1 // SPDX-License-Identifier: GPL-2.0-only 2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 3 4 #include <linux/workqueue.h> 5 #include <linux/rtnetlink.h> 6 #include <linux/cache.h> 7 #include <linux/slab.h> 8 #include <linux/list.h> 9 #include <linux/delay.h> 10 #include <linux/sched.h> 11 #include <linux/idr.h> 12 #include <linux/rculist.h> 13 #include <linux/nsproxy.h> 14 #include <linux/fs.h> 15 #include <linux/proc_ns.h> 16 #include <linux/file.h> 17 #include <linux/export.h> 18 #include <linux/user_namespace.h> 19 #include <linux/net_namespace.h> 20 #include <linux/sched/task.h> 21 #include <linux/uidgid.h> 22 #include <linux/proc_fs.h> 23 #include <linux/nstree.h> 24 25 #include <net/aligned_data.h> 26 #include <net/sock.h> 27 #include <net/netlink.h> 28 #include <net/net_namespace.h> 29 #include <net/netns/generic.h> 30 31 /* 32 * Our network namespace constructor/destructor lists 33 */ 34 35 static LIST_HEAD(pernet_list); 36 static struct list_head *first_device = &pernet_list; 37 38 LIST_HEAD(net_namespace_list); 39 EXPORT_SYMBOL_GPL(net_namespace_list); 40 41 /* Protects net_namespace_list. Nests iside rtnl_lock() */ 42 DECLARE_RWSEM(net_rwsem); 43 EXPORT_SYMBOL_GPL(net_rwsem); 44 45 #ifdef CONFIG_KEYS 46 static struct key_tag init_net_key_domain = { .usage = REFCOUNT_INIT(1) }; 47 #endif 48 49 struct net init_net; 50 EXPORT_SYMBOL(init_net); 51 52 static bool init_net_initialized; 53 /* 54 * pernet_ops_rwsem: protects: pernet_list, net_generic_ids, 55 * init_net_initialized and first_device pointer. 56 * This is internal net namespace object. Please, don't use it 57 * outside. 58 */ 59 DECLARE_RWSEM(pernet_ops_rwsem); 60 61 #define MIN_PERNET_OPS_ID \ 62 ((sizeof(struct net_generic) + sizeof(void *) - 1) / sizeof(void *)) 63 64 #define INITIAL_NET_GEN_PTRS 13 /* +1 for len +2 for rcu_head */ 65 66 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS; 67 68 static struct net_generic *net_alloc_generic(void) 69 { 70 unsigned int gen_ptrs = READ_ONCE(max_gen_ptrs); 71 unsigned int generic_size; 72 struct net_generic *ng; 73 74 generic_size = offsetof(struct net_generic, ptr[gen_ptrs]); 75 76 ng = kzalloc(generic_size, GFP_KERNEL); 77 if (ng) 78 ng->s.len = gen_ptrs; 79 80 return ng; 81 } 82 83 static int net_assign_generic(struct net *net, unsigned int id, void *data) 84 { 85 struct net_generic *ng, *old_ng; 86 87 BUG_ON(id < MIN_PERNET_OPS_ID); 88 89 old_ng = rcu_dereference_protected(net->gen, 90 lockdep_is_held(&pernet_ops_rwsem)); 91 if (old_ng->s.len > id) { 92 old_ng->ptr[id] = data; 93 return 0; 94 } 95 96 ng = net_alloc_generic(); 97 if (!ng) 98 return -ENOMEM; 99 100 /* 101 * Some synchronisation notes: 102 * 103 * The net_generic explores the net->gen array inside rcu 104 * read section. Besides once set the net->gen->ptr[x] 105 * pointer never changes (see rules in netns/generic.h). 106 * 107 * That said, we simply duplicate this array and schedule 108 * the old copy for kfree after a grace period. 109 */ 110 111 memcpy(&ng->ptr[MIN_PERNET_OPS_ID], &old_ng->ptr[MIN_PERNET_OPS_ID], 112 (old_ng->s.len - MIN_PERNET_OPS_ID) * sizeof(void *)); 113 ng->ptr[id] = data; 114 115 rcu_assign_pointer(net->gen, ng); 116 kfree_rcu(old_ng, s.rcu); 117 return 0; 118 } 119 120 static int ops_init(const struct pernet_operations *ops, struct net *net) 121 { 122 struct net_generic *ng; 123 int err = -ENOMEM; 124 void *data = NULL; 125 126 if (ops->id) { 127 data = kzalloc(ops->size, GFP_KERNEL); 128 if (!data) 129 goto out; 130 131 err = net_assign_generic(net, *ops->id, data); 132 if (err) 133 goto cleanup; 134 } 135 err = 0; 136 if (ops->init) 137 err = ops->init(net); 138 if (!err) 139 return 0; 140 141 if (ops->id) { 142 ng = rcu_dereference_protected(net->gen, 143 lockdep_is_held(&pernet_ops_rwsem)); 144 ng->ptr[*ops->id] = NULL; 145 } 146 147 cleanup: 148 kfree(data); 149 150 out: 151 return err; 152 } 153 154 static void ops_pre_exit_list(const struct pernet_operations *ops, 155 struct list_head *net_exit_list) 156 { 157 struct net *net; 158 159 if (ops->pre_exit) { 160 list_for_each_entry(net, net_exit_list, exit_list) 161 ops->pre_exit(net); 162 } 163 } 164 165 static void ops_exit_rtnl_list(const struct list_head *ops_list, 166 const struct pernet_operations *ops, 167 struct list_head *net_exit_list) 168 { 169 const struct pernet_operations *saved_ops = ops; 170 LIST_HEAD(dev_kill_list); 171 struct net *net; 172 173 rtnl_lock(); 174 175 list_for_each_entry(net, net_exit_list, exit_list) { 176 __rtnl_net_lock(net); 177 178 ops = saved_ops; 179 list_for_each_entry_continue_reverse(ops, ops_list, list) { 180 if (ops->exit_rtnl) 181 ops->exit_rtnl(net, &dev_kill_list); 182 } 183 184 __rtnl_net_unlock(net); 185 } 186 187 unregister_netdevice_many(&dev_kill_list); 188 189 rtnl_unlock(); 190 } 191 192 static void ops_exit_list(const struct pernet_operations *ops, 193 struct list_head *net_exit_list) 194 { 195 if (ops->exit) { 196 struct net *net; 197 198 list_for_each_entry(net, net_exit_list, exit_list) { 199 ops->exit(net); 200 cond_resched(); 201 } 202 } 203 204 if (ops->exit_batch) 205 ops->exit_batch(net_exit_list); 206 } 207 208 static void ops_free_list(const struct pernet_operations *ops, 209 struct list_head *net_exit_list) 210 { 211 struct net *net; 212 213 if (ops->id) { 214 list_for_each_entry(net, net_exit_list, exit_list) 215 kfree(net_generic(net, *ops->id)); 216 } 217 } 218 219 static void ops_undo_list(const struct list_head *ops_list, 220 const struct pernet_operations *ops, 221 struct list_head *net_exit_list, 222 bool expedite_rcu) 223 { 224 const struct pernet_operations *saved_ops; 225 bool hold_rtnl = false; 226 227 if (!ops) 228 ops = list_entry(ops_list, typeof(*ops), list); 229 230 saved_ops = ops; 231 232 list_for_each_entry_continue_reverse(ops, ops_list, list) { 233 hold_rtnl |= !!ops->exit_rtnl; 234 ops_pre_exit_list(ops, net_exit_list); 235 } 236 237 /* Another CPU might be rcu-iterating the list, wait for it. 238 * This needs to be before calling the exit() notifiers, so the 239 * rcu_barrier() after ops_undo_list() isn't sufficient alone. 240 * Also the pre_exit() and exit() methods need this barrier. 241 */ 242 if (expedite_rcu) 243 synchronize_rcu_expedited(); 244 else 245 synchronize_rcu(); 246 247 if (hold_rtnl) 248 ops_exit_rtnl_list(ops_list, saved_ops, net_exit_list); 249 250 ops = saved_ops; 251 list_for_each_entry_continue_reverse(ops, ops_list, list) 252 ops_exit_list(ops, net_exit_list); 253 254 ops = saved_ops; 255 list_for_each_entry_continue_reverse(ops, ops_list, list) 256 ops_free_list(ops, net_exit_list); 257 } 258 259 static void ops_undo_single(struct pernet_operations *ops, 260 struct list_head *net_exit_list) 261 { 262 LIST_HEAD(ops_list); 263 264 list_add(&ops->list, &ops_list); 265 ops_undo_list(&ops_list, NULL, net_exit_list, false); 266 list_del(&ops->list); 267 } 268 269 /* should be called with nsid_lock held */ 270 static int alloc_netid(struct net *net, struct net *peer, int reqid) 271 { 272 int min = 0, max = 0; 273 274 if (reqid >= 0) { 275 min = reqid; 276 max = reqid + 1; 277 } 278 279 return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC); 280 } 281 282 /* This function is used by idr_for_each(). If net is equal to peer, the 283 * function returns the id so that idr_for_each() stops. Because we cannot 284 * returns the id 0 (idr_for_each() will not stop), we return the magic value 285 * NET_ID_ZERO (-1) for it. 286 */ 287 #define NET_ID_ZERO -1 288 static int net_eq_idr(int id, void *net, void *peer) 289 { 290 if (net_eq(net, peer)) 291 return id ? : NET_ID_ZERO; 292 return 0; 293 } 294 295 /* Must be called from RCU-critical section or with nsid_lock held */ 296 static int __peernet2id(const struct net *net, struct net *peer) 297 { 298 int id = idr_for_each(&net->netns_ids, net_eq_idr, peer); 299 300 /* Magic value for id 0. */ 301 if (id == NET_ID_ZERO) 302 return 0; 303 if (id > 0) 304 return id; 305 306 return NETNSA_NSID_NOT_ASSIGNED; 307 } 308 309 static void rtnl_net_notifyid(struct net *net, int cmd, int id, u32 portid, 310 struct nlmsghdr *nlh, gfp_t gfp); 311 /* This function returns the id of a peer netns. If no id is assigned, one will 312 * be allocated and returned. 313 */ 314 int peernet2id_alloc(struct net *net, struct net *peer, gfp_t gfp) 315 { 316 int id; 317 318 if (!check_net(net)) 319 return NETNSA_NSID_NOT_ASSIGNED; 320 321 spin_lock(&net->nsid_lock); 322 id = __peernet2id(net, peer); 323 if (id >= 0) { 324 spin_unlock(&net->nsid_lock); 325 return id; 326 } 327 328 /* When peer is obtained from RCU lists, we may race with 329 * its cleanup. Check whether it's alive, and this guarantees 330 * we never hash a peer back to net->netns_ids, after it has 331 * just been idr_remove()'d from there in cleanup_net(). 332 */ 333 if (!maybe_get_net(peer)) { 334 spin_unlock(&net->nsid_lock); 335 return NETNSA_NSID_NOT_ASSIGNED; 336 } 337 338 id = alloc_netid(net, peer, -1); 339 spin_unlock(&net->nsid_lock); 340 341 put_net(peer); 342 if (id < 0) 343 return NETNSA_NSID_NOT_ASSIGNED; 344 345 rtnl_net_notifyid(net, RTM_NEWNSID, id, 0, NULL, gfp); 346 347 return id; 348 } 349 EXPORT_SYMBOL_GPL(peernet2id_alloc); 350 351 /* This function returns, if assigned, the id of a peer netns. */ 352 int peernet2id(const struct net *net, struct net *peer) 353 { 354 int id; 355 356 rcu_read_lock(); 357 id = __peernet2id(net, peer); 358 rcu_read_unlock(); 359 360 return id; 361 } 362 EXPORT_SYMBOL(peernet2id); 363 364 /* This function returns true is the peer netns has an id assigned into the 365 * current netns. 366 */ 367 bool peernet_has_id(const struct net *net, struct net *peer) 368 { 369 return peernet2id(net, peer) >= 0; 370 } 371 372 struct net *get_net_ns_by_id(const struct net *net, int id) 373 { 374 struct net *peer; 375 376 if (id < 0) 377 return NULL; 378 379 rcu_read_lock(); 380 peer = idr_find(&net->netns_ids, id); 381 if (peer) 382 peer = maybe_get_net(peer); 383 rcu_read_unlock(); 384 385 return peer; 386 } 387 EXPORT_SYMBOL_GPL(get_net_ns_by_id); 388 389 static __net_init void preinit_net_sysctl(struct net *net) 390 { 391 net->core.sysctl_somaxconn = SOMAXCONN; 392 /* Limits per socket sk_omem_alloc usage. 393 * TCP zerocopy regular usage needs 128 KB. 394 */ 395 net->core.sysctl_optmem_max = 128 * 1024; 396 net->core.sysctl_txrehash = SOCK_TXREHASH_ENABLED; 397 net->core.sysctl_tstamp_allow_data = 1; 398 net->core.sysctl_txq_reselection = msecs_to_jiffies(1000); 399 } 400 401 /* init code that must occur even if setup_net() is not called. */ 402 static __net_init int preinit_net(struct net *net, struct user_namespace *user_ns) 403 { 404 int ret; 405 406 ret = ns_common_init(net); 407 if (ret) 408 return ret; 409 410 refcount_set(&net->passive, 1); 411 ref_tracker_dir_init(&net->refcnt_tracker, 128, "net_refcnt"); 412 ref_tracker_dir_init(&net->notrefcnt_tracker, 128, "net_notrefcnt"); 413 414 get_random_bytes(&net->hash_mix, sizeof(u32)); 415 net->dev_base_seq = 1; 416 net->user_ns = user_ns; 417 418 idr_init(&net->netns_ids); 419 spin_lock_init(&net->nsid_lock); 420 mutex_init(&net->ipv4.ra_mutex); 421 422 #ifdef CONFIG_DEBUG_NET_SMALL_RTNL 423 mutex_init(&net->rtnl_mutex); 424 lock_set_cmp_fn(&net->rtnl_mutex, rtnl_net_lock_cmp_fn, NULL); 425 #endif 426 427 INIT_LIST_HEAD(&net->ptype_all); 428 INIT_LIST_HEAD(&net->ptype_specific); 429 preinit_net_sysctl(net); 430 return 0; 431 } 432 433 /* 434 * setup_net runs the initializers for the network namespace object. 435 */ 436 static __net_init int setup_net(struct net *net) 437 { 438 /* Must be called with pernet_ops_rwsem held */ 439 const struct pernet_operations *ops; 440 LIST_HEAD(net_exit_list); 441 int error = 0; 442 443 net->net_cookie = ns_tree_gen_id(net); 444 445 list_for_each_entry(ops, &pernet_list, list) { 446 error = ops_init(ops, net); 447 if (error < 0) 448 goto out_undo; 449 } 450 down_write(&net_rwsem); 451 list_add_tail_rcu(&net->list, &net_namespace_list); 452 up_write(&net_rwsem); 453 ns_tree_add_raw(net); 454 out: 455 return error; 456 457 out_undo: 458 /* Walk through the list backwards calling the exit functions 459 * for the pernet modules whose init functions did not fail. 460 */ 461 list_add(&net->exit_list, &net_exit_list); 462 ops_undo_list(&pernet_list, ops, &net_exit_list, false); 463 rcu_barrier(); 464 goto out; 465 } 466 467 #ifdef CONFIG_NET_NS 468 static struct ucounts *inc_net_namespaces(struct user_namespace *ns) 469 { 470 return inc_ucount(ns, current_euid(), UCOUNT_NET_NAMESPACES); 471 } 472 473 static void dec_net_namespaces(struct ucounts *ucounts) 474 { 475 dec_ucount(ucounts, UCOUNT_NET_NAMESPACES); 476 } 477 478 static struct kmem_cache *net_cachep __ro_after_init; 479 static struct workqueue_struct *netns_wq; 480 481 static struct net *net_alloc(void) 482 { 483 struct net *net = NULL; 484 struct net_generic *ng; 485 486 ng = net_alloc_generic(); 487 if (!ng) 488 goto out; 489 490 net = kmem_cache_zalloc(net_cachep, GFP_KERNEL); 491 if (!net) 492 goto out_free; 493 494 #ifdef CONFIG_KEYS 495 net->key_domain = kzalloc(sizeof(struct key_tag), GFP_KERNEL); 496 if (!net->key_domain) 497 goto out_free_2; 498 refcount_set(&net->key_domain->usage, 1); 499 #endif 500 501 rcu_assign_pointer(net->gen, ng); 502 out: 503 return net; 504 505 #ifdef CONFIG_KEYS 506 out_free_2: 507 kmem_cache_free(net_cachep, net); 508 net = NULL; 509 #endif 510 out_free: 511 kfree(ng); 512 goto out; 513 } 514 515 static LLIST_HEAD(defer_free_list); 516 517 static void net_complete_free(void) 518 { 519 struct llist_node *kill_list; 520 struct net *net, *next; 521 522 /* Get the list of namespaces to free from last round. */ 523 kill_list = llist_del_all(&defer_free_list); 524 525 llist_for_each_entry_safe(net, next, kill_list, defer_free_list) 526 kmem_cache_free(net_cachep, net); 527 528 } 529 530 void net_passive_dec(struct net *net) 531 { 532 if (refcount_dec_and_test(&net->passive)) { 533 kfree(rcu_access_pointer(net->gen)); 534 535 /* There should not be any trackers left there. */ 536 ref_tracker_dir_exit(&net->notrefcnt_tracker); 537 538 /* Wait for an extra rcu_barrier() before final free. */ 539 llist_add(&net->defer_free_list, &defer_free_list); 540 } 541 } 542 543 void net_drop_ns(void *p) 544 { 545 struct net *net = (struct net *)p; 546 547 if (net) 548 net_passive_dec(net); 549 } 550 551 struct net *copy_net_ns(u64 flags, 552 struct user_namespace *user_ns, struct net *old_net) 553 { 554 struct ucounts *ucounts; 555 struct net *net; 556 int rv; 557 558 if (!(flags & CLONE_NEWNET)) 559 return get_net(old_net); 560 561 ucounts = inc_net_namespaces(user_ns); 562 if (!ucounts) 563 return ERR_PTR(-ENOSPC); 564 565 net = net_alloc(); 566 if (!net) { 567 rv = -ENOMEM; 568 goto dec_ucounts; 569 } 570 571 rv = preinit_net(net, user_ns); 572 if (rv < 0) 573 goto dec_ucounts; 574 net->ucounts = ucounts; 575 get_user_ns(user_ns); 576 577 rv = down_read_killable(&pernet_ops_rwsem); 578 if (rv < 0) 579 goto put_userns; 580 581 rv = setup_net(net); 582 583 up_read(&pernet_ops_rwsem); 584 585 if (rv < 0) { 586 put_userns: 587 ns_common_free(net); 588 #ifdef CONFIG_KEYS 589 key_remove_domain(net->key_domain); 590 #endif 591 put_user_ns(user_ns); 592 net_passive_dec(net); 593 dec_ucounts: 594 dec_net_namespaces(ucounts); 595 return ERR_PTR(rv); 596 } 597 return net; 598 } 599 600 /** 601 * net_ns_get_ownership - get sysfs ownership data for @net 602 * @net: network namespace in question (can be NULL) 603 * @uid: kernel user ID for sysfs objects 604 * @gid: kernel group ID for sysfs objects 605 * 606 * Returns the uid/gid pair of root in the user namespace associated with the 607 * given network namespace. 608 */ 609 void net_ns_get_ownership(const struct net *net, kuid_t *uid, kgid_t *gid) 610 { 611 if (net) { 612 kuid_t ns_root_uid = make_kuid(net->user_ns, 0); 613 kgid_t ns_root_gid = make_kgid(net->user_ns, 0); 614 615 if (uid_valid(ns_root_uid)) 616 *uid = ns_root_uid; 617 618 if (gid_valid(ns_root_gid)) 619 *gid = ns_root_gid; 620 } else { 621 *uid = GLOBAL_ROOT_UID; 622 *gid = GLOBAL_ROOT_GID; 623 } 624 } 625 EXPORT_SYMBOL_GPL(net_ns_get_ownership); 626 627 static void unhash_nsid(struct net *net, struct net *last) 628 { 629 struct net *tmp; 630 /* This function is only called from cleanup_net() work, 631 * and this work is the only process, that may delete 632 * a net from net_namespace_list. So, when the below 633 * is executing, the list may only grow. Thus, we do not 634 * use for_each_net_rcu() or net_rwsem. 635 */ 636 for_each_net(tmp) { 637 int id; 638 639 spin_lock(&tmp->nsid_lock); 640 id = __peernet2id(tmp, net); 641 if (id >= 0) 642 idr_remove(&tmp->netns_ids, id); 643 spin_unlock(&tmp->nsid_lock); 644 if (id >= 0) 645 rtnl_net_notifyid(tmp, RTM_DELNSID, id, 0, NULL, 646 GFP_KERNEL); 647 if (tmp == last) 648 break; 649 } 650 spin_lock(&net->nsid_lock); 651 idr_destroy(&net->netns_ids); 652 spin_unlock(&net->nsid_lock); 653 } 654 655 static LLIST_HEAD(cleanup_list); 656 657 struct task_struct *cleanup_net_task; 658 659 static void cleanup_net(struct work_struct *work) 660 { 661 struct llist_node *net_kill_list; 662 struct net *net, *tmp, *last; 663 LIST_HEAD(net_exit_list); 664 665 WRITE_ONCE(cleanup_net_task, current); 666 667 /* Atomically snapshot the list of namespaces to cleanup */ 668 net_kill_list = llist_del_all(&cleanup_list); 669 670 down_read(&pernet_ops_rwsem); 671 672 /* Don't let anyone else find us. */ 673 down_write(&net_rwsem); 674 llist_for_each_entry(net, net_kill_list, cleanup_list) { 675 ns_tree_remove(net); 676 list_del_rcu(&net->list); 677 } 678 /* Cache last net. After we unlock rtnl, no one new net 679 * added to net_namespace_list can assign nsid pointer 680 * to a net from net_kill_list (see peernet2id_alloc()). 681 * So, we skip them in unhash_nsid(). 682 * 683 * Note, that unhash_nsid() does not delete nsid links 684 * between net_kill_list's nets, as they've already 685 * deleted from net_namespace_list. But, this would be 686 * useless anyway, as netns_ids are destroyed there. 687 */ 688 last = list_last_entry(&net_namespace_list, struct net, list); 689 up_write(&net_rwsem); 690 691 llist_for_each_entry(net, net_kill_list, cleanup_list) { 692 unhash_nsid(net, last); 693 list_add_tail(&net->exit_list, &net_exit_list); 694 } 695 696 ops_undo_list(&pernet_list, NULL, &net_exit_list, true); 697 698 up_read(&pernet_ops_rwsem); 699 700 /* Ensure there are no outstanding rcu callbacks using this 701 * network namespace. 702 */ 703 rcu_barrier(); 704 705 net_complete_free(); 706 707 /* Finally it is safe to free my network namespace structure */ 708 list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) { 709 list_del_init(&net->exit_list); 710 ns_common_free(net); 711 dec_net_namespaces(net->ucounts); 712 #ifdef CONFIG_KEYS 713 key_remove_domain(net->key_domain); 714 #endif 715 put_user_ns(net->user_ns); 716 net_passive_dec(net); 717 } 718 WRITE_ONCE(cleanup_net_task, NULL); 719 } 720 721 /** 722 * net_ns_barrier - wait until concurrent net_cleanup_work is done 723 * 724 * cleanup_net runs from work queue and will first remove namespaces 725 * from the global list, then run net exit functions. 726 * 727 * Call this in module exit path to make sure that all netns 728 * ->exit ops have been invoked before the function is removed. 729 */ 730 void net_ns_barrier(void) 731 { 732 down_write(&pernet_ops_rwsem); 733 up_write(&pernet_ops_rwsem); 734 } 735 EXPORT_SYMBOL(net_ns_barrier); 736 737 static DECLARE_WORK(net_cleanup_work, cleanup_net); 738 739 void __put_net(struct net *net) 740 { 741 ref_tracker_dir_exit(&net->refcnt_tracker); 742 /* Cleanup the network namespace in process context */ 743 if (llist_add(&net->cleanup_list, &cleanup_list)) 744 queue_work(netns_wq, &net_cleanup_work); 745 } 746 EXPORT_SYMBOL_GPL(__put_net); 747 748 /** 749 * get_net_ns - increment the refcount of the network namespace 750 * @ns: common namespace (net) 751 * 752 * Returns the net's common namespace or ERR_PTR() if ref is zero. 753 */ 754 struct ns_common *get_net_ns(struct ns_common *ns) 755 { 756 struct net *net; 757 758 net = maybe_get_net(container_of(ns, struct net, ns)); 759 if (net) 760 return &net->ns; 761 return ERR_PTR(-EINVAL); 762 } 763 EXPORT_SYMBOL_GPL(get_net_ns); 764 765 struct net *get_net_ns_by_fd(int fd) 766 { 767 CLASS(fd, f)(fd); 768 769 if (fd_empty(f)) 770 return ERR_PTR(-EBADF); 771 772 if (proc_ns_file(fd_file(f))) { 773 struct ns_common *ns = get_proc_ns(file_inode(fd_file(f))); 774 if (ns->ops == &netns_operations) 775 return get_net(container_of(ns, struct net, ns)); 776 } 777 778 return ERR_PTR(-EINVAL); 779 } 780 EXPORT_SYMBOL_GPL(get_net_ns_by_fd); 781 #endif 782 783 struct net *get_net_ns_by_pid(pid_t pid) 784 { 785 struct task_struct *tsk; 786 struct net *net; 787 788 /* Lookup the network namespace */ 789 net = ERR_PTR(-ESRCH); 790 rcu_read_lock(); 791 tsk = find_task_by_vpid(pid); 792 if (tsk) { 793 struct nsproxy *nsproxy; 794 task_lock(tsk); 795 nsproxy = tsk->nsproxy; 796 if (nsproxy) 797 net = get_net(nsproxy->net_ns); 798 task_unlock(tsk); 799 } 800 rcu_read_unlock(); 801 return net; 802 } 803 EXPORT_SYMBOL_GPL(get_net_ns_by_pid); 804 805 #ifdef CONFIG_NET_NS_REFCNT_TRACKER 806 static void net_ns_net_debugfs(struct net *net) 807 { 808 ref_tracker_dir_symlink(&net->refcnt_tracker, "netns-%llx-%u-refcnt", 809 net->net_cookie, net->ns.inum); 810 ref_tracker_dir_symlink(&net->notrefcnt_tracker, "netns-%llx-%u-notrefcnt", 811 net->net_cookie, net->ns.inum); 812 } 813 814 static int __init init_net_debugfs(void) 815 { 816 ref_tracker_dir_debugfs(&init_net.refcnt_tracker); 817 ref_tracker_dir_debugfs(&init_net.notrefcnt_tracker); 818 net_ns_net_debugfs(&init_net); 819 return 0; 820 } 821 late_initcall(init_net_debugfs); 822 #else 823 static void net_ns_net_debugfs(struct net *net) 824 { 825 } 826 #endif 827 828 static __net_init int net_ns_net_init(struct net *net) 829 { 830 net_ns_net_debugfs(net); 831 return 0; 832 } 833 834 static struct pernet_operations __net_initdata net_ns_ops = { 835 .init = net_ns_net_init, 836 }; 837 838 static const struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = { 839 [NETNSA_NONE] = { .type = NLA_UNSPEC }, 840 [NETNSA_NSID] = { .type = NLA_S32 }, 841 [NETNSA_PID] = { .type = NLA_U32 }, 842 [NETNSA_FD] = { .type = NLA_U32 }, 843 [NETNSA_TARGET_NSID] = { .type = NLA_S32 }, 844 }; 845 846 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh, 847 struct netlink_ext_ack *extack) 848 { 849 struct net *net = sock_net(skb->sk); 850 struct nlattr *tb[NETNSA_MAX + 1]; 851 struct nlattr *nla; 852 struct net *peer; 853 int nsid, err; 854 855 err = nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg), tb, 856 NETNSA_MAX, rtnl_net_policy, extack); 857 if (err < 0) 858 return err; 859 if (!tb[NETNSA_NSID]) { 860 NL_SET_ERR_MSG(extack, "nsid is missing"); 861 return -EINVAL; 862 } 863 nsid = nla_get_s32(tb[NETNSA_NSID]); 864 865 if (tb[NETNSA_PID]) { 866 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID])); 867 nla = tb[NETNSA_PID]; 868 } else if (tb[NETNSA_FD]) { 869 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD])); 870 nla = tb[NETNSA_FD]; 871 } else { 872 NL_SET_ERR_MSG(extack, "Peer netns reference is missing"); 873 return -EINVAL; 874 } 875 if (IS_ERR(peer)) { 876 NL_SET_BAD_ATTR(extack, nla); 877 NL_SET_ERR_MSG(extack, "Peer netns reference is invalid"); 878 return PTR_ERR(peer); 879 } 880 881 spin_lock(&net->nsid_lock); 882 if (__peernet2id(net, peer) >= 0) { 883 spin_unlock(&net->nsid_lock); 884 err = -EEXIST; 885 NL_SET_BAD_ATTR(extack, nla); 886 NL_SET_ERR_MSG(extack, 887 "Peer netns already has a nsid assigned"); 888 goto out; 889 } 890 891 err = alloc_netid(net, peer, nsid); 892 spin_unlock(&net->nsid_lock); 893 if (err >= 0) { 894 rtnl_net_notifyid(net, RTM_NEWNSID, err, NETLINK_CB(skb).portid, 895 nlh, GFP_KERNEL); 896 err = 0; 897 } else if (err == -ENOSPC && nsid >= 0) { 898 err = -EEXIST; 899 NL_SET_BAD_ATTR(extack, tb[NETNSA_NSID]); 900 NL_SET_ERR_MSG(extack, "The specified nsid is already used"); 901 } 902 out: 903 put_net(peer); 904 return err; 905 } 906 907 static int rtnl_net_get_size(void) 908 { 909 return NLMSG_ALIGN(sizeof(struct rtgenmsg)) 910 + nla_total_size(sizeof(s32)) /* NETNSA_NSID */ 911 + nla_total_size(sizeof(s32)) /* NETNSA_CURRENT_NSID */ 912 ; 913 } 914 915 struct net_fill_args { 916 u32 portid; 917 u32 seq; 918 int flags; 919 int cmd; 920 int nsid; 921 bool add_ref; 922 int ref_nsid; 923 }; 924 925 static int rtnl_net_fill(struct sk_buff *skb, struct net_fill_args *args) 926 { 927 struct nlmsghdr *nlh; 928 struct rtgenmsg *rth; 929 930 nlh = nlmsg_put(skb, args->portid, args->seq, args->cmd, sizeof(*rth), 931 args->flags); 932 if (!nlh) 933 return -EMSGSIZE; 934 935 rth = nlmsg_data(nlh); 936 rth->rtgen_family = AF_UNSPEC; 937 938 if (nla_put_s32(skb, NETNSA_NSID, args->nsid)) 939 goto nla_put_failure; 940 941 if (args->add_ref && 942 nla_put_s32(skb, NETNSA_CURRENT_NSID, args->ref_nsid)) 943 goto nla_put_failure; 944 945 nlmsg_end(skb, nlh); 946 return 0; 947 948 nla_put_failure: 949 nlmsg_cancel(skb, nlh); 950 return -EMSGSIZE; 951 } 952 953 static int rtnl_net_valid_getid_req(struct sk_buff *skb, 954 const struct nlmsghdr *nlh, 955 struct nlattr **tb, 956 struct netlink_ext_ack *extack) 957 { 958 int i, err; 959 960 if (!netlink_strict_get_check(skb)) 961 return nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg), 962 tb, NETNSA_MAX, rtnl_net_policy, 963 extack); 964 965 err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb, 966 NETNSA_MAX, rtnl_net_policy, 967 extack); 968 if (err) 969 return err; 970 971 for (i = 0; i <= NETNSA_MAX; i++) { 972 if (!tb[i]) 973 continue; 974 975 switch (i) { 976 case NETNSA_PID: 977 case NETNSA_FD: 978 case NETNSA_NSID: 979 case NETNSA_TARGET_NSID: 980 break; 981 default: 982 NL_SET_ERR_MSG(extack, "Unsupported attribute in peer netns getid request"); 983 return -EINVAL; 984 } 985 } 986 987 return 0; 988 } 989 990 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh, 991 struct netlink_ext_ack *extack) 992 { 993 struct net *net = sock_net(skb->sk); 994 struct nlattr *tb[NETNSA_MAX + 1]; 995 struct net_fill_args fillargs = { 996 .portid = NETLINK_CB(skb).portid, 997 .seq = nlh->nlmsg_seq, 998 .cmd = RTM_NEWNSID, 999 }; 1000 struct net *peer, *target = net; 1001 struct nlattr *nla; 1002 struct sk_buff *msg; 1003 int err; 1004 1005 err = rtnl_net_valid_getid_req(skb, nlh, tb, extack); 1006 if (err < 0) 1007 return err; 1008 if (tb[NETNSA_PID]) { 1009 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID])); 1010 nla = tb[NETNSA_PID]; 1011 } else if (tb[NETNSA_FD]) { 1012 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD])); 1013 nla = tb[NETNSA_FD]; 1014 } else if (tb[NETNSA_NSID]) { 1015 peer = get_net_ns_by_id(net, nla_get_s32(tb[NETNSA_NSID])); 1016 if (!peer) 1017 peer = ERR_PTR(-ENOENT); 1018 nla = tb[NETNSA_NSID]; 1019 } else { 1020 NL_SET_ERR_MSG(extack, "Peer netns reference is missing"); 1021 return -EINVAL; 1022 } 1023 1024 if (IS_ERR(peer)) { 1025 NL_SET_BAD_ATTR(extack, nla); 1026 NL_SET_ERR_MSG(extack, "Peer netns reference is invalid"); 1027 return PTR_ERR(peer); 1028 } 1029 1030 if (tb[NETNSA_TARGET_NSID]) { 1031 int id = nla_get_s32(tb[NETNSA_TARGET_NSID]); 1032 1033 target = rtnl_get_net_ns_capable(NETLINK_CB(skb).sk, id); 1034 if (IS_ERR(target)) { 1035 NL_SET_BAD_ATTR(extack, tb[NETNSA_TARGET_NSID]); 1036 NL_SET_ERR_MSG(extack, 1037 "Target netns reference is invalid"); 1038 err = PTR_ERR(target); 1039 goto out; 1040 } 1041 fillargs.add_ref = true; 1042 fillargs.ref_nsid = peernet2id(net, peer); 1043 } 1044 1045 msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL); 1046 if (!msg) { 1047 err = -ENOMEM; 1048 goto out; 1049 } 1050 1051 fillargs.nsid = peernet2id(target, peer); 1052 err = rtnl_net_fill(msg, &fillargs); 1053 if (err < 0) 1054 goto err_out; 1055 1056 err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid); 1057 goto out; 1058 1059 err_out: 1060 nlmsg_free(msg); 1061 out: 1062 if (fillargs.add_ref) 1063 put_net(target); 1064 put_net(peer); 1065 return err; 1066 } 1067 1068 struct rtnl_net_dump_cb { 1069 struct net *tgt_net; 1070 struct net *ref_net; 1071 struct sk_buff *skb; 1072 struct net_fill_args fillargs; 1073 int idx; 1074 int s_idx; 1075 }; 1076 1077 /* Runs in RCU-critical section. */ 1078 static int rtnl_net_dumpid_one(int id, void *peer, void *data) 1079 { 1080 struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data; 1081 int ret; 1082 1083 if (net_cb->idx < net_cb->s_idx) 1084 goto cont; 1085 1086 net_cb->fillargs.nsid = id; 1087 if (net_cb->fillargs.add_ref) 1088 net_cb->fillargs.ref_nsid = __peernet2id(net_cb->ref_net, peer); 1089 ret = rtnl_net_fill(net_cb->skb, &net_cb->fillargs); 1090 if (ret < 0) 1091 return ret; 1092 1093 cont: 1094 net_cb->idx++; 1095 return 0; 1096 } 1097 1098 static int rtnl_valid_dump_net_req(const struct nlmsghdr *nlh, struct sock *sk, 1099 struct rtnl_net_dump_cb *net_cb, 1100 struct netlink_callback *cb) 1101 { 1102 struct netlink_ext_ack *extack = cb->extack; 1103 struct nlattr *tb[NETNSA_MAX + 1]; 1104 int err, i; 1105 1106 err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb, 1107 NETNSA_MAX, rtnl_net_policy, 1108 extack); 1109 if (err < 0) 1110 return err; 1111 1112 for (i = 0; i <= NETNSA_MAX; i++) { 1113 if (!tb[i]) 1114 continue; 1115 1116 if (i == NETNSA_TARGET_NSID) { 1117 struct net *net; 1118 1119 net = rtnl_get_net_ns_capable(sk, nla_get_s32(tb[i])); 1120 if (IS_ERR(net)) { 1121 NL_SET_BAD_ATTR(extack, tb[i]); 1122 NL_SET_ERR_MSG(extack, 1123 "Invalid target network namespace id"); 1124 return PTR_ERR(net); 1125 } 1126 net_cb->fillargs.add_ref = true; 1127 net_cb->ref_net = net_cb->tgt_net; 1128 net_cb->tgt_net = net; 1129 } else { 1130 NL_SET_BAD_ATTR(extack, tb[i]); 1131 NL_SET_ERR_MSG(extack, 1132 "Unsupported attribute in dump request"); 1133 return -EINVAL; 1134 } 1135 } 1136 1137 return 0; 1138 } 1139 1140 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb) 1141 { 1142 struct rtnl_net_dump_cb net_cb = { 1143 .tgt_net = sock_net(skb->sk), 1144 .skb = skb, 1145 .fillargs = { 1146 .portid = NETLINK_CB(cb->skb).portid, 1147 .seq = cb->nlh->nlmsg_seq, 1148 .flags = NLM_F_MULTI, 1149 .cmd = RTM_NEWNSID, 1150 }, 1151 .idx = 0, 1152 .s_idx = cb->args[0], 1153 }; 1154 int err = 0; 1155 1156 if (cb->strict_check) { 1157 err = rtnl_valid_dump_net_req(cb->nlh, skb->sk, &net_cb, cb); 1158 if (err < 0) 1159 goto end; 1160 } 1161 1162 rcu_read_lock(); 1163 idr_for_each(&net_cb.tgt_net->netns_ids, rtnl_net_dumpid_one, &net_cb); 1164 rcu_read_unlock(); 1165 1166 cb->args[0] = net_cb.idx; 1167 end: 1168 if (net_cb.fillargs.add_ref) 1169 put_net(net_cb.tgt_net); 1170 return err; 1171 } 1172 1173 static void rtnl_net_notifyid(struct net *net, int cmd, int id, u32 portid, 1174 struct nlmsghdr *nlh, gfp_t gfp) 1175 { 1176 struct net_fill_args fillargs = { 1177 .portid = portid, 1178 .seq = nlh ? nlh->nlmsg_seq : 0, 1179 .cmd = cmd, 1180 .nsid = id, 1181 }; 1182 struct sk_buff *msg; 1183 int err = -ENOMEM; 1184 1185 msg = nlmsg_new(rtnl_net_get_size(), gfp); 1186 if (!msg) 1187 goto out; 1188 1189 err = rtnl_net_fill(msg, &fillargs); 1190 if (err < 0) 1191 goto err_out; 1192 1193 rtnl_notify(msg, net, portid, RTNLGRP_NSID, nlh, gfp); 1194 return; 1195 1196 err_out: 1197 nlmsg_free(msg); 1198 out: 1199 rtnl_set_sk_err(net, RTNLGRP_NSID, err); 1200 } 1201 1202 #ifdef CONFIG_NET_NS 1203 static void __init netns_ipv4_struct_check(void) 1204 { 1205 /* TX readonly hotpath cache lines */ 1206 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1207 sysctl_tcp_early_retrans); 1208 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1209 sysctl_tcp_tso_win_divisor); 1210 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1211 sysctl_tcp_tso_rtt_log); 1212 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1213 sysctl_tcp_autocorking); 1214 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1215 sysctl_tcp_min_snd_mss); 1216 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1217 sysctl_tcp_notsent_lowat); 1218 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1219 sysctl_tcp_limit_output_bytes); 1220 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1221 sysctl_tcp_min_rtt_wlen); 1222 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1223 sysctl_tcp_wmem); 1224 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1225 sysctl_ip_fwd_use_pmtu); 1226 1227 /* RX readonly hotpath cache line */ 1228 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx, 1229 sysctl_tcp_moderate_rcvbuf); 1230 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx, 1231 sysctl_tcp_rcvbuf_low_rtt); 1232 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx, 1233 sysctl_ip_early_demux); 1234 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx, 1235 sysctl_tcp_early_demux); 1236 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx, 1237 sysctl_tcp_l3mdev_accept); 1238 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx, 1239 sysctl_tcp_reordering); 1240 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx, 1241 sysctl_tcp_rmem); 1242 } 1243 #endif 1244 1245 static const struct rtnl_msg_handler net_ns_rtnl_msg_handlers[] __initconst = { 1246 {.msgtype = RTM_NEWNSID, .doit = rtnl_net_newid, 1247 .flags = RTNL_FLAG_DOIT_UNLOCKED}, 1248 {.msgtype = RTM_GETNSID, .doit = rtnl_net_getid, 1249 .dumpit = rtnl_net_dumpid, 1250 .flags = RTNL_FLAG_DOIT_UNLOCKED | RTNL_FLAG_DUMP_UNLOCKED}, 1251 }; 1252 1253 void __init net_ns_init(void) 1254 { 1255 struct net_generic *ng; 1256 1257 #ifdef CONFIG_NET_NS 1258 netns_ipv4_struct_check(); 1259 net_cachep = kmem_cache_create("net_namespace", sizeof(struct net), 1260 SMP_CACHE_BYTES, 1261 SLAB_PANIC|SLAB_ACCOUNT, NULL); 1262 1263 /* Create workqueue for cleanup */ 1264 netns_wq = create_singlethread_workqueue("netns"); 1265 if (!netns_wq) 1266 panic("Could not create netns workq"); 1267 #endif 1268 1269 ng = net_alloc_generic(); 1270 if (!ng) 1271 panic("Could not allocate generic netns"); 1272 1273 rcu_assign_pointer(init_net.gen, ng); 1274 1275 #ifdef CONFIG_KEYS 1276 init_net.key_domain = &init_net_key_domain; 1277 #endif 1278 /* 1279 * This currently cannot fail as the initial network namespace 1280 * has a static inode number. 1281 */ 1282 if (preinit_net(&init_net, &init_user_ns)) 1283 panic("Could not preinitialize the initial network namespace"); 1284 1285 down_write(&pernet_ops_rwsem); 1286 if (setup_net(&init_net)) 1287 panic("Could not setup the initial network namespace"); 1288 1289 init_net_initialized = true; 1290 up_write(&pernet_ops_rwsem); 1291 1292 if (register_pernet_subsys(&net_ns_ops)) 1293 panic("Could not register network namespace subsystems"); 1294 1295 rtnl_register_many(net_ns_rtnl_msg_handlers); 1296 } 1297 1298 #ifdef CONFIG_NET_NS 1299 static int __register_pernet_operations(struct list_head *list, 1300 struct pernet_operations *ops) 1301 { 1302 LIST_HEAD(net_exit_list); 1303 struct net *net; 1304 int error; 1305 1306 list_add_tail(&ops->list, list); 1307 if (ops->init || ops->id) { 1308 /* We held write locked pernet_ops_rwsem, and parallel 1309 * setup_net() and cleanup_net() are not possible. 1310 */ 1311 for_each_net(net) { 1312 error = ops_init(ops, net); 1313 if (error) 1314 goto out_undo; 1315 list_add_tail(&net->exit_list, &net_exit_list); 1316 } 1317 } 1318 return 0; 1319 1320 out_undo: 1321 /* If I have an error cleanup all namespaces I initialized */ 1322 list_del(&ops->list); 1323 ops_undo_single(ops, &net_exit_list); 1324 return error; 1325 } 1326 1327 static void __unregister_pernet_operations(struct pernet_operations *ops) 1328 { 1329 LIST_HEAD(net_exit_list); 1330 struct net *net; 1331 1332 /* See comment in __register_pernet_operations() */ 1333 for_each_net(net) 1334 list_add_tail(&net->exit_list, &net_exit_list); 1335 1336 list_del(&ops->list); 1337 ops_undo_single(ops, &net_exit_list); 1338 } 1339 1340 #else 1341 1342 static int __register_pernet_operations(struct list_head *list, 1343 struct pernet_operations *ops) 1344 { 1345 if (!init_net_initialized) { 1346 list_add_tail(&ops->list, list); 1347 return 0; 1348 } 1349 1350 return ops_init(ops, &init_net); 1351 } 1352 1353 static void __unregister_pernet_operations(struct pernet_operations *ops) 1354 { 1355 if (!init_net_initialized) { 1356 list_del(&ops->list); 1357 } else { 1358 LIST_HEAD(net_exit_list); 1359 1360 list_add(&init_net.exit_list, &net_exit_list); 1361 ops_undo_single(ops, &net_exit_list); 1362 } 1363 } 1364 1365 #endif /* CONFIG_NET_NS */ 1366 1367 static DEFINE_IDA(net_generic_ids); 1368 1369 static int register_pernet_operations(struct list_head *list, 1370 struct pernet_operations *ops) 1371 { 1372 int error; 1373 1374 if (WARN_ON(!!ops->id ^ !!ops->size)) 1375 return -EINVAL; 1376 1377 if (ops->id) { 1378 error = ida_alloc_min(&net_generic_ids, MIN_PERNET_OPS_ID, 1379 GFP_KERNEL); 1380 if (error < 0) 1381 return error; 1382 *ops->id = error; 1383 /* This does not require READ_ONCE as writers already hold 1384 * pernet_ops_rwsem. But WRITE_ONCE is needed to protect 1385 * net_alloc_generic. 1386 */ 1387 WRITE_ONCE(max_gen_ptrs, max(max_gen_ptrs, *ops->id + 1)); 1388 } 1389 error = __register_pernet_operations(list, ops); 1390 if (error) { 1391 rcu_barrier(); 1392 if (ops->id) 1393 ida_free(&net_generic_ids, *ops->id); 1394 } 1395 1396 return error; 1397 } 1398 1399 static void unregister_pernet_operations(struct pernet_operations *ops) 1400 { 1401 __unregister_pernet_operations(ops); 1402 rcu_barrier(); 1403 if (ops->id) 1404 ida_free(&net_generic_ids, *ops->id); 1405 } 1406 1407 /** 1408 * register_pernet_subsys - register a network namespace subsystem 1409 * @ops: pernet operations structure for the subsystem 1410 * 1411 * Register a subsystem which has init and exit functions 1412 * that are called when network namespaces are created and 1413 * destroyed respectively. 1414 * 1415 * When registered all network namespace init functions are 1416 * called for every existing network namespace. Allowing kernel 1417 * modules to have a race free view of the set of network namespaces. 1418 * 1419 * When a new network namespace is created all of the init 1420 * methods are called in the order in which they were registered. 1421 * 1422 * When a network namespace is destroyed all of the exit methods 1423 * are called in the reverse of the order with which they were 1424 * registered. 1425 */ 1426 int register_pernet_subsys(struct pernet_operations *ops) 1427 { 1428 int error; 1429 down_write(&pernet_ops_rwsem); 1430 error = register_pernet_operations(first_device, ops); 1431 up_write(&pernet_ops_rwsem); 1432 return error; 1433 } 1434 EXPORT_SYMBOL_GPL(register_pernet_subsys); 1435 1436 /** 1437 * unregister_pernet_subsys - unregister a network namespace subsystem 1438 * @ops: pernet operations structure to manipulate 1439 * 1440 * Remove the pernet operations structure from the list to be 1441 * used when network namespaces are created or destroyed. In 1442 * addition run the exit method for all existing network 1443 * namespaces. 1444 */ 1445 void unregister_pernet_subsys(struct pernet_operations *ops) 1446 { 1447 down_write(&pernet_ops_rwsem); 1448 unregister_pernet_operations(ops); 1449 up_write(&pernet_ops_rwsem); 1450 } 1451 EXPORT_SYMBOL_GPL(unregister_pernet_subsys); 1452 1453 /** 1454 * register_pernet_device - register a network namespace device 1455 * @ops: pernet operations structure for the subsystem 1456 * 1457 * Register a device which has init and exit functions 1458 * that are called when network namespaces are created and 1459 * destroyed respectively. 1460 * 1461 * When registered all network namespace init functions are 1462 * called for every existing network namespace. Allowing kernel 1463 * modules to have a race free view of the set of network namespaces. 1464 * 1465 * When a new network namespace is created all of the init 1466 * methods are called in the order in which they were registered. 1467 * 1468 * When a network namespace is destroyed all of the exit methods 1469 * are called in the reverse of the order with which they were 1470 * registered. 1471 */ 1472 int register_pernet_device(struct pernet_operations *ops) 1473 { 1474 int error; 1475 down_write(&pernet_ops_rwsem); 1476 error = register_pernet_operations(&pernet_list, ops); 1477 if (!error && (first_device == &pernet_list)) 1478 first_device = &ops->list; 1479 up_write(&pernet_ops_rwsem); 1480 return error; 1481 } 1482 EXPORT_SYMBOL_GPL(register_pernet_device); 1483 1484 /** 1485 * unregister_pernet_device - unregister a network namespace netdevice 1486 * @ops: pernet operations structure to manipulate 1487 * 1488 * Remove the pernet operations structure from the list to be 1489 * used when network namespaces are created or destroyed. In 1490 * addition run the exit method for all existing network 1491 * namespaces. 1492 */ 1493 void unregister_pernet_device(struct pernet_operations *ops) 1494 { 1495 down_write(&pernet_ops_rwsem); 1496 if (&ops->list == first_device) 1497 first_device = first_device->next; 1498 unregister_pernet_operations(ops); 1499 up_write(&pernet_ops_rwsem); 1500 } 1501 EXPORT_SYMBOL_GPL(unregister_pernet_device); 1502 1503 #ifdef CONFIG_NET_NS 1504 static struct ns_common *netns_get(struct task_struct *task) 1505 { 1506 struct net *net = NULL; 1507 struct nsproxy *nsproxy; 1508 1509 task_lock(task); 1510 nsproxy = task->nsproxy; 1511 if (nsproxy) 1512 net = get_net(nsproxy->net_ns); 1513 task_unlock(task); 1514 1515 return net ? &net->ns : NULL; 1516 } 1517 1518 static void netns_put(struct ns_common *ns) 1519 { 1520 put_net(to_net_ns(ns)); 1521 } 1522 1523 static int netns_install(struct nsset *nsset, struct ns_common *ns) 1524 { 1525 struct nsproxy *nsproxy = nsset->nsproxy; 1526 struct net *net = to_net_ns(ns); 1527 1528 if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) || 1529 !ns_capable(nsset->cred->user_ns, CAP_SYS_ADMIN)) 1530 return -EPERM; 1531 1532 put_net(nsproxy->net_ns); 1533 nsproxy->net_ns = get_net(net); 1534 return 0; 1535 } 1536 1537 static struct user_namespace *netns_owner(struct ns_common *ns) 1538 { 1539 return to_net_ns(ns)->user_ns; 1540 } 1541 1542 const struct proc_ns_operations netns_operations = { 1543 .name = "net", 1544 .get = netns_get, 1545 .put = netns_put, 1546 .install = netns_install, 1547 .owner = netns_owner, 1548 }; 1549 #endif 1550