xref: /linux/fs/netfs/buffered_write.c (revision 2eb7f03acf4ac5db937974e99e75dac4c2c5a83d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Network filesystem high-level buffered write support.
3  *
4  * Copyright (C) 2023 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  */
7 
8 #include <linux/export.h>
9 #include <linux/fs.h>
10 #include <linux/mm.h>
11 #include <linux/pagemap.h>
12 #include <linux/slab.h>
13 #include <linux/pagevec.h>
14 #include "internal.h"
15 
__netfs_set_group(struct folio * folio,struct netfs_group * netfs_group)16 static void __netfs_set_group(struct folio *folio, struct netfs_group *netfs_group)
17 {
18 	if (netfs_group)
19 		folio_attach_private(folio, netfs_get_group(netfs_group));
20 }
21 
netfs_set_group(struct folio * folio,struct netfs_group * netfs_group)22 static void netfs_set_group(struct folio *folio, struct netfs_group *netfs_group)
23 {
24 	void *priv = folio_get_private(folio);
25 
26 	if (unlikely(priv != netfs_group)) {
27 		if (netfs_group && (!priv || priv == NETFS_FOLIO_COPY_TO_CACHE))
28 			folio_attach_private(folio, netfs_get_group(netfs_group));
29 		else if (!netfs_group && priv == NETFS_FOLIO_COPY_TO_CACHE)
30 			folio_detach_private(folio);
31 	}
32 }
33 
34 /*
35  * Grab a folio for writing and lock it.  Attempt to allocate as large a folio
36  * as possible to hold as much of the remaining length as possible in one go.
37  */
netfs_grab_folio_for_write(struct address_space * mapping,loff_t pos,size_t part)38 static struct folio *netfs_grab_folio_for_write(struct address_space *mapping,
39 						loff_t pos, size_t part)
40 {
41 	pgoff_t index = pos / PAGE_SIZE;
42 	fgf_t fgp_flags = FGP_WRITEBEGIN;
43 
44 	if (mapping_large_folio_support(mapping))
45 		fgp_flags |= fgf_set_order(pos % PAGE_SIZE + part);
46 
47 	return __filemap_get_folio(mapping, index, fgp_flags,
48 				   mapping_gfp_mask(mapping));
49 }
50 
51 /*
52  * Update i_size and estimate the update to i_blocks to reflect the additional
53  * data written into the pagecache until we can find out from the server what
54  * the values actually are.
55  */
netfs_update_i_size(struct netfs_inode * ctx,struct inode * inode,loff_t pos,size_t copied)56 void netfs_update_i_size(struct netfs_inode *ctx, struct inode *inode,
57 			 loff_t pos, size_t copied)
58 {
59 	loff_t i_size, end = pos + copied;
60 	blkcnt_t add;
61 	size_t gap;
62 
63 	if (end <= i_size_read(inode))
64 		return;
65 
66 	if (ctx->ops->update_i_size) {
67 		ctx->ops->update_i_size(inode, end);
68 		return;
69 	}
70 
71 	spin_lock(&inode->i_lock);
72 
73 	i_size = i_size_read(inode);
74 	if (end > i_size) {
75 		i_size_write(inode, end);
76 #if IS_ENABLED(CONFIG_FSCACHE)
77 		fscache_update_cookie(ctx->cache, NULL, &end);
78 #endif
79 
80 		gap = SECTOR_SIZE - (i_size & (SECTOR_SIZE - 1));
81 		if (copied > gap) {
82 			add = DIV_ROUND_UP(copied - gap, SECTOR_SIZE);
83 
84 			inode->i_blocks = min_t(blkcnt_t,
85 						DIV_ROUND_UP(end, SECTOR_SIZE),
86 						inode->i_blocks + add);
87 		}
88 	}
89 	spin_unlock(&inode->i_lock);
90 }
91 
92 /**
93  * netfs_perform_write - Copy data into the pagecache.
94  * @iocb: The operation parameters
95  * @iter: The source buffer
96  * @netfs_group: Grouping for dirty folios (eg. ceph snaps).
97  *
98  * Copy data into pagecache folios attached to the inode specified by @iocb.
99  * The caller must hold appropriate inode locks.
100  *
101  * Dirty folios are tagged with a netfs_folio struct if they're not up to date
102  * to indicate the range modified.  Dirty folios may also be tagged with a
103  * netfs-specific grouping such that data from an old group gets flushed before
104  * a new one is started.
105  */
netfs_perform_write(struct kiocb * iocb,struct iov_iter * iter,struct netfs_group * netfs_group)106 ssize_t netfs_perform_write(struct kiocb *iocb, struct iov_iter *iter,
107 			    struct netfs_group *netfs_group)
108 {
109 	struct file *file = iocb->ki_filp;
110 	struct inode *inode = file_inode(file);
111 	struct address_space *mapping = inode->i_mapping;
112 	struct netfs_inode *ctx = netfs_inode(inode);
113 	struct writeback_control wbc = {
114 		.sync_mode	= WB_SYNC_NONE,
115 		.for_sync	= true,
116 		.nr_to_write	= LONG_MAX,
117 		.range_start	= iocb->ki_pos,
118 		.range_end	= iocb->ki_pos + iter->count,
119 	};
120 	struct netfs_io_request *wreq = NULL;
121 	struct folio *folio = NULL, *writethrough = NULL;
122 	unsigned int bdp_flags = (iocb->ki_flags & IOCB_NOWAIT) ? BDP_ASYNC : 0;
123 	ssize_t written = 0, ret, ret2;
124 	loff_t pos = iocb->ki_pos;
125 	size_t max_chunk = mapping_max_folio_size(mapping);
126 	bool maybe_trouble = false;
127 
128 	if (unlikely(iocb->ki_flags & (IOCB_DSYNC | IOCB_SYNC))
129 	    ) {
130 		wbc_attach_fdatawrite_inode(&wbc, mapping->host);
131 
132 		ret = filemap_write_and_wait_range(mapping, pos, pos + iter->count);
133 		if (ret < 0) {
134 			wbc_detach_inode(&wbc);
135 			goto out;
136 		}
137 
138 		wreq = netfs_begin_writethrough(iocb, iter->count);
139 		if (IS_ERR(wreq)) {
140 			wbc_detach_inode(&wbc);
141 			ret = PTR_ERR(wreq);
142 			wreq = NULL;
143 			goto out;
144 		}
145 		if (!is_sync_kiocb(iocb))
146 			wreq->iocb = iocb;
147 		netfs_stat(&netfs_n_wh_writethrough);
148 	} else {
149 		netfs_stat(&netfs_n_wh_buffered_write);
150 	}
151 
152 	do {
153 		struct netfs_folio *finfo;
154 		struct netfs_group *group;
155 		unsigned long long fpos;
156 		size_t flen;
157 		size_t offset;	/* Offset into pagecache folio */
158 		size_t part;	/* Bytes to write to folio */
159 		size_t copied;	/* Bytes copied from user */
160 
161 		offset = pos & (max_chunk - 1);
162 		part = min(max_chunk - offset, iov_iter_count(iter));
163 
164 		/* Bring in the user pages that we will copy from _first_ lest
165 		 * we hit a nasty deadlock on copying from the same page as
166 		 * we're writing to, without it being marked uptodate.
167 		 *
168 		 * Not only is this an optimisation, but it is also required to
169 		 * check that the address is actually valid, when atomic
170 		 * usercopies are used below.
171 		 *
172 		 * We rely on the page being held onto long enough by the LRU
173 		 * that we can grab it below if this causes it to be read.
174 		 */
175 		ret = -EFAULT;
176 		if (unlikely(fault_in_iov_iter_readable(iter, part) == part))
177 			break;
178 
179 		folio = netfs_grab_folio_for_write(mapping, pos, part);
180 		if (IS_ERR(folio)) {
181 			ret = PTR_ERR(folio);
182 			break;
183 		}
184 
185 		flen = folio_size(folio);
186 		fpos = folio_pos(folio);
187 		offset = pos - fpos;
188 		part = min_t(size_t, flen - offset, part);
189 
190 		/* Wait for writeback to complete.  The writeback engine owns
191 		 * the info in folio->private and may change it until it
192 		 * removes the WB mark.
193 		 */
194 		if (folio_get_private(folio) &&
195 		    folio_wait_writeback_killable(folio)) {
196 			ret = written ? -EINTR : -ERESTARTSYS;
197 			goto error_folio_unlock;
198 		}
199 
200 		if (signal_pending(current)) {
201 			ret = written ? -EINTR : -ERESTARTSYS;
202 			goto error_folio_unlock;
203 		}
204 
205 		/* Decide how we should modify a folio.  We might be attempting
206 		 * to do write-streaming, in which case we don't want to a
207 		 * local RMW cycle if we can avoid it.  If we're doing local
208 		 * caching or content crypto, we award that priority over
209 		 * avoiding RMW.  If the file is open readably, then we also
210 		 * assume that we may want to read what we wrote.
211 		 */
212 		finfo = netfs_folio_info(folio);
213 		group = netfs_folio_group(folio);
214 
215 		if (unlikely(group != netfs_group) &&
216 		    group != NETFS_FOLIO_COPY_TO_CACHE)
217 			goto flush_content;
218 
219 		if (folio_test_uptodate(folio)) {
220 			if (mapping_writably_mapped(mapping))
221 				flush_dcache_folio(folio);
222 			copied = copy_folio_from_iter_atomic(folio, offset, part, iter);
223 			if (unlikely(copied == 0))
224 				goto copy_failed;
225 			netfs_set_group(folio, netfs_group);
226 			trace_netfs_folio(folio, netfs_folio_is_uptodate);
227 			goto copied;
228 		}
229 
230 		/* If the page is above the zero-point then we assume that the
231 		 * server would just return a block of zeros or a short read if
232 		 * we try to read it.
233 		 */
234 		if (fpos >= ctx->zero_point) {
235 			folio_zero_segment(folio, 0, offset);
236 			copied = copy_folio_from_iter_atomic(folio, offset, part, iter);
237 			if (unlikely(copied == 0))
238 				goto copy_failed;
239 			folio_zero_segment(folio, offset + copied, flen);
240 			__netfs_set_group(folio, netfs_group);
241 			folio_mark_uptodate(folio);
242 			trace_netfs_folio(folio, netfs_modify_and_clear);
243 			goto copied;
244 		}
245 
246 		/* See if we can write a whole folio in one go. */
247 		if (!maybe_trouble && offset == 0 && part >= flen) {
248 			copied = copy_folio_from_iter_atomic(folio, offset, part, iter);
249 			if (unlikely(copied == 0))
250 				goto copy_failed;
251 			if (unlikely(copied < part)) {
252 				maybe_trouble = true;
253 				iov_iter_revert(iter, copied);
254 				copied = 0;
255 				folio_unlock(folio);
256 				goto retry;
257 			}
258 			__netfs_set_group(folio, netfs_group);
259 			folio_mark_uptodate(folio);
260 			trace_netfs_folio(folio, netfs_whole_folio_modify);
261 			goto copied;
262 		}
263 
264 		/* We don't want to do a streaming write on a file that loses
265 		 * caching service temporarily because the backing store got
266 		 * culled and we don't really want to get a streaming write on
267 		 * a file that's open for reading as ->read_folio() then has to
268 		 * be able to flush it.
269 		 */
270 		if ((file->f_mode & FMODE_READ) ||
271 		    netfs_is_cache_enabled(ctx)) {
272 			if (finfo) {
273 				netfs_stat(&netfs_n_wh_wstream_conflict);
274 				goto flush_content;
275 			}
276 			ret = netfs_prefetch_for_write(file, folio, offset, part);
277 			if (ret < 0) {
278 				_debug("prefetch = %zd", ret);
279 				goto error_folio_unlock;
280 			}
281 			/* Note that copy-to-cache may have been set. */
282 
283 			copied = copy_folio_from_iter_atomic(folio, offset, part, iter);
284 			if (unlikely(copied == 0))
285 				goto copy_failed;
286 			netfs_set_group(folio, netfs_group);
287 			trace_netfs_folio(folio, netfs_just_prefetch);
288 			goto copied;
289 		}
290 
291 		if (!finfo) {
292 			ret = -EIO;
293 			if (WARN_ON(folio_get_private(folio)))
294 				goto error_folio_unlock;
295 			copied = copy_folio_from_iter_atomic(folio, offset, part, iter);
296 			if (unlikely(copied == 0))
297 				goto copy_failed;
298 			if (offset == 0 && copied == flen) {
299 				__netfs_set_group(folio, netfs_group);
300 				folio_mark_uptodate(folio);
301 				trace_netfs_folio(folio, netfs_streaming_filled_page);
302 				goto copied;
303 			}
304 
305 			finfo = kzalloc(sizeof(*finfo), GFP_KERNEL);
306 			if (!finfo) {
307 				iov_iter_revert(iter, copied);
308 				ret = -ENOMEM;
309 				goto error_folio_unlock;
310 			}
311 			finfo->netfs_group = netfs_get_group(netfs_group);
312 			finfo->dirty_offset = offset;
313 			finfo->dirty_len = copied;
314 			folio_attach_private(folio, (void *)((unsigned long)finfo |
315 							     NETFS_FOLIO_INFO));
316 			trace_netfs_folio(folio, netfs_streaming_write);
317 			goto copied;
318 		}
319 
320 		/* We can continue a streaming write only if it continues on
321 		 * from the previous.  If it overlaps, we must flush lest we
322 		 * suffer a partial copy and disjoint dirty regions.
323 		 */
324 		if (offset == finfo->dirty_offset + finfo->dirty_len) {
325 			copied = copy_folio_from_iter_atomic(folio, offset, part, iter);
326 			if (unlikely(copied == 0))
327 				goto copy_failed;
328 			finfo->dirty_len += copied;
329 			if (finfo->dirty_offset == 0 && finfo->dirty_len == flen) {
330 				if (finfo->netfs_group)
331 					folio_change_private(folio, finfo->netfs_group);
332 				else
333 					folio_detach_private(folio);
334 				folio_mark_uptodate(folio);
335 				kfree(finfo);
336 				trace_netfs_folio(folio, netfs_streaming_cont_filled_page);
337 			} else {
338 				trace_netfs_folio(folio, netfs_streaming_write_cont);
339 			}
340 			goto copied;
341 		}
342 
343 		/* Incompatible write; flush the folio and try again. */
344 	flush_content:
345 		trace_netfs_folio(folio, netfs_flush_content);
346 		folio_unlock(folio);
347 		folio_put(folio);
348 		ret = filemap_write_and_wait_range(mapping, fpos, fpos + flen - 1);
349 		if (ret < 0)
350 			goto error_folio_unlock;
351 		continue;
352 
353 	copied:
354 		flush_dcache_folio(folio);
355 
356 		/* Update the inode size if we moved the EOF marker */
357 		netfs_update_i_size(ctx, inode, pos, copied);
358 		pos += copied;
359 		written += copied;
360 
361 		if (likely(!wreq)) {
362 			folio_mark_dirty(folio);
363 			folio_unlock(folio);
364 		} else {
365 			netfs_advance_writethrough(wreq, &wbc, folio, copied,
366 						   offset + copied == flen,
367 						   &writethrough);
368 			/* Folio unlocked */
369 		}
370 	retry:
371 		folio_put(folio);
372 		folio = NULL;
373 
374 		ret = balance_dirty_pages_ratelimited_flags(mapping, bdp_flags);
375 		if (unlikely(ret < 0))
376 			break;
377 
378 		cond_resched();
379 	} while (iov_iter_count(iter));
380 
381 out:
382 	if (likely(written)) {
383 		/* Set indication that ctime and mtime got updated in case
384 		 * close is deferred.
385 		 */
386 		set_bit(NETFS_ICTX_MODIFIED_ATTR, &ctx->flags);
387 		if (unlikely(ctx->ops->post_modify))
388 			ctx->ops->post_modify(inode);
389 	}
390 
391 	if (unlikely(wreq)) {
392 		ret2 = netfs_end_writethrough(wreq, &wbc, writethrough);
393 		wbc_detach_inode(&wbc);
394 		if (ret2 == -EIOCBQUEUED)
395 			return ret2;
396 		if (ret == 0 && ret2 < 0)
397 			ret = ret2;
398 	}
399 
400 	iocb->ki_pos += written;
401 	_leave(" = %zd [%zd]", written, ret);
402 	return written ? written : ret;
403 
404 copy_failed:
405 	ret = -EFAULT;
406 error_folio_unlock:
407 	folio_unlock(folio);
408 	folio_put(folio);
409 	goto out;
410 }
411 EXPORT_SYMBOL(netfs_perform_write);
412 
413 /**
414  * netfs_buffered_write_iter_locked - write data to a file
415  * @iocb:	IO state structure (file, offset, etc.)
416  * @from:	iov_iter with data to write
417  * @netfs_group: Grouping for dirty folios (eg. ceph snaps).
418  *
419  * This function does all the work needed for actually writing data to a
420  * file. It does all basic checks, removes SUID from the file, updates
421  * modification times and calls proper subroutines depending on whether we
422  * do direct IO or a standard buffered write.
423  *
424  * The caller must hold appropriate locks around this function and have called
425  * generic_write_checks() already.  The caller is also responsible for doing
426  * any necessary syncing afterwards.
427  *
428  * This function does *not* take care of syncing data in case of O_SYNC write.
429  * A caller has to handle it. This is mainly due to the fact that we want to
430  * avoid syncing under i_rwsem.
431  *
432  * Return:
433  * * number of bytes written, even for truncated writes
434  * * negative error code if no data has been written at all
435  */
netfs_buffered_write_iter_locked(struct kiocb * iocb,struct iov_iter * from,struct netfs_group * netfs_group)436 ssize_t netfs_buffered_write_iter_locked(struct kiocb *iocb, struct iov_iter *from,
437 					 struct netfs_group *netfs_group)
438 {
439 	struct file *file = iocb->ki_filp;
440 	ssize_t ret;
441 
442 	trace_netfs_write_iter(iocb, from);
443 
444 	ret = file_remove_privs(file);
445 	if (ret)
446 		return ret;
447 
448 	ret = file_update_time(file);
449 	if (ret)
450 		return ret;
451 
452 	return netfs_perform_write(iocb, from, netfs_group);
453 }
454 EXPORT_SYMBOL(netfs_buffered_write_iter_locked);
455 
456 /**
457  * netfs_file_write_iter - write data to a file
458  * @iocb: IO state structure
459  * @from: iov_iter with data to write
460  *
461  * Perform a write to a file, writing into the pagecache if possible and doing
462  * an unbuffered write instead if not.
463  *
464  * Return:
465  * * Negative error code if no data has been written at all of
466  *   vfs_fsync_range() failed for a synchronous write
467  * * Number of bytes written, even for truncated writes
468  */
netfs_file_write_iter(struct kiocb * iocb,struct iov_iter * from)469 ssize_t netfs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
470 {
471 	struct file *file = iocb->ki_filp;
472 	struct inode *inode = file->f_mapping->host;
473 	struct netfs_inode *ictx = netfs_inode(inode);
474 	ssize_t ret;
475 
476 	_enter("%llx,%zx,%llx", iocb->ki_pos, iov_iter_count(from), i_size_read(inode));
477 
478 	if (!iov_iter_count(from))
479 		return 0;
480 
481 	if ((iocb->ki_flags & IOCB_DIRECT) ||
482 	    test_bit(NETFS_ICTX_UNBUFFERED, &ictx->flags))
483 		return netfs_unbuffered_write_iter(iocb, from);
484 
485 	ret = netfs_start_io_write(inode);
486 	if (ret < 0)
487 		return ret;
488 
489 	ret = generic_write_checks(iocb, from);
490 	if (ret > 0)
491 		ret = netfs_buffered_write_iter_locked(iocb, from, NULL);
492 	netfs_end_io_write(inode);
493 	if (ret > 0)
494 		ret = generic_write_sync(iocb, ret);
495 	return ret;
496 }
497 EXPORT_SYMBOL(netfs_file_write_iter);
498 
499 /*
500  * Notification that a previously read-only page is about to become writable.
501  * The caller indicates the precise page that needs to be written to, but
502  * we only track group on a per-folio basis, so we block more often than
503  * we might otherwise.
504  */
netfs_page_mkwrite(struct vm_fault * vmf,struct netfs_group * netfs_group)505 vm_fault_t netfs_page_mkwrite(struct vm_fault *vmf, struct netfs_group *netfs_group)
506 {
507 	struct netfs_group *group;
508 	struct folio *folio = page_folio(vmf->page);
509 	struct file *file = vmf->vma->vm_file;
510 	struct address_space *mapping = file->f_mapping;
511 	struct inode *inode = file_inode(file);
512 	struct netfs_inode *ictx = netfs_inode(inode);
513 	vm_fault_t ret = VM_FAULT_NOPAGE;
514 	int err;
515 
516 	_enter("%lx", folio->index);
517 
518 	sb_start_pagefault(inode->i_sb);
519 
520 	if (folio_lock_killable(folio) < 0)
521 		goto out;
522 	if (folio->mapping != mapping)
523 		goto unlock;
524 	if (folio_wait_writeback_killable(folio) < 0)
525 		goto unlock;
526 
527 	/* Can we see a streaming write here? */
528 	if (WARN_ON(!folio_test_uptodate(folio))) {
529 		ret = VM_FAULT_SIGBUS;
530 		goto unlock;
531 	}
532 
533 	group = netfs_folio_group(folio);
534 	if (group != netfs_group && group != NETFS_FOLIO_COPY_TO_CACHE) {
535 		folio_unlock(folio);
536 		err = filemap_fdatawrite_range(mapping,
537 					       folio_pos(folio),
538 					       folio_pos(folio) + folio_size(folio));
539 		switch (err) {
540 		case 0:
541 			ret = VM_FAULT_RETRY;
542 			goto out;
543 		case -ENOMEM:
544 			ret = VM_FAULT_OOM;
545 			goto out;
546 		default:
547 			ret = VM_FAULT_SIGBUS;
548 			goto out;
549 		}
550 	}
551 
552 	if (folio_test_dirty(folio))
553 		trace_netfs_folio(folio, netfs_folio_trace_mkwrite_plus);
554 	else
555 		trace_netfs_folio(folio, netfs_folio_trace_mkwrite);
556 	netfs_set_group(folio, netfs_group);
557 	file_update_time(file);
558 	set_bit(NETFS_ICTX_MODIFIED_ATTR, &ictx->flags);
559 	if (ictx->ops->post_modify)
560 		ictx->ops->post_modify(inode);
561 	ret = VM_FAULT_LOCKED;
562 out:
563 	sb_end_pagefault(inode->i_sb);
564 	return ret;
565 unlock:
566 	folio_unlock(folio);
567 	goto out;
568 }
569 EXPORT_SYMBOL(netfs_page_mkwrite);
570