xref: /linux/include/linux/netdevice.h (revision 37b0ea8fef56ccc29bd5a07f235ac218f7f98379)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the Interfaces handler.
8  *
9  * Version:	@(#)dev.h	1.0.10	08/12/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
15  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
16  *		Bjorn Ekwall. <bj0rn@blox.se>
17  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
18  *
19  *		Moved to /usr/include/linux for NET3
20  */
21 #ifndef _LINUX_NETDEVICE_H
22 #define _LINUX_NETDEVICE_H
23 
24 #include <linux/timer.h>
25 #include <linux/bug.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/prefetch.h>
29 #include <asm/cache.h>
30 #include <asm/byteorder.h>
31 #include <asm/local.h>
32 
33 #include <linux/percpu.h>
34 #include <linux/rculist.h>
35 #include <linux/workqueue.h>
36 #include <linux/dynamic_queue_limits.h>
37 
38 #include <net/net_namespace.h>
39 #ifdef CONFIG_DCB
40 #include <net/dcbnl.h>
41 #endif
42 #include <net/netprio_cgroup.h>
43 #include <linux/netdev_features.h>
44 #include <linux/neighbour.h>
45 #include <linux/netdevice_xmit.h>
46 #include <uapi/linux/netdevice.h>
47 #include <uapi/linux/if_bonding.h>
48 #include <uapi/linux/pkt_cls.h>
49 #include <uapi/linux/netdev.h>
50 #include <linux/hashtable.h>
51 #include <linux/rbtree.h>
52 #include <net/net_trackers.h>
53 #include <net/net_debug.h>
54 #include <net/dropreason-core.h>
55 #include <net/neighbour_tables.h>
56 
57 struct netpoll_info;
58 struct device;
59 struct ethtool_ops;
60 struct kernel_hwtstamp_config;
61 struct phy_device;
62 struct dsa_port;
63 struct ip_tunnel_parm_kern;
64 struct macsec_context;
65 struct macsec_ops;
66 struct netdev_config;
67 struct netdev_name_node;
68 struct sd_flow_limit;
69 struct sfp_bus;
70 /* 802.11 specific */
71 struct wireless_dev;
72 /* 802.15.4 specific */
73 struct wpan_dev;
74 struct mpls_dev;
75 /* UDP Tunnel offloads */
76 struct udp_tunnel_info;
77 struct udp_tunnel_nic_info;
78 struct udp_tunnel_nic;
79 struct bpf_prog;
80 struct xdp_buff;
81 struct xdp_frame;
82 struct xdp_metadata_ops;
83 struct xdp_md;
84 struct ethtool_netdev_state;
85 struct phy_link_topology;
86 struct hwtstamp_provider;
87 
88 typedef u32 xdp_features_t;
89 
90 void synchronize_net(void);
91 void netdev_set_default_ethtool_ops(struct net_device *dev,
92 				    const struct ethtool_ops *ops);
93 void netdev_sw_irq_coalesce_default_on(struct net_device *dev);
94 
95 /* Backlog congestion levels */
96 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
97 #define NET_RX_DROP		1	/* packet dropped */
98 
99 #define MAX_NEST_DEV 8
100 
101 /*
102  * Transmit return codes: transmit return codes originate from three different
103  * namespaces:
104  *
105  * - qdisc return codes
106  * - driver transmit return codes
107  * - errno values
108  *
109  * Drivers are allowed to return any one of those in their hard_start_xmit()
110  * function. Real network devices commonly used with qdiscs should only return
111  * the driver transmit return codes though - when qdiscs are used, the actual
112  * transmission happens asynchronously, so the value is not propagated to
113  * higher layers. Virtual network devices transmit synchronously; in this case
114  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
115  * others are propagated to higher layers.
116  */
117 
118 /* qdisc ->enqueue() return codes. */
119 #define NET_XMIT_SUCCESS	0x00
120 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
121 #define NET_XMIT_CN		0x02	/* congestion notification	*/
122 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
123 
124 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
125  * indicates that the device will soon be dropping packets, or already drops
126  * some packets of the same priority; prompting us to send less aggressively. */
127 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
128 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
129 
130 /* Driver transmit return codes */
131 #define NETDEV_TX_MASK		0xf0
132 
133 enum netdev_tx {
134 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
135 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
136 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
137 };
138 typedef enum netdev_tx netdev_tx_t;
139 
140 /*
141  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
142  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
143  */
144 static inline bool dev_xmit_complete(int rc)
145 {
146 	/*
147 	 * Positive cases with an skb consumed by a driver:
148 	 * - successful transmission (rc == NETDEV_TX_OK)
149 	 * - error while transmitting (rc < 0)
150 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
151 	 */
152 	if (likely(rc < NET_XMIT_MASK))
153 		return true;
154 
155 	return false;
156 }
157 
158 /*
159  *	Compute the worst-case header length according to the protocols
160  *	used.
161  */
162 
163 #if defined(CONFIG_HYPERV_NET)
164 # define LL_MAX_HEADER 128
165 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
166 # if defined(CONFIG_MAC80211_MESH)
167 #  define LL_MAX_HEADER 128
168 # else
169 #  define LL_MAX_HEADER 96
170 # endif
171 #else
172 # define LL_MAX_HEADER 32
173 #endif
174 
175 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
176     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
177 #define MAX_HEADER LL_MAX_HEADER
178 #else
179 #define MAX_HEADER (LL_MAX_HEADER + 48)
180 #endif
181 
182 /*
183  *	Old network device statistics. Fields are native words
184  *	(unsigned long) so they can be read and written atomically.
185  */
186 
187 #define NET_DEV_STAT(FIELD)			\
188 	union {					\
189 		unsigned long FIELD;		\
190 		atomic_long_t __##FIELD;	\
191 	}
192 
193 struct net_device_stats {
194 	NET_DEV_STAT(rx_packets);
195 	NET_DEV_STAT(tx_packets);
196 	NET_DEV_STAT(rx_bytes);
197 	NET_DEV_STAT(tx_bytes);
198 	NET_DEV_STAT(rx_errors);
199 	NET_DEV_STAT(tx_errors);
200 	NET_DEV_STAT(rx_dropped);
201 	NET_DEV_STAT(tx_dropped);
202 	NET_DEV_STAT(multicast);
203 	NET_DEV_STAT(collisions);
204 	NET_DEV_STAT(rx_length_errors);
205 	NET_DEV_STAT(rx_over_errors);
206 	NET_DEV_STAT(rx_crc_errors);
207 	NET_DEV_STAT(rx_frame_errors);
208 	NET_DEV_STAT(rx_fifo_errors);
209 	NET_DEV_STAT(rx_missed_errors);
210 	NET_DEV_STAT(tx_aborted_errors);
211 	NET_DEV_STAT(tx_carrier_errors);
212 	NET_DEV_STAT(tx_fifo_errors);
213 	NET_DEV_STAT(tx_heartbeat_errors);
214 	NET_DEV_STAT(tx_window_errors);
215 	NET_DEV_STAT(rx_compressed);
216 	NET_DEV_STAT(tx_compressed);
217 };
218 #undef NET_DEV_STAT
219 
220 /* per-cpu stats, allocated on demand.
221  * Try to fit them in a single cache line, for dev_get_stats() sake.
222  */
223 struct net_device_core_stats {
224 	unsigned long	rx_dropped;
225 	unsigned long	tx_dropped;
226 	unsigned long	rx_nohandler;
227 	unsigned long	rx_otherhost_dropped;
228 } __aligned(4 * sizeof(unsigned long));
229 
230 #include <linux/cache.h>
231 #include <linux/skbuff.h>
232 
233 struct neighbour;
234 struct neigh_parms;
235 struct sk_buff;
236 
237 struct netdev_hw_addr {
238 	struct list_head	list;
239 	struct rb_node		node;
240 	unsigned char		addr[MAX_ADDR_LEN];
241 	unsigned char		type;
242 #define NETDEV_HW_ADDR_T_LAN		1
243 #define NETDEV_HW_ADDR_T_SAN		2
244 #define NETDEV_HW_ADDR_T_UNICAST	3
245 #define NETDEV_HW_ADDR_T_MULTICAST	4
246 	bool			global_use;
247 	int			sync_cnt;
248 	int			refcount;
249 	int			synced;
250 	struct rcu_head		rcu_head;
251 };
252 
253 struct netdev_hw_addr_list {
254 	struct list_head	list;
255 	int			count;
256 
257 	/* Auxiliary tree for faster lookup on addition and deletion */
258 	struct rb_root		tree;
259 };
260 
261 #define netdev_hw_addr_list_count(l) ((l)->count)
262 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
263 #define netdev_hw_addr_list_for_each(ha, l) \
264 	list_for_each_entry(ha, &(l)->list, list)
265 
266 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
267 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
268 #define netdev_for_each_uc_addr(ha, dev) \
269 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
270 #define netdev_for_each_synced_uc_addr(_ha, _dev) \
271 	netdev_for_each_uc_addr((_ha), (_dev)) \
272 		if ((_ha)->sync_cnt)
273 
274 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
275 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
276 #define netdev_for_each_mc_addr(ha, dev) \
277 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
278 #define netdev_for_each_synced_mc_addr(_ha, _dev) \
279 	netdev_for_each_mc_addr((_ha), (_dev)) \
280 		if ((_ha)->sync_cnt)
281 
282 struct hh_cache {
283 	unsigned int	hh_len;
284 	seqlock_t	hh_lock;
285 
286 	/* cached hardware header; allow for machine alignment needs.        */
287 #define HH_DATA_MOD	16
288 #define HH_DATA_OFF(__len) \
289 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
290 #define HH_DATA_ALIGN(__len) \
291 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
292 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
293 };
294 
295 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
296  * Alternative is:
297  *   dev->hard_header_len ? (dev->hard_header_len +
298  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
299  *
300  * We could use other alignment values, but we must maintain the
301  * relationship HH alignment <= LL alignment.
302  */
303 #define LL_RESERVED_SPACE(dev) \
304 	((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom)) \
305 	  & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
306 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
307 	((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom) + (extra)) \
308 	  & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
309 
310 struct header_ops {
311 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
312 			   unsigned short type, const void *daddr,
313 			   const void *saddr, unsigned int len);
314 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
315 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
316 	void	(*cache_update)(struct hh_cache *hh,
317 				const struct net_device *dev,
318 				const unsigned char *haddr);
319 	bool	(*validate)(const char *ll_header, unsigned int len);
320 	__be16	(*parse_protocol)(const struct sk_buff *skb);
321 };
322 
323 /* These flag bits are private to the generic network queueing
324  * layer; they may not be explicitly referenced by any other
325  * code.
326  */
327 
328 enum netdev_state_t {
329 	__LINK_STATE_START,
330 	__LINK_STATE_PRESENT,
331 	__LINK_STATE_NOCARRIER,
332 	__LINK_STATE_LINKWATCH_PENDING,
333 	__LINK_STATE_DORMANT,
334 	__LINK_STATE_TESTING,
335 };
336 
337 struct gro_list {
338 	struct list_head	list;
339 	int			count;
340 };
341 
342 /*
343  * size of gro hash buckets, must be <= the number of bits in
344  * gro_node::bitmask
345  */
346 #define GRO_HASH_BUCKETS	8
347 
348 /**
349  * struct gro_node - structure to support Generic Receive Offload
350  * @bitmask: bitmask to indicate used buckets in @hash
351  * @hash: hashtable of pending aggregated skbs, separated by flows
352  * @rx_list: list of pending ``GRO_NORMAL`` skbs
353  * @rx_count: cached current length of @rx_list
354  * @cached_napi_id: napi_struct::napi_id cached for hotpath, 0 for standalone
355  */
356 struct gro_node {
357 	unsigned long		bitmask;
358 	struct gro_list		hash[GRO_HASH_BUCKETS];
359 	struct list_head	rx_list;
360 	u32			rx_count;
361 	u32			cached_napi_id;
362 };
363 
364 /*
365  * Structure for per-NAPI config
366  */
367 struct napi_config {
368 	u64 gro_flush_timeout;
369 	u64 irq_suspend_timeout;
370 	u32 defer_hard_irqs;
371 	cpumask_t affinity_mask;
372 	u8 threaded;
373 	unsigned int napi_id;
374 };
375 
376 /*
377  * Structure for NAPI scheduling similar to tasklet but with weighting
378  */
379 struct napi_struct {
380 	/* This field should be first or softnet_data.backlog needs tweaks. */
381 	unsigned long		state;
382 	/* The poll_list must only be managed by the entity which
383 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
384 	 * whoever atomically sets that bit can add this napi_struct
385 	 * to the per-CPU poll_list, and whoever clears that bit
386 	 * can remove from the list right before clearing the bit.
387 	 */
388 	struct list_head	poll_list;
389 
390 	int			weight;
391 	u32			defer_hard_irqs_count;
392 	int			(*poll)(struct napi_struct *, int);
393 #ifdef CONFIG_NETPOLL
394 	/* CPU actively polling if netpoll is configured */
395 	int			poll_owner;
396 #endif
397 	/* CPU on which NAPI has been scheduled for processing */
398 	int			list_owner;
399 	struct net_device	*dev;
400 	struct sk_buff		*skb;
401 	struct gro_node		gro;
402 	struct hrtimer		timer;
403 	/* all fields past this point are write-protected by netdev_lock */
404 	struct task_struct	*thread;
405 	unsigned long		gro_flush_timeout;
406 	unsigned long		irq_suspend_timeout;
407 	u32			defer_hard_irqs;
408 	/* control-path-only fields follow */
409 	u32			napi_id;
410 	struct list_head	dev_list;
411 	struct hlist_node	napi_hash_node;
412 	int			irq;
413 	struct irq_affinity_notify notify;
414 	int			napi_rmap_idx;
415 	int			index;
416 	struct napi_config	*config;
417 };
418 
419 enum {
420 	NAPI_STATE_SCHED,		/* Poll is scheduled */
421 	NAPI_STATE_MISSED,		/* reschedule a napi */
422 	NAPI_STATE_DISABLE,		/* Disable pending */
423 	NAPI_STATE_NPSVC,		/* Netpoll - don't dequeue from poll_list */
424 	NAPI_STATE_LISTED,		/* NAPI added to system lists */
425 	NAPI_STATE_NO_BUSY_POLL,	/* Do not add in napi_hash, no busy polling */
426 	NAPI_STATE_IN_BUSY_POLL,	/* Do not rearm NAPI interrupt */
427 	NAPI_STATE_PREFER_BUSY_POLL,	/* prefer busy-polling over softirq processing*/
428 	NAPI_STATE_THREADED,		/* The poll is performed inside its own thread*/
429 	NAPI_STATE_SCHED_THREADED,	/* Napi is currently scheduled in threaded mode */
430 	NAPI_STATE_HAS_NOTIFIER,	/* Napi has an IRQ notifier */
431 	NAPI_STATE_THREADED_BUSY_POLL,	/* The threaded NAPI poller will busy poll */
432 };
433 
434 enum {
435 	NAPIF_STATE_SCHED		= BIT(NAPI_STATE_SCHED),
436 	NAPIF_STATE_MISSED		= BIT(NAPI_STATE_MISSED),
437 	NAPIF_STATE_DISABLE		= BIT(NAPI_STATE_DISABLE),
438 	NAPIF_STATE_NPSVC		= BIT(NAPI_STATE_NPSVC),
439 	NAPIF_STATE_LISTED		= BIT(NAPI_STATE_LISTED),
440 	NAPIF_STATE_NO_BUSY_POLL	= BIT(NAPI_STATE_NO_BUSY_POLL),
441 	NAPIF_STATE_IN_BUSY_POLL	= BIT(NAPI_STATE_IN_BUSY_POLL),
442 	NAPIF_STATE_PREFER_BUSY_POLL	= BIT(NAPI_STATE_PREFER_BUSY_POLL),
443 	NAPIF_STATE_THREADED		= BIT(NAPI_STATE_THREADED),
444 	NAPIF_STATE_SCHED_THREADED	= BIT(NAPI_STATE_SCHED_THREADED),
445 	NAPIF_STATE_HAS_NOTIFIER	= BIT(NAPI_STATE_HAS_NOTIFIER),
446 	NAPIF_STATE_THREADED_BUSY_POLL	= BIT(NAPI_STATE_THREADED_BUSY_POLL),
447 };
448 
449 enum gro_result {
450 	GRO_MERGED,
451 	GRO_MERGED_FREE,
452 	GRO_HELD,
453 	GRO_NORMAL,
454 	GRO_CONSUMED,
455 };
456 typedef enum gro_result gro_result_t;
457 
458 /*
459  * enum rx_handler_result - Possible return values for rx_handlers.
460  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
461  * further.
462  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
463  * case skb->dev was changed by rx_handler.
464  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
465  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
466  *
467  * rx_handlers are functions called from inside __netif_receive_skb(), to do
468  * special processing of the skb, prior to delivery to protocol handlers.
469  *
470  * Currently, a net_device can only have a single rx_handler registered. Trying
471  * to register a second rx_handler will return -EBUSY.
472  *
473  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
474  * To unregister a rx_handler on a net_device, use
475  * netdev_rx_handler_unregister().
476  *
477  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
478  * do with the skb.
479  *
480  * If the rx_handler consumed the skb in some way, it should return
481  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
482  * the skb to be delivered in some other way.
483  *
484  * If the rx_handler changed skb->dev, to divert the skb to another
485  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
486  * new device will be called if it exists.
487  *
488  * If the rx_handler decides the skb should be ignored, it should return
489  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
490  * are registered on exact device (ptype->dev == skb->dev).
491  *
492  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
493  * delivered, it should return RX_HANDLER_PASS.
494  *
495  * A device without a registered rx_handler will behave as if rx_handler
496  * returned RX_HANDLER_PASS.
497  */
498 
499 enum rx_handler_result {
500 	RX_HANDLER_CONSUMED,
501 	RX_HANDLER_ANOTHER,
502 	RX_HANDLER_EXACT,
503 	RX_HANDLER_PASS,
504 };
505 typedef enum rx_handler_result rx_handler_result_t;
506 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
507 
508 void __napi_schedule(struct napi_struct *n);
509 void __napi_schedule_irqoff(struct napi_struct *n);
510 
511 static inline bool napi_disable_pending(struct napi_struct *n)
512 {
513 	return test_bit(NAPI_STATE_DISABLE, &n->state);
514 }
515 
516 static inline bool napi_prefer_busy_poll(struct napi_struct *n)
517 {
518 	return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
519 }
520 
521 /**
522  * napi_is_scheduled - test if NAPI is scheduled
523  * @n: NAPI context
524  *
525  * This check is "best-effort". With no locking implemented,
526  * a NAPI can be scheduled or terminate right after this check
527  * and produce not precise results.
528  *
529  * NAPI_STATE_SCHED is an internal state, napi_is_scheduled
530  * should not be used normally and napi_schedule should be
531  * used instead.
532  *
533  * Use only if the driver really needs to check if a NAPI
534  * is scheduled for example in the context of delayed timer
535  * that can be skipped if a NAPI is already scheduled.
536  *
537  * Return: True if NAPI is scheduled, False otherwise.
538  */
539 static inline bool napi_is_scheduled(struct napi_struct *n)
540 {
541 	return test_bit(NAPI_STATE_SCHED, &n->state);
542 }
543 
544 bool napi_schedule_prep(struct napi_struct *n);
545 
546 /**
547  *	napi_schedule - schedule NAPI poll
548  *	@n: NAPI context
549  *
550  * Schedule NAPI poll routine to be called if it is not already
551  * running.
552  * Return: true if we schedule a NAPI or false if not.
553  * Refer to napi_schedule_prep() for additional reason on why
554  * a NAPI might not be scheduled.
555  */
556 static inline bool napi_schedule(struct napi_struct *n)
557 {
558 	if (napi_schedule_prep(n)) {
559 		__napi_schedule(n);
560 		return true;
561 	}
562 
563 	return false;
564 }
565 
566 /**
567  *	napi_schedule_irqoff - schedule NAPI poll
568  *	@n: NAPI context
569  *
570  * Variant of napi_schedule(), assuming hard irqs are masked.
571  */
572 static inline void napi_schedule_irqoff(struct napi_struct *n)
573 {
574 	if (napi_schedule_prep(n))
575 		__napi_schedule_irqoff(n);
576 }
577 
578 /**
579  * napi_complete_done - NAPI processing complete
580  * @n: NAPI context
581  * @work_done: number of packets processed
582  *
583  * Mark NAPI processing as complete. Should only be called if poll budget
584  * has not been completely consumed.
585  * Prefer over napi_complete().
586  * Return: false if device should avoid rearming interrupts.
587  */
588 bool napi_complete_done(struct napi_struct *n, int work_done);
589 
590 static inline bool napi_complete(struct napi_struct *n)
591 {
592 	return napi_complete_done(n, 0);
593 }
594 
595 void netif_threaded_enable(struct net_device *dev);
596 int dev_set_threaded(struct net_device *dev,
597 		     enum netdev_napi_threaded threaded);
598 
599 void napi_disable(struct napi_struct *n);
600 void napi_disable_locked(struct napi_struct *n);
601 
602 void napi_enable(struct napi_struct *n);
603 void napi_enable_locked(struct napi_struct *n);
604 
605 /**
606  *	napi_synchronize - wait until NAPI is not running
607  *	@n: NAPI context
608  *
609  * Wait until NAPI is done being scheduled on this context.
610  * Waits till any outstanding processing completes but
611  * does not disable future activations.
612  */
613 static inline void napi_synchronize(const struct napi_struct *n)
614 {
615 	if (IS_ENABLED(CONFIG_SMP))
616 		while (test_bit(NAPI_STATE_SCHED, &n->state))
617 			msleep(1);
618 	else
619 		barrier();
620 }
621 
622 /**
623  *	napi_if_scheduled_mark_missed - if napi is running, set the
624  *	NAPIF_STATE_MISSED
625  *	@n: NAPI context
626  *
627  * If napi is running, set the NAPIF_STATE_MISSED, and return true if
628  * NAPI is scheduled.
629  **/
630 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
631 {
632 	unsigned long val, new;
633 
634 	val = READ_ONCE(n->state);
635 	do {
636 		if (val & NAPIF_STATE_DISABLE)
637 			return true;
638 
639 		if (!(val & NAPIF_STATE_SCHED))
640 			return false;
641 
642 		new = val | NAPIF_STATE_MISSED;
643 	} while (!try_cmpxchg(&n->state, &val, new));
644 
645 	return true;
646 }
647 
648 enum netdev_queue_state_t {
649 	__QUEUE_STATE_DRV_XOFF,
650 	__QUEUE_STATE_STACK_XOFF,
651 	__QUEUE_STATE_FROZEN,
652 };
653 
654 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
655 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
656 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
657 
658 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
659 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
660 					QUEUE_STATE_FROZEN)
661 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
662 					QUEUE_STATE_FROZEN)
663 
664 /*
665  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
666  * netif_tx_* functions below are used to manipulate this flag.  The
667  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
668  * queue independently.  The netif_xmit_*stopped functions below are called
669  * to check if the queue has been stopped by the driver or stack (either
670  * of the XOFF bits are set in the state).  Drivers should not need to call
671  * netif_xmit*stopped functions, they should only be using netif_tx_*.
672  */
673 
674 struct netdev_queue {
675 /*
676  * read-mostly part
677  */
678 	struct net_device	*dev;
679 	netdevice_tracker	dev_tracker;
680 
681 	struct Qdisc __rcu	*qdisc;
682 	struct Qdisc __rcu	*qdisc_sleeping;
683 #ifdef CONFIG_SYSFS
684 	struct kobject		kobj;
685 	const struct attribute_group	**groups;
686 #endif
687 	unsigned long		tx_maxrate;
688 	/*
689 	 * Number of TX timeouts for this queue
690 	 * (/sys/class/net/DEV/Q/trans_timeout)
691 	 */
692 	atomic_long_t		trans_timeout;
693 
694 	/* Subordinate device that the queue has been assigned to */
695 	struct net_device	*sb_dev;
696 #ifdef CONFIG_XDP_SOCKETS
697 	/* "ops protected", see comment about net_device::lock */
698 	struct xsk_buff_pool    *pool;
699 #endif
700 
701 /*
702  * write-mostly part
703  */
704 #ifdef CONFIG_BQL
705 	struct dql		dql;
706 #endif
707 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
708 	int			xmit_lock_owner;
709 	/*
710 	 * Time (in jiffies) of last Tx
711 	 */
712 	unsigned long		trans_start;
713 
714 	unsigned long		state;
715 
716 /*
717  * slow- / control-path part
718  */
719 	/* NAPI instance for the queue
720 	 * "ops protected", see comment about net_device::lock
721 	 */
722 	struct napi_struct	*napi;
723 
724 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
725 	int			numa_node;
726 #endif
727 } ____cacheline_aligned_in_smp;
728 
729 extern int sysctl_fb_tunnels_only_for_init_net;
730 extern int sysctl_devconf_inherit_init_net;
731 
732 /*
733  * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns
734  *                                     == 1 : For initns only
735  *                                     == 2 : For none.
736  */
737 static inline bool net_has_fallback_tunnels(const struct net *net)
738 {
739 #if IS_ENABLED(CONFIG_SYSCTL)
740 	int fb_tunnels_only_for_init_net = READ_ONCE(sysctl_fb_tunnels_only_for_init_net);
741 
742 	return !fb_tunnels_only_for_init_net ||
743 		(net_eq(net, &init_net) && fb_tunnels_only_for_init_net == 1);
744 #else
745 	return true;
746 #endif
747 }
748 
749 static inline int net_inherit_devconf(void)
750 {
751 #if IS_ENABLED(CONFIG_SYSCTL)
752 	return READ_ONCE(sysctl_devconf_inherit_init_net);
753 #else
754 	return 0;
755 #endif
756 }
757 
758 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
759 {
760 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
761 	return q->numa_node;
762 #else
763 	return NUMA_NO_NODE;
764 #endif
765 }
766 
767 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
768 {
769 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
770 	q->numa_node = node;
771 #endif
772 }
773 
774 #ifdef CONFIG_RFS_ACCEL
775 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
776 			 u16 filter_id);
777 #endif
778 
779 /* XPS map type and offset of the xps map within net_device->xps_maps[]. */
780 enum xps_map_type {
781 	XPS_CPUS = 0,
782 	XPS_RXQS,
783 	XPS_MAPS_MAX,
784 };
785 
786 #ifdef CONFIG_XPS
787 /*
788  * This structure holds an XPS map which can be of variable length.  The
789  * map is an array of queues.
790  */
791 struct xps_map {
792 	unsigned int len;
793 	unsigned int alloc_len;
794 	struct rcu_head rcu;
795 	u16 queues[];
796 };
797 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
798 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
799        - sizeof(struct xps_map)) / sizeof(u16))
800 
801 /*
802  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
803  *
804  * We keep track of the number of cpus/rxqs used when the struct is allocated,
805  * in nr_ids. This will help not accessing out-of-bound memory.
806  *
807  * We keep track of the number of traffic classes used when the struct is
808  * allocated, in num_tc. This will be used to navigate the maps, to ensure we're
809  * not crossing its upper bound, as the original dev->num_tc can be updated in
810  * the meantime.
811  */
812 struct xps_dev_maps {
813 	struct rcu_head rcu;
814 	unsigned int nr_ids;
815 	s16 num_tc;
816 	struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
817 };
818 
819 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
820 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
821 
822 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
823 	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
824 
825 #endif /* CONFIG_XPS */
826 
827 #define TC_MAX_QUEUE	16
828 #define TC_BITMASK	15
829 /* HW offloaded queuing disciplines txq count and offset maps */
830 struct netdev_tc_txq {
831 	u16 count;
832 	u16 offset;
833 };
834 
835 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
836 /*
837  * This structure is to hold information about the device
838  * configured to run FCoE protocol stack.
839  */
840 struct netdev_fcoe_hbainfo {
841 	char	manufacturer[64];
842 	char	serial_number[64];
843 	char	hardware_version[64];
844 	char	driver_version[64];
845 	char	optionrom_version[64];
846 	char	firmware_version[64];
847 	char	model[256];
848 	char	model_description[256];
849 };
850 #endif
851 
852 #define MAX_PHYS_ITEM_ID_LEN 32
853 
854 /* This structure holds a unique identifier to identify some
855  * physical item (port for example) used by a netdevice.
856  */
857 struct netdev_phys_item_id {
858 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
859 	unsigned char id_len;
860 };
861 
862 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
863 					    struct netdev_phys_item_id *b)
864 {
865 	return a->id_len == b->id_len &&
866 	       memcmp(a->id, b->id, a->id_len) == 0;
867 }
868 
869 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
870 				       struct sk_buff *skb,
871 				       struct net_device *sb_dev);
872 
873 enum net_device_path_type {
874 	DEV_PATH_ETHERNET = 0,
875 	DEV_PATH_VLAN,
876 	DEV_PATH_BRIDGE,
877 	DEV_PATH_PPPOE,
878 	DEV_PATH_DSA,
879 	DEV_PATH_MTK_WDMA,
880 	DEV_PATH_TUN,
881 };
882 
883 struct net_device_path {
884 	enum net_device_path_type	type;
885 	const struct net_device		*dev;
886 	union {
887 		struct {
888 			u16		id;
889 			__be16		proto;
890 			u8		h_dest[ETH_ALEN];
891 		} encap;
892 		struct {
893 			union {
894 				struct in_addr	src_v4;
895 				struct in6_addr	src_v6;
896 			};
897 			union {
898 				struct in_addr	dst_v4;
899 				struct in6_addr	dst_v6;
900 			};
901 
902 			u8	l3_proto;
903 		} tun;
904 		struct {
905 			enum {
906 				DEV_PATH_BR_VLAN_KEEP,
907 				DEV_PATH_BR_VLAN_TAG,
908 				DEV_PATH_BR_VLAN_UNTAG,
909 				DEV_PATH_BR_VLAN_UNTAG_HW,
910 			}		vlan_mode;
911 			u16		vlan_id;
912 			__be16		vlan_proto;
913 		} bridge;
914 		struct {
915 			int port;
916 			u16 proto;
917 		} dsa;
918 		struct {
919 			u8 wdma_idx;
920 			u8 queue;
921 			u16 wcid;
922 			u8 bss;
923 			u8 amsdu;
924 		} mtk_wdma;
925 	};
926 };
927 
928 #define NET_DEVICE_PATH_STACK_MAX	5
929 #define NET_DEVICE_PATH_VLAN_MAX	2
930 
931 struct net_device_path_stack {
932 	int			num_paths;
933 	struct net_device_path	path[NET_DEVICE_PATH_STACK_MAX];
934 };
935 
936 struct net_device_path_ctx {
937 	const struct net_device *dev;
938 	u8			daddr[ETH_ALEN];
939 
940 	int			num_vlans;
941 	struct {
942 		u16		id;
943 		__be16		proto;
944 	} vlan[NET_DEVICE_PATH_VLAN_MAX];
945 };
946 
947 enum tc_setup_type {
948 	TC_QUERY_CAPS,
949 	TC_SETUP_QDISC_MQPRIO,
950 	TC_SETUP_CLSU32,
951 	TC_SETUP_CLSFLOWER,
952 	TC_SETUP_CLSMATCHALL,
953 	TC_SETUP_CLSBPF,
954 	TC_SETUP_BLOCK,
955 	TC_SETUP_QDISC_CBS,
956 	TC_SETUP_QDISC_RED,
957 	TC_SETUP_QDISC_PRIO,
958 	TC_SETUP_QDISC_MQ,
959 	TC_SETUP_QDISC_ETF,
960 	TC_SETUP_ROOT_QDISC,
961 	TC_SETUP_QDISC_GRED,
962 	TC_SETUP_QDISC_TAPRIO,
963 	TC_SETUP_FT,
964 	TC_SETUP_QDISC_ETS,
965 	TC_SETUP_QDISC_TBF,
966 	TC_SETUP_QDISC_FIFO,
967 	TC_SETUP_QDISC_HTB,
968 	TC_SETUP_ACT,
969 };
970 
971 /* These structures hold the attributes of bpf state that are being passed
972  * to the netdevice through the bpf op.
973  */
974 enum bpf_netdev_command {
975 	/* Set or clear a bpf program used in the earliest stages of packet
976 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
977 	 * is responsible for calling bpf_prog_put on any old progs that are
978 	 * stored. In case of error, the callee need not release the new prog
979 	 * reference, but on success it takes ownership and must bpf_prog_put
980 	 * when it is no longer used.
981 	 */
982 	XDP_SETUP_PROG,
983 	XDP_SETUP_PROG_HW,
984 	/* BPF program for offload callbacks, invoked at program load time. */
985 	BPF_OFFLOAD_MAP_ALLOC,
986 	BPF_OFFLOAD_MAP_FREE,
987 	XDP_SETUP_XSK_POOL,
988 };
989 
990 struct bpf_prog_offload_ops;
991 struct netlink_ext_ack;
992 struct xdp_umem;
993 struct xdp_dev_bulk_queue;
994 struct bpf_xdp_link;
995 
996 enum bpf_xdp_mode {
997 	XDP_MODE_SKB = 0,
998 	XDP_MODE_DRV = 1,
999 	XDP_MODE_HW = 2,
1000 	__MAX_XDP_MODE
1001 };
1002 
1003 struct bpf_xdp_entity {
1004 	struct bpf_prog *prog;
1005 	struct bpf_xdp_link *link;
1006 };
1007 
1008 struct netdev_bpf {
1009 	enum bpf_netdev_command command;
1010 	union {
1011 		/* XDP_SETUP_PROG */
1012 		struct {
1013 			u32 flags;
1014 			struct bpf_prog *prog;
1015 			struct netlink_ext_ack *extack;
1016 		};
1017 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
1018 		struct {
1019 			struct bpf_offloaded_map *offmap;
1020 		};
1021 		/* XDP_SETUP_XSK_POOL */
1022 		struct {
1023 			struct xsk_buff_pool *pool;
1024 			u16 queue_id;
1025 		} xsk;
1026 	};
1027 };
1028 
1029 /* Flags for ndo_xsk_wakeup. */
1030 #define XDP_WAKEUP_RX (1 << 0)
1031 #define XDP_WAKEUP_TX (1 << 1)
1032 
1033 #ifdef CONFIG_XFRM_OFFLOAD
1034 struct xfrmdev_ops {
1035 	int	(*xdo_dev_state_add)(struct net_device *dev,
1036 				     struct xfrm_state *x,
1037 				     struct netlink_ext_ack *extack);
1038 	void	(*xdo_dev_state_delete)(struct net_device *dev,
1039 					struct xfrm_state *x);
1040 	void	(*xdo_dev_state_free)(struct net_device *dev,
1041 				      struct xfrm_state *x);
1042 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
1043 				       struct xfrm_state *x);
1044 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
1045 	void	(*xdo_dev_state_update_stats) (struct xfrm_state *x);
1046 	int	(*xdo_dev_policy_add) (struct xfrm_policy *x, struct netlink_ext_ack *extack);
1047 	void	(*xdo_dev_policy_delete) (struct xfrm_policy *x);
1048 	void	(*xdo_dev_policy_free) (struct xfrm_policy *x);
1049 };
1050 #endif
1051 
1052 struct dev_ifalias {
1053 	struct rcu_head rcuhead;
1054 	char ifalias[];
1055 };
1056 
1057 struct devlink;
1058 struct tlsdev_ops;
1059 
1060 struct netdev_net_notifier {
1061 	struct list_head list;
1062 	struct notifier_block *nb;
1063 };
1064 
1065 /*
1066  * This structure defines the management hooks for network devices.
1067  * The following hooks can be defined; unless noted otherwise, they are
1068  * optional and can be filled with a null pointer.
1069  *
1070  * int (*ndo_init)(struct net_device *dev);
1071  *     This function is called once when a network device is registered.
1072  *     The network device can use this for any late stage initialization
1073  *     or semantic validation. It can fail with an error code which will
1074  *     be propagated back to register_netdev.
1075  *
1076  * void (*ndo_uninit)(struct net_device *dev);
1077  *     This function is called when device is unregistered or when registration
1078  *     fails. It is not called if init fails.
1079  *
1080  * int (*ndo_open)(struct net_device *dev);
1081  *     This function is called when a network device transitions to the up
1082  *     state.
1083  *
1084  * int (*ndo_stop)(struct net_device *dev);
1085  *     This function is called when a network device transitions to the down
1086  *     state.
1087  *
1088  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1089  *                               struct net_device *dev);
1090  *	Called when a packet needs to be transmitted.
1091  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
1092  *	the queue before that can happen; it's for obsolete devices and weird
1093  *	corner cases, but the stack really does a non-trivial amount
1094  *	of useless work if you return NETDEV_TX_BUSY.
1095  *	Required; cannot be NULL.
1096  *
1097  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1098  *					   struct net_device *dev
1099  *					   netdev_features_t features);
1100  *	Called by core transmit path to determine if device is capable of
1101  *	performing offload operations on a given packet. This is to give
1102  *	the device an opportunity to implement any restrictions that cannot
1103  *	be otherwise expressed by feature flags. The check is called with
1104  *	the set of features that the stack has calculated and it returns
1105  *	those the driver believes to be appropriate.
1106  *
1107  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
1108  *                         struct net_device *sb_dev);
1109  *	Called to decide which queue to use when device supports multiple
1110  *	transmit queues.
1111  *
1112  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1113  *	This function is called to allow device receiver to make
1114  *	changes to configuration when multicast or promiscuous is enabled.
1115  *
1116  * void (*ndo_set_rx_mode)(struct net_device *dev);
1117  *	This function is called device changes address list filtering.
1118  *	If driver handles unicast address filtering, it should set
1119  *	IFF_UNICAST_FLT in its priv_flags.
1120  *
1121  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1122  *	This function  is called when the Media Access Control address
1123  *	needs to be changed. If this interface is not defined, the
1124  *	MAC address can not be changed.
1125  *
1126  * int (*ndo_validate_addr)(struct net_device *dev);
1127  *	Test if Media Access Control address is valid for the device.
1128  *
1129  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1130  *	Old-style ioctl entry point. This is used internally by the
1131  *	ieee802154 subsystem but is no longer called by the device
1132  *	ioctl handler.
1133  *
1134  * int (*ndo_siocbond)(struct net_device *dev, struct ifreq *ifr, int cmd);
1135  *	Used by the bonding driver for its device specific ioctls:
1136  *	SIOCBONDENSLAVE, SIOCBONDRELEASE, SIOCBONDSETHWADDR, SIOCBONDCHANGEACTIVE,
1137  *	SIOCBONDSLAVEINFOQUERY, and SIOCBONDINFOQUERY
1138  *
1139  * * int (*ndo_eth_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1140  *	Called for ethernet specific ioctls: SIOCGMIIPHY, SIOCGMIIREG,
1141  *	SIOCSMIIREG, SIOCSHWTSTAMP and SIOCGHWTSTAMP.
1142  *
1143  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1144  *	Used to set network devices bus interface parameters. This interface
1145  *	is retained for legacy reasons; new devices should use the bus
1146  *	interface (PCI) for low level management.
1147  *
1148  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1149  *	Called when a user wants to change the Maximum Transfer Unit
1150  *	of a device.
1151  *
1152  * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1153  *	Callback used when the transmitter has not made any progress
1154  *	for dev->watchdog ticks.
1155  *
1156  * void (*ndo_get_stats64)(struct net_device *dev,
1157  *                         struct rtnl_link_stats64 *storage);
1158  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1159  *	Called when a user wants to get the network device usage
1160  *	statistics. Drivers must do one of the following:
1161  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1162  *	   rtnl_link_stats64 structure passed by the caller.
1163  *	2. Define @ndo_get_stats to update a net_device_stats structure
1164  *	   (which should normally be dev->stats) and return a pointer to
1165  *	   it. The structure may be changed asynchronously only if each
1166  *	   field is written atomically.
1167  *	3. Update dev->stats asynchronously and atomically, and define
1168  *	   neither operation.
1169  *
1170  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1171  *	Return true if this device supports offload stats of this attr_id.
1172  *
1173  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1174  *	void *attr_data)
1175  *	Get statistics for offload operations by attr_id. Write it into the
1176  *	attr_data pointer.
1177  *
1178  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1179  *	If device supports VLAN filtering this function is called when a
1180  *	VLAN id is registered.
1181  *
1182  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1183  *	If device supports VLAN filtering this function is called when a
1184  *	VLAN id is unregistered.
1185  *
1186  * void (*ndo_poll_controller)(struct net_device *dev);
1187  *
1188  *	SR-IOV management functions.
1189  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1190  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1191  *			  u8 qos, __be16 proto);
1192  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1193  *			  int max_tx_rate);
1194  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1195  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1196  * int (*ndo_get_vf_config)(struct net_device *dev,
1197  *			    int vf, struct ifla_vf_info *ivf);
1198  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1199  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1200  *			  struct nlattr *port[]);
1201  *
1202  *      Enable or disable the VF ability to query its RSS Redirection Table and
1203  *      Hash Key. This is needed since on some devices VF share this information
1204  *      with PF and querying it may introduce a theoretical security risk.
1205  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1206  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1207  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1208  *		       void *type_data);
1209  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1210  *	This is always called from the stack with the rtnl lock held and netif
1211  *	tx queues stopped. This allows the netdevice to perform queue
1212  *	management safely.
1213  *
1214  *	Fiber Channel over Ethernet (FCoE) offload functions.
1215  * int (*ndo_fcoe_enable)(struct net_device *dev);
1216  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1217  *	so the underlying device can perform whatever needed configuration or
1218  *	initialization to support acceleration of FCoE traffic.
1219  *
1220  * int (*ndo_fcoe_disable)(struct net_device *dev);
1221  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1222  *	so the underlying device can perform whatever needed clean-ups to
1223  *	stop supporting acceleration of FCoE traffic.
1224  *
1225  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1226  *			     struct scatterlist *sgl, unsigned int sgc);
1227  *	Called when the FCoE Initiator wants to initialize an I/O that
1228  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1229  *	perform necessary setup and returns 1 to indicate the device is set up
1230  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1231  *
1232  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1233  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1234  *	indicated by the FC exchange id 'xid', so the underlying device can
1235  *	clean up and reuse resources for later DDP requests.
1236  *
1237  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1238  *			      struct scatterlist *sgl, unsigned int sgc);
1239  *	Called when the FCoE Target wants to initialize an I/O that
1240  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1241  *	perform necessary setup and returns 1 to indicate the device is set up
1242  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1243  *
1244  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1245  *			       struct netdev_fcoe_hbainfo *hbainfo);
1246  *	Called when the FCoE Protocol stack wants information on the underlying
1247  *	device. This information is utilized by the FCoE protocol stack to
1248  *	register attributes with Fiber Channel management service as per the
1249  *	FC-GS Fabric Device Management Information(FDMI) specification.
1250  *
1251  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1252  *	Called when the underlying device wants to override default World Wide
1253  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1254  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1255  *	protocol stack to use.
1256  *
1257  *	RFS acceleration.
1258  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1259  *			    u16 rxq_index, u32 flow_id);
1260  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1261  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1262  *	Return the filter ID on success, or a negative error code.
1263  *
1264  *	Slave management functions (for bridge, bonding, etc).
1265  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1266  *	Called to make another netdev an underling.
1267  *
1268  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1269  *	Called to release previously enslaved netdev.
1270  *
1271  * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
1272  *					    struct sk_buff *skb,
1273  *					    bool all_slaves);
1274  *	Get the xmit slave of master device. If all_slaves is true, function
1275  *	assume all the slaves can transmit.
1276  *
1277  *      Feature/offload setting functions.
1278  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1279  *		netdev_features_t features);
1280  *	Adjusts the requested feature flags according to device-specific
1281  *	constraints, and returns the resulting flags. Must not modify
1282  *	the device state.
1283  *
1284  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1285  *	Called to update device configuration to new features. Passed
1286  *	feature set might be less than what was returned by ndo_fix_features()).
1287  *	Must return >0 or -errno if it changed dev->features itself.
1288  *
1289  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1290  *		      struct net_device *dev,
1291  *		      const unsigned char *addr, u16 vid, u16 flags,
1292  *		      bool *notified, struct netlink_ext_ack *extack);
1293  *	Adds an FDB entry to dev for addr.
1294  *	Callee shall set *notified to true if it sent any appropriate
1295  *	notification(s). Otherwise core will send a generic one.
1296  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1297  *		      struct net_device *dev,
1298  *		      const unsigned char *addr, u16 vid
1299  *		      bool *notified, struct netlink_ext_ack *extack);
1300  *	Deletes the FDB entry from dev corresponding to addr.
1301  *	Callee shall set *notified to true if it sent any appropriate
1302  *	notification(s). Otherwise core will send a generic one.
1303  * int (*ndo_fdb_del_bulk)(struct nlmsghdr *nlh, struct net_device *dev,
1304  *			   struct netlink_ext_ack *extack);
1305  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1306  *		       struct net_device *dev, struct net_device *filter_dev,
1307  *		       int *idx)
1308  *	Used to add FDB entries to dump requests. Implementers should add
1309  *	entries to skb and update idx with the number of entries.
1310  *
1311  * int (*ndo_mdb_add)(struct net_device *dev, struct nlattr *tb[],
1312  *		      u16 nlmsg_flags, struct netlink_ext_ack *extack);
1313  *	Adds an MDB entry to dev.
1314  * int (*ndo_mdb_del)(struct net_device *dev, struct nlattr *tb[],
1315  *		      struct netlink_ext_ack *extack);
1316  *	Deletes the MDB entry from dev.
1317  * int (*ndo_mdb_del_bulk)(struct net_device *dev, struct nlattr *tb[],
1318  *			   struct netlink_ext_ack *extack);
1319  *	Bulk deletes MDB entries from dev.
1320  * int (*ndo_mdb_dump)(struct net_device *dev, struct sk_buff *skb,
1321  *		       struct netlink_callback *cb);
1322  *	Dumps MDB entries from dev. The first argument (marker) in the netlink
1323  *	callback is used by core rtnetlink code.
1324  *
1325  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1326  *			     u16 flags, struct netlink_ext_ack *extack)
1327  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1328  *			     struct net_device *dev, u32 filter_mask,
1329  *			     int nlflags)
1330  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1331  *			     u16 flags);
1332  *
1333  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1334  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1335  *	which do not represent real hardware may define this to allow their
1336  *	userspace components to manage their virtual carrier state. Devices
1337  *	that determine carrier state from physical hardware properties (eg
1338  *	network cables) or protocol-dependent mechanisms (eg
1339  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1340  *
1341  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1342  *			       struct netdev_phys_item_id *ppid);
1343  *	Called to get ID of physical port of this device. If driver does
1344  *	not implement this, it is assumed that the hw is not able to have
1345  *	multiple net devices on single physical port.
1346  *
1347  * int (*ndo_get_port_parent_id)(struct net_device *dev,
1348  *				 struct netdev_phys_item_id *ppid)
1349  *	Called to get the parent ID of the physical port of this device.
1350  *
1351  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1352  *				 struct net_device *dev)
1353  *	Called by upper layer devices to accelerate switching or other
1354  *	station functionality into hardware. 'pdev is the lowerdev
1355  *	to use for the offload and 'dev' is the net device that will
1356  *	back the offload. Returns a pointer to the private structure
1357  *	the upper layer will maintain.
1358  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1359  *	Called by upper layer device to delete the station created
1360  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1361  *	the station and priv is the structure returned by the add
1362  *	operation.
1363  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1364  *			     int queue_index, u32 maxrate);
1365  *	Called when a user wants to set a max-rate limitation of specific
1366  *	TX queue.
1367  * int (*ndo_get_iflink)(const struct net_device *dev);
1368  *	Called to get the iflink value of this device.
1369  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1370  *	This function is used to get egress tunnel information for given skb.
1371  *	This is useful for retrieving outer tunnel header parameters while
1372  *	sampling packet.
1373  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1374  *	This function is used to specify the headroom that the skb must
1375  *	consider when allocation skb during packet reception. Setting
1376  *	appropriate rx headroom value allows avoiding skb head copy on
1377  *	forward. Setting a negative value resets the rx headroom to the
1378  *	default value.
1379  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1380  *	This function is used to set or query state related to XDP on the
1381  *	netdevice and manage BPF offload. See definition of
1382  *	enum bpf_netdev_command for details.
1383  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1384  *			u32 flags);
1385  *	This function is used to submit @n XDP packets for transmit on a
1386  *	netdevice. Returns number of frames successfully transmitted, frames
1387  *	that got dropped are freed/returned via xdp_return_frame().
1388  *	Returns negative number, means general error invoking ndo, meaning
1389  *	no frames were xmit'ed and core-caller will free all frames.
1390  * struct net_device *(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1391  *					        struct xdp_buff *xdp);
1392  *      Get the xmit slave of master device based on the xdp_buff.
1393  * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1394  *      This function is used to wake up the softirq, ksoftirqd or kthread
1395  *	responsible for sending and/or receiving packets on a specific
1396  *	queue id bound to an AF_XDP socket. The flags field specifies if
1397  *	only RX, only Tx, or both should be woken up using the flags
1398  *	XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1399  * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm_kern *p,
1400  *			 int cmd);
1401  *	Add, change, delete or get information on an IPv4 tunnel.
1402  * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev);
1403  *	If a device is paired with a peer device, return the peer instance.
1404  *	The caller must be under RCU read context.
1405  * int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path);
1406  *     Get the forwarding path to reach the real device from the HW destination address
1407  * ktime_t (*ndo_get_tstamp)(struct net_device *dev,
1408  *			     const struct skb_shared_hwtstamps *hwtstamps,
1409  *			     bool cycles);
1410  *	Get hardware timestamp based on normal/adjustable time or free running
1411  *	cycle counter. This function is required if physical clock supports a
1412  *	free running cycle counter.
1413  *
1414  * int (*ndo_hwtstamp_get)(struct net_device *dev,
1415  *			   struct kernel_hwtstamp_config *kernel_config);
1416  *	Get the currently configured hardware timestamping parameters for the
1417  *	NIC device.
1418  *
1419  * int (*ndo_hwtstamp_set)(struct net_device *dev,
1420  *			   struct kernel_hwtstamp_config *kernel_config,
1421  *			   struct netlink_ext_ack *extack);
1422  *	Change the hardware timestamping parameters for NIC device.
1423  */
1424 struct net_device_ops {
1425 	int			(*ndo_init)(struct net_device *dev);
1426 	void			(*ndo_uninit)(struct net_device *dev);
1427 	int			(*ndo_open)(struct net_device *dev);
1428 	int			(*ndo_stop)(struct net_device *dev);
1429 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1430 						  struct net_device *dev);
1431 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1432 						      struct net_device *dev,
1433 						      netdev_features_t features);
1434 	u16			(*ndo_select_queue)(struct net_device *dev,
1435 						    struct sk_buff *skb,
1436 						    struct net_device *sb_dev);
1437 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1438 						       int flags);
1439 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1440 	int			(*ndo_set_mac_address)(struct net_device *dev,
1441 						       void *addr);
1442 	int			(*ndo_validate_addr)(struct net_device *dev);
1443 	int			(*ndo_do_ioctl)(struct net_device *dev,
1444 					        struct ifreq *ifr, int cmd);
1445 	int			(*ndo_eth_ioctl)(struct net_device *dev,
1446 						 struct ifreq *ifr, int cmd);
1447 	int			(*ndo_siocbond)(struct net_device *dev,
1448 						struct ifreq *ifr, int cmd);
1449 	int			(*ndo_siocwandev)(struct net_device *dev,
1450 						  struct if_settings *ifs);
1451 	int			(*ndo_siocdevprivate)(struct net_device *dev,
1452 						      struct ifreq *ifr,
1453 						      void __user *data, int cmd);
1454 	int			(*ndo_set_config)(struct net_device *dev,
1455 					          struct ifmap *map);
1456 	int			(*ndo_change_mtu)(struct net_device *dev,
1457 						  int new_mtu);
1458 	int			(*ndo_neigh_setup)(struct net_device *dev,
1459 						   struct neigh_parms *);
1460 	void			(*ndo_tx_timeout) (struct net_device *dev,
1461 						   unsigned int txqueue);
1462 
1463 	void			(*ndo_get_stats64)(struct net_device *dev,
1464 						   struct rtnl_link_stats64 *storage);
1465 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1466 	int			(*ndo_get_offload_stats)(int attr_id,
1467 							 const struct net_device *dev,
1468 							 void *attr_data);
1469 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1470 
1471 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1472 						       __be16 proto, u16 vid);
1473 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1474 						        __be16 proto, u16 vid);
1475 #ifdef CONFIG_NET_POLL_CONTROLLER
1476 	void                    (*ndo_poll_controller)(struct net_device *dev);
1477 	int			(*ndo_netpoll_setup)(struct net_device *dev);
1478 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1479 #endif
1480 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1481 						  int queue, u8 *mac);
1482 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1483 						   int queue, u16 vlan,
1484 						   u8 qos, __be16 proto);
1485 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1486 						   int vf, int min_tx_rate,
1487 						   int max_tx_rate);
1488 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1489 						       int vf, bool setting);
1490 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1491 						    int vf, bool setting);
1492 	int			(*ndo_get_vf_config)(struct net_device *dev,
1493 						     int vf,
1494 						     struct ifla_vf_info *ivf);
1495 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1496 							 int vf, int link_state);
1497 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1498 						    int vf,
1499 						    struct ifla_vf_stats
1500 						    *vf_stats);
1501 	int			(*ndo_set_vf_port)(struct net_device *dev,
1502 						   int vf,
1503 						   struct nlattr *port[]);
1504 	int			(*ndo_get_vf_port)(struct net_device *dev,
1505 						   int vf, struct sk_buff *skb);
1506 	int			(*ndo_get_vf_guid)(struct net_device *dev,
1507 						   int vf,
1508 						   struct ifla_vf_guid *node_guid,
1509 						   struct ifla_vf_guid *port_guid);
1510 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1511 						   int vf, u64 guid,
1512 						   int guid_type);
1513 	int			(*ndo_set_vf_rss_query_en)(
1514 						   struct net_device *dev,
1515 						   int vf, bool setting);
1516 	int			(*ndo_setup_tc)(struct net_device *dev,
1517 						enum tc_setup_type type,
1518 						void *type_data);
1519 #if IS_ENABLED(CONFIG_FCOE)
1520 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1521 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1522 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1523 						      u16 xid,
1524 						      struct scatterlist *sgl,
1525 						      unsigned int sgc);
1526 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1527 						     u16 xid);
1528 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1529 						       u16 xid,
1530 						       struct scatterlist *sgl,
1531 						       unsigned int sgc);
1532 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1533 							struct netdev_fcoe_hbainfo *hbainfo);
1534 #endif
1535 
1536 #if IS_ENABLED(CONFIG_LIBFCOE)
1537 #define NETDEV_FCOE_WWNN 0
1538 #define NETDEV_FCOE_WWPN 1
1539 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1540 						    u64 *wwn, int type);
1541 #endif
1542 
1543 #ifdef CONFIG_RFS_ACCEL
1544 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1545 						     const struct sk_buff *skb,
1546 						     u16 rxq_index,
1547 						     u32 flow_id);
1548 #endif
1549 	int			(*ndo_add_slave)(struct net_device *dev,
1550 						 struct net_device *slave_dev,
1551 						 struct netlink_ext_ack *extack);
1552 	int			(*ndo_del_slave)(struct net_device *dev,
1553 						 struct net_device *slave_dev);
1554 	struct net_device*	(*ndo_get_xmit_slave)(struct net_device *dev,
1555 						      struct sk_buff *skb,
1556 						      bool all_slaves);
1557 	struct net_device*	(*ndo_sk_get_lower_dev)(struct net_device *dev,
1558 							struct sock *sk);
1559 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1560 						    netdev_features_t features);
1561 	int			(*ndo_set_features)(struct net_device *dev,
1562 						    netdev_features_t features);
1563 	int			(*ndo_neigh_construct)(struct net_device *dev,
1564 						       struct neighbour *n);
1565 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1566 						     struct neighbour *n);
1567 
1568 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1569 					       struct nlattr *tb[],
1570 					       struct net_device *dev,
1571 					       const unsigned char *addr,
1572 					       u16 vid,
1573 					       u16 flags,
1574 					       bool *notified,
1575 					       struct netlink_ext_ack *extack);
1576 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1577 					       struct nlattr *tb[],
1578 					       struct net_device *dev,
1579 					       const unsigned char *addr,
1580 					       u16 vid,
1581 					       bool *notified,
1582 					       struct netlink_ext_ack *extack);
1583 	int			(*ndo_fdb_del_bulk)(struct nlmsghdr *nlh,
1584 						    struct net_device *dev,
1585 						    struct netlink_ext_ack *extack);
1586 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1587 						struct netlink_callback *cb,
1588 						struct net_device *dev,
1589 						struct net_device *filter_dev,
1590 						int *idx);
1591 	int			(*ndo_fdb_get)(struct sk_buff *skb,
1592 					       struct nlattr *tb[],
1593 					       struct net_device *dev,
1594 					       const unsigned char *addr,
1595 					       u16 vid, u32 portid, u32 seq,
1596 					       struct netlink_ext_ack *extack);
1597 	int			(*ndo_mdb_add)(struct net_device *dev,
1598 					       struct nlattr *tb[],
1599 					       u16 nlmsg_flags,
1600 					       struct netlink_ext_ack *extack);
1601 	int			(*ndo_mdb_del)(struct net_device *dev,
1602 					       struct nlattr *tb[],
1603 					       struct netlink_ext_ack *extack);
1604 	int			(*ndo_mdb_del_bulk)(struct net_device *dev,
1605 						    struct nlattr *tb[],
1606 						    struct netlink_ext_ack *extack);
1607 	int			(*ndo_mdb_dump)(struct net_device *dev,
1608 						struct sk_buff *skb,
1609 						struct netlink_callback *cb);
1610 	int			(*ndo_mdb_get)(struct net_device *dev,
1611 					       struct nlattr *tb[], u32 portid,
1612 					       u32 seq,
1613 					       struct netlink_ext_ack *extack);
1614 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1615 						      struct nlmsghdr *nlh,
1616 						      u16 flags,
1617 						      struct netlink_ext_ack *extack);
1618 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1619 						      u32 pid, u32 seq,
1620 						      struct net_device *dev,
1621 						      u32 filter_mask,
1622 						      int nlflags);
1623 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1624 						      struct nlmsghdr *nlh,
1625 						      u16 flags);
1626 	int			(*ndo_change_carrier)(struct net_device *dev,
1627 						      bool new_carrier);
1628 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1629 							struct netdev_phys_item_id *ppid);
1630 	int			(*ndo_get_port_parent_id)(struct net_device *dev,
1631 							  struct netdev_phys_item_id *ppid);
1632 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1633 							  char *name, size_t len);
1634 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1635 							struct net_device *dev);
1636 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1637 							void *priv);
1638 
1639 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1640 						      int queue_index,
1641 						      u32 maxrate);
1642 	int			(*ndo_get_iflink)(const struct net_device *dev);
1643 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1644 						       struct sk_buff *skb);
1645 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1646 						       int needed_headroom);
1647 	int			(*ndo_bpf)(struct net_device *dev,
1648 					   struct netdev_bpf *bpf);
1649 	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1650 						struct xdp_frame **xdp,
1651 						u32 flags);
1652 	struct net_device *	(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1653 							  struct xdp_buff *xdp);
1654 	int			(*ndo_xsk_wakeup)(struct net_device *dev,
1655 						  u32 queue_id, u32 flags);
1656 	int			(*ndo_tunnel_ctl)(struct net_device *dev,
1657 						  struct ip_tunnel_parm_kern *p,
1658 						  int cmd);
1659 	struct net_device *	(*ndo_get_peer_dev)(struct net_device *dev);
1660 	int                     (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx,
1661                                                          struct net_device_path *path);
1662 	ktime_t			(*ndo_get_tstamp)(struct net_device *dev,
1663 						  const struct skb_shared_hwtstamps *hwtstamps,
1664 						  bool cycles);
1665 	int			(*ndo_hwtstamp_get)(struct net_device *dev,
1666 						    struct kernel_hwtstamp_config *kernel_config);
1667 	int			(*ndo_hwtstamp_set)(struct net_device *dev,
1668 						    struct kernel_hwtstamp_config *kernel_config,
1669 						    struct netlink_ext_ack *extack);
1670 
1671 #if IS_ENABLED(CONFIG_NET_SHAPER)
1672 	/**
1673 	 * @net_shaper_ops: Device shaping offload operations
1674 	 * see include/net/net_shapers.h
1675 	 */
1676 	const struct net_shaper_ops *net_shaper_ops;
1677 #endif
1678 };
1679 
1680 /**
1681  * enum netdev_priv_flags - &struct net_device priv_flags
1682  *
1683  * These are the &struct net_device, they are only set internally
1684  * by drivers and used in the kernel. These flags are invisible to
1685  * userspace; this means that the order of these flags can change
1686  * during any kernel release.
1687  *
1688  * You should add bitfield booleans after either net_device::priv_flags
1689  * (hotpath) or ::threaded (slowpath) instead of extending these flags.
1690  *
1691  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1692  * @IFF_EBRIDGE: Ethernet bridging device
1693  * @IFF_BONDING: bonding master or slave
1694  * @IFF_ISATAP: ISATAP interface (RFC4214)
1695  * @IFF_WAN_HDLC: WAN HDLC device
1696  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1697  *	release skb->dst
1698  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1699  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1700  * @IFF_MACVLAN_PORT: device used as macvlan port
1701  * @IFF_BRIDGE_PORT: device used as bridge port
1702  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1703  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1704  * @IFF_UNICAST_FLT: Supports unicast filtering
1705  * @IFF_TEAM_PORT: device used as team port
1706  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1707  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1708  *	change when it's running
1709  * @IFF_MACVLAN: Macvlan device
1710  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1711  *	underlying stacked devices
1712  * @IFF_L3MDEV_MASTER: device is an L3 master device
1713  * @IFF_NO_QUEUE: device can run without qdisc attached
1714  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1715  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1716  * @IFF_TEAM: device is a team device
1717  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1718  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1719  *	entity (i.e. the master device for bridged veth)
1720  * @IFF_MACSEC: device is a MACsec device
1721  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1722  * @IFF_FAILOVER: device is a failover master device
1723  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1724  * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1725  * @IFF_NO_ADDRCONF: prevent ipv6 addrconf
1726  * @IFF_TX_SKB_NO_LINEAR: device/driver is capable of xmitting frames with
1727  *	skb_headlen(skb) == 0 (data starts from frag0)
1728  */
1729 enum netdev_priv_flags {
1730 	IFF_802_1Q_VLAN			= 1<<0,
1731 	IFF_EBRIDGE			= 1<<1,
1732 	IFF_BONDING			= 1<<2,
1733 	IFF_ISATAP			= 1<<3,
1734 	IFF_WAN_HDLC			= 1<<4,
1735 	IFF_XMIT_DST_RELEASE		= 1<<5,
1736 	IFF_DONT_BRIDGE			= 1<<6,
1737 	IFF_DISABLE_NETPOLL		= 1<<7,
1738 	IFF_MACVLAN_PORT		= 1<<8,
1739 	IFF_BRIDGE_PORT			= 1<<9,
1740 	IFF_OVS_DATAPATH		= 1<<10,
1741 	IFF_TX_SKB_SHARING		= 1<<11,
1742 	IFF_UNICAST_FLT			= 1<<12,
1743 	IFF_TEAM_PORT			= 1<<13,
1744 	IFF_SUPP_NOFCS			= 1<<14,
1745 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1746 	IFF_MACVLAN			= 1<<16,
1747 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1748 	IFF_L3MDEV_MASTER		= 1<<18,
1749 	IFF_NO_QUEUE			= 1<<19,
1750 	IFF_OPENVSWITCH			= 1<<20,
1751 	IFF_L3MDEV_SLAVE		= 1<<21,
1752 	IFF_TEAM			= 1<<22,
1753 	IFF_RXFH_CONFIGURED		= 1<<23,
1754 	IFF_PHONY_HEADROOM		= 1<<24,
1755 	IFF_MACSEC			= 1<<25,
1756 	IFF_NO_RX_HANDLER		= 1<<26,
1757 	IFF_FAILOVER			= 1<<27,
1758 	IFF_FAILOVER_SLAVE		= 1<<28,
1759 	IFF_L3MDEV_RX_HANDLER		= 1<<29,
1760 	IFF_NO_ADDRCONF			= BIT_ULL(30),
1761 	IFF_TX_SKB_NO_LINEAR		= BIT_ULL(31),
1762 };
1763 
1764 /* Specifies the type of the struct net_device::ml_priv pointer */
1765 enum netdev_ml_priv_type {
1766 	ML_PRIV_NONE,
1767 	ML_PRIV_CAN,
1768 };
1769 
1770 enum netdev_stat_type {
1771 	NETDEV_PCPU_STAT_NONE,
1772 	NETDEV_PCPU_STAT_LSTATS, /* struct pcpu_lstats */
1773 	NETDEV_PCPU_STAT_TSTATS, /* struct pcpu_sw_netstats */
1774 	NETDEV_PCPU_STAT_DSTATS, /* struct pcpu_dstats */
1775 };
1776 
1777 enum netdev_reg_state {
1778 	NETREG_UNINITIALIZED = 0,
1779 	NETREG_REGISTERED,	/* completed register_netdevice */
1780 	NETREG_UNREGISTERING,	/* called unregister_netdevice */
1781 	NETREG_UNREGISTERED,	/* completed unregister todo */
1782 	NETREG_RELEASED,	/* called free_netdev */
1783 	NETREG_DUMMY,		/* dummy device for NAPI poll */
1784 };
1785 
1786 /**
1787  *	struct net_device - The DEVICE structure.
1788  *
1789  *	Actually, this whole structure is a big mistake.  It mixes I/O
1790  *	data with strictly "high-level" data, and it has to know about
1791  *	almost every data structure used in the INET module.
1792  *
1793  *	@priv_flags:	flags invisible to userspace defined as bits, see
1794  *			enum netdev_priv_flags for the definitions
1795  *	@lltx:		device supports lockless Tx. Deprecated for real HW
1796  *			drivers. Mainly used by logical interfaces, such as
1797  *			bonding and tunnels
1798  *	@netmem_tx:	device support netmem_tx.
1799  *
1800  *	@name:	This is the first field of the "visible" part of this structure
1801  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1802  *		of the interface.
1803  *
1804  *	@name_node:	Name hashlist node
1805  *	@ifalias:	SNMP alias
1806  *	@mem_end:	Shared memory end
1807  *	@mem_start:	Shared memory start
1808  *	@base_addr:	Device I/O address
1809  *	@irq:		Device IRQ number
1810  *
1811  *	@state:		Generic network queuing layer state, see netdev_state_t
1812  *	@dev_list:	The global list of network devices
1813  *	@napi_list:	List entry used for polling NAPI devices
1814  *	@unreg_list:	List entry  when we are unregistering the
1815  *			device; see the function unregister_netdev
1816  *	@close_list:	List entry used when we are closing the device
1817  *	@ptype_all:     Device-specific packet handlers for all protocols
1818  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1819  *
1820  *	@adj_list:	Directly linked devices, like slaves for bonding
1821  *	@features:	Currently active device features
1822  *	@hw_features:	User-changeable features
1823  *
1824  *	@wanted_features:	User-requested features
1825  *	@vlan_features:		Mask of features inheritable by VLAN devices
1826  *
1827  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1828  *				This field indicates what encapsulation
1829  *				offloads the hardware is capable of doing,
1830  *				and drivers will need to set them appropriately.
1831  *
1832  *	@mpls_features:	Mask of features inheritable by MPLS
1833  *	@gso_partial_features: value(s) from NETIF_F_GSO\*
1834  *	@mangleid_features:	Mask of features requiring MANGLEID, will be
1835  *				disabled together with the latter.
1836  *
1837  *	@ifindex:	interface index
1838  *	@group:		The group the device belongs to
1839  *
1840  *	@stats:		Statistics struct, which was left as a legacy, use
1841  *			rtnl_link_stats64 instead
1842  *
1843  *	@core_stats:	core networking counters,
1844  *			do not use this in drivers
1845  *	@carrier_up_count:	Number of times the carrier has been up
1846  *	@carrier_down_count:	Number of times the carrier has been down
1847  *
1848  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1849  *				instead of ioctl,
1850  *				see <net/iw_handler.h> for details.
1851  *
1852  *	@netdev_ops:	Includes several pointers to callbacks,
1853  *			if one wants to override the ndo_*() functions
1854  *	@xdp_metadata_ops:	Includes pointers to XDP metadata callbacks.
1855  *	@xsk_tx_metadata_ops:	Includes pointers to AF_XDP TX metadata callbacks.
1856  *	@ethtool_ops:	Management operations
1857  *	@l3mdev_ops:	Layer 3 master device operations
1858  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1859  *			discovery handling. Necessary for e.g. 6LoWPAN.
1860  *	@xfrmdev_ops:	Transformation offload operations
1861  *	@tlsdev_ops:	Transport Layer Security offload operations
1862  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1863  *			of Layer 2 headers.
1864  *
1865  *	@flags:		Interface flags (a la BSD)
1866  *	@xdp_features:	XDP capability supported by the device
1867  *	@gflags:	Global flags ( kept as legacy )
1868  *	@priv_len:	Size of the ->priv flexible array
1869  *	@priv:		Flexible array containing private data
1870  *	@operstate:	RFC2863 operstate
1871  *	@link_mode:	Mapping policy to operstate
1872  *	@if_port:	Selectable AUI, TP, ...
1873  *	@dma:		DMA channel
1874  *	@mtu:		Interface MTU value
1875  *	@min_mtu:	Interface Minimum MTU value
1876  *	@max_mtu:	Interface Maximum MTU value
1877  *	@type:		Interface hardware type
1878  *	@hard_header_len: Maximum hardware header length.
1879  *	@min_header_len:  Minimum hardware header length
1880  *
1881  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1882  *			  cases can this be guaranteed
1883  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1884  *			  cases can this be guaranteed. Some cases also use
1885  *			  LL_MAX_HEADER instead to allocate the skb
1886  *
1887  *	interface address info:
1888  *
1889  * 	@perm_addr:		Permanent hw address
1890  * 	@addr_assign_type:	Hw address assignment type
1891  * 	@addr_len:		Hardware address length
1892  *	@upper_level:		Maximum depth level of upper devices.
1893  *	@lower_level:		Maximum depth level of lower devices.
1894  *	@threaded:		napi threaded state.
1895  *	@neigh_priv_len:	Used in neigh_alloc()
1896  * 	@dev_id:		Used to differentiate devices that share
1897  * 				the same link layer address
1898  * 	@dev_port:		Used to differentiate devices that share
1899  * 				the same function
1900  *	@addr_list_lock:	XXX: need comments on this one
1901  *	@name_assign_type:	network interface name assignment type
1902  *	@uc_promisc:		Counter that indicates promiscuous mode
1903  *				has been enabled due to the need to listen to
1904  *				additional unicast addresses in a device that
1905  *				does not implement ndo_set_rx_mode()
1906  *	@uc:			unicast mac addresses
1907  *	@mc:			multicast mac addresses
1908  *	@dev_addrs:		list of device hw addresses
1909  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1910  *	@promiscuity:		Number of times the NIC is told to work in
1911  *				promiscuous mode; if it becomes 0 the NIC will
1912  *				exit promiscuous mode
1913  *	@allmulti:		Counter, enables or disables allmulticast mode
1914  *
1915  *	@vlan_info:	VLAN info
1916  *	@dsa_ptr:	dsa specific data
1917  *	@tipc_ptr:	TIPC specific data
1918  *	@atalk_ptr:	AppleTalk link
1919  *	@ip_ptr:	IPv4 specific data
1920  *	@ip6_ptr:	IPv6 specific data
1921  *	@ax25_ptr:	AX.25 specific data
1922  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1923  *	@ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1924  *			 device struct
1925  *	@mpls_ptr:	mpls_dev struct pointer
1926  *	@mctp_ptr:	MCTP specific data
1927  *	@psp_dev:	PSP crypto device registered for this netdev
1928  *
1929  *	@dev_addr:	Hw address (before bcast,
1930  *			because most packets are unicast)
1931  *
1932  *	@_rx:			Array of RX queues
1933  *	@num_rx_queues:		Number of RX queues
1934  *				allocated at register_netdev() time
1935  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1936  *	@xdp_prog:		XDP sockets filter program pointer
1937  *
1938  *	@rx_handler:		handler for received packets
1939  *	@rx_handler_data: 	XXX: need comments on this one
1940  *	@tcx_ingress:		BPF & clsact qdisc specific data for ingress processing
1941  *	@ingress_queue:		XXX: need comments on this one
1942  *	@nf_hooks_ingress:	netfilter hooks executed for ingress packets
1943  *	@broadcast:		hw bcast address
1944  *
1945  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1946  *			indexed by RX queue number. Assigned by driver.
1947  *			This must only be set if the ndo_rx_flow_steer
1948  *			operation is defined
1949  *	@index_hlist:		Device index hash chain
1950  *
1951  *	@_tx:			Array of TX queues
1952  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1953  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1954  *	@qdisc:			Root qdisc from userspace point of view
1955  *	@tx_queue_len:		Max frames per queue allowed
1956  *	@tx_global_lock: 	XXX: need comments on this one
1957  *	@xdp_bulkq:		XDP device bulk queue
1958  *	@xps_maps:		all CPUs/RXQs maps for XPS device
1959  *
1960  *	@xps_maps:	XXX: need comments on this one
1961  *	@tcx_egress:		BPF & clsact qdisc specific data for egress processing
1962  *	@nf_hooks_egress:	netfilter hooks executed for egress packets
1963  *	@qdisc_hash:		qdisc hash table
1964  *	@watchdog_timeo:	Represents the timeout that is used by
1965  *				the watchdog (see dev_watchdog())
1966  *	@watchdog_timer:	List of timers
1967  *
1968  *	@proto_down_reason:	reason a netdev interface is held down
1969  *	@pcpu_refcnt:		Number of references to this device
1970  *	@dev_refcnt:		Number of references to this device
1971  *	@refcnt_tracker:	Tracker directory for tracked references to this device
1972  *	@todo_list:		Delayed register/unregister
1973  *	@link_watch_list:	XXX: need comments on this one
1974  *
1975  *	@reg_state:		Register/unregister state machine
1976  *	@dismantle:		Device is going to be freed
1977  *	@needs_free_netdev:	Should unregister perform free_netdev?
1978  *	@priv_destructor:	Called from unregister
1979  *	@npinfo:		XXX: need comments on this one
1980  * 	@nd_net:		Network namespace this network device is inside
1981  *				protected by @lock
1982  *
1983  * 	@ml_priv:	Mid-layer private
1984  *	@ml_priv_type:  Mid-layer private type
1985  *
1986  *	@pcpu_stat_type:	Type of device statistics which the core should
1987  *				allocate/free: none, lstats, tstats, dstats. none
1988  *				means the driver is handling statistics allocation/
1989  *				freeing internally.
1990  *	@lstats:		Loopback statistics: packets, bytes
1991  *	@tstats:		Tunnel statistics: RX/TX packets, RX/TX bytes
1992  *	@dstats:		Dummy statistics: RX/TX/drop packets, RX/TX bytes
1993  *
1994  *	@garp_port:	GARP
1995  *	@mrp_port:	MRP
1996  *
1997  *	@dm_private:	Drop monitor private
1998  *
1999  *	@dev:		Class/net/name entry
2000  *	@sysfs_groups:	Space for optional device, statistics and wireless
2001  *			sysfs groups
2002  *
2003  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
2004  *	@rtnl_link_ops:	Rtnl_link_ops
2005  *	@stat_ops:	Optional ops for queue-aware statistics
2006  *	@queue_mgmt_ops:	Optional ops for queue management
2007  *
2008  *	@gso_max_size:	Maximum size of generic segmentation offload
2009  *	@tso_max_size:	Device (as in HW) limit on the max TSO request size
2010  *	@gso_max_segs:	Maximum number of segments that can be passed to the
2011  *			NIC for GSO
2012  *	@tso_max_segs:	Device (as in HW) limit on the max TSO segment count
2013  * 	@gso_ipv4_max_size:	Maximum size of generic segmentation offload,
2014  * 				for IPv4.
2015  *
2016  *	@dcbnl_ops:	Data Center Bridging netlink ops
2017  *	@num_tc:	Number of traffic classes in the net device
2018  *	@tc_to_txq:	XXX: need comments on this one
2019  *	@prio_tc_map:	XXX: need comments on this one
2020  *
2021  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
2022  *
2023  *	@priomap:	XXX: need comments on this one
2024  *	@link_topo:	Physical link topology tracking attached PHYs
2025  *	@phydev:	Physical device may attach itself
2026  *			for hardware timestamping
2027  *	@sfp_bus:	attached &struct sfp_bus structure.
2028  *
2029  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
2030  *
2031  *	@proto_down:	protocol port state information can be sent to the
2032  *			switch driver and used to set the phys state of the
2033  *			switch port.
2034  *
2035  *	@irq_affinity_auto: driver wants the core to store and re-assign the IRQ
2036  *			    affinity. Set by netif_enable_irq_affinity(), then
2037  *			    the driver must create a persistent napi by
2038  *			    netif_napi_add_config() and finally bind the napi to
2039  *			    IRQ (via netif_napi_set_irq()).
2040  *
2041  *	@rx_cpu_rmap_auto: driver wants the core to manage the ARFS rmap.
2042  *	                   Set by calling netif_enable_cpu_rmap().
2043  *
2044  *	@see_all_hwtstamp_requests: device wants to see calls to
2045  *			ndo_hwtstamp_set() for all timestamp requests
2046  *			regardless of source, even if those aren't
2047  *			HWTSTAMP_SOURCE_NETDEV
2048  *	@change_proto_down: device supports setting carrier via IFLA_PROTO_DOWN
2049  *	@netns_immutable: interface can't change network namespaces
2050  *	@fcoe_mtu:	device supports maximum FCoE MTU, 2158 bytes
2051  *
2052  *	@net_notifier_list:	List of per-net netdev notifier block
2053  *				that follow this device when it is moved
2054  *				to another network namespace.
2055  *
2056  *	@macsec_ops:    MACsec offloading ops
2057  *
2058  *	@udp_tunnel_nic_info:	static structure describing the UDP tunnel
2059  *				offload capabilities of the device
2060  *	@udp_tunnel_nic:	UDP tunnel offload state
2061  *	@ethtool:	ethtool related state
2062  *	@xdp_state:		stores info on attached XDP BPF programs
2063  *
2064  *	@nested_level:	Used as a parameter of spin_lock_nested() of
2065  *			dev->addr_list_lock.
2066  *	@unlink_list:	As netif_addr_lock() can be called recursively,
2067  *			keep a list of interfaces to be deleted.
2068  *	@gro_max_size:	Maximum size of aggregated packet in generic
2069  *			receive offload (GRO)
2070  * 	@gro_ipv4_max_size:	Maximum size of aggregated packet in generic
2071  * 				receive offload (GRO), for IPv4.
2072  *	@xdp_zc_max_segs:	Maximum number of segments supported by AF_XDP
2073  *				zero copy driver
2074  *
2075  *	@dev_addr_shadow:	Copy of @dev_addr to catch direct writes.
2076  *	@linkwatch_dev_tracker:	refcount tracker used by linkwatch.
2077  *	@watchdog_dev_tracker:	refcount tracker used by watchdog.
2078  *	@dev_registered_tracker:	tracker for reference held while
2079  *					registered
2080  *	@offload_xstats_l3:	L3 HW stats for this netdevice.
2081  *
2082  *	@devlink_port:	Pointer to related devlink port structure.
2083  *			Assigned by a driver before netdev registration using
2084  *			SET_NETDEV_DEVLINK_PORT macro. This pointer is static
2085  *			during the time netdevice is registered.
2086  *
2087  *	@dpll_pin: Pointer to the SyncE source pin of a DPLL subsystem,
2088  *		   where the clock is recovered.
2089  *
2090  *	@max_pacing_offload_horizon: max EDT offload horizon in nsec.
2091  *	@napi_config: An array of napi_config structures containing per-NAPI
2092  *		      settings.
2093  *	@num_napi_configs:	number of allocated NAPI config structs,
2094  *		always >= max(num_rx_queues, num_tx_queues).
2095  *	@gro_flush_timeout:	timeout for GRO layer in NAPI
2096  *	@napi_defer_hard_irqs:	If not zero, provides a counter that would
2097  *				allow to avoid NIC hard IRQ, on busy queues.
2098  *
2099  *	@neighbours:	List heads pointing to this device's neighbours'
2100  *			dev_list, one per address-family.
2101  *	@hwprov: Tracks which PTP performs hardware packet time stamping.
2102  *
2103  *	FIXME: cleanup struct net_device such that network protocol info
2104  *	moves out.
2105  */
2106 
2107 struct net_device {
2108 	/* Cacheline organization can be found documented in
2109 	 * Documentation/networking/net_cachelines/net_device.rst.
2110 	 * Please update the document when adding new fields.
2111 	 */
2112 
2113 	/* TX read-mostly hotpath */
2114 	__cacheline_group_begin(net_device_read_tx);
2115 	struct_group(priv_flags_fast,
2116 		unsigned long		priv_flags:32;
2117 		unsigned long		lltx:1;
2118 		unsigned long		netmem_tx:1;
2119 	);
2120 	const struct net_device_ops *netdev_ops;
2121 	const struct header_ops *header_ops;
2122 	struct netdev_queue	*_tx;
2123 	netdev_features_t	gso_partial_features;
2124 	unsigned int		real_num_tx_queues;
2125 	unsigned int		gso_max_size;
2126 	unsigned int		gso_ipv4_max_size;
2127 	u16			gso_max_segs;
2128 	s16			num_tc;
2129 	/* Note : dev->mtu is often read without holding a lock.
2130 	 * Writers usually hold RTNL.
2131 	 * It is recommended to use READ_ONCE() to annotate the reads,
2132 	 * and to use WRITE_ONCE() to annotate the writes.
2133 	 */
2134 	unsigned int		mtu;
2135 	unsigned short		needed_headroom;
2136 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2137 #ifdef CONFIG_XPS
2138 	struct xps_dev_maps __rcu *xps_maps[XPS_MAPS_MAX];
2139 #endif
2140 #ifdef CONFIG_NETFILTER_EGRESS
2141 	struct nf_hook_entries __rcu *nf_hooks_egress;
2142 #endif
2143 #ifdef CONFIG_NET_XGRESS
2144 	struct bpf_mprog_entry __rcu *tcx_egress;
2145 #endif
2146 	__cacheline_group_end(net_device_read_tx);
2147 
2148 	/* TXRX read-mostly hotpath */
2149 	__cacheline_group_begin(net_device_read_txrx);
2150 	union {
2151 		struct pcpu_lstats __percpu		*lstats;
2152 		struct pcpu_sw_netstats __percpu	*tstats;
2153 		struct pcpu_dstats __percpu		*dstats;
2154 	};
2155 	unsigned long		state;
2156 	unsigned int		flags;
2157 	unsigned short		hard_header_len;
2158 	netdev_features_t	features;
2159 	struct inet6_dev __rcu	*ip6_ptr;
2160 	__cacheline_group_end(net_device_read_txrx);
2161 
2162 	/* RX read-mostly hotpath */
2163 	__cacheline_group_begin(net_device_read_rx);
2164 	struct bpf_prog __rcu	*xdp_prog;
2165 	struct list_head	ptype_specific;
2166 	int			ifindex;
2167 	unsigned int		real_num_rx_queues;
2168 	struct netdev_rx_queue	*_rx;
2169 	unsigned int		gro_max_size;
2170 	unsigned int		gro_ipv4_max_size;
2171 	rx_handler_func_t __rcu	*rx_handler;
2172 	void __rcu		*rx_handler_data;
2173 	possible_net_t			nd_net;
2174 #ifdef CONFIG_NETPOLL
2175 	struct netpoll_info __rcu	*npinfo;
2176 #endif
2177 #ifdef CONFIG_NET_XGRESS
2178 	struct bpf_mprog_entry __rcu *tcx_ingress;
2179 #endif
2180 	__cacheline_group_end(net_device_read_rx);
2181 
2182 	char			name[IFNAMSIZ];
2183 	struct netdev_name_node	*name_node;
2184 	struct dev_ifalias	__rcu *ifalias;
2185 	/*
2186 	 *	I/O specific fields
2187 	 *	FIXME: Merge these and struct ifmap into one
2188 	 */
2189 	unsigned long		mem_end;
2190 	unsigned long		mem_start;
2191 	unsigned long		base_addr;
2192 
2193 	/*
2194 	 *	Some hardware also needs these fields (state,dev_list,
2195 	 *	napi_list,unreg_list,close_list) but they are not
2196 	 *	part of the usual set specified in Space.c.
2197 	 */
2198 
2199 
2200 	struct list_head	dev_list;
2201 	struct list_head	napi_list;
2202 	struct list_head	unreg_list;
2203 	struct list_head	close_list;
2204 	struct list_head	ptype_all;
2205 
2206 	struct {
2207 		struct list_head upper;
2208 		struct list_head lower;
2209 	} adj_list;
2210 
2211 	/* Read-mostly cache-line for fast-path access */
2212 	xdp_features_t		xdp_features;
2213 	const struct xdp_metadata_ops *xdp_metadata_ops;
2214 	const struct xsk_tx_metadata_ops *xsk_tx_metadata_ops;
2215 	unsigned short		gflags;
2216 
2217 	unsigned short		needed_tailroom;
2218 
2219 	netdev_features_t	hw_features;
2220 	netdev_features_t	wanted_features;
2221 	netdev_features_t	vlan_features;
2222 	netdev_features_t	hw_enc_features;
2223 	netdev_features_t	mpls_features;
2224 	netdev_features_t	mangleid_features;
2225 
2226 	unsigned int		min_mtu;
2227 	unsigned int		max_mtu;
2228 	unsigned short		type;
2229 	unsigned char		min_header_len;
2230 	unsigned char		name_assign_type;
2231 
2232 	int			group;
2233 
2234 	struct net_device_stats	stats; /* not used by modern drivers */
2235 
2236 	struct net_device_core_stats __percpu *core_stats;
2237 
2238 	/* Stats to monitor link on/off, flapping */
2239 	atomic_t		carrier_up_count;
2240 	atomic_t		carrier_down_count;
2241 
2242 #ifdef CONFIG_WIRELESS_EXT
2243 	const struct iw_handler_def *wireless_handlers;
2244 #endif
2245 	const struct ethtool_ops *ethtool_ops;
2246 #ifdef CONFIG_NET_L3_MASTER_DEV
2247 	const struct l3mdev_ops	*l3mdev_ops;
2248 #endif
2249 #if IS_ENABLED(CONFIG_IPV6)
2250 	const struct ndisc_ops *ndisc_ops;
2251 #endif
2252 
2253 #ifdef CONFIG_XFRM_OFFLOAD
2254 	const struct xfrmdev_ops *xfrmdev_ops;
2255 #endif
2256 
2257 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2258 	const struct tlsdev_ops *tlsdev_ops;
2259 #endif
2260 
2261 	unsigned int		operstate;
2262 	unsigned char		link_mode;
2263 
2264 	unsigned char		if_port;
2265 	unsigned char		dma;
2266 
2267 	/* Interface address info. */
2268 	unsigned char		perm_addr[MAX_ADDR_LEN];
2269 	unsigned char		addr_assign_type;
2270 	unsigned char		addr_len;
2271 	unsigned char		upper_level;
2272 	unsigned char		lower_level;
2273 	u8			threaded;
2274 
2275 	unsigned short		neigh_priv_len;
2276 	unsigned short          dev_id;
2277 	unsigned short          dev_port;
2278 	int			irq;
2279 	u32			priv_len;
2280 
2281 	spinlock_t		addr_list_lock;
2282 
2283 	struct netdev_hw_addr_list	uc;
2284 	struct netdev_hw_addr_list	mc;
2285 	struct netdev_hw_addr_list	dev_addrs;
2286 
2287 #ifdef CONFIG_SYSFS
2288 	struct kset		*queues_kset;
2289 #endif
2290 #ifdef CONFIG_LOCKDEP
2291 	struct list_head	unlink_list;
2292 #endif
2293 	unsigned int		promiscuity;
2294 	unsigned int		allmulti;
2295 	bool			uc_promisc;
2296 #ifdef CONFIG_LOCKDEP
2297 	unsigned char		nested_level;
2298 #endif
2299 
2300 
2301 	/* Protocol-specific pointers */
2302 	struct in_device __rcu	*ip_ptr;
2303 	/** @fib_nh_head: nexthops associated with this netdev */
2304 	struct hlist_head	fib_nh_head;
2305 
2306 #if IS_ENABLED(CONFIG_VLAN_8021Q)
2307 	struct vlan_info __rcu	*vlan_info;
2308 #endif
2309 #if IS_ENABLED(CONFIG_NET_DSA)
2310 	struct dsa_port		*dsa_ptr;
2311 #endif
2312 #if IS_ENABLED(CONFIG_TIPC)
2313 	struct tipc_bearer __rcu *tipc_ptr;
2314 #endif
2315 #if IS_ENABLED(CONFIG_ATALK)
2316 	void 			*atalk_ptr;
2317 #endif
2318 #if IS_ENABLED(CONFIG_AX25)
2319 	struct ax25_dev	__rcu	*ax25_ptr;
2320 #endif
2321 #if IS_ENABLED(CONFIG_CFG80211)
2322 	struct wireless_dev	*ieee80211_ptr;
2323 #endif
2324 #if IS_ENABLED(CONFIG_IEEE802154) || IS_ENABLED(CONFIG_6LOWPAN)
2325 	struct wpan_dev		*ieee802154_ptr;
2326 #endif
2327 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
2328 	struct mpls_dev __rcu	*mpls_ptr;
2329 #endif
2330 #if IS_ENABLED(CONFIG_MCTP)
2331 	struct mctp_dev __rcu	*mctp_ptr;
2332 #endif
2333 #if IS_ENABLED(CONFIG_INET_PSP)
2334 	struct psp_dev __rcu	*psp_dev;
2335 #endif
2336 
2337 /*
2338  * Cache lines mostly used on receive path (including eth_type_trans())
2339  */
2340 	/* Interface address info used in eth_type_trans() */
2341 	const unsigned char	*dev_addr;
2342 
2343 	unsigned int		num_rx_queues;
2344 #define GRO_LEGACY_MAX_SIZE	65536u
2345 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE),
2346  * and shinfo->gso_segs is a 16bit field.
2347  */
2348 #define GRO_MAX_SIZE		(8 * 65535u)
2349 	unsigned int		xdp_zc_max_segs;
2350 	struct netdev_queue __rcu *ingress_queue;
2351 #ifdef CONFIG_NETFILTER_INGRESS
2352 	struct nf_hook_entries __rcu *nf_hooks_ingress;
2353 #endif
2354 
2355 	unsigned char		broadcast[MAX_ADDR_LEN];
2356 #ifdef CONFIG_RFS_ACCEL
2357 	struct cpu_rmap		*rx_cpu_rmap;
2358 #endif
2359 	struct hlist_node	index_hlist;
2360 
2361 /*
2362  * Cache lines mostly used on transmit path
2363  */
2364 	unsigned int		num_tx_queues;
2365 	struct Qdisc __rcu	*qdisc;
2366 	unsigned int		tx_queue_len;
2367 	spinlock_t		tx_global_lock;
2368 
2369 	struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2370 
2371 #ifdef CONFIG_NET_SCHED
2372 	DECLARE_HASHTABLE	(qdisc_hash, 4);
2373 #endif
2374 	/* These may be needed for future network-power-down code. */
2375 	struct timer_list	watchdog_timer;
2376 	int			watchdog_timeo;
2377 
2378 	u32                     proto_down_reason;
2379 
2380 	struct list_head	todo_list;
2381 
2382 #ifdef CONFIG_PCPU_DEV_REFCNT
2383 	int __percpu		*pcpu_refcnt;
2384 #else
2385 	refcount_t		dev_refcnt;
2386 #endif
2387 	struct ref_tracker_dir	refcnt_tracker;
2388 
2389 	struct list_head	link_watch_list;
2390 
2391 	u8 reg_state;
2392 
2393 	bool dismantle;
2394 
2395 	/** @moving_ns: device is changing netns, protected by @lock */
2396 	bool moving_ns;
2397 	/** @rtnl_link_initializing: Device being created, suppress events */
2398 	bool rtnl_link_initializing;
2399 
2400 	bool needs_free_netdev;
2401 	void (*priv_destructor)(struct net_device *dev);
2402 
2403 	/* mid-layer private */
2404 	void				*ml_priv;
2405 	enum netdev_ml_priv_type	ml_priv_type;
2406 
2407 	enum netdev_stat_type		pcpu_stat_type:8;
2408 
2409 #if IS_ENABLED(CONFIG_GARP)
2410 	struct garp_port __rcu	*garp_port;
2411 #endif
2412 #if IS_ENABLED(CONFIG_MRP)
2413 	struct mrp_port __rcu	*mrp_port;
2414 #endif
2415 #if IS_ENABLED(CONFIG_NET_DROP_MONITOR)
2416 	struct dm_hw_stat_delta __rcu *dm_private;
2417 #endif
2418 	struct device		dev;
2419 	const struct attribute_group *sysfs_groups[5];
2420 	const struct attribute_group *sysfs_rx_queue_group;
2421 
2422 	const struct rtnl_link_ops *rtnl_link_ops;
2423 
2424 	const struct netdev_stat_ops *stat_ops;
2425 
2426 	const struct netdev_queue_mgmt_ops *queue_mgmt_ops;
2427 
2428 	/* for setting kernel sock attribute on TCP connection setup */
2429 #define GSO_MAX_SEGS		65535u
2430 #define GSO_LEGACY_MAX_SIZE	65536u
2431 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE),
2432  * and shinfo->gso_segs is a 16bit field.
2433  */
2434 #define GSO_MAX_SIZE		(8 * GSO_MAX_SEGS)
2435 
2436 #define TSO_LEGACY_MAX_SIZE	65536
2437 #define TSO_MAX_SIZE		UINT_MAX
2438 	unsigned int		tso_max_size;
2439 #define TSO_MAX_SEGS		U16_MAX
2440 	u16			tso_max_segs;
2441 
2442 #ifdef CONFIG_DCB
2443 	const struct dcbnl_rtnl_ops *dcbnl_ops;
2444 #endif
2445 	u8			prio_tc_map[TC_BITMASK + 1];
2446 
2447 #if IS_ENABLED(CONFIG_FCOE)
2448 	unsigned int		fcoe_ddp_xid;
2449 #endif
2450 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2451 	struct netprio_map __rcu *priomap;
2452 #endif
2453 	struct phy_link_topology	*link_topo;
2454 	struct phy_device	*phydev;
2455 	struct sfp_bus		*sfp_bus;
2456 	struct lock_class_key	*qdisc_tx_busylock;
2457 	bool			proto_down;
2458 	bool			irq_affinity_auto;
2459 	bool			rx_cpu_rmap_auto;
2460 
2461 	/* priv_flags_slow, ungrouped to save space */
2462 	unsigned long		see_all_hwtstamp_requests:1;
2463 	unsigned long		change_proto_down:1;
2464 	unsigned long		netns_immutable:1;
2465 	unsigned long		fcoe_mtu:1;
2466 
2467 	struct list_head	net_notifier_list;
2468 
2469 #if IS_ENABLED(CONFIG_MACSEC)
2470 	/* MACsec management functions */
2471 	const struct macsec_ops *macsec_ops;
2472 #endif
2473 	const struct udp_tunnel_nic_info	*udp_tunnel_nic_info;
2474 	struct udp_tunnel_nic	*udp_tunnel_nic;
2475 
2476 	/** @cfg: net_device queue-related configuration */
2477 	struct netdev_config	*cfg;
2478 	/**
2479 	 * @cfg_pending: same as @cfg but when device is being actively
2480 	 *	reconfigured includes any changes to the configuration
2481 	 *	requested by the user, but which may or may not be rejected.
2482 	 */
2483 	struct netdev_config	*cfg_pending;
2484 	struct ethtool_netdev_state *ethtool;
2485 
2486 	/* protected by rtnl_lock */
2487 	struct bpf_xdp_entity	xdp_state[__MAX_XDP_MODE];
2488 
2489 	u8 dev_addr_shadow[MAX_ADDR_LEN];
2490 	netdevice_tracker	linkwatch_dev_tracker;
2491 	netdevice_tracker	watchdog_dev_tracker;
2492 	netdevice_tracker	dev_registered_tracker;
2493 	struct rtnl_hw_stats64	*offload_xstats_l3;
2494 
2495 	struct devlink_port	*devlink_port;
2496 
2497 #if IS_ENABLED(CONFIG_DPLL)
2498 	struct dpll_pin	__rcu	*dpll_pin;
2499 #endif
2500 #if IS_ENABLED(CONFIG_PAGE_POOL)
2501 	/** @page_pools: page pools created for this netdevice */
2502 	struct hlist_head	page_pools;
2503 #endif
2504 
2505 	/** @irq_moder: dim parameters used if IS_ENABLED(CONFIG_DIMLIB). */
2506 	struct dim_irq_moder	*irq_moder;
2507 
2508 	u64			max_pacing_offload_horizon;
2509 	struct napi_config	*napi_config;
2510 	u32			num_napi_configs;
2511 	u32			napi_defer_hard_irqs;
2512 	unsigned long		gro_flush_timeout;
2513 
2514 	/**
2515 	 * @up: copy of @state's IFF_UP, but safe to read with just @lock.
2516 	 *	May report false negatives while the device is being opened
2517 	 *	or closed (@lock does not protect .ndo_open, or .ndo_close).
2518 	 */
2519 	bool			up;
2520 
2521 	/**
2522 	 * @request_ops_lock: request the core to run all @netdev_ops and
2523 	 * @ethtool_ops under the @lock.
2524 	 */
2525 	bool			request_ops_lock;
2526 
2527 	/**
2528 	 * @lock: netdev-scope lock, protects a small selection of fields.
2529 	 * Should always be taken using netdev_lock() / netdev_unlock() helpers.
2530 	 * Drivers are free to use it for other protection.
2531 	 *
2532 	 * For the drivers that implement shaper or queue API, the scope
2533 	 * of this lock is expanded to cover most ndo/queue/ethtool/sysfs
2534 	 * operations. Drivers may opt-in to this behavior by setting
2535 	 * @request_ops_lock.
2536 	 *
2537 	 * @lock protection mixes with rtnl_lock in multiple ways, fields are
2538 	 * either:
2539 	 *
2540 	 * - simply protected by the instance @lock;
2541 	 *
2542 	 * - double protected - writers hold both locks, readers hold either;
2543 	 *
2544 	 * - ops protected - protected by the lock held around the NDOs
2545 	 *   and other callbacks, that is the instance lock on devices for
2546 	 *   which netdev_need_ops_lock() returns true, otherwise by rtnl_lock;
2547 	 *
2548 	 * - double ops protected - always protected by rtnl_lock but for
2549 	 *   devices for which netdev_need_ops_lock() returns true - also
2550 	 *   the instance lock.
2551 	 *
2552 	 * Simply protects:
2553 	 *	@gro_flush_timeout, @napi_defer_hard_irqs, @napi_list,
2554 	 *	@net_shaper_hierarchy, @reg_state, @threaded
2555 	 *
2556 	 * Double protects:
2557 	 *	@up, @moving_ns, @nd_net, @xdp_features
2558 	 *
2559 	 * Double ops protects:
2560 	 *	@real_num_rx_queues, @real_num_tx_queues
2561 	 *
2562 	 * Also protects some fields in:
2563 	 *	struct napi_struct, struct netdev_queue, struct netdev_rx_queue
2564 	 *
2565 	 * Ordering: take after rtnl_lock.
2566 	 */
2567 	struct mutex		lock;
2568 
2569 #if IS_ENABLED(CONFIG_NET_SHAPER)
2570 	/**
2571 	 * @net_shaper_hierarchy: data tracking the current shaper status
2572 	 *  see include/net/net_shapers.h
2573 	 */
2574 	struct net_shaper_hierarchy *net_shaper_hierarchy;
2575 #endif
2576 
2577 	struct hlist_head neighbours[NEIGH_NR_TABLES];
2578 
2579 	struct hwtstamp_provider __rcu	*hwprov;
2580 
2581 	u8			priv[] ____cacheline_aligned
2582 				       __counted_by(priv_len);
2583 } ____cacheline_aligned;
2584 #define to_net_dev(d) container_of(d, struct net_device, dev)
2585 
2586 /*
2587  * Driver should use this to assign devlink port instance to a netdevice
2588  * before it registers the netdevice. Therefore devlink_port is static
2589  * during the netdev lifetime after it is registered.
2590  */
2591 #define SET_NETDEV_DEVLINK_PORT(dev, port)			\
2592 ({								\
2593 	WARN_ON((dev)->reg_state != NETREG_UNINITIALIZED);	\
2594 	((dev)->devlink_port = (port));				\
2595 })
2596 
2597 static inline bool netif_elide_gro(const struct net_device *dev)
2598 {
2599 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2600 		return true;
2601 	return false;
2602 }
2603 
2604 #define	NETDEV_ALIGN		32
2605 
2606 static inline
2607 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2608 {
2609 	return dev->prio_tc_map[prio & TC_BITMASK];
2610 }
2611 
2612 static inline
2613 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2614 {
2615 	if (tc >= dev->num_tc)
2616 		return -EINVAL;
2617 
2618 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2619 	return 0;
2620 }
2621 
2622 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2623 void netdev_reset_tc(struct net_device *dev);
2624 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2625 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2626 
2627 static inline
2628 int netdev_get_num_tc(struct net_device *dev)
2629 {
2630 	return dev->num_tc;
2631 }
2632 
2633 static inline void net_prefetch(void *p)
2634 {
2635 	prefetch(p);
2636 #if L1_CACHE_BYTES < 128
2637 	prefetch((u8 *)p + L1_CACHE_BYTES);
2638 #endif
2639 }
2640 
2641 static inline void net_prefetchw(void *p)
2642 {
2643 	prefetchw(p);
2644 #if L1_CACHE_BYTES < 128
2645 	prefetchw((u8 *)p + L1_CACHE_BYTES);
2646 #endif
2647 }
2648 
2649 void netdev_unbind_sb_channel(struct net_device *dev,
2650 			      struct net_device *sb_dev);
2651 int netdev_bind_sb_channel_queue(struct net_device *dev,
2652 				 struct net_device *sb_dev,
2653 				 u8 tc, u16 count, u16 offset);
2654 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2655 static inline int netdev_get_sb_channel(struct net_device *dev)
2656 {
2657 	return max_t(int, -dev->num_tc, 0);
2658 }
2659 
2660 static inline
2661 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2662 					 unsigned int index)
2663 {
2664 	DEBUG_NET_WARN_ON_ONCE(index >= dev->num_tx_queues);
2665 	return &dev->_tx[index];
2666 }
2667 
2668 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2669 						    const struct sk_buff *skb)
2670 {
2671 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2672 }
2673 
2674 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2675 					    void (*f)(struct net_device *,
2676 						      struct netdev_queue *,
2677 						      void *),
2678 					    void *arg)
2679 {
2680 	unsigned int i;
2681 
2682 	for (i = 0; i < dev->num_tx_queues; i++)
2683 		f(dev, &dev->_tx[i], arg);
2684 }
2685 
2686 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2687 		     struct net_device *sb_dev);
2688 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2689 					 struct sk_buff *skb,
2690 					 struct net_device *sb_dev);
2691 
2692 /* returns the headroom that the master device needs to take in account
2693  * when forwarding to this dev
2694  */
2695 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2696 {
2697 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2698 }
2699 
2700 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2701 {
2702 	if (dev->netdev_ops->ndo_set_rx_headroom)
2703 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2704 }
2705 
2706 /* set the device rx headroom to the dev's default */
2707 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2708 {
2709 	netdev_set_rx_headroom(dev, -1);
2710 }
2711 
2712 static inline void *netdev_get_ml_priv(struct net_device *dev,
2713 				       enum netdev_ml_priv_type type)
2714 {
2715 	if (dev->ml_priv_type != type)
2716 		return NULL;
2717 
2718 	return dev->ml_priv;
2719 }
2720 
2721 static inline void netdev_set_ml_priv(struct net_device *dev,
2722 				      void *ml_priv,
2723 				      enum netdev_ml_priv_type type)
2724 {
2725 	WARN(dev->ml_priv_type && dev->ml_priv_type != type,
2726 	     "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n",
2727 	     dev->ml_priv_type, type);
2728 	WARN(!dev->ml_priv_type && dev->ml_priv,
2729 	     "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n");
2730 
2731 	dev->ml_priv = ml_priv;
2732 	dev->ml_priv_type = type;
2733 }
2734 
2735 /*
2736  * Net namespace inlines
2737  */
2738 static inline
2739 struct net *dev_net(const struct net_device *dev)
2740 {
2741 	return read_pnet(&dev->nd_net);
2742 }
2743 
2744 static inline
2745 struct net *dev_net_rcu(const struct net_device *dev)
2746 {
2747 	return read_pnet_rcu(&dev->nd_net);
2748 }
2749 
2750 static inline
2751 void dev_net_set(struct net_device *dev, struct net *net)
2752 {
2753 	write_pnet(&dev->nd_net, net);
2754 }
2755 
2756 /**
2757  *	netdev_priv - access network device private data
2758  *	@dev: network device
2759  *
2760  * Get network device private data
2761  */
2762 static inline void *netdev_priv(const struct net_device *dev)
2763 {
2764 	return (void *)dev->priv;
2765 }
2766 
2767 /* Set the sysfs physical device reference for the network logical device
2768  * if set prior to registration will cause a symlink during initialization.
2769  */
2770 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2771 
2772 /* Set the sysfs device type for the network logical device to allow
2773  * fine-grained identification of different network device types. For
2774  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2775  */
2776 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2777 
2778 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
2779 			  enum netdev_queue_type type,
2780 			  struct napi_struct *napi);
2781 
2782 static inline void netdev_lock(struct net_device *dev)
2783 {
2784 	mutex_lock(&dev->lock);
2785 }
2786 
2787 static inline void netdev_unlock(struct net_device *dev)
2788 {
2789 	mutex_unlock(&dev->lock);
2790 }
2791 /* Additional netdev_lock()-related helpers are in net/netdev_lock.h */
2792 
2793 void netif_napi_set_irq_locked(struct napi_struct *napi, int irq);
2794 
2795 static inline void netif_napi_set_irq(struct napi_struct *napi, int irq)
2796 {
2797 	netdev_lock(napi->dev);
2798 	netif_napi_set_irq_locked(napi, irq);
2799 	netdev_unlock(napi->dev);
2800 }
2801 
2802 /* Default NAPI poll() weight
2803  * Device drivers are strongly advised to not use bigger value
2804  */
2805 #define NAPI_POLL_WEIGHT 64
2806 
2807 void netif_napi_add_weight_locked(struct net_device *dev,
2808 				  struct napi_struct *napi,
2809 				  int (*poll)(struct napi_struct *, int),
2810 				  int weight);
2811 
2812 static inline void
2813 netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
2814 		      int (*poll)(struct napi_struct *, int), int weight)
2815 {
2816 	netdev_lock(dev);
2817 	netif_napi_add_weight_locked(dev, napi, poll, weight);
2818 	netdev_unlock(dev);
2819 }
2820 
2821 /**
2822  * netif_napi_add() - initialize a NAPI context
2823  * @dev:  network device
2824  * @napi: NAPI context
2825  * @poll: polling function
2826  *
2827  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2828  * *any* of the other NAPI-related functions.
2829  */
2830 static inline void
2831 netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2832 	       int (*poll)(struct napi_struct *, int))
2833 {
2834 	netif_napi_add_weight(dev, napi, poll, NAPI_POLL_WEIGHT);
2835 }
2836 
2837 static inline void
2838 netif_napi_add_locked(struct net_device *dev, struct napi_struct *napi,
2839 		      int (*poll)(struct napi_struct *, int))
2840 {
2841 	netif_napi_add_weight_locked(dev, napi, poll, NAPI_POLL_WEIGHT);
2842 }
2843 
2844 static inline void
2845 netif_napi_add_tx_weight(struct net_device *dev,
2846 			 struct napi_struct *napi,
2847 			 int (*poll)(struct napi_struct *, int),
2848 			 int weight)
2849 {
2850 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2851 	netif_napi_add_weight(dev, napi, poll, weight);
2852 }
2853 
2854 static inline void
2855 netif_napi_add_config_locked(struct net_device *dev, struct napi_struct *napi,
2856 			     int (*poll)(struct napi_struct *, int), int index)
2857 {
2858 	napi->index = index;
2859 	napi->config = &dev->napi_config[index];
2860 	netif_napi_add_weight_locked(dev, napi, poll, NAPI_POLL_WEIGHT);
2861 }
2862 
2863 /**
2864  * netif_napi_add_config - initialize a NAPI context with persistent config
2865  * @dev: network device
2866  * @napi: NAPI context
2867  * @poll: polling function
2868  * @index: the NAPI index
2869  */
2870 static inline void
2871 netif_napi_add_config(struct net_device *dev, struct napi_struct *napi,
2872 		      int (*poll)(struct napi_struct *, int), int index)
2873 {
2874 	netdev_lock(dev);
2875 	netif_napi_add_config_locked(dev, napi, poll, index);
2876 	netdev_unlock(dev);
2877 }
2878 
2879 /**
2880  * netif_napi_add_tx() - initialize a NAPI context to be used for Tx only
2881  * @dev:  network device
2882  * @napi: NAPI context
2883  * @poll: polling function
2884  *
2885  * This variant of netif_napi_add() should be used from drivers using NAPI
2886  * to exclusively poll a TX queue.
2887  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2888  */
2889 static inline void netif_napi_add_tx(struct net_device *dev,
2890 				     struct napi_struct *napi,
2891 				     int (*poll)(struct napi_struct *, int))
2892 {
2893 	netif_napi_add_tx_weight(dev, napi, poll, NAPI_POLL_WEIGHT);
2894 }
2895 
2896 void __netif_napi_del_locked(struct napi_struct *napi);
2897 
2898 /**
2899  *  __netif_napi_del - remove a NAPI context
2900  *  @napi: NAPI context
2901  *
2902  * Warning: caller must observe RCU grace period before freeing memory
2903  * containing @napi. Drivers might want to call this helper to combine
2904  * all the needed RCU grace periods into a single one.
2905  */
2906 static inline void __netif_napi_del(struct napi_struct *napi)
2907 {
2908 	netdev_lock(napi->dev);
2909 	__netif_napi_del_locked(napi);
2910 	netdev_unlock(napi->dev);
2911 }
2912 
2913 static inline void netif_napi_del_locked(struct napi_struct *napi)
2914 {
2915 	__netif_napi_del_locked(napi);
2916 	synchronize_net();
2917 }
2918 
2919 /**
2920  *  netif_napi_del - remove a NAPI context
2921  *  @napi: NAPI context
2922  *
2923  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2924  */
2925 static inline void netif_napi_del(struct napi_struct *napi)
2926 {
2927 	__netif_napi_del(napi);
2928 	synchronize_net();
2929 }
2930 
2931 int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs);
2932 void netif_set_affinity_auto(struct net_device *dev);
2933 
2934 struct packet_type {
2935 	__be16			type;	/* This is really htons(ether_type). */
2936 	bool			ignore_outgoing;
2937 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2938 	netdevice_tracker	dev_tracker;
2939 	int			(*func) (struct sk_buff *,
2940 					 struct net_device *,
2941 					 struct packet_type *,
2942 					 struct net_device *);
2943 	void			(*list_func) (struct list_head *,
2944 					      struct packet_type *,
2945 					      struct net_device *);
2946 	bool			(*id_match)(struct packet_type *ptype,
2947 					    struct sock *sk);
2948 	struct net		*af_packet_net;
2949 	void			*af_packet_priv;
2950 	struct list_head	list;
2951 };
2952 
2953 struct offload_callbacks {
2954 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2955 						netdev_features_t features);
2956 	struct sk_buff		*(*gro_receive)(struct list_head *head,
2957 						struct sk_buff *skb);
2958 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2959 };
2960 
2961 struct packet_offload {
2962 	__be16			 type;	/* This is really htons(ether_type). */
2963 	u16			 priority;
2964 	struct offload_callbacks callbacks;
2965 	struct list_head	 list;
2966 };
2967 
2968 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2969 struct pcpu_sw_netstats {
2970 	u64_stats_t		rx_packets;
2971 	u64_stats_t		rx_bytes;
2972 	u64_stats_t		tx_packets;
2973 	u64_stats_t		tx_bytes;
2974 	struct u64_stats_sync   syncp;
2975 } __aligned(4 * sizeof(u64));
2976 
2977 struct pcpu_dstats {
2978 	u64_stats_t		rx_packets;
2979 	u64_stats_t		rx_bytes;
2980 	u64_stats_t		tx_packets;
2981 	u64_stats_t		tx_bytes;
2982 	u64_stats_t		rx_drops;
2983 	u64_stats_t		tx_drops;
2984 	struct u64_stats_sync	syncp;
2985 } __aligned(8 * sizeof(u64));
2986 
2987 struct pcpu_lstats {
2988 	u64_stats_t packets;
2989 	u64_stats_t bytes;
2990 	struct u64_stats_sync syncp;
2991 } __aligned(2 * sizeof(u64));
2992 
2993 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2994 
2995 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len)
2996 {
2997 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2998 
2999 	u64_stats_update_begin(&tstats->syncp);
3000 	u64_stats_add(&tstats->rx_bytes, len);
3001 	u64_stats_inc(&tstats->rx_packets);
3002 	u64_stats_update_end(&tstats->syncp);
3003 }
3004 
3005 static inline void dev_sw_netstats_tx_add(struct net_device *dev,
3006 					  unsigned int packets,
3007 					  unsigned int len)
3008 {
3009 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
3010 
3011 	u64_stats_update_begin(&tstats->syncp);
3012 	u64_stats_add(&tstats->tx_bytes, len);
3013 	u64_stats_add(&tstats->tx_packets, packets);
3014 	u64_stats_update_end(&tstats->syncp);
3015 }
3016 
3017 static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
3018 {
3019 	struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
3020 
3021 	u64_stats_update_begin(&lstats->syncp);
3022 	u64_stats_add(&lstats->bytes, len);
3023 	u64_stats_inc(&lstats->packets);
3024 	u64_stats_update_end(&lstats->syncp);
3025 }
3026 
3027 static inline void dev_dstats_rx_add(struct net_device *dev,
3028 				     unsigned int len)
3029 {
3030 	struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
3031 
3032 	u64_stats_update_begin(&dstats->syncp);
3033 	u64_stats_inc(&dstats->rx_packets);
3034 	u64_stats_add(&dstats->rx_bytes, len);
3035 	u64_stats_update_end(&dstats->syncp);
3036 }
3037 
3038 static inline void dev_dstats_rx_dropped(struct net_device *dev)
3039 {
3040 	struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
3041 
3042 	u64_stats_update_begin(&dstats->syncp);
3043 	u64_stats_inc(&dstats->rx_drops);
3044 	u64_stats_update_end(&dstats->syncp);
3045 }
3046 
3047 static inline void dev_dstats_rx_dropped_add(struct net_device *dev,
3048 					     unsigned int packets)
3049 {
3050 	struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
3051 
3052 	u64_stats_update_begin(&dstats->syncp);
3053 	u64_stats_add(&dstats->rx_drops, packets);
3054 	u64_stats_update_end(&dstats->syncp);
3055 }
3056 
3057 static inline void dev_dstats_tx_add(struct net_device *dev,
3058 				     unsigned int len)
3059 {
3060 	struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
3061 
3062 	u64_stats_update_begin(&dstats->syncp);
3063 	u64_stats_inc(&dstats->tx_packets);
3064 	u64_stats_add(&dstats->tx_bytes, len);
3065 	u64_stats_update_end(&dstats->syncp);
3066 }
3067 
3068 static inline void dev_dstats_tx_dropped(struct net_device *dev)
3069 {
3070 	struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
3071 
3072 	u64_stats_update_begin(&dstats->syncp);
3073 	u64_stats_inc(&dstats->tx_drops);
3074 	u64_stats_update_end(&dstats->syncp);
3075 }
3076 
3077 #define __netdev_alloc_pcpu_stats(type, gfp)				\
3078 ({									\
3079 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
3080 	if (pcpu_stats)	{						\
3081 		int __cpu;						\
3082 		for_each_possible_cpu(__cpu) {				\
3083 			typeof(type) *stat;				\
3084 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
3085 			u64_stats_init(&stat->syncp);			\
3086 		}							\
3087 	}								\
3088 	pcpu_stats;							\
3089 })
3090 
3091 #define netdev_alloc_pcpu_stats(type)					\
3092 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
3093 
3094 #define devm_netdev_alloc_pcpu_stats(dev, type)				\
3095 ({									\
3096 	typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\
3097 	if (pcpu_stats) {						\
3098 		int __cpu;						\
3099 		for_each_possible_cpu(__cpu) {				\
3100 			typeof(type) *stat;				\
3101 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
3102 			u64_stats_init(&stat->syncp);			\
3103 		}							\
3104 	}								\
3105 	pcpu_stats;							\
3106 })
3107 
3108 enum netdev_lag_tx_type {
3109 	NETDEV_LAG_TX_TYPE_UNKNOWN,
3110 	NETDEV_LAG_TX_TYPE_RANDOM,
3111 	NETDEV_LAG_TX_TYPE_BROADCAST,
3112 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
3113 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
3114 	NETDEV_LAG_TX_TYPE_HASH,
3115 };
3116 
3117 enum netdev_lag_hash {
3118 	NETDEV_LAG_HASH_NONE,
3119 	NETDEV_LAG_HASH_L2,
3120 	NETDEV_LAG_HASH_L34,
3121 	NETDEV_LAG_HASH_L23,
3122 	NETDEV_LAG_HASH_E23,
3123 	NETDEV_LAG_HASH_E34,
3124 	NETDEV_LAG_HASH_VLAN_SRCMAC,
3125 	NETDEV_LAG_HASH_UNKNOWN,
3126 };
3127 
3128 struct netdev_lag_upper_info {
3129 	enum netdev_lag_tx_type tx_type;
3130 	enum netdev_lag_hash hash_type;
3131 };
3132 
3133 struct netdev_lag_lower_state_info {
3134 	u8 link_up : 1,
3135 	   tx_enabled : 1;
3136 };
3137 
3138 #include <linux/notifier.h>
3139 
3140 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
3141  * and the rtnetlink notification exclusion list in rtnetlink_event() when
3142  * adding new types.
3143  */
3144 enum netdev_cmd {
3145 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
3146 	NETDEV_DOWN,
3147 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
3148 				   detected a hardware crash and restarted
3149 				   - we can use this eg to kick tcp sessions
3150 				   once done */
3151 	NETDEV_CHANGE,		/* Notify device state change */
3152 	NETDEV_REGISTER,
3153 	NETDEV_UNREGISTER,
3154 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
3155 	NETDEV_CHANGEADDR,	/* notify after the address change */
3156 	NETDEV_PRE_CHANGEADDR,	/* notify before the address change */
3157 	NETDEV_GOING_DOWN,
3158 	NETDEV_CHANGENAME,
3159 	NETDEV_FEAT_CHANGE,
3160 	NETDEV_BONDING_FAILOVER,
3161 	NETDEV_PRE_UP,
3162 	NETDEV_PRE_TYPE_CHANGE,
3163 	NETDEV_POST_TYPE_CHANGE,
3164 	NETDEV_POST_INIT,
3165 	NETDEV_PRE_UNINIT,
3166 	NETDEV_RELEASE,
3167 	NETDEV_NOTIFY_PEERS,
3168 	NETDEV_JOIN,
3169 	NETDEV_CHANGEUPPER,
3170 	NETDEV_RESEND_IGMP,
3171 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
3172 	NETDEV_CHANGEINFODATA,
3173 	NETDEV_BONDING_INFO,
3174 	NETDEV_PRECHANGEUPPER,
3175 	NETDEV_CHANGELOWERSTATE,
3176 	NETDEV_UDP_TUNNEL_PUSH_INFO,
3177 	NETDEV_UDP_TUNNEL_DROP_INFO,
3178 	NETDEV_CHANGE_TX_QUEUE_LEN,
3179 	NETDEV_CVLAN_FILTER_PUSH_INFO,
3180 	NETDEV_CVLAN_FILTER_DROP_INFO,
3181 	NETDEV_SVLAN_FILTER_PUSH_INFO,
3182 	NETDEV_SVLAN_FILTER_DROP_INFO,
3183 	NETDEV_OFFLOAD_XSTATS_ENABLE,
3184 	NETDEV_OFFLOAD_XSTATS_DISABLE,
3185 	NETDEV_OFFLOAD_XSTATS_REPORT_USED,
3186 	NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
3187 	NETDEV_XDP_FEAT_CHANGE,
3188 };
3189 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
3190 
3191 int register_netdevice_notifier(struct notifier_block *nb);
3192 int unregister_netdevice_notifier(struct notifier_block *nb);
3193 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
3194 int unregister_netdevice_notifier_net(struct net *net,
3195 				      struct notifier_block *nb);
3196 int register_netdevice_notifier_dev_net(struct net_device *dev,
3197 					struct notifier_block *nb,
3198 					struct netdev_net_notifier *nn);
3199 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
3200 					  struct notifier_block *nb,
3201 					  struct netdev_net_notifier *nn);
3202 
3203 struct netdev_notifier_info {
3204 	struct net_device	*dev;
3205 	struct netlink_ext_ack	*extack;
3206 };
3207 
3208 struct netdev_notifier_info_ext {
3209 	struct netdev_notifier_info info; /* must be first */
3210 	union {
3211 		u32 mtu;
3212 	} ext;
3213 };
3214 
3215 struct netdev_notifier_change_info {
3216 	struct netdev_notifier_info info; /* must be first */
3217 	unsigned int flags_changed;
3218 };
3219 
3220 struct netdev_notifier_changeupper_info {
3221 	struct netdev_notifier_info info; /* must be first */
3222 	struct net_device *upper_dev; /* new upper dev */
3223 	bool master; /* is upper dev master */
3224 	bool linking; /* is the notification for link or unlink */
3225 	void *upper_info; /* upper dev info */
3226 };
3227 
3228 struct netdev_notifier_changelowerstate_info {
3229 	struct netdev_notifier_info info; /* must be first */
3230 	void *lower_state_info; /* is lower dev state */
3231 };
3232 
3233 struct netdev_notifier_pre_changeaddr_info {
3234 	struct netdev_notifier_info info; /* must be first */
3235 	const unsigned char *dev_addr;
3236 };
3237 
3238 enum netdev_offload_xstats_type {
3239 	NETDEV_OFFLOAD_XSTATS_TYPE_L3 = 1,
3240 };
3241 
3242 struct netdev_notifier_offload_xstats_info {
3243 	struct netdev_notifier_info info; /* must be first */
3244 	enum netdev_offload_xstats_type type;
3245 
3246 	union {
3247 		/* NETDEV_OFFLOAD_XSTATS_REPORT_DELTA */
3248 		struct netdev_notifier_offload_xstats_rd *report_delta;
3249 		/* NETDEV_OFFLOAD_XSTATS_REPORT_USED */
3250 		struct netdev_notifier_offload_xstats_ru *report_used;
3251 	};
3252 };
3253 
3254 int netdev_offload_xstats_enable(struct net_device *dev,
3255 				 enum netdev_offload_xstats_type type,
3256 				 struct netlink_ext_ack *extack);
3257 int netdev_offload_xstats_disable(struct net_device *dev,
3258 				  enum netdev_offload_xstats_type type);
3259 bool netdev_offload_xstats_enabled(const struct net_device *dev,
3260 				   enum netdev_offload_xstats_type type);
3261 int netdev_offload_xstats_get(struct net_device *dev,
3262 			      enum netdev_offload_xstats_type type,
3263 			      struct rtnl_hw_stats64 *stats, bool *used,
3264 			      struct netlink_ext_ack *extack);
3265 void
3266 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *rd,
3267 				   const struct rtnl_hw_stats64 *stats);
3268 void
3269 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *ru);
3270 void netdev_offload_xstats_push_delta(struct net_device *dev,
3271 				      enum netdev_offload_xstats_type type,
3272 				      const struct rtnl_hw_stats64 *stats);
3273 
3274 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
3275 					     struct net_device *dev)
3276 {
3277 	info->dev = dev;
3278 	info->extack = NULL;
3279 }
3280 
3281 static inline struct net_device *
3282 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
3283 {
3284 	return info->dev;
3285 }
3286 
3287 static inline struct netlink_ext_ack *
3288 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
3289 {
3290 	return info->extack;
3291 }
3292 
3293 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
3294 int call_netdevice_notifiers_info(unsigned long val,
3295 				  struct netdev_notifier_info *info);
3296 
3297 #define for_each_netdev(net, d)		\
3298 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
3299 #define for_each_netdev_reverse(net, d)	\
3300 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
3301 #define for_each_netdev_rcu(net, d)		\
3302 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
3303 #define for_each_netdev_safe(net, d, n)	\
3304 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
3305 #define for_each_netdev_continue(net, d)		\
3306 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
3307 #define for_each_netdev_continue_reverse(net, d)		\
3308 		list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
3309 						     dev_list)
3310 #define for_each_netdev_continue_rcu(net, d)		\
3311 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
3312 #define for_each_netdev_in_bond_rcu(bond, slave)	\
3313 		for_each_netdev_rcu(dev_net_rcu(bond), slave)	\
3314 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
3315 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
3316 
3317 #define for_each_netdev_dump(net, d, ifindex)				\
3318 	for (; (d = xa_find(&(net)->dev_by_index, &ifindex,		\
3319 			    ULONG_MAX, XA_PRESENT)); ifindex++)
3320 
3321 static inline struct net_device *next_net_device(struct net_device *dev)
3322 {
3323 	struct list_head *lh;
3324 	struct net *net;
3325 
3326 	net = dev_net(dev);
3327 	lh = dev->dev_list.next;
3328 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3329 }
3330 
3331 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
3332 {
3333 	struct list_head *lh;
3334 	struct net *net;
3335 
3336 	net = dev_net(dev);
3337 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
3338 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3339 }
3340 
3341 static inline struct net_device *first_net_device(struct net *net)
3342 {
3343 	return list_empty(&net->dev_base_head) ? NULL :
3344 		net_device_entry(net->dev_base_head.next);
3345 }
3346 
3347 int netdev_boot_setup_check(struct net_device *dev);
3348 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type,
3349 				   const char *hwaddr);
3350 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
3351 				       const char *hwaddr);
3352 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
3353 void dev_add_pack(struct packet_type *pt);
3354 void dev_remove_pack(struct packet_type *pt);
3355 void __dev_remove_pack(struct packet_type *pt);
3356 void dev_add_offload(struct packet_offload *po);
3357 void dev_remove_offload(struct packet_offload *po);
3358 
3359 int dev_get_iflink(const struct net_device *dev);
3360 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
3361 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
3362 			  struct net_device_path_stack *stack);
3363 struct net_device *dev_get_by_name(struct net *net, const char *name);
3364 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
3365 struct net_device *__dev_get_by_name(struct net *net, const char *name);
3366 bool netdev_name_in_use(struct net *net, const char *name);
3367 int dev_alloc_name(struct net_device *dev, const char *name);
3368 int netif_open(struct net_device *dev, struct netlink_ext_ack *extack);
3369 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
3370 void netif_close(struct net_device *dev);
3371 void dev_close(struct net_device *dev);
3372 void netif_close_many(struct list_head *head, bool unlink);
3373 void netif_disable_lro(struct net_device *dev);
3374 void dev_disable_lro(struct net_device *dev);
3375 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
3376 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3377 		     struct net_device *sb_dev);
3378 
3379 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev);
3380 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
3381 
3382 static inline int dev_queue_xmit(struct sk_buff *skb)
3383 {
3384 	return __dev_queue_xmit(skb, NULL);
3385 }
3386 
3387 static inline int dev_queue_xmit_accel(struct sk_buff *skb,
3388 				       struct net_device *sb_dev)
3389 {
3390 	return __dev_queue_xmit(skb, sb_dev);
3391 }
3392 
3393 static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3394 {
3395 	int ret;
3396 
3397 	ret = __dev_direct_xmit(skb, queue_id);
3398 	if (!dev_xmit_complete(ret))
3399 		kfree_skb(skb);
3400 	return ret;
3401 }
3402 
3403 int register_netdevice(struct net_device *dev);
3404 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
3405 void unregister_netdevice_many(struct list_head *head);
3406 static inline void unregister_netdevice(struct net_device *dev)
3407 {
3408 	unregister_netdevice_queue(dev, NULL);
3409 }
3410 
3411 int netdev_refcnt_read(const struct net_device *dev);
3412 void free_netdev(struct net_device *dev);
3413 
3414 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
3415 					 struct sk_buff *skb,
3416 					 bool all_slaves);
3417 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
3418 					    struct sock *sk);
3419 struct net_device *dev_get_by_index(struct net *net, int ifindex);
3420 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
3421 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
3422 				       netdevice_tracker *tracker, gfp_t gfp);
3423 struct net_device *netdev_get_by_index_lock(struct net *net, int ifindex);
3424 struct net_device *netdev_get_by_name(struct net *net, const char *name,
3425 				      netdevice_tracker *tracker, gfp_t gfp);
3426 struct net_device *netdev_get_by_flags_rcu(struct net *net, netdevice_tracker *tracker,
3427 					   unsigned short flags, unsigned short mask);
3428 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
3429 void netdev_copy_name(struct net_device *dev, char *name);
3430 
3431 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
3432 				  unsigned short type,
3433 				  const void *daddr, const void *saddr,
3434 				  unsigned int len)
3435 {
3436 	if (!dev->header_ops || !dev->header_ops->create)
3437 		return 0;
3438 
3439 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
3440 }
3441 
3442 static inline int dev_parse_header(const struct sk_buff *skb,
3443 				   unsigned char *haddr)
3444 {
3445 	const struct net_device *dev = skb->dev;
3446 
3447 	if (!dev->header_ops || !dev->header_ops->parse)
3448 		return 0;
3449 	return dev->header_ops->parse(skb, haddr);
3450 }
3451 
3452 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
3453 {
3454 	const struct net_device *dev = skb->dev;
3455 
3456 	if (!dev->header_ops || !dev->header_ops->parse_protocol)
3457 		return 0;
3458 	return dev->header_ops->parse_protocol(skb);
3459 }
3460 
3461 /* ll_header must have at least hard_header_len allocated */
3462 static inline bool dev_validate_header(const struct net_device *dev,
3463 				       char *ll_header, int len)
3464 {
3465 	if (likely(len >= dev->hard_header_len))
3466 		return true;
3467 	if (len < dev->min_header_len)
3468 		return false;
3469 
3470 	if (capable(CAP_SYS_RAWIO)) {
3471 		memset(ll_header + len, 0, dev->hard_header_len - len);
3472 		return true;
3473 	}
3474 
3475 	if (dev->header_ops && dev->header_ops->validate)
3476 		return dev->header_ops->validate(ll_header, len);
3477 
3478 	return false;
3479 }
3480 
3481 static inline bool dev_has_header(const struct net_device *dev)
3482 {
3483 	return dev->header_ops && dev->header_ops->create;
3484 }
3485 
3486 struct numa_drop_counters {
3487 	atomic_t	drops0 ____cacheline_aligned_in_smp;
3488 	atomic_t	drops1 ____cacheline_aligned_in_smp;
3489 };
3490 
3491 static inline int numa_drop_read(const struct numa_drop_counters *ndc)
3492 {
3493 	return atomic_read(&ndc->drops0) + atomic_read(&ndc->drops1);
3494 }
3495 
3496 static inline void numa_drop_add(struct numa_drop_counters *ndc, int val)
3497 {
3498 	int n = numa_node_id() % 2;
3499 
3500 	if (n)
3501 		atomic_add(val, &ndc->drops1);
3502 	else
3503 		atomic_add(val, &ndc->drops0);
3504 }
3505 
3506 static inline void numa_drop_reset(struct numa_drop_counters *ndc)
3507 {
3508 	atomic_set(&ndc->drops0, 0);
3509 	atomic_set(&ndc->drops1, 0);
3510 }
3511 
3512 /*
3513  * Incoming packets are placed on per-CPU queues
3514  */
3515 struct softnet_data {
3516 	struct list_head	poll_list;
3517 	struct sk_buff_head	process_queue;
3518 	local_lock_t		process_queue_bh_lock;
3519 
3520 	/* stats */
3521 	unsigned int		processed;
3522 	unsigned int		time_squeeze;
3523 #ifdef CONFIG_RPS
3524 	struct softnet_data	*rps_ipi_list;
3525 #endif
3526 
3527 	unsigned int		received_rps;
3528 	bool			in_net_rx_action;
3529 	bool			in_napi_threaded_poll;
3530 
3531 #ifdef CONFIG_NET_FLOW_LIMIT
3532 	struct sd_flow_limit __rcu *flow_limit;
3533 #endif
3534 	struct Qdisc		*output_queue;
3535 	struct Qdisc		**output_queue_tailp;
3536 	struct sk_buff		*completion_queue;
3537 #ifdef CONFIG_XFRM_OFFLOAD
3538 	struct sk_buff_head	xfrm_backlog;
3539 #endif
3540 	/* written and read only by owning cpu: */
3541 	struct netdev_xmit xmit;
3542 #ifdef CONFIG_RPS
3543 	/* input_queue_head should be written by cpu owning this struct,
3544 	 * and only read by other cpus. Worth using a cache line.
3545 	 */
3546 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
3547 
3548 	/* Elements below can be accessed between CPUs for RPS/RFS */
3549 	call_single_data_t	csd ____cacheline_aligned_in_smp;
3550 	struct softnet_data	*rps_ipi_next;
3551 	unsigned int		cpu;
3552 
3553 	/* We force a cacheline alignment from here, to hold together
3554 	 * input_queue_tail, input_pkt_queue and backlog.state.
3555 	 * We add holes so that backlog.state is the last field
3556 	 * of this cache line.
3557 	 */
3558 	long			pad[3] ____cacheline_aligned_in_smp;
3559 	unsigned int		input_queue_tail;
3560 #endif
3561 	struct sk_buff_head	input_pkt_queue;
3562 
3563 	struct napi_struct	backlog;
3564 
3565 	struct numa_drop_counters drop_counters;
3566 
3567 	int			defer_ipi_scheduled ____cacheline_aligned_in_smp;
3568 	call_single_data_t	defer_csd;
3569 };
3570 
3571 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3572 
3573 struct page_pool_bh {
3574 	struct page_pool *pool;
3575 	local_lock_t bh_lock;
3576 };
3577 DECLARE_PER_CPU(struct page_pool_bh, system_page_pool);
3578 
3579 #ifndef CONFIG_PREEMPT_RT
3580 static inline int dev_recursion_level(void)
3581 {
3582 	return this_cpu_read(softnet_data.xmit.recursion);
3583 }
3584 #else
3585 static inline int dev_recursion_level(void)
3586 {
3587 	return current->net_xmit.recursion;
3588 }
3589 
3590 #endif
3591 
3592 void __netif_schedule(struct Qdisc *q);
3593 void netif_schedule_queue(struct netdev_queue *txq);
3594 
3595 static inline void netif_tx_schedule_all(struct net_device *dev)
3596 {
3597 	unsigned int i;
3598 
3599 	for (i = 0; i < dev->num_tx_queues; i++)
3600 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3601 }
3602 
3603 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3604 {
3605 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3606 }
3607 
3608 /**
3609  *	netif_start_queue - allow transmit
3610  *	@dev: network device
3611  *
3612  *	Allow upper layers to call the device hard_start_xmit routine.
3613  */
3614 static inline void netif_start_queue(struct net_device *dev)
3615 {
3616 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3617 }
3618 
3619 static inline void netif_tx_start_all_queues(struct net_device *dev)
3620 {
3621 	unsigned int i;
3622 
3623 	for (i = 0; i < dev->num_tx_queues; i++) {
3624 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3625 		netif_tx_start_queue(txq);
3626 	}
3627 }
3628 
3629 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3630 
3631 /**
3632  *	netif_wake_queue - restart transmit
3633  *	@dev: network device
3634  *
3635  *	Allow upper layers to call the device hard_start_xmit routine.
3636  *	Used for flow control when transmit resources are available.
3637  */
3638 static inline void netif_wake_queue(struct net_device *dev)
3639 {
3640 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3641 }
3642 
3643 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3644 {
3645 	unsigned int i;
3646 
3647 	for (i = 0; i < dev->num_tx_queues; i++) {
3648 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3649 		netif_tx_wake_queue(txq);
3650 	}
3651 }
3652 
3653 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3654 {
3655 	/* Paired with READ_ONCE() from dev_watchdog() */
3656 	WRITE_ONCE(dev_queue->trans_start, jiffies);
3657 
3658 	/* This barrier is paired with smp_mb() from dev_watchdog() */
3659 	smp_mb__before_atomic();
3660 
3661 	/* Must be an atomic op see netif_txq_try_stop() */
3662 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3663 }
3664 
3665 /**
3666  *	netif_stop_queue - stop transmitted packets
3667  *	@dev: network device
3668  *
3669  *	Stop upper layers calling the device hard_start_xmit routine.
3670  *	Used for flow control when transmit resources are unavailable.
3671  */
3672 static inline void netif_stop_queue(struct net_device *dev)
3673 {
3674 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3675 }
3676 
3677 void netif_tx_stop_all_queues(struct net_device *dev);
3678 
3679 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3680 {
3681 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3682 }
3683 
3684 /**
3685  *	netif_queue_stopped - test if transmit queue is flowblocked
3686  *	@dev: network device
3687  *
3688  *	Test if transmit queue on device is currently unable to send.
3689  */
3690 static inline bool netif_queue_stopped(const struct net_device *dev)
3691 {
3692 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3693 }
3694 
3695 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3696 {
3697 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3698 }
3699 
3700 static inline bool
3701 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3702 {
3703 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3704 }
3705 
3706 static inline bool
3707 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3708 {
3709 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3710 }
3711 
3712 /**
3713  *	netdev_queue_set_dql_min_limit - set dql minimum limit
3714  *	@dev_queue: pointer to transmit queue
3715  *	@min_limit: dql minimum limit
3716  *
3717  * Forces xmit_more() to return true until the minimum threshold
3718  * defined by @min_limit is reached (or until the tx queue is
3719  * empty). Warning: to be use with care, misuse will impact the
3720  * latency.
3721  */
3722 static inline void netdev_queue_set_dql_min_limit(struct netdev_queue *dev_queue,
3723 						  unsigned int min_limit)
3724 {
3725 #ifdef CONFIG_BQL
3726 	dev_queue->dql.min_limit = min_limit;
3727 #endif
3728 }
3729 
3730 static inline int netdev_queue_dql_avail(const struct netdev_queue *txq)
3731 {
3732 #ifdef CONFIG_BQL
3733 	/* Non-BQL migrated drivers will return 0, too. */
3734 	return dql_avail(&txq->dql);
3735 #else
3736 	return 0;
3737 #endif
3738 }
3739 
3740 /**
3741  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3742  *	@dev_queue: pointer to transmit queue
3743  *
3744  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3745  * to give appropriate hint to the CPU.
3746  */
3747 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3748 {
3749 #ifdef CONFIG_BQL
3750 	prefetchw(&dev_queue->dql.num_queued);
3751 #endif
3752 }
3753 
3754 /**
3755  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3756  *	@dev_queue: pointer to transmit queue
3757  *
3758  * BQL enabled drivers might use this helper in their TX completion path,
3759  * to give appropriate hint to the CPU.
3760  */
3761 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3762 {
3763 #ifdef CONFIG_BQL
3764 	prefetchw(&dev_queue->dql.limit);
3765 #endif
3766 }
3767 
3768 /**
3769  *	netdev_tx_sent_queue - report the number of bytes queued to a given tx queue
3770  *	@dev_queue: network device queue
3771  *	@bytes: number of bytes queued to the device queue
3772  *
3773  *	Report the number of bytes queued for sending/completion to the network
3774  *	device hardware queue. @bytes should be a good approximation and should
3775  *	exactly match netdev_completed_queue() @bytes.
3776  *	This is typically called once per packet, from ndo_start_xmit().
3777  */
3778 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3779 					unsigned int bytes)
3780 {
3781 #ifdef CONFIG_BQL
3782 	dql_queued(&dev_queue->dql, bytes);
3783 
3784 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3785 		return;
3786 
3787 	/* Paired with READ_ONCE() from dev_watchdog() */
3788 	WRITE_ONCE(dev_queue->trans_start, jiffies);
3789 
3790 	/* This barrier is paired with smp_mb() from dev_watchdog() */
3791 	smp_mb__before_atomic();
3792 
3793 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3794 
3795 	/*
3796 	 * The XOFF flag must be set before checking the dql_avail below,
3797 	 * because in netdev_tx_completed_queue we update the dql_completed
3798 	 * before checking the XOFF flag.
3799 	 */
3800 	smp_mb__after_atomic();
3801 
3802 	/* check again in case another CPU has just made room avail */
3803 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3804 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3805 #endif
3806 }
3807 
3808 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3809  * that they should not test BQL status themselves.
3810  * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3811  * skb of a batch.
3812  * Returns true if the doorbell must be used to kick the NIC.
3813  */
3814 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3815 					  unsigned int bytes,
3816 					  bool xmit_more)
3817 {
3818 	if (xmit_more) {
3819 #ifdef CONFIG_BQL
3820 		dql_queued(&dev_queue->dql, bytes);
3821 #endif
3822 		return netif_tx_queue_stopped(dev_queue);
3823 	}
3824 	netdev_tx_sent_queue(dev_queue, bytes);
3825 	return true;
3826 }
3827 
3828 /**
3829  *	netdev_sent_queue - report the number of bytes queued to hardware
3830  *	@dev: network device
3831  *	@bytes: number of bytes queued to the hardware device queue
3832  *
3833  *	Report the number of bytes queued for sending/completion to the network
3834  *	device hardware queue#0. @bytes should be a good approximation and should
3835  *	exactly match netdev_completed_queue() @bytes.
3836  *	This is typically called once per packet, from ndo_start_xmit().
3837  */
3838 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3839 {
3840 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3841 }
3842 
3843 static inline bool __netdev_sent_queue(struct net_device *dev,
3844 				       unsigned int bytes,
3845 				       bool xmit_more)
3846 {
3847 	return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3848 				      xmit_more);
3849 }
3850 
3851 /**
3852  *	netdev_tx_completed_queue - report number of packets/bytes at TX completion.
3853  *	@dev_queue: network device queue
3854  *	@pkts: number of packets (currently ignored)
3855  *	@bytes: number of bytes dequeued from the device queue
3856  *
3857  *	Must be called at most once per TX completion round (and not per
3858  *	individual packet), so that BQL can adjust its limits appropriately.
3859  */
3860 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3861 					     unsigned int pkts, unsigned int bytes)
3862 {
3863 #ifdef CONFIG_BQL
3864 	if (unlikely(!bytes))
3865 		return;
3866 
3867 	dql_completed(&dev_queue->dql, bytes);
3868 
3869 	/*
3870 	 * Without the memory barrier there is a small possibility that
3871 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3872 	 * be stopped forever
3873 	 */
3874 	smp_mb(); /* NOTE: netdev_txq_completed_mb() assumes this exists */
3875 
3876 	if (unlikely(dql_avail(&dev_queue->dql) < 0))
3877 		return;
3878 
3879 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3880 		netif_schedule_queue(dev_queue);
3881 #endif
3882 }
3883 
3884 /**
3885  * 	netdev_completed_queue - report bytes and packets completed by device
3886  * 	@dev: network device
3887  * 	@pkts: actual number of packets sent over the medium
3888  * 	@bytes: actual number of bytes sent over the medium
3889  *
3890  * 	Report the number of bytes and packets transmitted by the network device
3891  * 	hardware queue over the physical medium, @bytes must exactly match the
3892  * 	@bytes amount passed to netdev_sent_queue()
3893  */
3894 static inline void netdev_completed_queue(struct net_device *dev,
3895 					  unsigned int pkts, unsigned int bytes)
3896 {
3897 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3898 }
3899 
3900 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3901 {
3902 #ifdef CONFIG_BQL
3903 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3904 	dql_reset(&q->dql);
3905 #endif
3906 }
3907 
3908 /**
3909  * netdev_tx_reset_subqueue - reset the BQL stats and state of a netdev queue
3910  * @dev: network device
3911  * @qid: stack index of the queue to reset
3912  */
3913 static inline void netdev_tx_reset_subqueue(const struct net_device *dev,
3914 					    u32 qid)
3915 {
3916 	netdev_tx_reset_queue(netdev_get_tx_queue(dev, qid));
3917 }
3918 
3919 /**
3920  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3921  * 	@dev_queue: network device
3922  *
3923  * 	Reset the bytes and packet count of a network device and clear the
3924  * 	software flow control OFF bit for this network device
3925  */
3926 static inline void netdev_reset_queue(struct net_device *dev_queue)
3927 {
3928 	netdev_tx_reset_subqueue(dev_queue, 0);
3929 }
3930 
3931 /**
3932  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3933  * 	@dev: network device
3934  * 	@queue_index: given tx queue index
3935  *
3936  * 	Returns 0 if given tx queue index >= number of device tx queues,
3937  * 	otherwise returns the originally passed tx queue index.
3938  */
3939 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3940 {
3941 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3942 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3943 				     dev->name, queue_index,
3944 				     dev->real_num_tx_queues);
3945 		return 0;
3946 	}
3947 
3948 	return queue_index;
3949 }
3950 
3951 /**
3952  *	netif_running - test if up
3953  *	@dev: network device
3954  *
3955  *	Test if the device has been brought up.
3956  */
3957 static inline bool netif_running(const struct net_device *dev)
3958 {
3959 	return test_bit(__LINK_STATE_START, &dev->state);
3960 }
3961 
3962 /*
3963  * Routines to manage the subqueues on a device.  We only need start,
3964  * stop, and a check if it's stopped.  All other device management is
3965  * done at the overall netdevice level.
3966  * Also test the device if we're multiqueue.
3967  */
3968 
3969 /**
3970  *	netif_start_subqueue - allow sending packets on subqueue
3971  *	@dev: network device
3972  *	@queue_index: sub queue index
3973  *
3974  * Start individual transmit queue of a device with multiple transmit queues.
3975  */
3976 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3977 {
3978 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3979 
3980 	netif_tx_start_queue(txq);
3981 }
3982 
3983 /**
3984  *	netif_stop_subqueue - stop sending packets on subqueue
3985  *	@dev: network device
3986  *	@queue_index: sub queue index
3987  *
3988  * Stop individual transmit queue of a device with multiple transmit queues.
3989  */
3990 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3991 {
3992 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3993 	netif_tx_stop_queue(txq);
3994 }
3995 
3996 /**
3997  *	__netif_subqueue_stopped - test status of subqueue
3998  *	@dev: network device
3999  *	@queue_index: sub queue index
4000  *
4001  * Check individual transmit queue of a device with multiple transmit queues.
4002  */
4003 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
4004 					    u16 queue_index)
4005 {
4006 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
4007 
4008 	return netif_tx_queue_stopped(txq);
4009 }
4010 
4011 /**
4012  *	netif_subqueue_stopped - test status of subqueue
4013  *	@dev: network device
4014  *	@skb: sub queue buffer pointer
4015  *
4016  * Check individual transmit queue of a device with multiple transmit queues.
4017  */
4018 static inline bool netif_subqueue_stopped(const struct net_device *dev,
4019 					  struct sk_buff *skb)
4020 {
4021 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
4022 }
4023 
4024 /**
4025  *	netif_wake_subqueue - allow sending packets on subqueue
4026  *	@dev: network device
4027  *	@queue_index: sub queue index
4028  *
4029  * Resume individual transmit queue of a device with multiple transmit queues.
4030  */
4031 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
4032 {
4033 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
4034 
4035 	netif_tx_wake_queue(txq);
4036 }
4037 
4038 #ifdef CONFIG_XPS
4039 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
4040 			u16 index);
4041 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
4042 			  u16 index, enum xps_map_type type);
4043 
4044 /**
4045  *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
4046  *	@j: CPU/Rx queue index
4047  *	@mask: bitmask of all cpus/rx queues
4048  *	@nr_bits: number of bits in the bitmask
4049  *
4050  * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
4051  */
4052 static inline bool netif_attr_test_mask(unsigned long j,
4053 					const unsigned long *mask,
4054 					unsigned int nr_bits)
4055 {
4056 	cpu_max_bits_warn(j, nr_bits);
4057 	return test_bit(j, mask);
4058 }
4059 
4060 /**
4061  *	netif_attr_test_online - Test for online CPU/Rx queue
4062  *	@j: CPU/Rx queue index
4063  *	@online_mask: bitmask for CPUs/Rx queues that are online
4064  *	@nr_bits: number of bits in the bitmask
4065  *
4066  * Returns: true if a CPU/Rx queue is online.
4067  */
4068 static inline bool netif_attr_test_online(unsigned long j,
4069 					  const unsigned long *online_mask,
4070 					  unsigned int nr_bits)
4071 {
4072 	cpu_max_bits_warn(j, nr_bits);
4073 
4074 	if (online_mask)
4075 		return test_bit(j, online_mask);
4076 
4077 	return (j < nr_bits);
4078 }
4079 
4080 /**
4081  *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
4082  *	@n: CPU/Rx queue index
4083  *	@srcp: the cpumask/Rx queue mask pointer
4084  *	@nr_bits: number of bits in the bitmask
4085  *
4086  * Returns: next (after n) CPU/Rx queue index in the mask;
4087  * >= nr_bits if no further CPUs/Rx queues set.
4088  */
4089 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
4090 					       unsigned int nr_bits)
4091 {
4092 	/* -1 is a legal arg here. */
4093 	if (n != -1)
4094 		cpu_max_bits_warn(n, nr_bits);
4095 
4096 	if (srcp)
4097 		return find_next_bit(srcp, nr_bits, n + 1);
4098 
4099 	return n + 1;
4100 }
4101 
4102 /**
4103  *	netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
4104  *	@n: CPU/Rx queue index
4105  *	@src1p: the first CPUs/Rx queues mask pointer
4106  *	@src2p: the second CPUs/Rx queues mask pointer
4107  *	@nr_bits: number of bits in the bitmask
4108  *
4109  * Returns: next (after n) CPU/Rx queue index set in both masks;
4110  * >= nr_bits if no further CPUs/Rx queues set in both.
4111  */
4112 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
4113 					  const unsigned long *src2p,
4114 					  unsigned int nr_bits)
4115 {
4116 	/* -1 is a legal arg here. */
4117 	if (n != -1)
4118 		cpu_max_bits_warn(n, nr_bits);
4119 
4120 	if (src1p && src2p)
4121 		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
4122 	else if (src1p)
4123 		return find_next_bit(src1p, nr_bits, n + 1);
4124 	else if (src2p)
4125 		return find_next_bit(src2p, nr_bits, n + 1);
4126 
4127 	return n + 1;
4128 }
4129 #else
4130 static inline int netif_set_xps_queue(struct net_device *dev,
4131 				      const struct cpumask *mask,
4132 				      u16 index)
4133 {
4134 	return 0;
4135 }
4136 
4137 static inline int __netif_set_xps_queue(struct net_device *dev,
4138 					const unsigned long *mask,
4139 					u16 index, enum xps_map_type type)
4140 {
4141 	return 0;
4142 }
4143 #endif
4144 
4145 /**
4146  *	netif_is_multiqueue - test if device has multiple transmit queues
4147  *	@dev: network device
4148  *
4149  * Check if device has multiple transmit queues
4150  */
4151 static inline bool netif_is_multiqueue(const struct net_device *dev)
4152 {
4153 	return dev->num_tx_queues > 1;
4154 }
4155 
4156 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
4157 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
4158 int netif_set_real_num_queues(struct net_device *dev,
4159 			      unsigned int txq, unsigned int rxq);
4160 
4161 int netif_get_num_default_rss_queues(void);
4162 
4163 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason);
4164 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason);
4165 
4166 /*
4167  * It is not allowed to call kfree_skb() or consume_skb() from hardware
4168  * interrupt context or with hardware interrupts being disabled.
4169  * (in_hardirq() || irqs_disabled())
4170  *
4171  * We provide four helpers that can be used in following contexts :
4172  *
4173  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
4174  *  replacing kfree_skb(skb)
4175  *
4176  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
4177  *  Typically used in place of consume_skb(skb) in TX completion path
4178  *
4179  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
4180  *  replacing kfree_skb(skb)
4181  *
4182  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
4183  *  and consumed a packet. Used in place of consume_skb(skb)
4184  */
4185 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
4186 {
4187 	dev_kfree_skb_irq_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
4188 }
4189 
4190 static inline void dev_consume_skb_irq(struct sk_buff *skb)
4191 {
4192 	dev_kfree_skb_irq_reason(skb, SKB_CONSUMED);
4193 }
4194 
4195 static inline void dev_kfree_skb_any(struct sk_buff *skb)
4196 {
4197 	dev_kfree_skb_any_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
4198 }
4199 
4200 static inline void dev_consume_skb_any(struct sk_buff *skb)
4201 {
4202 	dev_kfree_skb_any_reason(skb, SKB_CONSUMED);
4203 }
4204 
4205 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4206 			     const struct bpf_prog *xdp_prog);
4207 void generic_xdp_tx(struct sk_buff *skb, const struct bpf_prog *xdp_prog);
4208 int do_xdp_generic(const struct bpf_prog *xdp_prog, struct sk_buff **pskb);
4209 int netif_rx(struct sk_buff *skb);
4210 int __netif_rx(struct sk_buff *skb);
4211 
4212 int netif_receive_skb(struct sk_buff *skb);
4213 int netif_receive_skb_core(struct sk_buff *skb);
4214 void netif_receive_skb_list_internal(struct list_head *head);
4215 void netif_receive_skb_list(struct list_head *head);
4216 gro_result_t gro_receive_skb(struct gro_node *gro, struct sk_buff *skb);
4217 
4218 static inline gro_result_t napi_gro_receive(struct napi_struct *napi,
4219 					    struct sk_buff *skb)
4220 {
4221 	return gro_receive_skb(&napi->gro, skb);
4222 }
4223 
4224 struct sk_buff *napi_get_frags(struct napi_struct *napi);
4225 gro_result_t napi_gro_frags(struct napi_struct *napi);
4226 
4227 static inline void napi_free_frags(struct napi_struct *napi)
4228 {
4229 	kfree_skb(napi->skb);
4230 	napi->skb = NULL;
4231 }
4232 
4233 bool netdev_is_rx_handler_busy(struct net_device *dev);
4234 int netdev_rx_handler_register(struct net_device *dev,
4235 			       rx_handler_func_t *rx_handler,
4236 			       void *rx_handler_data);
4237 void netdev_rx_handler_unregister(struct net_device *dev);
4238 
4239 bool dev_valid_name(const char *name);
4240 static inline bool is_socket_ioctl_cmd(unsigned int cmd)
4241 {
4242 	return _IOC_TYPE(cmd) == SOCK_IOC_TYPE;
4243 }
4244 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg);
4245 int put_user_ifreq(struct ifreq *ifr, void __user *arg);
4246 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
4247 		void __user *data, bool *need_copyout);
4248 int dev_ifconf(struct net *net, struct ifconf __user *ifc);
4249 int dev_eth_ioctl(struct net_device *dev,
4250 		  struct ifreq *ifr, unsigned int cmd);
4251 int generic_hwtstamp_get_lower(struct net_device *dev,
4252 			       struct kernel_hwtstamp_config *kernel_cfg);
4253 int generic_hwtstamp_set_lower(struct net_device *dev,
4254 			       struct kernel_hwtstamp_config *kernel_cfg,
4255 			       struct netlink_ext_ack *extack);
4256 int dev_ethtool(struct net *net, struct ifreq *ifr, void __user *userdata);
4257 unsigned int netif_get_flags(const struct net_device *dev);
4258 int __dev_change_flags(struct net_device *dev, unsigned int flags,
4259 		       struct netlink_ext_ack *extack);
4260 int netif_change_flags(struct net_device *dev, unsigned int flags,
4261 		       struct netlink_ext_ack *extack);
4262 int dev_change_flags(struct net_device *dev, unsigned int flags,
4263 		     struct netlink_ext_ack *extack);
4264 int netif_set_alias(struct net_device *dev, const char *alias, size_t len);
4265 int dev_set_alias(struct net_device *, const char *, size_t);
4266 int dev_get_alias(const struct net_device *, char *, size_t);
4267 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
4268 			       const char *pat, int new_ifindex,
4269 			       struct netlink_ext_ack *extack);
4270 int dev_change_net_namespace(struct net_device *dev, struct net *net,
4271 			     const char *pat);
4272 int __netif_set_mtu(struct net_device *dev, int new_mtu);
4273 int netif_set_mtu(struct net_device *dev, int new_mtu);
4274 int dev_set_mtu(struct net_device *, int);
4275 int netif_pre_changeaddr_notify(struct net_device *dev, const char *addr,
4276 				struct netlink_ext_ack *extack);
4277 int netif_set_mac_address(struct net_device *dev, struct sockaddr_storage *ss,
4278 			  struct netlink_ext_ack *extack);
4279 int dev_set_mac_address(struct net_device *dev, struct sockaddr_storage *ss,
4280 			struct netlink_ext_ack *extack);
4281 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr_storage *ss,
4282 			     struct netlink_ext_ack *extack);
4283 int netif_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name);
4284 int netif_get_port_parent_id(struct net_device *dev,
4285 			     struct netdev_phys_item_id *ppid, bool recurse);
4286 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
4287 
4288 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
4289 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
4290 				    struct netdev_queue *txq, int *ret);
4291 
4292 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog);
4293 u8 dev_xdp_prog_count(struct net_device *dev);
4294 int netif_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf);
4295 int dev_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf);
4296 u8 dev_xdp_sb_prog_count(struct net_device *dev);
4297 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode);
4298 
4299 u32 dev_get_min_mp_channel_count(const struct net_device *dev);
4300 
4301 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
4302 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
4303 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb);
4304 bool is_skb_forwardable(const struct net_device *dev,
4305 			const struct sk_buff *skb);
4306 
4307 static __always_inline bool __is_skb_forwardable(const struct net_device *dev,
4308 						 const struct sk_buff *skb,
4309 						 const bool check_mtu)
4310 {
4311 	const u32 vlan_hdr_len = 4; /* VLAN_HLEN */
4312 	unsigned int len;
4313 
4314 	if (!(dev->flags & IFF_UP))
4315 		return false;
4316 
4317 	if (!check_mtu)
4318 		return true;
4319 
4320 	len = dev->mtu + dev->hard_header_len + vlan_hdr_len;
4321 	if (skb->len <= len)
4322 		return true;
4323 
4324 	/* if TSO is enabled, we don't care about the length as the packet
4325 	 * could be forwarded without being segmented before
4326 	 */
4327 	if (skb_is_gso(skb))
4328 		return true;
4329 
4330 	return false;
4331 }
4332 
4333 void netdev_core_stats_inc(struct net_device *dev, u32 offset);
4334 
4335 #define DEV_CORE_STATS_INC(FIELD)						\
4336 static inline void dev_core_stats_##FIELD##_inc(struct net_device *dev)		\
4337 {										\
4338 	netdev_core_stats_inc(dev,						\
4339 			offsetof(struct net_device_core_stats, FIELD));		\
4340 }
4341 DEV_CORE_STATS_INC(rx_dropped)
4342 DEV_CORE_STATS_INC(tx_dropped)
4343 DEV_CORE_STATS_INC(rx_nohandler)
4344 DEV_CORE_STATS_INC(rx_otherhost_dropped)
4345 #undef DEV_CORE_STATS_INC
4346 
4347 static __always_inline int ____dev_forward_skb(struct net_device *dev,
4348 					       struct sk_buff *skb,
4349 					       const bool check_mtu)
4350 {
4351 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
4352 	    unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) {
4353 		dev_core_stats_rx_dropped_inc(dev);
4354 		kfree_skb(skb);
4355 		return NET_RX_DROP;
4356 	}
4357 
4358 	skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev)));
4359 	skb->priority = 0;
4360 	return 0;
4361 }
4362 
4363 bool dev_nit_active_rcu(const struct net_device *dev);
4364 static inline bool dev_nit_active(const struct net_device *dev)
4365 {
4366 	bool ret;
4367 
4368 	rcu_read_lock();
4369 	ret = dev_nit_active_rcu(dev);
4370 	rcu_read_unlock();
4371 	return ret;
4372 }
4373 
4374 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
4375 
4376 static inline void __dev_put(struct net_device *dev)
4377 {
4378 	if (dev) {
4379 #ifdef CONFIG_PCPU_DEV_REFCNT
4380 		this_cpu_dec(*dev->pcpu_refcnt);
4381 #else
4382 		refcount_dec(&dev->dev_refcnt);
4383 #endif
4384 	}
4385 }
4386 
4387 static inline void __dev_hold(struct net_device *dev)
4388 {
4389 	if (dev) {
4390 #ifdef CONFIG_PCPU_DEV_REFCNT
4391 		this_cpu_inc(*dev->pcpu_refcnt);
4392 #else
4393 		refcount_inc(&dev->dev_refcnt);
4394 #endif
4395 	}
4396 }
4397 
4398 static inline void __netdev_tracker_alloc(struct net_device *dev,
4399 					  netdevice_tracker *tracker,
4400 					  gfp_t gfp)
4401 {
4402 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4403 	ref_tracker_alloc(&dev->refcnt_tracker, tracker, gfp);
4404 #endif
4405 }
4406 
4407 /* netdev_tracker_alloc() can upgrade a prior untracked reference
4408  * taken by dev_get_by_name()/dev_get_by_index() to a tracked one.
4409  */
4410 static inline void netdev_tracker_alloc(struct net_device *dev,
4411 					netdevice_tracker *tracker, gfp_t gfp)
4412 {
4413 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4414 	refcount_dec(&dev->refcnt_tracker.no_tracker);
4415 	__netdev_tracker_alloc(dev, tracker, gfp);
4416 #endif
4417 }
4418 
4419 static inline void netdev_tracker_free(struct net_device *dev,
4420 				       netdevice_tracker *tracker)
4421 {
4422 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4423 	ref_tracker_free(&dev->refcnt_tracker, tracker);
4424 #endif
4425 }
4426 
4427 static inline void netdev_hold(struct net_device *dev,
4428 			       netdevice_tracker *tracker, gfp_t gfp)
4429 {
4430 	if (dev) {
4431 		__dev_hold(dev);
4432 		__netdev_tracker_alloc(dev, tracker, gfp);
4433 	}
4434 }
4435 
4436 static inline void netdev_put(struct net_device *dev,
4437 			      netdevice_tracker *tracker)
4438 {
4439 	if (dev) {
4440 		netdev_tracker_free(dev, tracker);
4441 		__dev_put(dev);
4442 	}
4443 }
4444 
4445 /**
4446  *	dev_hold - get reference to device
4447  *	@dev: network device
4448  *
4449  * Hold reference to device to keep it from being freed.
4450  * Try using netdev_hold() instead.
4451  */
4452 static inline void dev_hold(struct net_device *dev)
4453 {
4454 	netdev_hold(dev, NULL, GFP_ATOMIC);
4455 }
4456 
4457 /**
4458  *	dev_put - release reference to device
4459  *	@dev: network device
4460  *
4461  * Release reference to device to allow it to be freed.
4462  * Try using netdev_put() instead.
4463  */
4464 static inline void dev_put(struct net_device *dev)
4465 {
4466 	netdev_put(dev, NULL);
4467 }
4468 
4469 DEFINE_FREE(dev_put, struct net_device *, if (_T) dev_put(_T))
4470 
4471 static inline void netdev_ref_replace(struct net_device *odev,
4472 				      struct net_device *ndev,
4473 				      netdevice_tracker *tracker,
4474 				      gfp_t gfp)
4475 {
4476 	if (odev)
4477 		netdev_tracker_free(odev, tracker);
4478 
4479 	__dev_hold(ndev);
4480 	__dev_put(odev);
4481 
4482 	if (ndev)
4483 		__netdev_tracker_alloc(ndev, tracker, gfp);
4484 }
4485 
4486 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
4487  * and _off may be called from IRQ context, but it is caller
4488  * who is responsible for serialization of these calls.
4489  *
4490  * The name carrier is inappropriate, these functions should really be
4491  * called netif_lowerlayer_*() because they represent the state of any
4492  * kind of lower layer not just hardware media.
4493  */
4494 void linkwatch_fire_event(struct net_device *dev);
4495 
4496 /**
4497  * linkwatch_sync_dev - sync linkwatch for the given device
4498  * @dev: network device to sync linkwatch for
4499  *
4500  * Sync linkwatch for the given device, removing it from the
4501  * pending work list (if queued).
4502  */
4503 void linkwatch_sync_dev(struct net_device *dev);
4504 void __linkwatch_sync_dev(struct net_device *dev);
4505 
4506 /**
4507  *	netif_carrier_ok - test if carrier present
4508  *	@dev: network device
4509  *
4510  * Check if carrier is present on device
4511  */
4512 static inline bool netif_carrier_ok(const struct net_device *dev)
4513 {
4514 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
4515 }
4516 
4517 unsigned long dev_trans_start(struct net_device *dev);
4518 
4519 void netdev_watchdog_up(struct net_device *dev);
4520 
4521 void netif_carrier_on(struct net_device *dev);
4522 void netif_carrier_off(struct net_device *dev);
4523 void netif_carrier_event(struct net_device *dev);
4524 
4525 /**
4526  *	netif_dormant_on - mark device as dormant.
4527  *	@dev: network device
4528  *
4529  * Mark device as dormant (as per RFC2863).
4530  *
4531  * The dormant state indicates that the relevant interface is not
4532  * actually in a condition to pass packets (i.e., it is not 'up') but is
4533  * in a "pending" state, waiting for some external event.  For "on-
4534  * demand" interfaces, this new state identifies the situation where the
4535  * interface is waiting for events to place it in the up state.
4536  */
4537 static inline void netif_dormant_on(struct net_device *dev)
4538 {
4539 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
4540 		linkwatch_fire_event(dev);
4541 }
4542 
4543 /**
4544  *	netif_dormant_off - set device as not dormant.
4545  *	@dev: network device
4546  *
4547  * Device is not in dormant state.
4548  */
4549 static inline void netif_dormant_off(struct net_device *dev)
4550 {
4551 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
4552 		linkwatch_fire_event(dev);
4553 }
4554 
4555 /**
4556  *	netif_dormant - test if device is dormant
4557  *	@dev: network device
4558  *
4559  * Check if device is dormant.
4560  */
4561 static inline bool netif_dormant(const struct net_device *dev)
4562 {
4563 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
4564 }
4565 
4566 
4567 /**
4568  *	netif_testing_on - mark device as under test.
4569  *	@dev: network device
4570  *
4571  * Mark device as under test (as per RFC2863).
4572  *
4573  * The testing state indicates that some test(s) must be performed on
4574  * the interface. After completion, of the test, the interface state
4575  * will change to up, dormant, or down, as appropriate.
4576  */
4577 static inline void netif_testing_on(struct net_device *dev)
4578 {
4579 	if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state))
4580 		linkwatch_fire_event(dev);
4581 }
4582 
4583 /**
4584  *	netif_testing_off - set device as not under test.
4585  *	@dev: network device
4586  *
4587  * Device is not in testing state.
4588  */
4589 static inline void netif_testing_off(struct net_device *dev)
4590 {
4591 	if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state))
4592 		linkwatch_fire_event(dev);
4593 }
4594 
4595 /**
4596  *	netif_testing - test if device is under test
4597  *	@dev: network device
4598  *
4599  * Check if device is under test
4600  */
4601 static inline bool netif_testing(const struct net_device *dev)
4602 {
4603 	return test_bit(__LINK_STATE_TESTING, &dev->state);
4604 }
4605 
4606 
4607 /**
4608  *	netif_oper_up - test if device is operational
4609  *	@dev: network device
4610  *
4611  * Check if carrier is operational
4612  */
4613 static inline bool netif_oper_up(const struct net_device *dev)
4614 {
4615 	unsigned int operstate = READ_ONCE(dev->operstate);
4616 
4617 	return	operstate == IF_OPER_UP ||
4618 		operstate == IF_OPER_UNKNOWN /* backward compat */;
4619 }
4620 
4621 /**
4622  *	netif_device_present - is device available or removed
4623  *	@dev: network device
4624  *
4625  * Check if device has not been removed from system.
4626  */
4627 static inline bool netif_device_present(const struct net_device *dev)
4628 {
4629 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
4630 }
4631 
4632 void netif_device_detach(struct net_device *dev);
4633 
4634 void netif_device_attach(struct net_device *dev);
4635 
4636 /*
4637  * Network interface message level settings
4638  */
4639 
4640 enum {
4641 	NETIF_MSG_DRV_BIT,
4642 	NETIF_MSG_PROBE_BIT,
4643 	NETIF_MSG_LINK_BIT,
4644 	NETIF_MSG_TIMER_BIT,
4645 	NETIF_MSG_IFDOWN_BIT,
4646 	NETIF_MSG_IFUP_BIT,
4647 	NETIF_MSG_RX_ERR_BIT,
4648 	NETIF_MSG_TX_ERR_BIT,
4649 	NETIF_MSG_TX_QUEUED_BIT,
4650 	NETIF_MSG_INTR_BIT,
4651 	NETIF_MSG_TX_DONE_BIT,
4652 	NETIF_MSG_RX_STATUS_BIT,
4653 	NETIF_MSG_PKTDATA_BIT,
4654 	NETIF_MSG_HW_BIT,
4655 	NETIF_MSG_WOL_BIT,
4656 
4657 	/* When you add a new bit above, update netif_msg_class_names array
4658 	 * in net/ethtool/common.c
4659 	 */
4660 	NETIF_MSG_CLASS_COUNT,
4661 };
4662 /* Both ethtool_ops interface and internal driver implementation use u32 */
4663 static_assert(NETIF_MSG_CLASS_COUNT <= 32);
4664 
4665 #define __NETIF_MSG_BIT(bit)	((u32)1 << (bit))
4666 #define __NETIF_MSG(name)	__NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
4667 
4668 #define NETIF_MSG_DRV		__NETIF_MSG(DRV)
4669 #define NETIF_MSG_PROBE		__NETIF_MSG(PROBE)
4670 #define NETIF_MSG_LINK		__NETIF_MSG(LINK)
4671 #define NETIF_MSG_TIMER		__NETIF_MSG(TIMER)
4672 #define NETIF_MSG_IFDOWN	__NETIF_MSG(IFDOWN)
4673 #define NETIF_MSG_IFUP		__NETIF_MSG(IFUP)
4674 #define NETIF_MSG_RX_ERR	__NETIF_MSG(RX_ERR)
4675 #define NETIF_MSG_TX_ERR	__NETIF_MSG(TX_ERR)
4676 #define NETIF_MSG_TX_QUEUED	__NETIF_MSG(TX_QUEUED)
4677 #define NETIF_MSG_INTR		__NETIF_MSG(INTR)
4678 #define NETIF_MSG_TX_DONE	__NETIF_MSG(TX_DONE)
4679 #define NETIF_MSG_RX_STATUS	__NETIF_MSG(RX_STATUS)
4680 #define NETIF_MSG_PKTDATA	__NETIF_MSG(PKTDATA)
4681 #define NETIF_MSG_HW		__NETIF_MSG(HW)
4682 #define NETIF_MSG_WOL		__NETIF_MSG(WOL)
4683 
4684 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
4685 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
4686 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
4687 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
4688 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
4689 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
4690 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
4691 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
4692 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4693 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
4694 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
4695 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
4696 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
4697 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
4698 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
4699 
4700 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4701 {
4702 	/* use default */
4703 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4704 		return default_msg_enable_bits;
4705 	if (debug_value == 0)	/* no output */
4706 		return 0;
4707 	/* set low N bits */
4708 	return (1U << debug_value) - 1;
4709 }
4710 
4711 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4712 {
4713 	spin_lock(&txq->_xmit_lock);
4714 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4715 	WRITE_ONCE(txq->xmit_lock_owner, cpu);
4716 }
4717 
4718 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4719 {
4720 	__acquire(&txq->_xmit_lock);
4721 	return true;
4722 }
4723 
4724 static inline void __netif_tx_release(struct netdev_queue *txq)
4725 {
4726 	__release(&txq->_xmit_lock);
4727 }
4728 
4729 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4730 {
4731 	spin_lock_bh(&txq->_xmit_lock);
4732 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4733 	WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4734 }
4735 
4736 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4737 {
4738 	bool ok = spin_trylock(&txq->_xmit_lock);
4739 
4740 	if (likely(ok)) {
4741 		/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4742 		WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4743 	}
4744 	return ok;
4745 }
4746 
4747 static inline void __netif_tx_unlock(struct netdev_queue *txq)
4748 {
4749 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4750 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4751 	spin_unlock(&txq->_xmit_lock);
4752 }
4753 
4754 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4755 {
4756 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4757 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4758 	spin_unlock_bh(&txq->_xmit_lock);
4759 }
4760 
4761 /*
4762  * txq->trans_start can be read locklessly from dev_watchdog()
4763  */
4764 static inline void txq_trans_update(const struct net_device *dev,
4765 				    struct netdev_queue *txq)
4766 {
4767 	if (!dev->lltx)
4768 		WRITE_ONCE(txq->trans_start, jiffies);
4769 }
4770 
4771 static inline void txq_trans_cond_update(struct netdev_queue *txq)
4772 {
4773 	unsigned long now = jiffies;
4774 
4775 	if (READ_ONCE(txq->trans_start) != now)
4776 		WRITE_ONCE(txq->trans_start, now);
4777 }
4778 
4779 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
4780 static inline void netif_trans_update(struct net_device *dev)
4781 {
4782 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4783 
4784 	txq_trans_cond_update(txq);
4785 }
4786 
4787 /**
4788  *	netif_tx_lock - grab network device transmit lock
4789  *	@dev: network device
4790  *
4791  * Get network device transmit lock
4792  */
4793 void netif_tx_lock(struct net_device *dev);
4794 
4795 static inline void netif_tx_lock_bh(struct net_device *dev)
4796 {
4797 	local_bh_disable();
4798 	netif_tx_lock(dev);
4799 }
4800 
4801 void netif_tx_unlock(struct net_device *dev);
4802 
4803 static inline void netif_tx_unlock_bh(struct net_device *dev)
4804 {
4805 	netif_tx_unlock(dev);
4806 	local_bh_enable();
4807 }
4808 
4809 #define HARD_TX_LOCK(dev, txq, cpu) {			\
4810 	if (!(dev)->lltx) {				\
4811 		__netif_tx_lock(txq, cpu);		\
4812 	} else {					\
4813 		__netif_tx_acquire(txq);		\
4814 	}						\
4815 }
4816 
4817 #define HARD_TX_TRYLOCK(dev, txq)			\
4818 	(!(dev)->lltx ?					\
4819 		__netif_tx_trylock(txq) :		\
4820 		__netif_tx_acquire(txq))
4821 
4822 #define HARD_TX_UNLOCK(dev, txq) {			\
4823 	if (!(dev)->lltx) {				\
4824 		__netif_tx_unlock(txq);			\
4825 	} else {					\
4826 		__netif_tx_release(txq);		\
4827 	}						\
4828 }
4829 
4830 static inline void netif_tx_disable(struct net_device *dev)
4831 {
4832 	unsigned int i;
4833 	int cpu;
4834 
4835 	local_bh_disable();
4836 	cpu = smp_processor_id();
4837 	spin_lock(&dev->tx_global_lock);
4838 	for (i = 0; i < dev->num_tx_queues; i++) {
4839 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4840 
4841 		__netif_tx_lock(txq, cpu);
4842 		netif_tx_stop_queue(txq);
4843 		__netif_tx_unlock(txq);
4844 	}
4845 	spin_unlock(&dev->tx_global_lock);
4846 	local_bh_enable();
4847 }
4848 
4849 static inline void netif_addr_lock(struct net_device *dev)
4850 {
4851 	unsigned char nest_level = 0;
4852 
4853 #ifdef CONFIG_LOCKDEP
4854 	nest_level = dev->nested_level;
4855 #endif
4856 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4857 }
4858 
4859 static inline void netif_addr_lock_bh(struct net_device *dev)
4860 {
4861 	unsigned char nest_level = 0;
4862 
4863 #ifdef CONFIG_LOCKDEP
4864 	nest_level = dev->nested_level;
4865 #endif
4866 	local_bh_disable();
4867 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4868 }
4869 
4870 static inline void netif_addr_unlock(struct net_device *dev)
4871 {
4872 	spin_unlock(&dev->addr_list_lock);
4873 }
4874 
4875 static inline void netif_addr_unlock_bh(struct net_device *dev)
4876 {
4877 	spin_unlock_bh(&dev->addr_list_lock);
4878 }
4879 
4880 /*
4881  * dev_addrs walker. Should be used only for read access. Call with
4882  * rcu_read_lock held.
4883  */
4884 #define for_each_dev_addr(dev, ha) \
4885 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4886 
4887 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4888 
4889 void ether_setup(struct net_device *dev);
4890 
4891 /* Allocate dummy net_device */
4892 struct net_device *alloc_netdev_dummy(int sizeof_priv);
4893 
4894 /* Support for loadable net-drivers */
4895 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4896 				    unsigned char name_assign_type,
4897 				    void (*setup)(struct net_device *),
4898 				    unsigned int txqs, unsigned int rxqs);
4899 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4900 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4901 
4902 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4903 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4904 			 count)
4905 
4906 int register_netdev(struct net_device *dev);
4907 void unregister_netdev(struct net_device *dev);
4908 
4909 int devm_register_netdev(struct device *dev, struct net_device *ndev);
4910 
4911 /* General hardware address lists handling functions */
4912 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4913 		   struct netdev_hw_addr_list *from_list, int addr_len);
4914 int __hw_addr_sync_multiple(struct netdev_hw_addr_list *to_list,
4915 			    struct netdev_hw_addr_list *from_list,
4916 			    int addr_len);
4917 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4918 		      struct netdev_hw_addr_list *from_list, int addr_len);
4919 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4920 		       struct net_device *dev,
4921 		       int (*sync)(struct net_device *, const unsigned char *),
4922 		       int (*unsync)(struct net_device *,
4923 				     const unsigned char *));
4924 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4925 			   struct net_device *dev,
4926 			   int (*sync)(struct net_device *,
4927 				       const unsigned char *, int),
4928 			   int (*unsync)(struct net_device *,
4929 					 const unsigned char *, int));
4930 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4931 			      struct net_device *dev,
4932 			      int (*unsync)(struct net_device *,
4933 					    const unsigned char *, int));
4934 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4935 			  struct net_device *dev,
4936 			  int (*unsync)(struct net_device *,
4937 					const unsigned char *));
4938 void __hw_addr_init(struct netdev_hw_addr_list *list);
4939 
4940 /* Functions used for device addresses handling */
4941 void dev_addr_mod(struct net_device *dev, unsigned int offset,
4942 		  const void *addr, size_t len);
4943 
4944 static inline void
4945 __dev_addr_set(struct net_device *dev, const void *addr, size_t len)
4946 {
4947 	dev_addr_mod(dev, 0, addr, len);
4948 }
4949 
4950 static inline void dev_addr_set(struct net_device *dev, const u8 *addr)
4951 {
4952 	__dev_addr_set(dev, addr, dev->addr_len);
4953 }
4954 
4955 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4956 		 unsigned char addr_type);
4957 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4958 		 unsigned char addr_type);
4959 
4960 /* Functions used for unicast addresses handling */
4961 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4962 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4963 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4964 int dev_uc_sync(struct net_device *to, struct net_device *from);
4965 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4966 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4967 void dev_uc_flush(struct net_device *dev);
4968 void dev_uc_init(struct net_device *dev);
4969 
4970 /**
4971  *  __dev_uc_sync - Synchronize device's unicast list
4972  *  @dev:  device to sync
4973  *  @sync: function to call if address should be added
4974  *  @unsync: function to call if address should be removed
4975  *
4976  *  Add newly added addresses to the interface, and release
4977  *  addresses that have been deleted.
4978  */
4979 static inline int __dev_uc_sync(struct net_device *dev,
4980 				int (*sync)(struct net_device *,
4981 					    const unsigned char *),
4982 				int (*unsync)(struct net_device *,
4983 					      const unsigned char *))
4984 {
4985 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4986 }
4987 
4988 /**
4989  *  __dev_uc_unsync - Remove synchronized addresses from device
4990  *  @dev:  device to sync
4991  *  @unsync: function to call if address should be removed
4992  *
4993  *  Remove all addresses that were added to the device by dev_uc_sync().
4994  */
4995 static inline void __dev_uc_unsync(struct net_device *dev,
4996 				   int (*unsync)(struct net_device *,
4997 						 const unsigned char *))
4998 {
4999 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
5000 }
5001 
5002 /* Functions used for multicast addresses handling */
5003 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
5004 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
5005 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
5006 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
5007 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
5008 int dev_mc_sync(struct net_device *to, struct net_device *from);
5009 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
5010 void dev_mc_unsync(struct net_device *to, struct net_device *from);
5011 void dev_mc_flush(struct net_device *dev);
5012 void dev_mc_init(struct net_device *dev);
5013 
5014 /**
5015  *  __dev_mc_sync - Synchronize device's multicast list
5016  *  @dev:  device to sync
5017  *  @sync: function to call if address should be added
5018  *  @unsync: function to call if address should be removed
5019  *
5020  *  Add newly added addresses to the interface, and release
5021  *  addresses that have been deleted.
5022  */
5023 static inline int __dev_mc_sync(struct net_device *dev,
5024 				int (*sync)(struct net_device *,
5025 					    const unsigned char *),
5026 				int (*unsync)(struct net_device *,
5027 					      const unsigned char *))
5028 {
5029 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
5030 }
5031 
5032 /**
5033  *  __dev_mc_unsync - Remove synchronized addresses from device
5034  *  @dev:  device to sync
5035  *  @unsync: function to call if address should be removed
5036  *
5037  *  Remove all addresses that were added to the device by dev_mc_sync().
5038  */
5039 static inline void __dev_mc_unsync(struct net_device *dev,
5040 				   int (*unsync)(struct net_device *,
5041 						 const unsigned char *))
5042 {
5043 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
5044 }
5045 
5046 /* Functions used for secondary unicast and multicast support */
5047 void dev_set_rx_mode(struct net_device *dev);
5048 int netif_set_promiscuity(struct net_device *dev, int inc);
5049 int dev_set_promiscuity(struct net_device *dev, int inc);
5050 int netif_set_allmulti(struct net_device *dev, int inc, bool notify);
5051 int dev_set_allmulti(struct net_device *dev, int inc);
5052 void netif_state_change(struct net_device *dev);
5053 void netdev_state_change(struct net_device *dev);
5054 void __netdev_notify_peers(struct net_device *dev);
5055 void netdev_notify_peers(struct net_device *dev);
5056 void netdev_features_change(struct net_device *dev);
5057 /* Load a device via the kmod */
5058 void dev_load(struct net *net, const char *name);
5059 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5060 					struct rtnl_link_stats64 *storage);
5061 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5062 			     const struct net_device_stats *netdev_stats);
5063 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
5064 			   const struct pcpu_sw_netstats __percpu *netstats);
5065 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s);
5066 
5067 enum {
5068 	NESTED_SYNC_IMM_BIT,
5069 	NESTED_SYNC_TODO_BIT,
5070 };
5071 
5072 #define __NESTED_SYNC_BIT(bit)	((u32)1 << (bit))
5073 #define __NESTED_SYNC(name)	__NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT)
5074 
5075 #define NESTED_SYNC_IMM		__NESTED_SYNC(IMM)
5076 #define NESTED_SYNC_TODO	__NESTED_SYNC(TODO)
5077 
5078 struct netdev_nested_priv {
5079 	unsigned char flags;
5080 	void *data;
5081 };
5082 
5083 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
5084 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5085 						     struct list_head **iter);
5086 
5087 /* iterate through upper list, must be called under RCU read lock */
5088 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
5089 	for (iter = &(dev)->adj_list.upper, \
5090 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
5091 	     updev; \
5092 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
5093 
5094 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5095 				  int (*fn)(struct net_device *upper_dev,
5096 					    struct netdev_nested_priv *priv),
5097 				  struct netdev_nested_priv *priv);
5098 
5099 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5100 				  struct net_device *upper_dev);
5101 
5102 bool netdev_has_any_upper_dev(struct net_device *dev);
5103 
5104 void *netdev_lower_get_next_private(struct net_device *dev,
5105 				    struct list_head **iter);
5106 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5107 					struct list_head **iter);
5108 
5109 #define netdev_for_each_lower_private(dev, priv, iter) \
5110 	for (iter = (dev)->adj_list.lower.next, \
5111 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
5112 	     priv; \
5113 	     priv = netdev_lower_get_next_private(dev, &(iter)))
5114 
5115 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
5116 	for (iter = &(dev)->adj_list.lower, \
5117 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
5118 	     priv; \
5119 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
5120 
5121 void *netdev_lower_get_next(struct net_device *dev,
5122 				struct list_head **iter);
5123 
5124 #define netdev_for_each_lower_dev(dev, ldev, iter) \
5125 	for (iter = (dev)->adj_list.lower.next, \
5126 	     ldev = netdev_lower_get_next(dev, &(iter)); \
5127 	     ldev; \
5128 	     ldev = netdev_lower_get_next(dev, &(iter)))
5129 
5130 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
5131 					     struct list_head **iter);
5132 int netdev_walk_all_lower_dev(struct net_device *dev,
5133 			      int (*fn)(struct net_device *lower_dev,
5134 					struct netdev_nested_priv *priv),
5135 			      struct netdev_nested_priv *priv);
5136 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
5137 				  int (*fn)(struct net_device *lower_dev,
5138 					    struct netdev_nested_priv *priv),
5139 				  struct netdev_nested_priv *priv);
5140 
5141 void *netdev_adjacent_get_private(struct list_head *adj_list);
5142 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
5143 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
5144 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
5145 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
5146 			  struct netlink_ext_ack *extack);
5147 int netdev_master_upper_dev_link(struct net_device *dev,
5148 				 struct net_device *upper_dev,
5149 				 void *upper_priv, void *upper_info,
5150 				 struct netlink_ext_ack *extack);
5151 void netdev_upper_dev_unlink(struct net_device *dev,
5152 			     struct net_device *upper_dev);
5153 int netdev_adjacent_change_prepare(struct net_device *old_dev,
5154 				   struct net_device *new_dev,
5155 				   struct net_device *dev,
5156 				   struct netlink_ext_ack *extack);
5157 void netdev_adjacent_change_commit(struct net_device *old_dev,
5158 				   struct net_device *new_dev,
5159 				   struct net_device *dev);
5160 void netdev_adjacent_change_abort(struct net_device *old_dev,
5161 				  struct net_device *new_dev,
5162 				  struct net_device *dev);
5163 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
5164 void *netdev_lower_dev_get_private(struct net_device *dev,
5165 				   struct net_device *lower_dev);
5166 void netdev_lower_state_changed(struct net_device *lower_dev,
5167 				void *lower_state_info);
5168 
5169 #define NETDEV_RSS_KEY_LEN 256
5170 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
5171 void netdev_rss_key_fill(void *buffer, size_t len);
5172 
5173 int skb_checksum_help(struct sk_buff *skb);
5174 int skb_crc32c_csum_help(struct sk_buff *skb);
5175 int skb_csum_hwoffload_help(struct sk_buff *skb,
5176 			    const netdev_features_t features);
5177 
5178 struct netdev_bonding_info {
5179 	ifslave	slave;
5180 	ifbond	master;
5181 };
5182 
5183 struct netdev_notifier_bonding_info {
5184 	struct netdev_notifier_info info; /* must be first */
5185 	struct netdev_bonding_info  bonding_info;
5186 };
5187 
5188 void netdev_bonding_info_change(struct net_device *dev,
5189 				struct netdev_bonding_info *bonding_info);
5190 
5191 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
5192 void ethtool_notify(struct net_device *dev, unsigned int cmd);
5193 #else
5194 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd)
5195 {
5196 }
5197 #endif
5198 
5199 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
5200 
5201 static inline bool can_checksum_protocol(netdev_features_t features,
5202 					 __be16 protocol)
5203 {
5204 	if (protocol == htons(ETH_P_FCOE))
5205 		return !!(features & NETIF_F_FCOE_CRC);
5206 
5207 	/* Assume this is an IP checksum (not SCTP CRC) */
5208 
5209 	if (features & NETIF_F_HW_CSUM) {
5210 		/* Can checksum everything */
5211 		return true;
5212 	}
5213 
5214 	switch (protocol) {
5215 	case htons(ETH_P_IP):
5216 		return !!(features & NETIF_F_IP_CSUM);
5217 	case htons(ETH_P_IPV6):
5218 		return !!(features & NETIF_F_IPV6_CSUM);
5219 	default:
5220 		return false;
5221 	}
5222 }
5223 
5224 #ifdef CONFIG_BUG
5225 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
5226 #else
5227 static inline void netdev_rx_csum_fault(struct net_device *dev,
5228 					struct sk_buff *skb)
5229 {
5230 }
5231 #endif
5232 /* rx skb timestamps */
5233 void net_enable_timestamp(void);
5234 void net_disable_timestamp(void);
5235 
5236 static inline ktime_t netdev_get_tstamp(struct net_device *dev,
5237 					const struct skb_shared_hwtstamps *hwtstamps,
5238 					bool cycles)
5239 {
5240 	const struct net_device_ops *ops = dev->netdev_ops;
5241 
5242 	if (ops->ndo_get_tstamp)
5243 		return ops->ndo_get_tstamp(dev, hwtstamps, cycles);
5244 
5245 	return hwtstamps->hwtstamp;
5246 }
5247 
5248 #ifndef CONFIG_PREEMPT_RT
5249 static inline void netdev_xmit_set_more(bool more)
5250 {
5251 	__this_cpu_write(softnet_data.xmit.more, more);
5252 }
5253 
5254 static inline bool netdev_xmit_more(void)
5255 {
5256 	return __this_cpu_read(softnet_data.xmit.more);
5257 }
5258 #else
5259 static inline void netdev_xmit_set_more(bool more)
5260 {
5261 	current->net_xmit.more = more;
5262 }
5263 
5264 static inline bool netdev_xmit_more(void)
5265 {
5266 	return current->net_xmit.more;
5267 }
5268 #endif
5269 
5270 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
5271 					      struct sk_buff *skb, struct net_device *dev,
5272 					      bool more)
5273 {
5274 	netdev_xmit_set_more(more);
5275 	return ops->ndo_start_xmit(skb, dev);
5276 }
5277 
5278 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
5279 					    struct netdev_queue *txq, bool more)
5280 {
5281 	const struct net_device_ops *ops = dev->netdev_ops;
5282 	netdev_tx_t rc;
5283 
5284 	rc = __netdev_start_xmit(ops, skb, dev, more);
5285 	if (rc == NETDEV_TX_OK)
5286 		txq_trans_update(dev, txq);
5287 
5288 	return rc;
5289 }
5290 
5291 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
5292 				const void *ns);
5293 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
5294 				 const void *ns);
5295 
5296 extern const struct kobj_ns_type_operations net_ns_type_operations;
5297 
5298 const char *netdev_drivername(const struct net_device *dev);
5299 
5300 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
5301 							  netdev_features_t f2)
5302 {
5303 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
5304 		if (f1 & NETIF_F_HW_CSUM)
5305 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5306 		else
5307 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5308 	}
5309 
5310 	return f1 & f2;
5311 }
5312 
5313 static inline netdev_features_t netdev_get_wanted_features(
5314 	struct net_device *dev)
5315 {
5316 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
5317 }
5318 netdev_features_t netdev_increment_features(netdev_features_t all,
5319 	netdev_features_t one, netdev_features_t mask);
5320 
5321 /* Allow TSO being used on stacked device :
5322  * Performing the GSO segmentation before last device
5323  * is a performance improvement.
5324  */
5325 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
5326 							netdev_features_t mask)
5327 {
5328 	return netdev_increment_features(features, NETIF_F_ALL_TSO |
5329 					 NETIF_F_ALL_FOR_ALL, mask);
5330 }
5331 
5332 int __netdev_update_features(struct net_device *dev);
5333 void netdev_update_features(struct net_device *dev);
5334 void netdev_change_features(struct net_device *dev);
5335 void netdev_compute_master_upper_features(struct net_device *dev, bool update_header);
5336 
5337 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5338 					struct net_device *dev);
5339 
5340 netdev_features_t passthru_features_check(struct sk_buff *skb,
5341 					  struct net_device *dev,
5342 					  netdev_features_t features);
5343 netdev_features_t netif_skb_features(struct sk_buff *skb);
5344 void skb_warn_bad_offload(const struct sk_buff *skb);
5345 
5346 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
5347 {
5348 	netdev_features_t feature;
5349 
5350 	if (gso_type & (SKB_GSO_TCP_FIXEDID | SKB_GSO_TCP_FIXEDID_INNER))
5351 		gso_type |= __SKB_GSO_TCP_FIXEDID;
5352 
5353 	feature = ((netdev_features_t)gso_type << NETIF_F_GSO_SHIFT) & NETIF_F_GSO_MASK;
5354 
5355 	/* check flags correspondence */
5356 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
5357 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
5358 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
5359 	BUILD_BUG_ON(__SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
5360 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
5361 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
5362 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
5363 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
5364 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
5365 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
5366 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
5367 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
5368 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
5369 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
5370 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
5371 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
5372 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
5373 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
5374 	BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
5375 	BUILD_BUG_ON(SKB_GSO_TCP_ACCECN !=
5376 		     (NETIF_F_GSO_ACCECN >> NETIF_F_GSO_SHIFT));
5377 
5378 	return (features & feature) == feature;
5379 }
5380 
5381 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
5382 {
5383 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
5384 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
5385 }
5386 
5387 static inline bool netif_needs_gso(struct sk_buff *skb,
5388 				   netdev_features_t features)
5389 {
5390 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
5391 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
5392 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
5393 }
5394 
5395 void netif_set_tso_max_size(struct net_device *dev, unsigned int size);
5396 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs);
5397 void netif_inherit_tso_max(struct net_device *to,
5398 			   const struct net_device *from);
5399 
5400 static inline unsigned int
5401 netif_get_gro_max_size(const struct net_device *dev, const struct sk_buff *skb)
5402 {
5403 	/* pairs with WRITE_ONCE() in netif_set_gro(_ipv4)_max_size() */
5404 	return skb->protocol == htons(ETH_P_IPV6) ?
5405 	       READ_ONCE(dev->gro_max_size) :
5406 	       READ_ONCE(dev->gro_ipv4_max_size);
5407 }
5408 
5409 static inline unsigned int
5410 netif_get_gso_max_size(const struct net_device *dev, const struct sk_buff *skb)
5411 {
5412 	/* pairs with WRITE_ONCE() in netif_set_gso(_ipv4)_max_size() */
5413 	return skb->protocol == htons(ETH_P_IPV6) ?
5414 	       READ_ONCE(dev->gso_max_size) :
5415 	       READ_ONCE(dev->gso_ipv4_max_size);
5416 }
5417 
5418 static inline bool netif_is_macsec(const struct net_device *dev)
5419 {
5420 	return dev->priv_flags & IFF_MACSEC;
5421 }
5422 
5423 static inline bool netif_is_macvlan(const struct net_device *dev)
5424 {
5425 	return dev->priv_flags & IFF_MACVLAN;
5426 }
5427 
5428 static inline bool netif_is_macvlan_port(const struct net_device *dev)
5429 {
5430 	return dev->priv_flags & IFF_MACVLAN_PORT;
5431 }
5432 
5433 static inline bool netif_is_bond_master(const struct net_device *dev)
5434 {
5435 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
5436 }
5437 
5438 static inline bool netif_is_bond_slave(const struct net_device *dev)
5439 {
5440 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
5441 }
5442 
5443 static inline bool netif_supports_nofcs(struct net_device *dev)
5444 {
5445 	return dev->priv_flags & IFF_SUPP_NOFCS;
5446 }
5447 
5448 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
5449 {
5450 	return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
5451 }
5452 
5453 static inline bool netif_is_l3_master(const struct net_device *dev)
5454 {
5455 	return dev->priv_flags & IFF_L3MDEV_MASTER;
5456 }
5457 
5458 static inline bool netif_is_l3_slave(const struct net_device *dev)
5459 {
5460 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
5461 }
5462 
5463 static inline int dev_sdif(const struct net_device *dev)
5464 {
5465 #ifdef CONFIG_NET_L3_MASTER_DEV
5466 	if (netif_is_l3_slave(dev))
5467 		return dev->ifindex;
5468 #endif
5469 	return 0;
5470 }
5471 
5472 static inline bool netif_is_bridge_master(const struct net_device *dev)
5473 {
5474 	return dev->priv_flags & IFF_EBRIDGE;
5475 }
5476 
5477 static inline bool netif_is_bridge_port(const struct net_device *dev)
5478 {
5479 	return dev->priv_flags & IFF_BRIDGE_PORT;
5480 }
5481 
5482 static inline bool netif_is_ovs_master(const struct net_device *dev)
5483 {
5484 	return dev->priv_flags & IFF_OPENVSWITCH;
5485 }
5486 
5487 static inline bool netif_is_ovs_port(const struct net_device *dev)
5488 {
5489 	return dev->priv_flags & IFF_OVS_DATAPATH;
5490 }
5491 
5492 static inline bool netif_is_any_bridge_master(const struct net_device *dev)
5493 {
5494 	return netif_is_bridge_master(dev) || netif_is_ovs_master(dev);
5495 }
5496 
5497 static inline bool netif_is_any_bridge_port(const struct net_device *dev)
5498 {
5499 	return netif_is_bridge_port(dev) || netif_is_ovs_port(dev);
5500 }
5501 
5502 static inline bool netif_is_team_master(const struct net_device *dev)
5503 {
5504 	return dev->priv_flags & IFF_TEAM;
5505 }
5506 
5507 static inline bool netif_is_team_port(const struct net_device *dev)
5508 {
5509 	return dev->priv_flags & IFF_TEAM_PORT;
5510 }
5511 
5512 static inline bool netif_is_lag_master(const struct net_device *dev)
5513 {
5514 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
5515 }
5516 
5517 static inline bool netif_is_lag_port(const struct net_device *dev)
5518 {
5519 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
5520 }
5521 
5522 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
5523 {
5524 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
5525 }
5526 
5527 static inline bool netif_is_failover(const struct net_device *dev)
5528 {
5529 	return dev->priv_flags & IFF_FAILOVER;
5530 }
5531 
5532 static inline bool netif_is_failover_slave(const struct net_device *dev)
5533 {
5534 	return dev->priv_flags & IFF_FAILOVER_SLAVE;
5535 }
5536 
5537 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
5538 static inline void netif_keep_dst(struct net_device *dev)
5539 {
5540 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
5541 }
5542 
5543 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
5544 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
5545 {
5546 	/* TODO: reserve and use an additional IFF bit, if we get more users */
5547 	return netif_is_macsec(dev);
5548 }
5549 
5550 extern struct pernet_operations __net_initdata loopback_net_ops;
5551 
5552 /* Logging, debugging and troubleshooting/diagnostic helpers. */
5553 
5554 /* netdev_printk helpers, similar to dev_printk */
5555 
5556 static inline const char *netdev_name(const struct net_device *dev)
5557 {
5558 	if (!dev->name[0] || strchr(dev->name, '%'))
5559 		return "(unnamed net_device)";
5560 	return dev->name;
5561 }
5562 
5563 static inline const char *netdev_reg_state(const struct net_device *dev)
5564 {
5565 	u8 reg_state = READ_ONCE(dev->reg_state);
5566 
5567 	switch (reg_state) {
5568 	case NETREG_UNINITIALIZED: return " (uninitialized)";
5569 	case NETREG_REGISTERED: return "";
5570 	case NETREG_UNREGISTERING: return " (unregistering)";
5571 	case NETREG_UNREGISTERED: return " (unregistered)";
5572 	case NETREG_RELEASED: return " (released)";
5573 	case NETREG_DUMMY: return " (dummy)";
5574 	}
5575 
5576 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, reg_state);
5577 	return " (unknown)";
5578 }
5579 
5580 #define MODULE_ALIAS_NETDEV(device) \
5581 	MODULE_ALIAS("netdev-" device)
5582 
5583 /*
5584  * netdev_WARN() acts like dev_printk(), but with the key difference
5585  * of using a WARN/WARN_ON to get the message out, including the
5586  * file/line information and a backtrace.
5587  */
5588 #define netdev_WARN(dev, format, args...)			\
5589 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5590 	     netdev_reg_state(dev), ##args)
5591 
5592 #define netdev_WARN_ONCE(dev, format, args...)				\
5593 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5594 		  netdev_reg_state(dev), ##args)
5595 
5596 /*
5597  *	The list of packet types we will receive (as opposed to discard)
5598  *	and the routines to invoke.
5599  *
5600  *	Why 16. Because with 16 the only overlap we get on a hash of the
5601  *	low nibble of the protocol value is RARP/SNAP/X.25.
5602  *
5603  *		0800	IP
5604  *		0001	802.3
5605  *		0002	AX.25
5606  *		0004	802.2
5607  *		8035	RARP
5608  *		0005	SNAP
5609  *		0805	X.25
5610  *		0806	ARP
5611  *		8137	IPX
5612  *		0009	Localtalk
5613  *		86DD	IPv6
5614  */
5615 #define PTYPE_HASH_SIZE	(16)
5616 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
5617 
5618 extern struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
5619 
5620 extern struct net_device *blackhole_netdev;
5621 
5622 /* Note: Avoid these macros in fast path, prefer per-cpu or per-queue counters. */
5623 #define DEV_STATS_INC(DEV, FIELD) atomic_long_inc(&(DEV)->stats.__##FIELD)
5624 #define DEV_STATS_ADD(DEV, FIELD, VAL) 	\
5625 		atomic_long_add((VAL), &(DEV)->stats.__##FIELD)
5626 #define DEV_STATS_READ(DEV, FIELD) atomic_long_read(&(DEV)->stats.__##FIELD)
5627 
5628 #endif	/* _LINUX_NETDEVICE_H */
5629