1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Definitions for the Interfaces handler. 8 * 9 * Version: @(#)dev.h 1.0.10 08/12/93 10 * 11 * Authors: Ross Biro 12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 13 * Corey Minyard <wf-rch!minyard@relay.EU.net> 14 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov> 15 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 16 * Bjorn Ekwall. <bj0rn@blox.se> 17 * Pekka Riikonen <priikone@poseidon.pspt.fi> 18 * 19 * Moved to /usr/include/linux for NET3 20 */ 21 #ifndef _LINUX_NETDEVICE_H 22 #define _LINUX_NETDEVICE_H 23 24 #include <linux/timer.h> 25 #include <linux/bug.h> 26 #include <linux/delay.h> 27 #include <linux/atomic.h> 28 #include <linux/prefetch.h> 29 #include <asm/cache.h> 30 #include <asm/byteorder.h> 31 #include <asm/local.h> 32 33 #include <linux/percpu.h> 34 #include <linux/rculist.h> 35 #include <linux/workqueue.h> 36 #include <linux/dynamic_queue_limits.h> 37 38 #include <net/net_namespace.h> 39 #ifdef CONFIG_DCB 40 #include <net/dcbnl.h> 41 #endif 42 #include <net/netprio_cgroup.h> 43 #include <linux/netdev_features.h> 44 #include <linux/neighbour.h> 45 #include <linux/netdevice_xmit.h> 46 #include <uapi/linux/netdevice.h> 47 #include <uapi/linux/if_bonding.h> 48 #include <uapi/linux/pkt_cls.h> 49 #include <uapi/linux/netdev.h> 50 #include <linux/hashtable.h> 51 #include <linux/rbtree.h> 52 #include <net/net_trackers.h> 53 #include <net/net_debug.h> 54 #include <net/dropreason-core.h> 55 #include <net/neighbour_tables.h> 56 57 struct netpoll_info; 58 struct device; 59 struct ethtool_ops; 60 struct kernel_hwtstamp_config; 61 struct phy_device; 62 struct dsa_port; 63 struct ip_tunnel_parm_kern; 64 struct macsec_context; 65 struct macsec_ops; 66 struct netdev_config; 67 struct netdev_name_node; 68 struct sd_flow_limit; 69 struct sfp_bus; 70 /* 802.11 specific */ 71 struct wireless_dev; 72 /* 802.15.4 specific */ 73 struct wpan_dev; 74 struct mpls_dev; 75 /* UDP Tunnel offloads */ 76 struct udp_tunnel_info; 77 struct udp_tunnel_nic_info; 78 struct udp_tunnel_nic; 79 struct bpf_prog; 80 struct xdp_buff; 81 struct xdp_frame; 82 struct xdp_metadata_ops; 83 struct xdp_md; 84 struct ethtool_netdev_state; 85 struct phy_link_topology; 86 struct hwtstamp_provider; 87 88 typedef u32 xdp_features_t; 89 90 void synchronize_net(void); 91 void netdev_set_default_ethtool_ops(struct net_device *dev, 92 const struct ethtool_ops *ops); 93 void netdev_sw_irq_coalesce_default_on(struct net_device *dev); 94 95 /* Backlog congestion levels */ 96 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 97 #define NET_RX_DROP 1 /* packet dropped */ 98 99 #define MAX_NEST_DEV 8 100 101 /* 102 * Transmit return codes: transmit return codes originate from three different 103 * namespaces: 104 * 105 * - qdisc return codes 106 * - driver transmit return codes 107 * - errno values 108 * 109 * Drivers are allowed to return any one of those in their hard_start_xmit() 110 * function. Real network devices commonly used with qdiscs should only return 111 * the driver transmit return codes though - when qdiscs are used, the actual 112 * transmission happens asynchronously, so the value is not propagated to 113 * higher layers. Virtual network devices transmit synchronously; in this case 114 * the driver transmit return codes are consumed by dev_queue_xmit(), and all 115 * others are propagated to higher layers. 116 */ 117 118 /* qdisc ->enqueue() return codes. */ 119 #define NET_XMIT_SUCCESS 0x00 120 #define NET_XMIT_DROP 0x01 /* skb dropped */ 121 #define NET_XMIT_CN 0x02 /* congestion notification */ 122 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 123 124 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 125 * indicates that the device will soon be dropping packets, or already drops 126 * some packets of the same priority; prompting us to send less aggressively. */ 127 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 128 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 129 130 /* Driver transmit return codes */ 131 #define NETDEV_TX_MASK 0xf0 132 133 enum netdev_tx { 134 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 135 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 136 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 137 }; 138 typedef enum netdev_tx netdev_tx_t; 139 140 /* 141 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 142 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 143 */ 144 static inline bool dev_xmit_complete(int rc) 145 { 146 /* 147 * Positive cases with an skb consumed by a driver: 148 * - successful transmission (rc == NETDEV_TX_OK) 149 * - error while transmitting (rc < 0) 150 * - error while queueing to a different device (rc & NET_XMIT_MASK) 151 */ 152 if (likely(rc < NET_XMIT_MASK)) 153 return true; 154 155 return false; 156 } 157 158 /* 159 * Compute the worst-case header length according to the protocols 160 * used. 161 */ 162 163 #if defined(CONFIG_HYPERV_NET) 164 # define LL_MAX_HEADER 128 165 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 166 # if defined(CONFIG_MAC80211_MESH) 167 # define LL_MAX_HEADER 128 168 # else 169 # define LL_MAX_HEADER 96 170 # endif 171 #else 172 # define LL_MAX_HEADER 32 173 #endif 174 175 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 176 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 177 #define MAX_HEADER LL_MAX_HEADER 178 #else 179 #define MAX_HEADER (LL_MAX_HEADER + 48) 180 #endif 181 182 /* 183 * Old network device statistics. Fields are native words 184 * (unsigned long) so they can be read and written atomically. 185 */ 186 187 #define NET_DEV_STAT(FIELD) \ 188 union { \ 189 unsigned long FIELD; \ 190 atomic_long_t __##FIELD; \ 191 } 192 193 struct net_device_stats { 194 NET_DEV_STAT(rx_packets); 195 NET_DEV_STAT(tx_packets); 196 NET_DEV_STAT(rx_bytes); 197 NET_DEV_STAT(tx_bytes); 198 NET_DEV_STAT(rx_errors); 199 NET_DEV_STAT(tx_errors); 200 NET_DEV_STAT(rx_dropped); 201 NET_DEV_STAT(tx_dropped); 202 NET_DEV_STAT(multicast); 203 NET_DEV_STAT(collisions); 204 NET_DEV_STAT(rx_length_errors); 205 NET_DEV_STAT(rx_over_errors); 206 NET_DEV_STAT(rx_crc_errors); 207 NET_DEV_STAT(rx_frame_errors); 208 NET_DEV_STAT(rx_fifo_errors); 209 NET_DEV_STAT(rx_missed_errors); 210 NET_DEV_STAT(tx_aborted_errors); 211 NET_DEV_STAT(tx_carrier_errors); 212 NET_DEV_STAT(tx_fifo_errors); 213 NET_DEV_STAT(tx_heartbeat_errors); 214 NET_DEV_STAT(tx_window_errors); 215 NET_DEV_STAT(rx_compressed); 216 NET_DEV_STAT(tx_compressed); 217 }; 218 #undef NET_DEV_STAT 219 220 /* per-cpu stats, allocated on demand. 221 * Try to fit them in a single cache line, for dev_get_stats() sake. 222 */ 223 struct net_device_core_stats { 224 unsigned long rx_dropped; 225 unsigned long tx_dropped; 226 unsigned long rx_nohandler; 227 unsigned long rx_otherhost_dropped; 228 } __aligned(4 * sizeof(unsigned long)); 229 230 #include <linux/cache.h> 231 #include <linux/skbuff.h> 232 233 struct neighbour; 234 struct neigh_parms; 235 struct sk_buff; 236 237 struct netdev_hw_addr { 238 struct list_head list; 239 struct rb_node node; 240 unsigned char addr[MAX_ADDR_LEN]; 241 unsigned char type; 242 #define NETDEV_HW_ADDR_T_LAN 1 243 #define NETDEV_HW_ADDR_T_SAN 2 244 #define NETDEV_HW_ADDR_T_UNICAST 3 245 #define NETDEV_HW_ADDR_T_MULTICAST 4 246 bool global_use; 247 int sync_cnt; 248 int refcount; 249 int synced; 250 struct rcu_head rcu_head; 251 }; 252 253 struct netdev_hw_addr_list { 254 struct list_head list; 255 int count; 256 257 /* Auxiliary tree for faster lookup on addition and deletion */ 258 struct rb_root tree; 259 }; 260 261 #define netdev_hw_addr_list_count(l) ((l)->count) 262 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 263 #define netdev_hw_addr_list_for_each(ha, l) \ 264 list_for_each_entry(ha, &(l)->list, list) 265 266 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 267 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 268 #define netdev_for_each_uc_addr(ha, dev) \ 269 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 270 #define netdev_for_each_synced_uc_addr(_ha, _dev) \ 271 netdev_for_each_uc_addr((_ha), (_dev)) \ 272 if ((_ha)->sync_cnt) 273 274 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 275 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 276 #define netdev_for_each_mc_addr(ha, dev) \ 277 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 278 #define netdev_for_each_synced_mc_addr(_ha, _dev) \ 279 netdev_for_each_mc_addr((_ha), (_dev)) \ 280 if ((_ha)->sync_cnt) 281 282 struct hh_cache { 283 unsigned int hh_len; 284 seqlock_t hh_lock; 285 286 /* cached hardware header; allow for machine alignment needs. */ 287 #define HH_DATA_MOD 16 288 #define HH_DATA_OFF(__len) \ 289 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 290 #define HH_DATA_ALIGN(__len) \ 291 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 292 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 293 }; 294 295 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much. 296 * Alternative is: 297 * dev->hard_header_len ? (dev->hard_header_len + 298 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 299 * 300 * We could use other alignment values, but we must maintain the 301 * relationship HH alignment <= LL alignment. 302 */ 303 #define LL_RESERVED_SPACE(dev) \ 304 ((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom)) \ 305 & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 306 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 307 ((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom) + (extra)) \ 308 & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 309 310 struct header_ops { 311 int (*create) (struct sk_buff *skb, struct net_device *dev, 312 unsigned short type, const void *daddr, 313 const void *saddr, unsigned int len); 314 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 315 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 316 void (*cache_update)(struct hh_cache *hh, 317 const struct net_device *dev, 318 const unsigned char *haddr); 319 bool (*validate)(const char *ll_header, unsigned int len); 320 __be16 (*parse_protocol)(const struct sk_buff *skb); 321 }; 322 323 /* These flag bits are private to the generic network queueing 324 * layer; they may not be explicitly referenced by any other 325 * code. 326 */ 327 328 enum netdev_state_t { 329 __LINK_STATE_START, 330 __LINK_STATE_PRESENT, 331 __LINK_STATE_NOCARRIER, 332 __LINK_STATE_LINKWATCH_PENDING, 333 __LINK_STATE_DORMANT, 334 __LINK_STATE_TESTING, 335 }; 336 337 struct gro_list { 338 struct list_head list; 339 int count; 340 }; 341 342 /* 343 * size of gro hash buckets, must be <= the number of bits in 344 * gro_node::bitmask 345 */ 346 #define GRO_HASH_BUCKETS 8 347 348 /** 349 * struct gro_node - structure to support Generic Receive Offload 350 * @bitmask: bitmask to indicate used buckets in @hash 351 * @hash: hashtable of pending aggregated skbs, separated by flows 352 * @rx_list: list of pending ``GRO_NORMAL`` skbs 353 * @rx_count: cached current length of @rx_list 354 * @cached_napi_id: napi_struct::napi_id cached for hotpath, 0 for standalone 355 */ 356 struct gro_node { 357 unsigned long bitmask; 358 struct gro_list hash[GRO_HASH_BUCKETS]; 359 struct list_head rx_list; 360 u32 rx_count; 361 u32 cached_napi_id; 362 }; 363 364 /* 365 * Structure for per-NAPI config 366 */ 367 struct napi_config { 368 u64 gro_flush_timeout; 369 u64 irq_suspend_timeout; 370 u32 defer_hard_irqs; 371 cpumask_t affinity_mask; 372 u8 threaded; 373 unsigned int napi_id; 374 }; 375 376 /* 377 * Structure for NAPI scheduling similar to tasklet but with weighting 378 */ 379 struct napi_struct { 380 /* This field should be first or softnet_data.backlog needs tweaks. */ 381 unsigned long state; 382 /* The poll_list must only be managed by the entity which 383 * changes the state of the NAPI_STATE_SCHED bit. This means 384 * whoever atomically sets that bit can add this napi_struct 385 * to the per-CPU poll_list, and whoever clears that bit 386 * can remove from the list right before clearing the bit. 387 */ 388 struct list_head poll_list; 389 390 int weight; 391 u32 defer_hard_irqs_count; 392 int (*poll)(struct napi_struct *, int); 393 #ifdef CONFIG_NETPOLL 394 /* CPU actively polling if netpoll is configured */ 395 int poll_owner; 396 #endif 397 /* CPU on which NAPI has been scheduled for processing */ 398 int list_owner; 399 struct net_device *dev; 400 struct sk_buff *skb; 401 struct gro_node gro; 402 struct hrtimer timer; 403 /* all fields past this point are write-protected by netdev_lock */ 404 struct task_struct *thread; 405 unsigned long gro_flush_timeout; 406 unsigned long irq_suspend_timeout; 407 u32 defer_hard_irqs; 408 /* control-path-only fields follow */ 409 u32 napi_id; 410 struct list_head dev_list; 411 struct hlist_node napi_hash_node; 412 int irq; 413 struct irq_affinity_notify notify; 414 int napi_rmap_idx; 415 int index; 416 struct napi_config *config; 417 }; 418 419 enum { 420 NAPI_STATE_SCHED, /* Poll is scheduled */ 421 NAPI_STATE_MISSED, /* reschedule a napi */ 422 NAPI_STATE_DISABLE, /* Disable pending */ 423 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 424 NAPI_STATE_LISTED, /* NAPI added to system lists */ 425 NAPI_STATE_NO_BUSY_POLL, /* Do not add in napi_hash, no busy polling */ 426 NAPI_STATE_IN_BUSY_POLL, /* Do not rearm NAPI interrupt */ 427 NAPI_STATE_PREFER_BUSY_POLL, /* prefer busy-polling over softirq processing*/ 428 NAPI_STATE_THREADED, /* The poll is performed inside its own thread*/ 429 NAPI_STATE_SCHED_THREADED, /* Napi is currently scheduled in threaded mode */ 430 NAPI_STATE_HAS_NOTIFIER, /* Napi has an IRQ notifier */ 431 NAPI_STATE_THREADED_BUSY_POLL, /* The threaded NAPI poller will busy poll */ 432 }; 433 434 enum { 435 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED), 436 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED), 437 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE), 438 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC), 439 NAPIF_STATE_LISTED = BIT(NAPI_STATE_LISTED), 440 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL), 441 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL), 442 NAPIF_STATE_PREFER_BUSY_POLL = BIT(NAPI_STATE_PREFER_BUSY_POLL), 443 NAPIF_STATE_THREADED = BIT(NAPI_STATE_THREADED), 444 NAPIF_STATE_SCHED_THREADED = BIT(NAPI_STATE_SCHED_THREADED), 445 NAPIF_STATE_HAS_NOTIFIER = BIT(NAPI_STATE_HAS_NOTIFIER), 446 NAPIF_STATE_THREADED_BUSY_POLL = BIT(NAPI_STATE_THREADED_BUSY_POLL), 447 }; 448 449 enum gro_result { 450 GRO_MERGED, 451 GRO_MERGED_FREE, 452 GRO_HELD, 453 GRO_NORMAL, 454 GRO_CONSUMED, 455 }; 456 typedef enum gro_result gro_result_t; 457 458 /* 459 * enum rx_handler_result - Possible return values for rx_handlers. 460 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 461 * further. 462 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 463 * case skb->dev was changed by rx_handler. 464 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 465 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called. 466 * 467 * rx_handlers are functions called from inside __netif_receive_skb(), to do 468 * special processing of the skb, prior to delivery to protocol handlers. 469 * 470 * Currently, a net_device can only have a single rx_handler registered. Trying 471 * to register a second rx_handler will return -EBUSY. 472 * 473 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 474 * To unregister a rx_handler on a net_device, use 475 * netdev_rx_handler_unregister(). 476 * 477 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 478 * do with the skb. 479 * 480 * If the rx_handler consumed the skb in some way, it should return 481 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 482 * the skb to be delivered in some other way. 483 * 484 * If the rx_handler changed skb->dev, to divert the skb to another 485 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 486 * new device will be called if it exists. 487 * 488 * If the rx_handler decides the skb should be ignored, it should return 489 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 490 * are registered on exact device (ptype->dev == skb->dev). 491 * 492 * If the rx_handler didn't change skb->dev, but wants the skb to be normally 493 * delivered, it should return RX_HANDLER_PASS. 494 * 495 * A device without a registered rx_handler will behave as if rx_handler 496 * returned RX_HANDLER_PASS. 497 */ 498 499 enum rx_handler_result { 500 RX_HANDLER_CONSUMED, 501 RX_HANDLER_ANOTHER, 502 RX_HANDLER_EXACT, 503 RX_HANDLER_PASS, 504 }; 505 typedef enum rx_handler_result rx_handler_result_t; 506 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 507 508 void __napi_schedule(struct napi_struct *n); 509 void __napi_schedule_irqoff(struct napi_struct *n); 510 511 static inline bool napi_disable_pending(struct napi_struct *n) 512 { 513 return test_bit(NAPI_STATE_DISABLE, &n->state); 514 } 515 516 static inline bool napi_prefer_busy_poll(struct napi_struct *n) 517 { 518 return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state); 519 } 520 521 /** 522 * napi_is_scheduled - test if NAPI is scheduled 523 * @n: NAPI context 524 * 525 * This check is "best-effort". With no locking implemented, 526 * a NAPI can be scheduled or terminate right after this check 527 * and produce not precise results. 528 * 529 * NAPI_STATE_SCHED is an internal state, napi_is_scheduled 530 * should not be used normally and napi_schedule should be 531 * used instead. 532 * 533 * Use only if the driver really needs to check if a NAPI 534 * is scheduled for example in the context of delayed timer 535 * that can be skipped if a NAPI is already scheduled. 536 * 537 * Return: True if NAPI is scheduled, False otherwise. 538 */ 539 static inline bool napi_is_scheduled(struct napi_struct *n) 540 { 541 return test_bit(NAPI_STATE_SCHED, &n->state); 542 } 543 544 bool napi_schedule_prep(struct napi_struct *n); 545 546 /** 547 * napi_schedule - schedule NAPI poll 548 * @n: NAPI context 549 * 550 * Schedule NAPI poll routine to be called if it is not already 551 * running. 552 * Return: true if we schedule a NAPI or false if not. 553 * Refer to napi_schedule_prep() for additional reason on why 554 * a NAPI might not be scheduled. 555 */ 556 static inline bool napi_schedule(struct napi_struct *n) 557 { 558 if (napi_schedule_prep(n)) { 559 __napi_schedule(n); 560 return true; 561 } 562 563 return false; 564 } 565 566 /** 567 * napi_schedule_irqoff - schedule NAPI poll 568 * @n: NAPI context 569 * 570 * Variant of napi_schedule(), assuming hard irqs are masked. 571 */ 572 static inline void napi_schedule_irqoff(struct napi_struct *n) 573 { 574 if (napi_schedule_prep(n)) 575 __napi_schedule_irqoff(n); 576 } 577 578 /** 579 * napi_complete_done - NAPI processing complete 580 * @n: NAPI context 581 * @work_done: number of packets processed 582 * 583 * Mark NAPI processing as complete. Should only be called if poll budget 584 * has not been completely consumed. 585 * Prefer over napi_complete(). 586 * Return: false if device should avoid rearming interrupts. 587 */ 588 bool napi_complete_done(struct napi_struct *n, int work_done); 589 590 static inline bool napi_complete(struct napi_struct *n) 591 { 592 return napi_complete_done(n, 0); 593 } 594 595 void netif_threaded_enable(struct net_device *dev); 596 int dev_set_threaded(struct net_device *dev, 597 enum netdev_napi_threaded threaded); 598 599 void napi_disable(struct napi_struct *n); 600 void napi_disable_locked(struct napi_struct *n); 601 602 void napi_enable(struct napi_struct *n); 603 void napi_enable_locked(struct napi_struct *n); 604 605 /** 606 * napi_synchronize - wait until NAPI is not running 607 * @n: NAPI context 608 * 609 * Wait until NAPI is done being scheduled on this context. 610 * Waits till any outstanding processing completes but 611 * does not disable future activations. 612 */ 613 static inline void napi_synchronize(const struct napi_struct *n) 614 { 615 if (IS_ENABLED(CONFIG_SMP)) 616 while (test_bit(NAPI_STATE_SCHED, &n->state)) 617 msleep(1); 618 else 619 barrier(); 620 } 621 622 /** 623 * napi_if_scheduled_mark_missed - if napi is running, set the 624 * NAPIF_STATE_MISSED 625 * @n: NAPI context 626 * 627 * If napi is running, set the NAPIF_STATE_MISSED, and return true if 628 * NAPI is scheduled. 629 **/ 630 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n) 631 { 632 unsigned long val, new; 633 634 val = READ_ONCE(n->state); 635 do { 636 if (val & NAPIF_STATE_DISABLE) 637 return true; 638 639 if (!(val & NAPIF_STATE_SCHED)) 640 return false; 641 642 new = val | NAPIF_STATE_MISSED; 643 } while (!try_cmpxchg(&n->state, &val, new)); 644 645 return true; 646 } 647 648 enum netdev_queue_state_t { 649 __QUEUE_STATE_DRV_XOFF, 650 __QUEUE_STATE_STACK_XOFF, 651 __QUEUE_STATE_FROZEN, 652 }; 653 654 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF) 655 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF) 656 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN) 657 658 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF) 659 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 660 QUEUE_STATE_FROZEN) 661 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \ 662 QUEUE_STATE_FROZEN) 663 664 /* 665 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 666 * netif_tx_* functions below are used to manipulate this flag. The 667 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 668 * queue independently. The netif_xmit_*stopped functions below are called 669 * to check if the queue has been stopped by the driver or stack (either 670 * of the XOFF bits are set in the state). Drivers should not need to call 671 * netif_xmit*stopped functions, they should only be using netif_tx_*. 672 */ 673 674 struct netdev_queue { 675 /* 676 * read-mostly part 677 */ 678 struct net_device *dev; 679 netdevice_tracker dev_tracker; 680 681 struct Qdisc __rcu *qdisc; 682 struct Qdisc __rcu *qdisc_sleeping; 683 #ifdef CONFIG_SYSFS 684 struct kobject kobj; 685 const struct attribute_group **groups; 686 #endif 687 unsigned long tx_maxrate; 688 /* 689 * Number of TX timeouts for this queue 690 * (/sys/class/net/DEV/Q/trans_timeout) 691 */ 692 atomic_long_t trans_timeout; 693 694 /* Subordinate device that the queue has been assigned to */ 695 struct net_device *sb_dev; 696 #ifdef CONFIG_XDP_SOCKETS 697 /* "ops protected", see comment about net_device::lock */ 698 struct xsk_buff_pool *pool; 699 #endif 700 701 /* 702 * write-mostly part 703 */ 704 #ifdef CONFIG_BQL 705 struct dql dql; 706 #endif 707 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 708 int xmit_lock_owner; 709 /* 710 * Time (in jiffies) of last Tx 711 */ 712 unsigned long trans_start; 713 714 unsigned long state; 715 716 /* 717 * slow- / control-path part 718 */ 719 /* NAPI instance for the queue 720 * "ops protected", see comment about net_device::lock 721 */ 722 struct napi_struct *napi; 723 724 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 725 int numa_node; 726 #endif 727 } ____cacheline_aligned_in_smp; 728 729 extern int sysctl_fb_tunnels_only_for_init_net; 730 extern int sysctl_devconf_inherit_init_net; 731 732 /* 733 * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns 734 * == 1 : For initns only 735 * == 2 : For none. 736 */ 737 static inline bool net_has_fallback_tunnels(const struct net *net) 738 { 739 #if IS_ENABLED(CONFIG_SYSCTL) 740 int fb_tunnels_only_for_init_net = READ_ONCE(sysctl_fb_tunnels_only_for_init_net); 741 742 return !fb_tunnels_only_for_init_net || 743 (net_eq(net, &init_net) && fb_tunnels_only_for_init_net == 1); 744 #else 745 return true; 746 #endif 747 } 748 749 static inline int net_inherit_devconf(void) 750 { 751 #if IS_ENABLED(CONFIG_SYSCTL) 752 return READ_ONCE(sysctl_devconf_inherit_init_net); 753 #else 754 return 0; 755 #endif 756 } 757 758 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 759 { 760 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 761 return q->numa_node; 762 #else 763 return NUMA_NO_NODE; 764 #endif 765 } 766 767 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 768 { 769 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 770 q->numa_node = node; 771 #endif 772 } 773 774 #ifdef CONFIG_RFS_ACCEL 775 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id, 776 u16 filter_id); 777 #endif 778 779 /* XPS map type and offset of the xps map within net_device->xps_maps[]. */ 780 enum xps_map_type { 781 XPS_CPUS = 0, 782 XPS_RXQS, 783 XPS_MAPS_MAX, 784 }; 785 786 #ifdef CONFIG_XPS 787 /* 788 * This structure holds an XPS map which can be of variable length. The 789 * map is an array of queues. 790 */ 791 struct xps_map { 792 unsigned int len; 793 unsigned int alloc_len; 794 struct rcu_head rcu; 795 u16 queues[]; 796 }; 797 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 798 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \ 799 - sizeof(struct xps_map)) / sizeof(u16)) 800 801 /* 802 * This structure holds all XPS maps for device. Maps are indexed by CPU. 803 * 804 * We keep track of the number of cpus/rxqs used when the struct is allocated, 805 * in nr_ids. This will help not accessing out-of-bound memory. 806 * 807 * We keep track of the number of traffic classes used when the struct is 808 * allocated, in num_tc. This will be used to navigate the maps, to ensure we're 809 * not crossing its upper bound, as the original dev->num_tc can be updated in 810 * the meantime. 811 */ 812 struct xps_dev_maps { 813 struct rcu_head rcu; 814 unsigned int nr_ids; 815 s16 num_tc; 816 struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */ 817 }; 818 819 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \ 820 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *))) 821 822 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\ 823 (_rxqs * (_tcs) * sizeof(struct xps_map *))) 824 825 #endif /* CONFIG_XPS */ 826 827 #define TC_MAX_QUEUE 16 828 #define TC_BITMASK 15 829 /* HW offloaded queuing disciplines txq count and offset maps */ 830 struct netdev_tc_txq { 831 u16 count; 832 u16 offset; 833 }; 834 835 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 836 /* 837 * This structure is to hold information about the device 838 * configured to run FCoE protocol stack. 839 */ 840 struct netdev_fcoe_hbainfo { 841 char manufacturer[64]; 842 char serial_number[64]; 843 char hardware_version[64]; 844 char driver_version[64]; 845 char optionrom_version[64]; 846 char firmware_version[64]; 847 char model[256]; 848 char model_description[256]; 849 }; 850 #endif 851 852 #define MAX_PHYS_ITEM_ID_LEN 32 853 854 /* This structure holds a unique identifier to identify some 855 * physical item (port for example) used by a netdevice. 856 */ 857 struct netdev_phys_item_id { 858 unsigned char id[MAX_PHYS_ITEM_ID_LEN]; 859 unsigned char id_len; 860 }; 861 862 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a, 863 struct netdev_phys_item_id *b) 864 { 865 return a->id_len == b->id_len && 866 memcmp(a->id, b->id, a->id_len) == 0; 867 } 868 869 typedef u16 (*select_queue_fallback_t)(struct net_device *dev, 870 struct sk_buff *skb, 871 struct net_device *sb_dev); 872 873 enum net_device_path_type { 874 DEV_PATH_ETHERNET = 0, 875 DEV_PATH_VLAN, 876 DEV_PATH_BRIDGE, 877 DEV_PATH_PPPOE, 878 DEV_PATH_DSA, 879 DEV_PATH_MTK_WDMA, 880 DEV_PATH_TUN, 881 }; 882 883 struct net_device_path { 884 enum net_device_path_type type; 885 const struct net_device *dev; 886 union { 887 struct { 888 u16 id; 889 __be16 proto; 890 u8 h_dest[ETH_ALEN]; 891 } encap; 892 struct { 893 union { 894 struct in_addr src_v4; 895 struct in6_addr src_v6; 896 }; 897 union { 898 struct in_addr dst_v4; 899 struct in6_addr dst_v6; 900 }; 901 902 u8 l3_proto; 903 } tun; 904 struct { 905 enum { 906 DEV_PATH_BR_VLAN_KEEP, 907 DEV_PATH_BR_VLAN_TAG, 908 DEV_PATH_BR_VLAN_UNTAG, 909 DEV_PATH_BR_VLAN_UNTAG_HW, 910 } vlan_mode; 911 u16 vlan_id; 912 __be16 vlan_proto; 913 } bridge; 914 struct { 915 int port; 916 u16 proto; 917 } dsa; 918 struct { 919 u8 wdma_idx; 920 u8 queue; 921 u16 wcid; 922 u8 bss; 923 u8 amsdu; 924 } mtk_wdma; 925 }; 926 }; 927 928 #define NET_DEVICE_PATH_STACK_MAX 5 929 #define NET_DEVICE_PATH_VLAN_MAX 2 930 931 struct net_device_path_stack { 932 int num_paths; 933 struct net_device_path path[NET_DEVICE_PATH_STACK_MAX]; 934 }; 935 936 struct net_device_path_ctx { 937 const struct net_device *dev; 938 u8 daddr[ETH_ALEN]; 939 940 int num_vlans; 941 struct { 942 u16 id; 943 __be16 proto; 944 } vlan[NET_DEVICE_PATH_VLAN_MAX]; 945 }; 946 947 enum tc_setup_type { 948 TC_QUERY_CAPS, 949 TC_SETUP_QDISC_MQPRIO, 950 TC_SETUP_CLSU32, 951 TC_SETUP_CLSFLOWER, 952 TC_SETUP_CLSMATCHALL, 953 TC_SETUP_CLSBPF, 954 TC_SETUP_BLOCK, 955 TC_SETUP_QDISC_CBS, 956 TC_SETUP_QDISC_RED, 957 TC_SETUP_QDISC_PRIO, 958 TC_SETUP_QDISC_MQ, 959 TC_SETUP_QDISC_ETF, 960 TC_SETUP_ROOT_QDISC, 961 TC_SETUP_QDISC_GRED, 962 TC_SETUP_QDISC_TAPRIO, 963 TC_SETUP_FT, 964 TC_SETUP_QDISC_ETS, 965 TC_SETUP_QDISC_TBF, 966 TC_SETUP_QDISC_FIFO, 967 TC_SETUP_QDISC_HTB, 968 TC_SETUP_ACT, 969 }; 970 971 /* These structures hold the attributes of bpf state that are being passed 972 * to the netdevice through the bpf op. 973 */ 974 enum bpf_netdev_command { 975 /* Set or clear a bpf program used in the earliest stages of packet 976 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee 977 * is responsible for calling bpf_prog_put on any old progs that are 978 * stored. In case of error, the callee need not release the new prog 979 * reference, but on success it takes ownership and must bpf_prog_put 980 * when it is no longer used. 981 */ 982 XDP_SETUP_PROG, 983 XDP_SETUP_PROG_HW, 984 /* BPF program for offload callbacks, invoked at program load time. */ 985 BPF_OFFLOAD_MAP_ALLOC, 986 BPF_OFFLOAD_MAP_FREE, 987 XDP_SETUP_XSK_POOL, 988 }; 989 990 struct bpf_prog_offload_ops; 991 struct netlink_ext_ack; 992 struct xdp_umem; 993 struct xdp_dev_bulk_queue; 994 struct bpf_xdp_link; 995 996 enum bpf_xdp_mode { 997 XDP_MODE_SKB = 0, 998 XDP_MODE_DRV = 1, 999 XDP_MODE_HW = 2, 1000 __MAX_XDP_MODE 1001 }; 1002 1003 struct bpf_xdp_entity { 1004 struct bpf_prog *prog; 1005 struct bpf_xdp_link *link; 1006 }; 1007 1008 struct netdev_bpf { 1009 enum bpf_netdev_command command; 1010 union { 1011 /* XDP_SETUP_PROG */ 1012 struct { 1013 u32 flags; 1014 struct bpf_prog *prog; 1015 struct netlink_ext_ack *extack; 1016 }; 1017 /* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */ 1018 struct { 1019 struct bpf_offloaded_map *offmap; 1020 }; 1021 /* XDP_SETUP_XSK_POOL */ 1022 struct { 1023 struct xsk_buff_pool *pool; 1024 u16 queue_id; 1025 } xsk; 1026 }; 1027 }; 1028 1029 /* Flags for ndo_xsk_wakeup. */ 1030 #define XDP_WAKEUP_RX (1 << 0) 1031 #define XDP_WAKEUP_TX (1 << 1) 1032 1033 #ifdef CONFIG_XFRM_OFFLOAD 1034 struct xfrmdev_ops { 1035 int (*xdo_dev_state_add)(struct net_device *dev, 1036 struct xfrm_state *x, 1037 struct netlink_ext_ack *extack); 1038 void (*xdo_dev_state_delete)(struct net_device *dev, 1039 struct xfrm_state *x); 1040 void (*xdo_dev_state_free)(struct net_device *dev, 1041 struct xfrm_state *x); 1042 bool (*xdo_dev_offload_ok) (struct sk_buff *skb, 1043 struct xfrm_state *x); 1044 void (*xdo_dev_state_advance_esn) (struct xfrm_state *x); 1045 void (*xdo_dev_state_update_stats) (struct xfrm_state *x); 1046 int (*xdo_dev_policy_add) (struct xfrm_policy *x, struct netlink_ext_ack *extack); 1047 void (*xdo_dev_policy_delete) (struct xfrm_policy *x); 1048 void (*xdo_dev_policy_free) (struct xfrm_policy *x); 1049 }; 1050 #endif 1051 1052 struct dev_ifalias { 1053 struct rcu_head rcuhead; 1054 char ifalias[]; 1055 }; 1056 1057 struct devlink; 1058 struct tlsdev_ops; 1059 1060 struct netdev_net_notifier { 1061 struct list_head list; 1062 struct notifier_block *nb; 1063 }; 1064 1065 /* 1066 * This structure defines the management hooks for network devices. 1067 * The following hooks can be defined; unless noted otherwise, they are 1068 * optional and can be filled with a null pointer. 1069 * 1070 * int (*ndo_init)(struct net_device *dev); 1071 * This function is called once when a network device is registered. 1072 * The network device can use this for any late stage initialization 1073 * or semantic validation. It can fail with an error code which will 1074 * be propagated back to register_netdev. 1075 * 1076 * void (*ndo_uninit)(struct net_device *dev); 1077 * This function is called when device is unregistered or when registration 1078 * fails. It is not called if init fails. 1079 * 1080 * int (*ndo_open)(struct net_device *dev); 1081 * This function is called when a network device transitions to the up 1082 * state. 1083 * 1084 * int (*ndo_stop)(struct net_device *dev); 1085 * This function is called when a network device transitions to the down 1086 * state. 1087 * 1088 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1089 * struct net_device *dev); 1090 * Called when a packet needs to be transmitted. 1091 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop 1092 * the queue before that can happen; it's for obsolete devices and weird 1093 * corner cases, but the stack really does a non-trivial amount 1094 * of useless work if you return NETDEV_TX_BUSY. 1095 * Required; cannot be NULL. 1096 * 1097 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1098 * struct net_device *dev 1099 * netdev_features_t features); 1100 * Called by core transmit path to determine if device is capable of 1101 * performing offload operations on a given packet. This is to give 1102 * the device an opportunity to implement any restrictions that cannot 1103 * be otherwise expressed by feature flags. The check is called with 1104 * the set of features that the stack has calculated and it returns 1105 * those the driver believes to be appropriate. 1106 * 1107 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb, 1108 * struct net_device *sb_dev); 1109 * Called to decide which queue to use when device supports multiple 1110 * transmit queues. 1111 * 1112 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 1113 * This function is called to allow device receiver to make 1114 * changes to configuration when multicast or promiscuous is enabled. 1115 * 1116 * void (*ndo_set_rx_mode)(struct net_device *dev); 1117 * This function is called device changes address list filtering. 1118 * If driver handles unicast address filtering, it should set 1119 * IFF_UNICAST_FLT in its priv_flags. 1120 * 1121 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 1122 * This function is called when the Media Access Control address 1123 * needs to be changed. If this interface is not defined, the 1124 * MAC address can not be changed. 1125 * 1126 * int (*ndo_validate_addr)(struct net_device *dev); 1127 * Test if Media Access Control address is valid for the device. 1128 * 1129 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 1130 * Old-style ioctl entry point. This is used internally by the 1131 * ieee802154 subsystem but is no longer called by the device 1132 * ioctl handler. 1133 * 1134 * int (*ndo_siocbond)(struct net_device *dev, struct ifreq *ifr, int cmd); 1135 * Used by the bonding driver for its device specific ioctls: 1136 * SIOCBONDENSLAVE, SIOCBONDRELEASE, SIOCBONDSETHWADDR, SIOCBONDCHANGEACTIVE, 1137 * SIOCBONDSLAVEINFOQUERY, and SIOCBONDINFOQUERY 1138 * 1139 * * int (*ndo_eth_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 1140 * Called for ethernet specific ioctls: SIOCGMIIPHY, SIOCGMIIREG, 1141 * SIOCSMIIREG, SIOCSHWTSTAMP and SIOCGHWTSTAMP. 1142 * 1143 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 1144 * Used to set network devices bus interface parameters. This interface 1145 * is retained for legacy reasons; new devices should use the bus 1146 * interface (PCI) for low level management. 1147 * 1148 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 1149 * Called when a user wants to change the Maximum Transfer Unit 1150 * of a device. 1151 * 1152 * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue); 1153 * Callback used when the transmitter has not made any progress 1154 * for dev->watchdog ticks. 1155 * 1156 * void (*ndo_get_stats64)(struct net_device *dev, 1157 * struct rtnl_link_stats64 *storage); 1158 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1159 * Called when a user wants to get the network device usage 1160 * statistics. Drivers must do one of the following: 1161 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 1162 * rtnl_link_stats64 structure passed by the caller. 1163 * 2. Define @ndo_get_stats to update a net_device_stats structure 1164 * (which should normally be dev->stats) and return a pointer to 1165 * it. The structure may be changed asynchronously only if each 1166 * field is written atomically. 1167 * 3. Update dev->stats asynchronously and atomically, and define 1168 * neither operation. 1169 * 1170 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id) 1171 * Return true if this device supports offload stats of this attr_id. 1172 * 1173 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev, 1174 * void *attr_data) 1175 * Get statistics for offload operations by attr_id. Write it into the 1176 * attr_data pointer. 1177 * 1178 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid); 1179 * If device supports VLAN filtering this function is called when a 1180 * VLAN id is registered. 1181 * 1182 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid); 1183 * If device supports VLAN filtering this function is called when a 1184 * VLAN id is unregistered. 1185 * 1186 * void (*ndo_poll_controller)(struct net_device *dev); 1187 * 1188 * SR-IOV management functions. 1189 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 1190 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, 1191 * u8 qos, __be16 proto); 1192 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate, 1193 * int max_tx_rate); 1194 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 1195 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting); 1196 * int (*ndo_get_vf_config)(struct net_device *dev, 1197 * int vf, struct ifla_vf_info *ivf); 1198 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state); 1199 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 1200 * struct nlattr *port[]); 1201 * 1202 * Enable or disable the VF ability to query its RSS Redirection Table and 1203 * Hash Key. This is needed since on some devices VF share this information 1204 * with PF and querying it may introduce a theoretical security risk. 1205 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting); 1206 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 1207 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type, 1208 * void *type_data); 1209 * Called to setup any 'tc' scheduler, classifier or action on @dev. 1210 * This is always called from the stack with the rtnl lock held and netif 1211 * tx queues stopped. This allows the netdevice to perform queue 1212 * management safely. 1213 * 1214 * Fiber Channel over Ethernet (FCoE) offload functions. 1215 * int (*ndo_fcoe_enable)(struct net_device *dev); 1216 * Called when the FCoE protocol stack wants to start using LLD for FCoE 1217 * so the underlying device can perform whatever needed configuration or 1218 * initialization to support acceleration of FCoE traffic. 1219 * 1220 * int (*ndo_fcoe_disable)(struct net_device *dev); 1221 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 1222 * so the underlying device can perform whatever needed clean-ups to 1223 * stop supporting acceleration of FCoE traffic. 1224 * 1225 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 1226 * struct scatterlist *sgl, unsigned int sgc); 1227 * Called when the FCoE Initiator wants to initialize an I/O that 1228 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1229 * perform necessary setup and returns 1 to indicate the device is set up 1230 * successfully to perform DDP on this I/O, otherwise this returns 0. 1231 * 1232 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 1233 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 1234 * indicated by the FC exchange id 'xid', so the underlying device can 1235 * clean up and reuse resources for later DDP requests. 1236 * 1237 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 1238 * struct scatterlist *sgl, unsigned int sgc); 1239 * Called when the FCoE Target wants to initialize an I/O that 1240 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1241 * perform necessary setup and returns 1 to indicate the device is set up 1242 * successfully to perform DDP on this I/O, otherwise this returns 0. 1243 * 1244 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1245 * struct netdev_fcoe_hbainfo *hbainfo); 1246 * Called when the FCoE Protocol stack wants information on the underlying 1247 * device. This information is utilized by the FCoE protocol stack to 1248 * register attributes with Fiber Channel management service as per the 1249 * FC-GS Fabric Device Management Information(FDMI) specification. 1250 * 1251 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 1252 * Called when the underlying device wants to override default World Wide 1253 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 1254 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 1255 * protocol stack to use. 1256 * 1257 * RFS acceleration. 1258 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 1259 * u16 rxq_index, u32 flow_id); 1260 * Set hardware filter for RFS. rxq_index is the target queue index; 1261 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 1262 * Return the filter ID on success, or a negative error code. 1263 * 1264 * Slave management functions (for bridge, bonding, etc). 1265 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 1266 * Called to make another netdev an underling. 1267 * 1268 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 1269 * Called to release previously enslaved netdev. 1270 * 1271 * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev, 1272 * struct sk_buff *skb, 1273 * bool all_slaves); 1274 * Get the xmit slave of master device. If all_slaves is true, function 1275 * assume all the slaves can transmit. 1276 * 1277 * Feature/offload setting functions. 1278 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1279 * netdev_features_t features); 1280 * Adjusts the requested feature flags according to device-specific 1281 * constraints, and returns the resulting flags. Must not modify 1282 * the device state. 1283 * 1284 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 1285 * Called to update device configuration to new features. Passed 1286 * feature set might be less than what was returned by ndo_fix_features()). 1287 * Must return >0 or -errno if it changed dev->features itself. 1288 * 1289 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], 1290 * struct net_device *dev, 1291 * const unsigned char *addr, u16 vid, u16 flags, 1292 * bool *notified, struct netlink_ext_ack *extack); 1293 * Adds an FDB entry to dev for addr. 1294 * Callee shall set *notified to true if it sent any appropriate 1295 * notification(s). Otherwise core will send a generic one. 1296 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], 1297 * struct net_device *dev, 1298 * const unsigned char *addr, u16 vid 1299 * bool *notified, struct netlink_ext_ack *extack); 1300 * Deletes the FDB entry from dev corresponding to addr. 1301 * Callee shall set *notified to true if it sent any appropriate 1302 * notification(s). Otherwise core will send a generic one. 1303 * int (*ndo_fdb_del_bulk)(struct nlmsghdr *nlh, struct net_device *dev, 1304 * struct netlink_ext_ack *extack); 1305 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, 1306 * struct net_device *dev, struct net_device *filter_dev, 1307 * int *idx) 1308 * Used to add FDB entries to dump requests. Implementers should add 1309 * entries to skb and update idx with the number of entries. 1310 * 1311 * int (*ndo_mdb_add)(struct net_device *dev, struct nlattr *tb[], 1312 * u16 nlmsg_flags, struct netlink_ext_ack *extack); 1313 * Adds an MDB entry to dev. 1314 * int (*ndo_mdb_del)(struct net_device *dev, struct nlattr *tb[], 1315 * struct netlink_ext_ack *extack); 1316 * Deletes the MDB entry from dev. 1317 * int (*ndo_mdb_del_bulk)(struct net_device *dev, struct nlattr *tb[], 1318 * struct netlink_ext_ack *extack); 1319 * Bulk deletes MDB entries from dev. 1320 * int (*ndo_mdb_dump)(struct net_device *dev, struct sk_buff *skb, 1321 * struct netlink_callback *cb); 1322 * Dumps MDB entries from dev. The first argument (marker) in the netlink 1323 * callback is used by core rtnetlink code. 1324 * 1325 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh, 1326 * u16 flags, struct netlink_ext_ack *extack) 1327 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, 1328 * struct net_device *dev, u32 filter_mask, 1329 * int nlflags) 1330 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh, 1331 * u16 flags); 1332 * 1333 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); 1334 * Called to change device carrier. Soft-devices (like dummy, team, etc) 1335 * which do not represent real hardware may define this to allow their 1336 * userspace components to manage their virtual carrier state. Devices 1337 * that determine carrier state from physical hardware properties (eg 1338 * network cables) or protocol-dependent mechanisms (eg 1339 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function. 1340 * 1341 * int (*ndo_get_phys_port_id)(struct net_device *dev, 1342 * struct netdev_phys_item_id *ppid); 1343 * Called to get ID of physical port of this device. If driver does 1344 * not implement this, it is assumed that the hw is not able to have 1345 * multiple net devices on single physical port. 1346 * 1347 * int (*ndo_get_port_parent_id)(struct net_device *dev, 1348 * struct netdev_phys_item_id *ppid) 1349 * Called to get the parent ID of the physical port of this device. 1350 * 1351 * void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1352 * struct net_device *dev) 1353 * Called by upper layer devices to accelerate switching or other 1354 * station functionality into hardware. 'pdev is the lowerdev 1355 * to use for the offload and 'dev' is the net device that will 1356 * back the offload. Returns a pointer to the private structure 1357 * the upper layer will maintain. 1358 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv) 1359 * Called by upper layer device to delete the station created 1360 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing 1361 * the station and priv is the structure returned by the add 1362 * operation. 1363 * int (*ndo_set_tx_maxrate)(struct net_device *dev, 1364 * int queue_index, u32 maxrate); 1365 * Called when a user wants to set a max-rate limitation of specific 1366 * TX queue. 1367 * int (*ndo_get_iflink)(const struct net_device *dev); 1368 * Called to get the iflink value of this device. 1369 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb); 1370 * This function is used to get egress tunnel information for given skb. 1371 * This is useful for retrieving outer tunnel header parameters while 1372 * sampling packet. 1373 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom); 1374 * This function is used to specify the headroom that the skb must 1375 * consider when allocation skb during packet reception. Setting 1376 * appropriate rx headroom value allows avoiding skb head copy on 1377 * forward. Setting a negative value resets the rx headroom to the 1378 * default value. 1379 * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf); 1380 * This function is used to set or query state related to XDP on the 1381 * netdevice and manage BPF offload. See definition of 1382 * enum bpf_netdev_command for details. 1383 * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp, 1384 * u32 flags); 1385 * This function is used to submit @n XDP packets for transmit on a 1386 * netdevice. Returns number of frames successfully transmitted, frames 1387 * that got dropped are freed/returned via xdp_return_frame(). 1388 * Returns negative number, means general error invoking ndo, meaning 1389 * no frames were xmit'ed and core-caller will free all frames. 1390 * struct net_device *(*ndo_xdp_get_xmit_slave)(struct net_device *dev, 1391 * struct xdp_buff *xdp); 1392 * Get the xmit slave of master device based on the xdp_buff. 1393 * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags); 1394 * This function is used to wake up the softirq, ksoftirqd or kthread 1395 * responsible for sending and/or receiving packets on a specific 1396 * queue id bound to an AF_XDP socket. The flags field specifies if 1397 * only RX, only Tx, or both should be woken up using the flags 1398 * XDP_WAKEUP_RX and XDP_WAKEUP_TX. 1399 * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm_kern *p, 1400 * int cmd); 1401 * Add, change, delete or get information on an IPv4 tunnel. 1402 * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev); 1403 * If a device is paired with a peer device, return the peer instance. 1404 * The caller must be under RCU read context. 1405 * int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path); 1406 * Get the forwarding path to reach the real device from the HW destination address 1407 * ktime_t (*ndo_get_tstamp)(struct net_device *dev, 1408 * const struct skb_shared_hwtstamps *hwtstamps, 1409 * bool cycles); 1410 * Get hardware timestamp based on normal/adjustable time or free running 1411 * cycle counter. This function is required if physical clock supports a 1412 * free running cycle counter. 1413 * 1414 * int (*ndo_hwtstamp_get)(struct net_device *dev, 1415 * struct kernel_hwtstamp_config *kernel_config); 1416 * Get the currently configured hardware timestamping parameters for the 1417 * NIC device. 1418 * 1419 * int (*ndo_hwtstamp_set)(struct net_device *dev, 1420 * struct kernel_hwtstamp_config *kernel_config, 1421 * struct netlink_ext_ack *extack); 1422 * Change the hardware timestamping parameters for NIC device. 1423 */ 1424 struct net_device_ops { 1425 int (*ndo_init)(struct net_device *dev); 1426 void (*ndo_uninit)(struct net_device *dev); 1427 int (*ndo_open)(struct net_device *dev); 1428 int (*ndo_stop)(struct net_device *dev); 1429 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1430 struct net_device *dev); 1431 netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1432 struct net_device *dev, 1433 netdev_features_t features); 1434 u16 (*ndo_select_queue)(struct net_device *dev, 1435 struct sk_buff *skb, 1436 struct net_device *sb_dev); 1437 void (*ndo_change_rx_flags)(struct net_device *dev, 1438 int flags); 1439 void (*ndo_set_rx_mode)(struct net_device *dev); 1440 int (*ndo_set_mac_address)(struct net_device *dev, 1441 void *addr); 1442 int (*ndo_validate_addr)(struct net_device *dev); 1443 int (*ndo_do_ioctl)(struct net_device *dev, 1444 struct ifreq *ifr, int cmd); 1445 int (*ndo_eth_ioctl)(struct net_device *dev, 1446 struct ifreq *ifr, int cmd); 1447 int (*ndo_siocbond)(struct net_device *dev, 1448 struct ifreq *ifr, int cmd); 1449 int (*ndo_siocwandev)(struct net_device *dev, 1450 struct if_settings *ifs); 1451 int (*ndo_siocdevprivate)(struct net_device *dev, 1452 struct ifreq *ifr, 1453 void __user *data, int cmd); 1454 int (*ndo_set_config)(struct net_device *dev, 1455 struct ifmap *map); 1456 int (*ndo_change_mtu)(struct net_device *dev, 1457 int new_mtu); 1458 int (*ndo_neigh_setup)(struct net_device *dev, 1459 struct neigh_parms *); 1460 void (*ndo_tx_timeout) (struct net_device *dev, 1461 unsigned int txqueue); 1462 1463 void (*ndo_get_stats64)(struct net_device *dev, 1464 struct rtnl_link_stats64 *storage); 1465 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id); 1466 int (*ndo_get_offload_stats)(int attr_id, 1467 const struct net_device *dev, 1468 void *attr_data); 1469 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1470 1471 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 1472 __be16 proto, u16 vid); 1473 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 1474 __be16 proto, u16 vid); 1475 #ifdef CONFIG_NET_POLL_CONTROLLER 1476 void (*ndo_poll_controller)(struct net_device *dev); 1477 int (*ndo_netpoll_setup)(struct net_device *dev); 1478 void (*ndo_netpoll_cleanup)(struct net_device *dev); 1479 #endif 1480 int (*ndo_set_vf_mac)(struct net_device *dev, 1481 int queue, u8 *mac); 1482 int (*ndo_set_vf_vlan)(struct net_device *dev, 1483 int queue, u16 vlan, 1484 u8 qos, __be16 proto); 1485 int (*ndo_set_vf_rate)(struct net_device *dev, 1486 int vf, int min_tx_rate, 1487 int max_tx_rate); 1488 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 1489 int vf, bool setting); 1490 int (*ndo_set_vf_trust)(struct net_device *dev, 1491 int vf, bool setting); 1492 int (*ndo_get_vf_config)(struct net_device *dev, 1493 int vf, 1494 struct ifla_vf_info *ivf); 1495 int (*ndo_set_vf_link_state)(struct net_device *dev, 1496 int vf, int link_state); 1497 int (*ndo_get_vf_stats)(struct net_device *dev, 1498 int vf, 1499 struct ifla_vf_stats 1500 *vf_stats); 1501 int (*ndo_set_vf_port)(struct net_device *dev, 1502 int vf, 1503 struct nlattr *port[]); 1504 int (*ndo_get_vf_port)(struct net_device *dev, 1505 int vf, struct sk_buff *skb); 1506 int (*ndo_get_vf_guid)(struct net_device *dev, 1507 int vf, 1508 struct ifla_vf_guid *node_guid, 1509 struct ifla_vf_guid *port_guid); 1510 int (*ndo_set_vf_guid)(struct net_device *dev, 1511 int vf, u64 guid, 1512 int guid_type); 1513 int (*ndo_set_vf_rss_query_en)( 1514 struct net_device *dev, 1515 int vf, bool setting); 1516 int (*ndo_setup_tc)(struct net_device *dev, 1517 enum tc_setup_type type, 1518 void *type_data); 1519 #if IS_ENABLED(CONFIG_FCOE) 1520 int (*ndo_fcoe_enable)(struct net_device *dev); 1521 int (*ndo_fcoe_disable)(struct net_device *dev); 1522 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 1523 u16 xid, 1524 struct scatterlist *sgl, 1525 unsigned int sgc); 1526 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 1527 u16 xid); 1528 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 1529 u16 xid, 1530 struct scatterlist *sgl, 1531 unsigned int sgc); 1532 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1533 struct netdev_fcoe_hbainfo *hbainfo); 1534 #endif 1535 1536 #if IS_ENABLED(CONFIG_LIBFCOE) 1537 #define NETDEV_FCOE_WWNN 0 1538 #define NETDEV_FCOE_WWPN 1 1539 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 1540 u64 *wwn, int type); 1541 #endif 1542 1543 #ifdef CONFIG_RFS_ACCEL 1544 int (*ndo_rx_flow_steer)(struct net_device *dev, 1545 const struct sk_buff *skb, 1546 u16 rxq_index, 1547 u32 flow_id); 1548 #endif 1549 int (*ndo_add_slave)(struct net_device *dev, 1550 struct net_device *slave_dev, 1551 struct netlink_ext_ack *extack); 1552 int (*ndo_del_slave)(struct net_device *dev, 1553 struct net_device *slave_dev); 1554 struct net_device* (*ndo_get_xmit_slave)(struct net_device *dev, 1555 struct sk_buff *skb, 1556 bool all_slaves); 1557 struct net_device* (*ndo_sk_get_lower_dev)(struct net_device *dev, 1558 struct sock *sk); 1559 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1560 netdev_features_t features); 1561 int (*ndo_set_features)(struct net_device *dev, 1562 netdev_features_t features); 1563 int (*ndo_neigh_construct)(struct net_device *dev, 1564 struct neighbour *n); 1565 void (*ndo_neigh_destroy)(struct net_device *dev, 1566 struct neighbour *n); 1567 1568 int (*ndo_fdb_add)(struct ndmsg *ndm, 1569 struct nlattr *tb[], 1570 struct net_device *dev, 1571 const unsigned char *addr, 1572 u16 vid, 1573 u16 flags, 1574 bool *notified, 1575 struct netlink_ext_ack *extack); 1576 int (*ndo_fdb_del)(struct ndmsg *ndm, 1577 struct nlattr *tb[], 1578 struct net_device *dev, 1579 const unsigned char *addr, 1580 u16 vid, 1581 bool *notified, 1582 struct netlink_ext_ack *extack); 1583 int (*ndo_fdb_del_bulk)(struct nlmsghdr *nlh, 1584 struct net_device *dev, 1585 struct netlink_ext_ack *extack); 1586 int (*ndo_fdb_dump)(struct sk_buff *skb, 1587 struct netlink_callback *cb, 1588 struct net_device *dev, 1589 struct net_device *filter_dev, 1590 int *idx); 1591 int (*ndo_fdb_get)(struct sk_buff *skb, 1592 struct nlattr *tb[], 1593 struct net_device *dev, 1594 const unsigned char *addr, 1595 u16 vid, u32 portid, u32 seq, 1596 struct netlink_ext_ack *extack); 1597 int (*ndo_mdb_add)(struct net_device *dev, 1598 struct nlattr *tb[], 1599 u16 nlmsg_flags, 1600 struct netlink_ext_ack *extack); 1601 int (*ndo_mdb_del)(struct net_device *dev, 1602 struct nlattr *tb[], 1603 struct netlink_ext_ack *extack); 1604 int (*ndo_mdb_del_bulk)(struct net_device *dev, 1605 struct nlattr *tb[], 1606 struct netlink_ext_ack *extack); 1607 int (*ndo_mdb_dump)(struct net_device *dev, 1608 struct sk_buff *skb, 1609 struct netlink_callback *cb); 1610 int (*ndo_mdb_get)(struct net_device *dev, 1611 struct nlattr *tb[], u32 portid, 1612 u32 seq, 1613 struct netlink_ext_ack *extack); 1614 int (*ndo_bridge_setlink)(struct net_device *dev, 1615 struct nlmsghdr *nlh, 1616 u16 flags, 1617 struct netlink_ext_ack *extack); 1618 int (*ndo_bridge_getlink)(struct sk_buff *skb, 1619 u32 pid, u32 seq, 1620 struct net_device *dev, 1621 u32 filter_mask, 1622 int nlflags); 1623 int (*ndo_bridge_dellink)(struct net_device *dev, 1624 struct nlmsghdr *nlh, 1625 u16 flags); 1626 int (*ndo_change_carrier)(struct net_device *dev, 1627 bool new_carrier); 1628 int (*ndo_get_phys_port_id)(struct net_device *dev, 1629 struct netdev_phys_item_id *ppid); 1630 int (*ndo_get_port_parent_id)(struct net_device *dev, 1631 struct netdev_phys_item_id *ppid); 1632 int (*ndo_get_phys_port_name)(struct net_device *dev, 1633 char *name, size_t len); 1634 void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1635 struct net_device *dev); 1636 void (*ndo_dfwd_del_station)(struct net_device *pdev, 1637 void *priv); 1638 1639 int (*ndo_set_tx_maxrate)(struct net_device *dev, 1640 int queue_index, 1641 u32 maxrate); 1642 int (*ndo_get_iflink)(const struct net_device *dev); 1643 int (*ndo_fill_metadata_dst)(struct net_device *dev, 1644 struct sk_buff *skb); 1645 void (*ndo_set_rx_headroom)(struct net_device *dev, 1646 int needed_headroom); 1647 int (*ndo_bpf)(struct net_device *dev, 1648 struct netdev_bpf *bpf); 1649 int (*ndo_xdp_xmit)(struct net_device *dev, int n, 1650 struct xdp_frame **xdp, 1651 u32 flags); 1652 struct net_device * (*ndo_xdp_get_xmit_slave)(struct net_device *dev, 1653 struct xdp_buff *xdp); 1654 int (*ndo_xsk_wakeup)(struct net_device *dev, 1655 u32 queue_id, u32 flags); 1656 int (*ndo_tunnel_ctl)(struct net_device *dev, 1657 struct ip_tunnel_parm_kern *p, 1658 int cmd); 1659 struct net_device * (*ndo_get_peer_dev)(struct net_device *dev); 1660 int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, 1661 struct net_device_path *path); 1662 ktime_t (*ndo_get_tstamp)(struct net_device *dev, 1663 const struct skb_shared_hwtstamps *hwtstamps, 1664 bool cycles); 1665 int (*ndo_hwtstamp_get)(struct net_device *dev, 1666 struct kernel_hwtstamp_config *kernel_config); 1667 int (*ndo_hwtstamp_set)(struct net_device *dev, 1668 struct kernel_hwtstamp_config *kernel_config, 1669 struct netlink_ext_ack *extack); 1670 1671 #if IS_ENABLED(CONFIG_NET_SHAPER) 1672 /** 1673 * @net_shaper_ops: Device shaping offload operations 1674 * see include/net/net_shapers.h 1675 */ 1676 const struct net_shaper_ops *net_shaper_ops; 1677 #endif 1678 }; 1679 1680 /** 1681 * enum netdev_priv_flags - &struct net_device priv_flags 1682 * 1683 * These are the &struct net_device, they are only set internally 1684 * by drivers and used in the kernel. These flags are invisible to 1685 * userspace; this means that the order of these flags can change 1686 * during any kernel release. 1687 * 1688 * You should add bitfield booleans after either net_device::priv_flags 1689 * (hotpath) or ::threaded (slowpath) instead of extending these flags. 1690 * 1691 * @IFF_802_1Q_VLAN: 802.1Q VLAN device 1692 * @IFF_EBRIDGE: Ethernet bridging device 1693 * @IFF_BONDING: bonding master or slave 1694 * @IFF_ISATAP: ISATAP interface (RFC4214) 1695 * @IFF_WAN_HDLC: WAN HDLC device 1696 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to 1697 * release skb->dst 1698 * @IFF_DONT_BRIDGE: disallow bridging this ether dev 1699 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time 1700 * @IFF_MACVLAN_PORT: device used as macvlan port 1701 * @IFF_BRIDGE_PORT: device used as bridge port 1702 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port 1703 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit 1704 * @IFF_UNICAST_FLT: Supports unicast filtering 1705 * @IFF_TEAM_PORT: device used as team port 1706 * @IFF_SUPP_NOFCS: device supports sending custom FCS 1707 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address 1708 * change when it's running 1709 * @IFF_MACVLAN: Macvlan device 1710 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account 1711 * underlying stacked devices 1712 * @IFF_L3MDEV_MASTER: device is an L3 master device 1713 * @IFF_NO_QUEUE: device can run without qdisc attached 1714 * @IFF_OPENVSWITCH: device is a Open vSwitch master 1715 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device 1716 * @IFF_TEAM: device is a team device 1717 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured 1718 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external 1719 * entity (i.e. the master device for bridged veth) 1720 * @IFF_MACSEC: device is a MACsec device 1721 * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook 1722 * @IFF_FAILOVER: device is a failover master device 1723 * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device 1724 * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device 1725 * @IFF_NO_ADDRCONF: prevent ipv6 addrconf 1726 * @IFF_TX_SKB_NO_LINEAR: device/driver is capable of xmitting frames with 1727 * skb_headlen(skb) == 0 (data starts from frag0) 1728 */ 1729 enum netdev_priv_flags { 1730 IFF_802_1Q_VLAN = 1<<0, 1731 IFF_EBRIDGE = 1<<1, 1732 IFF_BONDING = 1<<2, 1733 IFF_ISATAP = 1<<3, 1734 IFF_WAN_HDLC = 1<<4, 1735 IFF_XMIT_DST_RELEASE = 1<<5, 1736 IFF_DONT_BRIDGE = 1<<6, 1737 IFF_DISABLE_NETPOLL = 1<<7, 1738 IFF_MACVLAN_PORT = 1<<8, 1739 IFF_BRIDGE_PORT = 1<<9, 1740 IFF_OVS_DATAPATH = 1<<10, 1741 IFF_TX_SKB_SHARING = 1<<11, 1742 IFF_UNICAST_FLT = 1<<12, 1743 IFF_TEAM_PORT = 1<<13, 1744 IFF_SUPP_NOFCS = 1<<14, 1745 IFF_LIVE_ADDR_CHANGE = 1<<15, 1746 IFF_MACVLAN = 1<<16, 1747 IFF_XMIT_DST_RELEASE_PERM = 1<<17, 1748 IFF_L3MDEV_MASTER = 1<<18, 1749 IFF_NO_QUEUE = 1<<19, 1750 IFF_OPENVSWITCH = 1<<20, 1751 IFF_L3MDEV_SLAVE = 1<<21, 1752 IFF_TEAM = 1<<22, 1753 IFF_RXFH_CONFIGURED = 1<<23, 1754 IFF_PHONY_HEADROOM = 1<<24, 1755 IFF_MACSEC = 1<<25, 1756 IFF_NO_RX_HANDLER = 1<<26, 1757 IFF_FAILOVER = 1<<27, 1758 IFF_FAILOVER_SLAVE = 1<<28, 1759 IFF_L3MDEV_RX_HANDLER = 1<<29, 1760 IFF_NO_ADDRCONF = BIT_ULL(30), 1761 IFF_TX_SKB_NO_LINEAR = BIT_ULL(31), 1762 }; 1763 1764 /* Specifies the type of the struct net_device::ml_priv pointer */ 1765 enum netdev_ml_priv_type { 1766 ML_PRIV_NONE, 1767 ML_PRIV_CAN, 1768 }; 1769 1770 enum netdev_stat_type { 1771 NETDEV_PCPU_STAT_NONE, 1772 NETDEV_PCPU_STAT_LSTATS, /* struct pcpu_lstats */ 1773 NETDEV_PCPU_STAT_TSTATS, /* struct pcpu_sw_netstats */ 1774 NETDEV_PCPU_STAT_DSTATS, /* struct pcpu_dstats */ 1775 }; 1776 1777 enum netdev_reg_state { 1778 NETREG_UNINITIALIZED = 0, 1779 NETREG_REGISTERED, /* completed register_netdevice */ 1780 NETREG_UNREGISTERING, /* called unregister_netdevice */ 1781 NETREG_UNREGISTERED, /* completed unregister todo */ 1782 NETREG_RELEASED, /* called free_netdev */ 1783 NETREG_DUMMY, /* dummy device for NAPI poll */ 1784 }; 1785 1786 /** 1787 * struct net_device - The DEVICE structure. 1788 * 1789 * Actually, this whole structure is a big mistake. It mixes I/O 1790 * data with strictly "high-level" data, and it has to know about 1791 * almost every data structure used in the INET module. 1792 * 1793 * @priv_flags: flags invisible to userspace defined as bits, see 1794 * enum netdev_priv_flags for the definitions 1795 * @lltx: device supports lockless Tx. Deprecated for real HW 1796 * drivers. Mainly used by logical interfaces, such as 1797 * bonding and tunnels 1798 * @netmem_tx: device support netmem_tx. 1799 * 1800 * @name: This is the first field of the "visible" part of this structure 1801 * (i.e. as seen by users in the "Space.c" file). It is the name 1802 * of the interface. 1803 * 1804 * @name_node: Name hashlist node 1805 * @ifalias: SNMP alias 1806 * @mem_end: Shared memory end 1807 * @mem_start: Shared memory start 1808 * @base_addr: Device I/O address 1809 * @irq: Device IRQ number 1810 * 1811 * @state: Generic network queuing layer state, see netdev_state_t 1812 * @dev_list: The global list of network devices 1813 * @napi_list: List entry used for polling NAPI devices 1814 * @unreg_list: List entry when we are unregistering the 1815 * device; see the function unregister_netdev 1816 * @close_list: List entry used when we are closing the device 1817 * @ptype_all: Device-specific packet handlers for all protocols 1818 * @ptype_specific: Device-specific, protocol-specific packet handlers 1819 * 1820 * @adj_list: Directly linked devices, like slaves for bonding 1821 * @features: Currently active device features 1822 * @hw_features: User-changeable features 1823 * 1824 * @wanted_features: User-requested features 1825 * @vlan_features: Mask of features inheritable by VLAN devices 1826 * 1827 * @hw_enc_features: Mask of features inherited by encapsulating devices 1828 * This field indicates what encapsulation 1829 * offloads the hardware is capable of doing, 1830 * and drivers will need to set them appropriately. 1831 * 1832 * @mpls_features: Mask of features inheritable by MPLS 1833 * @gso_partial_features: value(s) from NETIF_F_GSO\* 1834 * @mangleid_features: Mask of features requiring MANGLEID, will be 1835 * disabled together with the latter. 1836 * 1837 * @ifindex: interface index 1838 * @group: The group the device belongs to 1839 * 1840 * @stats: Statistics struct, which was left as a legacy, use 1841 * rtnl_link_stats64 instead 1842 * 1843 * @core_stats: core networking counters, 1844 * do not use this in drivers 1845 * @carrier_up_count: Number of times the carrier has been up 1846 * @carrier_down_count: Number of times the carrier has been down 1847 * 1848 * @wireless_handlers: List of functions to handle Wireless Extensions, 1849 * instead of ioctl, 1850 * see <net/iw_handler.h> for details. 1851 * 1852 * @netdev_ops: Includes several pointers to callbacks, 1853 * if one wants to override the ndo_*() functions 1854 * @xdp_metadata_ops: Includes pointers to XDP metadata callbacks. 1855 * @xsk_tx_metadata_ops: Includes pointers to AF_XDP TX metadata callbacks. 1856 * @ethtool_ops: Management operations 1857 * @l3mdev_ops: Layer 3 master device operations 1858 * @ndisc_ops: Includes callbacks for different IPv6 neighbour 1859 * discovery handling. Necessary for e.g. 6LoWPAN. 1860 * @xfrmdev_ops: Transformation offload operations 1861 * @tlsdev_ops: Transport Layer Security offload operations 1862 * @header_ops: Includes callbacks for creating,parsing,caching,etc 1863 * of Layer 2 headers. 1864 * 1865 * @flags: Interface flags (a la BSD) 1866 * @xdp_features: XDP capability supported by the device 1867 * @gflags: Global flags ( kept as legacy ) 1868 * @priv_len: Size of the ->priv flexible array 1869 * @priv: Flexible array containing private data 1870 * @operstate: RFC2863 operstate 1871 * @link_mode: Mapping policy to operstate 1872 * @if_port: Selectable AUI, TP, ... 1873 * @dma: DMA channel 1874 * @mtu: Interface MTU value 1875 * @min_mtu: Interface Minimum MTU value 1876 * @max_mtu: Interface Maximum MTU value 1877 * @type: Interface hardware type 1878 * @hard_header_len: Maximum hardware header length. 1879 * @min_header_len: Minimum hardware header length 1880 * 1881 * @needed_headroom: Extra headroom the hardware may need, but not in all 1882 * cases can this be guaranteed 1883 * @needed_tailroom: Extra tailroom the hardware may need, but not in all 1884 * cases can this be guaranteed. Some cases also use 1885 * LL_MAX_HEADER instead to allocate the skb 1886 * 1887 * interface address info: 1888 * 1889 * @perm_addr: Permanent hw address 1890 * @addr_assign_type: Hw address assignment type 1891 * @addr_len: Hardware address length 1892 * @upper_level: Maximum depth level of upper devices. 1893 * @lower_level: Maximum depth level of lower devices. 1894 * @threaded: napi threaded state. 1895 * @neigh_priv_len: Used in neigh_alloc() 1896 * @dev_id: Used to differentiate devices that share 1897 * the same link layer address 1898 * @dev_port: Used to differentiate devices that share 1899 * the same function 1900 * @addr_list_lock: XXX: need comments on this one 1901 * @name_assign_type: network interface name assignment type 1902 * @uc_promisc: Counter that indicates promiscuous mode 1903 * has been enabled due to the need to listen to 1904 * additional unicast addresses in a device that 1905 * does not implement ndo_set_rx_mode() 1906 * @uc: unicast mac addresses 1907 * @mc: multicast mac addresses 1908 * @dev_addrs: list of device hw addresses 1909 * @queues_kset: Group of all Kobjects in the Tx and RX queues 1910 * @promiscuity: Number of times the NIC is told to work in 1911 * promiscuous mode; if it becomes 0 the NIC will 1912 * exit promiscuous mode 1913 * @allmulti: Counter, enables or disables allmulticast mode 1914 * 1915 * @vlan_info: VLAN info 1916 * @dsa_ptr: dsa specific data 1917 * @tipc_ptr: TIPC specific data 1918 * @atalk_ptr: AppleTalk link 1919 * @ip_ptr: IPv4 specific data 1920 * @ip6_ptr: IPv6 specific data 1921 * @ax25_ptr: AX.25 specific data 1922 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering 1923 * @ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network 1924 * device struct 1925 * @mpls_ptr: mpls_dev struct pointer 1926 * @mctp_ptr: MCTP specific data 1927 * @psp_dev: PSP crypto device registered for this netdev 1928 * 1929 * @dev_addr: Hw address (before bcast, 1930 * because most packets are unicast) 1931 * 1932 * @_rx: Array of RX queues 1933 * @num_rx_queues: Number of RX queues 1934 * allocated at register_netdev() time 1935 * @real_num_rx_queues: Number of RX queues currently active in device 1936 * @xdp_prog: XDP sockets filter program pointer 1937 * 1938 * @rx_handler: handler for received packets 1939 * @rx_handler_data: XXX: need comments on this one 1940 * @tcx_ingress: BPF & clsact qdisc specific data for ingress processing 1941 * @ingress_queue: XXX: need comments on this one 1942 * @nf_hooks_ingress: netfilter hooks executed for ingress packets 1943 * @broadcast: hw bcast address 1944 * 1945 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts, 1946 * indexed by RX queue number. Assigned by driver. 1947 * This must only be set if the ndo_rx_flow_steer 1948 * operation is defined 1949 * @index_hlist: Device index hash chain 1950 * 1951 * @_tx: Array of TX queues 1952 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time 1953 * @real_num_tx_queues: Number of TX queues currently active in device 1954 * @qdisc: Root qdisc from userspace point of view 1955 * @tx_queue_len: Max frames per queue allowed 1956 * @tx_global_lock: XXX: need comments on this one 1957 * @xdp_bulkq: XDP device bulk queue 1958 * @xps_maps: all CPUs/RXQs maps for XPS device 1959 * 1960 * @xps_maps: XXX: need comments on this one 1961 * @tcx_egress: BPF & clsact qdisc specific data for egress processing 1962 * @nf_hooks_egress: netfilter hooks executed for egress packets 1963 * @qdisc_hash: qdisc hash table 1964 * @watchdog_timeo: Represents the timeout that is used by 1965 * the watchdog (see dev_watchdog()) 1966 * @watchdog_timer: List of timers 1967 * 1968 * @proto_down_reason: reason a netdev interface is held down 1969 * @pcpu_refcnt: Number of references to this device 1970 * @dev_refcnt: Number of references to this device 1971 * @refcnt_tracker: Tracker directory for tracked references to this device 1972 * @todo_list: Delayed register/unregister 1973 * @link_watch_list: XXX: need comments on this one 1974 * 1975 * @reg_state: Register/unregister state machine 1976 * @dismantle: Device is going to be freed 1977 * @needs_free_netdev: Should unregister perform free_netdev? 1978 * @priv_destructor: Called from unregister 1979 * @npinfo: XXX: need comments on this one 1980 * @nd_net: Network namespace this network device is inside 1981 * protected by @lock 1982 * 1983 * @ml_priv: Mid-layer private 1984 * @ml_priv_type: Mid-layer private type 1985 * 1986 * @pcpu_stat_type: Type of device statistics which the core should 1987 * allocate/free: none, lstats, tstats, dstats. none 1988 * means the driver is handling statistics allocation/ 1989 * freeing internally. 1990 * @lstats: Loopback statistics: packets, bytes 1991 * @tstats: Tunnel statistics: RX/TX packets, RX/TX bytes 1992 * @dstats: Dummy statistics: RX/TX/drop packets, RX/TX bytes 1993 * 1994 * @garp_port: GARP 1995 * @mrp_port: MRP 1996 * 1997 * @dm_private: Drop monitor private 1998 * 1999 * @dev: Class/net/name entry 2000 * @sysfs_groups: Space for optional device, statistics and wireless 2001 * sysfs groups 2002 * 2003 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes 2004 * @rtnl_link_ops: Rtnl_link_ops 2005 * @stat_ops: Optional ops for queue-aware statistics 2006 * @queue_mgmt_ops: Optional ops for queue management 2007 * 2008 * @gso_max_size: Maximum size of generic segmentation offload 2009 * @tso_max_size: Device (as in HW) limit on the max TSO request size 2010 * @gso_max_segs: Maximum number of segments that can be passed to the 2011 * NIC for GSO 2012 * @tso_max_segs: Device (as in HW) limit on the max TSO segment count 2013 * @gso_ipv4_max_size: Maximum size of generic segmentation offload, 2014 * for IPv4. 2015 * 2016 * @dcbnl_ops: Data Center Bridging netlink ops 2017 * @num_tc: Number of traffic classes in the net device 2018 * @tc_to_txq: XXX: need comments on this one 2019 * @prio_tc_map: XXX: need comments on this one 2020 * 2021 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp 2022 * 2023 * @priomap: XXX: need comments on this one 2024 * @link_topo: Physical link topology tracking attached PHYs 2025 * @phydev: Physical device may attach itself 2026 * for hardware timestamping 2027 * @sfp_bus: attached &struct sfp_bus structure. 2028 * 2029 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock 2030 * 2031 * @proto_down: protocol port state information can be sent to the 2032 * switch driver and used to set the phys state of the 2033 * switch port. 2034 * 2035 * @irq_affinity_auto: driver wants the core to store and re-assign the IRQ 2036 * affinity. Set by netif_enable_irq_affinity(), then 2037 * the driver must create a persistent napi by 2038 * netif_napi_add_config() and finally bind the napi to 2039 * IRQ (via netif_napi_set_irq()). 2040 * 2041 * @rx_cpu_rmap_auto: driver wants the core to manage the ARFS rmap. 2042 * Set by calling netif_enable_cpu_rmap(). 2043 * 2044 * @see_all_hwtstamp_requests: device wants to see calls to 2045 * ndo_hwtstamp_set() for all timestamp requests 2046 * regardless of source, even if those aren't 2047 * HWTSTAMP_SOURCE_NETDEV 2048 * @change_proto_down: device supports setting carrier via IFLA_PROTO_DOWN 2049 * @netns_immutable: interface can't change network namespaces 2050 * @fcoe_mtu: device supports maximum FCoE MTU, 2158 bytes 2051 * 2052 * @net_notifier_list: List of per-net netdev notifier block 2053 * that follow this device when it is moved 2054 * to another network namespace. 2055 * 2056 * @macsec_ops: MACsec offloading ops 2057 * 2058 * @udp_tunnel_nic_info: static structure describing the UDP tunnel 2059 * offload capabilities of the device 2060 * @udp_tunnel_nic: UDP tunnel offload state 2061 * @ethtool: ethtool related state 2062 * @xdp_state: stores info on attached XDP BPF programs 2063 * 2064 * @nested_level: Used as a parameter of spin_lock_nested() of 2065 * dev->addr_list_lock. 2066 * @unlink_list: As netif_addr_lock() can be called recursively, 2067 * keep a list of interfaces to be deleted. 2068 * @gro_max_size: Maximum size of aggregated packet in generic 2069 * receive offload (GRO) 2070 * @gro_ipv4_max_size: Maximum size of aggregated packet in generic 2071 * receive offload (GRO), for IPv4. 2072 * @xdp_zc_max_segs: Maximum number of segments supported by AF_XDP 2073 * zero copy driver 2074 * 2075 * @dev_addr_shadow: Copy of @dev_addr to catch direct writes. 2076 * @linkwatch_dev_tracker: refcount tracker used by linkwatch. 2077 * @watchdog_dev_tracker: refcount tracker used by watchdog. 2078 * @dev_registered_tracker: tracker for reference held while 2079 * registered 2080 * @offload_xstats_l3: L3 HW stats for this netdevice. 2081 * 2082 * @devlink_port: Pointer to related devlink port structure. 2083 * Assigned by a driver before netdev registration using 2084 * SET_NETDEV_DEVLINK_PORT macro. This pointer is static 2085 * during the time netdevice is registered. 2086 * 2087 * @dpll_pin: Pointer to the SyncE source pin of a DPLL subsystem, 2088 * where the clock is recovered. 2089 * 2090 * @max_pacing_offload_horizon: max EDT offload horizon in nsec. 2091 * @napi_config: An array of napi_config structures containing per-NAPI 2092 * settings. 2093 * @num_napi_configs: number of allocated NAPI config structs, 2094 * always >= max(num_rx_queues, num_tx_queues). 2095 * @gro_flush_timeout: timeout for GRO layer in NAPI 2096 * @napi_defer_hard_irqs: If not zero, provides a counter that would 2097 * allow to avoid NIC hard IRQ, on busy queues. 2098 * 2099 * @neighbours: List heads pointing to this device's neighbours' 2100 * dev_list, one per address-family. 2101 * @hwprov: Tracks which PTP performs hardware packet time stamping. 2102 * 2103 * FIXME: cleanup struct net_device such that network protocol info 2104 * moves out. 2105 */ 2106 2107 struct net_device { 2108 /* Cacheline organization can be found documented in 2109 * Documentation/networking/net_cachelines/net_device.rst. 2110 * Please update the document when adding new fields. 2111 */ 2112 2113 /* TX read-mostly hotpath */ 2114 __cacheline_group_begin(net_device_read_tx); 2115 struct_group(priv_flags_fast, 2116 unsigned long priv_flags:32; 2117 unsigned long lltx:1; 2118 unsigned long netmem_tx:1; 2119 ); 2120 const struct net_device_ops *netdev_ops; 2121 const struct header_ops *header_ops; 2122 struct netdev_queue *_tx; 2123 netdev_features_t gso_partial_features; 2124 unsigned int real_num_tx_queues; 2125 unsigned int gso_max_size; 2126 unsigned int gso_ipv4_max_size; 2127 u16 gso_max_segs; 2128 s16 num_tc; 2129 /* Note : dev->mtu is often read without holding a lock. 2130 * Writers usually hold RTNL. 2131 * It is recommended to use READ_ONCE() to annotate the reads, 2132 * and to use WRITE_ONCE() to annotate the writes. 2133 */ 2134 unsigned int mtu; 2135 unsigned short needed_headroom; 2136 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 2137 #ifdef CONFIG_XPS 2138 struct xps_dev_maps __rcu *xps_maps[XPS_MAPS_MAX]; 2139 #endif 2140 #ifdef CONFIG_NETFILTER_EGRESS 2141 struct nf_hook_entries __rcu *nf_hooks_egress; 2142 #endif 2143 #ifdef CONFIG_NET_XGRESS 2144 struct bpf_mprog_entry __rcu *tcx_egress; 2145 #endif 2146 __cacheline_group_end(net_device_read_tx); 2147 2148 /* TXRX read-mostly hotpath */ 2149 __cacheline_group_begin(net_device_read_txrx); 2150 union { 2151 struct pcpu_lstats __percpu *lstats; 2152 struct pcpu_sw_netstats __percpu *tstats; 2153 struct pcpu_dstats __percpu *dstats; 2154 }; 2155 unsigned long state; 2156 unsigned int flags; 2157 unsigned short hard_header_len; 2158 netdev_features_t features; 2159 struct inet6_dev __rcu *ip6_ptr; 2160 __cacheline_group_end(net_device_read_txrx); 2161 2162 /* RX read-mostly hotpath */ 2163 __cacheline_group_begin(net_device_read_rx); 2164 struct bpf_prog __rcu *xdp_prog; 2165 struct list_head ptype_specific; 2166 int ifindex; 2167 unsigned int real_num_rx_queues; 2168 struct netdev_rx_queue *_rx; 2169 unsigned int gro_max_size; 2170 unsigned int gro_ipv4_max_size; 2171 rx_handler_func_t __rcu *rx_handler; 2172 void __rcu *rx_handler_data; 2173 possible_net_t nd_net; 2174 #ifdef CONFIG_NETPOLL 2175 struct netpoll_info __rcu *npinfo; 2176 #endif 2177 #ifdef CONFIG_NET_XGRESS 2178 struct bpf_mprog_entry __rcu *tcx_ingress; 2179 #endif 2180 __cacheline_group_end(net_device_read_rx); 2181 2182 char name[IFNAMSIZ]; 2183 struct netdev_name_node *name_node; 2184 struct dev_ifalias __rcu *ifalias; 2185 /* 2186 * I/O specific fields 2187 * FIXME: Merge these and struct ifmap into one 2188 */ 2189 unsigned long mem_end; 2190 unsigned long mem_start; 2191 unsigned long base_addr; 2192 2193 /* 2194 * Some hardware also needs these fields (state,dev_list, 2195 * napi_list,unreg_list,close_list) but they are not 2196 * part of the usual set specified in Space.c. 2197 */ 2198 2199 2200 struct list_head dev_list; 2201 struct list_head napi_list; 2202 struct list_head unreg_list; 2203 struct list_head close_list; 2204 struct list_head ptype_all; 2205 2206 struct { 2207 struct list_head upper; 2208 struct list_head lower; 2209 } adj_list; 2210 2211 /* Read-mostly cache-line for fast-path access */ 2212 xdp_features_t xdp_features; 2213 const struct xdp_metadata_ops *xdp_metadata_ops; 2214 const struct xsk_tx_metadata_ops *xsk_tx_metadata_ops; 2215 unsigned short gflags; 2216 2217 unsigned short needed_tailroom; 2218 2219 netdev_features_t hw_features; 2220 netdev_features_t wanted_features; 2221 netdev_features_t vlan_features; 2222 netdev_features_t hw_enc_features; 2223 netdev_features_t mpls_features; 2224 netdev_features_t mangleid_features; 2225 2226 unsigned int min_mtu; 2227 unsigned int max_mtu; 2228 unsigned short type; 2229 unsigned char min_header_len; 2230 unsigned char name_assign_type; 2231 2232 int group; 2233 2234 struct net_device_stats stats; /* not used by modern drivers */ 2235 2236 struct net_device_core_stats __percpu *core_stats; 2237 2238 /* Stats to monitor link on/off, flapping */ 2239 atomic_t carrier_up_count; 2240 atomic_t carrier_down_count; 2241 2242 #ifdef CONFIG_WIRELESS_EXT 2243 const struct iw_handler_def *wireless_handlers; 2244 #endif 2245 const struct ethtool_ops *ethtool_ops; 2246 #ifdef CONFIG_NET_L3_MASTER_DEV 2247 const struct l3mdev_ops *l3mdev_ops; 2248 #endif 2249 #if IS_ENABLED(CONFIG_IPV6) 2250 const struct ndisc_ops *ndisc_ops; 2251 #endif 2252 2253 #ifdef CONFIG_XFRM_OFFLOAD 2254 const struct xfrmdev_ops *xfrmdev_ops; 2255 #endif 2256 2257 #if IS_ENABLED(CONFIG_TLS_DEVICE) 2258 const struct tlsdev_ops *tlsdev_ops; 2259 #endif 2260 2261 unsigned int operstate; 2262 unsigned char link_mode; 2263 2264 unsigned char if_port; 2265 unsigned char dma; 2266 2267 /* Interface address info. */ 2268 unsigned char perm_addr[MAX_ADDR_LEN]; 2269 unsigned char addr_assign_type; 2270 unsigned char addr_len; 2271 unsigned char upper_level; 2272 unsigned char lower_level; 2273 u8 threaded; 2274 2275 unsigned short neigh_priv_len; 2276 unsigned short dev_id; 2277 unsigned short dev_port; 2278 int irq; 2279 u32 priv_len; 2280 2281 spinlock_t addr_list_lock; 2282 2283 struct netdev_hw_addr_list uc; 2284 struct netdev_hw_addr_list mc; 2285 struct netdev_hw_addr_list dev_addrs; 2286 2287 #ifdef CONFIG_SYSFS 2288 struct kset *queues_kset; 2289 #endif 2290 #ifdef CONFIG_LOCKDEP 2291 struct list_head unlink_list; 2292 #endif 2293 unsigned int promiscuity; 2294 unsigned int allmulti; 2295 bool uc_promisc; 2296 #ifdef CONFIG_LOCKDEP 2297 unsigned char nested_level; 2298 #endif 2299 2300 2301 /* Protocol-specific pointers */ 2302 struct in_device __rcu *ip_ptr; 2303 /** @fib_nh_head: nexthops associated with this netdev */ 2304 struct hlist_head fib_nh_head; 2305 2306 #if IS_ENABLED(CONFIG_VLAN_8021Q) 2307 struct vlan_info __rcu *vlan_info; 2308 #endif 2309 #if IS_ENABLED(CONFIG_NET_DSA) 2310 struct dsa_port *dsa_ptr; 2311 #endif 2312 #if IS_ENABLED(CONFIG_TIPC) 2313 struct tipc_bearer __rcu *tipc_ptr; 2314 #endif 2315 #if IS_ENABLED(CONFIG_ATALK) 2316 void *atalk_ptr; 2317 #endif 2318 #if IS_ENABLED(CONFIG_AX25) 2319 struct ax25_dev __rcu *ax25_ptr; 2320 #endif 2321 #if IS_ENABLED(CONFIG_CFG80211) 2322 struct wireless_dev *ieee80211_ptr; 2323 #endif 2324 #if IS_ENABLED(CONFIG_IEEE802154) || IS_ENABLED(CONFIG_6LOWPAN) 2325 struct wpan_dev *ieee802154_ptr; 2326 #endif 2327 #if IS_ENABLED(CONFIG_MPLS_ROUTING) 2328 struct mpls_dev __rcu *mpls_ptr; 2329 #endif 2330 #if IS_ENABLED(CONFIG_MCTP) 2331 struct mctp_dev __rcu *mctp_ptr; 2332 #endif 2333 #if IS_ENABLED(CONFIG_INET_PSP) 2334 struct psp_dev __rcu *psp_dev; 2335 #endif 2336 2337 /* 2338 * Cache lines mostly used on receive path (including eth_type_trans()) 2339 */ 2340 /* Interface address info used in eth_type_trans() */ 2341 const unsigned char *dev_addr; 2342 2343 unsigned int num_rx_queues; 2344 #define GRO_LEGACY_MAX_SIZE 65536u 2345 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE), 2346 * and shinfo->gso_segs is a 16bit field. 2347 */ 2348 #define GRO_MAX_SIZE (8 * 65535u) 2349 unsigned int xdp_zc_max_segs; 2350 struct netdev_queue __rcu *ingress_queue; 2351 #ifdef CONFIG_NETFILTER_INGRESS 2352 struct nf_hook_entries __rcu *nf_hooks_ingress; 2353 #endif 2354 2355 unsigned char broadcast[MAX_ADDR_LEN]; 2356 #ifdef CONFIG_RFS_ACCEL 2357 struct cpu_rmap *rx_cpu_rmap; 2358 #endif 2359 struct hlist_node index_hlist; 2360 2361 /* 2362 * Cache lines mostly used on transmit path 2363 */ 2364 unsigned int num_tx_queues; 2365 struct Qdisc __rcu *qdisc; 2366 unsigned int tx_queue_len; 2367 spinlock_t tx_global_lock; 2368 2369 struct xdp_dev_bulk_queue __percpu *xdp_bulkq; 2370 2371 #ifdef CONFIG_NET_SCHED 2372 DECLARE_HASHTABLE (qdisc_hash, 4); 2373 #endif 2374 /* These may be needed for future network-power-down code. */ 2375 struct timer_list watchdog_timer; 2376 int watchdog_timeo; 2377 2378 u32 proto_down_reason; 2379 2380 struct list_head todo_list; 2381 2382 #ifdef CONFIG_PCPU_DEV_REFCNT 2383 int __percpu *pcpu_refcnt; 2384 #else 2385 refcount_t dev_refcnt; 2386 #endif 2387 struct ref_tracker_dir refcnt_tracker; 2388 2389 struct list_head link_watch_list; 2390 2391 u8 reg_state; 2392 2393 bool dismantle; 2394 2395 /** @moving_ns: device is changing netns, protected by @lock */ 2396 bool moving_ns; 2397 /** @rtnl_link_initializing: Device being created, suppress events */ 2398 bool rtnl_link_initializing; 2399 2400 bool needs_free_netdev; 2401 void (*priv_destructor)(struct net_device *dev); 2402 2403 /* mid-layer private */ 2404 void *ml_priv; 2405 enum netdev_ml_priv_type ml_priv_type; 2406 2407 enum netdev_stat_type pcpu_stat_type:8; 2408 2409 #if IS_ENABLED(CONFIG_GARP) 2410 struct garp_port __rcu *garp_port; 2411 #endif 2412 #if IS_ENABLED(CONFIG_MRP) 2413 struct mrp_port __rcu *mrp_port; 2414 #endif 2415 #if IS_ENABLED(CONFIG_NET_DROP_MONITOR) 2416 struct dm_hw_stat_delta __rcu *dm_private; 2417 #endif 2418 struct device dev; 2419 const struct attribute_group *sysfs_groups[5]; 2420 const struct attribute_group *sysfs_rx_queue_group; 2421 2422 const struct rtnl_link_ops *rtnl_link_ops; 2423 2424 const struct netdev_stat_ops *stat_ops; 2425 2426 const struct netdev_queue_mgmt_ops *queue_mgmt_ops; 2427 2428 /* for setting kernel sock attribute on TCP connection setup */ 2429 #define GSO_MAX_SEGS 65535u 2430 #define GSO_LEGACY_MAX_SIZE 65536u 2431 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE), 2432 * and shinfo->gso_segs is a 16bit field. 2433 */ 2434 #define GSO_MAX_SIZE (8 * GSO_MAX_SEGS) 2435 2436 #define TSO_LEGACY_MAX_SIZE 65536 2437 #define TSO_MAX_SIZE UINT_MAX 2438 unsigned int tso_max_size; 2439 #define TSO_MAX_SEGS U16_MAX 2440 u16 tso_max_segs; 2441 2442 #ifdef CONFIG_DCB 2443 const struct dcbnl_rtnl_ops *dcbnl_ops; 2444 #endif 2445 u8 prio_tc_map[TC_BITMASK + 1]; 2446 2447 #if IS_ENABLED(CONFIG_FCOE) 2448 unsigned int fcoe_ddp_xid; 2449 #endif 2450 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 2451 struct netprio_map __rcu *priomap; 2452 #endif 2453 struct phy_link_topology *link_topo; 2454 struct phy_device *phydev; 2455 struct sfp_bus *sfp_bus; 2456 struct lock_class_key *qdisc_tx_busylock; 2457 bool proto_down; 2458 bool irq_affinity_auto; 2459 bool rx_cpu_rmap_auto; 2460 2461 /* priv_flags_slow, ungrouped to save space */ 2462 unsigned long see_all_hwtstamp_requests:1; 2463 unsigned long change_proto_down:1; 2464 unsigned long netns_immutable:1; 2465 unsigned long fcoe_mtu:1; 2466 2467 struct list_head net_notifier_list; 2468 2469 #if IS_ENABLED(CONFIG_MACSEC) 2470 /* MACsec management functions */ 2471 const struct macsec_ops *macsec_ops; 2472 #endif 2473 const struct udp_tunnel_nic_info *udp_tunnel_nic_info; 2474 struct udp_tunnel_nic *udp_tunnel_nic; 2475 2476 /** @cfg: net_device queue-related configuration */ 2477 struct netdev_config *cfg; 2478 /** 2479 * @cfg_pending: same as @cfg but when device is being actively 2480 * reconfigured includes any changes to the configuration 2481 * requested by the user, but which may or may not be rejected. 2482 */ 2483 struct netdev_config *cfg_pending; 2484 struct ethtool_netdev_state *ethtool; 2485 2486 /* protected by rtnl_lock */ 2487 struct bpf_xdp_entity xdp_state[__MAX_XDP_MODE]; 2488 2489 u8 dev_addr_shadow[MAX_ADDR_LEN]; 2490 netdevice_tracker linkwatch_dev_tracker; 2491 netdevice_tracker watchdog_dev_tracker; 2492 netdevice_tracker dev_registered_tracker; 2493 struct rtnl_hw_stats64 *offload_xstats_l3; 2494 2495 struct devlink_port *devlink_port; 2496 2497 #if IS_ENABLED(CONFIG_DPLL) 2498 struct dpll_pin __rcu *dpll_pin; 2499 #endif 2500 #if IS_ENABLED(CONFIG_PAGE_POOL) 2501 /** @page_pools: page pools created for this netdevice */ 2502 struct hlist_head page_pools; 2503 #endif 2504 2505 /** @irq_moder: dim parameters used if IS_ENABLED(CONFIG_DIMLIB). */ 2506 struct dim_irq_moder *irq_moder; 2507 2508 u64 max_pacing_offload_horizon; 2509 struct napi_config *napi_config; 2510 u32 num_napi_configs; 2511 u32 napi_defer_hard_irqs; 2512 unsigned long gro_flush_timeout; 2513 2514 /** 2515 * @up: copy of @state's IFF_UP, but safe to read with just @lock. 2516 * May report false negatives while the device is being opened 2517 * or closed (@lock does not protect .ndo_open, or .ndo_close). 2518 */ 2519 bool up; 2520 2521 /** 2522 * @request_ops_lock: request the core to run all @netdev_ops and 2523 * @ethtool_ops under the @lock. 2524 */ 2525 bool request_ops_lock; 2526 2527 /** 2528 * @lock: netdev-scope lock, protects a small selection of fields. 2529 * Should always be taken using netdev_lock() / netdev_unlock() helpers. 2530 * Drivers are free to use it for other protection. 2531 * 2532 * For the drivers that implement shaper or queue API, the scope 2533 * of this lock is expanded to cover most ndo/queue/ethtool/sysfs 2534 * operations. Drivers may opt-in to this behavior by setting 2535 * @request_ops_lock. 2536 * 2537 * @lock protection mixes with rtnl_lock in multiple ways, fields are 2538 * either: 2539 * 2540 * - simply protected by the instance @lock; 2541 * 2542 * - double protected - writers hold both locks, readers hold either; 2543 * 2544 * - ops protected - protected by the lock held around the NDOs 2545 * and other callbacks, that is the instance lock on devices for 2546 * which netdev_need_ops_lock() returns true, otherwise by rtnl_lock; 2547 * 2548 * - double ops protected - always protected by rtnl_lock but for 2549 * devices for which netdev_need_ops_lock() returns true - also 2550 * the instance lock. 2551 * 2552 * Simply protects: 2553 * @gro_flush_timeout, @napi_defer_hard_irqs, @napi_list, 2554 * @net_shaper_hierarchy, @reg_state, @threaded 2555 * 2556 * Double protects: 2557 * @up, @moving_ns, @nd_net, @xdp_features 2558 * 2559 * Double ops protects: 2560 * @real_num_rx_queues, @real_num_tx_queues 2561 * 2562 * Also protects some fields in: 2563 * struct napi_struct, struct netdev_queue, struct netdev_rx_queue 2564 * 2565 * Ordering: take after rtnl_lock. 2566 */ 2567 struct mutex lock; 2568 2569 #if IS_ENABLED(CONFIG_NET_SHAPER) 2570 /** 2571 * @net_shaper_hierarchy: data tracking the current shaper status 2572 * see include/net/net_shapers.h 2573 */ 2574 struct net_shaper_hierarchy *net_shaper_hierarchy; 2575 #endif 2576 2577 struct hlist_head neighbours[NEIGH_NR_TABLES]; 2578 2579 struct hwtstamp_provider __rcu *hwprov; 2580 2581 u8 priv[] ____cacheline_aligned 2582 __counted_by(priv_len); 2583 } ____cacheline_aligned; 2584 #define to_net_dev(d) container_of(d, struct net_device, dev) 2585 2586 /* 2587 * Driver should use this to assign devlink port instance to a netdevice 2588 * before it registers the netdevice. Therefore devlink_port is static 2589 * during the netdev lifetime after it is registered. 2590 */ 2591 #define SET_NETDEV_DEVLINK_PORT(dev, port) \ 2592 ({ \ 2593 WARN_ON((dev)->reg_state != NETREG_UNINITIALIZED); \ 2594 ((dev)->devlink_port = (port)); \ 2595 }) 2596 2597 static inline bool netif_elide_gro(const struct net_device *dev) 2598 { 2599 if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog) 2600 return true; 2601 return false; 2602 } 2603 2604 #define NETDEV_ALIGN 32 2605 2606 static inline 2607 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 2608 { 2609 return dev->prio_tc_map[prio & TC_BITMASK]; 2610 } 2611 2612 static inline 2613 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 2614 { 2615 if (tc >= dev->num_tc) 2616 return -EINVAL; 2617 2618 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 2619 return 0; 2620 } 2621 2622 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq); 2623 void netdev_reset_tc(struct net_device *dev); 2624 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset); 2625 int netdev_set_num_tc(struct net_device *dev, u8 num_tc); 2626 2627 static inline 2628 int netdev_get_num_tc(struct net_device *dev) 2629 { 2630 return dev->num_tc; 2631 } 2632 2633 static inline void net_prefetch(void *p) 2634 { 2635 prefetch(p); 2636 #if L1_CACHE_BYTES < 128 2637 prefetch((u8 *)p + L1_CACHE_BYTES); 2638 #endif 2639 } 2640 2641 static inline void net_prefetchw(void *p) 2642 { 2643 prefetchw(p); 2644 #if L1_CACHE_BYTES < 128 2645 prefetchw((u8 *)p + L1_CACHE_BYTES); 2646 #endif 2647 } 2648 2649 void netdev_unbind_sb_channel(struct net_device *dev, 2650 struct net_device *sb_dev); 2651 int netdev_bind_sb_channel_queue(struct net_device *dev, 2652 struct net_device *sb_dev, 2653 u8 tc, u16 count, u16 offset); 2654 int netdev_set_sb_channel(struct net_device *dev, u16 channel); 2655 static inline int netdev_get_sb_channel(struct net_device *dev) 2656 { 2657 return max_t(int, -dev->num_tc, 0); 2658 } 2659 2660 static inline 2661 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 2662 unsigned int index) 2663 { 2664 DEBUG_NET_WARN_ON_ONCE(index >= dev->num_tx_queues); 2665 return &dev->_tx[index]; 2666 } 2667 2668 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev, 2669 const struct sk_buff *skb) 2670 { 2671 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb)); 2672 } 2673 2674 static inline void netdev_for_each_tx_queue(struct net_device *dev, 2675 void (*f)(struct net_device *, 2676 struct netdev_queue *, 2677 void *), 2678 void *arg) 2679 { 2680 unsigned int i; 2681 2682 for (i = 0; i < dev->num_tx_queues; i++) 2683 f(dev, &dev->_tx[i], arg); 2684 } 2685 2686 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 2687 struct net_device *sb_dev); 2688 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 2689 struct sk_buff *skb, 2690 struct net_device *sb_dev); 2691 2692 /* returns the headroom that the master device needs to take in account 2693 * when forwarding to this dev 2694 */ 2695 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev) 2696 { 2697 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom; 2698 } 2699 2700 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr) 2701 { 2702 if (dev->netdev_ops->ndo_set_rx_headroom) 2703 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr); 2704 } 2705 2706 /* set the device rx headroom to the dev's default */ 2707 static inline void netdev_reset_rx_headroom(struct net_device *dev) 2708 { 2709 netdev_set_rx_headroom(dev, -1); 2710 } 2711 2712 static inline void *netdev_get_ml_priv(struct net_device *dev, 2713 enum netdev_ml_priv_type type) 2714 { 2715 if (dev->ml_priv_type != type) 2716 return NULL; 2717 2718 return dev->ml_priv; 2719 } 2720 2721 static inline void netdev_set_ml_priv(struct net_device *dev, 2722 void *ml_priv, 2723 enum netdev_ml_priv_type type) 2724 { 2725 WARN(dev->ml_priv_type && dev->ml_priv_type != type, 2726 "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n", 2727 dev->ml_priv_type, type); 2728 WARN(!dev->ml_priv_type && dev->ml_priv, 2729 "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n"); 2730 2731 dev->ml_priv = ml_priv; 2732 dev->ml_priv_type = type; 2733 } 2734 2735 /* 2736 * Net namespace inlines 2737 */ 2738 static inline 2739 struct net *dev_net(const struct net_device *dev) 2740 { 2741 return read_pnet(&dev->nd_net); 2742 } 2743 2744 static inline 2745 struct net *dev_net_rcu(const struct net_device *dev) 2746 { 2747 return read_pnet_rcu(&dev->nd_net); 2748 } 2749 2750 static inline 2751 void dev_net_set(struct net_device *dev, struct net *net) 2752 { 2753 write_pnet(&dev->nd_net, net); 2754 } 2755 2756 /** 2757 * netdev_priv - access network device private data 2758 * @dev: network device 2759 * 2760 * Get network device private data 2761 */ 2762 static inline void *netdev_priv(const struct net_device *dev) 2763 { 2764 return (void *)dev->priv; 2765 } 2766 2767 /* Set the sysfs physical device reference for the network logical device 2768 * if set prior to registration will cause a symlink during initialization. 2769 */ 2770 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 2771 2772 /* Set the sysfs device type for the network logical device to allow 2773 * fine-grained identification of different network device types. For 2774 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc. 2775 */ 2776 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 2777 2778 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index, 2779 enum netdev_queue_type type, 2780 struct napi_struct *napi); 2781 2782 static inline void netdev_lock(struct net_device *dev) 2783 { 2784 mutex_lock(&dev->lock); 2785 } 2786 2787 static inline void netdev_unlock(struct net_device *dev) 2788 { 2789 mutex_unlock(&dev->lock); 2790 } 2791 /* Additional netdev_lock()-related helpers are in net/netdev_lock.h */ 2792 2793 void netif_napi_set_irq_locked(struct napi_struct *napi, int irq); 2794 2795 static inline void netif_napi_set_irq(struct napi_struct *napi, int irq) 2796 { 2797 netdev_lock(napi->dev); 2798 netif_napi_set_irq_locked(napi, irq); 2799 netdev_unlock(napi->dev); 2800 } 2801 2802 /* Default NAPI poll() weight 2803 * Device drivers are strongly advised to not use bigger value 2804 */ 2805 #define NAPI_POLL_WEIGHT 64 2806 2807 void netif_napi_add_weight_locked(struct net_device *dev, 2808 struct napi_struct *napi, 2809 int (*poll)(struct napi_struct *, int), 2810 int weight); 2811 2812 static inline void 2813 netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi, 2814 int (*poll)(struct napi_struct *, int), int weight) 2815 { 2816 netdev_lock(dev); 2817 netif_napi_add_weight_locked(dev, napi, poll, weight); 2818 netdev_unlock(dev); 2819 } 2820 2821 /** 2822 * netif_napi_add() - initialize a NAPI context 2823 * @dev: network device 2824 * @napi: NAPI context 2825 * @poll: polling function 2826 * 2827 * netif_napi_add() must be used to initialize a NAPI context prior to calling 2828 * *any* of the other NAPI-related functions. 2829 */ 2830 static inline void 2831 netif_napi_add(struct net_device *dev, struct napi_struct *napi, 2832 int (*poll)(struct napi_struct *, int)) 2833 { 2834 netif_napi_add_weight(dev, napi, poll, NAPI_POLL_WEIGHT); 2835 } 2836 2837 static inline void 2838 netif_napi_add_locked(struct net_device *dev, struct napi_struct *napi, 2839 int (*poll)(struct napi_struct *, int)) 2840 { 2841 netif_napi_add_weight_locked(dev, napi, poll, NAPI_POLL_WEIGHT); 2842 } 2843 2844 static inline void 2845 netif_napi_add_tx_weight(struct net_device *dev, 2846 struct napi_struct *napi, 2847 int (*poll)(struct napi_struct *, int), 2848 int weight) 2849 { 2850 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state); 2851 netif_napi_add_weight(dev, napi, poll, weight); 2852 } 2853 2854 static inline void 2855 netif_napi_add_config_locked(struct net_device *dev, struct napi_struct *napi, 2856 int (*poll)(struct napi_struct *, int), int index) 2857 { 2858 napi->index = index; 2859 napi->config = &dev->napi_config[index]; 2860 netif_napi_add_weight_locked(dev, napi, poll, NAPI_POLL_WEIGHT); 2861 } 2862 2863 /** 2864 * netif_napi_add_config - initialize a NAPI context with persistent config 2865 * @dev: network device 2866 * @napi: NAPI context 2867 * @poll: polling function 2868 * @index: the NAPI index 2869 */ 2870 static inline void 2871 netif_napi_add_config(struct net_device *dev, struct napi_struct *napi, 2872 int (*poll)(struct napi_struct *, int), int index) 2873 { 2874 netdev_lock(dev); 2875 netif_napi_add_config_locked(dev, napi, poll, index); 2876 netdev_unlock(dev); 2877 } 2878 2879 /** 2880 * netif_napi_add_tx() - initialize a NAPI context to be used for Tx only 2881 * @dev: network device 2882 * @napi: NAPI context 2883 * @poll: polling function 2884 * 2885 * This variant of netif_napi_add() should be used from drivers using NAPI 2886 * to exclusively poll a TX queue. 2887 * This will avoid we add it into napi_hash[], thus polluting this hash table. 2888 */ 2889 static inline void netif_napi_add_tx(struct net_device *dev, 2890 struct napi_struct *napi, 2891 int (*poll)(struct napi_struct *, int)) 2892 { 2893 netif_napi_add_tx_weight(dev, napi, poll, NAPI_POLL_WEIGHT); 2894 } 2895 2896 void __netif_napi_del_locked(struct napi_struct *napi); 2897 2898 /** 2899 * __netif_napi_del - remove a NAPI context 2900 * @napi: NAPI context 2901 * 2902 * Warning: caller must observe RCU grace period before freeing memory 2903 * containing @napi. Drivers might want to call this helper to combine 2904 * all the needed RCU grace periods into a single one. 2905 */ 2906 static inline void __netif_napi_del(struct napi_struct *napi) 2907 { 2908 netdev_lock(napi->dev); 2909 __netif_napi_del_locked(napi); 2910 netdev_unlock(napi->dev); 2911 } 2912 2913 static inline void netif_napi_del_locked(struct napi_struct *napi) 2914 { 2915 __netif_napi_del_locked(napi); 2916 synchronize_net(); 2917 } 2918 2919 /** 2920 * netif_napi_del - remove a NAPI context 2921 * @napi: NAPI context 2922 * 2923 * netif_napi_del() removes a NAPI context from the network device NAPI list 2924 */ 2925 static inline void netif_napi_del(struct napi_struct *napi) 2926 { 2927 __netif_napi_del(napi); 2928 synchronize_net(); 2929 } 2930 2931 int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs); 2932 void netif_set_affinity_auto(struct net_device *dev); 2933 2934 struct packet_type { 2935 __be16 type; /* This is really htons(ether_type). */ 2936 bool ignore_outgoing; 2937 struct net_device *dev; /* NULL is wildcarded here */ 2938 netdevice_tracker dev_tracker; 2939 int (*func) (struct sk_buff *, 2940 struct net_device *, 2941 struct packet_type *, 2942 struct net_device *); 2943 void (*list_func) (struct list_head *, 2944 struct packet_type *, 2945 struct net_device *); 2946 bool (*id_match)(struct packet_type *ptype, 2947 struct sock *sk); 2948 struct net *af_packet_net; 2949 void *af_packet_priv; 2950 struct list_head list; 2951 }; 2952 2953 struct offload_callbacks { 2954 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 2955 netdev_features_t features); 2956 struct sk_buff *(*gro_receive)(struct list_head *head, 2957 struct sk_buff *skb); 2958 int (*gro_complete)(struct sk_buff *skb, int nhoff); 2959 }; 2960 2961 struct packet_offload { 2962 __be16 type; /* This is really htons(ether_type). */ 2963 u16 priority; 2964 struct offload_callbacks callbacks; 2965 struct list_head list; 2966 }; 2967 2968 /* often modified stats are per-CPU, other are shared (netdev->stats) */ 2969 struct pcpu_sw_netstats { 2970 u64_stats_t rx_packets; 2971 u64_stats_t rx_bytes; 2972 u64_stats_t tx_packets; 2973 u64_stats_t tx_bytes; 2974 struct u64_stats_sync syncp; 2975 } __aligned(4 * sizeof(u64)); 2976 2977 struct pcpu_dstats { 2978 u64_stats_t rx_packets; 2979 u64_stats_t rx_bytes; 2980 u64_stats_t tx_packets; 2981 u64_stats_t tx_bytes; 2982 u64_stats_t rx_drops; 2983 u64_stats_t tx_drops; 2984 struct u64_stats_sync syncp; 2985 } __aligned(8 * sizeof(u64)); 2986 2987 struct pcpu_lstats { 2988 u64_stats_t packets; 2989 u64_stats_t bytes; 2990 struct u64_stats_sync syncp; 2991 } __aligned(2 * sizeof(u64)); 2992 2993 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes); 2994 2995 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len) 2996 { 2997 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats); 2998 2999 u64_stats_update_begin(&tstats->syncp); 3000 u64_stats_add(&tstats->rx_bytes, len); 3001 u64_stats_inc(&tstats->rx_packets); 3002 u64_stats_update_end(&tstats->syncp); 3003 } 3004 3005 static inline void dev_sw_netstats_tx_add(struct net_device *dev, 3006 unsigned int packets, 3007 unsigned int len) 3008 { 3009 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats); 3010 3011 u64_stats_update_begin(&tstats->syncp); 3012 u64_stats_add(&tstats->tx_bytes, len); 3013 u64_stats_add(&tstats->tx_packets, packets); 3014 u64_stats_update_end(&tstats->syncp); 3015 } 3016 3017 static inline void dev_lstats_add(struct net_device *dev, unsigned int len) 3018 { 3019 struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats); 3020 3021 u64_stats_update_begin(&lstats->syncp); 3022 u64_stats_add(&lstats->bytes, len); 3023 u64_stats_inc(&lstats->packets); 3024 u64_stats_update_end(&lstats->syncp); 3025 } 3026 3027 static inline void dev_dstats_rx_add(struct net_device *dev, 3028 unsigned int len) 3029 { 3030 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats); 3031 3032 u64_stats_update_begin(&dstats->syncp); 3033 u64_stats_inc(&dstats->rx_packets); 3034 u64_stats_add(&dstats->rx_bytes, len); 3035 u64_stats_update_end(&dstats->syncp); 3036 } 3037 3038 static inline void dev_dstats_rx_dropped(struct net_device *dev) 3039 { 3040 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats); 3041 3042 u64_stats_update_begin(&dstats->syncp); 3043 u64_stats_inc(&dstats->rx_drops); 3044 u64_stats_update_end(&dstats->syncp); 3045 } 3046 3047 static inline void dev_dstats_rx_dropped_add(struct net_device *dev, 3048 unsigned int packets) 3049 { 3050 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats); 3051 3052 u64_stats_update_begin(&dstats->syncp); 3053 u64_stats_add(&dstats->rx_drops, packets); 3054 u64_stats_update_end(&dstats->syncp); 3055 } 3056 3057 static inline void dev_dstats_tx_add(struct net_device *dev, 3058 unsigned int len) 3059 { 3060 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats); 3061 3062 u64_stats_update_begin(&dstats->syncp); 3063 u64_stats_inc(&dstats->tx_packets); 3064 u64_stats_add(&dstats->tx_bytes, len); 3065 u64_stats_update_end(&dstats->syncp); 3066 } 3067 3068 static inline void dev_dstats_tx_dropped(struct net_device *dev) 3069 { 3070 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats); 3071 3072 u64_stats_update_begin(&dstats->syncp); 3073 u64_stats_inc(&dstats->tx_drops); 3074 u64_stats_update_end(&dstats->syncp); 3075 } 3076 3077 #define __netdev_alloc_pcpu_stats(type, gfp) \ 3078 ({ \ 3079 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\ 3080 if (pcpu_stats) { \ 3081 int __cpu; \ 3082 for_each_possible_cpu(__cpu) { \ 3083 typeof(type) *stat; \ 3084 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 3085 u64_stats_init(&stat->syncp); \ 3086 } \ 3087 } \ 3088 pcpu_stats; \ 3089 }) 3090 3091 #define netdev_alloc_pcpu_stats(type) \ 3092 __netdev_alloc_pcpu_stats(type, GFP_KERNEL) 3093 3094 #define devm_netdev_alloc_pcpu_stats(dev, type) \ 3095 ({ \ 3096 typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\ 3097 if (pcpu_stats) { \ 3098 int __cpu; \ 3099 for_each_possible_cpu(__cpu) { \ 3100 typeof(type) *stat; \ 3101 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 3102 u64_stats_init(&stat->syncp); \ 3103 } \ 3104 } \ 3105 pcpu_stats; \ 3106 }) 3107 3108 enum netdev_lag_tx_type { 3109 NETDEV_LAG_TX_TYPE_UNKNOWN, 3110 NETDEV_LAG_TX_TYPE_RANDOM, 3111 NETDEV_LAG_TX_TYPE_BROADCAST, 3112 NETDEV_LAG_TX_TYPE_ROUNDROBIN, 3113 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP, 3114 NETDEV_LAG_TX_TYPE_HASH, 3115 }; 3116 3117 enum netdev_lag_hash { 3118 NETDEV_LAG_HASH_NONE, 3119 NETDEV_LAG_HASH_L2, 3120 NETDEV_LAG_HASH_L34, 3121 NETDEV_LAG_HASH_L23, 3122 NETDEV_LAG_HASH_E23, 3123 NETDEV_LAG_HASH_E34, 3124 NETDEV_LAG_HASH_VLAN_SRCMAC, 3125 NETDEV_LAG_HASH_UNKNOWN, 3126 }; 3127 3128 struct netdev_lag_upper_info { 3129 enum netdev_lag_tx_type tx_type; 3130 enum netdev_lag_hash hash_type; 3131 }; 3132 3133 struct netdev_lag_lower_state_info { 3134 u8 link_up : 1, 3135 tx_enabled : 1; 3136 }; 3137 3138 #include <linux/notifier.h> 3139 3140 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name() 3141 * and the rtnetlink notification exclusion list in rtnetlink_event() when 3142 * adding new types. 3143 */ 3144 enum netdev_cmd { 3145 NETDEV_UP = 1, /* For now you can't veto a device up/down */ 3146 NETDEV_DOWN, 3147 NETDEV_REBOOT, /* Tell a protocol stack a network interface 3148 detected a hardware crash and restarted 3149 - we can use this eg to kick tcp sessions 3150 once done */ 3151 NETDEV_CHANGE, /* Notify device state change */ 3152 NETDEV_REGISTER, 3153 NETDEV_UNREGISTER, 3154 NETDEV_CHANGEMTU, /* notify after mtu change happened */ 3155 NETDEV_CHANGEADDR, /* notify after the address change */ 3156 NETDEV_PRE_CHANGEADDR, /* notify before the address change */ 3157 NETDEV_GOING_DOWN, 3158 NETDEV_CHANGENAME, 3159 NETDEV_FEAT_CHANGE, 3160 NETDEV_BONDING_FAILOVER, 3161 NETDEV_PRE_UP, 3162 NETDEV_PRE_TYPE_CHANGE, 3163 NETDEV_POST_TYPE_CHANGE, 3164 NETDEV_POST_INIT, 3165 NETDEV_PRE_UNINIT, 3166 NETDEV_RELEASE, 3167 NETDEV_NOTIFY_PEERS, 3168 NETDEV_JOIN, 3169 NETDEV_CHANGEUPPER, 3170 NETDEV_RESEND_IGMP, 3171 NETDEV_PRECHANGEMTU, /* notify before mtu change happened */ 3172 NETDEV_CHANGEINFODATA, 3173 NETDEV_BONDING_INFO, 3174 NETDEV_PRECHANGEUPPER, 3175 NETDEV_CHANGELOWERSTATE, 3176 NETDEV_UDP_TUNNEL_PUSH_INFO, 3177 NETDEV_UDP_TUNNEL_DROP_INFO, 3178 NETDEV_CHANGE_TX_QUEUE_LEN, 3179 NETDEV_CVLAN_FILTER_PUSH_INFO, 3180 NETDEV_CVLAN_FILTER_DROP_INFO, 3181 NETDEV_SVLAN_FILTER_PUSH_INFO, 3182 NETDEV_SVLAN_FILTER_DROP_INFO, 3183 NETDEV_OFFLOAD_XSTATS_ENABLE, 3184 NETDEV_OFFLOAD_XSTATS_DISABLE, 3185 NETDEV_OFFLOAD_XSTATS_REPORT_USED, 3186 NETDEV_OFFLOAD_XSTATS_REPORT_DELTA, 3187 NETDEV_XDP_FEAT_CHANGE, 3188 }; 3189 const char *netdev_cmd_to_name(enum netdev_cmd cmd); 3190 3191 int register_netdevice_notifier(struct notifier_block *nb); 3192 int unregister_netdevice_notifier(struct notifier_block *nb); 3193 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb); 3194 int unregister_netdevice_notifier_net(struct net *net, 3195 struct notifier_block *nb); 3196 int register_netdevice_notifier_dev_net(struct net_device *dev, 3197 struct notifier_block *nb, 3198 struct netdev_net_notifier *nn); 3199 int unregister_netdevice_notifier_dev_net(struct net_device *dev, 3200 struct notifier_block *nb, 3201 struct netdev_net_notifier *nn); 3202 3203 struct netdev_notifier_info { 3204 struct net_device *dev; 3205 struct netlink_ext_ack *extack; 3206 }; 3207 3208 struct netdev_notifier_info_ext { 3209 struct netdev_notifier_info info; /* must be first */ 3210 union { 3211 u32 mtu; 3212 } ext; 3213 }; 3214 3215 struct netdev_notifier_change_info { 3216 struct netdev_notifier_info info; /* must be first */ 3217 unsigned int flags_changed; 3218 }; 3219 3220 struct netdev_notifier_changeupper_info { 3221 struct netdev_notifier_info info; /* must be first */ 3222 struct net_device *upper_dev; /* new upper dev */ 3223 bool master; /* is upper dev master */ 3224 bool linking; /* is the notification for link or unlink */ 3225 void *upper_info; /* upper dev info */ 3226 }; 3227 3228 struct netdev_notifier_changelowerstate_info { 3229 struct netdev_notifier_info info; /* must be first */ 3230 void *lower_state_info; /* is lower dev state */ 3231 }; 3232 3233 struct netdev_notifier_pre_changeaddr_info { 3234 struct netdev_notifier_info info; /* must be first */ 3235 const unsigned char *dev_addr; 3236 }; 3237 3238 enum netdev_offload_xstats_type { 3239 NETDEV_OFFLOAD_XSTATS_TYPE_L3 = 1, 3240 }; 3241 3242 struct netdev_notifier_offload_xstats_info { 3243 struct netdev_notifier_info info; /* must be first */ 3244 enum netdev_offload_xstats_type type; 3245 3246 union { 3247 /* NETDEV_OFFLOAD_XSTATS_REPORT_DELTA */ 3248 struct netdev_notifier_offload_xstats_rd *report_delta; 3249 /* NETDEV_OFFLOAD_XSTATS_REPORT_USED */ 3250 struct netdev_notifier_offload_xstats_ru *report_used; 3251 }; 3252 }; 3253 3254 int netdev_offload_xstats_enable(struct net_device *dev, 3255 enum netdev_offload_xstats_type type, 3256 struct netlink_ext_ack *extack); 3257 int netdev_offload_xstats_disable(struct net_device *dev, 3258 enum netdev_offload_xstats_type type); 3259 bool netdev_offload_xstats_enabled(const struct net_device *dev, 3260 enum netdev_offload_xstats_type type); 3261 int netdev_offload_xstats_get(struct net_device *dev, 3262 enum netdev_offload_xstats_type type, 3263 struct rtnl_hw_stats64 *stats, bool *used, 3264 struct netlink_ext_ack *extack); 3265 void 3266 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *rd, 3267 const struct rtnl_hw_stats64 *stats); 3268 void 3269 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *ru); 3270 void netdev_offload_xstats_push_delta(struct net_device *dev, 3271 enum netdev_offload_xstats_type type, 3272 const struct rtnl_hw_stats64 *stats); 3273 3274 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info, 3275 struct net_device *dev) 3276 { 3277 info->dev = dev; 3278 info->extack = NULL; 3279 } 3280 3281 static inline struct net_device * 3282 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info) 3283 { 3284 return info->dev; 3285 } 3286 3287 static inline struct netlink_ext_ack * 3288 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info) 3289 { 3290 return info->extack; 3291 } 3292 3293 int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 3294 int call_netdevice_notifiers_info(unsigned long val, 3295 struct netdev_notifier_info *info); 3296 3297 #define for_each_netdev(net, d) \ 3298 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 3299 #define for_each_netdev_reverse(net, d) \ 3300 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 3301 #define for_each_netdev_rcu(net, d) \ 3302 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 3303 #define for_each_netdev_safe(net, d, n) \ 3304 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 3305 #define for_each_netdev_continue(net, d) \ 3306 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 3307 #define for_each_netdev_continue_reverse(net, d) \ 3308 list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \ 3309 dev_list) 3310 #define for_each_netdev_continue_rcu(net, d) \ 3311 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 3312 #define for_each_netdev_in_bond_rcu(bond, slave) \ 3313 for_each_netdev_rcu(dev_net_rcu(bond), slave) \ 3314 if (netdev_master_upper_dev_get_rcu(slave) == (bond)) 3315 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 3316 3317 #define for_each_netdev_dump(net, d, ifindex) \ 3318 for (; (d = xa_find(&(net)->dev_by_index, &ifindex, \ 3319 ULONG_MAX, XA_PRESENT)); ifindex++) 3320 3321 static inline struct net_device *next_net_device(struct net_device *dev) 3322 { 3323 struct list_head *lh; 3324 struct net *net; 3325 3326 net = dev_net(dev); 3327 lh = dev->dev_list.next; 3328 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 3329 } 3330 3331 static inline struct net_device *next_net_device_rcu(struct net_device *dev) 3332 { 3333 struct list_head *lh; 3334 struct net *net; 3335 3336 net = dev_net(dev); 3337 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 3338 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 3339 } 3340 3341 static inline struct net_device *first_net_device(struct net *net) 3342 { 3343 return list_empty(&net->dev_base_head) ? NULL : 3344 net_device_entry(net->dev_base_head.next); 3345 } 3346 3347 int netdev_boot_setup_check(struct net_device *dev); 3348 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, 3349 const char *hwaddr); 3350 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 3351 const char *hwaddr); 3352 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 3353 void dev_add_pack(struct packet_type *pt); 3354 void dev_remove_pack(struct packet_type *pt); 3355 void __dev_remove_pack(struct packet_type *pt); 3356 void dev_add_offload(struct packet_offload *po); 3357 void dev_remove_offload(struct packet_offload *po); 3358 3359 int dev_get_iflink(const struct net_device *dev); 3360 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb); 3361 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr, 3362 struct net_device_path_stack *stack); 3363 struct net_device *dev_get_by_name(struct net *net, const char *name); 3364 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 3365 struct net_device *__dev_get_by_name(struct net *net, const char *name); 3366 bool netdev_name_in_use(struct net *net, const char *name); 3367 int dev_alloc_name(struct net_device *dev, const char *name); 3368 int netif_open(struct net_device *dev, struct netlink_ext_ack *extack); 3369 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack); 3370 void netif_close(struct net_device *dev); 3371 void dev_close(struct net_device *dev); 3372 void netif_close_many(struct list_head *head, bool unlink); 3373 void netif_disable_lro(struct net_device *dev); 3374 void dev_disable_lro(struct net_device *dev); 3375 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb); 3376 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 3377 struct net_device *sb_dev); 3378 3379 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev); 3380 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id); 3381 3382 static inline int dev_queue_xmit(struct sk_buff *skb) 3383 { 3384 return __dev_queue_xmit(skb, NULL); 3385 } 3386 3387 static inline int dev_queue_xmit_accel(struct sk_buff *skb, 3388 struct net_device *sb_dev) 3389 { 3390 return __dev_queue_xmit(skb, sb_dev); 3391 } 3392 3393 static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 3394 { 3395 int ret; 3396 3397 ret = __dev_direct_xmit(skb, queue_id); 3398 if (!dev_xmit_complete(ret)) 3399 kfree_skb(skb); 3400 return ret; 3401 } 3402 3403 int register_netdevice(struct net_device *dev); 3404 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head); 3405 void unregister_netdevice_many(struct list_head *head); 3406 static inline void unregister_netdevice(struct net_device *dev) 3407 { 3408 unregister_netdevice_queue(dev, NULL); 3409 } 3410 3411 int netdev_refcnt_read(const struct net_device *dev); 3412 void free_netdev(struct net_device *dev); 3413 3414 struct net_device *netdev_get_xmit_slave(struct net_device *dev, 3415 struct sk_buff *skb, 3416 bool all_slaves); 3417 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev, 3418 struct sock *sk); 3419 struct net_device *dev_get_by_index(struct net *net, int ifindex); 3420 struct net_device *__dev_get_by_index(struct net *net, int ifindex); 3421 struct net_device *netdev_get_by_index(struct net *net, int ifindex, 3422 netdevice_tracker *tracker, gfp_t gfp); 3423 struct net_device *netdev_get_by_index_lock(struct net *net, int ifindex); 3424 struct net_device *netdev_get_by_name(struct net *net, const char *name, 3425 netdevice_tracker *tracker, gfp_t gfp); 3426 struct net_device *netdev_get_by_flags_rcu(struct net *net, netdevice_tracker *tracker, 3427 unsigned short flags, unsigned short mask); 3428 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 3429 void netdev_copy_name(struct net_device *dev, char *name); 3430 3431 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 3432 unsigned short type, 3433 const void *daddr, const void *saddr, 3434 unsigned int len) 3435 { 3436 if (!dev->header_ops || !dev->header_ops->create) 3437 return 0; 3438 3439 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 3440 } 3441 3442 static inline int dev_parse_header(const struct sk_buff *skb, 3443 unsigned char *haddr) 3444 { 3445 const struct net_device *dev = skb->dev; 3446 3447 if (!dev->header_ops || !dev->header_ops->parse) 3448 return 0; 3449 return dev->header_ops->parse(skb, haddr); 3450 } 3451 3452 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb) 3453 { 3454 const struct net_device *dev = skb->dev; 3455 3456 if (!dev->header_ops || !dev->header_ops->parse_protocol) 3457 return 0; 3458 return dev->header_ops->parse_protocol(skb); 3459 } 3460 3461 /* ll_header must have at least hard_header_len allocated */ 3462 static inline bool dev_validate_header(const struct net_device *dev, 3463 char *ll_header, int len) 3464 { 3465 if (likely(len >= dev->hard_header_len)) 3466 return true; 3467 if (len < dev->min_header_len) 3468 return false; 3469 3470 if (capable(CAP_SYS_RAWIO)) { 3471 memset(ll_header + len, 0, dev->hard_header_len - len); 3472 return true; 3473 } 3474 3475 if (dev->header_ops && dev->header_ops->validate) 3476 return dev->header_ops->validate(ll_header, len); 3477 3478 return false; 3479 } 3480 3481 static inline bool dev_has_header(const struct net_device *dev) 3482 { 3483 return dev->header_ops && dev->header_ops->create; 3484 } 3485 3486 struct numa_drop_counters { 3487 atomic_t drops0 ____cacheline_aligned_in_smp; 3488 atomic_t drops1 ____cacheline_aligned_in_smp; 3489 }; 3490 3491 static inline int numa_drop_read(const struct numa_drop_counters *ndc) 3492 { 3493 return atomic_read(&ndc->drops0) + atomic_read(&ndc->drops1); 3494 } 3495 3496 static inline void numa_drop_add(struct numa_drop_counters *ndc, int val) 3497 { 3498 int n = numa_node_id() % 2; 3499 3500 if (n) 3501 atomic_add(val, &ndc->drops1); 3502 else 3503 atomic_add(val, &ndc->drops0); 3504 } 3505 3506 static inline void numa_drop_reset(struct numa_drop_counters *ndc) 3507 { 3508 atomic_set(&ndc->drops0, 0); 3509 atomic_set(&ndc->drops1, 0); 3510 } 3511 3512 /* 3513 * Incoming packets are placed on per-CPU queues 3514 */ 3515 struct softnet_data { 3516 struct list_head poll_list; 3517 struct sk_buff_head process_queue; 3518 local_lock_t process_queue_bh_lock; 3519 3520 /* stats */ 3521 unsigned int processed; 3522 unsigned int time_squeeze; 3523 #ifdef CONFIG_RPS 3524 struct softnet_data *rps_ipi_list; 3525 #endif 3526 3527 unsigned int received_rps; 3528 bool in_net_rx_action; 3529 bool in_napi_threaded_poll; 3530 3531 #ifdef CONFIG_NET_FLOW_LIMIT 3532 struct sd_flow_limit __rcu *flow_limit; 3533 #endif 3534 struct Qdisc *output_queue; 3535 struct Qdisc **output_queue_tailp; 3536 struct sk_buff *completion_queue; 3537 #ifdef CONFIG_XFRM_OFFLOAD 3538 struct sk_buff_head xfrm_backlog; 3539 #endif 3540 /* written and read only by owning cpu: */ 3541 struct netdev_xmit xmit; 3542 #ifdef CONFIG_RPS 3543 /* input_queue_head should be written by cpu owning this struct, 3544 * and only read by other cpus. Worth using a cache line. 3545 */ 3546 unsigned int input_queue_head ____cacheline_aligned_in_smp; 3547 3548 /* Elements below can be accessed between CPUs for RPS/RFS */ 3549 call_single_data_t csd ____cacheline_aligned_in_smp; 3550 struct softnet_data *rps_ipi_next; 3551 unsigned int cpu; 3552 3553 /* We force a cacheline alignment from here, to hold together 3554 * input_queue_tail, input_pkt_queue and backlog.state. 3555 * We add holes so that backlog.state is the last field 3556 * of this cache line. 3557 */ 3558 long pad[3] ____cacheline_aligned_in_smp; 3559 unsigned int input_queue_tail; 3560 #endif 3561 struct sk_buff_head input_pkt_queue; 3562 3563 struct napi_struct backlog; 3564 3565 struct numa_drop_counters drop_counters; 3566 3567 int defer_ipi_scheduled ____cacheline_aligned_in_smp; 3568 call_single_data_t defer_csd; 3569 }; 3570 3571 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 3572 3573 struct page_pool_bh { 3574 struct page_pool *pool; 3575 local_lock_t bh_lock; 3576 }; 3577 DECLARE_PER_CPU(struct page_pool_bh, system_page_pool); 3578 3579 #ifndef CONFIG_PREEMPT_RT 3580 static inline int dev_recursion_level(void) 3581 { 3582 return this_cpu_read(softnet_data.xmit.recursion); 3583 } 3584 #else 3585 static inline int dev_recursion_level(void) 3586 { 3587 return current->net_xmit.recursion; 3588 } 3589 3590 #endif 3591 3592 void __netif_schedule(struct Qdisc *q); 3593 void netif_schedule_queue(struct netdev_queue *txq); 3594 3595 static inline void netif_tx_schedule_all(struct net_device *dev) 3596 { 3597 unsigned int i; 3598 3599 for (i = 0; i < dev->num_tx_queues; i++) 3600 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 3601 } 3602 3603 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 3604 { 3605 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3606 } 3607 3608 /** 3609 * netif_start_queue - allow transmit 3610 * @dev: network device 3611 * 3612 * Allow upper layers to call the device hard_start_xmit routine. 3613 */ 3614 static inline void netif_start_queue(struct net_device *dev) 3615 { 3616 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 3617 } 3618 3619 static inline void netif_tx_start_all_queues(struct net_device *dev) 3620 { 3621 unsigned int i; 3622 3623 for (i = 0; i < dev->num_tx_queues; i++) { 3624 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3625 netif_tx_start_queue(txq); 3626 } 3627 } 3628 3629 void netif_tx_wake_queue(struct netdev_queue *dev_queue); 3630 3631 /** 3632 * netif_wake_queue - restart transmit 3633 * @dev: network device 3634 * 3635 * Allow upper layers to call the device hard_start_xmit routine. 3636 * Used for flow control when transmit resources are available. 3637 */ 3638 static inline void netif_wake_queue(struct net_device *dev) 3639 { 3640 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 3641 } 3642 3643 static inline void netif_tx_wake_all_queues(struct net_device *dev) 3644 { 3645 unsigned int i; 3646 3647 for (i = 0; i < dev->num_tx_queues; i++) { 3648 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3649 netif_tx_wake_queue(txq); 3650 } 3651 } 3652 3653 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 3654 { 3655 /* Paired with READ_ONCE() from dev_watchdog() */ 3656 WRITE_ONCE(dev_queue->trans_start, jiffies); 3657 3658 /* This barrier is paired with smp_mb() from dev_watchdog() */ 3659 smp_mb__before_atomic(); 3660 3661 /* Must be an atomic op see netif_txq_try_stop() */ 3662 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3663 } 3664 3665 /** 3666 * netif_stop_queue - stop transmitted packets 3667 * @dev: network device 3668 * 3669 * Stop upper layers calling the device hard_start_xmit routine. 3670 * Used for flow control when transmit resources are unavailable. 3671 */ 3672 static inline void netif_stop_queue(struct net_device *dev) 3673 { 3674 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 3675 } 3676 3677 void netif_tx_stop_all_queues(struct net_device *dev); 3678 3679 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 3680 { 3681 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3682 } 3683 3684 /** 3685 * netif_queue_stopped - test if transmit queue is flowblocked 3686 * @dev: network device 3687 * 3688 * Test if transmit queue on device is currently unable to send. 3689 */ 3690 static inline bool netif_queue_stopped(const struct net_device *dev) 3691 { 3692 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 3693 } 3694 3695 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 3696 { 3697 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 3698 } 3699 3700 static inline bool 3701 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 3702 { 3703 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 3704 } 3705 3706 static inline bool 3707 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue) 3708 { 3709 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN; 3710 } 3711 3712 /** 3713 * netdev_queue_set_dql_min_limit - set dql minimum limit 3714 * @dev_queue: pointer to transmit queue 3715 * @min_limit: dql minimum limit 3716 * 3717 * Forces xmit_more() to return true until the minimum threshold 3718 * defined by @min_limit is reached (or until the tx queue is 3719 * empty). Warning: to be use with care, misuse will impact the 3720 * latency. 3721 */ 3722 static inline void netdev_queue_set_dql_min_limit(struct netdev_queue *dev_queue, 3723 unsigned int min_limit) 3724 { 3725 #ifdef CONFIG_BQL 3726 dev_queue->dql.min_limit = min_limit; 3727 #endif 3728 } 3729 3730 static inline int netdev_queue_dql_avail(const struct netdev_queue *txq) 3731 { 3732 #ifdef CONFIG_BQL 3733 /* Non-BQL migrated drivers will return 0, too. */ 3734 return dql_avail(&txq->dql); 3735 #else 3736 return 0; 3737 #endif 3738 } 3739 3740 /** 3741 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write 3742 * @dev_queue: pointer to transmit queue 3743 * 3744 * BQL enabled drivers might use this helper in their ndo_start_xmit(), 3745 * to give appropriate hint to the CPU. 3746 */ 3747 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue) 3748 { 3749 #ifdef CONFIG_BQL 3750 prefetchw(&dev_queue->dql.num_queued); 3751 #endif 3752 } 3753 3754 /** 3755 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write 3756 * @dev_queue: pointer to transmit queue 3757 * 3758 * BQL enabled drivers might use this helper in their TX completion path, 3759 * to give appropriate hint to the CPU. 3760 */ 3761 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue) 3762 { 3763 #ifdef CONFIG_BQL 3764 prefetchw(&dev_queue->dql.limit); 3765 #endif 3766 } 3767 3768 /** 3769 * netdev_tx_sent_queue - report the number of bytes queued to a given tx queue 3770 * @dev_queue: network device queue 3771 * @bytes: number of bytes queued to the device queue 3772 * 3773 * Report the number of bytes queued for sending/completion to the network 3774 * device hardware queue. @bytes should be a good approximation and should 3775 * exactly match netdev_completed_queue() @bytes. 3776 * This is typically called once per packet, from ndo_start_xmit(). 3777 */ 3778 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3779 unsigned int bytes) 3780 { 3781 #ifdef CONFIG_BQL 3782 dql_queued(&dev_queue->dql, bytes); 3783 3784 if (likely(dql_avail(&dev_queue->dql) >= 0)) 3785 return; 3786 3787 /* Paired with READ_ONCE() from dev_watchdog() */ 3788 WRITE_ONCE(dev_queue->trans_start, jiffies); 3789 3790 /* This barrier is paired with smp_mb() from dev_watchdog() */ 3791 smp_mb__before_atomic(); 3792 3793 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3794 3795 /* 3796 * The XOFF flag must be set before checking the dql_avail below, 3797 * because in netdev_tx_completed_queue we update the dql_completed 3798 * before checking the XOFF flag. 3799 */ 3800 smp_mb__after_atomic(); 3801 3802 /* check again in case another CPU has just made room avail */ 3803 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 3804 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3805 #endif 3806 } 3807 3808 /* Variant of netdev_tx_sent_queue() for drivers that are aware 3809 * that they should not test BQL status themselves. 3810 * We do want to change __QUEUE_STATE_STACK_XOFF only for the last 3811 * skb of a batch. 3812 * Returns true if the doorbell must be used to kick the NIC. 3813 */ 3814 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3815 unsigned int bytes, 3816 bool xmit_more) 3817 { 3818 if (xmit_more) { 3819 #ifdef CONFIG_BQL 3820 dql_queued(&dev_queue->dql, bytes); 3821 #endif 3822 return netif_tx_queue_stopped(dev_queue); 3823 } 3824 netdev_tx_sent_queue(dev_queue, bytes); 3825 return true; 3826 } 3827 3828 /** 3829 * netdev_sent_queue - report the number of bytes queued to hardware 3830 * @dev: network device 3831 * @bytes: number of bytes queued to the hardware device queue 3832 * 3833 * Report the number of bytes queued for sending/completion to the network 3834 * device hardware queue#0. @bytes should be a good approximation and should 3835 * exactly match netdev_completed_queue() @bytes. 3836 * This is typically called once per packet, from ndo_start_xmit(). 3837 */ 3838 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 3839 { 3840 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 3841 } 3842 3843 static inline bool __netdev_sent_queue(struct net_device *dev, 3844 unsigned int bytes, 3845 bool xmit_more) 3846 { 3847 return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes, 3848 xmit_more); 3849 } 3850 3851 /** 3852 * netdev_tx_completed_queue - report number of packets/bytes at TX completion. 3853 * @dev_queue: network device queue 3854 * @pkts: number of packets (currently ignored) 3855 * @bytes: number of bytes dequeued from the device queue 3856 * 3857 * Must be called at most once per TX completion round (and not per 3858 * individual packet), so that BQL can adjust its limits appropriately. 3859 */ 3860 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 3861 unsigned int pkts, unsigned int bytes) 3862 { 3863 #ifdef CONFIG_BQL 3864 if (unlikely(!bytes)) 3865 return; 3866 3867 dql_completed(&dev_queue->dql, bytes); 3868 3869 /* 3870 * Without the memory barrier there is a small possibility that 3871 * netdev_tx_sent_queue will miss the update and cause the queue to 3872 * be stopped forever 3873 */ 3874 smp_mb(); /* NOTE: netdev_txq_completed_mb() assumes this exists */ 3875 3876 if (unlikely(dql_avail(&dev_queue->dql) < 0)) 3877 return; 3878 3879 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 3880 netif_schedule_queue(dev_queue); 3881 #endif 3882 } 3883 3884 /** 3885 * netdev_completed_queue - report bytes and packets completed by device 3886 * @dev: network device 3887 * @pkts: actual number of packets sent over the medium 3888 * @bytes: actual number of bytes sent over the medium 3889 * 3890 * Report the number of bytes and packets transmitted by the network device 3891 * hardware queue over the physical medium, @bytes must exactly match the 3892 * @bytes amount passed to netdev_sent_queue() 3893 */ 3894 static inline void netdev_completed_queue(struct net_device *dev, 3895 unsigned int pkts, unsigned int bytes) 3896 { 3897 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 3898 } 3899 3900 static inline void netdev_tx_reset_queue(struct netdev_queue *q) 3901 { 3902 #ifdef CONFIG_BQL 3903 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 3904 dql_reset(&q->dql); 3905 #endif 3906 } 3907 3908 /** 3909 * netdev_tx_reset_subqueue - reset the BQL stats and state of a netdev queue 3910 * @dev: network device 3911 * @qid: stack index of the queue to reset 3912 */ 3913 static inline void netdev_tx_reset_subqueue(const struct net_device *dev, 3914 u32 qid) 3915 { 3916 netdev_tx_reset_queue(netdev_get_tx_queue(dev, qid)); 3917 } 3918 3919 /** 3920 * netdev_reset_queue - reset the packets and bytes count of a network device 3921 * @dev_queue: network device 3922 * 3923 * Reset the bytes and packet count of a network device and clear the 3924 * software flow control OFF bit for this network device 3925 */ 3926 static inline void netdev_reset_queue(struct net_device *dev_queue) 3927 { 3928 netdev_tx_reset_subqueue(dev_queue, 0); 3929 } 3930 3931 /** 3932 * netdev_cap_txqueue - check if selected tx queue exceeds device queues 3933 * @dev: network device 3934 * @queue_index: given tx queue index 3935 * 3936 * Returns 0 if given tx queue index >= number of device tx queues, 3937 * otherwise returns the originally passed tx queue index. 3938 */ 3939 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index) 3940 { 3941 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 3942 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", 3943 dev->name, queue_index, 3944 dev->real_num_tx_queues); 3945 return 0; 3946 } 3947 3948 return queue_index; 3949 } 3950 3951 /** 3952 * netif_running - test if up 3953 * @dev: network device 3954 * 3955 * Test if the device has been brought up. 3956 */ 3957 static inline bool netif_running(const struct net_device *dev) 3958 { 3959 return test_bit(__LINK_STATE_START, &dev->state); 3960 } 3961 3962 /* 3963 * Routines to manage the subqueues on a device. We only need start, 3964 * stop, and a check if it's stopped. All other device management is 3965 * done at the overall netdevice level. 3966 * Also test the device if we're multiqueue. 3967 */ 3968 3969 /** 3970 * netif_start_subqueue - allow sending packets on subqueue 3971 * @dev: network device 3972 * @queue_index: sub queue index 3973 * 3974 * Start individual transmit queue of a device with multiple transmit queues. 3975 */ 3976 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 3977 { 3978 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3979 3980 netif_tx_start_queue(txq); 3981 } 3982 3983 /** 3984 * netif_stop_subqueue - stop sending packets on subqueue 3985 * @dev: network device 3986 * @queue_index: sub queue index 3987 * 3988 * Stop individual transmit queue of a device with multiple transmit queues. 3989 */ 3990 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 3991 { 3992 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3993 netif_tx_stop_queue(txq); 3994 } 3995 3996 /** 3997 * __netif_subqueue_stopped - test status of subqueue 3998 * @dev: network device 3999 * @queue_index: sub queue index 4000 * 4001 * Check individual transmit queue of a device with multiple transmit queues. 4002 */ 4003 static inline bool __netif_subqueue_stopped(const struct net_device *dev, 4004 u16 queue_index) 4005 { 4006 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 4007 4008 return netif_tx_queue_stopped(txq); 4009 } 4010 4011 /** 4012 * netif_subqueue_stopped - test status of subqueue 4013 * @dev: network device 4014 * @skb: sub queue buffer pointer 4015 * 4016 * Check individual transmit queue of a device with multiple transmit queues. 4017 */ 4018 static inline bool netif_subqueue_stopped(const struct net_device *dev, 4019 struct sk_buff *skb) 4020 { 4021 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 4022 } 4023 4024 /** 4025 * netif_wake_subqueue - allow sending packets on subqueue 4026 * @dev: network device 4027 * @queue_index: sub queue index 4028 * 4029 * Resume individual transmit queue of a device with multiple transmit queues. 4030 */ 4031 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 4032 { 4033 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 4034 4035 netif_tx_wake_queue(txq); 4036 } 4037 4038 #ifdef CONFIG_XPS 4039 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 4040 u16 index); 4041 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 4042 u16 index, enum xps_map_type type); 4043 4044 /** 4045 * netif_attr_test_mask - Test a CPU or Rx queue set in a mask 4046 * @j: CPU/Rx queue index 4047 * @mask: bitmask of all cpus/rx queues 4048 * @nr_bits: number of bits in the bitmask 4049 * 4050 * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues. 4051 */ 4052 static inline bool netif_attr_test_mask(unsigned long j, 4053 const unsigned long *mask, 4054 unsigned int nr_bits) 4055 { 4056 cpu_max_bits_warn(j, nr_bits); 4057 return test_bit(j, mask); 4058 } 4059 4060 /** 4061 * netif_attr_test_online - Test for online CPU/Rx queue 4062 * @j: CPU/Rx queue index 4063 * @online_mask: bitmask for CPUs/Rx queues that are online 4064 * @nr_bits: number of bits in the bitmask 4065 * 4066 * Returns: true if a CPU/Rx queue is online. 4067 */ 4068 static inline bool netif_attr_test_online(unsigned long j, 4069 const unsigned long *online_mask, 4070 unsigned int nr_bits) 4071 { 4072 cpu_max_bits_warn(j, nr_bits); 4073 4074 if (online_mask) 4075 return test_bit(j, online_mask); 4076 4077 return (j < nr_bits); 4078 } 4079 4080 /** 4081 * netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask 4082 * @n: CPU/Rx queue index 4083 * @srcp: the cpumask/Rx queue mask pointer 4084 * @nr_bits: number of bits in the bitmask 4085 * 4086 * Returns: next (after n) CPU/Rx queue index in the mask; 4087 * >= nr_bits if no further CPUs/Rx queues set. 4088 */ 4089 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp, 4090 unsigned int nr_bits) 4091 { 4092 /* -1 is a legal arg here. */ 4093 if (n != -1) 4094 cpu_max_bits_warn(n, nr_bits); 4095 4096 if (srcp) 4097 return find_next_bit(srcp, nr_bits, n + 1); 4098 4099 return n + 1; 4100 } 4101 4102 /** 4103 * netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p 4104 * @n: CPU/Rx queue index 4105 * @src1p: the first CPUs/Rx queues mask pointer 4106 * @src2p: the second CPUs/Rx queues mask pointer 4107 * @nr_bits: number of bits in the bitmask 4108 * 4109 * Returns: next (after n) CPU/Rx queue index set in both masks; 4110 * >= nr_bits if no further CPUs/Rx queues set in both. 4111 */ 4112 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p, 4113 const unsigned long *src2p, 4114 unsigned int nr_bits) 4115 { 4116 /* -1 is a legal arg here. */ 4117 if (n != -1) 4118 cpu_max_bits_warn(n, nr_bits); 4119 4120 if (src1p && src2p) 4121 return find_next_and_bit(src1p, src2p, nr_bits, n + 1); 4122 else if (src1p) 4123 return find_next_bit(src1p, nr_bits, n + 1); 4124 else if (src2p) 4125 return find_next_bit(src2p, nr_bits, n + 1); 4126 4127 return n + 1; 4128 } 4129 #else 4130 static inline int netif_set_xps_queue(struct net_device *dev, 4131 const struct cpumask *mask, 4132 u16 index) 4133 { 4134 return 0; 4135 } 4136 4137 static inline int __netif_set_xps_queue(struct net_device *dev, 4138 const unsigned long *mask, 4139 u16 index, enum xps_map_type type) 4140 { 4141 return 0; 4142 } 4143 #endif 4144 4145 /** 4146 * netif_is_multiqueue - test if device has multiple transmit queues 4147 * @dev: network device 4148 * 4149 * Check if device has multiple transmit queues 4150 */ 4151 static inline bool netif_is_multiqueue(const struct net_device *dev) 4152 { 4153 return dev->num_tx_queues > 1; 4154 } 4155 4156 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq); 4157 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq); 4158 int netif_set_real_num_queues(struct net_device *dev, 4159 unsigned int txq, unsigned int rxq); 4160 4161 int netif_get_num_default_rss_queues(void); 4162 4163 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason); 4164 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason); 4165 4166 /* 4167 * It is not allowed to call kfree_skb() or consume_skb() from hardware 4168 * interrupt context or with hardware interrupts being disabled. 4169 * (in_hardirq() || irqs_disabled()) 4170 * 4171 * We provide four helpers that can be used in following contexts : 4172 * 4173 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context, 4174 * replacing kfree_skb(skb) 4175 * 4176 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context. 4177 * Typically used in place of consume_skb(skb) in TX completion path 4178 * 4179 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context, 4180 * replacing kfree_skb(skb) 4181 * 4182 * dev_consume_skb_any(skb) when caller doesn't know its current irq context, 4183 * and consumed a packet. Used in place of consume_skb(skb) 4184 */ 4185 static inline void dev_kfree_skb_irq(struct sk_buff *skb) 4186 { 4187 dev_kfree_skb_irq_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED); 4188 } 4189 4190 static inline void dev_consume_skb_irq(struct sk_buff *skb) 4191 { 4192 dev_kfree_skb_irq_reason(skb, SKB_CONSUMED); 4193 } 4194 4195 static inline void dev_kfree_skb_any(struct sk_buff *skb) 4196 { 4197 dev_kfree_skb_any_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED); 4198 } 4199 4200 static inline void dev_consume_skb_any(struct sk_buff *skb) 4201 { 4202 dev_kfree_skb_any_reason(skb, SKB_CONSUMED); 4203 } 4204 4205 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp, 4206 const struct bpf_prog *xdp_prog); 4207 void generic_xdp_tx(struct sk_buff *skb, const struct bpf_prog *xdp_prog); 4208 int do_xdp_generic(const struct bpf_prog *xdp_prog, struct sk_buff **pskb); 4209 int netif_rx(struct sk_buff *skb); 4210 int __netif_rx(struct sk_buff *skb); 4211 4212 int netif_receive_skb(struct sk_buff *skb); 4213 int netif_receive_skb_core(struct sk_buff *skb); 4214 void netif_receive_skb_list_internal(struct list_head *head); 4215 void netif_receive_skb_list(struct list_head *head); 4216 gro_result_t gro_receive_skb(struct gro_node *gro, struct sk_buff *skb); 4217 4218 static inline gro_result_t napi_gro_receive(struct napi_struct *napi, 4219 struct sk_buff *skb) 4220 { 4221 return gro_receive_skb(&napi->gro, skb); 4222 } 4223 4224 struct sk_buff *napi_get_frags(struct napi_struct *napi); 4225 gro_result_t napi_gro_frags(struct napi_struct *napi); 4226 4227 static inline void napi_free_frags(struct napi_struct *napi) 4228 { 4229 kfree_skb(napi->skb); 4230 napi->skb = NULL; 4231 } 4232 4233 bool netdev_is_rx_handler_busy(struct net_device *dev); 4234 int netdev_rx_handler_register(struct net_device *dev, 4235 rx_handler_func_t *rx_handler, 4236 void *rx_handler_data); 4237 void netdev_rx_handler_unregister(struct net_device *dev); 4238 4239 bool dev_valid_name(const char *name); 4240 static inline bool is_socket_ioctl_cmd(unsigned int cmd) 4241 { 4242 return _IOC_TYPE(cmd) == SOCK_IOC_TYPE; 4243 } 4244 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg); 4245 int put_user_ifreq(struct ifreq *ifr, void __user *arg); 4246 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr, 4247 void __user *data, bool *need_copyout); 4248 int dev_ifconf(struct net *net, struct ifconf __user *ifc); 4249 int dev_eth_ioctl(struct net_device *dev, 4250 struct ifreq *ifr, unsigned int cmd); 4251 int generic_hwtstamp_get_lower(struct net_device *dev, 4252 struct kernel_hwtstamp_config *kernel_cfg); 4253 int generic_hwtstamp_set_lower(struct net_device *dev, 4254 struct kernel_hwtstamp_config *kernel_cfg, 4255 struct netlink_ext_ack *extack); 4256 int dev_ethtool(struct net *net, struct ifreq *ifr, void __user *userdata); 4257 unsigned int netif_get_flags(const struct net_device *dev); 4258 int __dev_change_flags(struct net_device *dev, unsigned int flags, 4259 struct netlink_ext_ack *extack); 4260 int netif_change_flags(struct net_device *dev, unsigned int flags, 4261 struct netlink_ext_ack *extack); 4262 int dev_change_flags(struct net_device *dev, unsigned int flags, 4263 struct netlink_ext_ack *extack); 4264 int netif_set_alias(struct net_device *dev, const char *alias, size_t len); 4265 int dev_set_alias(struct net_device *, const char *, size_t); 4266 int dev_get_alias(const struct net_device *, char *, size_t); 4267 int __dev_change_net_namespace(struct net_device *dev, struct net *net, 4268 const char *pat, int new_ifindex, 4269 struct netlink_ext_ack *extack); 4270 int dev_change_net_namespace(struct net_device *dev, struct net *net, 4271 const char *pat); 4272 int __netif_set_mtu(struct net_device *dev, int new_mtu); 4273 int netif_set_mtu(struct net_device *dev, int new_mtu); 4274 int dev_set_mtu(struct net_device *, int); 4275 int netif_pre_changeaddr_notify(struct net_device *dev, const char *addr, 4276 struct netlink_ext_ack *extack); 4277 int netif_set_mac_address(struct net_device *dev, struct sockaddr_storage *ss, 4278 struct netlink_ext_ack *extack); 4279 int dev_set_mac_address(struct net_device *dev, struct sockaddr_storage *ss, 4280 struct netlink_ext_ack *extack); 4281 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr_storage *ss, 4282 struct netlink_ext_ack *extack); 4283 int netif_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name); 4284 int netif_get_port_parent_id(struct net_device *dev, 4285 struct netdev_phys_item_id *ppid, bool recurse); 4286 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b); 4287 4288 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again); 4289 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 4290 struct netdev_queue *txq, int *ret); 4291 4292 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog); 4293 u8 dev_xdp_prog_count(struct net_device *dev); 4294 int netif_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf); 4295 int dev_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf); 4296 u8 dev_xdp_sb_prog_count(struct net_device *dev); 4297 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode); 4298 4299 u32 dev_get_min_mp_channel_count(const struct net_device *dev); 4300 4301 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 4302 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 4303 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb); 4304 bool is_skb_forwardable(const struct net_device *dev, 4305 const struct sk_buff *skb); 4306 4307 static __always_inline bool __is_skb_forwardable(const struct net_device *dev, 4308 const struct sk_buff *skb, 4309 const bool check_mtu) 4310 { 4311 const u32 vlan_hdr_len = 4; /* VLAN_HLEN */ 4312 unsigned int len; 4313 4314 if (!(dev->flags & IFF_UP)) 4315 return false; 4316 4317 if (!check_mtu) 4318 return true; 4319 4320 len = dev->mtu + dev->hard_header_len + vlan_hdr_len; 4321 if (skb->len <= len) 4322 return true; 4323 4324 /* if TSO is enabled, we don't care about the length as the packet 4325 * could be forwarded without being segmented before 4326 */ 4327 if (skb_is_gso(skb)) 4328 return true; 4329 4330 return false; 4331 } 4332 4333 void netdev_core_stats_inc(struct net_device *dev, u32 offset); 4334 4335 #define DEV_CORE_STATS_INC(FIELD) \ 4336 static inline void dev_core_stats_##FIELD##_inc(struct net_device *dev) \ 4337 { \ 4338 netdev_core_stats_inc(dev, \ 4339 offsetof(struct net_device_core_stats, FIELD)); \ 4340 } 4341 DEV_CORE_STATS_INC(rx_dropped) 4342 DEV_CORE_STATS_INC(tx_dropped) 4343 DEV_CORE_STATS_INC(rx_nohandler) 4344 DEV_CORE_STATS_INC(rx_otherhost_dropped) 4345 #undef DEV_CORE_STATS_INC 4346 4347 static __always_inline int ____dev_forward_skb(struct net_device *dev, 4348 struct sk_buff *skb, 4349 const bool check_mtu) 4350 { 4351 if (skb_orphan_frags(skb, GFP_ATOMIC) || 4352 unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) { 4353 dev_core_stats_rx_dropped_inc(dev); 4354 kfree_skb(skb); 4355 return NET_RX_DROP; 4356 } 4357 4358 skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev))); 4359 skb->priority = 0; 4360 return 0; 4361 } 4362 4363 bool dev_nit_active_rcu(const struct net_device *dev); 4364 static inline bool dev_nit_active(const struct net_device *dev) 4365 { 4366 bool ret; 4367 4368 rcu_read_lock(); 4369 ret = dev_nit_active_rcu(dev); 4370 rcu_read_unlock(); 4371 return ret; 4372 } 4373 4374 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev); 4375 4376 static inline void __dev_put(struct net_device *dev) 4377 { 4378 if (dev) { 4379 #ifdef CONFIG_PCPU_DEV_REFCNT 4380 this_cpu_dec(*dev->pcpu_refcnt); 4381 #else 4382 refcount_dec(&dev->dev_refcnt); 4383 #endif 4384 } 4385 } 4386 4387 static inline void __dev_hold(struct net_device *dev) 4388 { 4389 if (dev) { 4390 #ifdef CONFIG_PCPU_DEV_REFCNT 4391 this_cpu_inc(*dev->pcpu_refcnt); 4392 #else 4393 refcount_inc(&dev->dev_refcnt); 4394 #endif 4395 } 4396 } 4397 4398 static inline void __netdev_tracker_alloc(struct net_device *dev, 4399 netdevice_tracker *tracker, 4400 gfp_t gfp) 4401 { 4402 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER 4403 ref_tracker_alloc(&dev->refcnt_tracker, tracker, gfp); 4404 #endif 4405 } 4406 4407 /* netdev_tracker_alloc() can upgrade a prior untracked reference 4408 * taken by dev_get_by_name()/dev_get_by_index() to a tracked one. 4409 */ 4410 static inline void netdev_tracker_alloc(struct net_device *dev, 4411 netdevice_tracker *tracker, gfp_t gfp) 4412 { 4413 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER 4414 refcount_dec(&dev->refcnt_tracker.no_tracker); 4415 __netdev_tracker_alloc(dev, tracker, gfp); 4416 #endif 4417 } 4418 4419 static inline void netdev_tracker_free(struct net_device *dev, 4420 netdevice_tracker *tracker) 4421 { 4422 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER 4423 ref_tracker_free(&dev->refcnt_tracker, tracker); 4424 #endif 4425 } 4426 4427 static inline void netdev_hold(struct net_device *dev, 4428 netdevice_tracker *tracker, gfp_t gfp) 4429 { 4430 if (dev) { 4431 __dev_hold(dev); 4432 __netdev_tracker_alloc(dev, tracker, gfp); 4433 } 4434 } 4435 4436 static inline void netdev_put(struct net_device *dev, 4437 netdevice_tracker *tracker) 4438 { 4439 if (dev) { 4440 netdev_tracker_free(dev, tracker); 4441 __dev_put(dev); 4442 } 4443 } 4444 4445 /** 4446 * dev_hold - get reference to device 4447 * @dev: network device 4448 * 4449 * Hold reference to device to keep it from being freed. 4450 * Try using netdev_hold() instead. 4451 */ 4452 static inline void dev_hold(struct net_device *dev) 4453 { 4454 netdev_hold(dev, NULL, GFP_ATOMIC); 4455 } 4456 4457 /** 4458 * dev_put - release reference to device 4459 * @dev: network device 4460 * 4461 * Release reference to device to allow it to be freed. 4462 * Try using netdev_put() instead. 4463 */ 4464 static inline void dev_put(struct net_device *dev) 4465 { 4466 netdev_put(dev, NULL); 4467 } 4468 4469 DEFINE_FREE(dev_put, struct net_device *, if (_T) dev_put(_T)) 4470 4471 static inline void netdev_ref_replace(struct net_device *odev, 4472 struct net_device *ndev, 4473 netdevice_tracker *tracker, 4474 gfp_t gfp) 4475 { 4476 if (odev) 4477 netdev_tracker_free(odev, tracker); 4478 4479 __dev_hold(ndev); 4480 __dev_put(odev); 4481 4482 if (ndev) 4483 __netdev_tracker_alloc(ndev, tracker, gfp); 4484 } 4485 4486 /* Carrier loss detection, dial on demand. The functions netif_carrier_on 4487 * and _off may be called from IRQ context, but it is caller 4488 * who is responsible for serialization of these calls. 4489 * 4490 * The name carrier is inappropriate, these functions should really be 4491 * called netif_lowerlayer_*() because they represent the state of any 4492 * kind of lower layer not just hardware media. 4493 */ 4494 void linkwatch_fire_event(struct net_device *dev); 4495 4496 /** 4497 * linkwatch_sync_dev - sync linkwatch for the given device 4498 * @dev: network device to sync linkwatch for 4499 * 4500 * Sync linkwatch for the given device, removing it from the 4501 * pending work list (if queued). 4502 */ 4503 void linkwatch_sync_dev(struct net_device *dev); 4504 void __linkwatch_sync_dev(struct net_device *dev); 4505 4506 /** 4507 * netif_carrier_ok - test if carrier present 4508 * @dev: network device 4509 * 4510 * Check if carrier is present on device 4511 */ 4512 static inline bool netif_carrier_ok(const struct net_device *dev) 4513 { 4514 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 4515 } 4516 4517 unsigned long dev_trans_start(struct net_device *dev); 4518 4519 void netdev_watchdog_up(struct net_device *dev); 4520 4521 void netif_carrier_on(struct net_device *dev); 4522 void netif_carrier_off(struct net_device *dev); 4523 void netif_carrier_event(struct net_device *dev); 4524 4525 /** 4526 * netif_dormant_on - mark device as dormant. 4527 * @dev: network device 4528 * 4529 * Mark device as dormant (as per RFC2863). 4530 * 4531 * The dormant state indicates that the relevant interface is not 4532 * actually in a condition to pass packets (i.e., it is not 'up') but is 4533 * in a "pending" state, waiting for some external event. For "on- 4534 * demand" interfaces, this new state identifies the situation where the 4535 * interface is waiting for events to place it in the up state. 4536 */ 4537 static inline void netif_dormant_on(struct net_device *dev) 4538 { 4539 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 4540 linkwatch_fire_event(dev); 4541 } 4542 4543 /** 4544 * netif_dormant_off - set device as not dormant. 4545 * @dev: network device 4546 * 4547 * Device is not in dormant state. 4548 */ 4549 static inline void netif_dormant_off(struct net_device *dev) 4550 { 4551 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 4552 linkwatch_fire_event(dev); 4553 } 4554 4555 /** 4556 * netif_dormant - test if device is dormant 4557 * @dev: network device 4558 * 4559 * Check if device is dormant. 4560 */ 4561 static inline bool netif_dormant(const struct net_device *dev) 4562 { 4563 return test_bit(__LINK_STATE_DORMANT, &dev->state); 4564 } 4565 4566 4567 /** 4568 * netif_testing_on - mark device as under test. 4569 * @dev: network device 4570 * 4571 * Mark device as under test (as per RFC2863). 4572 * 4573 * The testing state indicates that some test(s) must be performed on 4574 * the interface. After completion, of the test, the interface state 4575 * will change to up, dormant, or down, as appropriate. 4576 */ 4577 static inline void netif_testing_on(struct net_device *dev) 4578 { 4579 if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state)) 4580 linkwatch_fire_event(dev); 4581 } 4582 4583 /** 4584 * netif_testing_off - set device as not under test. 4585 * @dev: network device 4586 * 4587 * Device is not in testing state. 4588 */ 4589 static inline void netif_testing_off(struct net_device *dev) 4590 { 4591 if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state)) 4592 linkwatch_fire_event(dev); 4593 } 4594 4595 /** 4596 * netif_testing - test if device is under test 4597 * @dev: network device 4598 * 4599 * Check if device is under test 4600 */ 4601 static inline bool netif_testing(const struct net_device *dev) 4602 { 4603 return test_bit(__LINK_STATE_TESTING, &dev->state); 4604 } 4605 4606 4607 /** 4608 * netif_oper_up - test if device is operational 4609 * @dev: network device 4610 * 4611 * Check if carrier is operational 4612 */ 4613 static inline bool netif_oper_up(const struct net_device *dev) 4614 { 4615 unsigned int operstate = READ_ONCE(dev->operstate); 4616 4617 return operstate == IF_OPER_UP || 4618 operstate == IF_OPER_UNKNOWN /* backward compat */; 4619 } 4620 4621 /** 4622 * netif_device_present - is device available or removed 4623 * @dev: network device 4624 * 4625 * Check if device has not been removed from system. 4626 */ 4627 static inline bool netif_device_present(const struct net_device *dev) 4628 { 4629 return test_bit(__LINK_STATE_PRESENT, &dev->state); 4630 } 4631 4632 void netif_device_detach(struct net_device *dev); 4633 4634 void netif_device_attach(struct net_device *dev); 4635 4636 /* 4637 * Network interface message level settings 4638 */ 4639 4640 enum { 4641 NETIF_MSG_DRV_BIT, 4642 NETIF_MSG_PROBE_BIT, 4643 NETIF_MSG_LINK_BIT, 4644 NETIF_MSG_TIMER_BIT, 4645 NETIF_MSG_IFDOWN_BIT, 4646 NETIF_MSG_IFUP_BIT, 4647 NETIF_MSG_RX_ERR_BIT, 4648 NETIF_MSG_TX_ERR_BIT, 4649 NETIF_MSG_TX_QUEUED_BIT, 4650 NETIF_MSG_INTR_BIT, 4651 NETIF_MSG_TX_DONE_BIT, 4652 NETIF_MSG_RX_STATUS_BIT, 4653 NETIF_MSG_PKTDATA_BIT, 4654 NETIF_MSG_HW_BIT, 4655 NETIF_MSG_WOL_BIT, 4656 4657 /* When you add a new bit above, update netif_msg_class_names array 4658 * in net/ethtool/common.c 4659 */ 4660 NETIF_MSG_CLASS_COUNT, 4661 }; 4662 /* Both ethtool_ops interface and internal driver implementation use u32 */ 4663 static_assert(NETIF_MSG_CLASS_COUNT <= 32); 4664 4665 #define __NETIF_MSG_BIT(bit) ((u32)1 << (bit)) 4666 #define __NETIF_MSG(name) __NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT) 4667 4668 #define NETIF_MSG_DRV __NETIF_MSG(DRV) 4669 #define NETIF_MSG_PROBE __NETIF_MSG(PROBE) 4670 #define NETIF_MSG_LINK __NETIF_MSG(LINK) 4671 #define NETIF_MSG_TIMER __NETIF_MSG(TIMER) 4672 #define NETIF_MSG_IFDOWN __NETIF_MSG(IFDOWN) 4673 #define NETIF_MSG_IFUP __NETIF_MSG(IFUP) 4674 #define NETIF_MSG_RX_ERR __NETIF_MSG(RX_ERR) 4675 #define NETIF_MSG_TX_ERR __NETIF_MSG(TX_ERR) 4676 #define NETIF_MSG_TX_QUEUED __NETIF_MSG(TX_QUEUED) 4677 #define NETIF_MSG_INTR __NETIF_MSG(INTR) 4678 #define NETIF_MSG_TX_DONE __NETIF_MSG(TX_DONE) 4679 #define NETIF_MSG_RX_STATUS __NETIF_MSG(RX_STATUS) 4680 #define NETIF_MSG_PKTDATA __NETIF_MSG(PKTDATA) 4681 #define NETIF_MSG_HW __NETIF_MSG(HW) 4682 #define NETIF_MSG_WOL __NETIF_MSG(WOL) 4683 4684 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 4685 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 4686 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 4687 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 4688 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 4689 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 4690 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 4691 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 4692 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 4693 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 4694 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 4695 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 4696 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 4697 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 4698 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 4699 4700 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 4701 { 4702 /* use default */ 4703 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 4704 return default_msg_enable_bits; 4705 if (debug_value == 0) /* no output */ 4706 return 0; 4707 /* set low N bits */ 4708 return (1U << debug_value) - 1; 4709 } 4710 4711 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 4712 { 4713 spin_lock(&txq->_xmit_lock); 4714 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4715 WRITE_ONCE(txq->xmit_lock_owner, cpu); 4716 } 4717 4718 static inline bool __netif_tx_acquire(struct netdev_queue *txq) 4719 { 4720 __acquire(&txq->_xmit_lock); 4721 return true; 4722 } 4723 4724 static inline void __netif_tx_release(struct netdev_queue *txq) 4725 { 4726 __release(&txq->_xmit_lock); 4727 } 4728 4729 static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 4730 { 4731 spin_lock_bh(&txq->_xmit_lock); 4732 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4733 WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id()); 4734 } 4735 4736 static inline bool __netif_tx_trylock(struct netdev_queue *txq) 4737 { 4738 bool ok = spin_trylock(&txq->_xmit_lock); 4739 4740 if (likely(ok)) { 4741 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4742 WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id()); 4743 } 4744 return ok; 4745 } 4746 4747 static inline void __netif_tx_unlock(struct netdev_queue *txq) 4748 { 4749 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4750 WRITE_ONCE(txq->xmit_lock_owner, -1); 4751 spin_unlock(&txq->_xmit_lock); 4752 } 4753 4754 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 4755 { 4756 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4757 WRITE_ONCE(txq->xmit_lock_owner, -1); 4758 spin_unlock_bh(&txq->_xmit_lock); 4759 } 4760 4761 /* 4762 * txq->trans_start can be read locklessly from dev_watchdog() 4763 */ 4764 static inline void txq_trans_update(const struct net_device *dev, 4765 struct netdev_queue *txq) 4766 { 4767 if (!dev->lltx) 4768 WRITE_ONCE(txq->trans_start, jiffies); 4769 } 4770 4771 static inline void txq_trans_cond_update(struct netdev_queue *txq) 4772 { 4773 unsigned long now = jiffies; 4774 4775 if (READ_ONCE(txq->trans_start) != now) 4776 WRITE_ONCE(txq->trans_start, now); 4777 } 4778 4779 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */ 4780 static inline void netif_trans_update(struct net_device *dev) 4781 { 4782 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); 4783 4784 txq_trans_cond_update(txq); 4785 } 4786 4787 /** 4788 * netif_tx_lock - grab network device transmit lock 4789 * @dev: network device 4790 * 4791 * Get network device transmit lock 4792 */ 4793 void netif_tx_lock(struct net_device *dev); 4794 4795 static inline void netif_tx_lock_bh(struct net_device *dev) 4796 { 4797 local_bh_disable(); 4798 netif_tx_lock(dev); 4799 } 4800 4801 void netif_tx_unlock(struct net_device *dev); 4802 4803 static inline void netif_tx_unlock_bh(struct net_device *dev) 4804 { 4805 netif_tx_unlock(dev); 4806 local_bh_enable(); 4807 } 4808 4809 #define HARD_TX_LOCK(dev, txq, cpu) { \ 4810 if (!(dev)->lltx) { \ 4811 __netif_tx_lock(txq, cpu); \ 4812 } else { \ 4813 __netif_tx_acquire(txq); \ 4814 } \ 4815 } 4816 4817 #define HARD_TX_TRYLOCK(dev, txq) \ 4818 (!(dev)->lltx ? \ 4819 __netif_tx_trylock(txq) : \ 4820 __netif_tx_acquire(txq)) 4821 4822 #define HARD_TX_UNLOCK(dev, txq) { \ 4823 if (!(dev)->lltx) { \ 4824 __netif_tx_unlock(txq); \ 4825 } else { \ 4826 __netif_tx_release(txq); \ 4827 } \ 4828 } 4829 4830 static inline void netif_tx_disable(struct net_device *dev) 4831 { 4832 unsigned int i; 4833 int cpu; 4834 4835 local_bh_disable(); 4836 cpu = smp_processor_id(); 4837 spin_lock(&dev->tx_global_lock); 4838 for (i = 0; i < dev->num_tx_queues; i++) { 4839 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 4840 4841 __netif_tx_lock(txq, cpu); 4842 netif_tx_stop_queue(txq); 4843 __netif_tx_unlock(txq); 4844 } 4845 spin_unlock(&dev->tx_global_lock); 4846 local_bh_enable(); 4847 } 4848 4849 static inline void netif_addr_lock(struct net_device *dev) 4850 { 4851 unsigned char nest_level = 0; 4852 4853 #ifdef CONFIG_LOCKDEP 4854 nest_level = dev->nested_level; 4855 #endif 4856 spin_lock_nested(&dev->addr_list_lock, nest_level); 4857 } 4858 4859 static inline void netif_addr_lock_bh(struct net_device *dev) 4860 { 4861 unsigned char nest_level = 0; 4862 4863 #ifdef CONFIG_LOCKDEP 4864 nest_level = dev->nested_level; 4865 #endif 4866 local_bh_disable(); 4867 spin_lock_nested(&dev->addr_list_lock, nest_level); 4868 } 4869 4870 static inline void netif_addr_unlock(struct net_device *dev) 4871 { 4872 spin_unlock(&dev->addr_list_lock); 4873 } 4874 4875 static inline void netif_addr_unlock_bh(struct net_device *dev) 4876 { 4877 spin_unlock_bh(&dev->addr_list_lock); 4878 } 4879 4880 /* 4881 * dev_addrs walker. Should be used only for read access. Call with 4882 * rcu_read_lock held. 4883 */ 4884 #define for_each_dev_addr(dev, ha) \ 4885 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 4886 4887 /* These functions live elsewhere (drivers/net/net_init.c, but related) */ 4888 4889 void ether_setup(struct net_device *dev); 4890 4891 /* Allocate dummy net_device */ 4892 struct net_device *alloc_netdev_dummy(int sizeof_priv); 4893 4894 /* Support for loadable net-drivers */ 4895 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 4896 unsigned char name_assign_type, 4897 void (*setup)(struct net_device *), 4898 unsigned int txqs, unsigned int rxqs); 4899 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \ 4900 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1) 4901 4902 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \ 4903 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \ 4904 count) 4905 4906 int register_netdev(struct net_device *dev); 4907 void unregister_netdev(struct net_device *dev); 4908 4909 int devm_register_netdev(struct device *dev, struct net_device *ndev); 4910 4911 /* General hardware address lists handling functions */ 4912 int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 4913 struct netdev_hw_addr_list *from_list, int addr_len); 4914 int __hw_addr_sync_multiple(struct netdev_hw_addr_list *to_list, 4915 struct netdev_hw_addr_list *from_list, 4916 int addr_len); 4917 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 4918 struct netdev_hw_addr_list *from_list, int addr_len); 4919 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list, 4920 struct net_device *dev, 4921 int (*sync)(struct net_device *, const unsigned char *), 4922 int (*unsync)(struct net_device *, 4923 const unsigned char *)); 4924 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list, 4925 struct net_device *dev, 4926 int (*sync)(struct net_device *, 4927 const unsigned char *, int), 4928 int (*unsync)(struct net_device *, 4929 const unsigned char *, int)); 4930 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list, 4931 struct net_device *dev, 4932 int (*unsync)(struct net_device *, 4933 const unsigned char *, int)); 4934 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list, 4935 struct net_device *dev, 4936 int (*unsync)(struct net_device *, 4937 const unsigned char *)); 4938 void __hw_addr_init(struct netdev_hw_addr_list *list); 4939 4940 /* Functions used for device addresses handling */ 4941 void dev_addr_mod(struct net_device *dev, unsigned int offset, 4942 const void *addr, size_t len); 4943 4944 static inline void 4945 __dev_addr_set(struct net_device *dev, const void *addr, size_t len) 4946 { 4947 dev_addr_mod(dev, 0, addr, len); 4948 } 4949 4950 static inline void dev_addr_set(struct net_device *dev, const u8 *addr) 4951 { 4952 __dev_addr_set(dev, addr, dev->addr_len); 4953 } 4954 4955 int dev_addr_add(struct net_device *dev, const unsigned char *addr, 4956 unsigned char addr_type); 4957 int dev_addr_del(struct net_device *dev, const unsigned char *addr, 4958 unsigned char addr_type); 4959 4960 /* Functions used for unicast addresses handling */ 4961 int dev_uc_add(struct net_device *dev, const unsigned char *addr); 4962 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr); 4963 int dev_uc_del(struct net_device *dev, const unsigned char *addr); 4964 int dev_uc_sync(struct net_device *to, struct net_device *from); 4965 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from); 4966 void dev_uc_unsync(struct net_device *to, struct net_device *from); 4967 void dev_uc_flush(struct net_device *dev); 4968 void dev_uc_init(struct net_device *dev); 4969 4970 /** 4971 * __dev_uc_sync - Synchronize device's unicast list 4972 * @dev: device to sync 4973 * @sync: function to call if address should be added 4974 * @unsync: function to call if address should be removed 4975 * 4976 * Add newly added addresses to the interface, and release 4977 * addresses that have been deleted. 4978 */ 4979 static inline int __dev_uc_sync(struct net_device *dev, 4980 int (*sync)(struct net_device *, 4981 const unsigned char *), 4982 int (*unsync)(struct net_device *, 4983 const unsigned char *)) 4984 { 4985 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync); 4986 } 4987 4988 /** 4989 * __dev_uc_unsync - Remove synchronized addresses from device 4990 * @dev: device to sync 4991 * @unsync: function to call if address should be removed 4992 * 4993 * Remove all addresses that were added to the device by dev_uc_sync(). 4994 */ 4995 static inline void __dev_uc_unsync(struct net_device *dev, 4996 int (*unsync)(struct net_device *, 4997 const unsigned char *)) 4998 { 4999 __hw_addr_unsync_dev(&dev->uc, dev, unsync); 5000 } 5001 5002 /* Functions used for multicast addresses handling */ 5003 int dev_mc_add(struct net_device *dev, const unsigned char *addr); 5004 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr); 5005 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr); 5006 int dev_mc_del(struct net_device *dev, const unsigned char *addr); 5007 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr); 5008 int dev_mc_sync(struct net_device *to, struct net_device *from); 5009 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from); 5010 void dev_mc_unsync(struct net_device *to, struct net_device *from); 5011 void dev_mc_flush(struct net_device *dev); 5012 void dev_mc_init(struct net_device *dev); 5013 5014 /** 5015 * __dev_mc_sync - Synchronize device's multicast list 5016 * @dev: device to sync 5017 * @sync: function to call if address should be added 5018 * @unsync: function to call if address should be removed 5019 * 5020 * Add newly added addresses to the interface, and release 5021 * addresses that have been deleted. 5022 */ 5023 static inline int __dev_mc_sync(struct net_device *dev, 5024 int (*sync)(struct net_device *, 5025 const unsigned char *), 5026 int (*unsync)(struct net_device *, 5027 const unsigned char *)) 5028 { 5029 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync); 5030 } 5031 5032 /** 5033 * __dev_mc_unsync - Remove synchronized addresses from device 5034 * @dev: device to sync 5035 * @unsync: function to call if address should be removed 5036 * 5037 * Remove all addresses that were added to the device by dev_mc_sync(). 5038 */ 5039 static inline void __dev_mc_unsync(struct net_device *dev, 5040 int (*unsync)(struct net_device *, 5041 const unsigned char *)) 5042 { 5043 __hw_addr_unsync_dev(&dev->mc, dev, unsync); 5044 } 5045 5046 /* Functions used for secondary unicast and multicast support */ 5047 void dev_set_rx_mode(struct net_device *dev); 5048 int netif_set_promiscuity(struct net_device *dev, int inc); 5049 int dev_set_promiscuity(struct net_device *dev, int inc); 5050 int netif_set_allmulti(struct net_device *dev, int inc, bool notify); 5051 int dev_set_allmulti(struct net_device *dev, int inc); 5052 void netif_state_change(struct net_device *dev); 5053 void netdev_state_change(struct net_device *dev); 5054 void __netdev_notify_peers(struct net_device *dev); 5055 void netdev_notify_peers(struct net_device *dev); 5056 void netdev_features_change(struct net_device *dev); 5057 /* Load a device via the kmod */ 5058 void dev_load(struct net *net, const char *name); 5059 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 5060 struct rtnl_link_stats64 *storage); 5061 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 5062 const struct net_device_stats *netdev_stats); 5063 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s, 5064 const struct pcpu_sw_netstats __percpu *netstats); 5065 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s); 5066 5067 enum { 5068 NESTED_SYNC_IMM_BIT, 5069 NESTED_SYNC_TODO_BIT, 5070 }; 5071 5072 #define __NESTED_SYNC_BIT(bit) ((u32)1 << (bit)) 5073 #define __NESTED_SYNC(name) __NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT) 5074 5075 #define NESTED_SYNC_IMM __NESTED_SYNC(IMM) 5076 #define NESTED_SYNC_TODO __NESTED_SYNC(TODO) 5077 5078 struct netdev_nested_priv { 5079 unsigned char flags; 5080 void *data; 5081 }; 5082 5083 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev); 5084 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 5085 struct list_head **iter); 5086 5087 /* iterate through upper list, must be called under RCU read lock */ 5088 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \ 5089 for (iter = &(dev)->adj_list.upper, \ 5090 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \ 5091 updev; \ 5092 updev = netdev_upper_get_next_dev_rcu(dev, &(iter))) 5093 5094 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 5095 int (*fn)(struct net_device *upper_dev, 5096 struct netdev_nested_priv *priv), 5097 struct netdev_nested_priv *priv); 5098 5099 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 5100 struct net_device *upper_dev); 5101 5102 bool netdev_has_any_upper_dev(struct net_device *dev); 5103 5104 void *netdev_lower_get_next_private(struct net_device *dev, 5105 struct list_head **iter); 5106 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 5107 struct list_head **iter); 5108 5109 #define netdev_for_each_lower_private(dev, priv, iter) \ 5110 for (iter = (dev)->adj_list.lower.next, \ 5111 priv = netdev_lower_get_next_private(dev, &(iter)); \ 5112 priv; \ 5113 priv = netdev_lower_get_next_private(dev, &(iter))) 5114 5115 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \ 5116 for (iter = &(dev)->adj_list.lower, \ 5117 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \ 5118 priv; \ 5119 priv = netdev_lower_get_next_private_rcu(dev, &(iter))) 5120 5121 void *netdev_lower_get_next(struct net_device *dev, 5122 struct list_head **iter); 5123 5124 #define netdev_for_each_lower_dev(dev, ldev, iter) \ 5125 for (iter = (dev)->adj_list.lower.next, \ 5126 ldev = netdev_lower_get_next(dev, &(iter)); \ 5127 ldev; \ 5128 ldev = netdev_lower_get_next(dev, &(iter))) 5129 5130 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 5131 struct list_head **iter); 5132 int netdev_walk_all_lower_dev(struct net_device *dev, 5133 int (*fn)(struct net_device *lower_dev, 5134 struct netdev_nested_priv *priv), 5135 struct netdev_nested_priv *priv); 5136 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 5137 int (*fn)(struct net_device *lower_dev, 5138 struct netdev_nested_priv *priv), 5139 struct netdev_nested_priv *priv); 5140 5141 void *netdev_adjacent_get_private(struct list_head *adj_list); 5142 void *netdev_lower_get_first_private_rcu(struct net_device *dev); 5143 struct net_device *netdev_master_upper_dev_get(struct net_device *dev); 5144 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev); 5145 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev, 5146 struct netlink_ext_ack *extack); 5147 int netdev_master_upper_dev_link(struct net_device *dev, 5148 struct net_device *upper_dev, 5149 void *upper_priv, void *upper_info, 5150 struct netlink_ext_ack *extack); 5151 void netdev_upper_dev_unlink(struct net_device *dev, 5152 struct net_device *upper_dev); 5153 int netdev_adjacent_change_prepare(struct net_device *old_dev, 5154 struct net_device *new_dev, 5155 struct net_device *dev, 5156 struct netlink_ext_ack *extack); 5157 void netdev_adjacent_change_commit(struct net_device *old_dev, 5158 struct net_device *new_dev, 5159 struct net_device *dev); 5160 void netdev_adjacent_change_abort(struct net_device *old_dev, 5161 struct net_device *new_dev, 5162 struct net_device *dev); 5163 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname); 5164 void *netdev_lower_dev_get_private(struct net_device *dev, 5165 struct net_device *lower_dev); 5166 void netdev_lower_state_changed(struct net_device *lower_dev, 5167 void *lower_state_info); 5168 5169 #define NETDEV_RSS_KEY_LEN 256 5170 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly; 5171 void netdev_rss_key_fill(void *buffer, size_t len); 5172 5173 int skb_checksum_help(struct sk_buff *skb); 5174 int skb_crc32c_csum_help(struct sk_buff *skb); 5175 int skb_csum_hwoffload_help(struct sk_buff *skb, 5176 const netdev_features_t features); 5177 5178 struct netdev_bonding_info { 5179 ifslave slave; 5180 ifbond master; 5181 }; 5182 5183 struct netdev_notifier_bonding_info { 5184 struct netdev_notifier_info info; /* must be first */ 5185 struct netdev_bonding_info bonding_info; 5186 }; 5187 5188 void netdev_bonding_info_change(struct net_device *dev, 5189 struct netdev_bonding_info *bonding_info); 5190 5191 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK) 5192 void ethtool_notify(struct net_device *dev, unsigned int cmd); 5193 #else 5194 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd) 5195 { 5196 } 5197 #endif 5198 5199 __be16 skb_network_protocol(struct sk_buff *skb, int *depth); 5200 5201 static inline bool can_checksum_protocol(netdev_features_t features, 5202 __be16 protocol) 5203 { 5204 if (protocol == htons(ETH_P_FCOE)) 5205 return !!(features & NETIF_F_FCOE_CRC); 5206 5207 /* Assume this is an IP checksum (not SCTP CRC) */ 5208 5209 if (features & NETIF_F_HW_CSUM) { 5210 /* Can checksum everything */ 5211 return true; 5212 } 5213 5214 switch (protocol) { 5215 case htons(ETH_P_IP): 5216 return !!(features & NETIF_F_IP_CSUM); 5217 case htons(ETH_P_IPV6): 5218 return !!(features & NETIF_F_IPV6_CSUM); 5219 default: 5220 return false; 5221 } 5222 } 5223 5224 #ifdef CONFIG_BUG 5225 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb); 5226 #else 5227 static inline void netdev_rx_csum_fault(struct net_device *dev, 5228 struct sk_buff *skb) 5229 { 5230 } 5231 #endif 5232 /* rx skb timestamps */ 5233 void net_enable_timestamp(void); 5234 void net_disable_timestamp(void); 5235 5236 static inline ktime_t netdev_get_tstamp(struct net_device *dev, 5237 const struct skb_shared_hwtstamps *hwtstamps, 5238 bool cycles) 5239 { 5240 const struct net_device_ops *ops = dev->netdev_ops; 5241 5242 if (ops->ndo_get_tstamp) 5243 return ops->ndo_get_tstamp(dev, hwtstamps, cycles); 5244 5245 return hwtstamps->hwtstamp; 5246 } 5247 5248 #ifndef CONFIG_PREEMPT_RT 5249 static inline void netdev_xmit_set_more(bool more) 5250 { 5251 __this_cpu_write(softnet_data.xmit.more, more); 5252 } 5253 5254 static inline bool netdev_xmit_more(void) 5255 { 5256 return __this_cpu_read(softnet_data.xmit.more); 5257 } 5258 #else 5259 static inline void netdev_xmit_set_more(bool more) 5260 { 5261 current->net_xmit.more = more; 5262 } 5263 5264 static inline bool netdev_xmit_more(void) 5265 { 5266 return current->net_xmit.more; 5267 } 5268 #endif 5269 5270 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops, 5271 struct sk_buff *skb, struct net_device *dev, 5272 bool more) 5273 { 5274 netdev_xmit_set_more(more); 5275 return ops->ndo_start_xmit(skb, dev); 5276 } 5277 5278 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev, 5279 struct netdev_queue *txq, bool more) 5280 { 5281 const struct net_device_ops *ops = dev->netdev_ops; 5282 netdev_tx_t rc; 5283 5284 rc = __netdev_start_xmit(ops, skb, dev, more); 5285 if (rc == NETDEV_TX_OK) 5286 txq_trans_update(dev, txq); 5287 5288 return rc; 5289 } 5290 5291 int netdev_class_create_file_ns(const struct class_attribute *class_attr, 5292 const void *ns); 5293 void netdev_class_remove_file_ns(const struct class_attribute *class_attr, 5294 const void *ns); 5295 5296 extern const struct kobj_ns_type_operations net_ns_type_operations; 5297 5298 const char *netdev_drivername(const struct net_device *dev); 5299 5300 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1, 5301 netdev_features_t f2) 5302 { 5303 if ((f1 ^ f2) & NETIF_F_HW_CSUM) { 5304 if (f1 & NETIF_F_HW_CSUM) 5305 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 5306 else 5307 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 5308 } 5309 5310 return f1 & f2; 5311 } 5312 5313 static inline netdev_features_t netdev_get_wanted_features( 5314 struct net_device *dev) 5315 { 5316 return (dev->features & ~dev->hw_features) | dev->wanted_features; 5317 } 5318 netdev_features_t netdev_increment_features(netdev_features_t all, 5319 netdev_features_t one, netdev_features_t mask); 5320 5321 /* Allow TSO being used on stacked device : 5322 * Performing the GSO segmentation before last device 5323 * is a performance improvement. 5324 */ 5325 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features, 5326 netdev_features_t mask) 5327 { 5328 return netdev_increment_features(features, NETIF_F_ALL_TSO | 5329 NETIF_F_ALL_FOR_ALL, mask); 5330 } 5331 5332 int __netdev_update_features(struct net_device *dev); 5333 void netdev_update_features(struct net_device *dev); 5334 void netdev_change_features(struct net_device *dev); 5335 void netdev_compute_master_upper_features(struct net_device *dev, bool update_header); 5336 5337 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 5338 struct net_device *dev); 5339 5340 netdev_features_t passthru_features_check(struct sk_buff *skb, 5341 struct net_device *dev, 5342 netdev_features_t features); 5343 netdev_features_t netif_skb_features(struct sk_buff *skb); 5344 void skb_warn_bad_offload(const struct sk_buff *skb); 5345 5346 static inline bool net_gso_ok(netdev_features_t features, int gso_type) 5347 { 5348 netdev_features_t feature; 5349 5350 if (gso_type & (SKB_GSO_TCP_FIXEDID | SKB_GSO_TCP_FIXEDID_INNER)) 5351 gso_type |= __SKB_GSO_TCP_FIXEDID; 5352 5353 feature = ((netdev_features_t)gso_type << NETIF_F_GSO_SHIFT) & NETIF_F_GSO_MASK; 5354 5355 /* check flags correspondence */ 5356 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 5357 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 5358 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 5359 BUILD_BUG_ON(__SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT)); 5360 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 5361 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 5362 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT)); 5363 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT)); 5364 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT)); 5365 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT)); 5366 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT)); 5367 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT)); 5368 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT)); 5369 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT)); 5370 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT)); 5371 BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT)); 5372 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT)); 5373 BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT)); 5374 BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT)); 5375 BUILD_BUG_ON(SKB_GSO_TCP_ACCECN != 5376 (NETIF_F_GSO_ACCECN >> NETIF_F_GSO_SHIFT)); 5377 5378 return (features & feature) == feature; 5379 } 5380 5381 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 5382 { 5383 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 5384 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 5385 } 5386 5387 static inline bool netif_needs_gso(struct sk_buff *skb, 5388 netdev_features_t features) 5389 { 5390 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 5391 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 5392 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 5393 } 5394 5395 void netif_set_tso_max_size(struct net_device *dev, unsigned int size); 5396 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs); 5397 void netif_inherit_tso_max(struct net_device *to, 5398 const struct net_device *from); 5399 5400 static inline unsigned int 5401 netif_get_gro_max_size(const struct net_device *dev, const struct sk_buff *skb) 5402 { 5403 /* pairs with WRITE_ONCE() in netif_set_gro(_ipv4)_max_size() */ 5404 return skb->protocol == htons(ETH_P_IPV6) ? 5405 READ_ONCE(dev->gro_max_size) : 5406 READ_ONCE(dev->gro_ipv4_max_size); 5407 } 5408 5409 static inline unsigned int 5410 netif_get_gso_max_size(const struct net_device *dev, const struct sk_buff *skb) 5411 { 5412 /* pairs with WRITE_ONCE() in netif_set_gso(_ipv4)_max_size() */ 5413 return skb->protocol == htons(ETH_P_IPV6) ? 5414 READ_ONCE(dev->gso_max_size) : 5415 READ_ONCE(dev->gso_ipv4_max_size); 5416 } 5417 5418 static inline bool netif_is_macsec(const struct net_device *dev) 5419 { 5420 return dev->priv_flags & IFF_MACSEC; 5421 } 5422 5423 static inline bool netif_is_macvlan(const struct net_device *dev) 5424 { 5425 return dev->priv_flags & IFF_MACVLAN; 5426 } 5427 5428 static inline bool netif_is_macvlan_port(const struct net_device *dev) 5429 { 5430 return dev->priv_flags & IFF_MACVLAN_PORT; 5431 } 5432 5433 static inline bool netif_is_bond_master(const struct net_device *dev) 5434 { 5435 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING; 5436 } 5437 5438 static inline bool netif_is_bond_slave(const struct net_device *dev) 5439 { 5440 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 5441 } 5442 5443 static inline bool netif_supports_nofcs(struct net_device *dev) 5444 { 5445 return dev->priv_flags & IFF_SUPP_NOFCS; 5446 } 5447 5448 static inline bool netif_has_l3_rx_handler(const struct net_device *dev) 5449 { 5450 return dev->priv_flags & IFF_L3MDEV_RX_HANDLER; 5451 } 5452 5453 static inline bool netif_is_l3_master(const struct net_device *dev) 5454 { 5455 return dev->priv_flags & IFF_L3MDEV_MASTER; 5456 } 5457 5458 static inline bool netif_is_l3_slave(const struct net_device *dev) 5459 { 5460 return dev->priv_flags & IFF_L3MDEV_SLAVE; 5461 } 5462 5463 static inline int dev_sdif(const struct net_device *dev) 5464 { 5465 #ifdef CONFIG_NET_L3_MASTER_DEV 5466 if (netif_is_l3_slave(dev)) 5467 return dev->ifindex; 5468 #endif 5469 return 0; 5470 } 5471 5472 static inline bool netif_is_bridge_master(const struct net_device *dev) 5473 { 5474 return dev->priv_flags & IFF_EBRIDGE; 5475 } 5476 5477 static inline bool netif_is_bridge_port(const struct net_device *dev) 5478 { 5479 return dev->priv_flags & IFF_BRIDGE_PORT; 5480 } 5481 5482 static inline bool netif_is_ovs_master(const struct net_device *dev) 5483 { 5484 return dev->priv_flags & IFF_OPENVSWITCH; 5485 } 5486 5487 static inline bool netif_is_ovs_port(const struct net_device *dev) 5488 { 5489 return dev->priv_flags & IFF_OVS_DATAPATH; 5490 } 5491 5492 static inline bool netif_is_any_bridge_master(const struct net_device *dev) 5493 { 5494 return netif_is_bridge_master(dev) || netif_is_ovs_master(dev); 5495 } 5496 5497 static inline bool netif_is_any_bridge_port(const struct net_device *dev) 5498 { 5499 return netif_is_bridge_port(dev) || netif_is_ovs_port(dev); 5500 } 5501 5502 static inline bool netif_is_team_master(const struct net_device *dev) 5503 { 5504 return dev->priv_flags & IFF_TEAM; 5505 } 5506 5507 static inline bool netif_is_team_port(const struct net_device *dev) 5508 { 5509 return dev->priv_flags & IFF_TEAM_PORT; 5510 } 5511 5512 static inline bool netif_is_lag_master(const struct net_device *dev) 5513 { 5514 return netif_is_bond_master(dev) || netif_is_team_master(dev); 5515 } 5516 5517 static inline bool netif_is_lag_port(const struct net_device *dev) 5518 { 5519 return netif_is_bond_slave(dev) || netif_is_team_port(dev); 5520 } 5521 5522 static inline bool netif_is_rxfh_configured(const struct net_device *dev) 5523 { 5524 return dev->priv_flags & IFF_RXFH_CONFIGURED; 5525 } 5526 5527 static inline bool netif_is_failover(const struct net_device *dev) 5528 { 5529 return dev->priv_flags & IFF_FAILOVER; 5530 } 5531 5532 static inline bool netif_is_failover_slave(const struct net_device *dev) 5533 { 5534 return dev->priv_flags & IFF_FAILOVER_SLAVE; 5535 } 5536 5537 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */ 5538 static inline void netif_keep_dst(struct net_device *dev) 5539 { 5540 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM); 5541 } 5542 5543 /* return true if dev can't cope with mtu frames that need vlan tag insertion */ 5544 static inline bool netif_reduces_vlan_mtu(struct net_device *dev) 5545 { 5546 /* TODO: reserve and use an additional IFF bit, if we get more users */ 5547 return netif_is_macsec(dev); 5548 } 5549 5550 extern struct pernet_operations __net_initdata loopback_net_ops; 5551 5552 /* Logging, debugging and troubleshooting/diagnostic helpers. */ 5553 5554 /* netdev_printk helpers, similar to dev_printk */ 5555 5556 static inline const char *netdev_name(const struct net_device *dev) 5557 { 5558 if (!dev->name[0] || strchr(dev->name, '%')) 5559 return "(unnamed net_device)"; 5560 return dev->name; 5561 } 5562 5563 static inline const char *netdev_reg_state(const struct net_device *dev) 5564 { 5565 u8 reg_state = READ_ONCE(dev->reg_state); 5566 5567 switch (reg_state) { 5568 case NETREG_UNINITIALIZED: return " (uninitialized)"; 5569 case NETREG_REGISTERED: return ""; 5570 case NETREG_UNREGISTERING: return " (unregistering)"; 5571 case NETREG_UNREGISTERED: return " (unregistered)"; 5572 case NETREG_RELEASED: return " (released)"; 5573 case NETREG_DUMMY: return " (dummy)"; 5574 } 5575 5576 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, reg_state); 5577 return " (unknown)"; 5578 } 5579 5580 #define MODULE_ALIAS_NETDEV(device) \ 5581 MODULE_ALIAS("netdev-" device) 5582 5583 /* 5584 * netdev_WARN() acts like dev_printk(), but with the key difference 5585 * of using a WARN/WARN_ON to get the message out, including the 5586 * file/line information and a backtrace. 5587 */ 5588 #define netdev_WARN(dev, format, args...) \ 5589 WARN(1, "netdevice: %s%s: " format, netdev_name(dev), \ 5590 netdev_reg_state(dev), ##args) 5591 5592 #define netdev_WARN_ONCE(dev, format, args...) \ 5593 WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev), \ 5594 netdev_reg_state(dev), ##args) 5595 5596 /* 5597 * The list of packet types we will receive (as opposed to discard) 5598 * and the routines to invoke. 5599 * 5600 * Why 16. Because with 16 the only overlap we get on a hash of the 5601 * low nibble of the protocol value is RARP/SNAP/X.25. 5602 * 5603 * 0800 IP 5604 * 0001 802.3 5605 * 0002 AX.25 5606 * 0004 802.2 5607 * 8035 RARP 5608 * 0005 SNAP 5609 * 0805 X.25 5610 * 0806 ARP 5611 * 8137 IPX 5612 * 0009 Localtalk 5613 * 86DD IPv6 5614 */ 5615 #define PTYPE_HASH_SIZE (16) 5616 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 5617 5618 extern struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 5619 5620 extern struct net_device *blackhole_netdev; 5621 5622 /* Note: Avoid these macros in fast path, prefer per-cpu or per-queue counters. */ 5623 #define DEV_STATS_INC(DEV, FIELD) atomic_long_inc(&(DEV)->stats.__##FIELD) 5624 #define DEV_STATS_ADD(DEV, FIELD, VAL) \ 5625 atomic_long_add((VAL), &(DEV)->stats.__##FIELD) 5626 #define DEV_STATS_READ(DEV, FIELD) atomic_long_read(&(DEV)->stats.__##FIELD) 5627 5628 #endif /* _LINUX_NETDEVICE_H */ 5629