645 goto done;
2646 }
2647
2648 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
2649 fragp = &frag->next) {
2650 int end = offset + frag->len;
2651
2652 if (skb_shared(frag)) {
2653 struct sk_buff *nfrag;
2654
2655 nfrag = skb_clone(frag, GFP_ATOMIC);
2656 if (unlikely(!nfrag))
2657 return -ENOMEM;
2658
2659 nfrag->next = frag->next;
2660 consume_skb(frag);
2661 frag = nfrag;
2662 *fragp = frag;
2663 }
2664
2665 if (end < len) {
2666 offset = end;
2667 continue;
2668 }
2669
2670 if (end > len &&
2671 unlikely((err = pskb_trim(frag, len - offset))))
2672 return err;
2673
2674 if (frag->next)
2675 skb_drop_list(&frag->next);
2676 break;
2677 }
2678
2679 done:
2680 if (len > skb_headlen(skb)) {
2681 skb->data_len -= skb->len - len;
2682 skb->len = len;
2683 } else {
2684 skb->len = len;
2685 skb->data_len = 0;
2686 skb_set_tail_pointer(skb, len);
2687 }
2688
2689 if (!skb->sk || skb->destructor == sock_edemux)
2690 skb_condense(skb);
2691 return 0;
2692 }
2693 EXPORT_SYMBOL(___pskb_trim);
2694
2695 /* Note : use pskb_trim_rcsum() instead of calling this directly
2696 */
pskb_trim_rcsum_slow(struct sk_buff * skb,unsigned int len)2697 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2698 {
2699 if (skb->ip_summed == CHECKSUM_COMPLETE) {
2700 int delta = skb->len - len;
2701
2702 skb->csum = csum_block_sub(skb->csum,
2703 skb_checksum(skb, len, delta, 0),
2704 len);
2705 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2706 int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2707 int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2708
2709 if (offset + sizeof(__sum16) > hdlen)
2710 return -EINVAL;
2711 }
2712 return __pskb_trim(skb, len);
2713 }
2714 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2715
2716 /**
2717 * __pskb_pull_tail - advance tail of skb header
2718 * @skb: buffer to reallocate
2719 * @delta: number of bytes to advance tail
2720 *
2721 * The function makes a sense only on a fragmented &sk_buff,
2722 * it expands header moving its tail forward and copying necessary
2723 * data from fragmented part.
2724 *
2725 * &sk_buff MUST have reference count of 1.
2726 *
2727 * Returns %NULL (and &sk_buff does not change) if pull failed
2728 * or value of new tail of skb in the case of success.
2729 *
2730 * All the pointers pointing into skb header may change and must be
2731 * reloaded after call to this function.
2732 */
2733
2734 /* Moves tail of skb head forward, copying data from fragmented part,
2735 * when it is necessary.
2736 * 1. It may fail due to malloc failure.
2737 * 2. It may change skb pointers.
2738 *
2739 * It is pretty complicated. Luckily, it is called only in exceptional cases.
2740 */
__pskb_pull_tail(struct sk_buff * skb,int delta)2741 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2742 {
2743 /* If skb has not enough free space at tail, get new one
2744 * plus 128 bytes for future expansions. If we have enough
2745 * room at tail, reallocate without expansion only if skb is cloned.
2746 */
2747 int i, k, eat = (skb->tail + delta) - skb->end;
2748
2749 if (!skb_frags_readable(skb))
2750 return NULL;
2751
2752 if (eat > 0 || skb_cloned(skb)) {
2753 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2754 GFP_ATOMIC))
2755 return NULL;
2756 }
2757
2758 BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2759 skb_tail_pointer(skb), delta));
2760
2761 /* Optimization: no fragments, no reasons to preestimate
2762 * size of pulled pages. Superb.
2763 */
2764 if (!skb_has_frag_list(skb))
2765 goto pull_pages;
2766
2767 /* Estimate size of pulled pages. */
2768 eat = delta;
2769 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2770 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2771
2772 if (size >= eat)
2773 goto pull_pages;
2774 eat -= size;
2775 }
2776
2777 /* If we need update frag list, we are in troubles.
2778 * Certainly, it is possible to add an offset to skb data,
2779 * but taking into account that pulling is expected to
2780 * be very rare operation, it is worth to fight against
2781 * further bloating skb head and crucify ourselves here instead.
2782 * Pure masohism, indeed. 8)8)
2783 */
2784 if (eat) {
2785 struct sk_buff *list = skb_shinfo(skb)->frag_list;
2786 struct sk_buff *clone = NULL;
2787 struct sk_buff *insp = NULL;
2788
2789 do {
2790 if (list->len <= eat) {
2791 /* Eaten as whole. */
2792 eat -= list->len;
2793 list = list->next;
2794 insp = list;
2795 } else {
2796 /* Eaten partially. */
2797 if (skb_is_gso(skb) && !list->head_frag &&
2798 skb_headlen(list))
2799 skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2800
2801 if (skb_shared(list)) {
2802 /* Sucks! We need to fork list. :-( */
2803 clone = skb_clone(list, GFP_ATOMIC);
2804 if (!clone)
2805 return NULL;
2806 insp = list->next;
2807 list = clone;
2808 } else {
2809 /* This may be pulled without
2810 * problems. */
2811 insp = list;
2812 }
2813 if (!pskb_pull(list, eat)) {
2814 kfree_skb(clone);
2815 return NULL;
2816 }
2817 break;
2818 }
2819 } while (eat);
2820
2821 /* Free pulled out fragments. */
2822 while ((list = skb_shinfo(skb)->frag_list) != insp) {
2823 skb_shinfo(skb)->frag_list = list->next;
2824 consume_skb(list);
2825 }
2826 /* And insert new clone at head. */
2827 if (clone) {
2828 clone->next = list;
2829 skb_shinfo(skb)->frag_list = clone;
2830 }
2831 }
2832 /* Success! Now we may commit changes to skb data. */
2833
2834 pull_pages:
2835 eat = delta;
2836 k = 0;
2837 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2838 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2839
2840 if (size <= eat) {
2841 skb_frag_unref(skb, i);
2842 eat -= size;
2843 } else {
2844 skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2845
2846 *frag = skb_shinfo(skb)->frags[i];
2847 if (eat) {
2848 skb_frag_off_add(frag, eat);
2849 skb_frag_size_sub(frag, eat);
2850 if (!i)
2851 goto end;
2852 eat = 0;
2853 }
2854 k++;
2855 }
2856 }
2857 skb_shinfo(skb)->nr_frags = k;
2858
2859 end:
2860 skb->tail += delta;
2861 skb->data_len -= delta;
2862
2863 if (!skb->data_len)
2864 skb_zcopy_clear(skb, false);
2865
2866 return skb_tail_pointer(skb);
2867 }
2868 EXPORT_SYMBOL(__pskb_pull_tail);
2869
2870 /**
2871 * skb_copy_bits - copy bits from skb to kernel buffer
2872 * @skb: source skb
2873 * @offset: offset in source
2874 * @to: destination buffer
2875 * @len: number of bytes to copy
2876 *
2877 * Copy the specified number of bytes from the source skb to the
2878 * destination buffer.
2879 *
2880 * CAUTION ! :
2881 * If its prototype is ever changed,
2882 * check arch/{*}/net/{*}.S files,
2883 * since it is called from BPF assembly code.
2884 */
skb_copy_bits(const struct sk_buff * skb,int offset,void * to,int len)2885 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2886 {
2887 int start = skb_headlen(skb);
2888 struct sk_buff *frag_iter;
2889 int i, copy;
2890
2891 if (offset > (int)skb->len - len)
2892 goto fault;
2893
2894 /* Copy header. */
2895 if ((copy = start - offset) > 0) {
2896 if (copy > len)
2897 copy = len;
2898 skb_copy_from_linear_data_offset(skb, offset, to, copy);
2899 if ((len -= copy) == 0)
2900 return 0;
2901 offset += copy;
2902 to += copy;
2903 }
2904
2905 if (!skb_frags_readable(skb))
2906 goto fault;
2907
2908 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2909 int end;
2910 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2911
2912 WARN_ON(start > offset + len);
2913
2914 end = start + skb_frag_size(f);
2915 if ((copy = end - offset) > 0) {
2916 u32 p_off, p_len, copied;
2917 struct page *p;
2918 u8 *vaddr;
2919
2920 if (copy > len)
2921 copy = len;
2922
2923 skb_frag_foreach_page(f,
2924 skb_frag_off(f) + offset - start,
2925 copy, p, p_off, p_len, copied) {
2926 vaddr = kmap_atomic(p);
2927 memcpy(to + copied, vaddr + p_off, p_len);
2928 kunmap_atomic(vaddr);
2929 }
2930
2931 if ((len -= copy) == 0)
2932 return 0;
2933 offset += copy;
2934 to += copy;
2935 }
2936 start = end;
2937 }
2938
2939 skb_walk_frags(skb, frag_iter) {
2940 int end;
2941
2942 WARN_ON(start > offset + len);
2943
2944 end = start + frag_iter->len;
2945 if ((copy = end - offset) > 0) {
2946 if (copy > len)
2947 copy = len;
2948 if (skb_copy_bits(frag_iter, offset - start, to, copy))
2949 goto fault;
2950 if ((len -= copy) == 0)
2951 return 0;
2952 offset += copy;
2953 to += copy;
2954 }
2955 start = end;
2956 }
2957
2958 if (!len)
2959 return 0;
2960
2961 fault:
2962 return -EFAULT;
2963 }
2964 EXPORT_SYMBOL(skb_copy_bits);
2965
2966 /*
2967 * Callback from splice_to_pipe(), if we need to release some pages
2968 * at the end of the spd in case we error'ed out in filling the pipe.
2969 */
sock_spd_release(struct splice_pipe_desc * spd,unsigned int i)2970 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2971 {
2972 put_page(spd->pages[i]);
2973 }
2974
linear_to_page(struct page * page,unsigned int * len,unsigned int * offset,struct sock * sk)2975 static struct page *linear_to_page(struct page *page, unsigned int *len,
2976 unsigned int *offset,
2977 struct sock *sk)
2978 {
2979 struct page_frag *pfrag = sk_page_frag(sk);
2980
2981 if (!sk_page_frag_refill(sk, pfrag))
2982 return NULL;
2983
2984 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2985
2986 memcpy(page_address(pfrag->page) + pfrag->offset,
2987 page_address(page) + *offset, *len);
2988 *offset = pfrag->offset;
2989 pfrag->offset += *len;
2990
2991 return pfrag->page;
2992 }
2993
spd_can_coalesce(const struct splice_pipe_desc * spd,struct page * page,unsigned int offset)2994 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2995 struct page *page,
2996 unsigned int offset)
2997 {
2998 return spd->nr_pages &&
2999 spd->pages[spd->nr_pages - 1] == page &&
3000 (spd->partial[spd->nr_pages - 1].offset +
3001 spd->partial[spd->nr_pages - 1].len == offset);
3002 }
3003
3004 /*
3005 * Fill page/offset/length into spd, if it can hold more pages.
3006 */
spd_fill_page(struct splice_pipe_desc * spd,struct pipe_inode_info * pipe,struct page * page,unsigned int * len,unsigned int offset,bool linear,struct sock * sk)3007 static bool spd_fill_page(struct splice_pipe_desc *spd,
3008 struct pipe_inode_info *pipe, struct page *page,
3009 unsigned int *len, unsigned int offset,
3010 bool linear,
3011 struct sock *sk)
3012 {
3013 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
3014 return true;
3015
3016 if (linear) {
3017 page = linear_to_page(page, len, &offset, sk);
3018 if (!page)
3019 return true;
3020 }
3021 if (spd_can_coalesce(spd, page, offset)) {
3022 spd->partial[spd->nr_pages - 1].len += *len;
3023 return false;
3024 }
3025 get_page(page);
3026 spd->pages[spd->nr_pages] = page;
3027 spd->partial[spd->nr_pages].len = *len;
3028 spd->partial[spd->nr_pages].offset = offset;
3029 spd->nr_pages++;
3030
3031 return false;
3032 }
3033
__splice_segment(struct page * page,unsigned int poff,unsigned int plen,unsigned int * off,unsigned int * len,struct splice_pipe_desc * spd,bool linear,struct sock * sk,struct pipe_inode_info * pipe)3034 static bool __splice_segment(struct page *page, unsigned int poff,
3035 unsigned int plen, unsigned int *off,
3036 unsigned int *len,
3037 struct splice_pipe_desc *spd, bool linear,
3038 struct sock *sk,
3039 struct pipe_inode_info *pipe)
3040 {
3041 if (!*len)
3042 return true;
3043
3044 /* skip this segment if already processed */
3045 if (*off >= plen) {
3046 *off -= plen;
3047 return false;
3048 }
3049
3050 /* ignore any bits we already processed */
3051 poff += *off;
3052 plen -= *off;
3053 *off = 0;
3054
3055 do {
3056 unsigned int flen = min(*len, plen);
3057
3058 if (spd_fill_page(spd, pipe, page, &flen, poff,
3059 linear, sk))
3060 return true;
3061 poff += flen;
3062 plen -= flen;
3063 *len -= flen;
3064 } while (*len && plen);
3065
3066 return false;
3067 }
3068
3069 /*
3070 * Map linear and fragment data from the skb to spd. It reports true if the
3071 * pipe is full or if we already spliced the requested length.
3072 */
__skb_splice_bits(struct sk_buff * skb,struct pipe_inode_info * pipe,unsigned int * offset,unsigned int * len,struct splice_pipe_desc * spd,struct sock * sk)3073 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
3074 unsigned int *offset, unsigned int *len,
3075 struct splice_pipe_desc *spd, struct sock *sk)
3076 {
3077 int seg;
3078 struct sk_buff *iter;
3079
3080 /* map the linear part :
3081 * If skb->head_frag is set, this 'linear' part is backed by a
3082 * fragment, and if the head is not shared with any clones then
3083 * we can avoid a copy since we own the head portion of this page.
3084 */
3085 if (__splice_segment(virt_to_page(skb->data),
3086 (unsigned long) skb->data & (PAGE_SIZE - 1),
3087 skb_headlen(skb),
3088 offset, len, spd,
3089 skb_head_is_locked(skb),
3090 sk, pipe))
3091 return true;
3092
3093 /*
3094 * then map the fragments
3095 */
3096 if (!skb_frags_readable(skb))
3097 return false;
3098
3099 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
3100 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
3101
3102 if (WARN_ON_ONCE(!skb_frag_page(f)))
3103 return false;
3104
3105 if (__splice_segment(skb_frag_page(f),
3106 skb_frag_off(f), skb_frag_size(f),
3107 offset, len, spd, false, sk, pipe))
3108 return true;
3109 }
3110
3111 skb_walk_frags(skb, iter) {
3112 if (*offset >= iter->len) {
3113 *offset -= iter->len;
3114 continue;
3115 }
3116 /* __skb_splice_bits() only fails if the output has no room
3117 * left, so no point in going over the frag_list for the error
3118 * case.
3119 */
3120 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
3121 return true;
3122 }
3123
3124 return false;
3125 }
3126
3127 /*
3128 * Map data from the skb to a pipe. Should handle both the linear part,
3129 * the fragments, and the frag list.
3130 */
skb_splice_bits(struct sk_buff * skb,struct sock * sk,unsigned int offset,struct pipe_inode_info * pipe,unsigned int tlen,unsigned int flags)3131 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3132 struct pipe_inode_info *pipe, unsigned int tlen,
3133 unsigned int flags)
3134 {
3135 struct partial_page partial[MAX_SKB_FRAGS];
3136 struct page *pages[MAX_SKB_FRAGS];
3137 struct splice_pipe_desc spd = {
3138 .pages = pages,
3139 .partial = partial,
3140 .nr_pages_max = MAX_SKB_FRAGS,
3141 .ops = &nosteal_pipe_buf_ops,
3142 .spd_release = sock_spd_release,
3143 };
3144 int ret = 0;
3145
3146 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
3147
3148 if (spd.nr_pages)
3149 ret = splice_to_pipe(pipe, &spd);
3150
3151 return ret;
3152 }
3153 EXPORT_SYMBOL_GPL(skb_splice_bits);
3154
sendmsg_locked(struct sock * sk,struct msghdr * msg)3155 static int sendmsg_locked(struct sock *sk, struct msghdr *msg)
3156 {
3157 struct socket *sock = sk->sk_socket;
3158 size_t size = msg_data_left(msg);
3159
3160 if (!sock)
3161 return -EINVAL;
3162
3163 if (!sock->ops->sendmsg_locked)
3164 return sock_no_sendmsg_locked(sk, msg, size);
3165
3166 return sock->ops->sendmsg_locked(sk, msg, size);
3167 }
3168
sendmsg_unlocked(struct sock * sk,struct msghdr * msg)3169 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg)
3170 {
3171 struct socket *sock = sk->sk_socket;
3172
3173 if (!sock)
3174 return -EINVAL;
3175 return sock_sendmsg(sock, msg);
3176 }
3177
3178 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg);
__skb_send_sock(struct sock * sk,struct sk_buff * skb,int offset,int len,sendmsg_func sendmsg)3179 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset,
3180 int len, sendmsg_func sendmsg)
3181 {
3182 unsigned int orig_len = len;
3183 struct sk_buff *head = skb;
3184 unsigned short fragidx;
3185 int slen, ret;
3186
3187 do_frag_list:
3188
3189 /* Deal with head data */
3190 while (offset < skb_headlen(skb) && len) {
3191 struct kvec kv;
3192 struct msghdr msg;
3193
3194 slen = min_t(int, len, skb_headlen(skb) - offset);
3195 kv.iov_base = skb->data + offset;
3196 kv.iov_len = slen;
3197 memset(&msg, 0, sizeof(msg));
3198 msg.msg_flags = MSG_DONTWAIT;
3199
3200 iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, &kv, 1, slen);
3201 ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked,
3202 sendmsg_unlocked, sk, &msg);
3203 if (ret <= 0)
3204 goto error;
3205
3206 offset += ret;
3207 len -= ret;
3208 }
3209
3210 /* All the data was skb head? */
3211 if (!len)
3212 goto out;
3213
3214 /* Make offset relative to start of frags */
3215 offset -= skb_headlen(skb);
3216
3217 /* Find where we are in frag list */
3218 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3219 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
3220
3221 if (offset < skb_frag_size(frag))
3222 break;
3223
3224 offset -= skb_frag_size(frag);
3225 }
3226
3227 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3228 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
3229
3230 slen = min_t(size_t, len, skb_frag_size(frag) - offset);
3231
3232 while (slen) {
3233 struct bio_vec bvec;
3234 struct msghdr msg = {
3235 .msg_flags = MSG_SPLICE_PAGES | MSG_DONTWAIT,
3236 };
3237
3238 bvec_set_page(&bvec, skb_frag_page(frag), slen,
3239 skb_frag_off(frag) + offset);
3240 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1,
3241 slen);
3242
3243 ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked,
3244 sendmsg_unlocked, sk, &msg);
3245 if (ret <= 0)
3246 goto error;
3247
3248 len -= ret;
3249 offset += ret;
3250 slen -= ret;
3251 }
3252
3253 offset = 0;
3254 }
3255
3256 if (len) {
3257 /* Process any frag lists */
3258
3259 if (skb == head) {
3260 if (skb_has_frag_list(skb)) {
3261 skb = skb_shinfo(skb)->frag_list;
3262 goto do_frag_list;
3263 }
3264 } else if (skb->next) {
3265 skb = skb->next;
3266 goto do_frag_list;
3267 }
3268 }
3269
3270 out:
3271 return orig_len - len;
3272
3273 error:
3274 return orig_len == len ? ret : orig_len - len;
3275 }
3276
3277 /* Send skb data on a socket. Socket must be locked. */
skb_send_sock_locked(struct sock * sk,struct sk_buff * skb,int offset,int len)3278 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3279 int len)
3280 {
3281 return __skb_send_sock(sk, skb, offset, len, sendmsg_locked);
3282 }
3283 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
3284
3285 /* Send skb data on a socket. Socket must be unlocked. */
skb_send_sock(struct sock * sk,struct sk_buff * skb,int offset,int len)3286 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
3287 {
3288 return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked);
3289 }
3290
3291 /**
3292 * skb_store_bits - store bits from kernel buffer to skb
3293 * @skb: destination buffer
3294 * @offset: offset in destination
3295 * @from: source buffer
3296 * @len: number of bytes to copy
3297 *
3298 * Copy the specified number of bytes from the source buffer to the
3299 * destination skb. This function handles all the messy bits of
3300 * traversing fragment lists and such.
3301 */
3302
skb_store_bits(struct sk_buff * skb,int offset,const void * from,int len)3303 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
3304 {
3305 int start = skb_headlen(skb);
3306 struct sk_buff *frag_iter;
3307 int i, copy;
3308
3309 if (offset > (int)skb->len - len)
3310 goto fault;
3311
3312 if ((copy = start - offset) > 0) {
3313 if (copy > len)
3314 copy = len;
3315 skb_copy_to_linear_data_offset(skb, offset, from, copy);
3316 if ((len -= copy) == 0)
3317 return 0;
3318 offset += copy;
3319 from += copy;
3320 }
3321
3322 if (!skb_frags_readable(skb))
3323 goto fault;
3324
3325 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3326 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3327 int end;
3328
3329 WARN_ON(start > offset + len);
3330
3331 end = start + skb_frag_size(frag);
3332 if ((copy = end - offset) > 0) {
3333 u32 p_off, p_len, copied;
3334 struct page *p;
3335 u8 *vaddr;
3336
3337 if (copy > len)
3338 copy = len;
3339
3340 skb_frag_foreach_page(frag,
3341 skb_frag_off(frag) + offset - start,
3342 copy, p, p_off, p_len, copied) {
3343 vaddr = kmap_atomic(p);
3344 memcpy(vaddr + p_off, from + copied, p_len);
3345 kunmap_atomic(vaddr);
3346 }
3347
3348 if ((len -= copy) == 0)
3349 return 0;
3350 offset += copy;
3351 from += copy;
3352 }
3353 start = end;
3354 }
3355
3356 skb_walk_frags(skb, frag_iter) {
3357 int end;
3358
3359 WARN_ON(start > offset + len);
3360
3361 end = start + frag_iter->len;
3362 if ((copy = end - offset) > 0) {
3363 if (copy > len)
3364 copy = len;
3365 if (skb_store_bits(frag_iter, offset - start,
3366 from, copy))
3367 goto fault;
3368 if ((len -= copy) == 0)
3369 return 0;
3370 offset += copy;
3371 from += copy;
3372 }
3373 start = end;
3374 }
3375 if (!len)
3376 return 0;
3377
3378 fault:
3379 return -EFAULT;
3380 }
3381 EXPORT_SYMBOL(skb_store_bits);
3382
3383 /* Checksum skb data. */
__skb_checksum(const struct sk_buff * skb,int offset,int len,__wsum csum,const struct skb_checksum_ops * ops)3384 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3385 __wsum csum, const struct skb_checksum_ops *ops)
3386 {
3387 int start = skb_headlen(skb);
3388 int i, copy = start - offset;
3389 struct sk_buff *frag_iter;
3390 int pos = 0;
3391
3392 /* Checksum header. */
3393 if (copy > 0) {
3394 if (copy > len)
3395 copy = len;
3396 csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
3397 skb->data + offset, copy, csum);
3398 if ((len -= copy) == 0)
3399 return csum;
3400 offset += copy;
3401 pos = copy;
3402 }
3403
3404 if (WARN_ON_ONCE(!skb_frags_readable(skb)))
3405 return 0;
3406
3407 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3408 int end;
3409 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3410
3411 WARN_ON(start > offset + len);
3412
3413 end = start + skb_frag_size(frag);
3414 if ((copy = end - offset) > 0) {
3415 u32 p_off, p_len, copied;
3416 struct page *p;
3417 __wsum csum2;
3418 u8 *vaddr;
3419
3420 if (copy > len)
3421 copy = len;
3422
3423 skb_frag_foreach_page(frag,
3424 skb_frag_off(frag) + offset - start,
3425 copy, p, p_off, p_len, copied) {
3426 vaddr = kmap_atomic(p);
3427 csum2 = INDIRECT_CALL_1(ops->update,
3428 csum_partial_ext,
3429 vaddr + p_off, p_len, 0);
3430 kunmap_atomic(vaddr);
3431 csum = INDIRECT_CALL_1(ops->combine,
3432 csum_block_add_ext, csum,
3433 csum2, pos, p_len);
3434 pos += p_len;
3435 }
3436
3437 if (!(len -= copy))
3438 return csum;
3439 offset += copy;
3440 }
3441 start = end;
3442 }
3443
3444 skb_walk_frags(skb, frag_iter) {
3445 int end;
3446
3447 WARN_ON(start > offset + len);
3448
3449 end = start + frag_iter->len;
3450 if ((copy = end - offset) > 0) {
3451 __wsum csum2;
3452 if (copy > len)
3453 copy = len;
3454 csum2 = __skb_checksum(frag_iter, offset - start,
3455 copy, 0, ops);
3456 csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
3457 csum, csum2, pos, copy);
3458 if ((len -= copy) == 0)
3459 return csum;
3460 offset += copy;
3461 pos += copy;
3462 }
3463 start = end;
3464 }
3465 BUG_ON(len);
3466
3467 return csum;
3468 }
3469 EXPORT_SYMBOL(__skb_checksum);
3470
skb_checksum(const struct sk_buff * skb,int offset,int len,__wsum csum)3471 __wsum skb_checksum(const struct sk_buff *skb, int offset,
3472 int len, __wsum csum)
3473 {
3474 const struct skb_checksum_ops ops = {
3475 .update = csum_partial_ext,
3476 .combine = csum_block_add_ext,
3477 };
3478
3479 return __skb_checksum(skb, offset, len, csum, &ops);
3480 }
3481 EXPORT_SYMBOL(skb_checksum);
3482
3483 /* Both of above in one bottle. */
3484
skb_copy_and_csum_bits(const struct sk_buff * skb,int offset,u8 * to,int len)3485 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
3486 u8 *to, int len)
3487 {
3488 int start = skb_headlen(skb);
3489 int i, copy = start - offset;
3490 struct sk_buff *frag_iter;
3491 int pos = 0;
3492 __wsum csum = 0;
3493
3494 /* Copy header. */
3495 if (copy > 0) {
3496 if (copy > len)
3497 copy = len;
3498 csum = csum_partial_copy_nocheck(skb->data + offset, to,
3499 copy);
3500 if ((len -= copy) == 0)
3501 return csum;
3502 offset += copy;
3503 to += copy;
3504 pos = copy;
3505 }
3506
3507 if (!skb_frags_readable(skb))
3508 return 0;
3509
3510 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3511 int end;
3512
3513 WARN_ON(start > offset + len);
3514
3515 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3516 if ((copy = end - offset) > 0) {
3517 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3518 u32 p_off, p_len, copied;
3519 struct page *p;
3520 __wsum csum2;
3521 u8 *vaddr;
3522
3523 if (copy > len)
3524 copy = len;
3525
3526 skb_frag_foreach_page(frag,
3527 skb_frag_off(frag) + offset - start,
3528 copy, p, p_off, p_len, copied) {
3529 vaddr = kmap_atomic(p);
3530 csum2 = csum_partial_copy_nocheck(vaddr + p_off,
3531 to + copied,
3532 p_len);
3533 kunmap_atomic(vaddr);
3534 csum = csum_block_add(csum, csum2, pos);
3535 pos += p_len;
3536 }
3537
3538 if (!(len -= copy))
3539 return csum;
3540 offset += copy;
3541 to += copy;
3542 }
3543 start = end;
3544 }
3545
3546 skb_walk_frags(skb, frag_iter) {
3547 __wsum csum2;
3548 int end;
3549
3550 WARN_ON(start > offset + len);
3551
3552 end = start + frag_iter->len;
3553 if ((copy = end - offset) > 0) {
3554 if (copy > len)
3555 copy = len;
3556 csum2 = skb_copy_and_csum_bits(frag_iter,
3557 offset - start,
3558 to, copy);
3559 csum = csum_block_add(csum, csum2, pos);
3560 if ((len -= copy) == 0)
3561 return csum;
3562 offset += copy;
3563 to += copy;
3564 pos += copy;
3565 }
3566 start = end;
3567 }
3568 BUG_ON(len);
3569 return csum;
3570 }
3571 EXPORT_SYMBOL(skb_copy_and_csum_bits);
3572
__skb_checksum_complete_head(struct sk_buff * skb,int len)3573 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
3574 {
3575 __sum16 sum;
3576
3577 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
3578 /* See comments in __skb_checksum_complete(). */
3579 if (likely(!sum)) {
3580 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3581 !skb->csum_complete_sw)
3582 netdev_rx_csum_fault(skb->dev, skb);
3583 }
3584 if (!skb_shared(skb))
3585 skb->csum_valid = !sum;
3586 return sum;
3587 }
3588 EXPORT_SYMBOL(__skb_checksum_complete_head);
3589
3590 /* This function assumes skb->csum already holds pseudo header's checksum,
3591 * which has been changed from the hardware checksum, for example, by
3592 * __skb_checksum_validate_complete(). And, the original skb->csum must
3593 * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
3594 *
3595 * It returns non-zero if the recomputed checksum is still invalid, otherwise
3596 * zero. The new checksum is stored back into skb->csum unless the skb is
3597 * shared.
3598 */
__skb_checksum_complete(struct sk_buff * skb)3599 __sum16 __skb_checksum_complete(struct sk_buff *skb)
3600 {
3601 __wsum csum;
3602 __sum16 sum;
3603
3604 csum = skb_checksum(skb, 0, skb->len, 0);
3605
3606 sum = csum_fold(csum_add(skb->csum, csum));
3607 /* This check is inverted, because we already knew the hardware
3608 * checksum is invalid before calling this function. So, if the
3609 * re-computed checksum is valid instead, then we have a mismatch
3610 * between the original skb->csum and skb_checksum(). This means either
3611 * the original hardware checksum is incorrect or we screw up skb->csum
3612 * when moving skb->data around.
3613 */
3614 if (likely(!sum)) {
3615 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3616 !skb->csum_complete_sw)
3617 netdev_rx_csum_fault(skb->dev, skb);
3618 }
3619
3620 if (!skb_shared(skb)) {
3621 /* Save full packet checksum */
3622 skb->csum = csum;
3623 skb->ip_summed = CHECKSUM_COMPLETE;
3624 skb->csum_complete_sw = 1;
3625 skb->csum_valid = !sum;
3626 }
3627
3628 return sum;
3629 }
3630 EXPORT_SYMBOL(__skb_checksum_complete);
3631
warn_crc32c_csum_update(const void * buff,int len,__wsum sum)3632 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
3633 {
3634 net_warn_ratelimited(
3635 "%s: attempt to compute crc32c without libcrc32c.ko\n",
3636 __func__);
3637 return 0;
3638 }
3639
warn_crc32c_csum_combine(__wsum csum,__wsum csum2,int offset,int len)3640 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
3641 int offset, int len)
3642 {
3643 net_warn_ratelimited(
3644 "%s: attempt to compute crc32c without libcrc32c.ko\n",
3645 __func__);
3646 return 0;
3647 }
3648
3649 static const struct skb_checksum_ops default_crc32c_ops = {
3650 .update = warn_crc32c_csum_update,
3651 .combine = warn_crc32c_csum_combine,
3652 };
3653
3654 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
3655 &default_crc32c_ops;
3656 EXPORT_SYMBOL(crc32c_csum_stub);
3657
3658 /**
3659 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
3660 * @from: source buffer
3661 *
3662 * Calculates the amount of linear headroom needed in the 'to' skb passed
3663 * into skb_zerocopy().
3664 */
3665 unsigned int
skb_zerocopy_headlen(const struct sk_buff * from)3666 skb_zerocopy_headlen(const struct sk_buff *from)
3667 {
3668 unsigned int hlen = 0;
3669
3670 if (!from->head_frag ||
3671 skb_headlen(from) < L1_CACHE_BYTES ||
3672 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) {
3673 hlen = skb_headlen(from);
3674 if (!hlen)
3675 hlen = from->len;
3676 }
3677
3678 if (skb_has_frag_list(from))
3679 hlen = from->len;
3680
3681 return hlen;
3682 }
3683 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
3684
3685 /**
3686 * skb_zerocopy - Zero copy skb to skb
3687 * @to: destination buffer
3688 * @from: source buffer
3689 * @len: number of bytes to copy from source buffer
3690 * @hlen: size of linear headroom in destination buffer
3691 *
3692 * Copies up to `len` bytes from `from` to `to` by creating references
3693 * to the frags in the source buffer.
3694 *
3695 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the
3696 * headroom in the `to` buffer.
3697 *
3698 * Return value:
3699 * 0: everything is OK
3700 * -ENOMEM: couldn't orphan frags of @from due to lack of memory
3701 * -EFAULT: skb_copy_bits() found some problem with skb geometry
3702 */
3703 int
skb_zerocopy(struct sk_buff * to,struct sk_buff * from,int len,int hlen)3704 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
3705 {
3706 int i, j = 0;
3707 int plen = 0; /* length of skb->head fragment */
3708 int ret;
3709 struct page *page;
3710 unsigned int offset;
3711
3712 BUG_ON(!from->head_frag && !hlen);
3713
3714 /* dont bother with small payloads */
3715 if (len <= skb_tailroom(to))
3716 return skb_copy_bits(from, 0, skb_put(to, len), len);
3717
3718 if (hlen) {
3719 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
3720 if (unlikely(ret))
3721 return ret;
3722 len -= hlen;
3723 } else {
3724 plen = min_t(int, skb_headlen(from), len);
3725 if (plen) {
3726 page = virt_to_head_page(from->head);
3727 offset = from->data - (unsigned char *)page_address(page);
3728 __skb_fill_netmem_desc(to, 0, page_to_netmem(page),
3729 offset, plen);
3730 get_page(page);
3731 j = 1;
3732 len -= plen;
3733 }
3734 }
3735
3736 skb_len_add(to, len + plen);
3737
3738 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3739 skb_tx_error(from);
3740 return -ENOMEM;
3741 }
3742 skb_zerocopy_clone(to, from, GFP_ATOMIC);
3743
3744 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3745 int size;
3746
3747 if (!len)
3748 break;
3749 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3750 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3751 len);
3752 skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3753 len -= size;
3754 skb_frag_ref(to, j);
3755 j++;
3756 }
3757 skb_shinfo(to)->nr_frags = j;
3758
3759 return 0;
3760 }
3761 EXPORT_SYMBOL_GPL(skb_zerocopy);
3762
skb_copy_and_csum_dev(const struct sk_buff * skb,u8 * to)3763 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3764 {
3765 __wsum csum;
3766 long csstart;
3767
3768 if (skb->ip_summed == CHECKSUM_PARTIAL)
3769 csstart = skb_checksum_start_offset(skb);
3770 else
3771 csstart = skb_headlen(skb);
3772
3773 BUG_ON(csstart > skb_headlen(skb));
3774
3775 skb_copy_from_linear_data(skb, to, csstart);
3776
3777 csum = 0;
3778 if (csstart != skb->len)
3779 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3780 skb->len - csstart);
3781
3782 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3783 long csstuff = csstart + skb->csum_offset;
3784
3785 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
3786 }
3787 }
3788 EXPORT_SYMBOL(skb_copy_and_csum_dev);
3789
3790 /**
3791 * skb_dequeue - remove from the head of the queue
3792 * @list: list to dequeue from
3793 *
3794 * Remove the head of the list. The list lock is taken so the function
3795 * may be used safely with other locking list functions. The head item is
3796 * returned or %NULL if the list is empty.
3797 */
3798
skb_dequeue(struct sk_buff_head * list)3799 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3800 {
3801 unsigned long flags;
3802 struct sk_buff *result;
3803
3804 spin_lock_irqsave(&list->lock, flags);
3805 result = __skb_dequeue(list);
3806 spin_unlock_irqrestore(&list->lock, flags);
3807 return result;
3808 }
3809 EXPORT_SYMBOL(skb_dequeue);
3810
3811 /**
3812 * skb_dequeue_tail - remove from the tail of the queue
3813 * @list: list to dequeue from
3814 *
3815 * Remove the tail of the list. The list lock is taken so the function
3816 * may be used safely with other locking list functions. The tail item is
3817 * returned or %NULL if the list is empty.
3818 */
skb_dequeue_tail(struct sk_buff_head * list)3819 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3820 {
3821 unsigned long flags;
3822 struct sk_buff *result;
3823
3824 spin_lock_irqsave(&list->lock, flags);
3825 result = __skb_dequeue_tail(list);
3826 spin_unlock_irqrestore(&list->lock, flags);
3827 return result;
3828 }
3829 EXPORT_SYMBOL(skb_dequeue_tail);
3830
3831 /**
3832 * skb_queue_purge_reason - empty a list
3833 * @list: list to empty
3834 * @reason: drop reason
3835 *
3836 * Delete all buffers on an &sk_buff list. Each buffer is removed from
3837 * the list and one reference dropped. This function takes the list
3838 * lock and is atomic with respect to other list locking functions.
3839 */
skb_queue_purge_reason(struct sk_buff_head * list,enum skb_drop_reason reason)3840 void skb_queue_purge_reason(struct sk_buff_head *list,
3841 enum skb_drop_reason reason)
3842 {
3843 struct sk_buff_head tmp;
3844 unsigned long flags;
3845
3846 if (skb_queue_empty_lockless(list))
3847 return;
3848
3849 __skb_queue_head_init(&tmp);
3850
3851 spin_lock_irqsave(&list->lock, flags);
3852 skb_queue_splice_init(list, &tmp);
3853 spin_unlock_irqrestore(&list->lock, flags);
3854
3855 __skb_queue_purge_reason(&tmp, reason);
3856 }
3857 EXPORT_SYMBOL(skb_queue_purge_reason);
3858
3859 /**
3860 * skb_rbtree_purge - empty a skb rbtree
3861 * @root: root of the rbtree to empty
3862 * Return value: the sum of truesizes of all purged skbs.
3863 *
3864 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3865 * the list and one reference dropped. This function does not take
3866 * any lock. Synchronization should be handled by the caller (e.g., TCP
3867 * out-of-order queue is protected by the socket lock).
3868 */
skb_rbtree_purge(struct rb_root * root)3869 unsigned int skb_rbtree_purge(struct rb_root *root)
3870 {
3871 struct rb_node *p = rb_first(root);
3872 unsigned int sum = 0;
3873
3874 while (p) {
3875 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3876
3877 p = rb_next(p);
3878 rb_erase(&skb->rbnode, root);
3879 sum += skb->truesize;
3880 kfree_skb(skb);
3881 }
3882 return sum;
3883 }
3884
skb_errqueue_purge(struct sk_buff_head * list)3885 void skb_errqueue_purge(struct sk_buff_head *list)
3886 {
3887 struct sk_buff *skb, *next;
3888 struct sk_buff_head kill;
3889 unsigned long flags;
3890
3891 __skb_queue_head_init(&kill);
3892
3893 spin_lock_irqsave(&list->lock, flags);
3894 skb_queue_walk_safe(list, skb, next) {
3895 if (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ZEROCOPY ||
3896 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_TIMESTAMPING)
3897 continue;
3898 __skb_unlink(skb, list);
3899 __skb_queue_tail(&kill, skb);
3900 }
3901 spin_unlock_irqrestore(&list->lock, flags);
3902 __skb_queue_purge(&kill);
3903 }
3904 EXPORT_SYMBOL(skb_errqueue_purge);
3905
3906 /**
3907 * skb_queue_head - queue a buffer at the list head
3908 * @list: list to use
3909 * @newsk: buffer to queue
3910 *
3911 * Queue a buffer at the start of the list. This function takes the
3912 * list lock and can be used safely with other locking &sk_buff functions
3913 * safely.
3914 *
3915 * A buffer cannot be placed on two lists at the same time.
3916 */
skb_queue_head(struct sk_buff_head * list,struct sk_buff * newsk)3917 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3918 {
3919 unsigned long flags;
3920
3921 spin_lock_irqsave(&list->lock, flags);
3922 __skb_queue_head(list, newsk);
3923 spin_unlock_irqrestore(&list->lock, flags);
3924 }
3925 EXPORT_SYMBOL(skb_queue_head);
3926
3927 /**
3928 * skb_queue_tail - queue a buffer at the list tail
3929 * @list: list to use
3930 * @newsk: buffer to queue
3931 *
3932 * Queue a buffer at the tail of the list. This function takes the
3933 * list lock and can be used safely with other locking &sk_buff functions
3934 * safely.
3935 *
3936 * A buffer cannot be placed on two lists at the same time.
3937 */
skb_queue_tail(struct sk_buff_head * list,struct sk_buff * newsk)3938 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3939 {
3940 unsigned long flags;
3941
3942 spin_lock_irqsave(&list->lock, flags);
3943 __skb_queue_tail(list, newsk);
3944 spin_unlock_irqrestore(&list->lock, flags);
3945 }
3946 EXPORT_SYMBOL(skb_queue_tail);
3947
3948 /**
3949 * skb_unlink - remove a buffer from a list
3950 * @skb: buffer to remove
3951 * @list: list to use
3952 *
3953 * Remove a packet from a list. The list locks are taken and this
3954 * function is atomic with respect to other list locked calls
3955 *
3956 * You must know what list the SKB is on.
3957 */
skb_unlink(struct sk_buff * skb,struct sk_buff_head * list)3958 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3959 {
3960 unsigned long flags;
3961
3962 spin_lock_irqsave(&list->lock, flags);
3963 __skb_unlink(skb, list);
3964 spin_unlock_irqrestore(&list->lock, flags);
3965 }
3966 EXPORT_SYMBOL(skb_unlink);
3967
3968 /**
3969 * skb_append - append a buffer
3970 * @old: buffer to insert after
3971 * @newsk: buffer to insert
3972 * @list: list to use
3973 *
3974 * Place a packet after a given packet in a list. The list locks are taken
3975 * and this function is atomic with respect to other list locked calls.
3976 * A buffer cannot be placed on two lists at the same time.
3977 */
skb_append(struct sk_buff * old,struct sk_buff * newsk,struct sk_buff_head * list)3978 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3979 {
3980 unsigned long flags;
3981
3982 spin_lock_irqsave(&list->lock, flags);
3983 __skb_queue_after(list, old, newsk);
3984 spin_unlock_irqrestore(&list->lock, flags);
3985 }
3986 EXPORT_SYMBOL(skb_append);
3987
skb_split_inside_header(struct sk_buff * skb,struct sk_buff * skb1,const u32 len,const int pos)3988 static inline void skb_split_inside_header(struct sk_buff *skb,
3989 struct sk_buff* skb1,
3990 const u32 len, const int pos)
3991 {
3992 int i;
3993
3994 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3995 pos - len);
3996 /* And move data appendix as is. */
3997 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3998 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3999
4000 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
4001 skb1->unreadable = skb->unreadable;
4002 skb_shinfo(skb)->nr_frags = 0;
4003 skb1->data_len = skb->data_len;
4004 skb1->len += skb1->data_len;
4005 skb->data_len = 0;
4006 skb->len = len;
4007 skb_set_tail_pointer(skb, len);
4008 }
4009
skb_split_no_header(struct sk_buff * skb,struct sk_buff * skb1,const u32 len,int pos)4010 static inline void skb_split_no_header(struct sk_buff *skb,
4011 struct sk_buff* skb1,
4012 const u32 len, int pos)
4013 {
4014 int i, k = 0;
4015 const int nfrags = skb_shinfo(skb)->nr_frags;
4016
4017 skb_shinfo(skb)->nr_frags = 0;
4018 skb1->len = skb1->data_len = skb->len - len;
4019 skb->len = len;
4020 skb->data_len = len - pos;
4021
4022 for (i = 0; i < nfrags; i++) {
4023 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
4024
4025 if (pos + size > len) {
4026 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
4027
4028 if (pos < len) {
4029 /* Split frag.
4030 * We have two variants in this case:
4031 * 1. Move all the frag to the second
4032 * part, if it is possible. F.e.
4033 * this approach is mandatory for TUX,
4034 * where splitting is expensive.
4035 * 2. Split is accurately. We make this.
4036 */
4037 skb_frag_ref(skb, i);
4038 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
4039 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
4040 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
4041 skb_shinfo(skb)->nr_frags++;
4042 }
4043 k++;
4044 } else
4045 skb_shinfo(skb)->nr_frags++;
4046 pos += size;
4047 }
4048 skb_shinfo(skb1)->nr_frags = k;
4049
4050 skb1->unreadable = skb->unreadable;
4051 }
4052
4053 /**
4054 * skb_split - Split fragmented skb to two parts at length len.
4055 * @skb: the buffer to split
4056 * @skb1: the buffer to receive the second part
4057 * @len: new length for skb
4058 */
skb_split(struct sk_buff * skb,struct sk_buff * skb1,const u32 len)4059 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
4060 {
4061 int pos = skb_headlen(skb);
4062 const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY;
4063
4064 skb_zcopy_downgrade_managed(skb);
4065
4066 skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags;
4067 skb_zerocopy_clone(skb1, skb, 0);
4068 if (len < pos) /* Split line is inside header. */
4069 skb_split_inside_header(skb, skb1, len, pos);
4070 else /* Second chunk has no header, nothing to copy. */
4071 skb_split_no_header(skb, skb1, len, pos);
4072 }
4073 EXPORT_SYMBOL(skb_split);
4074
4075 /* Shifting from/to a cloned skb is a no-go.
4076 *
4077 * Caller cannot keep skb_shinfo related pointers past calling here!
4078 */
skb_prepare_for_shift(struct sk_buff * skb)4079 static int skb_prepare_for_shift(struct sk_buff *skb)
4080 {
4081 return skb_unclone_keeptruesize(skb, GFP_ATOMIC);
4082 }
4083
4084 /**
4085 * skb_shift - Shifts paged data partially from skb to another
4086 * @tgt: buffer into which tail data gets added
4087 * @skb: buffer from which the paged data comes from
4088 * @shiftlen: shift up to this many bytes
4089 *
4090 * Attempts to shift up to shiftlen worth of bytes, which may be less than
4091 * the length of the skb, from skb to tgt. Returns number bytes shifted.
4092 * It's up to caller to free skb if everything was shifted.
4093 *
4094 * If @tgt runs out of frags, the whole operation is aborted.
4095 *
4096 * Skb cannot include anything else but paged data while tgt is allowed
4097 * to have non-paged data as well.
4098 *
4099 * TODO: full sized shift could be optimized but that would need
4100 * specialized skb free'er to handle frags without up-to-date nr_frags.
4101 */
skb_shift(struct sk_buff * tgt,struct sk_buff * skb,int shiftlen)4102 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
4103 {
4104 int from, to, merge, todo;
4105 skb_frag_t *fragfrom, *fragto;
4106
4107 BUG_ON(shiftlen > skb->len);
4108
4109 if (skb_headlen(skb))
4110 return 0;
4111 if (skb_zcopy(tgt) || skb_zcopy(skb))
4112 return 0;
4113
4114 DEBUG_NET_WARN_ON_ONCE(tgt->pp_recycle != skb->pp_recycle);
4115 DEBUG_NET_WARN_ON_ONCE(skb_cmp_decrypted(tgt, skb));
4116
4117 todo = shiftlen;
4118 from = 0;
4119 to = skb_shinfo(tgt)->nr_frags;
4120 fragfrom = &skb_shinfo(skb)->frags[from];
4121
4122 /* Actual merge is delayed until the point when we know we can
4123 * commit all, so that we don't have to undo partial changes
4124 */
4125 if (!skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
4126 skb_frag_off(fragfrom))) {
4127 merge = -1;
4128 } else {
4129 merge = to - 1;
4130
4131 todo -= skb_frag_size(fragfrom);
4132 if (todo < 0) {
4133 if (skb_prepare_for_shift(skb) ||
4134 skb_prepare_for_shift(tgt))
4135 return 0;
4136
4137 /* All previous frag pointers might be stale! */
4138 fragfrom = &skb_shinfo(skb)->frags[from];
4139 fragto = &skb_shinfo(tgt)->frags[merge];
4140
4141 skb_frag_size_add(fragto, shiftlen);
4142 skb_frag_size_sub(fragfrom, shiftlen);
4143 skb_frag_off_add(fragfrom, shiftlen);
4144
4145 goto onlymerged;
4146 }
4147
4148 from++;
4149 }
4150
4151 /* Skip full, not-fitting skb to avoid expensive operations */
4152 if ((shiftlen == skb->len) &&
4153 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
4154 return 0;
4155
4156 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
4157 return 0;
4158
4159 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
4160 if (to == MAX_SKB_FRAGS)
4161 return 0;
4162
4163 fragfrom = &skb_shinfo(skb)->frags[from];
4164 fragto = &skb_shinfo(tgt)->frags[to];
4165
4166 if (todo >= skb_frag_size(fragfrom)) {
4167 *fragto = *fragfrom;
4168 todo -= skb_frag_size(fragfrom);
4169 from++;
4170 to++;
4171
4172 } else {
4173 __skb_frag_ref(fragfrom);
4174 skb_frag_page_copy(fragto, fragfrom);
4175 skb_frag_off_copy(fragto, fragfrom);
4176 skb_frag_size_set(fragto, todo);
4177
4178 skb_frag_off_add(fragfrom, todo);
4179 skb_frag_size_sub(fragfrom, todo);
4180 todo = 0;
4181
4182 to++;
4183 break;
4184 }
4185 }
4186
4187 /* Ready to "commit" this state change to tgt */
4188 skb_shinfo(tgt)->nr_frags = to;
4189
4190 if (merge >= 0) {
4191 fragfrom = &skb_shinfo(skb)->frags[0];
4192 fragto = &skb_shinfo(tgt)->frags[merge];
4193
4194 skb_frag_size_add(fragto, skb_frag_size(fragfrom));
4195 __skb_frag_unref(fragfrom, skb->pp_recycle);
4196 }
4197
4198 /* Reposition in the original skb */
4199 to = 0;
4200 while (from < skb_shinfo(skb)->nr_frags)
4201 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
4202 skb_shinfo(skb)->nr_frags = to;
4203
4204 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
4205
4206 onlymerged:
4207 /* Most likely the tgt won't ever need its checksum anymore, skb on
4208 * the other hand might need it if it needs to be resent
4209 */
4210 tgt->ip_summed = CHECKSUM_PARTIAL;
4211 skb->ip_summed = CHECKSUM_PARTIAL;
4212
4213 skb_len_add(skb, -shiftlen);
4214 skb_len_add(tgt, shiftlen);
4215
4216 return shiftlen;
4217 }
4218
4219 /**
4220 * skb_prepare_seq_read - Prepare a sequential read of skb data
4221 * @skb: the buffer to read
4222 * @from: lower offset of data to be read
4223 * @to: upper offset of data to be read
4224 * @st: state variable
4225 *
4226 * Initializes the specified state variable. Must be called before
4227 * invoking skb_seq_read() for the first time.
4228 */
skb_prepare_seq_read(struct sk_buff * skb,unsigned int from,unsigned int to,struct skb_seq_state * st)4229 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
4230 unsigned int to, struct skb_seq_state *st)
4231 {
4232 st->lower_offset = from;
4233 st->upper_offset = to;
4234 st->root_skb = st->cur_skb = skb;
4235 st->frag_idx = st->stepped_offset = 0;
4236 st->frag_data = NULL;
4237 st->frag_off = 0;
4238 }
4239 EXPORT_SYMBOL(skb_prepare_seq_read);
4240
4241 /**
4242 * skb_seq_read - Sequentially read skb data
4243 * @consumed: number of bytes consumed by the caller so far
4244 * @data: destination pointer for data to be returned
4245 * @st: state variable
4246 *
4247 * Reads a block of skb data at @consumed relative to the
4248 * lower offset specified to skb_prepare_seq_read(). Assigns
4249 * the head of the data block to @data and returns the length
4250 * of the block or 0 if the end of the skb data or the upper
4251 * offset has been reached.
4252 *
4253 * The caller is not required to consume all of the data
4254 * returned, i.e. @consumed is typically set to the number
4255 * of bytes already consumed and the next call to
4256 * skb_seq_read() will return the remaining part of the block.
4257 *
4258 * Note 1: The size of each block of data returned can be arbitrary,
4259 * this limitation is the cost for zerocopy sequential
4260 * reads of potentially non linear data.
4261 *
4262 * Note 2: Fragment lists within fragments are not implemented
4263 * at the moment, state->root_skb could be replaced with
4264 * a stack for this purpose.
4265 */
skb_seq_read(unsigned int consumed,const u8 ** data,struct skb_seq_state * st)4266 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
4267 struct skb_seq_state *st)
4268 {
4269 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
4270 skb_frag_t *frag;
4271
4272 if (unlikely(abs_offset >= st->upper_offset)) {
4273 if (st->frag_data) {
4274 kunmap_atomic(st->frag_data);
4275 st->frag_data = NULL;
4276 }
4277 return 0;
4278 }
4279
4280 next_skb:
4281 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
4282
4283 if (abs_offset < block_limit && !st->frag_data) {
4284 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
4285 return block_limit - abs_offset;
4286 }
4287
4288 if (!skb_frags_readable(st->cur_skb))
4289 return 0;
4290
4291 if (st->frag_idx == 0 && !st->frag_data)
4292 st->stepped_offset += skb_headlen(st->cur_skb);
4293
4294 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
4295 unsigned int pg_idx, pg_off, pg_sz;
4296
4297 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
4298
4299 pg_idx = 0;
4300 pg_off = skb_frag_off(frag);
4301 pg_sz = skb_frag_size(frag);
4302
4303 if (skb_frag_must_loop(skb_frag_page(frag))) {
4304 pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT;
4305 pg_off = offset_in_page(pg_off + st->frag_off);
4306 pg_sz = min_t(unsigned int, pg_sz - st->frag_off,
4307 PAGE_SIZE - pg_off);
4308 }
4309
4310 block_limit = pg_sz + st->stepped_offset;
4311 if (abs_offset < block_limit) {
4312 if (!st->frag_data)
4313 st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx);
4314
4315 *data = (u8 *)st->frag_data + pg_off +
4316 (abs_offset - st->stepped_offset);
4317
4318 return block_limit - abs_offset;
4319 }
4320
4321 if (st->frag_data) {
4322 kunmap_atomic(st->frag_data);
4323 st->frag_data = NULL;
4324 }
4325
4326 st->stepped_offset += pg_sz;
4327 st->frag_off += pg_sz;
4328 if (st->frag_off == skb_frag_size(frag)) {
4329 st->frag_off = 0;
4330 st->frag_idx++;
4331 }
4332 }
4333
4334 if (st->frag_data) {
4335 kunmap_atomic(st->frag_data);
4336 st->frag_data = NULL;
4337 }
4338
4339 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
4340 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
4341 st->frag_idx = 0;
4342 goto next_skb;
4343 } else if (st->cur_skb->next) {
4344 st->cur_skb = st->cur_skb->next;
4345 st->frag_idx = 0;
4346 goto next_skb;
4347 }
4348
4349 return 0;
4350 }
4351 EXPORT_SYMBOL(skb_seq_read);
4352
4353 /**
4354 * skb_abort_seq_read - Abort a sequential read of skb data
4355 * @st: state variable
4356 *
4357 * Must be called if skb_seq_read() was not called until it
4358 * returned 0.
4359 */
skb_abort_seq_read(struct skb_seq_state * st)4360 void skb_abort_seq_read(struct skb_seq_state *st)
4361 {
4362 if (st->frag_data)
4363 kunmap_atomic(st->frag_data);
4364 }
4365 EXPORT_SYMBOL(skb_abort_seq_read);
4366
4367 /**
4368 * skb_copy_seq_read() - copy from a skb_seq_state to a buffer
4369 * @st: source skb_seq_state
4370 * @offset: offset in source
4371 * @to: destination buffer
4372 * @len: number of bytes to copy
4373 *
4374 * Copy @len bytes from @offset bytes into the source @st to the destination
4375 * buffer @to. `offset` should increase (or be unchanged) with each subsequent
4376 * call to this function. If offset needs to decrease from the previous use `st`
4377 * should be reset first.
4378 *
4379 * Return: 0 on success or -EINVAL if the copy ended early
4380 */
skb_copy_seq_read(struct skb_seq_state * st,int offset,void * to,int len)4381 int skb_copy_seq_read(struct skb_seq_state *st, int offset, void *to, int len)
4382 {
4383 const u8 *data;
4384 u32 sqlen;
4385
4386 for (;;) {
4387 sqlen = skb_seq_read(offset, &data, st);
4388 if (sqlen == 0)
4389 return -EINVAL;
4390 if (sqlen >= len) {
4391 memcpy(to, data, len);
4392 return 0;
4393 }
4394 memcpy(to, data, sqlen);
4395 to += sqlen;
4396 offset += sqlen;
4397 len -= sqlen;
4398 }
4399 }
4400 EXPORT_SYMBOL(skb_copy_seq_read);
4401
4402 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
4403
skb_ts_get_next_block(unsigned int offset,const u8 ** text,struct ts_config * conf,struct ts_state * state)4404 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
4405 struct ts_config *conf,
4406 struct ts_state *state)
4407 {
4408 return skb_seq_read(offset, text, TS_SKB_CB(state));
4409 }
4410
skb_ts_finish(struct ts_config * conf,struct ts_state * state)4411 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
4412 {
4413 skb_abort_seq_read(TS_SKB_CB(state));
4414 }
4415
4416 /**
4417 * skb_find_text - Find a text pattern in skb data
4418 * @skb: the buffer to look in
4419 * @from: search offset
4420 * @to: search limit
4421 * @config: textsearch configuration
4422 *
4423 * Finds a pattern in the skb data according to the specified
4424 * textsearch configuration. Use textsearch_next() to retrieve
4425 * subsequent occurrences of the pattern. Returns the offset
4426 * to the first occurrence or UINT_MAX if no match was found.
4427 */
skb_find_text(struct sk_buff * skb,unsigned int from,unsigned int to,struct ts_config * config)4428 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
4429 unsigned int to, struct ts_config *config)
4430 {
4431 unsigned int patlen = config->ops->get_pattern_len(config);
4432 struct ts_state state;
4433 unsigned int ret;
4434
4435 BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb));
4436
4437 config->get_next_block = skb_ts_get_next_block;
4438 config->finish = skb_ts_finish;
4439
4440 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
4441
4442 ret = textsearch_find(config, &state);
4443 return (ret + patlen <= to - from ? ret : UINT_MAX);
4444 }
4445 EXPORT_SYMBOL(skb_find_text);
4446
skb_append_pagefrags(struct sk_buff * skb,struct page * page,int offset,size_t size,size_t max_frags)4447 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
4448 int offset, size_t size, size_t max_frags)
4449 {
4450 int i = skb_shinfo(skb)->nr_frags;
4451
4452 if (skb_can_coalesce(skb, i, page, offset)) {
4453 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
4454 } else if (i < max_frags) {
4455 skb_zcopy_downgrade_managed(skb);
4456 get_page(page);
4457 skb_fill_page_desc_noacc(skb, i, page, offset, size);
4458 } else {
4459 return -EMSGSIZE;
4460 }
4461
4462 return 0;
4463 }
4464 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
4465
4466 /**
4467 * skb_pull_rcsum - pull skb and update receive checksum
4468 * @skb: buffer to update
4469 * @len: length of data pulled
4470 *
4471 * This function performs an skb_pull on the packet and updates
4472 * the CHECKSUM_COMPLETE checksum. It should be used on
4473 * receive path processing instead of skb_pull unless you know
4474 * that the checksum difference is zero (e.g., a valid IP header)
4475 * or you are setting ip_summed to CHECKSUM_NONE.
4476 */
skb_pull_rcsum(struct sk_buff * skb,unsigned int len)4477 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
4478 {
4479 unsigned char *data = skb->data;
4480
4481 BUG_ON(len > skb->len);
4482 __skb_pull(skb, len);
4483 skb_postpull_rcsum(skb, data, len);
4484 return skb->data;
4485 }
4486 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
4487
skb_head_frag_to_page_desc(struct sk_buff * frag_skb)4488 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
4489 {
4490 skb_frag_t head_frag;
4491 struct page *page;
4492
4493 page = virt_to_head_page(frag_skb->head);
4494 skb_frag_fill_page_desc(&head_frag, page, frag_skb->data -
4495 (unsigned char *)page_address(page),
4496 skb_headlen(frag_skb));
4497 return head_frag;
4498 }
4499
skb_segment_list(struct sk_buff * skb,netdev_features_t features,unsigned int offset)4500 struct sk_buff *skb_segment_list(struct sk_buff *skb,
4501 netdev_features_t features,
4502 unsigned int offset)
4503 {
4504 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
4505 unsigned int tnl_hlen = skb_tnl_header_len(skb);
4506 unsigned int delta_truesize = 0;
4507 unsigned int delta_len = 0;
4508 struct sk_buff *tail = NULL;
4509 struct sk_buff *nskb, *tmp;
4510 int len_diff, err;
4511
4512 skb_push(skb, -skb_network_offset(skb) + offset);
4513
4514 /* Ensure the head is writeable before touching the shared info */
4515 err = skb_unclone(skb, GFP_ATOMIC);
4516 if (err)
4517 goto err_linearize;
4518
4519 skb_shinfo(skb)->frag_list = NULL;
4520
4521 while (list_skb) {
4522 nskb = list_skb;
4523 list_skb = list_skb->next;
4524
4525 err = 0;
4526 delta_truesize += nskb->truesize;
4527 if (skb_shared(nskb)) {
4528 tmp = skb_clone(nskb, GFP_ATOMIC);
4529 if (tmp) {
4530 consume_skb(nskb);
4531 nskb = tmp;
4532 err = skb_unclone(nskb, GFP_ATOMIC);
4533 } else {
4534 err = -ENOMEM;
4535 }
4536 }
4537
4538 if (!tail)
4539 skb->next = nskb;
4540 else
4541 tail->next = nskb;
4542
4543 if (unlikely(err)) {
4544 nskb->next = list_skb;
4545 goto err_linearize;
4546 }
4547
4548 tail = nskb;
4549
4550 delta_len += nskb->len;
4551
4552 skb_push(nskb, -skb_network_offset(nskb) + offset);
4553
4554 skb_release_head_state(nskb);
4555 len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb);
4556 __copy_skb_header(nskb, skb);
4557
4558 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
4559 nskb->transport_header += len_diff;
4560 skb_copy_from_linear_data_offset(skb, -tnl_hlen,
4561 nskb->data - tnl_hlen,
4562 offset + tnl_hlen);
4563
4564 if (skb_needs_linearize(nskb, features) &&
4565 __skb_linearize(nskb))
4566 goto err_linearize;
4567 }
4568
4569 skb->truesize = skb->truesize - delta_truesize;
4570 skb->data_len = skb->data_len - delta_len;
4571 skb->len = skb->len - delta_len;
4572
4573 skb_gso_reset(skb);
4574
4575 skb->prev = tail;
4576
4577 if (skb_needs_linearize(skb, features) &&
4578 __skb_linearize(skb))
4579 goto err_linearize;
4580
4581 skb_get(skb);
4582
4583 return skb;
4584
4585 err_linearize:
4586 kfree_skb_list(skb->next);
4587 skb->next = NULL;
4588 return ERR_PTR(-ENOMEM);
4589 }
4590 EXPORT_SYMBOL_GPL(skb_segment_list);
4591
4592 /**
4593 * skb_segment - Perform protocol segmentation on skb.
4594 * @head_skb: buffer to segment
4595 * @features: features for the output path (see dev->features)
4596 *
4597 * This function performs segmentation on the given skb. It returns
4598 * a pointer to the first in a list of new skbs for the segments.
4599 * In case of error it returns ERR_PTR(err).
4600 */
skb_segment(struct sk_buff * head_skb,netdev_features_t features)4601 struct sk_buff *skb_segment(struct sk_buff *head_skb,
4602 netdev_features_t features)
4603 {
4604 struct sk_buff *segs = NULL;
4605 struct sk_buff *tail = NULL;
4606 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
4607 unsigned int mss = skb_shinfo(head_skb)->gso_size;
4608 unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
4609 unsigned int offset = doffset;
4610 unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
4611 unsigned int partial_segs = 0;
4612 unsigned int headroom;
4613 unsigned int len = head_skb->len;
4614 struct sk_buff *frag_skb;
4615 skb_frag_t *frag;
4616 __be16 proto;
4617 bool csum, sg;
4618 int err = -ENOMEM;
4619 int i = 0;
4620 int nfrags, pos;
4621
4622 if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) &&
4623 mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) {
4624 struct sk_buff *check_skb;
4625
4626 for (check_skb = list_skb; check_skb; check_skb = check_skb->next) {
4627 if (skb_headlen(check_skb) && !check_skb->head_frag) {
4628 /* gso_size is untrusted, and we have a frag_list with
4629 * a linear non head_frag item.
4630 *
4631 * If head_skb's headlen does not fit requested gso_size,
4632 * it means that the frag_list members do NOT terminate
4633 * on exact gso_size boundaries. Hence we cannot perform
4634 * skb_frag_t page sharing. Therefore we must fallback to
4635 * copying the frag_list skbs; we do so by disabling SG.
4636 */
4637 features &= ~NETIF_F_SG;
4638 break;
4639 }
4640 }
4641 }
4642
4643 __skb_push(head_skb, doffset);
4644 proto = skb_network_protocol(head_skb, NULL);
4645 if (unlikely(!proto))
4646 return ERR_PTR(-EINVAL);
4647
4648 sg = !!(features & NETIF_F_SG);
4649 csum = !!can_checksum_protocol(features, proto);
4650
4651 if (sg && csum && (mss != GSO_BY_FRAGS)) {
4652 if (!(features & NETIF_F_GSO_PARTIAL)) {
4653 struct sk_buff *iter;
4654 unsigned int frag_len;
4655
4656 if (!list_skb ||
4657 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
4658 goto normal;
4659
4660 /* If we get here then all the required
4661 * GSO features except frag_list are supported.
4662 * Try to split the SKB to multiple GSO SKBs
4663 * with no frag_list.
4664 * Currently we can do that only when the buffers don't
4665 * have a linear part and all the buffers except
4666 * the last are of the same length.
4667 */
4668 frag_len = list_skb->len;
4669 skb_walk_frags(head_skb, iter) {
4670 if (frag_len != iter->len && iter->next)
4671 goto normal;
4672 if (skb_headlen(iter) && !iter->head_frag)
4673 goto normal;
4674
4675 len -= iter->len;
4676 }
4677
4678 if (len != frag_len)
4679 goto normal;
4680 }
4681
4682 /* GSO partial only requires that we trim off any excess that
4683 * doesn't fit into an MSS sized block, so take care of that
4684 * now.
4685 * Cap len to not accidentally hit GSO_BY_FRAGS.
4686 */
4687 partial_segs = min(len, GSO_BY_FRAGS - 1) / mss;
4688 if (partial_segs > 1)
4689 mss *= partial_segs;
4690 else
4691 partial_segs = 0;
4692 }
4693
4694 normal:
4695 headroom = skb_headroom(head_skb);
4696 pos = skb_headlen(head_skb);
4697
4698 if (skb_orphan_frags(head_skb, GFP_ATOMIC))
4699 return ERR_PTR(-ENOMEM);
4700
4701 nfrags = skb_shinfo(head_skb)->nr_frags;
4702 frag = skb_shinfo(head_skb)->frags;
4703 frag_skb = head_skb;
4704
4705 do {
4706 struct sk_buff *nskb;
4707 skb_frag_t *nskb_frag;
4708 int hsize;
4709 int size;
4710
4711 if (unlikely(mss == GSO_BY_FRAGS)) {
4712 len = list_skb->len;
4713 } else {
4714 len = head_skb->len - offset;
4715 if (len > mss)
4716 len = mss;
4717 }
4718
4719 hsize = skb_headlen(head_skb) - offset;
4720
4721 if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) &&
4722 (skb_headlen(list_skb) == len || sg)) {
4723 BUG_ON(skb_headlen(list_skb) > len);
4724
4725 nskb = skb_clone(list_skb, GFP_ATOMIC);
4726 if (unlikely(!nskb))
4727 goto err;
4728
4729 i = 0;
4730 nfrags = skb_shinfo(list_skb)->nr_frags;
4731 frag = skb_shinfo(list_skb)->frags;
4732 frag_skb = list_skb;
4733 pos += skb_headlen(list_skb);
4734
4735 while (pos < offset + len) {
4736 BUG_ON(i >= nfrags);
4737
4738 size = skb_frag_size(frag);
4739 if (pos + size > offset + len)
4740 break;
4741
4742 i++;
4743 pos += size;
4744 frag++;
4745 }
4746
4747 list_skb = list_skb->next;
4748
4749 if (unlikely(pskb_trim(nskb, len))) {
4750 kfree_skb(nskb);
4751 goto err;
4752 }
4753
4754 hsize = skb_end_offset(nskb);
4755 if (skb_cow_head(nskb, doffset + headroom)) {
4756 kfree_skb(nskb);
4757 goto err;
4758 }
4759
4760 nskb->truesize += skb_end_offset(nskb) - hsize;
4761 skb_release_head_state(nskb);
4762 __skb_push(nskb, doffset);
4763 } else {
4764 if (hsize < 0)
4765 hsize = 0;
4766 if (hsize > len || !sg)
4767 hsize = len;
4768
4769 nskb = __alloc_skb(hsize + doffset + headroom,
4770 GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
4771 NUMA_NO_NODE);
4772
4773 if (unlikely(!nskb))
4774 goto err;
4775
4776 skb_reserve(nskb, headroom);
4777 __skb_put(nskb, doffset);
4778 }
4779
4780 if (segs)
4781 tail->next = nskb;
4782 else
4783 segs = nskb;
4784 tail = nskb;
4785
4786 __copy_skb_header(nskb, head_skb);
4787
4788 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
4789 skb_reset_mac_len(nskb);
4790
4791 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
4792 nskb->data - tnl_hlen,
4793 doffset + tnl_hlen);
4794
4795 if (nskb->len == len + doffset)
4796 goto perform_csum_check;
4797
4798 if (!sg) {
4799 if (!csum) {
4800 if (!nskb->remcsum_offload)
4801 nskb->ip_summed = CHECKSUM_NONE;
4802 SKB_GSO_CB(nskb)->csum =
4803 skb_copy_and_csum_bits(head_skb, offset,
4804 skb_put(nskb,
4805 len),
4806 len);
4807 SKB_GSO_CB(nskb)->csum_start =
4808 skb_headroom(nskb) + doffset;
4809 } else {
4810 if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len))
4811 goto err;
4812 }
4813 continue;
4814 }
4815
4816 nskb_frag = skb_shinfo(nskb)->frags;
4817
4818 skb_copy_from_linear_data_offset(head_skb, offset,
4819 skb_put(nskb, hsize), hsize);
4820
4821 skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags &
4822 SKBFL_SHARED_FRAG;
4823
4824 if (skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4825 goto err;
4826
4827 while (pos < offset + len) {
4828 if (i >= nfrags) {
4829 if (skb_orphan_frags(list_skb, GFP_ATOMIC) ||
4830 skb_zerocopy_clone(nskb, list_skb,
4831 GFP_ATOMIC))
4832 goto err;
4833
4834 i = 0;
4835 nfrags = skb_shinfo(list_skb)->nr_frags;
4836 frag = skb_shinfo(list_skb)->frags;
4837 frag_skb = list_skb;
4838 if (!skb_headlen(list_skb)) {
4839 BUG_ON(!nfrags);
4840 } else {
4841 BUG_ON(!list_skb->head_frag);
4842
4843 /* to make room for head_frag. */
4844 i--;
4845 frag--;
4846 }
4847
4848 list_skb = list_skb->next;
4849 }
4850
4851 if (unlikely(skb_shinfo(nskb)->nr_frags >=
4852 MAX_SKB_FRAGS)) {
4853 net_warn_ratelimited(
4854 "skb_segment: too many frags: %u %u\n",
4855 pos, mss);
4856 err = -EINVAL;
4857 goto err;
4858 }
4859
4860 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4861 __skb_frag_ref(nskb_frag);
4862 size = skb_frag_size(nskb_frag);
4863
4864 if (pos < offset) {
4865 skb_frag_off_add(nskb_frag, offset - pos);
4866 skb_frag_size_sub(nskb_frag, offset - pos);
4867 }
4868
4869 skb_shinfo(nskb)->nr_frags++;
4870
4871 if (pos + size <= offset + len) {
4872 i++;
4873 frag++;
4874 pos += size;
4875 } else {
4876 skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4877 goto skip_fraglist;
4878 }
4879
4880 nskb_frag++;
4881 }
4882
4883 skip_fraglist:
4884 nskb->data_len = len - hsize;
4885 nskb->len += nskb->data_len;
4886 nskb->truesize += nskb->data_len;
4887
4888 perform_csum_check:
4889 if (!csum) {
4890 if (skb_has_shared_frag(nskb) &&
4891 __skb_linearize(nskb))
4892 goto err;
4893
4894 if (!nskb->remcsum_offload)
4895 nskb->ip_summed = CHECKSUM_NONE;
4896 SKB_GSO_CB(nskb)->csum =
4897 skb_checksum(nskb, doffset,
4898 nskb->len - doffset, 0);
4899 SKB_GSO_CB(nskb)->csum_start =
4900 skb_headroom(nskb) + doffset;
4901 }
4902 } while ((offset += len) < head_skb->len);
4903
4904 /* Some callers want to get the end of the list.
4905 * Put it in segs->prev to avoid walking the list.
4906 * (see validate_xmit_skb_list() for example)
4907 */
4908 segs->prev = tail;
4909
4910 if (partial_segs) {
4911 struct sk_buff *iter;
4912 int type = skb_shinfo(head_skb)->gso_type;
4913 unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4914
4915 /* Update type to add partial and then remove dodgy if set */
4916 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4917 type &= ~SKB_GSO_DODGY;
4918
4919 /* Update GSO info and prepare to start updating headers on
4920 * our way back down the stack of protocols.
4921 */
4922 for (iter = segs; iter; iter = iter->next) {
4923 skb_shinfo(iter)->gso_size = gso_size;
4924 skb_shinfo(iter)->gso_segs = partial_segs;
4925 skb_shinfo(iter)->gso_type = type;
4926 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4927 }
4928
4929 if (tail->len - doffset <= gso_size)
4930 skb_shinfo(tail)->gso_size = 0;
4931 else if (tail != segs)
4932 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4933 }
4934
4935 /* Following permits correct backpressure, for protocols
4936 * using skb_set_owner_w().
4937 * Idea is to tranfert ownership from head_skb to last segment.
4938 */
4939 if (head_skb->destructor == sock_wfree) {
4940 swap(tail->truesize, head_skb->truesize);
4941 swap(tail->destructor, head_skb->destructor);
4942 swap(tail->sk, head_skb->sk);
4943 }
4944 return segs;
4945
4946 err:
4947 kfree_skb_list(segs);
4948 return ERR_PTR(err);
4949 }
4950 EXPORT_SYMBOL_GPL(skb_segment);
4951
4952 #ifdef CONFIG_SKB_EXTENSIONS
4953 #define SKB_EXT_ALIGN_VALUE 8
4954 #define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4955
4956 static const u8 skb_ext_type_len[] = {
4957 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4958 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4959 #endif
4960 #ifdef CONFIG_XFRM
4961 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4962 #endif
4963 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4964 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4965 #endif
4966 #if IS_ENABLED(CONFIG_MPTCP)
4967 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4968 #endif
4969 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4970 [SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow),
4971 #endif
4972 };
4973
skb_ext_total_length(void)4974 static __always_inline unsigned int skb_ext_total_length(void)
4975 {
4976 unsigned int l = SKB_EXT_CHUNKSIZEOF(struct skb_ext);
4977 int i;
4978
4979 for (i = 0; i < ARRAY_SIZE(skb_ext_type_len); i++)
4980 l += skb_ext_type_len[i];
4981
4982 return l;
4983 }
4984
skb_extensions_init(void)4985 static void skb_extensions_init(void)
4986 {
4987 BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4988 #if !IS_ENABLED(CONFIG_KCOV_INSTRUMENT_ALL)
4989 BUILD_BUG_ON(skb_ext_total_length() > 255);
4990 #endif
4991
4992 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4993 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4994 0,
4995 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4996 NULL);
4997 }
4998 #else
skb_extensions_init(void)4999 static void skb_extensions_init(void) {}
5000 #endif
5001
5002 /* The SKB kmem_cache slab is critical for network performance. Never
5003 * merge/alias the slab with similar sized objects. This avoids fragmentation
5004 * that hurts performance of kmem_cache_{alloc,free}_bulk APIs.
5005 */
5006 #ifndef CONFIG_SLUB_TINY
5007 #define FLAG_SKB_NO_MERGE SLAB_NO_MERGE
5008 #else /* CONFIG_SLUB_TINY - simple loop in kmem_cache_alloc_bulk */
5009 #define FLAG_SKB_NO_MERGE 0
5010 #endif
5011
skb_init(void)5012 void __init skb_init(void)
5013 {
5014 net_hotdata.skbuff_cache = kmem_cache_create_usercopy("skbuff_head_cache",
5015 sizeof(struct sk_buff),
5016 0,
5017 SLAB_HWCACHE_ALIGN|SLAB_PANIC|
5018 FLAG_SKB_NO_MERGE,
5019 offsetof(struct sk_buff, cb),
5020 sizeof_field(struct sk_buff, cb),
5021 NULL);
5022 net_hotdata.skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
5023 sizeof(struct sk_buff_fclones),
5024 0,
5025 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
5026 NULL);
5027 /* usercopy should only access first SKB_SMALL_HEAD_HEADROOM bytes.
5028 * struct skb_shared_info is located at the end of skb->head,
5029 * and should not be copied to/from user.
5030 */
5031 net_hotdata.skb_small_head_cache = kmem_cache_create_usercopy("skbuff_small_head",
5032 SKB_SMALL_HEAD_CACHE_SIZE,
5033 0,
5034 SLAB_HWCACHE_ALIGN | SLAB_PANIC,
5035 0,
5036 SKB_SMALL_HEAD_HEADROOM,
5037 NULL);
5038 skb_extensions_init();
5039 }
5040
5041 static int
__skb_to_sgvec(struct sk_buff * skb,struct scatterlist * sg,int offset,int len,unsigned int recursion_level)5042 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
5043 unsigned int recursion_level)
5044 {
5045 int start = skb_headlen(skb);
5046 int i, copy = start - offset;
5047 struct sk_buff *frag_iter;
5048 int elt = 0;
5049
5050 if (unlikely(recursion_level >= 24))
5051 return -EMSGSIZE;
5052
5053 if (copy > 0) {
5054 if (copy > len)
5055 copy = len;
5056 sg_set_buf(sg, skb->data + offset, copy);
5057 elt++;
5058 if ((len -= copy) == 0)
5059 return elt;
5060 offset += copy;
5061 }
5062
5063 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
5064 int end;
5065
5066 WARN_ON(start > offset + len);
5067
5068 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
5069 if ((copy = end - offset) > 0) {
5070 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
5071 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
5072 return -EMSGSIZE;
5073
5074 if (copy > len)
5075 copy = len;
5076 sg_set_page(&sg[elt], skb_frag_page(frag), copy,
5077 skb_frag_off(frag) + offset - start);
5078 elt++;
5079 if (!(len -= copy))
5080 return elt;
5081 offset += copy;
5082 }
5083 start = end;
5084 }
5085
5086 skb_walk_frags(skb, frag_iter) {
5087 int end, ret;
5088
5089 WARN_ON(start > offset + len);
5090
5091 end = start + frag_iter->len;
5092 if ((copy = end - offset) > 0) {
5093 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
5094 return -EMSGSIZE;
5095
5096 if (copy > len)
5097 copy = len;
5098 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
5099 copy, recursion_level + 1);
5100 if (unlikely(ret < 0))
5101 return ret;
5102 elt += ret;
5103 if ((len -= copy) == 0)
5104 return elt;
5105 offset += copy;
5106 }
5107 start = end;
5108 }
5109 BUG_ON(len);
5110 return elt;
5111 }
5112
5113 /**
5114 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
5115 * @skb: Socket buffer containing the buffers to be mapped
5116 * @sg: The scatter-gather list to map into
5117 * @offset: The offset into the buffer's contents to start mapping
5118 * @len: Length of buffer space to be mapped
5119 *
5120 * Fill the specified scatter-gather list with mappings/pointers into a
5121 * region of the buffer space attached to a socket buffer. Returns either
5122 * the number of scatterlist items used, or -EMSGSIZE if the contents
5123 * could not fit.
5124 */
skb_to_sgvec(struct sk_buff * skb,struct scatterlist * sg,int offset,int len)5125 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
5126 {
5127 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
5128
5129 if (nsg <= 0)
5130 return nsg;
5131
5132 sg_mark_end(&sg[nsg - 1]);
5133
5134 return nsg;
5135 }
5136 EXPORT_SYMBOL_GPL(skb_to_sgvec);
5137
5138 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
5139 * sglist without mark the sg which contain last skb data as the end.
5140 * So the caller can mannipulate sg list as will when padding new data after
5141 * the first call without calling sg_unmark_end to expend sg list.
5142 *
5143 * Scenario to use skb_to_sgvec_nomark:
5144 * 1. sg_init_table
5145 * 2. skb_to_sgvec_nomark(payload1)
5146 * 3. skb_to_sgvec_nomark(payload2)
5147 *
5148 * This is equivalent to:
5149 * 1. sg_init_table
5150 * 2. skb_to_sgvec(payload1)
5151 * 3. sg_unmark_end
5152 * 4. skb_to_sgvec(payload2)
5153 *
5154 * When mapping multiple payload conditionally, skb_to_sgvec_nomark
5155 * is more preferable.
5156 */
skb_to_sgvec_nomark(struct sk_buff * skb,struct scatterlist * sg,int offset,int len)5157 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
5158 int offset, int len)
5159 {
5160 return __skb_to_sgvec(skb, sg, offset, len, 0);
5161 }
5162 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
5163
5164
5165
5166 /**
5167 * skb_cow_data - Check that a socket buffer's data buffers are writable
5168 * @skb: The socket buffer to check.
5169 * @tailbits: Amount of trailing space to be added
5170 * @trailer: Returned pointer to the skb where the @tailbits space begins
5171 *
5172 * Make sure that the data buffers attached to a socket buffer are
5173 * writable. If they are not, private copies are made of the data buffers
5174 * and the socket buffer is set to use these instead.
5175 *
5176 * If @tailbits is given, make sure that there is space to write @tailbits
5177 * bytes of data beyond current end of socket buffer. @trailer will be
5178 * set to point to the skb in which this space begins.
5179 *
5180 * The number of scatterlist elements required to completely map the
5181 * COW'd and extended socket buffer will be returned.
5182 */
skb_cow_data(struct sk_buff * skb,int tailbits,struct sk_buff ** trailer)5183 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
5184 {
5185 int copyflag;
5186 int elt;
5187 struct sk_buff *skb1, **skb_p;
5188
5189 /* If skb is cloned or its head is paged, reallocate
5190 * head pulling out all the pages (pages are considered not writable
5191 * at the moment even if they are anonymous).
5192 */
5193 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
5194 !__pskb_pull_tail(skb, __skb_pagelen(skb)))
5195 return -ENOMEM;
5196
5197 /* Easy case. Most of packets will go this way. */
5198 if (!skb_has_frag_list(skb)) {
5199 /* A little of trouble, not enough of space for trailer.
5200 * This should not happen, when stack is tuned to generate
5201 * good frames. OK, on miss we reallocate and reserve even more
5202 * space, 128 bytes is fair. */
5203
5204 if (skb_tailroom(skb) < tailbits &&
5205 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
5206 return -ENOMEM;
5207
5208 /* Voila! */
5209 *trailer = skb;
5210 return 1;
5211 }
5212
5213 /* Misery. We are in troubles, going to mincer fragments... */
5214
5215 elt = 1;
5216 skb_p = &skb_shinfo(skb)->frag_list;
5217 copyflag = 0;
5218
5219 while ((skb1 = *skb_p) != NULL) {
5220 int ntail = 0;
5221
5222 /* The fragment is partially pulled by someone,
5223 * this can happen on input. Copy it and everything
5224 * after it. */
5225
5226 if (skb_shared(skb1))
5227 copyflag = 1;
5228
5229 /* If the skb is the last, worry about trailer. */
5230
5231 if (skb1->next == NULL && tailbits) {
5232 if (skb_shinfo(skb1)->nr_frags ||
5233 skb_has_frag_list(skb1) ||
5234 skb_tailroom(skb1) < tailbits)
5235 ntail = tailbits + 128;
5236 }
5237
5238 if (copyflag ||
5239 skb_cloned(skb1) ||
5240 ntail ||
5241 skb_shinfo(skb1)->nr_frags ||
5242 skb_has_frag_list(skb1)) {
5243 struct sk_buff *skb2;
5244
5245 /* Fuck, we are miserable poor guys... */
5246 if (ntail == 0)
5247 skb2 = skb_copy(skb1, GFP_ATOMIC);
5248 else
5249 skb2 = skb_copy_expand(skb1,
5250 skb_headroom(skb1),
5251 ntail,
5252 GFP_ATOMIC);
5253 if (unlikely(skb2 == NULL))
5254 return -ENOMEM;
5255
5256 if (skb1->sk)
5257 skb_set_owner_w(skb2, skb1->sk);
5258
5259 /* Looking around. Are we still alive?
5260 * OK, link new skb, drop old one */
5261
5262 skb2->next = skb1->next;
5263 *skb_p = skb2;
5264 kfree_skb(skb1);
5265 skb1 = skb2;
5266 }
5267 elt++;
5268 *trailer = skb1;
5269 skb_p = &skb1->next;
5270 }
5271
5272 return elt;
5273 }
5274 EXPORT_SYMBOL_GPL(skb_cow_data);
5275
sock_rmem_free(struct sk_buff * skb)5276 static void sock_rmem_free(struct sk_buff *skb)
5277 {
5278 struct sock *sk = skb->sk;
5279
5280 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
5281 }
5282
skb_set_err_queue(struct sk_buff * skb)5283 static void skb_set_err_queue(struct sk_buff *skb)
5284 {
5285 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
5286 * So, it is safe to (mis)use it to mark skbs on the error queue.
5287 */
5288 skb->pkt_type = PACKET_OUTGOING;
5289 BUILD_BUG_ON(PACKET_OUTGOING == 0);
5290 }
5291
5292 /*
5293 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
5294 */
sock_queue_err_skb(struct sock * sk,struct sk_buff * skb)5295 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
5296 {
5297 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
5298 (unsigned int)READ_ONCE(sk->sk_rcvbuf))
5299 return -ENOMEM;
5300
5301 skb_orphan(skb);
5302 skb->sk = sk;
5303 skb->destructor = sock_rmem_free;
5304 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
5305 skb_set_err_queue(skb);
5306
5307 /* before exiting rcu section, make sure dst is refcounted */
5308 skb_dst_force(skb);
5309
5310 skb_queue_tail(&sk->sk_error_queue, skb);
5311 if (!sock_flag(sk, SOCK_DEAD))
5312 sk_error_report(sk);
5313 return 0;
5314 }
5315 EXPORT_SYMBOL(sock_queue_err_skb);
5316
is_icmp_err_skb(const struct sk_buff * skb)5317 static bool is_icmp_err_skb(const struct sk_buff *skb)
5318 {
5319 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
5320 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
5321 }
5322
sock_dequeue_err_skb(struct sock * sk)5323 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
5324 {
5325 struct sk_buff_head *q = &sk->sk_error_queue;
5326 struct sk_buff *skb, *skb_next = NULL;
5327 bool icmp_next = false;
5328 unsigned long flags;
5329
5330 if (skb_queue_empty_lockless(q))
5331 return NULL;
5332
5333 spin_lock_irqsave(&q->lock, flags);
5334 skb = __skb_dequeue(q);
5335 if (skb && (skb_next = skb_peek(q))) {
5336 icmp_next = is_icmp_err_skb(skb_next);
5337 if (icmp_next)
5338 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
5339 }
5340 spin_unlock_irqrestore(&q->lock, flags);
5341
5342 if (is_icmp_err_skb(skb) && !icmp_next)
5343 sk->sk_err = 0;
5344
5345 if (skb_next)
5346 sk_error_report(sk);
5347
5348 return skb;
5349 }
5350 EXPORT_SYMBOL(sock_dequeue_err_skb);
5351
5352 /**
5353 * skb_clone_sk - create clone of skb, and take reference to socket
5354 * @skb: the skb to clone
5355 *
5356 * This function creates a clone of a buffer that holds a reference on
5357 * sk_refcnt. Buffers created via this function are meant to be
5358 * returned using sock_queue_err_skb, or free via kfree_skb.
5359 *
5360 * When passing buffers allocated with this function to sock_queue_err_skb
5361 * it is necessary to wrap the call with sock_hold/sock_put in order to
5362 * prevent the socket from being released prior to being enqueued on
5363 * the sk_error_queue.
5364 */
skb_clone_sk(struct sk_buff * skb)5365 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
5366 {
5367 struct sock *sk = skb->sk;
5368 struct sk_buff *clone;
5369
5370 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
5371 return NULL;
5372
5373 clone = skb_clone(skb, GFP_ATOMIC);
5374 if (!clone) {
5375 sock_put(sk);
5376 return NULL;
5377 }
5378
5379 clone->sk = sk;
5380 clone->destructor = sock_efree;
5381
5382 return clone;
5383 }
5384 EXPORT_SYMBOL(skb_clone_sk);
5385
__skb_complete_tx_timestamp(struct sk_buff * skb,struct sock * sk,int tstype,bool opt_stats)5386 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
5387 struct sock *sk,
5388 int tstype,
5389 bool opt_stats)
5390 {
5391 struct sock_exterr_skb *serr;
5392 int err;
5393
5394 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
5395
5396 serr = SKB_EXT_ERR(skb);
5397 memset(serr, 0, sizeof(*serr));
5398 serr->ee.ee_errno = ENOMSG;
5399 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
5400 serr->ee.ee_info = tstype;
5401 serr->opt_stats = opt_stats;
5402 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
5403 if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_OPT_ID) {
5404 serr->ee.ee_data = skb_shinfo(skb)->tskey;
5405 if (sk_is_tcp(sk))
5406 serr->ee.ee_data -= atomic_read(&sk->sk_tskey);
5407 }
5408
5409 err = sock_queue_err_skb(sk, skb);
5410
5411 if (err)
5412 kfree_skb(skb);
5413 }
5414
skb_may_tx_timestamp(struct sock * sk,bool tsonly)5415 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
5416 {
5417 bool ret;
5418
5419 if (likely(tsonly || READ_ONCE(sock_net(sk)->core.sysctl_tstamp_allow_data)))
5420 return true;
5421
5422 read_lock_bh(&sk->sk_callback_lock);
5423 ret = sk->sk_socket && sk->sk_socket->file &&
5424 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
5425 read_unlock_bh(&sk->sk_callback_lock);
5426 return ret;
5427 }
5428
skb_complete_tx_timestamp(struct sk_buff * skb,struct skb_shared_hwtstamps * hwtstamps)5429 void skb_complete_tx_timestamp(struct sk_buff *skb,
5430 struct skb_shared_hwtstamps *hwtstamps)
5431 {
5432 struct sock *sk = skb->sk;
5433
5434 if (!skb_may_tx_timestamp(sk, false))
5435 goto err;
5436
5437 /* Take a reference to prevent skb_orphan() from freeing the socket,
5438 * but only if the socket refcount is not zero.
5439 */
5440 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5441 *skb_hwtstamps(skb) = *hwtstamps;
5442 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
5443 sock_put(sk);
5444 return;
5445 }
5446
5447 err:
5448 kfree_skb(skb);
5449 }
5450 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
5451
__skb_tstamp_tx(struct sk_buff * orig_skb,const struct sk_buff * ack_skb,struct skb_shared_hwtstamps * hwtstamps,struct sock * sk,int tstype)5452 void __skb_tstamp_tx(struct sk_buff *orig_skb,
5453 const struct sk_buff *ack_skb,
5454 struct skb_shared_hwtstamps *hwtstamps,
5455 struct sock *sk, int tstype)
5456 {
5457 struct sk_buff *skb;
5458 bool tsonly, opt_stats = false;
5459 u32 tsflags;
5460
5461 if (!sk)
5462 return;
5463
5464 tsflags = READ_ONCE(sk->sk_tsflags);
5465 if (!hwtstamps && !(tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
5466 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
5467 return;
5468
5469 tsonly = tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
5470 if (!skb_may_tx_timestamp(sk, tsonly))
5471 return;
5472
5473 if (tsonly) {
5474 #ifdef CONFIG_INET
5475 if ((tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
5476 sk_is_tcp(sk)) {
5477 skb = tcp_get_timestamping_opt_stats(sk, orig_skb,
5478 ack_skb);
5479 opt_stats = true;
5480 } else
5481 #endif
5482 skb = alloc_skb(0, GFP_ATOMIC);
5483 } else {
5484 skb = skb_clone(orig_skb, GFP_ATOMIC);
5485
5486 if (skb_orphan_frags_rx(skb, GFP_ATOMIC)) {
5487 kfree_skb(skb);
5488 return;
5489 }
5490 }
5491 if (!skb)
5492 return;
5493
5494 if (tsonly) {
5495 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
5496 SKBTX_ANY_TSTAMP;
5497 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
5498 }
5499
5500 if (hwtstamps)
5501 *skb_hwtstamps(skb) = *hwtstamps;
5502 else
5503 __net_timestamp(skb);
5504
5505 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
5506 }
5507 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
5508
skb_tstamp_tx(struct sk_buff * orig_skb,struct skb_shared_hwtstamps * hwtstamps)5509 void skb_tstamp_tx(struct sk_buff *orig_skb,
5510 struct skb_shared_hwtstamps *hwtstamps)
5511 {
5512 return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk,
5513 SCM_TSTAMP_SND);
5514 }
5515 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
5516
5517 #ifdef CONFIG_WIRELESS
skb_complete_wifi_ack(struct sk_buff * skb,bool acked)5518 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
5519 {
5520 struct sock *sk = skb->sk;
5521 struct sock_exterr_skb *serr;
5522 int err = 1;
5523
5524 skb->wifi_acked_valid = 1;
5525 skb->wifi_acked = acked;
5526
5527 serr = SKB_EXT_ERR(skb);
5528 memset(serr, 0, sizeof(*serr));
5529 serr->ee.ee_errno = ENOMSG;
5530 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
5531
5532 /* Take a reference to prevent skb_orphan() from freeing the socket,
5533 * but only if the socket refcount is not zero.
5534 */
5535 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5536 err = sock_queue_err_skb(sk, skb);
5537 sock_put(sk);
5538 }
5539 if (err)
5540 kfree_skb(skb);
5541 }
5542 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
5543 #endif /* CONFIG_WIRELESS */
5544
5545 /**
5546 * skb_partial_csum_set - set up and verify partial csum values for packet
5547 * @skb: the skb to set
5548 * @start: the number of bytes after skb->data to start checksumming.
5549 * @off: the offset from start to place the checksum.
5550 *
5551 * For untrusted partially-checksummed packets, we need to make sure the values
5552 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
5553 *
5554 * This function checks and sets those values and skb->ip_summed: if this
5555 * returns false you should drop the packet.
5556 */
skb_partial_csum_set(struct sk_buff * skb,u16 start,u16 off)5557 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
5558 {
5559 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
5560 u32 csum_start = skb_headroom(skb) + (u32)start;
5561
5562 if (unlikely(csum_start >= U16_MAX || csum_end > skb_headlen(skb))) {
5563 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
5564 start, off, skb_headroom(skb), skb_headlen(skb));
5565 return false;
5566 }
5567 skb->ip_summed = CHECKSUM_PARTIAL;
5568 skb->csum_start = csum_start;
5569 skb->csum_offset = off;
5570 skb->transport_header = csum_start;
5571 return true;
5572 }
5573 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
5574
skb_maybe_pull_tail(struct sk_buff * skb,unsigned int len,unsigned int max)5575 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
5576 unsigned int max)
5577 {
5578 if (skb_headlen(skb) >= len)
5579 return 0;
5580
5581 /* If we need to pullup then pullup to the max, so we
5582 * won't need to do it again.
5583 */
5584 if (max > skb->len)
5585 max = skb->len;
5586
5587 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
5588 return -ENOMEM;
5589
5590 if (skb_headlen(skb) < len)
5591 return -EPROTO;
5592
5593 return 0;
5594 }
5595
5596 #define MAX_TCP_HDR_LEN (15 * 4)
5597
skb_checksum_setup_ip(struct sk_buff * skb,typeof(IPPROTO_IP) proto,unsigned int off)5598 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
5599 typeof(IPPROTO_IP) proto,
5600 unsigned int off)
5601 {
5602 int err;
5603
5604 switch (proto) {
5605 case IPPROTO_TCP:
5606 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
5607 off + MAX_TCP_HDR_LEN);
5608 if (!err && !skb_partial_csum_set(skb, off,
5609 offsetof(struct tcphdr,
5610 check)))
5611 err = -EPROTO;
5612 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
5613
5614 case IPPROTO_UDP:
5615 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
5616 off + sizeof(struct udphdr));
5617 if (!err && !skb_partial_csum_set(skb, off,
5618 offsetof(struct udphdr,
5619 check)))
5620 err = -EPROTO;
5621 return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
5622 }
5623
5624 return ERR_PTR(-EPROTO);
5625 }
5626
5627 /* This value should be large enough to cover a tagged ethernet header plus
5628 * maximally sized IP and TCP or UDP headers.
5629 */
5630 #define MAX_IP_HDR_LEN 128
5631
skb_checksum_setup_ipv4(struct sk_buff * skb,bool recalculate)5632 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
5633 {
5634 unsigned int off;
5635 bool fragment;
5636 __sum16 *csum;
5637 int err;
5638
5639 fragment = false;
5640
5641 err = skb_maybe_pull_tail(skb,
5642 sizeof(struct iphdr),
5643 MAX_IP_HDR_LEN);
5644 if (err < 0)
5645 goto out;
5646
5647 if (ip_is_fragment(ip_hdr(skb)))
5648 fragment = true;
5649
5650 off = ip_hdrlen(skb);
5651
5652 err = -EPROTO;
5653
5654 if (fragment)
5655 goto out;
5656
5657 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
5658 if (IS_ERR(csum))
5659 return PTR_ERR(csum);
5660
5661 if (recalculate)
5662 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
5663 ip_hdr(skb)->daddr,
5664 skb->len - off,
5665 ip_hdr(skb)->protocol, 0);
5666 err = 0;
5667
5668 out:
5669 return err;
5670 }
5671
5672 /* This value should be large enough to cover a tagged ethernet header plus
5673 * an IPv6 header, all options, and a maximal TCP or UDP header.
5674 */
5675 #define MAX_IPV6_HDR_LEN 256
5676
5677 #define OPT_HDR(type, skb, off) \
5678 (type *)(skb_network_header(skb) + (off))
5679
skb_checksum_setup_ipv6(struct sk_buff * skb,bool recalculate)5680 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
5681 {
5682 int err;
5683 u8 nexthdr;
5684 unsigned int off;
5685 unsigned int len;
5686 bool fragment;
5687 bool done;
5688 __sum16 *csum;
5689
5690 fragment = false;
5691 done = false;
5692
5693 off = sizeof(struct ipv6hdr);
5694
5695 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
5696 if (err < 0)
5697 goto out;
5698
5699 nexthdr = ipv6_hdr(skb)->nexthdr;
5700
5701 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
5702 while (off <= len && !done) {
5703 switch (nexthdr) {
5704 case IPPROTO_DSTOPTS:
5705 case IPPROTO_HOPOPTS:
5706 case IPPROTO_ROUTING: {
5707 struct ipv6_opt_hdr *hp;
5708
5709 err = skb_maybe_pull_tail(skb,
5710 off +
5711 sizeof(struct ipv6_opt_hdr),
5712 MAX_IPV6_HDR_LEN);
5713 if (err < 0)
5714 goto out;
5715
5716 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5717 nexthdr = hp->nexthdr;
5718 off += ipv6_optlen(hp);
5719 break;
5720 }
5721 case IPPROTO_AH: {
5722 struct ip_auth_hdr *hp;
5723
5724 err = skb_maybe_pull_tail(skb,
5725 off +
5726 sizeof(struct ip_auth_hdr),
5727 MAX_IPV6_HDR_LEN);
5728 if (err < 0)
5729 goto out;
5730
5731 hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5732 nexthdr = hp->nexthdr;
5733 off += ipv6_authlen(hp);
5734 break;
5735 }
5736 case IPPROTO_FRAGMENT: {
5737 struct frag_hdr *hp;
5738
5739 err = skb_maybe_pull_tail(skb,
5740 off +
5741 sizeof(struct frag_hdr),
5742 MAX_IPV6_HDR_LEN);
5743 if (err < 0)
5744 goto out;
5745
5746 hp = OPT_HDR(struct frag_hdr, skb, off);
5747
5748 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5749 fragment = true;
5750
5751 nexthdr = hp->nexthdr;
5752 off += sizeof(struct frag_hdr);
5753 break;
5754 }
5755 default:
5756 done = true;
5757 break;
5758 }
5759 }
5760
5761 err = -EPROTO;
5762
5763 if (!done || fragment)
5764 goto out;
5765
5766 csum = skb_checksum_setup_ip(skb, nexthdr, off);
5767 if (IS_ERR(csum))
5768 return PTR_ERR(csum);
5769
5770 if (recalculate)
5771 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5772 &ipv6_hdr(skb)->daddr,
5773 skb->len - off, nexthdr, 0);
5774 err = 0;
5775
5776 out:
5777 return err;
5778 }
5779
5780 /**
5781 * skb_checksum_setup - set up partial checksum offset
5782 * @skb: the skb to set up
5783 * @recalculate: if true the pseudo-header checksum will be recalculated
5784 */
skb_checksum_setup(struct sk_buff * skb,bool recalculate)5785 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5786 {
5787 int err;
5788
5789 switch (skb->protocol) {
5790 case htons(ETH_P_IP):
5791 err = skb_checksum_setup_ipv4(skb, recalculate);
5792 break;
5793
5794 case htons(ETH_P_IPV6):
5795 err = skb_checksum_setup_ipv6(skb, recalculate);
5796 break;
5797
5798 default:
5799 err = -EPROTO;
5800 break;
5801 }
5802
5803 return err;
5804 }
5805 EXPORT_SYMBOL(skb_checksum_setup);
5806
5807 /**
5808 * skb_checksum_maybe_trim - maybe trims the given skb
5809 * @skb: the skb to check
5810 * @transport_len: the data length beyond the network header
5811 *
5812 * Checks whether the given skb has data beyond the given transport length.
5813 * If so, returns a cloned skb trimmed to this transport length.
5814 * Otherwise returns the provided skb. Returns NULL in error cases
5815 * (e.g. transport_len exceeds skb length or out-of-memory).
5816 *
5817 * Caller needs to set the skb transport header and free any returned skb if it
5818 * differs from the provided skb.
5819 */
skb_checksum_maybe_trim(struct sk_buff * skb,unsigned int transport_len)5820 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5821 unsigned int transport_len)
5822 {
5823 struct sk_buff *skb_chk;
5824 unsigned int len = skb_transport_offset(skb) + transport_len;
5825 int ret;
5826
5827 if (skb->len < len)
5828 return NULL;
5829 else if (skb->len == len)
5830 return skb;
5831
5832 skb_chk = skb_clone(skb, GFP_ATOMIC);
5833 if (!skb_chk)
5834 return NULL;
5835
5836 ret = pskb_trim_rcsum(skb_chk, len);
5837 if (ret) {
5838 kfree_skb(skb_chk);
5839 return NULL;
5840 }
5841
5842 return skb_chk;
5843 }
5844
5845 /**
5846 * skb_checksum_trimmed - validate checksum of an skb
5847 * @skb: the skb to check
5848 * @transport_len: the data length beyond the network header
5849 * @skb_chkf: checksum function to use
5850 *
5851 * Applies the given checksum function skb_chkf to the provided skb.
5852 * Returns a checked and maybe trimmed skb. Returns NULL on error.
5853 *
5854 * If the skb has data beyond the given transport length, then a
5855 * trimmed & cloned skb is checked and returned.
5856 *
5857 * Caller needs to set the skb transport header and free any returned skb if it
5858 * differs from the provided skb.
5859 */
skb_checksum_trimmed(struct sk_buff * skb,unsigned int transport_len,__sum16 (* skb_chkf)(struct sk_buff * skb))5860 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5861 unsigned int transport_len,
5862 __sum16(*skb_chkf)(struct sk_buff *skb))
5863 {
5864 struct sk_buff *skb_chk;
5865 unsigned int offset = skb_transport_offset(skb);
5866 __sum16 ret;
5867
5868 skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5869 if (!skb_chk)
5870 goto err;
5871
5872 if (!pskb_may_pull(skb_chk, offset))
5873 goto err;
5874
5875 skb_pull_rcsum(skb_chk, offset);
5876 ret = skb_chkf(skb_chk);
5877 skb_push_rcsum(skb_chk, offset);
5878
5879 if (ret)
5880 goto err;
5881
5882 return skb_chk;
5883
5884 err:
5885 if (skb_chk && skb_chk != skb)
5886 kfree_skb(skb_chk);
5887
5888 return NULL;
5889
5890 }
5891 EXPORT_SYMBOL(skb_checksum_trimmed);
5892
__skb_warn_lro_forwarding(const struct sk_buff * skb)5893 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5894 {
5895 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5896 skb->dev->name);
5897 }
5898 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5899
kfree_skb_partial(struct sk_buff * skb,bool head_stolen)5900 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5901 {
5902 if (head_stolen) {
5903 skb_release_head_state(skb);
5904 kmem_cache_free(net_hotdata.skbuff_cache, skb);
5905 } else {
5906 __kfree_skb(skb);
5907 }
5908 }
5909 EXPORT_SYMBOL(kfree_skb_partial);
5910
5911 /**
5912 * skb_try_coalesce - try to merge skb to prior one
5913 * @to: prior buffer
5914 * @from: buffer to add
5915 * @fragstolen: pointer to boolean
5916 * @delta_truesize: how much more was allocated than was requested
5917 */
skb_try_coalesce(struct sk_buff * to,struct sk_buff * from,bool * fragstolen,int * delta_truesize)5918 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5919 bool *fragstolen, int *delta_truesize)
5920 {
5921 struct skb_shared_info *to_shinfo, *from_shinfo;
5922 int i, delta, len = from->len;
5923
5924 *fragstolen = false;
5925
5926 if (skb_cloned(to))
5927 return false;
5928
5929 /* In general, avoid mixing page_pool and non-page_pool allocated
5930 * pages within the same SKB. In theory we could take full
5931 * references if @from is cloned and !@to->pp_recycle but its
5932 * tricky (due to potential race with the clone disappearing) and
5933 * rare, so not worth dealing with.
5934 */
5935 if (to->pp_recycle != from->pp_recycle)
5936 return false;
5937
5938 if (skb_frags_readable(from) != skb_frags_readable(to))
5939 return false;
5940
5941 if (len <= skb_tailroom(to) && skb_frags_readable(from)) {
5942 if (len)
5943 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5944 *delta_truesize = 0;
5945 return true;
5946 }
5947
5948 to_shinfo = skb_shinfo(to);
5949 from_shinfo = skb_shinfo(from);
5950 if (to_shinfo->frag_list || from_shinfo->frag_list)
5951 return false;
5952 if (skb_zcopy(to) || skb_zcopy(from))
5953 return false;
5954
5955 if (skb_headlen(from) != 0) {
5956 struct page *page;
5957 unsigned int offset;
5958
5959 if (to_shinfo->nr_frags +
5960 from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5961 return false;
5962
5963 if (skb_head_is_locked(from))
5964 return false;
5965
5966 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5967
5968 page = virt_to_head_page(from->head);
5969 offset = from->data - (unsigned char *)page_address(page);
5970
5971 skb_fill_page_desc(to, to_shinfo->nr_frags,
5972 page, offset, skb_headlen(from));
5973 *fragstolen = true;
5974 } else {
5975 if (to_shinfo->nr_frags +
5976 from_shinfo->nr_frags > MAX_SKB_FRAGS)
5977 return false;
5978
5979 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5980 }
5981
5982 WARN_ON_ONCE(delta < len);
5983
5984 memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5985 from_shinfo->frags,
5986 from_shinfo->nr_frags * sizeof(skb_frag_t));
5987 to_shinfo->nr_frags += from_shinfo->nr_frags;
5988
5989 if (!skb_cloned(from))
5990 from_shinfo->nr_frags = 0;
5991
5992 /* if the skb is not cloned this does nothing
5993 * since we set nr_frags to 0.
5994 */
5995 if (skb_pp_frag_ref(from)) {
5996 for (i = 0; i < from_shinfo->nr_frags; i++)
5997 __skb_frag_ref(&from_shinfo->frags[i]);
5998 }
5999
6000 to->truesize += delta;
6001 to->len += len;
6002 to->data_len += len;
6003
6004 *delta_truesize = delta;
6005 return true;
6006 }
6007 EXPORT_SYMBOL(skb_try_coalesce);
6008
6009 /**
6010 * skb_scrub_packet - scrub an skb
6011 *
6012 * @skb: buffer to clean
6013 * @xnet: packet is crossing netns
6014 *
6015 * skb_scrub_packet can be used after encapsulating or decapsulating a packet
6016 * into/from a tunnel. Some information have to be cleared during these
6017 * operations.
6018 * skb_scrub_packet can also be used to clean a skb before injecting it in
6019 * another namespace (@xnet == true). We have to clear all information in the
6020 * skb that could impact namespace isolation.
6021 */
skb_scrub_packet(struct sk_buff * skb,bool xnet)6022 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
6023 {
6024 skb->pkt_type = PACKET_HOST;
6025 skb->skb_iif = 0;
6026 skb->ignore_df = 0;
6027 skb_dst_drop(skb);
6028 skb_ext_reset(skb);
6029 nf_reset_ct(skb);
6030 nf_reset_trace(skb);
6031
6032 #ifdef CONFIG_NET_SWITCHDEV
6033 skb->offload_fwd_mark = 0;
6034 skb->offload_l3_fwd_mark = 0;
6035 #endif
6036 ipvs_reset(skb);
6037
6038 if (!xnet)
6039 return;
6040
6041 skb->mark = 0;
6042 skb_clear_tstamp(skb);
6043 }
6044 EXPORT_SYMBOL_GPL(skb_scrub_packet);
6045
skb_reorder_vlan_header(struct sk_buff * skb)6046 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
6047 {
6048 int mac_len, meta_len;
6049 void *meta;
6050
6051 if (skb_cow(skb, skb_headroom(skb)) < 0) {
6052 kfree_skb(skb);
6053 return NULL;
6054 }
6055
6056 mac_len = skb->data - skb_mac_header(skb);
6057 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
6058 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
6059 mac_len - VLAN_HLEN - ETH_TLEN);
6060 }
6061
6062 meta_len = skb_metadata_len(skb);
6063 if (meta_len) {
6064 meta = skb_metadata_end(skb) - meta_len;
6065 memmove(meta + VLAN_HLEN, meta, meta_len);
6066 }
6067
6068 skb->mac_header += VLAN_HLEN;
6069 return skb;
6070 }
6071
skb_vlan_untag(struct sk_buff * skb)6072 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
6073 {
6074 struct vlan_hdr *vhdr;
6075 u16 vlan_tci;
6076
6077 if (unlikely(skb_vlan_tag_present(skb))) {
6078 /* vlan_tci is already set-up so leave this for another time */
6079 return skb;
6080 }
6081
6082 skb = skb_share_check(skb, GFP_ATOMIC);
6083 if (unlikely(!skb))
6084 goto err_free;
6085 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
6086 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
6087 goto err_free;
6088
6089 vhdr = (struct vlan_hdr *)skb->data;
6090 vlan_tci = ntohs(vhdr->h_vlan_TCI);
6091 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
6092
6093 skb_pull_rcsum(skb, VLAN_HLEN);
6094 vlan_set_encap_proto(skb, vhdr);
6095
6096 skb = skb_reorder_vlan_header(skb);
6097 if (unlikely(!skb))
6098 goto err_free;
6099
6100 skb_reset_network_header(skb);
6101 if (!skb_transport_header_was_set(skb))
6102 skb_reset_transport_header(skb);
6103 skb_reset_mac_len(skb);
6104
6105 return skb;
6106
6107 err_free:
6108 kfree_skb(skb);
6109 return NULL;
6110 }
6111 EXPORT_SYMBOL(skb_vlan_untag);
6112
skb_ensure_writable(struct sk_buff * skb,unsigned int write_len)6113 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len)
6114 {
6115 if (!pskb_may_pull(skb, write_len))
6116 return -ENOMEM;
6117
6118 if (!skb_frags_readable(skb))
6119 return -EFAULT;
6120
6121 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
6122 return 0;
6123
6124 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
6125 }
6126 EXPORT_SYMBOL(skb_ensure_writable);
6127
skb_ensure_writable_head_tail(struct sk_buff * skb,struct net_device * dev)6128 int skb_ensure_writable_head_tail(struct sk_buff *skb, struct net_device *dev)
6129 {
6130 int needed_headroom = dev->needed_headroom;
6131 int needed_tailroom = dev->needed_tailroom;
6132
6133 /* For tail taggers, we need to pad short frames ourselves, to ensure
6134 * that the tail tag does not fail at its role of being at the end of
6135 * the packet, once the conduit interface pads the frame. Account for
6136 * that pad length here, and pad later.
6137 */
6138 if (unlikely(needed_tailroom && skb->len < ETH_ZLEN))
6139 needed_tailroom += ETH_ZLEN - skb->len;
6140 /* skb_headroom() returns unsigned int... */
6141 needed_headroom = max_t(int, needed_headroom - skb_headroom(skb), 0);
6142 needed_tailroom = max_t(int, needed_tailroom - skb_tailroom(skb), 0);
6143
6144 if (likely(!needed_headroom && !needed_tailroom && !skb_cloned(skb)))
6145 /* No reallocation needed, yay! */
6146 return 0;
6147
6148 return pskb_expand_head(skb, needed_headroom, needed_tailroom,
6149 GFP_ATOMIC);
6150 }
6151 EXPORT_SYMBOL(skb_ensure_writable_head_tail);
6152
6153 /* remove VLAN header from packet and update csum accordingly.
6154 * expects a non skb_vlan_tag_present skb with a vlan tag payload
6155 */
__skb_vlan_pop(struct sk_buff * skb,u16 * vlan_tci)6156 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
6157 {
6158 int offset = skb->data - skb_mac_header(skb);
6159 int err;
6160
6161 if (WARN_ONCE(offset,
6162 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
6163 offset)) {
6164 return -EINVAL;
6165 }
6166
6167 err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
6168 if (unlikely(err))
6169 return err;
6170
6171 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
6172
6173 vlan_remove_tag(skb, vlan_tci);
6174
6175 skb->mac_header += VLAN_HLEN;
6176
6177 if (skb_network_offset(skb) < ETH_HLEN)
6178 skb_set_network_header(skb, ETH_HLEN);
6179
6180 skb_reset_mac_len(skb);
6181
6182 return err;
6183 }
6184 EXPORT_SYMBOL(__skb_vlan_pop);
6185
6186 /* Pop a vlan tag either from hwaccel or from payload.
6187 * Expects skb->data at mac header.
6188 */
skb_vlan_pop(struct sk_buff * skb)6189 int skb_vlan_pop(struct sk_buff *skb)
6190 {
6191 u16 vlan_tci;
6192 __be16 vlan_proto;
6193 int err;
6194
6195 if (likely(skb_vlan_tag_present(skb))) {
6196 __vlan_hwaccel_clear_tag(skb);
6197 } else {
6198 if (unlikely(!eth_type_vlan(skb->protocol)))
6199 return 0;
6200
6201 err = __skb_vlan_pop(skb, &vlan_tci);
6202 if (err)
6203 return err;
6204 }
6205 /* move next vlan tag to hw accel tag */
6206 if (likely(!eth_type_vlan(skb->protocol)))
6207 return 0;
6208
6209 vlan_proto = skb->protocol;
6210 err = __skb_vlan_pop(skb, &vlan_tci);
6211 if (unlikely(err))
6212 return err;
6213
6214 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
6215 return 0;
6216 }
6217 EXPORT_SYMBOL(skb_vlan_pop);
6218
6219 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
6220 * Expects skb->data at mac header.
6221 */
skb_vlan_push(struct sk_buff * skb,__be16 vlan_proto,u16 vlan_tci)6222 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
6223 {
6224 if (skb_vlan_tag_present(skb)) {
6225 int offset = skb->data - skb_mac_header(skb);
6226 int err;
6227
6228 if (WARN_ONCE(offset,
6229 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
6230 offset)) {
6231 return -EINVAL;
6232 }
6233
6234 err = __vlan_insert_tag(skb, skb->vlan_proto,
6235 skb_vlan_tag_get(skb));
6236 if (err)
6237 return err;
6238
6239 skb->protocol = skb->vlan_proto;
6240 skb->network_header -= VLAN_HLEN;
6241
6242 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
6243 }
6244 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
6245 return 0;
6246 }
6247 EXPORT_SYMBOL(skb_vlan_push);
6248
6249 /**
6250 * skb_eth_pop() - Drop the Ethernet header at the head of a packet
6251 *
6252 * @skb: Socket buffer to modify
6253 *
6254 * Drop the Ethernet header of @skb.
6255 *
6256 * Expects that skb->data points to the mac header and that no VLAN tags are
6257 * present.
6258 *
6259 * Returns 0 on success, -errno otherwise.
6260 */
skb_eth_pop(struct sk_buff * skb)6261 int skb_eth_pop(struct sk_buff *skb)
6262 {
6263 if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
6264 skb_network_offset(skb) < ETH_HLEN)
6265 return -EPROTO;
6266
6267 skb_pull_rcsum(skb, ETH_HLEN);
6268 skb_reset_mac_header(skb);
6269 skb_reset_mac_len(skb);
6270
6271 return 0;
6272 }
6273 EXPORT_SYMBOL(skb_eth_pop);
6274
6275 /**
6276 * skb_eth_push() - Add a new Ethernet header at the head of a packet
6277 *
6278 * @skb: Socket buffer to modify
6279 * @dst: Destination MAC address of the new header
6280 * @src: Source MAC address of the new header
6281 *
6282 * Prepend @skb with a new Ethernet header.
6283 *
6284 * Expects that skb->data points to the mac header, which must be empty.
6285 *
6286 * Returns 0 on success, -errno otherwise.
6287 */
skb_eth_push(struct sk_buff * skb,const unsigned char * dst,const unsigned char * src)6288 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
6289 const unsigned char *src)
6290 {
6291 struct ethhdr *eth;
6292 int err;
6293
6294 if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
6295 return -EPROTO;
6296
6297 err = skb_cow_head(skb, sizeof(*eth));
6298 if (err < 0)
6299 return err;
6300
6301 skb_push(skb, sizeof(*eth));
6302 skb_reset_mac_header(skb);
6303 skb_reset_mac_len(skb);
6304
6305 eth = eth_hdr(skb);
6306 ether_addr_copy(eth->h_dest, dst);
6307 ether_addr_copy(eth->h_source, src);
6308 eth->h_proto = skb->protocol;
6309
6310 skb_postpush_rcsum(skb, eth, sizeof(*eth));
6311
6312 return 0;
6313 }
6314 EXPORT_SYMBOL(skb_eth_push);
6315
6316 /* Update the ethertype of hdr and the skb csum value if required. */
skb_mod_eth_type(struct sk_buff * skb,struct ethhdr * hdr,__be16 ethertype)6317 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
6318 __be16 ethertype)
6319 {
6320 if (skb->ip_summed == CHECKSUM_COMPLETE) {
6321 __be16 diff[] = { ~hdr->h_proto, ethertype };
6322
6323 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6324 }
6325
6326 hdr->h_proto = ethertype;
6327 }
6328
6329 /**
6330 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
6331 * the packet
6332 *
6333 * @skb: buffer
6334 * @mpls_lse: MPLS label stack entry to push
6335 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
6336 * @mac_len: length of the MAC header
6337 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
6338 * ethernet
6339 *
6340 * Expects skb->data at mac header.
6341 *
6342 * Returns 0 on success, -errno otherwise.
6343 */
skb_mpls_push(struct sk_buff * skb,__be32 mpls_lse,__be16 mpls_proto,int mac_len,bool ethernet)6344 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
6345 int mac_len, bool ethernet)
6346 {
6347 struct mpls_shim_hdr *lse;
6348 int err;
6349
6350 if (unlikely(!eth_p_mpls(mpls_proto)))
6351 return -EINVAL;
6352
6353 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
6354 if (skb->encapsulation)
6355 return -EINVAL;
6356
6357 err = skb_cow_head(skb, MPLS_HLEN);
6358 if (unlikely(err))
6359 return err;
6360
6361 if (!skb->inner_protocol) {
6362 skb_set_inner_network_header(skb, skb_network_offset(skb));
6363 skb_set_inner_protocol(skb, skb->protocol);
6364 }
6365
6366 skb_push(skb, MPLS_HLEN);
6367 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
6368 mac_len);
6369 skb_reset_mac_header(skb);
6370 skb_set_network_header(skb, mac_len);
6371 skb_reset_mac_len(skb);
6372
6373 lse = mpls_hdr(skb);
6374 lse->label_stack_entry = mpls_lse;
6375 skb_postpush_rcsum(skb, lse, MPLS_HLEN);
6376
6377 if (ethernet && mac_len >= ETH_HLEN)
6378 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
6379 skb->protocol = mpls_proto;
6380
6381 return 0;
6382 }
6383 EXPORT_SYMBOL_GPL(skb_mpls_push);
6384
6385 /**
6386 * skb_mpls_pop() - pop the outermost MPLS header
6387 *
6388 * @skb: buffer
6389 * @next_proto: ethertype of header after popped MPLS header
6390 * @mac_len: length of the MAC header
6391 * @ethernet: flag to indicate if the packet is ethernet
6392 *
6393 * Expects skb->data at mac header.
6394 *
6395 * Returns 0 on success, -errno otherwise.
6396 */
skb_mpls_pop(struct sk_buff * skb,__be16 next_proto,int mac_len,bool ethernet)6397 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
6398 bool ethernet)
6399 {
6400 int err;
6401
6402 if (unlikely(!eth_p_mpls(skb->protocol)))
6403 return 0;
6404
6405 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
6406 if (unlikely(err))
6407 return err;
6408
6409 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
6410 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
6411 mac_len);
6412
6413 __skb_pull(skb, MPLS_HLEN);
6414 skb_reset_mac_header(skb);
6415 skb_set_network_header(skb, mac_len);
6416
6417 if (ethernet && mac_len >= ETH_HLEN) {
6418 struct ethhdr *hdr;
6419
6420 /* use mpls_hdr() to get ethertype to account for VLANs. */
6421 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
6422 skb_mod_eth_type(skb, hdr, next_proto);
6423 }
6424 skb->protocol = next_proto;
6425
6426 return 0;
6427 }
6428 EXPORT_SYMBOL_GPL(skb_mpls_pop);
6429
6430 /**
6431 * skb_mpls_update_lse() - modify outermost MPLS header and update csum
6432 *
6433 * @skb: buffer
6434 * @mpls_lse: new MPLS label stack entry to update to
6435 *
6436 * Expects skb->data at mac header.
6437 *
6438 * Returns 0 on success, -errno otherwise.
6439 */
skb_mpls_update_lse(struct sk_buff * skb,__be32 mpls_lse)6440 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
6441 {
6442 int err;
6443
6444 if (unlikely(!eth_p_mpls(skb->protocol)))
6445 return -EINVAL;
6446
6447 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
6448 if (unlikely(err))
6449 return err;
6450
6451 if (skb->ip_summed == CHECKSUM_COMPLETE) {
6452 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
6453
6454 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6455 }
6456
6457 mpls_hdr(skb)->label_stack_entry = mpls_lse;
6458
6459 return 0;
6460 }
6461 EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
6462
6463 /**
6464 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
6465 *
6466 * @skb: buffer
6467 *
6468 * Expects skb->data at mac header.
6469 *
6470 * Returns 0 on success, -errno otherwise.
6471 */
skb_mpls_dec_ttl(struct sk_buff * skb)6472 int skb_mpls_dec_ttl(struct sk_buff *skb)
6473 {
6474 u32 lse;
6475 u8 ttl;
6476
6477 if (unlikely(!eth_p_mpls(skb->protocol)))
6478 return -EINVAL;
6479
6480 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
6481 return -ENOMEM;
6482
6483 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
6484 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
6485 if (!--ttl)
6486 return -EINVAL;
6487
6488 lse &= ~MPLS_LS_TTL_MASK;
6489 lse |= ttl << MPLS_LS_TTL_SHIFT;
6490
6491 return skb_mpls_update_lse(skb, cpu_to_be32(lse));
6492 }
6493 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
6494
6495 /**
6496 * alloc_skb_with_frags - allocate skb with page frags
6497 *
6498 * @header_len: size of linear part
6499 * @data_len: needed length in frags
6500 * @order: max page order desired.
6501 * @errcode: pointer to error code if any
6502 * @gfp_mask: allocation mask
6503 *
6504 * This can be used to allocate a paged skb, given a maximal order for frags.
6505 */
alloc_skb_with_frags(unsigned long header_len,unsigned long data_len,int order,int * errcode,gfp_t gfp_mask)6506 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
6507 unsigned long data_len,
6508 int order,
6509 int *errcode,
6510 gfp_t gfp_mask)
6511 {
6512 unsigned long chunk;
6513 struct sk_buff *skb;
6514 struct page *page;
6515 int nr_frags = 0;
6516
6517 *errcode = -EMSGSIZE;
6518 if (unlikely(data_len > MAX_SKB_FRAGS * (PAGE_SIZE << order)))
6519 return NULL;
6520
6521 *errcode = -ENOBUFS;
6522 skb = alloc_skb(header_len, gfp_mask);
6523 if (!skb)
6524 return NULL;
6525
6526 while (data_len) {
6527 if (nr_frags == MAX_SKB_FRAGS - 1)
6528 goto failure;
6529 while (order && PAGE_ALIGN(data_len) < (PAGE_SIZE << order))
6530 order--;
6531
6532 if (order) {
6533 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
6534 __GFP_COMP |
6535 __GFP_NOWARN,
6536 order);
6537 if (!page) {
6538 order--;
6539 continue;
6540 }
6541 } else {
6542 page = alloc_page(gfp_mask);
6543 if (!page)
6544 goto failure;
6545 }
6546 chunk = min_t(unsigned long, data_len,
6547 PAGE_SIZE << order);
6548 skb_fill_page_desc(skb, nr_frags, page, 0, chunk);
6549 nr_frags++;
6550 skb->truesize += (PAGE_SIZE << order);
6551 data_len -= chunk;
6552 }
6553 return skb;
6554
6555 failure:
6556 kfree_skb(skb);
6557 return NULL;
6558 }
6559 EXPORT_SYMBOL(alloc_skb_with_frags);
6560
6561 /* carve out the first off bytes from skb when off < headlen */
pskb_carve_inside_header(struct sk_buff * skb,const u32 off,const int headlen,gfp_t gfp_mask)6562 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
6563 const int headlen, gfp_t gfp_mask)
6564 {
6565 int i;
6566 unsigned int size = skb_end_offset(skb);
6567 int new_hlen = headlen - off;
6568 u8 *data;
6569
6570 if (skb_pfmemalloc(skb))
6571 gfp_mask |= __GFP_MEMALLOC;
6572
6573 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6574 if (!data)
6575 return -ENOMEM;
6576 size = SKB_WITH_OVERHEAD(size);
6577
6578 /* Copy real data, and all frags */
6579 skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
6580 skb->len -= off;
6581
6582 memcpy((struct skb_shared_info *)(data + size),
6583 skb_shinfo(skb),
6584 offsetof(struct skb_shared_info,
6585 frags[skb_shinfo(skb)->nr_frags]));
6586 if (skb_cloned(skb)) {
6587 /* drop the old head gracefully */
6588 if (skb_orphan_frags(skb, gfp_mask)) {
6589 skb_kfree_head(data, size);
6590 return -ENOMEM;
6591 }
6592 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
6593 skb_frag_ref(skb, i);
6594 if (skb_has_frag_list(skb))
6595 skb_clone_fraglist(skb);
6596 skb_release_data(skb, SKB_CONSUMED);
6597 } else {
6598 /* we can reuse existing recount- all we did was
6599 * relocate values
6600 */
6601 skb_free_head(skb);
6602 }
6603
6604 skb->head = data;
6605 skb->data = data;
6606 skb->head_frag = 0;
6607 skb_set_end_offset(skb, size);
6608 skb_set_tail_pointer(skb, skb_headlen(skb));
6609 skb_headers_offset_update(skb, 0);
6610 skb->cloned = 0;
6611 skb->hdr_len = 0;
6612 skb->nohdr = 0;
6613 atomic_set(&skb_shinfo(skb)->dataref, 1);
6614
6615 return 0;
6616 }
6617
6618 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6619
6620 /* carve out the first eat bytes from skb's frag_list. May recurse into
6621 * pskb_carve()
6622 */
pskb_carve_frag_list(struct sk_buff * skb,struct skb_shared_info * shinfo,int eat,gfp_t gfp_mask)6623 static int pskb_carve_frag_list(struct sk_buff *skb,
6624 struct skb_shared_info *shinfo, int eat,
6625 gfp_t gfp_mask)
6626 {
6627 struct sk_buff *list = shinfo->frag_list;
6628 struct sk_buff *clone = NULL;
6629 struct sk_buff *insp = NULL;
6630
6631 do {
6632 if (!list) {
6633 pr_err("Not enough bytes to eat. Want %d\n", eat);
6634 return -EFAULT;
6635 }
6636 if (list->len <= eat) {
6637 /* Eaten as whole. */
6638 eat -= list->len;
6639 list = list->next;
6640 insp = list;
6641 } else {
6642 /* Eaten partially. */
6643 if (skb_shared(list)) {
6644 clone = skb_clone(list, gfp_mask);
6645 if (!clone)
6646 return -ENOMEM;
6647 insp = list->next;
6648 list = clone;
6649 } else {
6650 /* This may be pulled without problems. */
6651 insp = list;
6652 }
6653 if (pskb_carve(list, eat, gfp_mask) < 0) {
6654 kfree_skb(clone);
6655 return -ENOMEM;
6656 }
6657 break;
6658 }
6659 } while (eat);
6660
6661 /* Free pulled out fragments. */
6662 while ((list = shinfo->frag_list) != insp) {
6663 shinfo->frag_list = list->next;
6664 consume_skb(list);
6665 }
6666 /* And insert new clone at head. */
6667 if (clone) {
6668 clone->next = list;
6669 shinfo->frag_list = clone;
6670 }
6671 return 0;
6672 }
6673
6674 /* carve off first len bytes from skb. Split line (off) is in the
6675 * non-linear part of skb
6676 */
pskb_carve_inside_nonlinear(struct sk_buff * skb,const u32 off,int pos,gfp_t gfp_mask)6677 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6678 int pos, gfp_t gfp_mask)
6679 {
6680 int i, k = 0;
6681 unsigned int size = skb_end_offset(skb);
6682 u8 *data;
6683 const int nfrags = skb_shinfo(skb)->nr_frags;
6684 struct skb_shared_info *shinfo;
6685
6686 if (skb_pfmemalloc(skb))
6687 gfp_mask |= __GFP_MEMALLOC;
6688
6689 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6690 if (!data)
6691 return -ENOMEM;
6692 size = SKB_WITH_OVERHEAD(size);
6693
6694 memcpy((struct skb_shared_info *)(data + size),
6695 skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6696 if (skb_orphan_frags(skb, gfp_mask)) {
6697 skb_kfree_head(data, size);
6698 return -ENOMEM;
6699 }
6700 shinfo = (struct skb_shared_info *)(data + size);
6701 for (i = 0; i < nfrags; i++) {
6702 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6703
6704 if (pos + fsize > off) {
6705 shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6706
6707 if (pos < off) {
6708 /* Split frag.
6709 * We have two variants in this case:
6710 * 1. Move all the frag to the second
6711 * part, if it is possible. F.e.
6712 * this approach is mandatory for TUX,
6713 * where splitting is expensive.
6714 * 2. Split is accurately. We make this.
6715 */
6716 skb_frag_off_add(&shinfo->frags[0], off - pos);
6717 skb_frag_size_sub(&shinfo->frags[0], off - pos);
6718 }
6719 skb_frag_ref(skb, i);
6720 k++;
6721 }
6722 pos += fsize;
6723 }
6724 shinfo->nr_frags = k;
6725 if (skb_has_frag_list(skb))
6726 skb_clone_fraglist(skb);
6727
6728 /* split line is in frag list */
6729 if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6730 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6731 if (skb_has_frag_list(skb))
6732 kfree_skb_list(skb_shinfo(skb)->frag_list);
6733 skb_kfree_head(data, size);
6734 return -ENOMEM;
6735 }
6736 skb_release_data(skb, SKB_CONSUMED);
6737
6738 skb->head = data;
6739 skb->head_frag = 0;
6740 skb->data = data;
6741 skb_set_end_offset(skb, size);
6742 skb_reset_tail_pointer(skb);
6743 skb_headers_offset_update(skb, 0);
6744 skb->cloned = 0;
6745 skb->hdr_len = 0;
6746 skb->nohdr = 0;
6747 skb->len -= off;
6748 skb->data_len = skb->len;
6749 atomic_set(&skb_shinfo(skb)->dataref, 1);
6750 return 0;
6751 }
6752
6753 /* remove len bytes from the beginning of the skb */
pskb_carve(struct sk_buff * skb,const u32 len,gfp_t gfp)6754 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6755 {
6756 int headlen = skb_headlen(skb);
6757
6758 if (len < headlen)
6759 return pskb_carve_inside_header(skb, len, headlen, gfp);
6760 else
6761 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6762 }
6763
6764 /* Extract to_copy bytes starting at off from skb, and return this in
6765 * a new skb
6766 */
pskb_extract(struct sk_buff * skb,int off,int to_copy,gfp_t gfp)6767 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6768 int to_copy, gfp_t gfp)
6769 {
6770 struct sk_buff *clone = skb_clone(skb, gfp);
6771
6772 if (!clone)
6773 return NULL;
6774
6775 if (pskb_carve(clone, off, gfp) < 0 ||
6776 pskb_trim(clone, to_copy)) {
6777 kfree_skb(clone);
6778 return NULL;
6779 }
6780 return clone;
6781 }
6782 EXPORT_SYMBOL(pskb_extract);
6783
6784 /**
6785 * skb_condense - try to get rid of fragments/frag_list if possible
6786 * @skb: buffer
6787 *
6788 * Can be used to save memory before skb is added to a busy queue.
6789 * If packet has bytes in frags and enough tail room in skb->head,
6790 * pull all of them, so that we can free the frags right now and adjust
6791 * truesize.
6792 * Notes:
6793 * We do not reallocate skb->head thus can not fail.
6794 * Caller must re-evaluate skb->truesize if needed.
6795 */
skb_condense(struct sk_buff * skb)6796 void skb_condense(struct sk_buff *skb)
6797 {
6798 if (skb->data_len) {
6799 if (skb->data_len > skb->end - skb->tail ||
6800 skb_cloned(skb) || !skb_frags_readable(skb))
6801 return;
6802
6803 /* Nice, we can free page frag(s) right now */
6804 __pskb_pull_tail(skb, skb->data_len);
6805 }
6806 /* At this point, skb->truesize might be over estimated,
6807 * because skb had a fragment, and fragments do not tell
6808 * their truesize.
6809 * When we pulled its content into skb->head, fragment
6810 * was freed, but __pskb_pull_tail() could not possibly
6811 * adjust skb->truesize, not knowing the frag truesize.
6812 */
6813 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6814 }
6815 EXPORT_SYMBOL(skb_condense);
6816
6817 #ifdef CONFIG_SKB_EXTENSIONS
skb_ext_get_ptr(struct skb_ext * ext,enum skb_ext_id id)6818 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6819 {
6820 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6821 }
6822
6823 /**
6824 * __skb_ext_alloc - allocate a new skb extensions storage
6825 *
6826 * @flags: See kmalloc().
6827 *
6828 * Returns the newly allocated pointer. The pointer can later attached to a
6829 * skb via __skb_ext_set().
6830 * Note: caller must handle the skb_ext as an opaque data.
6831 */
__skb_ext_alloc(gfp_t flags)6832 struct skb_ext *__skb_ext_alloc(gfp_t flags)
6833 {
6834 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6835
6836 if (new) {
6837 memset(new->offset, 0, sizeof(new->offset));
6838 refcount_set(&new->refcnt, 1);
6839 }
6840
6841 return new;
6842 }
6843
skb_ext_maybe_cow(struct skb_ext * old,unsigned int old_active)6844 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6845 unsigned int old_active)
6846 {
6847 struct skb_ext *new;
6848
6849 if (refcount_read(&old->refcnt) == 1)
6850 return old;
6851
6852 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6853 if (!new)
6854 return NULL;
6855
6856 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6857 refcount_set(&new->refcnt, 1);
6858
6859 #ifdef CONFIG_XFRM
6860 if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6861 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6862 unsigned int i;
6863
6864 for (i = 0; i < sp->len; i++)
6865 xfrm_state_hold(sp->xvec[i]);
6866 }
6867 #endif
6868 #ifdef CONFIG_MCTP_FLOWS
6869 if (old_active & (1 << SKB_EXT_MCTP)) {
6870 struct mctp_flow *flow = skb_ext_get_ptr(old, SKB_EXT_MCTP);
6871
6872 if (flow->key)
6873 refcount_inc(&flow->key->refs);
6874 }
6875 #endif
6876 __skb_ext_put(old);
6877 return new;
6878 }
6879
6880 /**
6881 * __skb_ext_set - attach the specified extension storage to this skb
6882 * @skb: buffer
6883 * @id: extension id
6884 * @ext: extension storage previously allocated via __skb_ext_alloc()
6885 *
6886 * Existing extensions, if any, are cleared.
6887 *
6888 * Returns the pointer to the extension.
6889 */
__skb_ext_set(struct sk_buff * skb,enum skb_ext_id id,struct skb_ext * ext)6890 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6891 struct skb_ext *ext)
6892 {
6893 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6894
6895 skb_ext_put(skb);
6896 newlen = newoff + skb_ext_type_len[id];
6897 ext->chunks = newlen;
6898 ext->offset[id] = newoff;
6899 skb->extensions = ext;
6900 skb->active_extensions = 1 << id;
6901 return skb_ext_get_ptr(ext, id);
6902 }
6903
6904 /**
6905 * skb_ext_add - allocate space for given extension, COW if needed
6906 * @skb: buffer
6907 * @id: extension to allocate space for
6908 *
6909 * Allocates enough space for the given extension.
6910 * If the extension is already present, a pointer to that extension
6911 * is returned.
6912 *
6913 * If the skb was cloned, COW applies and the returned memory can be
6914 * modified without changing the extension space of clones buffers.
6915 *
6916 * Returns pointer to the extension or NULL on allocation failure.
6917 */
skb_ext_add(struct sk_buff * skb,enum skb_ext_id id)6918 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6919 {
6920 struct skb_ext *new, *old = NULL;
6921 unsigned int newlen, newoff;
6922
6923 if (skb->active_extensions) {
6924 old = skb->extensions;
6925
6926 new = skb_ext_maybe_cow(old, skb->active_extensions);
6927 if (!new)
6928 return NULL;
6929
6930 if (__skb_ext_exist(new, id))
6931 goto set_active;
6932
6933 newoff = new->chunks;
6934 } else {
6935 newoff = SKB_EXT_CHUNKSIZEOF(*new);
6936
6937 new = __skb_ext_alloc(GFP_ATOMIC);
6938 if (!new)
6939 return NULL;
6940 }
6941
6942 newlen = newoff + skb_ext_type_len[id];
6943 new->chunks = newlen;
6944 new->offset[id] = newoff;
6945 set_active:
6946 skb->slow_gro = 1;
6947 skb->extensions = new;
6948 skb->active_extensions |= 1 << id;
6949 return skb_ext_get_ptr(new, id);
6950 }
6951 EXPORT_SYMBOL(skb_ext_add);
6952
6953 #ifdef CONFIG_XFRM
skb_ext_put_sp(struct sec_path * sp)6954 static void skb_ext_put_sp(struct sec_path *sp)
6955 {
6956 unsigned int i;
6957
6958 for (i = 0; i < sp->len; i++)
6959 xfrm_state_put(sp->xvec[i]);
6960 }
6961 #endif
6962
6963 #ifdef CONFIG_MCTP_FLOWS
skb_ext_put_mctp(struct mctp_flow * flow)6964 static void skb_ext_put_mctp(struct mctp_flow *flow)
6965 {
6966 if (flow->key)
6967 mctp_key_unref(flow->key);
6968 }
6969 #endif
6970
__skb_ext_del(struct sk_buff * skb,enum skb_ext_id id)6971 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6972 {
6973 struct skb_ext *ext = skb->extensions;
6974
6975 skb->active_extensions &= ~(1 << id);
6976 if (skb->active_extensions == 0) {
6977 skb->extensions = NULL;
6978 __skb_ext_put(ext);
6979 #ifdef CONFIG_XFRM
6980 } else if (id == SKB_EXT_SEC_PATH &&
6981 refcount_read(&ext->refcnt) == 1) {
6982 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6983
6984 skb_ext_put_sp(sp);
6985 sp->len = 0;
6986 #endif
6987 }
6988 }
6989 EXPORT_SYMBOL(__skb_ext_del);
6990
__skb_ext_put(struct skb_ext * ext)6991 void __skb_ext_put(struct skb_ext *ext)
6992 {
6993 /* If this is last clone, nothing can increment
6994 * it after check passes. Avoids one atomic op.
6995 */
6996 if (refcount_read(&ext->refcnt) == 1)
6997 goto free_now;
6998
6999 if (!refcount_dec_and_test(&ext->refcnt))
7000 return;
7001 free_now:
7002 #ifdef CONFIG_XFRM
7003 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
7004 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
7005 #endif
7006 #ifdef CONFIG_MCTP_FLOWS
7007 if (__skb_ext_exist(ext, SKB_EXT_MCTP))
7008 skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP));
7009 #endif
7010
7011 kmem_cache_free(skbuff_ext_cache, ext);
7012 }
7013 EXPORT_SYMBOL(__skb_ext_put);
7014 #endif /* CONFIG_SKB_EXTENSIONS */
7015
kfree_skb_napi_cache(struct sk_buff * skb)7016 static void kfree_skb_napi_cache(struct sk_buff *skb)
7017 {
7018 /* if SKB is a clone, don't handle this case */
7019 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
7020 __kfree_skb(skb);
7021 return;
7022 }
7023
7024 local_bh_disable();
7025 __napi_kfree_skb(skb, SKB_CONSUMED);
7026 local_bh_enable();
7027 }
7028
7029 /**
7030 * skb_attempt_defer_free - queue skb for remote freeing
7031 * @skb: buffer
7032 *
7033 * Put @skb in a per-cpu list, using the cpu which
7034 * allocated the skb/pages to reduce false sharing
7035 * and memory zone spinlock contention.
7036 */
skb_attempt_defer_free(struct sk_buff * skb)7037 void skb_attempt_defer_free(struct sk_buff *skb)
7038 {
7039 int cpu = skb->alloc_cpu;
7040 struct softnet_data *sd;
7041 unsigned int defer_max;
7042 bool kick;
7043
7044 if (cpu == raw_smp_processor_id() ||
7045 WARN_ON_ONCE(cpu >= nr_cpu_ids) ||
7046 !cpu_online(cpu)) {
7047 nodefer: kfree_skb_napi_cache(skb);
7048 return;
7049 }
7050
7051 DEBUG_NET_WARN_ON_ONCE(skb_dst(skb));
7052 DEBUG_NET_WARN_ON_ONCE(skb->destructor);
7053
7054 sd = &per_cpu(softnet_data, cpu);
7055 defer_max = READ_ONCE(net_hotdata.sysctl_skb_defer_max);
7056 if (READ_ONCE(sd->defer_count) >= defer_max)
7057 goto nodefer;
7058
7059 spin_lock_bh(&sd->defer_lock);
7060 /* Send an IPI every time queue reaches half capacity. */
7061 kick = sd->defer_count == (defer_max >> 1);
7062 /* Paired with the READ_ONCE() few lines above */
7063 WRITE_ONCE(sd->defer_count, sd->defer_count + 1);
7064
7065 skb->next = sd->defer_list;
7066 /* Paired with READ_ONCE() in skb_defer_free_flush() */
7067 WRITE_ONCE(sd->defer_list, skb);
7068 spin_unlock_bh(&sd->defer_lock);
7069
7070 /* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU
7071 * if we are unlucky enough (this seems very unlikely).
7072 */
7073 if (unlikely(kick))
7074 kick_defer_list_purge(sd, cpu);
7075 }
7076
skb_splice_csum_page(struct sk_buff * skb,struct page * page,size_t offset,size_t len)7077 static void skb_splice_csum_page(struct sk_buff *skb, struct page *page,
7078 size_t offset, size_t len)
7079 {
7080 const char *kaddr;
7081 __wsum csum;
7082
7083 kaddr = kmap_local_page(page);
7084 csum = csum_partial(kaddr + offset, len, 0);
7085 kunmap_local(kaddr);
7086 skb->csum = csum_block_add(skb->csum, csum, skb->len);
7087 }
7088
7089 /**
7090 * skb_splice_from_iter - Splice (or copy) pages to skbuff
7091 * @skb: The buffer to add pages to
7092 * @iter: Iterator representing the pages to be added
7093 * @maxsize: Maximum amount of pages to be added
7094 * @gfp: Allocation flags
7095 *
7096 * This is a common helper function for supporting MSG_SPLICE_PAGES. It
7097 * extracts pages from an iterator and adds them to the socket buffer if
7098 * possible, copying them to fragments if not possible (such as if they're slab
7099 * pages).
7100 *
7101 * Returns the amount of data spliced/copied or -EMSGSIZE if there's
7102 * insufficient space in the buffer to transfer anything.
7103 */
skb_splice_from_iter(struct sk_buff * skb,struct iov_iter * iter,ssize_t maxsize,gfp_t gfp)7104 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter,
7105 ssize_t maxsize, gfp_t gfp)
7106 {
7107 size_t frag_limit = READ_ONCE(net_hotdata.sysctl_max_skb_frags);
7108 struct page *pages[8], **ppages = pages;
7109 ssize_t spliced = 0, ret = 0;
7110 unsigned int i;
7111
7112 while (iter->count > 0) {
7113 ssize_t space, nr, len;
7114 size_t off;
7115
7116 ret = -EMSGSIZE;
7117 space = frag_limit - skb_shinfo(skb)->nr_frags;
7118 if (space < 0)
7119 break;
7120
7121 /* We might be able to coalesce without increasing nr_frags */
7122 nr = clamp_t(size_t, space, 1, ARRAY_SIZE(pages));
7123
7124 len = iov_iter_extract_pages(iter, &ppages, maxsize, nr, 0, &off);
7125 if (len <= 0) {
7126 ret = len ?: -EIO;
7127 break;
7128 }
7129
7130 i = 0;
7131 do {
7132 struct page *page = pages[i++];
7133 size_t part = min_t(size_t, PAGE_SIZE - off, len);
7134
7135 ret = -EIO;
7136 if (WARN_ON_ONCE(!sendpage_ok(page)))
7137 goto out;
7138
7139 ret = skb_append_pagefrags(skb, page, off, part,
7140 frag_limit);
7141 if (ret < 0) {
7142 iov_iter_revert(iter, len);
7143 goto out;
7144 }
7145
7146 if (skb->ip_summed == CHECKSUM_NONE)
7147 skb_splice_csum_page(skb, page, off, part);
7148
7149 off = 0;
7150 spliced += part;
7151 maxsize -= part;
7152 len -= part;
7153 } while (len > 0);
7154
7155 if (maxsize <= 0)
7156 break;
7157 }
7158
7159 out:
7160 skb_len_add(skb, spliced);
7161 return spliced ?: ret;
7162 }
7163 EXPORT_SYMBOL(skb_splice_from_iter);
7164
7165 static __always_inline
memcpy_from_iter_csum(void * iter_from,size_t progress,size_t len,void * to,void * priv2)7166 size_t memcpy_from_iter_csum(void *iter_from, size_t progress,
7167 size_t len, void *to, void *priv2)
7168 {
7169 __wsum *csum = priv2;
7170 __wsum next = csum_partial_copy_nocheck(iter_from, to + progress, len);
7171
7172 *csum = csum_block_add(*csum, next, progress);
7173 return 0;
7174 }
7175
7176 static __always_inline
copy_from_user_iter_csum(void __user * iter_from,size_t progress,size_t len,void * to,void * priv2)7177 size_t copy_from_user_iter_csum(void __user *iter_from, size_t progress,
7178 size_t len, void *to, void *priv2)
7179 {
7180 __wsum next, *csum = priv2;
7181
7182 next = csum_and_copy_from_user(iter_from, to + progress, len);
7183 *csum = csum_block_add(*csum, next, progress);
7184 return next ? 0 : len;
7185 }
7186
csum_and_copy_from_iter_full(void * addr,size_t bytes,__wsum * csum,struct iov_iter * i)7187 bool csum_and_copy_from_iter_full(void *addr, size_t bytes,
7188 __wsum *csum, struct iov_iter *i)
7189 {
7190 size_t copied;
7191
7192 if (WARN_ON_ONCE(!i->data_source))
7193 return false;
7194 copied = iterate_and_advance2(i, bytes, addr, csum,
7195 copy_from_user_iter_csum,
7196 memcpy_from_iter_csum);
7197 if (likely(copied == bytes))
7198 return true;
7199 iov_iter_revert(i, copied);
7200 return false;
7201 }
7202 EXPORT_SYMBOL(csum_and_copy_from_iter_full);
7203