1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * net/sched/sch_generic.c Generic packet scheduler routines.
4 *
5 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
6 * Jamal Hadi Salim, <hadi@cyberus.ca> 990601
7 * - Ingress support
8 */
9
10 #include <linux/bitops.h>
11 #include <linux/module.h>
12 #include <linux/types.h>
13 #include <linux/kernel.h>
14 #include <linux/sched.h>
15 #include <linux/string.h>
16 #include <linux/errno.h>
17 #include <linux/netdevice.h>
18 #include <linux/skbuff.h>
19 #include <linux/rtnetlink.h>
20 #include <linux/init.h>
21 #include <linux/rcupdate.h>
22 #include <linux/list.h>
23 #include <linux/slab.h>
24 #include <linux/if_vlan.h>
25 #include <linux/skb_array.h>
26 #include <linux/if_macvlan.h>
27 #include <linux/bpf.h>
28 #include <net/sch_generic.h>
29 #include <net/pkt_sched.h>
30 #include <net/dst.h>
31 #include <net/hotdata.h>
32 #include <trace/events/qdisc.h>
33 #include <trace/events/net.h>
34 #include <net/xfrm.h>
35
36 /* Qdisc to use by default */
37 const struct Qdisc_ops *default_qdisc_ops = &pfifo_fast_ops;
38 EXPORT_SYMBOL(default_qdisc_ops);
39
qdisc_maybe_clear_missed(struct Qdisc * q,const struct netdev_queue * txq)40 static void qdisc_maybe_clear_missed(struct Qdisc *q,
41 const struct netdev_queue *txq)
42 {
43 clear_bit(__QDISC_STATE_MISSED, &q->state);
44
45 /* Make sure the below netif_xmit_frozen_or_stopped()
46 * checking happens after clearing STATE_MISSED.
47 */
48 smp_mb__after_atomic();
49
50 /* Checking netif_xmit_frozen_or_stopped() again to
51 * make sure STATE_MISSED is set if the STATE_MISSED
52 * set by netif_tx_wake_queue()'s rescheduling of
53 * net_tx_action() is cleared by the above clear_bit().
54 */
55 if (!netif_xmit_frozen_or_stopped(txq))
56 set_bit(__QDISC_STATE_MISSED, &q->state);
57 else
58 set_bit(__QDISC_STATE_DRAINING, &q->state);
59 }
60
61 /* Main transmission queue. */
62
63 /* Modifications to data participating in scheduling must be protected with
64 * qdisc_lock(qdisc) spinlock.
65 *
66 * The idea is the following:
67 * - enqueue, dequeue are serialized via qdisc root lock
68 * - ingress filtering is also serialized via qdisc root lock
69 * - updates to tree and tree walking are only done under the rtnl mutex.
70 */
71
72 #define SKB_XOFF_MAGIC ((struct sk_buff *)1UL)
73
__skb_dequeue_bad_txq(struct Qdisc * q)74 static inline struct sk_buff *__skb_dequeue_bad_txq(struct Qdisc *q)
75 {
76 const struct netdev_queue *txq = q->dev_queue;
77 spinlock_t *lock = NULL;
78 struct sk_buff *skb;
79
80 if (q->flags & TCQ_F_NOLOCK) {
81 lock = qdisc_lock(q);
82 spin_lock(lock);
83 }
84
85 skb = skb_peek(&q->skb_bad_txq);
86 if (skb) {
87 /* check the reason of requeuing without tx lock first */
88 txq = skb_get_tx_queue(txq->dev, skb);
89 if (!netif_xmit_frozen_or_stopped(txq)) {
90 skb = __skb_dequeue(&q->skb_bad_txq);
91 if (qdisc_is_percpu_stats(q)) {
92 qdisc_qstats_cpu_backlog_dec(q, skb);
93 qdisc_qstats_cpu_qlen_dec(q);
94 } else {
95 qdisc_qstats_backlog_dec(q, skb);
96 q->q.qlen--;
97 }
98 } else {
99 skb = SKB_XOFF_MAGIC;
100 qdisc_maybe_clear_missed(q, txq);
101 }
102 }
103
104 if (lock)
105 spin_unlock(lock);
106
107 return skb;
108 }
109
qdisc_dequeue_skb_bad_txq(struct Qdisc * q)110 static inline struct sk_buff *qdisc_dequeue_skb_bad_txq(struct Qdisc *q)
111 {
112 struct sk_buff *skb = skb_peek(&q->skb_bad_txq);
113
114 if (unlikely(skb))
115 skb = __skb_dequeue_bad_txq(q);
116
117 return skb;
118 }
119
qdisc_enqueue_skb_bad_txq(struct Qdisc * q,struct sk_buff * skb)120 static inline void qdisc_enqueue_skb_bad_txq(struct Qdisc *q,
121 struct sk_buff *skb)
122 {
123 spinlock_t *lock = NULL;
124
125 if (q->flags & TCQ_F_NOLOCK) {
126 lock = qdisc_lock(q);
127 spin_lock(lock);
128 }
129
130 __skb_queue_tail(&q->skb_bad_txq, skb);
131
132 if (qdisc_is_percpu_stats(q)) {
133 qdisc_qstats_cpu_backlog_inc(q, skb);
134 qdisc_qstats_cpu_qlen_inc(q);
135 } else {
136 qdisc_qstats_backlog_inc(q, skb);
137 q->q.qlen++;
138 }
139
140 if (lock)
141 spin_unlock(lock);
142 }
143
dev_requeue_skb(struct sk_buff * skb,struct Qdisc * q)144 static inline void dev_requeue_skb(struct sk_buff *skb, struct Qdisc *q)
145 {
146 spinlock_t *lock = NULL;
147
148 if (q->flags & TCQ_F_NOLOCK) {
149 lock = qdisc_lock(q);
150 spin_lock(lock);
151 }
152
153 while (skb) {
154 struct sk_buff *next = skb->next;
155
156 __skb_queue_tail(&q->gso_skb, skb);
157
158 /* it's still part of the queue */
159 if (qdisc_is_percpu_stats(q)) {
160 qdisc_qstats_cpu_requeues_inc(q);
161 qdisc_qstats_cpu_backlog_inc(q, skb);
162 qdisc_qstats_cpu_qlen_inc(q);
163 } else {
164 q->qstats.requeues++;
165 qdisc_qstats_backlog_inc(q, skb);
166 q->q.qlen++;
167 }
168
169 skb = next;
170 }
171
172 if (lock) {
173 spin_unlock(lock);
174 set_bit(__QDISC_STATE_MISSED, &q->state);
175 } else {
176 __netif_schedule(q);
177 }
178 }
179
try_bulk_dequeue_skb(struct Qdisc * q,struct sk_buff * skb,const struct netdev_queue * txq,int * packets,int budget)180 static void try_bulk_dequeue_skb(struct Qdisc *q,
181 struct sk_buff *skb,
182 const struct netdev_queue *txq,
183 int *packets, int budget)
184 {
185 int bytelimit = qdisc_avail_bulklimit(txq) - skb->len;
186 int cnt = 0;
187
188 while (bytelimit > 0) {
189 struct sk_buff *nskb = q->dequeue(q);
190
191 if (!nskb)
192 break;
193
194 bytelimit -= nskb->len; /* covers GSO len */
195 skb->next = nskb;
196 skb = nskb;
197 if (++cnt >= budget)
198 break;
199 }
200 (*packets) += cnt;
201 skb_mark_not_on_list(skb);
202 }
203
204 /* This variant of try_bulk_dequeue_skb() makes sure
205 * all skbs in the chain are for the same txq
206 */
try_bulk_dequeue_skb_slow(struct Qdisc * q,struct sk_buff * skb,int * packets)207 static void try_bulk_dequeue_skb_slow(struct Qdisc *q,
208 struct sk_buff *skb,
209 int *packets)
210 {
211 int mapping = skb_get_queue_mapping(skb);
212 struct sk_buff *nskb;
213 int cnt = 0;
214
215 do {
216 nskb = q->dequeue(q);
217 if (!nskb)
218 break;
219 if (unlikely(skb_get_queue_mapping(nskb) != mapping)) {
220 qdisc_enqueue_skb_bad_txq(q, nskb);
221 break;
222 }
223 skb->next = nskb;
224 skb = nskb;
225 } while (++cnt < 8);
226 (*packets) += cnt;
227 skb_mark_not_on_list(skb);
228 }
229
230 /* Note that dequeue_skb can possibly return a SKB list (via skb->next).
231 * A requeued skb (via q->gso_skb) can also be a SKB list.
232 */
dequeue_skb(struct Qdisc * q,bool * validate,int * packets,int budget)233 static struct sk_buff *dequeue_skb(struct Qdisc *q, bool *validate,
234 int *packets, int budget)
235 {
236 const struct netdev_queue *txq = q->dev_queue;
237 struct sk_buff *skb = NULL;
238
239 *packets = 1;
240 if (unlikely(!skb_queue_empty(&q->gso_skb))) {
241 spinlock_t *lock = NULL;
242
243 if (q->flags & TCQ_F_NOLOCK) {
244 lock = qdisc_lock(q);
245 spin_lock(lock);
246 }
247
248 skb = skb_peek(&q->gso_skb);
249
250 /* skb may be null if another cpu pulls gso_skb off in between
251 * empty check and lock.
252 */
253 if (!skb) {
254 if (lock)
255 spin_unlock(lock);
256 goto validate;
257 }
258
259 /* skb in gso_skb were already validated */
260 *validate = false;
261 if (xfrm_offload(skb))
262 *validate = true;
263 /* check the reason of requeuing without tx lock first */
264 txq = skb_get_tx_queue(txq->dev, skb);
265 if (!netif_xmit_frozen_or_stopped(txq)) {
266 skb = __skb_dequeue(&q->gso_skb);
267 if (qdisc_is_percpu_stats(q)) {
268 qdisc_qstats_cpu_backlog_dec(q, skb);
269 qdisc_qstats_cpu_qlen_dec(q);
270 } else {
271 qdisc_qstats_backlog_dec(q, skb);
272 q->q.qlen--;
273 }
274 } else {
275 skb = NULL;
276 qdisc_maybe_clear_missed(q, txq);
277 }
278 if (lock)
279 spin_unlock(lock);
280 goto trace;
281 }
282 validate:
283 *validate = true;
284
285 if ((q->flags & TCQ_F_ONETXQUEUE) &&
286 netif_xmit_frozen_or_stopped(txq)) {
287 qdisc_maybe_clear_missed(q, txq);
288 return skb;
289 }
290
291 skb = qdisc_dequeue_skb_bad_txq(q);
292 if (unlikely(skb)) {
293 if (skb == SKB_XOFF_MAGIC)
294 return NULL;
295 goto bulk;
296 }
297 skb = q->dequeue(q);
298 if (skb) {
299 bulk:
300 if (qdisc_may_bulk(q))
301 try_bulk_dequeue_skb(q, skb, txq, packets, budget);
302 else
303 try_bulk_dequeue_skb_slow(q, skb, packets);
304 }
305 trace:
306 trace_qdisc_dequeue(q, txq, *packets, skb);
307 return skb;
308 }
309
310 /*
311 * Transmit possibly several skbs, and handle the return status as
312 * required. Owning qdisc running bit guarantees that only one CPU
313 * can execute this function.
314 *
315 * Returns to the caller:
316 * false - hardware queue frozen backoff
317 * true - feel free to send more pkts
318 */
sch_direct_xmit(struct sk_buff * skb,struct Qdisc * q,struct net_device * dev,struct netdev_queue * txq,spinlock_t * root_lock,bool validate)319 bool sch_direct_xmit(struct sk_buff *skb, struct Qdisc *q,
320 struct net_device *dev, struct netdev_queue *txq,
321 spinlock_t *root_lock, bool validate)
322 {
323 int ret = NETDEV_TX_BUSY;
324 bool again = false;
325
326 /* And release qdisc */
327 if (root_lock)
328 spin_unlock(root_lock);
329
330 /* Note that we validate skb (GSO, checksum, ...) outside of locks */
331 if (validate)
332 skb = validate_xmit_skb_list(skb, dev, &again);
333
334 #ifdef CONFIG_XFRM_OFFLOAD
335 if (unlikely(again)) {
336 if (root_lock)
337 spin_lock(root_lock);
338
339 dev_requeue_skb(skb, q);
340 return false;
341 }
342 #endif
343
344 if (likely(skb)) {
345 HARD_TX_LOCK(dev, txq, smp_processor_id());
346 if (!netif_xmit_frozen_or_stopped(txq))
347 skb = dev_hard_start_xmit(skb, dev, txq, &ret);
348 else
349 qdisc_maybe_clear_missed(q, txq);
350
351 HARD_TX_UNLOCK(dev, txq);
352 } else {
353 if (root_lock)
354 spin_lock(root_lock);
355 return true;
356 }
357
358 if (root_lock)
359 spin_lock(root_lock);
360
361 if (!dev_xmit_complete(ret)) {
362 /* Driver returned NETDEV_TX_BUSY - requeue skb */
363 if (unlikely(ret != NETDEV_TX_BUSY))
364 net_warn_ratelimited("BUG %s code %d qlen %d\n",
365 dev->name, ret, q->q.qlen);
366
367 dev_requeue_skb(skb, q);
368 return false;
369 }
370
371 return true;
372 }
373
374 /*
375 * NOTE: Called under qdisc_lock(q) with locally disabled BH.
376 *
377 * running seqcount guarantees only one CPU can process
378 * this qdisc at a time. qdisc_lock(q) serializes queue accesses for
379 * this queue.
380 *
381 * netif_tx_lock serializes accesses to device driver.
382 *
383 * qdisc_lock(q) and netif_tx_lock are mutually exclusive,
384 * if one is grabbed, another must be free.
385 *
386 * Note, that this procedure can be called by a watchdog timer
387 *
388 * Returns to the caller:
389 * 0 - queue is empty or throttled.
390 * >0 - queue is not empty.
391 *
392 */
qdisc_restart(struct Qdisc * q,int * packets,int budget)393 static inline bool qdisc_restart(struct Qdisc *q, int *packets, int budget)
394 {
395 spinlock_t *root_lock = NULL;
396 struct netdev_queue *txq;
397 struct net_device *dev;
398 struct sk_buff *skb;
399 bool validate;
400
401 /* Dequeue packet */
402 skb = dequeue_skb(q, &validate, packets, budget);
403 if (unlikely(!skb))
404 return false;
405
406 if (!(q->flags & TCQ_F_NOLOCK))
407 root_lock = qdisc_lock(q);
408
409 dev = qdisc_dev(q);
410 txq = skb_get_tx_queue(dev, skb);
411
412 return sch_direct_xmit(skb, q, dev, txq, root_lock, validate);
413 }
414
__qdisc_run(struct Qdisc * q)415 void __qdisc_run(struct Qdisc *q)
416 {
417 int quota = READ_ONCE(net_hotdata.dev_tx_weight);
418 int packets;
419
420 while (qdisc_restart(q, &packets, quota)) {
421 quota -= packets;
422 if (quota <= 0) {
423 if (q->flags & TCQ_F_NOLOCK)
424 set_bit(__QDISC_STATE_MISSED, &q->state);
425 else
426 __netif_schedule(q);
427
428 break;
429 }
430 }
431 }
432
dev_trans_start(struct net_device * dev)433 unsigned long dev_trans_start(struct net_device *dev)
434 {
435 unsigned long res = READ_ONCE(netdev_get_tx_queue(dev, 0)->trans_start);
436 unsigned long val;
437 unsigned int i;
438
439 for (i = 1; i < dev->num_tx_queues; i++) {
440 val = READ_ONCE(netdev_get_tx_queue(dev, i)->trans_start);
441 if (val && time_after(val, res))
442 res = val;
443 }
444
445 return res;
446 }
447 EXPORT_SYMBOL(dev_trans_start);
448
netif_freeze_queues(struct net_device * dev)449 static void netif_freeze_queues(struct net_device *dev)
450 {
451 unsigned int i;
452 int cpu;
453
454 cpu = smp_processor_id();
455 for (i = 0; i < dev->num_tx_queues; i++) {
456 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
457
458 /* We are the only thread of execution doing a
459 * freeze, but we have to grab the _xmit_lock in
460 * order to synchronize with threads which are in
461 * the ->hard_start_xmit() handler and already
462 * checked the frozen bit.
463 */
464 __netif_tx_lock(txq, cpu);
465 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
466 __netif_tx_unlock(txq);
467 }
468 }
469
netif_tx_lock(struct net_device * dev)470 void netif_tx_lock(struct net_device *dev)
471 {
472 spin_lock(&dev->tx_global_lock);
473 netif_freeze_queues(dev);
474 }
475 EXPORT_SYMBOL(netif_tx_lock);
476
netif_unfreeze_queues(struct net_device * dev)477 static void netif_unfreeze_queues(struct net_device *dev)
478 {
479 unsigned int i;
480
481 for (i = 0; i < dev->num_tx_queues; i++) {
482 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
483
484 /* No need to grab the _xmit_lock here. If the
485 * queue is not stopped for another reason, we
486 * force a schedule.
487 */
488 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
489 netif_schedule_queue(txq);
490 }
491 }
492
netif_tx_unlock(struct net_device * dev)493 void netif_tx_unlock(struct net_device *dev)
494 {
495 netif_unfreeze_queues(dev);
496 spin_unlock(&dev->tx_global_lock);
497 }
498 EXPORT_SYMBOL(netif_tx_unlock);
499
dev_watchdog(struct timer_list * t)500 static void dev_watchdog(struct timer_list *t)
501 {
502 struct net_device *dev = timer_container_of(dev, t, watchdog_timer);
503 bool release = true;
504
505 spin_lock(&dev->tx_global_lock);
506 if (!qdisc_tx_is_noop(dev)) {
507 if (netif_device_present(dev) &&
508 netif_running(dev) &&
509 netif_carrier_ok(dev)) {
510 unsigned int timedout_ms = 0;
511 unsigned int i;
512 unsigned long trans_start;
513 unsigned long oldest_start = jiffies;
514
515 for (i = 0; i < dev->num_tx_queues; i++) {
516 struct netdev_queue *txq;
517
518 txq = netdev_get_tx_queue(dev, i);
519 if (!netif_xmit_stopped(txq))
520 continue;
521
522 /* Paired with WRITE_ONCE() + smp_mb...() in
523 * netdev_tx_sent_queue() and netif_tx_stop_queue().
524 */
525 smp_mb();
526 trans_start = READ_ONCE(txq->trans_start);
527
528 if (time_after(jiffies, trans_start + dev->watchdog_timeo)) {
529 timedout_ms = jiffies_to_msecs(jiffies - trans_start);
530 atomic_long_inc(&txq->trans_timeout);
531 break;
532 }
533 if (time_after(oldest_start, trans_start))
534 oldest_start = trans_start;
535 }
536
537 if (unlikely(timedout_ms)) {
538 trace_net_dev_xmit_timeout(dev, i);
539 netdev_crit(dev, "NETDEV WATCHDOG: CPU: %d: transmit queue %u timed out %u ms\n",
540 raw_smp_processor_id(),
541 i, timedout_ms);
542 netif_freeze_queues(dev);
543 dev->netdev_ops->ndo_tx_timeout(dev, i);
544 netif_unfreeze_queues(dev);
545 }
546 if (!mod_timer(&dev->watchdog_timer,
547 round_jiffies(oldest_start +
548 dev->watchdog_timeo)))
549 release = false;
550 }
551 }
552 spin_unlock(&dev->tx_global_lock);
553
554 if (release)
555 netdev_put(dev, &dev->watchdog_dev_tracker);
556 }
557
netdev_watchdog_up(struct net_device * dev)558 void netdev_watchdog_up(struct net_device *dev)
559 {
560 if (!dev->netdev_ops->ndo_tx_timeout)
561 return;
562 if (dev->watchdog_timeo <= 0)
563 dev->watchdog_timeo = 5*HZ;
564 if (!mod_timer(&dev->watchdog_timer,
565 round_jiffies(jiffies + dev->watchdog_timeo)))
566 netdev_hold(dev, &dev->watchdog_dev_tracker,
567 GFP_ATOMIC);
568 }
569 EXPORT_SYMBOL_GPL(netdev_watchdog_up);
570
netdev_watchdog_down(struct net_device * dev)571 static void netdev_watchdog_down(struct net_device *dev)
572 {
573 netif_tx_lock_bh(dev);
574 if (timer_delete(&dev->watchdog_timer))
575 netdev_put(dev, &dev->watchdog_dev_tracker);
576 netif_tx_unlock_bh(dev);
577 }
578
579 /**
580 * netif_carrier_on - set carrier
581 * @dev: network device
582 *
583 * Device has detected acquisition of carrier.
584 */
netif_carrier_on(struct net_device * dev)585 void netif_carrier_on(struct net_device *dev)
586 {
587 if (test_and_clear_bit(__LINK_STATE_NOCARRIER, &dev->state)) {
588 if (dev->reg_state == NETREG_UNINITIALIZED)
589 return;
590 atomic_inc(&dev->carrier_up_count);
591 linkwatch_fire_event(dev);
592 if (netif_running(dev))
593 netdev_watchdog_up(dev);
594 }
595 }
596 EXPORT_SYMBOL(netif_carrier_on);
597
598 /**
599 * netif_carrier_off - clear carrier
600 * @dev: network device
601 *
602 * Device has detected loss of carrier.
603 */
netif_carrier_off(struct net_device * dev)604 void netif_carrier_off(struct net_device *dev)
605 {
606 if (!test_and_set_bit(__LINK_STATE_NOCARRIER, &dev->state)) {
607 if (dev->reg_state == NETREG_UNINITIALIZED)
608 return;
609 atomic_inc(&dev->carrier_down_count);
610 linkwatch_fire_event(dev);
611 }
612 }
613 EXPORT_SYMBOL(netif_carrier_off);
614
615 /**
616 * netif_carrier_event - report carrier state event
617 * @dev: network device
618 *
619 * Device has detected a carrier event but the carrier state wasn't changed.
620 * Use in drivers when querying carrier state asynchronously, to avoid missing
621 * events (link flaps) if link recovers before it's queried.
622 */
netif_carrier_event(struct net_device * dev)623 void netif_carrier_event(struct net_device *dev)
624 {
625 if (dev->reg_state == NETREG_UNINITIALIZED)
626 return;
627 atomic_inc(&dev->carrier_up_count);
628 atomic_inc(&dev->carrier_down_count);
629 linkwatch_fire_event(dev);
630 }
631 EXPORT_SYMBOL_GPL(netif_carrier_event);
632
633 /* "NOOP" scheduler: the best scheduler, recommended for all interfaces
634 under all circumstances. It is difficult to invent anything faster or
635 cheaper.
636 */
637
noop_enqueue(struct sk_buff * skb,struct Qdisc * qdisc,struct sk_buff ** to_free)638 static int noop_enqueue(struct sk_buff *skb, struct Qdisc *qdisc,
639 struct sk_buff **to_free)
640 {
641 dev_core_stats_tx_dropped_inc(skb->dev);
642 __qdisc_drop(skb, to_free);
643 return NET_XMIT_CN;
644 }
645
noop_dequeue(struct Qdisc * qdisc)646 static struct sk_buff *noop_dequeue(struct Qdisc *qdisc)
647 {
648 return NULL;
649 }
650
651 struct Qdisc_ops noop_qdisc_ops __read_mostly = {
652 .id = "noop",
653 .priv_size = 0,
654 .enqueue = noop_enqueue,
655 .dequeue = noop_dequeue,
656 .peek = noop_dequeue,
657 .owner = THIS_MODULE,
658 };
659
660 static struct netdev_queue noop_netdev_queue = {
661 RCU_POINTER_INITIALIZER(qdisc, &noop_qdisc),
662 RCU_POINTER_INITIALIZER(qdisc_sleeping, &noop_qdisc),
663 };
664
665 struct Qdisc noop_qdisc = {
666 .enqueue = noop_enqueue,
667 .dequeue = noop_dequeue,
668 .flags = TCQ_F_BUILTIN,
669 .ops = &noop_qdisc_ops,
670 .q.lock = __SPIN_LOCK_UNLOCKED(noop_qdisc.q.lock),
671 .dev_queue = &noop_netdev_queue,
672 .gso_skb = {
673 .next = (struct sk_buff *)&noop_qdisc.gso_skb,
674 .prev = (struct sk_buff *)&noop_qdisc.gso_skb,
675 .qlen = 0,
676 .lock = __SPIN_LOCK_UNLOCKED(noop_qdisc.gso_skb.lock),
677 },
678 .skb_bad_txq = {
679 .next = (struct sk_buff *)&noop_qdisc.skb_bad_txq,
680 .prev = (struct sk_buff *)&noop_qdisc.skb_bad_txq,
681 .qlen = 0,
682 .lock = __SPIN_LOCK_UNLOCKED(noop_qdisc.skb_bad_txq.lock),
683 },
684 };
685 EXPORT_SYMBOL(noop_qdisc);
686
noqueue_init(struct Qdisc * qdisc,struct nlattr * opt,struct netlink_ext_ack * extack)687 static int noqueue_init(struct Qdisc *qdisc, struct nlattr *opt,
688 struct netlink_ext_ack *extack)
689 {
690 /* register_qdisc() assigns a default of noop_enqueue if unset,
691 * but __dev_queue_xmit() treats noqueue only as such
692 * if this is NULL - so clear it here. */
693 qdisc->enqueue = NULL;
694 return 0;
695 }
696
697 struct Qdisc_ops noqueue_qdisc_ops __read_mostly = {
698 .id = "noqueue",
699 .priv_size = 0,
700 .init = noqueue_init,
701 .enqueue = noop_enqueue,
702 .dequeue = noop_dequeue,
703 .peek = noop_dequeue,
704 .owner = THIS_MODULE,
705 };
706
707 const u8 sch_default_prio2band[TC_PRIO_MAX + 1] = {
708 1, 2, 2, 2, 1, 2, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1
709 };
710 EXPORT_SYMBOL(sch_default_prio2band);
711
712 /* 3-band FIFO queue: old style, but should be a bit faster than
713 generic prio+fifo combination.
714 */
715
716 #define PFIFO_FAST_BANDS 3
717
718 /*
719 * Private data for a pfifo_fast scheduler containing:
720 * - rings for priority bands
721 */
722 struct pfifo_fast_priv {
723 struct skb_array q[PFIFO_FAST_BANDS];
724 };
725
band2list(struct pfifo_fast_priv * priv,int band)726 static inline struct skb_array *band2list(struct pfifo_fast_priv *priv,
727 int band)
728 {
729 return &priv->q[band];
730 }
731
pfifo_fast_enqueue(struct sk_buff * skb,struct Qdisc * qdisc,struct sk_buff ** to_free)732 static int pfifo_fast_enqueue(struct sk_buff *skb, struct Qdisc *qdisc,
733 struct sk_buff **to_free)
734 {
735 int band = sch_default_prio2band[skb->priority & TC_PRIO_MAX];
736 struct pfifo_fast_priv *priv = qdisc_priv(qdisc);
737 struct skb_array *q = band2list(priv, band);
738 unsigned int pkt_len = qdisc_pkt_len(skb);
739 int err;
740
741 err = skb_array_produce(q, skb);
742
743 if (unlikely(err)) {
744 tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_OVERLIMIT);
745
746 if (qdisc_is_percpu_stats(qdisc))
747 return qdisc_drop_cpu(skb, qdisc, to_free);
748 else
749 return qdisc_drop(skb, qdisc, to_free);
750 }
751
752 qdisc_update_stats_at_enqueue(qdisc, pkt_len);
753 return NET_XMIT_SUCCESS;
754 }
755
pfifo_fast_dequeue(struct Qdisc * qdisc)756 static struct sk_buff *pfifo_fast_dequeue(struct Qdisc *qdisc)
757 {
758 struct pfifo_fast_priv *priv = qdisc_priv(qdisc);
759 struct sk_buff *skb = NULL;
760 bool need_retry = true;
761 int band;
762
763 retry:
764 for (band = 0; band < PFIFO_FAST_BANDS && !skb; band++) {
765 struct skb_array *q = band2list(priv, band);
766
767 if (__skb_array_empty(q))
768 continue;
769
770 skb = __skb_array_consume(q);
771 }
772 if (likely(skb)) {
773 qdisc_update_stats_at_dequeue(qdisc, skb);
774 } else if (need_retry &&
775 READ_ONCE(qdisc->state) & QDISC_STATE_NON_EMPTY) {
776 /* Delay clearing the STATE_MISSED here to reduce
777 * the overhead of the second spin_trylock() in
778 * qdisc_run_begin() and __netif_schedule() calling
779 * in qdisc_run_end().
780 */
781 clear_bit(__QDISC_STATE_MISSED, &qdisc->state);
782 clear_bit(__QDISC_STATE_DRAINING, &qdisc->state);
783
784 /* Make sure dequeuing happens after clearing
785 * STATE_MISSED.
786 */
787 smp_mb__after_atomic();
788
789 need_retry = false;
790
791 goto retry;
792 }
793
794 return skb;
795 }
796
pfifo_fast_peek(struct Qdisc * qdisc)797 static struct sk_buff *pfifo_fast_peek(struct Qdisc *qdisc)
798 {
799 struct pfifo_fast_priv *priv = qdisc_priv(qdisc);
800 struct sk_buff *skb = NULL;
801 int band;
802
803 for (band = 0; band < PFIFO_FAST_BANDS && !skb; band++) {
804 struct skb_array *q = band2list(priv, band);
805
806 skb = __skb_array_peek(q);
807 }
808
809 return skb;
810 }
811
pfifo_fast_reset(struct Qdisc * qdisc)812 static void pfifo_fast_reset(struct Qdisc *qdisc)
813 {
814 int i, band;
815 struct pfifo_fast_priv *priv = qdisc_priv(qdisc);
816
817 for (band = 0; band < PFIFO_FAST_BANDS; band++) {
818 struct skb_array *q = band2list(priv, band);
819 struct sk_buff *skb;
820
821 /* NULL ring is possible if destroy path is due to a failed
822 * skb_array_init() in pfifo_fast_init() case.
823 */
824 if (!q->ring.queue)
825 continue;
826
827 while ((skb = __skb_array_consume(q)) != NULL)
828 kfree_skb(skb);
829 }
830
831 if (qdisc_is_percpu_stats(qdisc)) {
832 for_each_possible_cpu(i) {
833 struct gnet_stats_queue *q;
834
835 q = per_cpu_ptr(qdisc->cpu_qstats, i);
836 q->backlog = 0;
837 q->qlen = 0;
838 }
839 }
840 }
841
pfifo_fast_dump(struct Qdisc * qdisc,struct sk_buff * skb)842 static int pfifo_fast_dump(struct Qdisc *qdisc, struct sk_buff *skb)
843 {
844 struct tc_prio_qopt opt = { .bands = PFIFO_FAST_BANDS };
845
846 memcpy(&opt.priomap, sch_default_prio2band, TC_PRIO_MAX + 1);
847 if (nla_put(skb, TCA_OPTIONS, sizeof(opt), &opt))
848 goto nla_put_failure;
849 return skb->len;
850
851 nla_put_failure:
852 return -1;
853 }
854
pfifo_fast_init(struct Qdisc * qdisc,struct nlattr * opt,struct netlink_ext_ack * extack)855 static int pfifo_fast_init(struct Qdisc *qdisc, struct nlattr *opt,
856 struct netlink_ext_ack *extack)
857 {
858 unsigned int qlen = qdisc_dev(qdisc)->tx_queue_len;
859 struct pfifo_fast_priv *priv = qdisc_priv(qdisc);
860 int prio;
861
862 /* guard against zero length rings */
863 if (!qlen)
864 return -EINVAL;
865
866 for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) {
867 struct skb_array *q = band2list(priv, prio);
868 int err;
869
870 err = skb_array_init(q, qlen, GFP_KERNEL);
871 if (err)
872 return -ENOMEM;
873 }
874
875 /* Can by-pass the queue discipline */
876 qdisc->flags |= TCQ_F_CAN_BYPASS;
877 return 0;
878 }
879
pfifo_fast_destroy(struct Qdisc * sch)880 static void pfifo_fast_destroy(struct Qdisc *sch)
881 {
882 struct pfifo_fast_priv *priv = qdisc_priv(sch);
883 int prio;
884
885 for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) {
886 struct skb_array *q = band2list(priv, prio);
887
888 /* NULL ring is possible if destroy path is due to a failed
889 * skb_array_init() in pfifo_fast_init() case.
890 */
891 if (!q->ring.queue)
892 continue;
893 /* Destroy ring but no need to kfree_skb because a call to
894 * pfifo_fast_reset() has already done that work.
895 */
896 ptr_ring_cleanup(&q->ring, NULL);
897 }
898 }
899
pfifo_fast_change_tx_queue_len(struct Qdisc * sch,unsigned int new_len)900 static int pfifo_fast_change_tx_queue_len(struct Qdisc *sch,
901 unsigned int new_len)
902 {
903 struct pfifo_fast_priv *priv = qdisc_priv(sch);
904 struct skb_array *bands[PFIFO_FAST_BANDS];
905 int prio;
906
907 for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) {
908 struct skb_array *q = band2list(priv, prio);
909
910 bands[prio] = q;
911 }
912
913 return skb_array_resize_multiple_bh(bands, PFIFO_FAST_BANDS, new_len,
914 GFP_KERNEL);
915 }
916
917 struct Qdisc_ops pfifo_fast_ops __read_mostly = {
918 .id = "pfifo_fast",
919 .priv_size = sizeof(struct pfifo_fast_priv),
920 .enqueue = pfifo_fast_enqueue,
921 .dequeue = pfifo_fast_dequeue,
922 .peek = pfifo_fast_peek,
923 .init = pfifo_fast_init,
924 .destroy = pfifo_fast_destroy,
925 .reset = pfifo_fast_reset,
926 .dump = pfifo_fast_dump,
927 .change_tx_queue_len = pfifo_fast_change_tx_queue_len,
928 .owner = THIS_MODULE,
929 .static_flags = TCQ_F_NOLOCK | TCQ_F_CPUSTATS,
930 };
931 EXPORT_SYMBOL(pfifo_fast_ops);
932
933 static struct lock_class_key qdisc_tx_busylock;
934
qdisc_alloc(struct netdev_queue * dev_queue,const struct Qdisc_ops * ops,struct netlink_ext_ack * extack)935 struct Qdisc *qdisc_alloc(struct netdev_queue *dev_queue,
936 const struct Qdisc_ops *ops,
937 struct netlink_ext_ack *extack)
938 {
939 struct Qdisc *sch;
940 unsigned int size = sizeof(*sch) + ops->priv_size;
941 int err = -ENOBUFS;
942 struct net_device *dev;
943
944 if (!dev_queue) {
945 NL_SET_ERR_MSG(extack, "No device queue given");
946 err = -EINVAL;
947 goto errout;
948 }
949
950 dev = dev_queue->dev;
951 sch = kzalloc_node(size, GFP_KERNEL, netdev_queue_numa_node_read(dev_queue));
952
953 if (!sch)
954 goto errout;
955 __skb_queue_head_init(&sch->gso_skb);
956 __skb_queue_head_init(&sch->skb_bad_txq);
957 gnet_stats_basic_sync_init(&sch->bstats);
958 lockdep_register_key(&sch->root_lock_key);
959 spin_lock_init(&sch->q.lock);
960 lockdep_set_class(&sch->q.lock, &sch->root_lock_key);
961
962 if (ops->static_flags & TCQ_F_CPUSTATS) {
963 sch->cpu_bstats =
964 netdev_alloc_pcpu_stats(struct gnet_stats_basic_sync);
965 if (!sch->cpu_bstats)
966 goto errout1;
967
968 sch->cpu_qstats = alloc_percpu(struct gnet_stats_queue);
969 if (!sch->cpu_qstats) {
970 free_percpu(sch->cpu_bstats);
971 goto errout1;
972 }
973 }
974
975 /* seqlock has the same scope of busylock, for NOLOCK qdisc */
976 spin_lock_init(&sch->seqlock);
977 lockdep_set_class(&sch->seqlock,
978 dev->qdisc_tx_busylock ?: &qdisc_tx_busylock);
979
980 sch->ops = ops;
981 sch->flags = ops->static_flags;
982 sch->enqueue = ops->enqueue;
983 sch->dequeue = ops->dequeue;
984 sch->dev_queue = dev_queue;
985 netdev_hold(dev, &sch->dev_tracker, GFP_KERNEL);
986 refcount_set(&sch->refcnt, 1);
987
988 return sch;
989 errout1:
990 lockdep_unregister_key(&sch->root_lock_key);
991 kfree(sch);
992 errout:
993 return ERR_PTR(err);
994 }
995
qdisc_create_dflt(struct netdev_queue * dev_queue,const struct Qdisc_ops * ops,unsigned int parentid,struct netlink_ext_ack * extack)996 struct Qdisc *qdisc_create_dflt(struct netdev_queue *dev_queue,
997 const struct Qdisc_ops *ops,
998 unsigned int parentid,
999 struct netlink_ext_ack *extack)
1000 {
1001 struct Qdisc *sch;
1002
1003 if (!bpf_try_module_get(ops, ops->owner)) {
1004 NL_SET_ERR_MSG(extack, "Failed to increase module reference counter");
1005 return NULL;
1006 }
1007
1008 sch = qdisc_alloc(dev_queue, ops, extack);
1009 if (IS_ERR(sch)) {
1010 bpf_module_put(ops, ops->owner);
1011 return NULL;
1012 }
1013 sch->parent = parentid;
1014
1015 if (!ops->init || ops->init(sch, NULL, extack) == 0) {
1016 trace_qdisc_create(ops, dev_queue->dev, parentid);
1017 return sch;
1018 }
1019
1020 qdisc_put(sch);
1021 return NULL;
1022 }
1023 EXPORT_SYMBOL(qdisc_create_dflt);
1024
1025 /* Under qdisc_lock(qdisc) and BH! */
1026
qdisc_reset(struct Qdisc * qdisc)1027 void qdisc_reset(struct Qdisc *qdisc)
1028 {
1029 const struct Qdisc_ops *ops = qdisc->ops;
1030
1031 trace_qdisc_reset(qdisc);
1032
1033 if (ops->reset)
1034 ops->reset(qdisc);
1035
1036 __skb_queue_purge(&qdisc->gso_skb);
1037 __skb_queue_purge(&qdisc->skb_bad_txq);
1038
1039 qdisc->q.qlen = 0;
1040 qdisc->qstats.backlog = 0;
1041 }
1042 EXPORT_SYMBOL(qdisc_reset);
1043
qdisc_free(struct Qdisc * qdisc)1044 void qdisc_free(struct Qdisc *qdisc)
1045 {
1046 if (qdisc_is_percpu_stats(qdisc)) {
1047 free_percpu(qdisc->cpu_bstats);
1048 free_percpu(qdisc->cpu_qstats);
1049 }
1050
1051 kfree(qdisc);
1052 }
1053
qdisc_free_cb(struct rcu_head * head)1054 static void qdisc_free_cb(struct rcu_head *head)
1055 {
1056 struct Qdisc *q = container_of(head, struct Qdisc, rcu);
1057
1058 qdisc_free(q);
1059 }
1060
__qdisc_destroy(struct Qdisc * qdisc)1061 static void __qdisc_destroy(struct Qdisc *qdisc)
1062 {
1063 const struct Qdisc_ops *ops = qdisc->ops;
1064 struct net_device *dev = qdisc_dev(qdisc);
1065
1066 #ifdef CONFIG_NET_SCHED
1067 qdisc_hash_del(qdisc);
1068
1069 qdisc_put_stab(rtnl_dereference(qdisc->stab));
1070 #endif
1071 gen_kill_estimator(&qdisc->rate_est);
1072
1073 qdisc_reset(qdisc);
1074
1075
1076 if (ops->destroy)
1077 ops->destroy(qdisc);
1078
1079 lockdep_unregister_key(&qdisc->root_lock_key);
1080 bpf_module_put(ops, ops->owner);
1081 netdev_put(dev, &qdisc->dev_tracker);
1082
1083 trace_qdisc_destroy(qdisc);
1084
1085 call_rcu(&qdisc->rcu, qdisc_free_cb);
1086 }
1087
qdisc_destroy(struct Qdisc * qdisc)1088 void qdisc_destroy(struct Qdisc *qdisc)
1089 {
1090 if (qdisc->flags & TCQ_F_BUILTIN)
1091 return;
1092
1093 __qdisc_destroy(qdisc);
1094 }
1095
qdisc_put(struct Qdisc * qdisc)1096 void qdisc_put(struct Qdisc *qdisc)
1097 {
1098 if (!qdisc)
1099 return;
1100
1101 if (qdisc->flags & TCQ_F_BUILTIN ||
1102 !refcount_dec_and_test(&qdisc->refcnt))
1103 return;
1104
1105 __qdisc_destroy(qdisc);
1106 }
1107 EXPORT_SYMBOL(qdisc_put);
1108
1109 /* Version of qdisc_put() that is called with rtnl mutex unlocked.
1110 * Intended to be used as optimization, this function only takes rtnl lock if
1111 * qdisc reference counter reached zero.
1112 */
1113
qdisc_put_unlocked(struct Qdisc * qdisc)1114 void qdisc_put_unlocked(struct Qdisc *qdisc)
1115 {
1116 if (qdisc->flags & TCQ_F_BUILTIN ||
1117 !refcount_dec_and_rtnl_lock(&qdisc->refcnt))
1118 return;
1119
1120 __qdisc_destroy(qdisc);
1121 rtnl_unlock();
1122 }
1123 EXPORT_SYMBOL(qdisc_put_unlocked);
1124
1125 /* Attach toplevel qdisc to device queue. */
dev_graft_qdisc(struct netdev_queue * dev_queue,struct Qdisc * qdisc)1126 struct Qdisc *dev_graft_qdisc(struct netdev_queue *dev_queue,
1127 struct Qdisc *qdisc)
1128 {
1129 struct Qdisc *oqdisc = rtnl_dereference(dev_queue->qdisc_sleeping);
1130 spinlock_t *root_lock;
1131
1132 root_lock = qdisc_lock(oqdisc);
1133 spin_lock_bh(root_lock);
1134
1135 /* ... and graft new one */
1136 if (qdisc == NULL)
1137 qdisc = &noop_qdisc;
1138 rcu_assign_pointer(dev_queue->qdisc_sleeping, qdisc);
1139 rcu_assign_pointer(dev_queue->qdisc, &noop_qdisc);
1140
1141 spin_unlock_bh(root_lock);
1142
1143 return oqdisc;
1144 }
1145 EXPORT_SYMBOL(dev_graft_qdisc);
1146
shutdown_scheduler_queue(struct net_device * dev,struct netdev_queue * dev_queue,void * _qdisc_default)1147 static void shutdown_scheduler_queue(struct net_device *dev,
1148 struct netdev_queue *dev_queue,
1149 void *_qdisc_default)
1150 {
1151 struct Qdisc *qdisc = rtnl_dereference(dev_queue->qdisc_sleeping);
1152 struct Qdisc *qdisc_default = _qdisc_default;
1153
1154 if (qdisc) {
1155 rcu_assign_pointer(dev_queue->qdisc, qdisc_default);
1156 rcu_assign_pointer(dev_queue->qdisc_sleeping, qdisc_default);
1157
1158 qdisc_put(qdisc);
1159 }
1160 }
1161
attach_one_default_qdisc(struct net_device * dev,struct netdev_queue * dev_queue,void * _unused)1162 static void attach_one_default_qdisc(struct net_device *dev,
1163 struct netdev_queue *dev_queue,
1164 void *_unused)
1165 {
1166 struct Qdisc *qdisc;
1167 const struct Qdisc_ops *ops = default_qdisc_ops;
1168
1169 if (dev->priv_flags & IFF_NO_QUEUE)
1170 ops = &noqueue_qdisc_ops;
1171 else if(dev->type == ARPHRD_CAN)
1172 ops = &pfifo_fast_ops;
1173
1174 qdisc = qdisc_create_dflt(dev_queue, ops, TC_H_ROOT, NULL);
1175 if (!qdisc)
1176 return;
1177
1178 if (!netif_is_multiqueue(dev))
1179 qdisc->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT;
1180 rcu_assign_pointer(dev_queue->qdisc_sleeping, qdisc);
1181 }
1182
attach_default_qdiscs(struct net_device * dev)1183 static void attach_default_qdiscs(struct net_device *dev)
1184 {
1185 struct netdev_queue *txq;
1186 struct Qdisc *qdisc;
1187
1188 txq = netdev_get_tx_queue(dev, 0);
1189
1190 if (!netif_is_multiqueue(dev) ||
1191 dev->priv_flags & IFF_NO_QUEUE) {
1192 netdev_for_each_tx_queue(dev, attach_one_default_qdisc, NULL);
1193 qdisc = rtnl_dereference(txq->qdisc_sleeping);
1194 rcu_assign_pointer(dev->qdisc, qdisc);
1195 qdisc_refcount_inc(qdisc);
1196 } else {
1197 qdisc = qdisc_create_dflt(txq, &mq_qdisc_ops, TC_H_ROOT, NULL);
1198 if (qdisc) {
1199 rcu_assign_pointer(dev->qdisc, qdisc);
1200 qdisc->ops->attach(qdisc);
1201 }
1202 }
1203 qdisc = rtnl_dereference(dev->qdisc);
1204
1205 /* Detect default qdisc setup/init failed and fallback to "noqueue" */
1206 if (qdisc == &noop_qdisc) {
1207 netdev_warn(dev, "default qdisc (%s) fail, fallback to %s\n",
1208 default_qdisc_ops->id, noqueue_qdisc_ops.id);
1209 netdev_for_each_tx_queue(dev, shutdown_scheduler_queue, &noop_qdisc);
1210 dev->priv_flags |= IFF_NO_QUEUE;
1211 netdev_for_each_tx_queue(dev, attach_one_default_qdisc, NULL);
1212 qdisc = rtnl_dereference(txq->qdisc_sleeping);
1213 rcu_assign_pointer(dev->qdisc, qdisc);
1214 qdisc_refcount_inc(qdisc);
1215 dev->priv_flags ^= IFF_NO_QUEUE;
1216 }
1217
1218 #ifdef CONFIG_NET_SCHED
1219 if (qdisc != &noop_qdisc)
1220 qdisc_hash_add(qdisc, false);
1221 #endif
1222 }
1223
transition_one_qdisc(struct net_device * dev,struct netdev_queue * dev_queue,void * _need_watchdog)1224 static void transition_one_qdisc(struct net_device *dev,
1225 struct netdev_queue *dev_queue,
1226 void *_need_watchdog)
1227 {
1228 struct Qdisc *new_qdisc = rtnl_dereference(dev_queue->qdisc_sleeping);
1229 int *need_watchdog_p = _need_watchdog;
1230
1231 if (!(new_qdisc->flags & TCQ_F_BUILTIN))
1232 clear_bit(__QDISC_STATE_DEACTIVATED, &new_qdisc->state);
1233
1234 rcu_assign_pointer(dev_queue->qdisc, new_qdisc);
1235 if (need_watchdog_p) {
1236 WRITE_ONCE(dev_queue->trans_start, 0);
1237 *need_watchdog_p = 1;
1238 }
1239 }
1240
dev_activate(struct net_device * dev)1241 void dev_activate(struct net_device *dev)
1242 {
1243 int need_watchdog;
1244
1245 /* No queueing discipline is attached to device;
1246 * create default one for devices, which need queueing
1247 * and noqueue_qdisc for virtual interfaces
1248 */
1249
1250 if (rtnl_dereference(dev->qdisc) == &noop_qdisc)
1251 attach_default_qdiscs(dev);
1252
1253 if (!netif_carrier_ok(dev))
1254 /* Delay activation until next carrier-on event */
1255 return;
1256
1257 need_watchdog = 0;
1258 netdev_for_each_tx_queue(dev, transition_one_qdisc, &need_watchdog);
1259 if (dev_ingress_queue(dev))
1260 transition_one_qdisc(dev, dev_ingress_queue(dev), NULL);
1261
1262 if (need_watchdog) {
1263 netif_trans_update(dev);
1264 netdev_watchdog_up(dev);
1265 }
1266 }
1267 EXPORT_SYMBOL(dev_activate);
1268
qdisc_deactivate(struct Qdisc * qdisc)1269 static void qdisc_deactivate(struct Qdisc *qdisc)
1270 {
1271 if (qdisc->flags & TCQ_F_BUILTIN)
1272 return;
1273
1274 set_bit(__QDISC_STATE_DEACTIVATED, &qdisc->state);
1275 }
1276
dev_deactivate_queue(struct net_device * dev,struct netdev_queue * dev_queue,void * _sync_needed)1277 static void dev_deactivate_queue(struct net_device *dev,
1278 struct netdev_queue *dev_queue,
1279 void *_sync_needed)
1280 {
1281 bool *sync_needed = _sync_needed;
1282 struct Qdisc *qdisc;
1283
1284 qdisc = rtnl_dereference(dev_queue->qdisc);
1285 if (qdisc) {
1286 if (qdisc->enqueue)
1287 *sync_needed = true;
1288 qdisc_deactivate(qdisc);
1289 rcu_assign_pointer(dev_queue->qdisc, &noop_qdisc);
1290 }
1291 }
1292
dev_reset_queue(struct net_device * dev,struct netdev_queue * dev_queue,void * _unused)1293 static void dev_reset_queue(struct net_device *dev,
1294 struct netdev_queue *dev_queue,
1295 void *_unused)
1296 {
1297 struct Qdisc *qdisc;
1298 bool nolock;
1299
1300 qdisc = rtnl_dereference(dev_queue->qdisc_sleeping);
1301 if (!qdisc)
1302 return;
1303
1304 nolock = qdisc->flags & TCQ_F_NOLOCK;
1305
1306 if (nolock)
1307 spin_lock_bh(&qdisc->seqlock);
1308 spin_lock_bh(qdisc_lock(qdisc));
1309
1310 qdisc_reset(qdisc);
1311
1312 spin_unlock_bh(qdisc_lock(qdisc));
1313 if (nolock) {
1314 clear_bit(__QDISC_STATE_MISSED, &qdisc->state);
1315 clear_bit(__QDISC_STATE_DRAINING, &qdisc->state);
1316 spin_unlock_bh(&qdisc->seqlock);
1317 }
1318 }
1319
some_qdisc_is_busy(struct net_device * dev)1320 static bool some_qdisc_is_busy(struct net_device *dev)
1321 {
1322 unsigned int i;
1323
1324 for (i = 0; i < dev->num_tx_queues; i++) {
1325 struct netdev_queue *dev_queue;
1326 spinlock_t *root_lock;
1327 struct Qdisc *q;
1328 int val;
1329
1330 dev_queue = netdev_get_tx_queue(dev, i);
1331 q = rtnl_dereference(dev_queue->qdisc_sleeping);
1332
1333 root_lock = qdisc_lock(q);
1334 spin_lock_bh(root_lock);
1335
1336 val = (qdisc_is_running(q) ||
1337 test_bit(__QDISC_STATE_SCHED, &q->state));
1338
1339 spin_unlock_bh(root_lock);
1340
1341 if (val)
1342 return true;
1343 }
1344 return false;
1345 }
1346
1347 /**
1348 * dev_deactivate_many - deactivate transmissions on several devices
1349 * @head: list of devices to deactivate
1350 *
1351 * This function returns only when all outstanding transmissions
1352 * have completed, unless all devices are in dismantle phase.
1353 */
dev_deactivate_many(struct list_head * head)1354 void dev_deactivate_many(struct list_head *head)
1355 {
1356 bool sync_needed = false;
1357 struct net_device *dev;
1358
1359 list_for_each_entry(dev, head, close_list) {
1360 netdev_for_each_tx_queue(dev, dev_deactivate_queue,
1361 &sync_needed);
1362 if (dev_ingress_queue(dev))
1363 dev_deactivate_queue(dev, dev_ingress_queue(dev),
1364 &sync_needed);
1365
1366 netdev_watchdog_down(dev);
1367 }
1368
1369 /* Wait for outstanding qdisc enqueuing calls. */
1370 if (sync_needed)
1371 synchronize_net();
1372
1373 list_for_each_entry(dev, head, close_list) {
1374 netdev_for_each_tx_queue(dev, dev_reset_queue, NULL);
1375
1376 if (dev_ingress_queue(dev))
1377 dev_reset_queue(dev, dev_ingress_queue(dev), NULL);
1378 }
1379
1380 /* Wait for outstanding qdisc_run calls. */
1381 list_for_each_entry(dev, head, close_list) {
1382 while (some_qdisc_is_busy(dev)) {
1383 /* wait_event() would avoid this sleep-loop but would
1384 * require expensive checks in the fast paths of packet
1385 * processing which isn't worth it.
1386 */
1387 schedule_timeout_uninterruptible(1);
1388 }
1389 }
1390 }
1391
dev_deactivate(struct net_device * dev)1392 void dev_deactivate(struct net_device *dev)
1393 {
1394 LIST_HEAD(single);
1395
1396 list_add(&dev->close_list, &single);
1397 dev_deactivate_many(&single);
1398 list_del(&single);
1399 }
1400 EXPORT_SYMBOL(dev_deactivate);
1401
qdisc_change_tx_queue_len(struct net_device * dev,struct netdev_queue * dev_queue)1402 static int qdisc_change_tx_queue_len(struct net_device *dev,
1403 struct netdev_queue *dev_queue)
1404 {
1405 struct Qdisc *qdisc = rtnl_dereference(dev_queue->qdisc_sleeping);
1406 const struct Qdisc_ops *ops = qdisc->ops;
1407
1408 if (ops->change_tx_queue_len)
1409 return ops->change_tx_queue_len(qdisc, dev->tx_queue_len);
1410 return 0;
1411 }
1412
dev_qdisc_change_real_num_tx(struct net_device * dev,unsigned int new_real_tx)1413 void dev_qdisc_change_real_num_tx(struct net_device *dev,
1414 unsigned int new_real_tx)
1415 {
1416 struct Qdisc *qdisc = rtnl_dereference(dev->qdisc);
1417
1418 if (qdisc->ops->change_real_num_tx)
1419 qdisc->ops->change_real_num_tx(qdisc, new_real_tx);
1420 }
1421
mq_change_real_num_tx(struct Qdisc * sch,unsigned int new_real_tx)1422 void mq_change_real_num_tx(struct Qdisc *sch, unsigned int new_real_tx)
1423 {
1424 #ifdef CONFIG_NET_SCHED
1425 struct net_device *dev = qdisc_dev(sch);
1426 struct Qdisc *qdisc;
1427 unsigned int i;
1428
1429 for (i = new_real_tx; i < dev->real_num_tx_queues; i++) {
1430 qdisc = rtnl_dereference(netdev_get_tx_queue(dev, i)->qdisc_sleeping);
1431 /* Only update the default qdiscs we created,
1432 * qdiscs with handles are always hashed.
1433 */
1434 if (qdisc != &noop_qdisc && !qdisc->handle)
1435 qdisc_hash_del(qdisc);
1436 }
1437 for (i = dev->real_num_tx_queues; i < new_real_tx; i++) {
1438 qdisc = rtnl_dereference(netdev_get_tx_queue(dev, i)->qdisc_sleeping);
1439 if (qdisc != &noop_qdisc && !qdisc->handle)
1440 qdisc_hash_add(qdisc, false);
1441 }
1442 #endif
1443 }
1444 EXPORT_SYMBOL(mq_change_real_num_tx);
1445
dev_qdisc_change_tx_queue_len(struct net_device * dev)1446 int dev_qdisc_change_tx_queue_len(struct net_device *dev)
1447 {
1448 bool up = dev->flags & IFF_UP;
1449 unsigned int i;
1450 int ret = 0;
1451
1452 if (up)
1453 dev_deactivate(dev);
1454
1455 for (i = 0; i < dev->num_tx_queues; i++) {
1456 ret = qdisc_change_tx_queue_len(dev, &dev->_tx[i]);
1457
1458 /* TODO: revert changes on a partial failure */
1459 if (ret)
1460 break;
1461 }
1462
1463 if (up)
1464 dev_activate(dev);
1465 return ret;
1466 }
1467
dev_init_scheduler_queue(struct net_device * dev,struct netdev_queue * dev_queue,void * _qdisc)1468 static void dev_init_scheduler_queue(struct net_device *dev,
1469 struct netdev_queue *dev_queue,
1470 void *_qdisc)
1471 {
1472 struct Qdisc *qdisc = _qdisc;
1473
1474 rcu_assign_pointer(dev_queue->qdisc, qdisc);
1475 rcu_assign_pointer(dev_queue->qdisc_sleeping, qdisc);
1476 }
1477
dev_init_scheduler(struct net_device * dev)1478 void dev_init_scheduler(struct net_device *dev)
1479 {
1480 rcu_assign_pointer(dev->qdisc, &noop_qdisc);
1481 netdev_for_each_tx_queue(dev, dev_init_scheduler_queue, &noop_qdisc);
1482 if (dev_ingress_queue(dev))
1483 dev_init_scheduler_queue(dev, dev_ingress_queue(dev), &noop_qdisc);
1484
1485 timer_setup(&dev->watchdog_timer, dev_watchdog, 0);
1486 }
1487
dev_shutdown(struct net_device * dev)1488 void dev_shutdown(struct net_device *dev)
1489 {
1490 netdev_for_each_tx_queue(dev, shutdown_scheduler_queue, &noop_qdisc);
1491 if (dev_ingress_queue(dev))
1492 shutdown_scheduler_queue(dev, dev_ingress_queue(dev), &noop_qdisc);
1493 qdisc_put(rtnl_dereference(dev->qdisc));
1494 rcu_assign_pointer(dev->qdisc, &noop_qdisc);
1495
1496 WARN_ON(timer_pending(&dev->watchdog_timer));
1497 }
1498
1499 /**
1500 * psched_ratecfg_precompute__() - Pre-compute values for reciprocal division
1501 * @rate: Rate to compute reciprocal division values of
1502 * @mult: Multiplier for reciprocal division
1503 * @shift: Shift for reciprocal division
1504 *
1505 * The multiplier and shift for reciprocal division by rate are stored
1506 * in mult and shift.
1507 *
1508 * The deal here is to replace a divide by a reciprocal one
1509 * in fast path (a reciprocal divide is a multiply and a shift)
1510 *
1511 * Normal formula would be :
1512 * time_in_ns = (NSEC_PER_SEC * len) / rate_bps
1513 *
1514 * We compute mult/shift to use instead :
1515 * time_in_ns = (len * mult) >> shift;
1516 *
1517 * We try to get the highest possible mult value for accuracy,
1518 * but have to make sure no overflows will ever happen.
1519 *
1520 * reciprocal_value() is not used here it doesn't handle 64-bit values.
1521 */
psched_ratecfg_precompute__(u64 rate,u32 * mult,u8 * shift)1522 static void psched_ratecfg_precompute__(u64 rate, u32 *mult, u8 *shift)
1523 {
1524 u64 factor = NSEC_PER_SEC;
1525
1526 *mult = 1;
1527 *shift = 0;
1528
1529 if (rate <= 0)
1530 return;
1531
1532 for (;;) {
1533 *mult = div64_u64(factor, rate);
1534 if (*mult & (1U << 31) || factor & (1ULL << 63))
1535 break;
1536 factor <<= 1;
1537 (*shift)++;
1538 }
1539 }
1540
psched_ratecfg_precompute(struct psched_ratecfg * r,const struct tc_ratespec * conf,u64 rate64)1541 void psched_ratecfg_precompute(struct psched_ratecfg *r,
1542 const struct tc_ratespec *conf,
1543 u64 rate64)
1544 {
1545 memset(r, 0, sizeof(*r));
1546 r->overhead = conf->overhead;
1547 r->mpu = conf->mpu;
1548 r->rate_bytes_ps = max_t(u64, conf->rate, rate64);
1549 r->linklayer = (conf->linklayer & TC_LINKLAYER_MASK);
1550 psched_ratecfg_precompute__(r->rate_bytes_ps, &r->mult, &r->shift);
1551 }
1552 EXPORT_SYMBOL(psched_ratecfg_precompute);
1553
psched_ppscfg_precompute(struct psched_pktrate * r,u64 pktrate64)1554 void psched_ppscfg_precompute(struct psched_pktrate *r, u64 pktrate64)
1555 {
1556 r->rate_pkts_ps = pktrate64;
1557 psched_ratecfg_precompute__(r->rate_pkts_ps, &r->mult, &r->shift);
1558 }
1559 EXPORT_SYMBOL(psched_ppscfg_precompute);
1560
mini_qdisc_pair_swap(struct mini_Qdisc_pair * miniqp,struct tcf_proto * tp_head)1561 void mini_qdisc_pair_swap(struct mini_Qdisc_pair *miniqp,
1562 struct tcf_proto *tp_head)
1563 {
1564 /* Protected with chain0->filter_chain_lock.
1565 * Can't access chain directly because tp_head can be NULL.
1566 */
1567 struct mini_Qdisc *miniq_old =
1568 rcu_dereference_protected(*miniqp->p_miniq, 1);
1569 struct mini_Qdisc *miniq;
1570
1571 if (!tp_head) {
1572 RCU_INIT_POINTER(*miniqp->p_miniq, NULL);
1573 } else {
1574 miniq = miniq_old != &miniqp->miniq1 ?
1575 &miniqp->miniq1 : &miniqp->miniq2;
1576
1577 /* We need to make sure that readers won't see the miniq
1578 * we are about to modify. So ensure that at least one RCU
1579 * grace period has elapsed since the miniq was made
1580 * inactive.
1581 */
1582 if (IS_ENABLED(CONFIG_PREEMPT_RT))
1583 cond_synchronize_rcu(miniq->rcu_state);
1584 else if (!poll_state_synchronize_rcu(miniq->rcu_state))
1585 synchronize_rcu_expedited();
1586
1587 miniq->filter_list = tp_head;
1588 rcu_assign_pointer(*miniqp->p_miniq, miniq);
1589 }
1590
1591 if (miniq_old)
1592 /* This is counterpart of the rcu sync above. We need to
1593 * block potential new user of miniq_old until all readers
1594 * are not seeing it.
1595 */
1596 miniq_old->rcu_state = start_poll_synchronize_rcu();
1597 }
1598 EXPORT_SYMBOL(mini_qdisc_pair_swap);
1599
mini_qdisc_pair_block_init(struct mini_Qdisc_pair * miniqp,struct tcf_block * block)1600 void mini_qdisc_pair_block_init(struct mini_Qdisc_pair *miniqp,
1601 struct tcf_block *block)
1602 {
1603 miniqp->miniq1.block = block;
1604 miniqp->miniq2.block = block;
1605 }
1606 EXPORT_SYMBOL(mini_qdisc_pair_block_init);
1607
mini_qdisc_pair_init(struct mini_Qdisc_pair * miniqp,struct Qdisc * qdisc,struct mini_Qdisc __rcu ** p_miniq)1608 void mini_qdisc_pair_init(struct mini_Qdisc_pair *miniqp, struct Qdisc *qdisc,
1609 struct mini_Qdisc __rcu **p_miniq)
1610 {
1611 miniqp->miniq1.cpu_bstats = qdisc->cpu_bstats;
1612 miniqp->miniq1.cpu_qstats = qdisc->cpu_qstats;
1613 miniqp->miniq2.cpu_bstats = qdisc->cpu_bstats;
1614 miniqp->miniq2.cpu_qstats = qdisc->cpu_qstats;
1615 miniqp->miniq1.rcu_state = get_state_synchronize_rcu();
1616 miniqp->miniq2.rcu_state = miniqp->miniq1.rcu_state;
1617 miniqp->p_miniq = p_miniq;
1618 }
1619 EXPORT_SYMBOL(mini_qdisc_pair_init);
1620