xref: /linux/net/core/net_namespace.c (revision 8f7aa3d3c7323f4ca2768a9e74ebbe359c4f8f88)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 
4 #include <linux/workqueue.h>
5 #include <linux/rtnetlink.h>
6 #include <linux/cache.h>
7 #include <linux/slab.h>
8 #include <linux/list.h>
9 #include <linux/delay.h>
10 #include <linux/sched.h>
11 #include <linux/idr.h>
12 #include <linux/rculist.h>
13 #include <linux/nsproxy.h>
14 #include <linux/fs.h>
15 #include <linux/proc_ns.h>
16 #include <linux/file.h>
17 #include <linux/export.h>
18 #include <linux/user_namespace.h>
19 #include <linux/net_namespace.h>
20 #include <linux/sched/task.h>
21 #include <linux/uidgid.h>
22 #include <linux/proc_fs.h>
23 #include <linux/nstree.h>
24 
25 #include <net/aligned_data.h>
26 #include <net/sock.h>
27 #include <net/netlink.h>
28 #include <net/net_namespace.h>
29 #include <net/netns/generic.h>
30 
31 /*
32  *	Our network namespace constructor/destructor lists
33  */
34 
35 static LIST_HEAD(pernet_list);
36 static struct list_head *first_device = &pernet_list;
37 
38 LIST_HEAD(net_namespace_list);
39 EXPORT_SYMBOL_GPL(net_namespace_list);
40 
41 /* Protects net_namespace_list. Nests iside rtnl_lock() */
42 DECLARE_RWSEM(net_rwsem);
43 EXPORT_SYMBOL_GPL(net_rwsem);
44 
45 #ifdef CONFIG_KEYS
46 static struct key_tag init_net_key_domain = { .usage = REFCOUNT_INIT(1) };
47 #endif
48 
49 struct net init_net;
50 EXPORT_SYMBOL(init_net);
51 
52 static bool init_net_initialized;
53 /*
54  * pernet_ops_rwsem: protects: pernet_list, net_generic_ids,
55  * init_net_initialized and first_device pointer.
56  * This is internal net namespace object. Please, don't use it
57  * outside.
58  */
59 DECLARE_RWSEM(pernet_ops_rwsem);
60 
61 #define MIN_PERNET_OPS_ID	\
62 	((sizeof(struct net_generic) + sizeof(void *) - 1) / sizeof(void *))
63 
64 #define INITIAL_NET_GEN_PTRS	13 /* +1 for len +2 for rcu_head */
65 
66 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS;
67 
68 static struct net_generic *net_alloc_generic(void)
69 {
70 	unsigned int gen_ptrs = READ_ONCE(max_gen_ptrs);
71 	unsigned int generic_size;
72 	struct net_generic *ng;
73 
74 	generic_size = offsetof(struct net_generic, ptr[gen_ptrs]);
75 
76 	ng = kzalloc(generic_size, GFP_KERNEL);
77 	if (ng)
78 		ng->s.len = gen_ptrs;
79 
80 	return ng;
81 }
82 
83 static int net_assign_generic(struct net *net, unsigned int id, void *data)
84 {
85 	struct net_generic *ng, *old_ng;
86 
87 	BUG_ON(id < MIN_PERNET_OPS_ID);
88 
89 	old_ng = rcu_dereference_protected(net->gen,
90 					   lockdep_is_held(&pernet_ops_rwsem));
91 	if (old_ng->s.len > id) {
92 		old_ng->ptr[id] = data;
93 		return 0;
94 	}
95 
96 	ng = net_alloc_generic();
97 	if (!ng)
98 		return -ENOMEM;
99 
100 	/*
101 	 * Some synchronisation notes:
102 	 *
103 	 * The net_generic explores the net->gen array inside rcu
104 	 * read section. Besides once set the net->gen->ptr[x]
105 	 * pointer never changes (see rules in netns/generic.h).
106 	 *
107 	 * That said, we simply duplicate this array and schedule
108 	 * the old copy for kfree after a grace period.
109 	 */
110 
111 	memcpy(&ng->ptr[MIN_PERNET_OPS_ID], &old_ng->ptr[MIN_PERNET_OPS_ID],
112 	       (old_ng->s.len - MIN_PERNET_OPS_ID) * sizeof(void *));
113 	ng->ptr[id] = data;
114 
115 	rcu_assign_pointer(net->gen, ng);
116 	kfree_rcu(old_ng, s.rcu);
117 	return 0;
118 }
119 
120 static int ops_init(const struct pernet_operations *ops, struct net *net)
121 {
122 	struct net_generic *ng;
123 	int err = -ENOMEM;
124 	void *data = NULL;
125 
126 	if (ops->id) {
127 		data = kzalloc(ops->size, GFP_KERNEL);
128 		if (!data)
129 			goto out;
130 
131 		err = net_assign_generic(net, *ops->id, data);
132 		if (err)
133 			goto cleanup;
134 	}
135 	err = 0;
136 	if (ops->init)
137 		err = ops->init(net);
138 	if (!err)
139 		return 0;
140 
141 	if (ops->id) {
142 		ng = rcu_dereference_protected(net->gen,
143 					       lockdep_is_held(&pernet_ops_rwsem));
144 		ng->ptr[*ops->id] = NULL;
145 	}
146 
147 cleanup:
148 	kfree(data);
149 
150 out:
151 	return err;
152 }
153 
154 static void ops_pre_exit_list(const struct pernet_operations *ops,
155 			      struct list_head *net_exit_list)
156 {
157 	struct net *net;
158 
159 	if (ops->pre_exit) {
160 		list_for_each_entry(net, net_exit_list, exit_list)
161 			ops->pre_exit(net);
162 	}
163 }
164 
165 static void ops_exit_rtnl_list(const struct list_head *ops_list,
166 			       const struct pernet_operations *ops,
167 			       struct list_head *net_exit_list)
168 {
169 	const struct pernet_operations *saved_ops = ops;
170 	LIST_HEAD(dev_kill_list);
171 	struct net *net;
172 
173 	rtnl_lock();
174 
175 	list_for_each_entry(net, net_exit_list, exit_list) {
176 		__rtnl_net_lock(net);
177 
178 		ops = saved_ops;
179 		list_for_each_entry_continue_reverse(ops, ops_list, list) {
180 			if (ops->exit_rtnl)
181 				ops->exit_rtnl(net, &dev_kill_list);
182 		}
183 
184 		__rtnl_net_unlock(net);
185 	}
186 
187 	unregister_netdevice_many(&dev_kill_list);
188 
189 	rtnl_unlock();
190 }
191 
192 static void ops_exit_list(const struct pernet_operations *ops,
193 			  struct list_head *net_exit_list)
194 {
195 	if (ops->exit) {
196 		struct net *net;
197 
198 		list_for_each_entry(net, net_exit_list, exit_list) {
199 			ops->exit(net);
200 			cond_resched();
201 		}
202 	}
203 
204 	if (ops->exit_batch)
205 		ops->exit_batch(net_exit_list);
206 }
207 
208 static void ops_free_list(const struct pernet_operations *ops,
209 			  struct list_head *net_exit_list)
210 {
211 	struct net *net;
212 
213 	if (ops->id) {
214 		list_for_each_entry(net, net_exit_list, exit_list)
215 			kfree(net_generic(net, *ops->id));
216 	}
217 }
218 
219 static void ops_undo_list(const struct list_head *ops_list,
220 			  const struct pernet_operations *ops,
221 			  struct list_head *net_exit_list,
222 			  bool expedite_rcu)
223 {
224 	const struct pernet_operations *saved_ops;
225 	bool hold_rtnl = false;
226 
227 	if (!ops)
228 		ops = list_entry(ops_list, typeof(*ops), list);
229 
230 	saved_ops = ops;
231 
232 	list_for_each_entry_continue_reverse(ops, ops_list, list) {
233 		hold_rtnl |= !!ops->exit_rtnl;
234 		ops_pre_exit_list(ops, net_exit_list);
235 	}
236 
237 	/* Another CPU might be rcu-iterating the list, wait for it.
238 	 * This needs to be before calling the exit() notifiers, so the
239 	 * rcu_barrier() after ops_undo_list() isn't sufficient alone.
240 	 * Also the pre_exit() and exit() methods need this barrier.
241 	 */
242 	if (expedite_rcu)
243 		synchronize_rcu_expedited();
244 	else
245 		synchronize_rcu();
246 
247 	if (hold_rtnl)
248 		ops_exit_rtnl_list(ops_list, saved_ops, net_exit_list);
249 
250 	ops = saved_ops;
251 	list_for_each_entry_continue_reverse(ops, ops_list, list)
252 		ops_exit_list(ops, net_exit_list);
253 
254 	ops = saved_ops;
255 	list_for_each_entry_continue_reverse(ops, ops_list, list)
256 		ops_free_list(ops, net_exit_list);
257 }
258 
259 static void ops_undo_single(struct pernet_operations *ops,
260 			    struct list_head *net_exit_list)
261 {
262 	LIST_HEAD(ops_list);
263 
264 	list_add(&ops->list, &ops_list);
265 	ops_undo_list(&ops_list, NULL, net_exit_list, false);
266 	list_del(&ops->list);
267 }
268 
269 /* should be called with nsid_lock held */
270 static int alloc_netid(struct net *net, struct net *peer, int reqid)
271 {
272 	int min = 0, max = 0;
273 
274 	if (reqid >= 0) {
275 		min = reqid;
276 		max = reqid + 1;
277 	}
278 
279 	return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC);
280 }
281 
282 /* This function is used by idr_for_each(). If net is equal to peer, the
283  * function returns the id so that idr_for_each() stops. Because we cannot
284  * returns the id 0 (idr_for_each() will not stop), we return the magic value
285  * NET_ID_ZERO (-1) for it.
286  */
287 #define NET_ID_ZERO -1
288 static int net_eq_idr(int id, void *net, void *peer)
289 {
290 	if (net_eq(net, peer))
291 		return id ? : NET_ID_ZERO;
292 	return 0;
293 }
294 
295 /* Must be called from RCU-critical section or with nsid_lock held */
296 static int __peernet2id(const struct net *net, struct net *peer)
297 {
298 	int id = idr_for_each(&net->netns_ids, net_eq_idr, peer);
299 
300 	/* Magic value for id 0. */
301 	if (id == NET_ID_ZERO)
302 		return 0;
303 	if (id > 0)
304 		return id;
305 
306 	return NETNSA_NSID_NOT_ASSIGNED;
307 }
308 
309 static void rtnl_net_notifyid(struct net *net, int cmd, int id, u32 portid,
310 			      struct nlmsghdr *nlh, gfp_t gfp);
311 /* This function returns the id of a peer netns. If no id is assigned, one will
312  * be allocated and returned.
313  */
314 int peernet2id_alloc(struct net *net, struct net *peer, gfp_t gfp)
315 {
316 	int id;
317 
318 	if (!check_net(net))
319 		return NETNSA_NSID_NOT_ASSIGNED;
320 
321 	spin_lock(&net->nsid_lock);
322 	id = __peernet2id(net, peer);
323 	if (id >= 0) {
324 		spin_unlock(&net->nsid_lock);
325 		return id;
326 	}
327 
328 	/* When peer is obtained from RCU lists, we may race with
329 	 * its cleanup. Check whether it's alive, and this guarantees
330 	 * we never hash a peer back to net->netns_ids, after it has
331 	 * just been idr_remove()'d from there in cleanup_net().
332 	 */
333 	if (!maybe_get_net(peer)) {
334 		spin_unlock(&net->nsid_lock);
335 		return NETNSA_NSID_NOT_ASSIGNED;
336 	}
337 
338 	id = alloc_netid(net, peer, -1);
339 	spin_unlock(&net->nsid_lock);
340 
341 	put_net(peer);
342 	if (id < 0)
343 		return NETNSA_NSID_NOT_ASSIGNED;
344 
345 	rtnl_net_notifyid(net, RTM_NEWNSID, id, 0, NULL, gfp);
346 
347 	return id;
348 }
349 EXPORT_SYMBOL_GPL(peernet2id_alloc);
350 
351 /* This function returns, if assigned, the id of a peer netns. */
352 int peernet2id(const struct net *net, struct net *peer)
353 {
354 	int id;
355 
356 	rcu_read_lock();
357 	id = __peernet2id(net, peer);
358 	rcu_read_unlock();
359 
360 	return id;
361 }
362 EXPORT_SYMBOL(peernet2id);
363 
364 /* This function returns true is the peer netns has an id assigned into the
365  * current netns.
366  */
367 bool peernet_has_id(const struct net *net, struct net *peer)
368 {
369 	return peernet2id(net, peer) >= 0;
370 }
371 
372 struct net *get_net_ns_by_id(const struct net *net, int id)
373 {
374 	struct net *peer;
375 
376 	if (id < 0)
377 		return NULL;
378 
379 	rcu_read_lock();
380 	peer = idr_find(&net->netns_ids, id);
381 	if (peer)
382 		peer = maybe_get_net(peer);
383 	rcu_read_unlock();
384 
385 	return peer;
386 }
387 EXPORT_SYMBOL_GPL(get_net_ns_by_id);
388 
389 static __net_init void preinit_net_sysctl(struct net *net)
390 {
391 	net->core.sysctl_somaxconn = SOMAXCONN;
392 	/* Limits per socket sk_omem_alloc usage.
393 	 * TCP zerocopy regular usage needs 128 KB.
394 	 */
395 	net->core.sysctl_optmem_max = 128 * 1024;
396 	net->core.sysctl_txrehash = SOCK_TXREHASH_ENABLED;
397 	net->core.sysctl_tstamp_allow_data = 1;
398 	net->core.sysctl_txq_reselection = msecs_to_jiffies(1000);
399 }
400 
401 /* init code that must occur even if setup_net() is not called. */
402 static __net_init int preinit_net(struct net *net, struct user_namespace *user_ns)
403 {
404 	int ret;
405 
406 	ret = ns_common_init(net);
407 	if (ret)
408 		return ret;
409 
410 	refcount_set(&net->passive, 1);
411 	ref_tracker_dir_init(&net->refcnt_tracker, 128, "net_refcnt");
412 	ref_tracker_dir_init(&net->notrefcnt_tracker, 128, "net_notrefcnt");
413 
414 	get_random_bytes(&net->hash_mix, sizeof(u32));
415 	net->dev_base_seq = 1;
416 	net->user_ns = user_ns;
417 
418 	idr_init(&net->netns_ids);
419 	spin_lock_init(&net->nsid_lock);
420 	mutex_init(&net->ipv4.ra_mutex);
421 
422 #ifdef CONFIG_DEBUG_NET_SMALL_RTNL
423 	mutex_init(&net->rtnl_mutex);
424 	lock_set_cmp_fn(&net->rtnl_mutex, rtnl_net_lock_cmp_fn, NULL);
425 #endif
426 
427 	INIT_LIST_HEAD(&net->ptype_all);
428 	INIT_LIST_HEAD(&net->ptype_specific);
429 	preinit_net_sysctl(net);
430 	return 0;
431 }
432 
433 /*
434  * setup_net runs the initializers for the network namespace object.
435  */
436 static __net_init int setup_net(struct net *net)
437 {
438 	/* Must be called with pernet_ops_rwsem held */
439 	const struct pernet_operations *ops;
440 	LIST_HEAD(net_exit_list);
441 	int error = 0;
442 
443 	net->net_cookie = ns_tree_gen_id(net);
444 
445 	list_for_each_entry(ops, &pernet_list, list) {
446 		error = ops_init(ops, net);
447 		if (error < 0)
448 			goto out_undo;
449 	}
450 	down_write(&net_rwsem);
451 	list_add_tail_rcu(&net->list, &net_namespace_list);
452 	up_write(&net_rwsem);
453 	ns_tree_add_raw(net);
454 out:
455 	return error;
456 
457 out_undo:
458 	/* Walk through the list backwards calling the exit functions
459 	 * for the pernet modules whose init functions did not fail.
460 	 */
461 	list_add(&net->exit_list, &net_exit_list);
462 	ops_undo_list(&pernet_list, ops, &net_exit_list, false);
463 	rcu_barrier();
464 	goto out;
465 }
466 
467 #ifdef CONFIG_NET_NS
468 static struct ucounts *inc_net_namespaces(struct user_namespace *ns)
469 {
470 	return inc_ucount(ns, current_euid(), UCOUNT_NET_NAMESPACES);
471 }
472 
473 static void dec_net_namespaces(struct ucounts *ucounts)
474 {
475 	dec_ucount(ucounts, UCOUNT_NET_NAMESPACES);
476 }
477 
478 static struct kmem_cache *net_cachep __ro_after_init;
479 static struct workqueue_struct *netns_wq;
480 
481 static struct net *net_alloc(void)
482 {
483 	struct net *net = NULL;
484 	struct net_generic *ng;
485 
486 	ng = net_alloc_generic();
487 	if (!ng)
488 		goto out;
489 
490 	net = kmem_cache_zalloc(net_cachep, GFP_KERNEL);
491 	if (!net)
492 		goto out_free;
493 
494 #ifdef CONFIG_KEYS
495 	net->key_domain = kzalloc(sizeof(struct key_tag), GFP_KERNEL);
496 	if (!net->key_domain)
497 		goto out_free_2;
498 	refcount_set(&net->key_domain->usage, 1);
499 #endif
500 
501 	rcu_assign_pointer(net->gen, ng);
502 out:
503 	return net;
504 
505 #ifdef CONFIG_KEYS
506 out_free_2:
507 	kmem_cache_free(net_cachep, net);
508 	net = NULL;
509 #endif
510 out_free:
511 	kfree(ng);
512 	goto out;
513 }
514 
515 static LLIST_HEAD(defer_free_list);
516 
517 static void net_complete_free(void)
518 {
519 	struct llist_node *kill_list;
520 	struct net *net, *next;
521 
522 	/* Get the list of namespaces to free from last round. */
523 	kill_list = llist_del_all(&defer_free_list);
524 
525 	llist_for_each_entry_safe(net, next, kill_list, defer_free_list)
526 		kmem_cache_free(net_cachep, net);
527 
528 }
529 
530 void net_passive_dec(struct net *net)
531 {
532 	if (refcount_dec_and_test(&net->passive)) {
533 		kfree(rcu_access_pointer(net->gen));
534 
535 		/* There should not be any trackers left there. */
536 		ref_tracker_dir_exit(&net->notrefcnt_tracker);
537 
538 		/* Wait for an extra rcu_barrier() before final free. */
539 		llist_add(&net->defer_free_list, &defer_free_list);
540 	}
541 }
542 
543 void net_drop_ns(void *p)
544 {
545 	struct net *net = (struct net *)p;
546 
547 	if (net)
548 		net_passive_dec(net);
549 }
550 
551 struct net *copy_net_ns(u64 flags,
552 			struct user_namespace *user_ns, struct net *old_net)
553 {
554 	struct ucounts *ucounts;
555 	struct net *net;
556 	int rv;
557 
558 	if (!(flags & CLONE_NEWNET))
559 		return get_net(old_net);
560 
561 	ucounts = inc_net_namespaces(user_ns);
562 	if (!ucounts)
563 		return ERR_PTR(-ENOSPC);
564 
565 	net = net_alloc();
566 	if (!net) {
567 		rv = -ENOMEM;
568 		goto dec_ucounts;
569 	}
570 
571 	rv = preinit_net(net, user_ns);
572 	if (rv < 0)
573 		goto dec_ucounts;
574 	net->ucounts = ucounts;
575 	get_user_ns(user_ns);
576 
577 	rv = down_read_killable(&pernet_ops_rwsem);
578 	if (rv < 0)
579 		goto put_userns;
580 
581 	rv = setup_net(net);
582 
583 	up_read(&pernet_ops_rwsem);
584 
585 	if (rv < 0) {
586 put_userns:
587 		ns_common_free(net);
588 #ifdef CONFIG_KEYS
589 		key_remove_domain(net->key_domain);
590 #endif
591 		put_user_ns(user_ns);
592 		net_passive_dec(net);
593 dec_ucounts:
594 		dec_net_namespaces(ucounts);
595 		return ERR_PTR(rv);
596 	}
597 	return net;
598 }
599 
600 /**
601  * net_ns_get_ownership - get sysfs ownership data for @net
602  * @net: network namespace in question (can be NULL)
603  * @uid: kernel user ID for sysfs objects
604  * @gid: kernel group ID for sysfs objects
605  *
606  * Returns the uid/gid pair of root in the user namespace associated with the
607  * given network namespace.
608  */
609 void net_ns_get_ownership(const struct net *net, kuid_t *uid, kgid_t *gid)
610 {
611 	if (net) {
612 		kuid_t ns_root_uid = make_kuid(net->user_ns, 0);
613 		kgid_t ns_root_gid = make_kgid(net->user_ns, 0);
614 
615 		if (uid_valid(ns_root_uid))
616 			*uid = ns_root_uid;
617 
618 		if (gid_valid(ns_root_gid))
619 			*gid = ns_root_gid;
620 	} else {
621 		*uid = GLOBAL_ROOT_UID;
622 		*gid = GLOBAL_ROOT_GID;
623 	}
624 }
625 EXPORT_SYMBOL_GPL(net_ns_get_ownership);
626 
627 static void unhash_nsid(struct net *net, struct net *last)
628 {
629 	struct net *tmp;
630 	/* This function is only called from cleanup_net() work,
631 	 * and this work is the only process, that may delete
632 	 * a net from net_namespace_list. So, when the below
633 	 * is executing, the list may only grow. Thus, we do not
634 	 * use for_each_net_rcu() or net_rwsem.
635 	 */
636 	for_each_net(tmp) {
637 		int id;
638 
639 		spin_lock(&tmp->nsid_lock);
640 		id = __peernet2id(tmp, net);
641 		if (id >= 0)
642 			idr_remove(&tmp->netns_ids, id);
643 		spin_unlock(&tmp->nsid_lock);
644 		if (id >= 0)
645 			rtnl_net_notifyid(tmp, RTM_DELNSID, id, 0, NULL,
646 					  GFP_KERNEL);
647 		if (tmp == last)
648 			break;
649 	}
650 	spin_lock(&net->nsid_lock);
651 	idr_destroy(&net->netns_ids);
652 	spin_unlock(&net->nsid_lock);
653 }
654 
655 static LLIST_HEAD(cleanup_list);
656 
657 struct task_struct *cleanup_net_task;
658 
659 static void cleanup_net(struct work_struct *work)
660 {
661 	struct llist_node *net_kill_list;
662 	struct net *net, *tmp, *last;
663 	LIST_HEAD(net_exit_list);
664 
665 	WRITE_ONCE(cleanup_net_task, current);
666 
667 	/* Atomically snapshot the list of namespaces to cleanup */
668 	net_kill_list = llist_del_all(&cleanup_list);
669 
670 	down_read(&pernet_ops_rwsem);
671 
672 	/* Don't let anyone else find us. */
673 	down_write(&net_rwsem);
674 	llist_for_each_entry(net, net_kill_list, cleanup_list) {
675 		ns_tree_remove(net);
676 		list_del_rcu(&net->list);
677 	}
678 	/* Cache last net. After we unlock rtnl, no one new net
679 	 * added to net_namespace_list can assign nsid pointer
680 	 * to a net from net_kill_list (see peernet2id_alloc()).
681 	 * So, we skip them in unhash_nsid().
682 	 *
683 	 * Note, that unhash_nsid() does not delete nsid links
684 	 * between net_kill_list's nets, as they've already
685 	 * deleted from net_namespace_list. But, this would be
686 	 * useless anyway, as netns_ids are destroyed there.
687 	 */
688 	last = list_last_entry(&net_namespace_list, struct net, list);
689 	up_write(&net_rwsem);
690 
691 	llist_for_each_entry(net, net_kill_list, cleanup_list) {
692 		unhash_nsid(net, last);
693 		list_add_tail(&net->exit_list, &net_exit_list);
694 	}
695 
696 	ops_undo_list(&pernet_list, NULL, &net_exit_list, true);
697 
698 	up_read(&pernet_ops_rwsem);
699 
700 	/* Ensure there are no outstanding rcu callbacks using this
701 	 * network namespace.
702 	 */
703 	rcu_barrier();
704 
705 	net_complete_free();
706 
707 	/* Finally it is safe to free my network namespace structure */
708 	list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) {
709 		list_del_init(&net->exit_list);
710 		ns_common_free(net);
711 		dec_net_namespaces(net->ucounts);
712 #ifdef CONFIG_KEYS
713 		key_remove_domain(net->key_domain);
714 #endif
715 		put_user_ns(net->user_ns);
716 		net_passive_dec(net);
717 	}
718 	WRITE_ONCE(cleanup_net_task, NULL);
719 }
720 
721 /**
722  * net_ns_barrier - wait until concurrent net_cleanup_work is done
723  *
724  * cleanup_net runs from work queue and will first remove namespaces
725  * from the global list, then run net exit functions.
726  *
727  * Call this in module exit path to make sure that all netns
728  * ->exit ops have been invoked before the function is removed.
729  */
730 void net_ns_barrier(void)
731 {
732 	down_write(&pernet_ops_rwsem);
733 	up_write(&pernet_ops_rwsem);
734 }
735 EXPORT_SYMBOL(net_ns_barrier);
736 
737 static DECLARE_WORK(net_cleanup_work, cleanup_net);
738 
739 void __put_net(struct net *net)
740 {
741 	ref_tracker_dir_exit(&net->refcnt_tracker);
742 	/* Cleanup the network namespace in process context */
743 	if (llist_add(&net->cleanup_list, &cleanup_list))
744 		queue_work(netns_wq, &net_cleanup_work);
745 }
746 EXPORT_SYMBOL_GPL(__put_net);
747 
748 /**
749  * get_net_ns - increment the refcount of the network namespace
750  * @ns: common namespace (net)
751  *
752  * Returns the net's common namespace or ERR_PTR() if ref is zero.
753  */
754 struct ns_common *get_net_ns(struct ns_common *ns)
755 {
756 	struct net *net;
757 
758 	net = maybe_get_net(container_of(ns, struct net, ns));
759 	if (net)
760 		return &net->ns;
761 	return ERR_PTR(-EINVAL);
762 }
763 EXPORT_SYMBOL_GPL(get_net_ns);
764 
765 struct net *get_net_ns_by_fd(int fd)
766 {
767 	CLASS(fd, f)(fd);
768 
769 	if (fd_empty(f))
770 		return ERR_PTR(-EBADF);
771 
772 	if (proc_ns_file(fd_file(f))) {
773 		struct ns_common *ns = get_proc_ns(file_inode(fd_file(f)));
774 		if (ns->ops == &netns_operations)
775 			return get_net(container_of(ns, struct net, ns));
776 	}
777 
778 	return ERR_PTR(-EINVAL);
779 }
780 EXPORT_SYMBOL_GPL(get_net_ns_by_fd);
781 #endif
782 
783 struct net *get_net_ns_by_pid(pid_t pid)
784 {
785 	struct task_struct *tsk;
786 	struct net *net;
787 
788 	/* Lookup the network namespace */
789 	net = ERR_PTR(-ESRCH);
790 	rcu_read_lock();
791 	tsk = find_task_by_vpid(pid);
792 	if (tsk) {
793 		struct nsproxy *nsproxy;
794 		task_lock(tsk);
795 		nsproxy = tsk->nsproxy;
796 		if (nsproxy)
797 			net = get_net(nsproxy->net_ns);
798 		task_unlock(tsk);
799 	}
800 	rcu_read_unlock();
801 	return net;
802 }
803 EXPORT_SYMBOL_GPL(get_net_ns_by_pid);
804 
805 #ifdef CONFIG_NET_NS_REFCNT_TRACKER
806 static void net_ns_net_debugfs(struct net *net)
807 {
808 	ref_tracker_dir_symlink(&net->refcnt_tracker, "netns-%llx-%u-refcnt",
809 				net->net_cookie, net->ns.inum);
810 	ref_tracker_dir_symlink(&net->notrefcnt_tracker, "netns-%llx-%u-notrefcnt",
811 				net->net_cookie, net->ns.inum);
812 }
813 
814 static int __init init_net_debugfs(void)
815 {
816 	ref_tracker_dir_debugfs(&init_net.refcnt_tracker);
817 	ref_tracker_dir_debugfs(&init_net.notrefcnt_tracker);
818 	net_ns_net_debugfs(&init_net);
819 	return 0;
820 }
821 late_initcall(init_net_debugfs);
822 #else
823 static void net_ns_net_debugfs(struct net *net)
824 {
825 }
826 #endif
827 
828 static __net_init int net_ns_net_init(struct net *net)
829 {
830 	net_ns_net_debugfs(net);
831 	return 0;
832 }
833 
834 static struct pernet_operations __net_initdata net_ns_ops = {
835 	.init = net_ns_net_init,
836 };
837 
838 static const struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = {
839 	[NETNSA_NONE]		= { .type = NLA_UNSPEC },
840 	[NETNSA_NSID]		= { .type = NLA_S32 },
841 	[NETNSA_PID]		= { .type = NLA_U32 },
842 	[NETNSA_FD]		= { .type = NLA_U32 },
843 	[NETNSA_TARGET_NSID]	= { .type = NLA_S32 },
844 };
845 
846 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh,
847 			  struct netlink_ext_ack *extack)
848 {
849 	struct net *net = sock_net(skb->sk);
850 	struct nlattr *tb[NETNSA_MAX + 1];
851 	struct nlattr *nla;
852 	struct net *peer;
853 	int nsid, err;
854 
855 	err = nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg), tb,
856 				     NETNSA_MAX, rtnl_net_policy, extack);
857 	if (err < 0)
858 		return err;
859 	if (!tb[NETNSA_NSID]) {
860 		NL_SET_ERR_MSG(extack, "nsid is missing");
861 		return -EINVAL;
862 	}
863 	nsid = nla_get_s32(tb[NETNSA_NSID]);
864 
865 	if (tb[NETNSA_PID]) {
866 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
867 		nla = tb[NETNSA_PID];
868 	} else if (tb[NETNSA_FD]) {
869 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
870 		nla = tb[NETNSA_FD];
871 	} else {
872 		NL_SET_ERR_MSG(extack, "Peer netns reference is missing");
873 		return -EINVAL;
874 	}
875 	if (IS_ERR(peer)) {
876 		NL_SET_BAD_ATTR(extack, nla);
877 		NL_SET_ERR_MSG(extack, "Peer netns reference is invalid");
878 		return PTR_ERR(peer);
879 	}
880 
881 	spin_lock(&net->nsid_lock);
882 	if (__peernet2id(net, peer) >= 0) {
883 		spin_unlock(&net->nsid_lock);
884 		err = -EEXIST;
885 		NL_SET_BAD_ATTR(extack, nla);
886 		NL_SET_ERR_MSG(extack,
887 			       "Peer netns already has a nsid assigned");
888 		goto out;
889 	}
890 
891 	err = alloc_netid(net, peer, nsid);
892 	spin_unlock(&net->nsid_lock);
893 	if (err >= 0) {
894 		rtnl_net_notifyid(net, RTM_NEWNSID, err, NETLINK_CB(skb).portid,
895 				  nlh, GFP_KERNEL);
896 		err = 0;
897 	} else if (err == -ENOSPC && nsid >= 0) {
898 		err = -EEXIST;
899 		NL_SET_BAD_ATTR(extack, tb[NETNSA_NSID]);
900 		NL_SET_ERR_MSG(extack, "The specified nsid is already used");
901 	}
902 out:
903 	put_net(peer);
904 	return err;
905 }
906 
907 static int rtnl_net_get_size(void)
908 {
909 	return NLMSG_ALIGN(sizeof(struct rtgenmsg))
910 	       + nla_total_size(sizeof(s32)) /* NETNSA_NSID */
911 	       + nla_total_size(sizeof(s32)) /* NETNSA_CURRENT_NSID */
912 	       ;
913 }
914 
915 struct net_fill_args {
916 	u32 portid;
917 	u32 seq;
918 	int flags;
919 	int cmd;
920 	int nsid;
921 	bool add_ref;
922 	int ref_nsid;
923 };
924 
925 static int rtnl_net_fill(struct sk_buff *skb, struct net_fill_args *args)
926 {
927 	struct nlmsghdr *nlh;
928 	struct rtgenmsg *rth;
929 
930 	nlh = nlmsg_put(skb, args->portid, args->seq, args->cmd, sizeof(*rth),
931 			args->flags);
932 	if (!nlh)
933 		return -EMSGSIZE;
934 
935 	rth = nlmsg_data(nlh);
936 	rth->rtgen_family = AF_UNSPEC;
937 
938 	if (nla_put_s32(skb, NETNSA_NSID, args->nsid))
939 		goto nla_put_failure;
940 
941 	if (args->add_ref &&
942 	    nla_put_s32(skb, NETNSA_CURRENT_NSID, args->ref_nsid))
943 		goto nla_put_failure;
944 
945 	nlmsg_end(skb, nlh);
946 	return 0;
947 
948 nla_put_failure:
949 	nlmsg_cancel(skb, nlh);
950 	return -EMSGSIZE;
951 }
952 
953 static int rtnl_net_valid_getid_req(struct sk_buff *skb,
954 				    const struct nlmsghdr *nlh,
955 				    struct nlattr **tb,
956 				    struct netlink_ext_ack *extack)
957 {
958 	int i, err;
959 
960 	if (!netlink_strict_get_check(skb))
961 		return nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg),
962 					      tb, NETNSA_MAX, rtnl_net_policy,
963 					      extack);
964 
965 	err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb,
966 					    NETNSA_MAX, rtnl_net_policy,
967 					    extack);
968 	if (err)
969 		return err;
970 
971 	for (i = 0; i <= NETNSA_MAX; i++) {
972 		if (!tb[i])
973 			continue;
974 
975 		switch (i) {
976 		case NETNSA_PID:
977 		case NETNSA_FD:
978 		case NETNSA_NSID:
979 		case NETNSA_TARGET_NSID:
980 			break;
981 		default:
982 			NL_SET_ERR_MSG(extack, "Unsupported attribute in peer netns getid request");
983 			return -EINVAL;
984 		}
985 	}
986 
987 	return 0;
988 }
989 
990 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh,
991 			  struct netlink_ext_ack *extack)
992 {
993 	struct net *net = sock_net(skb->sk);
994 	struct nlattr *tb[NETNSA_MAX + 1];
995 	struct net_fill_args fillargs = {
996 		.portid = NETLINK_CB(skb).portid,
997 		.seq = nlh->nlmsg_seq,
998 		.cmd = RTM_NEWNSID,
999 	};
1000 	struct net *peer, *target = net;
1001 	struct nlattr *nla;
1002 	struct sk_buff *msg;
1003 	int err;
1004 
1005 	err = rtnl_net_valid_getid_req(skb, nlh, tb, extack);
1006 	if (err < 0)
1007 		return err;
1008 	if (tb[NETNSA_PID]) {
1009 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
1010 		nla = tb[NETNSA_PID];
1011 	} else if (tb[NETNSA_FD]) {
1012 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
1013 		nla = tb[NETNSA_FD];
1014 	} else if (tb[NETNSA_NSID]) {
1015 		peer = get_net_ns_by_id(net, nla_get_s32(tb[NETNSA_NSID]));
1016 		if (!peer)
1017 			peer = ERR_PTR(-ENOENT);
1018 		nla = tb[NETNSA_NSID];
1019 	} else {
1020 		NL_SET_ERR_MSG(extack, "Peer netns reference is missing");
1021 		return -EINVAL;
1022 	}
1023 
1024 	if (IS_ERR(peer)) {
1025 		NL_SET_BAD_ATTR(extack, nla);
1026 		NL_SET_ERR_MSG(extack, "Peer netns reference is invalid");
1027 		return PTR_ERR(peer);
1028 	}
1029 
1030 	if (tb[NETNSA_TARGET_NSID]) {
1031 		int id = nla_get_s32(tb[NETNSA_TARGET_NSID]);
1032 
1033 		target = rtnl_get_net_ns_capable(NETLINK_CB(skb).sk, id);
1034 		if (IS_ERR(target)) {
1035 			NL_SET_BAD_ATTR(extack, tb[NETNSA_TARGET_NSID]);
1036 			NL_SET_ERR_MSG(extack,
1037 				       "Target netns reference is invalid");
1038 			err = PTR_ERR(target);
1039 			goto out;
1040 		}
1041 		fillargs.add_ref = true;
1042 		fillargs.ref_nsid = peernet2id(net, peer);
1043 	}
1044 
1045 	msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
1046 	if (!msg) {
1047 		err = -ENOMEM;
1048 		goto out;
1049 	}
1050 
1051 	fillargs.nsid = peernet2id(target, peer);
1052 	err = rtnl_net_fill(msg, &fillargs);
1053 	if (err < 0)
1054 		goto err_out;
1055 
1056 	err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid);
1057 	goto out;
1058 
1059 err_out:
1060 	nlmsg_free(msg);
1061 out:
1062 	if (fillargs.add_ref)
1063 		put_net(target);
1064 	put_net(peer);
1065 	return err;
1066 }
1067 
1068 struct rtnl_net_dump_cb {
1069 	struct net *tgt_net;
1070 	struct net *ref_net;
1071 	struct sk_buff *skb;
1072 	struct net_fill_args fillargs;
1073 	int idx;
1074 	int s_idx;
1075 };
1076 
1077 /* Runs in RCU-critical section. */
1078 static int rtnl_net_dumpid_one(int id, void *peer, void *data)
1079 {
1080 	struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data;
1081 	int ret;
1082 
1083 	if (net_cb->idx < net_cb->s_idx)
1084 		goto cont;
1085 
1086 	net_cb->fillargs.nsid = id;
1087 	if (net_cb->fillargs.add_ref)
1088 		net_cb->fillargs.ref_nsid = __peernet2id(net_cb->ref_net, peer);
1089 	ret = rtnl_net_fill(net_cb->skb, &net_cb->fillargs);
1090 	if (ret < 0)
1091 		return ret;
1092 
1093 cont:
1094 	net_cb->idx++;
1095 	return 0;
1096 }
1097 
1098 static int rtnl_valid_dump_net_req(const struct nlmsghdr *nlh, struct sock *sk,
1099 				   struct rtnl_net_dump_cb *net_cb,
1100 				   struct netlink_callback *cb)
1101 {
1102 	struct netlink_ext_ack *extack = cb->extack;
1103 	struct nlattr *tb[NETNSA_MAX + 1];
1104 	int err, i;
1105 
1106 	err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb,
1107 					    NETNSA_MAX, rtnl_net_policy,
1108 					    extack);
1109 	if (err < 0)
1110 		return err;
1111 
1112 	for (i = 0; i <= NETNSA_MAX; i++) {
1113 		if (!tb[i])
1114 			continue;
1115 
1116 		if (i == NETNSA_TARGET_NSID) {
1117 			struct net *net;
1118 
1119 			net = rtnl_get_net_ns_capable(sk, nla_get_s32(tb[i]));
1120 			if (IS_ERR(net)) {
1121 				NL_SET_BAD_ATTR(extack, tb[i]);
1122 				NL_SET_ERR_MSG(extack,
1123 					       "Invalid target network namespace id");
1124 				return PTR_ERR(net);
1125 			}
1126 			net_cb->fillargs.add_ref = true;
1127 			net_cb->ref_net = net_cb->tgt_net;
1128 			net_cb->tgt_net = net;
1129 		} else {
1130 			NL_SET_BAD_ATTR(extack, tb[i]);
1131 			NL_SET_ERR_MSG(extack,
1132 				       "Unsupported attribute in dump request");
1133 			return -EINVAL;
1134 		}
1135 	}
1136 
1137 	return 0;
1138 }
1139 
1140 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb)
1141 {
1142 	struct rtnl_net_dump_cb net_cb = {
1143 		.tgt_net = sock_net(skb->sk),
1144 		.skb = skb,
1145 		.fillargs = {
1146 			.portid = NETLINK_CB(cb->skb).portid,
1147 			.seq = cb->nlh->nlmsg_seq,
1148 			.flags = NLM_F_MULTI,
1149 			.cmd = RTM_NEWNSID,
1150 		},
1151 		.idx = 0,
1152 		.s_idx = cb->args[0],
1153 	};
1154 	int err = 0;
1155 
1156 	if (cb->strict_check) {
1157 		err = rtnl_valid_dump_net_req(cb->nlh, skb->sk, &net_cb, cb);
1158 		if (err < 0)
1159 			goto end;
1160 	}
1161 
1162 	rcu_read_lock();
1163 	idr_for_each(&net_cb.tgt_net->netns_ids, rtnl_net_dumpid_one, &net_cb);
1164 	rcu_read_unlock();
1165 
1166 	cb->args[0] = net_cb.idx;
1167 end:
1168 	if (net_cb.fillargs.add_ref)
1169 		put_net(net_cb.tgt_net);
1170 	return err;
1171 }
1172 
1173 static void rtnl_net_notifyid(struct net *net, int cmd, int id, u32 portid,
1174 			      struct nlmsghdr *nlh, gfp_t gfp)
1175 {
1176 	struct net_fill_args fillargs = {
1177 		.portid = portid,
1178 		.seq = nlh ? nlh->nlmsg_seq : 0,
1179 		.cmd = cmd,
1180 		.nsid = id,
1181 	};
1182 	struct sk_buff *msg;
1183 	int err = -ENOMEM;
1184 
1185 	msg = nlmsg_new(rtnl_net_get_size(), gfp);
1186 	if (!msg)
1187 		goto out;
1188 
1189 	err = rtnl_net_fill(msg, &fillargs);
1190 	if (err < 0)
1191 		goto err_out;
1192 
1193 	rtnl_notify(msg, net, portid, RTNLGRP_NSID, nlh, gfp);
1194 	return;
1195 
1196 err_out:
1197 	nlmsg_free(msg);
1198 out:
1199 	rtnl_set_sk_err(net, RTNLGRP_NSID, err);
1200 }
1201 
1202 #ifdef CONFIG_NET_NS
1203 static void __init netns_ipv4_struct_check(void)
1204 {
1205 	/* TX readonly hotpath cache lines */
1206 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1207 				      sysctl_tcp_early_retrans);
1208 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1209 				      sysctl_tcp_tso_win_divisor);
1210 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1211 				      sysctl_tcp_tso_rtt_log);
1212 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1213 				      sysctl_tcp_autocorking);
1214 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1215 				      sysctl_tcp_min_snd_mss);
1216 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1217 				      sysctl_tcp_notsent_lowat);
1218 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1219 				      sysctl_tcp_limit_output_bytes);
1220 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1221 				      sysctl_tcp_min_rtt_wlen);
1222 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1223 				      sysctl_tcp_wmem);
1224 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1225 				      sysctl_ip_fwd_use_pmtu);
1226 
1227 	/* RX readonly hotpath cache line */
1228 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx,
1229 				      sysctl_tcp_moderate_rcvbuf);
1230 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx,
1231 				      sysctl_tcp_rcvbuf_low_rtt);
1232 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx,
1233 				      sysctl_ip_early_demux);
1234 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx,
1235 				      sysctl_tcp_early_demux);
1236 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx,
1237 				      sysctl_tcp_l3mdev_accept);
1238 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx,
1239 				      sysctl_tcp_reordering);
1240 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx,
1241 				      sysctl_tcp_rmem);
1242 }
1243 #endif
1244 
1245 static const struct rtnl_msg_handler net_ns_rtnl_msg_handlers[] __initconst = {
1246 	{.msgtype = RTM_NEWNSID, .doit = rtnl_net_newid,
1247 	 .flags = RTNL_FLAG_DOIT_UNLOCKED},
1248 	{.msgtype = RTM_GETNSID, .doit = rtnl_net_getid,
1249 	 .dumpit = rtnl_net_dumpid,
1250 	 .flags = RTNL_FLAG_DOIT_UNLOCKED | RTNL_FLAG_DUMP_UNLOCKED},
1251 };
1252 
1253 void __init net_ns_init(void)
1254 {
1255 	struct net_generic *ng;
1256 
1257 #ifdef CONFIG_NET_NS
1258 	netns_ipv4_struct_check();
1259 	net_cachep = kmem_cache_create("net_namespace", sizeof(struct net),
1260 					SMP_CACHE_BYTES,
1261 					SLAB_PANIC|SLAB_ACCOUNT, NULL);
1262 
1263 	/* Create workqueue for cleanup */
1264 	netns_wq = create_singlethread_workqueue("netns");
1265 	if (!netns_wq)
1266 		panic("Could not create netns workq");
1267 #endif
1268 
1269 	ng = net_alloc_generic();
1270 	if (!ng)
1271 		panic("Could not allocate generic netns");
1272 
1273 	rcu_assign_pointer(init_net.gen, ng);
1274 
1275 #ifdef CONFIG_KEYS
1276 	init_net.key_domain = &init_net_key_domain;
1277 #endif
1278 	/*
1279 	 * This currently cannot fail as the initial network namespace
1280 	 * has a static inode number.
1281 	 */
1282 	if (preinit_net(&init_net, &init_user_ns))
1283 		panic("Could not preinitialize the initial network namespace");
1284 
1285 	down_write(&pernet_ops_rwsem);
1286 	if (setup_net(&init_net))
1287 		panic("Could not setup the initial network namespace");
1288 
1289 	init_net_initialized = true;
1290 	up_write(&pernet_ops_rwsem);
1291 
1292 	if (register_pernet_subsys(&net_ns_ops))
1293 		panic("Could not register network namespace subsystems");
1294 
1295 	rtnl_register_many(net_ns_rtnl_msg_handlers);
1296 }
1297 
1298 #ifdef CONFIG_NET_NS
1299 static int __register_pernet_operations(struct list_head *list,
1300 					struct pernet_operations *ops)
1301 {
1302 	LIST_HEAD(net_exit_list);
1303 	struct net *net;
1304 	int error;
1305 
1306 	list_add_tail(&ops->list, list);
1307 	if (ops->init || ops->id) {
1308 		/* We held write locked pernet_ops_rwsem, and parallel
1309 		 * setup_net() and cleanup_net() are not possible.
1310 		 */
1311 		for_each_net(net) {
1312 			error = ops_init(ops, net);
1313 			if (error)
1314 				goto out_undo;
1315 			list_add_tail(&net->exit_list, &net_exit_list);
1316 		}
1317 	}
1318 	return 0;
1319 
1320 out_undo:
1321 	/* If I have an error cleanup all namespaces I initialized */
1322 	list_del(&ops->list);
1323 	ops_undo_single(ops, &net_exit_list);
1324 	return error;
1325 }
1326 
1327 static void __unregister_pernet_operations(struct pernet_operations *ops)
1328 {
1329 	LIST_HEAD(net_exit_list);
1330 	struct net *net;
1331 
1332 	/* See comment in __register_pernet_operations() */
1333 	for_each_net(net)
1334 		list_add_tail(&net->exit_list, &net_exit_list);
1335 
1336 	list_del(&ops->list);
1337 	ops_undo_single(ops, &net_exit_list);
1338 }
1339 
1340 #else
1341 
1342 static int __register_pernet_operations(struct list_head *list,
1343 					struct pernet_operations *ops)
1344 {
1345 	if (!init_net_initialized) {
1346 		list_add_tail(&ops->list, list);
1347 		return 0;
1348 	}
1349 
1350 	return ops_init(ops, &init_net);
1351 }
1352 
1353 static void __unregister_pernet_operations(struct pernet_operations *ops)
1354 {
1355 	if (!init_net_initialized) {
1356 		list_del(&ops->list);
1357 	} else {
1358 		LIST_HEAD(net_exit_list);
1359 
1360 		list_add(&init_net.exit_list, &net_exit_list);
1361 		ops_undo_single(ops, &net_exit_list);
1362 	}
1363 }
1364 
1365 #endif /* CONFIG_NET_NS */
1366 
1367 static DEFINE_IDA(net_generic_ids);
1368 
1369 static int register_pernet_operations(struct list_head *list,
1370 				      struct pernet_operations *ops)
1371 {
1372 	int error;
1373 
1374 	if (WARN_ON(!!ops->id ^ !!ops->size))
1375 		return -EINVAL;
1376 
1377 	if (ops->id) {
1378 		error = ida_alloc_min(&net_generic_ids, MIN_PERNET_OPS_ID,
1379 				GFP_KERNEL);
1380 		if (error < 0)
1381 			return error;
1382 		*ops->id = error;
1383 		/* This does not require READ_ONCE as writers already hold
1384 		 * pernet_ops_rwsem. But WRITE_ONCE is needed to protect
1385 		 * net_alloc_generic.
1386 		 */
1387 		WRITE_ONCE(max_gen_ptrs, max(max_gen_ptrs, *ops->id + 1));
1388 	}
1389 	error = __register_pernet_operations(list, ops);
1390 	if (error) {
1391 		rcu_barrier();
1392 		if (ops->id)
1393 			ida_free(&net_generic_ids, *ops->id);
1394 	}
1395 
1396 	return error;
1397 }
1398 
1399 static void unregister_pernet_operations(struct pernet_operations *ops)
1400 {
1401 	__unregister_pernet_operations(ops);
1402 	rcu_barrier();
1403 	if (ops->id)
1404 		ida_free(&net_generic_ids, *ops->id);
1405 }
1406 
1407 /**
1408  *      register_pernet_subsys - register a network namespace subsystem
1409  *	@ops:  pernet operations structure for the subsystem
1410  *
1411  *	Register a subsystem which has init and exit functions
1412  *	that are called when network namespaces are created and
1413  *	destroyed respectively.
1414  *
1415  *	When registered all network namespace init functions are
1416  *	called for every existing network namespace.  Allowing kernel
1417  *	modules to have a race free view of the set of network namespaces.
1418  *
1419  *	When a new network namespace is created all of the init
1420  *	methods are called in the order in which they were registered.
1421  *
1422  *	When a network namespace is destroyed all of the exit methods
1423  *	are called in the reverse of the order with which they were
1424  *	registered.
1425  */
1426 int register_pernet_subsys(struct pernet_operations *ops)
1427 {
1428 	int error;
1429 	down_write(&pernet_ops_rwsem);
1430 	error =  register_pernet_operations(first_device, ops);
1431 	up_write(&pernet_ops_rwsem);
1432 	return error;
1433 }
1434 EXPORT_SYMBOL_GPL(register_pernet_subsys);
1435 
1436 /**
1437  *      unregister_pernet_subsys - unregister a network namespace subsystem
1438  *	@ops: pernet operations structure to manipulate
1439  *
1440  *	Remove the pernet operations structure from the list to be
1441  *	used when network namespaces are created or destroyed.  In
1442  *	addition run the exit method for all existing network
1443  *	namespaces.
1444  */
1445 void unregister_pernet_subsys(struct pernet_operations *ops)
1446 {
1447 	down_write(&pernet_ops_rwsem);
1448 	unregister_pernet_operations(ops);
1449 	up_write(&pernet_ops_rwsem);
1450 }
1451 EXPORT_SYMBOL_GPL(unregister_pernet_subsys);
1452 
1453 /**
1454  *      register_pernet_device - register a network namespace device
1455  *	@ops:  pernet operations structure for the subsystem
1456  *
1457  *	Register a device which has init and exit functions
1458  *	that are called when network namespaces are created and
1459  *	destroyed respectively.
1460  *
1461  *	When registered all network namespace init functions are
1462  *	called for every existing network namespace.  Allowing kernel
1463  *	modules to have a race free view of the set of network namespaces.
1464  *
1465  *	When a new network namespace is created all of the init
1466  *	methods are called in the order in which they were registered.
1467  *
1468  *	When a network namespace is destroyed all of the exit methods
1469  *	are called in the reverse of the order with which they were
1470  *	registered.
1471  */
1472 int register_pernet_device(struct pernet_operations *ops)
1473 {
1474 	int error;
1475 	down_write(&pernet_ops_rwsem);
1476 	error = register_pernet_operations(&pernet_list, ops);
1477 	if (!error && (first_device == &pernet_list))
1478 		first_device = &ops->list;
1479 	up_write(&pernet_ops_rwsem);
1480 	return error;
1481 }
1482 EXPORT_SYMBOL_GPL(register_pernet_device);
1483 
1484 /**
1485  *      unregister_pernet_device - unregister a network namespace netdevice
1486  *	@ops: pernet operations structure to manipulate
1487  *
1488  *	Remove the pernet operations structure from the list to be
1489  *	used when network namespaces are created or destroyed.  In
1490  *	addition run the exit method for all existing network
1491  *	namespaces.
1492  */
1493 void unregister_pernet_device(struct pernet_operations *ops)
1494 {
1495 	down_write(&pernet_ops_rwsem);
1496 	if (&ops->list == first_device)
1497 		first_device = first_device->next;
1498 	unregister_pernet_operations(ops);
1499 	up_write(&pernet_ops_rwsem);
1500 }
1501 EXPORT_SYMBOL_GPL(unregister_pernet_device);
1502 
1503 #ifdef CONFIG_NET_NS
1504 static struct ns_common *netns_get(struct task_struct *task)
1505 {
1506 	struct net *net = NULL;
1507 	struct nsproxy *nsproxy;
1508 
1509 	task_lock(task);
1510 	nsproxy = task->nsproxy;
1511 	if (nsproxy)
1512 		net = get_net(nsproxy->net_ns);
1513 	task_unlock(task);
1514 
1515 	return net ? &net->ns : NULL;
1516 }
1517 
1518 static void netns_put(struct ns_common *ns)
1519 {
1520 	put_net(to_net_ns(ns));
1521 }
1522 
1523 static int netns_install(struct nsset *nsset, struct ns_common *ns)
1524 {
1525 	struct nsproxy *nsproxy = nsset->nsproxy;
1526 	struct net *net = to_net_ns(ns);
1527 
1528 	if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) ||
1529 	    !ns_capable(nsset->cred->user_ns, CAP_SYS_ADMIN))
1530 		return -EPERM;
1531 
1532 	put_net(nsproxy->net_ns);
1533 	nsproxy->net_ns = get_net(net);
1534 	return 0;
1535 }
1536 
1537 static struct user_namespace *netns_owner(struct ns_common *ns)
1538 {
1539 	return to_net_ns(ns)->user_ns;
1540 }
1541 
1542 const struct proc_ns_operations netns_operations = {
1543 	.name		= "net",
1544 	.get		= netns_get,
1545 	.put		= netns_put,
1546 	.install	= netns_install,
1547 	.owner		= netns_owner,
1548 };
1549 #endif
1550