1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Keystone NetCP Core driver
4 *
5 * Copyright (C) 2014 Texas Instruments Incorporated
6 * Authors: Sandeep Nair <sandeep_n@ti.com>
7 * Sandeep Paulraj <s-paulraj@ti.com>
8 * Cyril Chemparathy <cyril@ti.com>
9 * Santosh Shilimkar <santosh.shilimkar@ti.com>
10 * Murali Karicheri <m-karicheri2@ti.com>
11 * Wingman Kwok <w-kwok2@ti.com>
12 */
13
14 #include <linux/io.h>
15 #include <linux/module.h>
16 #include <linux/of_net.h>
17 #include <linux/of_address.h>
18 #include <linux/if_vlan.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/platform_device.h>
21 #include <linux/soc/ti/knav_qmss.h>
22 #include <linux/soc/ti/knav_dma.h>
23
24 #include "netcp.h"
25
26 #define NETCP_SOP_OFFSET (NET_IP_ALIGN + NET_SKB_PAD)
27 #define NETCP_TX_TIMEOUT (5 * HZ)
28 #define NETCP_PACKET_SIZE (ETH_FRAME_LEN + ETH_FCS_LEN)
29 #define NETCP_MIN_PACKET_SIZE ETH_ZLEN
30 #define NETCP_MAX_MCAST_ADDR 16
31
32 #define NETCP_EFUSE_REG_INDEX 0
33
34 #define NETCP_MOD_PROBE_SKIPPED 1
35 #define NETCP_MOD_PROBE_FAILED 2
36
37 #define NETCP_DEBUG (NETIF_MSG_HW | NETIF_MSG_WOL | \
38 NETIF_MSG_DRV | NETIF_MSG_LINK | \
39 NETIF_MSG_IFUP | NETIF_MSG_INTR | \
40 NETIF_MSG_PROBE | NETIF_MSG_TIMER | \
41 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR | \
42 NETIF_MSG_TX_ERR | NETIF_MSG_TX_DONE | \
43 NETIF_MSG_PKTDATA | NETIF_MSG_TX_QUEUED | \
44 NETIF_MSG_RX_STATUS)
45
46 #define NETCP_EFUSE_ADDR_SWAP 2
47
48 #define knav_queue_get_id(q) knav_queue_device_control(q, \
49 KNAV_QUEUE_GET_ID, (unsigned long)NULL)
50
51 #define knav_queue_enable_notify(q) knav_queue_device_control(q, \
52 KNAV_QUEUE_ENABLE_NOTIFY, \
53 (unsigned long)NULL)
54
55 #define knav_queue_disable_notify(q) knav_queue_device_control(q, \
56 KNAV_QUEUE_DISABLE_NOTIFY, \
57 (unsigned long)NULL)
58
59 #define knav_queue_get_count(q) knav_queue_device_control(q, \
60 KNAV_QUEUE_GET_COUNT, (unsigned long)NULL)
61
62 #define for_each_netcp_module(module) \
63 list_for_each_entry(module, &netcp_modules, module_list)
64
65 #define for_each_netcp_device_module(netcp_device, inst_modpriv) \
66 list_for_each_entry(inst_modpriv, \
67 &((netcp_device)->modpriv_head), inst_list)
68
69 #define for_each_module(netcp, intf_modpriv) \
70 list_for_each_entry(intf_modpriv, &netcp->module_head, intf_list)
71
72 /* Module management structures */
73 struct netcp_device {
74 struct list_head device_list;
75 struct list_head interface_head;
76 struct list_head modpriv_head;
77 struct device *device;
78 };
79
80 struct netcp_inst_modpriv {
81 struct netcp_device *netcp_device;
82 struct netcp_module *netcp_module;
83 struct list_head inst_list;
84 void *module_priv;
85 };
86
87 struct netcp_intf_modpriv {
88 struct netcp_intf *netcp_priv;
89 struct netcp_module *netcp_module;
90 struct list_head intf_list;
91 void *module_priv;
92 };
93
94 struct netcp_tx_cb {
95 void *ts_context;
96 void (*txtstamp)(void *context, struct sk_buff *skb);
97 };
98
99 static LIST_HEAD(netcp_devices);
100 static LIST_HEAD(netcp_modules);
101 static DEFINE_MUTEX(netcp_modules_lock);
102
103 static int netcp_debug_level = -1;
104 module_param(netcp_debug_level, int, 0);
105 MODULE_PARM_DESC(netcp_debug_level, "Netcp debug level (NETIF_MSG bits) (0=none,...,16=all)");
106
107 /* Helper functions - Get/Set */
get_pkt_info(dma_addr_t * buff,u32 * buff_len,dma_addr_t * ndesc,struct knav_dma_desc * desc)108 static void get_pkt_info(dma_addr_t *buff, u32 *buff_len, dma_addr_t *ndesc,
109 struct knav_dma_desc *desc)
110 {
111 *buff_len = le32_to_cpu(desc->buff_len);
112 *buff = le32_to_cpu(desc->buff);
113 *ndesc = le32_to_cpu(desc->next_desc);
114 }
115
get_desc_info(u32 * desc_info,u32 * pkt_info,struct knav_dma_desc * desc)116 static void get_desc_info(u32 *desc_info, u32 *pkt_info,
117 struct knav_dma_desc *desc)
118 {
119 *desc_info = le32_to_cpu(desc->desc_info);
120 *pkt_info = le32_to_cpu(desc->packet_info);
121 }
122
get_sw_data(int index,struct knav_dma_desc * desc)123 static u32 get_sw_data(int index, struct knav_dma_desc *desc)
124 {
125 /* No Endian conversion needed as this data is untouched by hw */
126 return desc->sw_data[index];
127 }
128
129 /* use these macros to get sw data */
130 #define GET_SW_DATA0(desc) get_sw_data(0, desc)
131 #define GET_SW_DATA1(desc) get_sw_data(1, desc)
132 #define GET_SW_DATA2(desc) get_sw_data(2, desc)
133 #define GET_SW_DATA3(desc) get_sw_data(3, desc)
134
get_org_pkt_info(dma_addr_t * buff,u32 * buff_len,struct knav_dma_desc * desc)135 static void get_org_pkt_info(dma_addr_t *buff, u32 *buff_len,
136 struct knav_dma_desc *desc)
137 {
138 *buff = le32_to_cpu(desc->orig_buff);
139 *buff_len = le32_to_cpu(desc->orig_len);
140 }
141
get_words(dma_addr_t * words,int num_words,__le32 * desc)142 static void get_words(dma_addr_t *words, int num_words, __le32 *desc)
143 {
144 int i;
145
146 for (i = 0; i < num_words; i++)
147 words[i] = le32_to_cpu(desc[i]);
148 }
149
set_pkt_info(dma_addr_t buff,u32 buff_len,u32 ndesc,struct knav_dma_desc * desc)150 static void set_pkt_info(dma_addr_t buff, u32 buff_len, u32 ndesc,
151 struct knav_dma_desc *desc)
152 {
153 desc->buff_len = cpu_to_le32(buff_len);
154 desc->buff = cpu_to_le32(buff);
155 desc->next_desc = cpu_to_le32(ndesc);
156 }
157
set_desc_info(u32 desc_info,u32 pkt_info,struct knav_dma_desc * desc)158 static void set_desc_info(u32 desc_info, u32 pkt_info,
159 struct knav_dma_desc *desc)
160 {
161 desc->desc_info = cpu_to_le32(desc_info);
162 desc->packet_info = cpu_to_le32(pkt_info);
163 }
164
set_sw_data(int index,u32 data,struct knav_dma_desc * desc)165 static void set_sw_data(int index, u32 data, struct knav_dma_desc *desc)
166 {
167 /* No Endian conversion needed as this data is untouched by hw */
168 desc->sw_data[index] = data;
169 }
170
171 /* use these macros to set sw data */
172 #define SET_SW_DATA0(data, desc) set_sw_data(0, data, desc)
173 #define SET_SW_DATA1(data, desc) set_sw_data(1, data, desc)
174 #define SET_SW_DATA2(data, desc) set_sw_data(2, data, desc)
175 #define SET_SW_DATA3(data, desc) set_sw_data(3, data, desc)
176
set_org_pkt_info(dma_addr_t buff,u32 buff_len,struct knav_dma_desc * desc)177 static void set_org_pkt_info(dma_addr_t buff, u32 buff_len,
178 struct knav_dma_desc *desc)
179 {
180 desc->orig_buff = cpu_to_le32(buff);
181 desc->orig_len = cpu_to_le32(buff_len);
182 }
183
set_words(u32 * words,int num_words,__le32 * desc)184 static void set_words(u32 *words, int num_words, __le32 *desc)
185 {
186 int i;
187
188 for (i = 0; i < num_words; i++)
189 desc[i] = cpu_to_le32(words[i]);
190 }
191
192 /* Read the e-fuse value as 32 bit values to be endian independent */
emac_arch_get_mac_addr(char * x,void __iomem * efuse_mac,u32 swap)193 static int emac_arch_get_mac_addr(char *x, void __iomem *efuse_mac, u32 swap)
194 {
195 unsigned int addr0, addr1;
196
197 addr1 = readl(efuse_mac + 4);
198 addr0 = readl(efuse_mac);
199
200 switch (swap) {
201 case NETCP_EFUSE_ADDR_SWAP:
202 addr0 = addr1;
203 addr1 = readl(efuse_mac);
204 break;
205 default:
206 break;
207 }
208
209 x[0] = (addr1 & 0x0000ff00) >> 8;
210 x[1] = addr1 & 0x000000ff;
211 x[2] = (addr0 & 0xff000000) >> 24;
212 x[3] = (addr0 & 0x00ff0000) >> 16;
213 x[4] = (addr0 & 0x0000ff00) >> 8;
214 x[5] = addr0 & 0x000000ff;
215
216 return 0;
217 }
218
219 /* Module management routines */
netcp_register_interface(struct netcp_intf * netcp)220 static int netcp_register_interface(struct netcp_intf *netcp)
221 {
222 int ret;
223
224 ret = register_netdev(netcp->ndev);
225 if (!ret)
226 netcp->netdev_registered = true;
227 return ret;
228 }
229
netcp_module_probe(struct netcp_device * netcp_device,struct netcp_module * module)230 static int netcp_module_probe(struct netcp_device *netcp_device,
231 struct netcp_module *module)
232 {
233 struct device *dev = netcp_device->device;
234 struct device_node *devices, *interface, *node = dev->of_node;
235 struct device_node *child;
236 struct netcp_inst_modpriv *inst_modpriv;
237 struct netcp_intf *netcp_intf;
238 struct netcp_module *tmp;
239 bool primary_module_registered = false;
240 int ret;
241
242 /* Find this module in the sub-tree for this device */
243 devices = of_get_child_by_name(node, "netcp-devices");
244 if (!devices) {
245 dev_err(dev, "could not find netcp-devices node\n");
246 return NETCP_MOD_PROBE_SKIPPED;
247 }
248
249 for_each_available_child_of_node(devices, child) {
250 const char *name;
251 char node_name[32];
252
253 if (of_property_read_string(child, "label", &name) < 0) {
254 snprintf(node_name, sizeof(node_name), "%pOFn", child);
255 name = node_name;
256 }
257 if (!strcasecmp(module->name, name))
258 break;
259 }
260
261 of_node_put(devices);
262 /* If module not used for this device, skip it */
263 if (!child) {
264 dev_warn(dev, "module(%s) not used for device\n", module->name);
265 return NETCP_MOD_PROBE_SKIPPED;
266 }
267
268 inst_modpriv = devm_kzalloc(dev, sizeof(*inst_modpriv), GFP_KERNEL);
269 if (!inst_modpriv) {
270 of_node_put(child);
271 return -ENOMEM;
272 }
273
274 inst_modpriv->netcp_device = netcp_device;
275 inst_modpriv->netcp_module = module;
276 list_add_tail(&inst_modpriv->inst_list, &netcp_device->modpriv_head);
277
278 ret = module->probe(netcp_device, dev, child,
279 &inst_modpriv->module_priv);
280 of_node_put(child);
281 if (ret) {
282 dev_err(dev, "Probe of module(%s) failed with %d\n",
283 module->name, ret);
284 list_del(&inst_modpriv->inst_list);
285 devm_kfree(dev, inst_modpriv);
286 return NETCP_MOD_PROBE_FAILED;
287 }
288
289 /* Attach modules only if the primary module is probed */
290 for_each_netcp_module(tmp) {
291 if (tmp->primary)
292 primary_module_registered = true;
293 }
294
295 if (!primary_module_registered)
296 return 0;
297
298 /* Attach module to interfaces */
299 list_for_each_entry(netcp_intf, &netcp_device->interface_head,
300 interface_list) {
301 struct netcp_intf_modpriv *intf_modpriv;
302
303 intf_modpriv = devm_kzalloc(dev, sizeof(*intf_modpriv),
304 GFP_KERNEL);
305 if (!intf_modpriv)
306 return -ENOMEM;
307
308 interface = of_parse_phandle(netcp_intf->node_interface,
309 module->name, 0);
310
311 if (!interface) {
312 devm_kfree(dev, intf_modpriv);
313 continue;
314 }
315
316 intf_modpriv->netcp_priv = netcp_intf;
317 intf_modpriv->netcp_module = module;
318 list_add_tail(&intf_modpriv->intf_list,
319 &netcp_intf->module_head);
320
321 ret = module->attach(inst_modpriv->module_priv,
322 netcp_intf->ndev, interface,
323 &intf_modpriv->module_priv);
324 of_node_put(interface);
325 if (ret) {
326 dev_dbg(dev, "Attach of module %s declined with %d\n",
327 module->name, ret);
328 list_del(&intf_modpriv->intf_list);
329 devm_kfree(dev, intf_modpriv);
330 continue;
331 }
332 }
333
334 /* Now register the interface with netdev */
335 list_for_each_entry(netcp_intf,
336 &netcp_device->interface_head,
337 interface_list) {
338 /* If interface not registered then register now */
339 if (!netcp_intf->netdev_registered) {
340 ret = netcp_register_interface(netcp_intf);
341 if (ret)
342 return -ENODEV;
343 }
344 }
345 return 0;
346 }
347
netcp_register_module(struct netcp_module * module)348 int netcp_register_module(struct netcp_module *module)
349 {
350 struct netcp_device *netcp_device;
351 struct netcp_module *tmp;
352 int ret;
353
354 if (!module->name) {
355 WARN(1, "error registering netcp module: no name\n");
356 return -EINVAL;
357 }
358
359 if (!module->probe) {
360 WARN(1, "error registering netcp module: no probe\n");
361 return -EINVAL;
362 }
363
364 mutex_lock(&netcp_modules_lock);
365
366 for_each_netcp_module(tmp) {
367 if (!strcasecmp(tmp->name, module->name)) {
368 mutex_unlock(&netcp_modules_lock);
369 return -EEXIST;
370 }
371 }
372 list_add_tail(&module->module_list, &netcp_modules);
373
374 list_for_each_entry(netcp_device, &netcp_devices, device_list) {
375 ret = netcp_module_probe(netcp_device, module);
376 if (ret < 0)
377 goto fail;
378 }
379 mutex_unlock(&netcp_modules_lock);
380 return 0;
381
382 fail:
383 mutex_unlock(&netcp_modules_lock);
384 netcp_unregister_module(module);
385 return ret;
386 }
387 EXPORT_SYMBOL_GPL(netcp_register_module);
388
netcp_release_module(struct netcp_device * netcp_device,struct netcp_module * module)389 static void netcp_release_module(struct netcp_device *netcp_device,
390 struct netcp_module *module)
391 {
392 struct netcp_inst_modpriv *inst_modpriv, *inst_tmp;
393 struct netcp_intf *netcp_intf, *netcp_tmp;
394 struct device *dev = netcp_device->device;
395
396 /* Release the module from each interface */
397 list_for_each_entry_safe(netcp_intf, netcp_tmp,
398 &netcp_device->interface_head,
399 interface_list) {
400 struct netcp_intf_modpriv *intf_modpriv, *intf_tmp;
401
402 list_for_each_entry_safe(intf_modpriv, intf_tmp,
403 &netcp_intf->module_head,
404 intf_list) {
405 if (intf_modpriv->netcp_module == module) {
406 module->release(intf_modpriv->module_priv);
407 list_del(&intf_modpriv->intf_list);
408 devm_kfree(dev, intf_modpriv);
409 break;
410 }
411 }
412 }
413
414 /* Remove the module from each instance */
415 list_for_each_entry_safe(inst_modpriv, inst_tmp,
416 &netcp_device->modpriv_head, inst_list) {
417 if (inst_modpriv->netcp_module == module) {
418 module->remove(netcp_device,
419 inst_modpriv->module_priv);
420 list_del(&inst_modpriv->inst_list);
421 devm_kfree(dev, inst_modpriv);
422 break;
423 }
424 }
425 }
426
netcp_unregister_module(struct netcp_module * module)427 void netcp_unregister_module(struct netcp_module *module)
428 {
429 struct netcp_device *netcp_device;
430 struct netcp_module *module_tmp;
431
432 mutex_lock(&netcp_modules_lock);
433
434 list_for_each_entry(netcp_device, &netcp_devices, device_list) {
435 netcp_release_module(netcp_device, module);
436 }
437
438 /* Remove the module from the module list */
439 for_each_netcp_module(module_tmp) {
440 if (module == module_tmp) {
441 list_del(&module->module_list);
442 break;
443 }
444 }
445
446 mutex_unlock(&netcp_modules_lock);
447 }
448 EXPORT_SYMBOL_GPL(netcp_unregister_module);
449
netcp_module_get_intf_data(struct netcp_module * module,struct netcp_intf * intf)450 void *netcp_module_get_intf_data(struct netcp_module *module,
451 struct netcp_intf *intf)
452 {
453 struct netcp_intf_modpriv *intf_modpriv;
454
455 list_for_each_entry(intf_modpriv, &intf->module_head, intf_list)
456 if (intf_modpriv->netcp_module == module)
457 return intf_modpriv->module_priv;
458 return NULL;
459 }
460 EXPORT_SYMBOL_GPL(netcp_module_get_intf_data);
461
462 /* Module TX and RX Hook management */
463 struct netcp_hook_list {
464 struct list_head list;
465 netcp_hook_rtn *hook_rtn;
466 void *hook_data;
467 int order;
468 };
469
netcp_register_txhook(struct netcp_intf * netcp_priv,int order,netcp_hook_rtn * hook_rtn,void * hook_data)470 int netcp_register_txhook(struct netcp_intf *netcp_priv, int order,
471 netcp_hook_rtn *hook_rtn, void *hook_data)
472 {
473 struct netcp_hook_list *entry;
474 struct netcp_hook_list *next;
475 unsigned long flags;
476
477 entry = devm_kzalloc(netcp_priv->dev, sizeof(*entry), GFP_KERNEL);
478 if (!entry)
479 return -ENOMEM;
480
481 entry->hook_rtn = hook_rtn;
482 entry->hook_data = hook_data;
483 entry->order = order;
484
485 spin_lock_irqsave(&netcp_priv->lock, flags);
486 list_for_each_entry(next, &netcp_priv->txhook_list_head, list) {
487 if (next->order > order)
488 break;
489 }
490 __list_add(&entry->list, next->list.prev, &next->list);
491 spin_unlock_irqrestore(&netcp_priv->lock, flags);
492
493 return 0;
494 }
495 EXPORT_SYMBOL_GPL(netcp_register_txhook);
496
netcp_unregister_txhook(struct netcp_intf * netcp_priv,int order,netcp_hook_rtn * hook_rtn,void * hook_data)497 int netcp_unregister_txhook(struct netcp_intf *netcp_priv, int order,
498 netcp_hook_rtn *hook_rtn, void *hook_data)
499 {
500 struct netcp_hook_list *next, *n;
501 unsigned long flags;
502
503 spin_lock_irqsave(&netcp_priv->lock, flags);
504 list_for_each_entry_safe(next, n, &netcp_priv->txhook_list_head, list) {
505 if ((next->order == order) &&
506 (next->hook_rtn == hook_rtn) &&
507 (next->hook_data == hook_data)) {
508 list_del(&next->list);
509 spin_unlock_irqrestore(&netcp_priv->lock, flags);
510 devm_kfree(netcp_priv->dev, next);
511 return 0;
512 }
513 }
514 spin_unlock_irqrestore(&netcp_priv->lock, flags);
515 return -ENOENT;
516 }
517 EXPORT_SYMBOL_GPL(netcp_unregister_txhook);
518
netcp_register_rxhook(struct netcp_intf * netcp_priv,int order,netcp_hook_rtn * hook_rtn,void * hook_data)519 int netcp_register_rxhook(struct netcp_intf *netcp_priv, int order,
520 netcp_hook_rtn *hook_rtn, void *hook_data)
521 {
522 struct netcp_hook_list *entry;
523 struct netcp_hook_list *next;
524 unsigned long flags;
525
526 entry = devm_kzalloc(netcp_priv->dev, sizeof(*entry), GFP_KERNEL);
527 if (!entry)
528 return -ENOMEM;
529
530 entry->hook_rtn = hook_rtn;
531 entry->hook_data = hook_data;
532 entry->order = order;
533
534 spin_lock_irqsave(&netcp_priv->lock, flags);
535 list_for_each_entry(next, &netcp_priv->rxhook_list_head, list) {
536 if (next->order > order)
537 break;
538 }
539 __list_add(&entry->list, next->list.prev, &next->list);
540 spin_unlock_irqrestore(&netcp_priv->lock, flags);
541
542 return 0;
543 }
544 EXPORT_SYMBOL_GPL(netcp_register_rxhook);
545
netcp_unregister_rxhook(struct netcp_intf * netcp_priv,int order,netcp_hook_rtn * hook_rtn,void * hook_data)546 int netcp_unregister_rxhook(struct netcp_intf *netcp_priv, int order,
547 netcp_hook_rtn *hook_rtn, void *hook_data)
548 {
549 struct netcp_hook_list *next, *n;
550 unsigned long flags;
551
552 spin_lock_irqsave(&netcp_priv->lock, flags);
553 list_for_each_entry_safe(next, n, &netcp_priv->rxhook_list_head, list) {
554 if ((next->order == order) &&
555 (next->hook_rtn == hook_rtn) &&
556 (next->hook_data == hook_data)) {
557 list_del(&next->list);
558 spin_unlock_irqrestore(&netcp_priv->lock, flags);
559 devm_kfree(netcp_priv->dev, next);
560 return 0;
561 }
562 }
563 spin_unlock_irqrestore(&netcp_priv->lock, flags);
564
565 return -ENOENT;
566 }
567 EXPORT_SYMBOL_GPL(netcp_unregister_rxhook);
568
netcp_frag_free(bool is_frag,void * ptr)569 static void netcp_frag_free(bool is_frag, void *ptr)
570 {
571 if (is_frag)
572 skb_free_frag(ptr);
573 else
574 kfree(ptr);
575 }
576
netcp_free_rx_desc_chain(struct netcp_intf * netcp,struct knav_dma_desc * desc)577 static void netcp_free_rx_desc_chain(struct netcp_intf *netcp,
578 struct knav_dma_desc *desc)
579 {
580 struct knav_dma_desc *ndesc;
581 dma_addr_t dma_desc, dma_buf;
582 unsigned int buf_len, dma_sz = sizeof(*ndesc);
583 void *buf_ptr;
584 u32 tmp;
585
586 get_words(&dma_desc, 1, &desc->next_desc);
587
588 while (dma_desc) {
589 ndesc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz);
590 if (unlikely(!ndesc)) {
591 dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
592 break;
593 }
594 get_pkt_info(&dma_buf, &tmp, &dma_desc, ndesc);
595 /* warning!!!! We are retrieving the virtual ptr in the sw_data
596 * field as a 32bit value. Will not work on 64bit machines
597 */
598 buf_ptr = (void *)GET_SW_DATA0(ndesc);
599 buf_len = (int)GET_SW_DATA1(desc);
600 dma_unmap_page(netcp->dev, dma_buf, PAGE_SIZE, DMA_FROM_DEVICE);
601 __free_page(buf_ptr);
602 knav_pool_desc_put(netcp->rx_pool, desc);
603 }
604 /* warning!!!! We are retrieving the virtual ptr in the sw_data
605 * field as a 32bit value. Will not work on 64bit machines
606 */
607 buf_ptr = (void *)GET_SW_DATA0(desc);
608 buf_len = (int)GET_SW_DATA1(desc);
609
610 if (buf_ptr)
611 netcp_frag_free(buf_len <= PAGE_SIZE, buf_ptr);
612 knav_pool_desc_put(netcp->rx_pool, desc);
613 }
614
netcp_empty_rx_queue(struct netcp_intf * netcp)615 static void netcp_empty_rx_queue(struct netcp_intf *netcp)
616 {
617 struct netcp_stats *rx_stats = &netcp->stats;
618 struct knav_dma_desc *desc;
619 unsigned int dma_sz;
620 dma_addr_t dma;
621
622 for (; ;) {
623 dma = knav_queue_pop(netcp->rx_queue, &dma_sz);
624 if (!dma)
625 break;
626
627 desc = knav_pool_desc_unmap(netcp->rx_pool, dma, dma_sz);
628 if (unlikely(!desc)) {
629 dev_err(netcp->ndev_dev, "%s: failed to unmap Rx desc\n",
630 __func__);
631 rx_stats->rx_errors++;
632 continue;
633 }
634 netcp_free_rx_desc_chain(netcp, desc);
635 rx_stats->rx_dropped++;
636 }
637 }
638
netcp_process_one_rx_packet(struct netcp_intf * netcp)639 static int netcp_process_one_rx_packet(struct netcp_intf *netcp)
640 {
641 struct netcp_stats *rx_stats = &netcp->stats;
642 unsigned int dma_sz, buf_len, org_buf_len;
643 struct knav_dma_desc *desc, *ndesc;
644 unsigned int pkt_sz = 0, accum_sz;
645 struct netcp_hook_list *rx_hook;
646 dma_addr_t dma_desc, dma_buff;
647 struct netcp_packet p_info;
648 struct sk_buff *skb;
649 void *org_buf_ptr;
650 u32 tmp;
651
652 dma_desc = knav_queue_pop(netcp->rx_queue, &dma_sz);
653 if (!dma_desc)
654 return -1;
655
656 desc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz);
657 if (unlikely(!desc)) {
658 dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
659 return 0;
660 }
661
662 get_pkt_info(&dma_buff, &buf_len, &dma_desc, desc);
663 /* warning!!!! We are retrieving the virtual ptr in the sw_data
664 * field as a 32bit value. Will not work on 64bit machines
665 */
666 org_buf_ptr = (void *)GET_SW_DATA0(desc);
667 org_buf_len = (int)GET_SW_DATA1(desc);
668
669 if (unlikely(!org_buf_ptr)) {
670 dev_err(netcp->ndev_dev, "NULL bufptr in desc\n");
671 goto free_desc;
672 }
673
674 pkt_sz &= KNAV_DMA_DESC_PKT_LEN_MASK;
675 accum_sz = buf_len;
676 dma_unmap_single(netcp->dev, dma_buff, buf_len, DMA_FROM_DEVICE);
677
678 /* Build a new sk_buff for the primary buffer */
679 skb = build_skb(org_buf_ptr, org_buf_len);
680 if (unlikely(!skb)) {
681 dev_err(netcp->ndev_dev, "build_skb() failed\n");
682 goto free_desc;
683 }
684
685 /* update data, tail and len */
686 skb_reserve(skb, NETCP_SOP_OFFSET);
687 __skb_put(skb, buf_len);
688
689 /* Fill in the page fragment list */
690 while (dma_desc) {
691 struct page *page;
692
693 ndesc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz);
694 if (unlikely(!ndesc)) {
695 dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
696 goto free_desc;
697 }
698
699 get_pkt_info(&dma_buff, &buf_len, &dma_desc, ndesc);
700 /* warning!!!! We are retrieving the virtual ptr in the sw_data
701 * field as a 32bit value. Will not work on 64bit machines
702 */
703 page = (struct page *)GET_SW_DATA0(ndesc);
704
705 if (likely(dma_buff && buf_len && page)) {
706 dma_unmap_page(netcp->dev, dma_buff, PAGE_SIZE,
707 DMA_FROM_DEVICE);
708 } else {
709 dev_err(netcp->ndev_dev, "Bad Rx desc dma_buff(%pad), len(%d), page(%p)\n",
710 &dma_buff, buf_len, page);
711 goto free_desc;
712 }
713
714 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
715 offset_in_page(dma_buff), buf_len, PAGE_SIZE);
716 accum_sz += buf_len;
717
718 /* Free the descriptor */
719 knav_pool_desc_put(netcp->rx_pool, ndesc);
720 }
721
722 /* check for packet len and warn */
723 if (unlikely(pkt_sz != accum_sz))
724 dev_dbg(netcp->ndev_dev, "mismatch in packet size(%d) & sum of fragments(%d)\n",
725 pkt_sz, accum_sz);
726
727 /* Newer version of the Ethernet switch can trim the Ethernet FCS
728 * from the packet and is indicated in hw_cap. So trim it only for
729 * older h/w
730 */
731 if (!(netcp->hw_cap & ETH_SW_CAN_REMOVE_ETH_FCS))
732 __pskb_trim(skb, skb->len - ETH_FCS_LEN);
733
734 /* Call each of the RX hooks */
735 p_info.skb = skb;
736 skb->dev = netcp->ndev;
737 p_info.rxtstamp_complete = false;
738 get_desc_info(&tmp, &p_info.eflags, desc);
739 p_info.epib = desc->epib;
740 p_info.psdata = (u32 __force *)desc->psdata;
741 p_info.eflags = ((p_info.eflags >> KNAV_DMA_DESC_EFLAGS_SHIFT) &
742 KNAV_DMA_DESC_EFLAGS_MASK);
743 list_for_each_entry(rx_hook, &netcp->rxhook_list_head, list) {
744 int ret;
745
746 ret = rx_hook->hook_rtn(rx_hook->order, rx_hook->hook_data,
747 &p_info);
748 if (unlikely(ret)) {
749 dev_err(netcp->ndev_dev, "RX hook %d failed: %d\n",
750 rx_hook->order, ret);
751 /* Free the primary descriptor */
752 rx_stats->rx_dropped++;
753 knav_pool_desc_put(netcp->rx_pool, desc);
754 dev_kfree_skb(skb);
755 return 0;
756 }
757 }
758 /* Free the primary descriptor */
759 knav_pool_desc_put(netcp->rx_pool, desc);
760
761 u64_stats_update_begin(&rx_stats->syncp_rx);
762 rx_stats->rx_packets++;
763 rx_stats->rx_bytes += skb->len;
764 u64_stats_update_end(&rx_stats->syncp_rx);
765
766 /* push skb up the stack */
767 skb->protocol = eth_type_trans(skb, netcp->ndev);
768 netif_receive_skb(skb);
769 return 0;
770
771 free_desc:
772 netcp_free_rx_desc_chain(netcp, desc);
773 rx_stats->rx_errors++;
774 return 0;
775 }
776
netcp_process_rx_packets(struct netcp_intf * netcp,unsigned int budget)777 static int netcp_process_rx_packets(struct netcp_intf *netcp,
778 unsigned int budget)
779 {
780 int i;
781
782 for (i = 0; (i < budget) && !netcp_process_one_rx_packet(netcp); i++)
783 ;
784 return i;
785 }
786
787 /* Release descriptors and attached buffers from Rx FDQ */
netcp_free_rx_buf(struct netcp_intf * netcp,int fdq)788 static void netcp_free_rx_buf(struct netcp_intf *netcp, int fdq)
789 {
790 struct knav_dma_desc *desc;
791 unsigned int buf_len, dma_sz;
792 dma_addr_t dma;
793 void *buf_ptr;
794
795 /* Allocate descriptor */
796 while ((dma = knav_queue_pop(netcp->rx_fdq[fdq], &dma_sz))) {
797 desc = knav_pool_desc_unmap(netcp->rx_pool, dma, dma_sz);
798 if (unlikely(!desc)) {
799 dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
800 continue;
801 }
802
803 get_org_pkt_info(&dma, &buf_len, desc);
804 /* warning!!!! We are retrieving the virtual ptr in the sw_data
805 * field as a 32bit value. Will not work on 64bit machines
806 */
807 buf_ptr = (void *)GET_SW_DATA0(desc);
808
809 if (unlikely(!dma)) {
810 dev_err(netcp->ndev_dev, "NULL orig_buff in desc\n");
811 knav_pool_desc_put(netcp->rx_pool, desc);
812 continue;
813 }
814
815 if (unlikely(!buf_ptr)) {
816 dev_err(netcp->ndev_dev, "NULL bufptr in desc\n");
817 knav_pool_desc_put(netcp->rx_pool, desc);
818 continue;
819 }
820
821 if (fdq == 0) {
822 dma_unmap_single(netcp->dev, dma, buf_len,
823 DMA_FROM_DEVICE);
824 netcp_frag_free((buf_len <= PAGE_SIZE), buf_ptr);
825 } else {
826 dma_unmap_page(netcp->dev, dma, buf_len,
827 DMA_FROM_DEVICE);
828 __free_page(buf_ptr);
829 }
830
831 knav_pool_desc_put(netcp->rx_pool, desc);
832 }
833 }
834
netcp_rxpool_free(struct netcp_intf * netcp)835 static void netcp_rxpool_free(struct netcp_intf *netcp)
836 {
837 int i;
838
839 for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN &&
840 !IS_ERR_OR_NULL(netcp->rx_fdq[i]); i++)
841 netcp_free_rx_buf(netcp, i);
842
843 if (knav_pool_count(netcp->rx_pool) != netcp->rx_pool_size)
844 dev_err(netcp->ndev_dev, "Lost Rx (%d) descriptors\n",
845 netcp->rx_pool_size - knav_pool_count(netcp->rx_pool));
846
847 knav_pool_destroy(netcp->rx_pool);
848 netcp->rx_pool = NULL;
849 }
850
netcp_allocate_rx_buf(struct netcp_intf * netcp,int fdq)851 static int netcp_allocate_rx_buf(struct netcp_intf *netcp, int fdq)
852 {
853 struct knav_dma_desc *hwdesc;
854 unsigned int buf_len, dma_sz;
855 u32 desc_info, pkt_info;
856 struct page *page;
857 dma_addr_t dma;
858 void *bufptr;
859 u32 sw_data[2];
860
861 /* Allocate descriptor */
862 hwdesc = knav_pool_desc_get(netcp->rx_pool);
863 if (IS_ERR_OR_NULL(hwdesc)) {
864 dev_dbg(netcp->ndev_dev, "out of rx pool desc\n");
865 return -ENOMEM;
866 }
867
868 if (likely(fdq == 0)) {
869 unsigned int primary_buf_len;
870 /* Allocate a primary receive queue entry */
871 buf_len = NETCP_PACKET_SIZE + NETCP_SOP_OFFSET;
872 primary_buf_len = SKB_DATA_ALIGN(buf_len) +
873 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
874
875 bufptr = netdev_alloc_frag(primary_buf_len);
876 sw_data[1] = primary_buf_len;
877
878 if (unlikely(!bufptr)) {
879 dev_warn_ratelimited(netcp->ndev_dev,
880 "Primary RX buffer alloc failed\n");
881 goto fail;
882 }
883 dma = dma_map_single(netcp->dev, bufptr, buf_len,
884 DMA_TO_DEVICE);
885 if (unlikely(dma_mapping_error(netcp->dev, dma)))
886 goto fail;
887
888 /* warning!!!! We are saving the virtual ptr in the sw_data
889 * field as a 32bit value. Will not work on 64bit machines
890 */
891 sw_data[0] = (u32)bufptr;
892 } else {
893 /* Allocate a secondary receive queue entry */
894 page = alloc_page(GFP_ATOMIC | GFP_DMA);
895 if (unlikely(!page)) {
896 dev_warn_ratelimited(netcp->ndev_dev, "Secondary page alloc failed\n");
897 goto fail;
898 }
899 buf_len = PAGE_SIZE;
900 dma = dma_map_page(netcp->dev, page, 0, buf_len, DMA_TO_DEVICE);
901 /* warning!!!! We are saving the virtual ptr in the sw_data
902 * field as a 32bit value. Will not work on 64bit machines
903 */
904 sw_data[0] = (u32)page;
905 sw_data[1] = 0;
906 }
907
908 desc_info = KNAV_DMA_DESC_PS_INFO_IN_DESC;
909 desc_info |= buf_len & KNAV_DMA_DESC_PKT_LEN_MASK;
910 pkt_info = KNAV_DMA_DESC_HAS_EPIB;
911 pkt_info |= KNAV_DMA_NUM_PS_WORDS << KNAV_DMA_DESC_PSLEN_SHIFT;
912 pkt_info |= (netcp->rx_queue_id & KNAV_DMA_DESC_RETQ_MASK) <<
913 KNAV_DMA_DESC_RETQ_SHIFT;
914 set_org_pkt_info(dma, buf_len, hwdesc);
915 SET_SW_DATA0(sw_data[0], hwdesc);
916 SET_SW_DATA1(sw_data[1], hwdesc);
917 set_desc_info(desc_info, pkt_info, hwdesc);
918
919 /* Push to FDQs */
920 knav_pool_desc_map(netcp->rx_pool, hwdesc, sizeof(*hwdesc), &dma,
921 &dma_sz);
922 knav_queue_push(netcp->rx_fdq[fdq], dma, sizeof(*hwdesc), 0);
923 return 0;
924
925 fail:
926 knav_pool_desc_put(netcp->rx_pool, hwdesc);
927 return -ENOMEM;
928 }
929
930 /* Refill Rx FDQ with descriptors & attached buffers */
netcp_rxpool_refill(struct netcp_intf * netcp)931 static void netcp_rxpool_refill(struct netcp_intf *netcp)
932 {
933 u32 fdq_deficit[KNAV_DMA_FDQ_PER_CHAN] = {0};
934 int i, ret = 0;
935
936 /* Calculate the FDQ deficit and refill */
937 for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN && netcp->rx_fdq[i]; i++) {
938 fdq_deficit[i] = netcp->rx_queue_depths[i] -
939 knav_queue_get_count(netcp->rx_fdq[i]);
940
941 while (fdq_deficit[i]-- && !ret)
942 ret = netcp_allocate_rx_buf(netcp, i);
943 } /* end for fdqs */
944 }
945
946 /* NAPI poll */
netcp_rx_poll(struct napi_struct * napi,int budget)947 static int netcp_rx_poll(struct napi_struct *napi, int budget)
948 {
949 struct netcp_intf *netcp = container_of(napi, struct netcp_intf,
950 rx_napi);
951 unsigned int packets;
952
953 packets = netcp_process_rx_packets(netcp, budget);
954
955 netcp_rxpool_refill(netcp);
956 if (packets < budget) {
957 napi_complete_done(&netcp->rx_napi, packets);
958 knav_queue_enable_notify(netcp->rx_queue);
959 }
960
961 return packets;
962 }
963
netcp_rx_notify(void * arg)964 static void netcp_rx_notify(void *arg)
965 {
966 struct netcp_intf *netcp = arg;
967
968 knav_queue_disable_notify(netcp->rx_queue);
969 napi_schedule(&netcp->rx_napi);
970 }
971
netcp_free_tx_desc_chain(struct netcp_intf * netcp,struct knav_dma_desc * desc,unsigned int desc_sz)972 static void netcp_free_tx_desc_chain(struct netcp_intf *netcp,
973 struct knav_dma_desc *desc,
974 unsigned int desc_sz)
975 {
976 struct knav_dma_desc *ndesc = desc;
977 dma_addr_t dma_desc, dma_buf;
978 unsigned int buf_len;
979
980 while (ndesc) {
981 get_pkt_info(&dma_buf, &buf_len, &dma_desc, ndesc);
982
983 if (dma_buf && buf_len)
984 dma_unmap_single(netcp->dev, dma_buf, buf_len,
985 DMA_TO_DEVICE);
986 else
987 dev_warn(netcp->ndev_dev, "bad Tx desc buf(%pad), len(%d)\n",
988 &dma_buf, buf_len);
989
990 knav_pool_desc_put(netcp->tx_pool, ndesc);
991 ndesc = NULL;
992 if (dma_desc) {
993 ndesc = knav_pool_desc_unmap(netcp->tx_pool, dma_desc,
994 desc_sz);
995 if (!ndesc)
996 dev_err(netcp->ndev_dev, "failed to unmap Tx desc\n");
997 }
998 }
999 }
1000
netcp_process_tx_compl_packets(struct netcp_intf * netcp,unsigned int budget)1001 static int netcp_process_tx_compl_packets(struct netcp_intf *netcp,
1002 unsigned int budget)
1003 {
1004 struct netcp_stats *tx_stats = &netcp->stats;
1005 struct knav_dma_desc *desc;
1006 struct netcp_tx_cb *tx_cb;
1007 struct sk_buff *skb;
1008 unsigned int dma_sz;
1009 dma_addr_t dma;
1010 int pkts = 0;
1011
1012 while (budget--) {
1013 dma = knav_queue_pop(netcp->tx_compl_q, &dma_sz);
1014 if (!dma)
1015 break;
1016 desc = knav_pool_desc_unmap(netcp->tx_pool, dma, dma_sz);
1017 if (unlikely(!desc)) {
1018 dev_err(netcp->ndev_dev, "failed to unmap Tx desc\n");
1019 tx_stats->tx_errors++;
1020 continue;
1021 }
1022
1023 /* warning!!!! We are retrieving the virtual ptr in the sw_data
1024 * field as a 32bit value. Will not work on 64bit machines
1025 */
1026 skb = (struct sk_buff *)GET_SW_DATA0(desc);
1027 netcp_free_tx_desc_chain(netcp, desc, dma_sz);
1028 if (!skb) {
1029 dev_err(netcp->ndev_dev, "No skb in Tx desc\n");
1030 tx_stats->tx_errors++;
1031 continue;
1032 }
1033
1034 tx_cb = (struct netcp_tx_cb *)skb->cb;
1035 if (tx_cb->txtstamp)
1036 tx_cb->txtstamp(tx_cb->ts_context, skb);
1037
1038 if (netif_subqueue_stopped(netcp->ndev, skb) &&
1039 netif_running(netcp->ndev) &&
1040 (knav_pool_count(netcp->tx_pool) >
1041 netcp->tx_resume_threshold)) {
1042 u16 subqueue = skb_get_queue_mapping(skb);
1043
1044 netif_wake_subqueue(netcp->ndev, subqueue);
1045 }
1046
1047 u64_stats_update_begin(&tx_stats->syncp_tx);
1048 tx_stats->tx_packets++;
1049 tx_stats->tx_bytes += skb->len;
1050 u64_stats_update_end(&tx_stats->syncp_tx);
1051 dev_kfree_skb(skb);
1052 pkts++;
1053 }
1054 return pkts;
1055 }
1056
netcp_tx_poll(struct napi_struct * napi,int budget)1057 static int netcp_tx_poll(struct napi_struct *napi, int budget)
1058 {
1059 int packets;
1060 struct netcp_intf *netcp = container_of(napi, struct netcp_intf,
1061 tx_napi);
1062
1063 packets = netcp_process_tx_compl_packets(netcp, budget);
1064 if (packets < budget) {
1065 napi_complete(&netcp->tx_napi);
1066 knav_queue_enable_notify(netcp->tx_compl_q);
1067 }
1068
1069 return packets;
1070 }
1071
netcp_tx_notify(void * arg)1072 static void netcp_tx_notify(void *arg)
1073 {
1074 struct netcp_intf *netcp = arg;
1075
1076 knav_queue_disable_notify(netcp->tx_compl_q);
1077 napi_schedule(&netcp->tx_napi);
1078 }
1079
1080 static struct knav_dma_desc*
netcp_tx_map_skb(struct sk_buff * skb,struct netcp_intf * netcp)1081 netcp_tx_map_skb(struct sk_buff *skb, struct netcp_intf *netcp)
1082 {
1083 struct knav_dma_desc *desc, *ndesc, *pdesc;
1084 unsigned int pkt_len = skb_headlen(skb);
1085 struct device *dev = netcp->dev;
1086 dma_addr_t dma_addr;
1087 unsigned int dma_sz;
1088 int i;
1089
1090 /* Map the linear buffer */
1091 dma_addr = dma_map_single(dev, skb->data, pkt_len, DMA_TO_DEVICE);
1092 if (unlikely(dma_mapping_error(dev, dma_addr))) {
1093 dev_err(netcp->ndev_dev, "Failed to map skb buffer\n");
1094 return NULL;
1095 }
1096
1097 desc = knav_pool_desc_get(netcp->tx_pool);
1098 if (IS_ERR_OR_NULL(desc)) {
1099 dev_err(netcp->ndev_dev, "out of TX desc\n");
1100 dma_unmap_single(dev, dma_addr, pkt_len, DMA_TO_DEVICE);
1101 return NULL;
1102 }
1103
1104 set_pkt_info(dma_addr, pkt_len, 0, desc);
1105 if (skb_is_nonlinear(skb)) {
1106 prefetchw(skb_shinfo(skb));
1107 } else {
1108 desc->next_desc = 0;
1109 goto upd_pkt_len;
1110 }
1111
1112 pdesc = desc;
1113
1114 /* Handle the case where skb is fragmented in pages */
1115 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1116 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1117 struct page *page = skb_frag_page(frag);
1118 u32 page_offset = skb_frag_off(frag);
1119 u32 buf_len = skb_frag_size(frag);
1120 dma_addr_t desc_dma;
1121 u32 desc_dma_32;
1122
1123 dma_addr = dma_map_page(dev, page, page_offset, buf_len,
1124 DMA_TO_DEVICE);
1125 if (unlikely(!dma_addr)) {
1126 dev_err(netcp->ndev_dev, "Failed to map skb page\n");
1127 goto free_descs;
1128 }
1129
1130 ndesc = knav_pool_desc_get(netcp->tx_pool);
1131 if (IS_ERR_OR_NULL(ndesc)) {
1132 dev_err(netcp->ndev_dev, "out of TX desc for frags\n");
1133 dma_unmap_page(dev, dma_addr, buf_len, DMA_TO_DEVICE);
1134 goto free_descs;
1135 }
1136
1137 desc_dma = knav_pool_desc_virt_to_dma(netcp->tx_pool, ndesc);
1138 set_pkt_info(dma_addr, buf_len, 0, ndesc);
1139 desc_dma_32 = (u32)desc_dma;
1140 set_words(&desc_dma_32, 1, &pdesc->next_desc);
1141 pkt_len += buf_len;
1142 if (pdesc != desc)
1143 knav_pool_desc_map(netcp->tx_pool, pdesc,
1144 sizeof(*pdesc), &desc_dma, &dma_sz);
1145 pdesc = ndesc;
1146 }
1147 if (pdesc != desc)
1148 knav_pool_desc_map(netcp->tx_pool, pdesc, sizeof(*pdesc),
1149 &dma_addr, &dma_sz);
1150
1151 /* frag list based linkage is not supported for now. */
1152 if (skb_shinfo(skb)->frag_list) {
1153 dev_err_ratelimited(netcp->ndev_dev, "NETIF_F_FRAGLIST not supported\n");
1154 goto free_descs;
1155 }
1156
1157 upd_pkt_len:
1158 WARN_ON(pkt_len != skb->len);
1159
1160 pkt_len &= KNAV_DMA_DESC_PKT_LEN_MASK;
1161 set_words(&pkt_len, 1, &desc->desc_info);
1162 return desc;
1163
1164 free_descs:
1165 netcp_free_tx_desc_chain(netcp, desc, sizeof(*desc));
1166 return NULL;
1167 }
1168
netcp_tx_submit_skb(struct netcp_intf * netcp,struct sk_buff * skb,struct knav_dma_desc * desc)1169 static int netcp_tx_submit_skb(struct netcp_intf *netcp,
1170 struct sk_buff *skb,
1171 struct knav_dma_desc *desc)
1172 {
1173 struct netcp_tx_pipe *tx_pipe = NULL;
1174 struct netcp_hook_list *tx_hook;
1175 struct netcp_packet p_info;
1176 struct netcp_tx_cb *tx_cb;
1177 unsigned int dma_sz;
1178 dma_addr_t dma;
1179 u32 tmp = 0;
1180 int ret = 0;
1181
1182 p_info.netcp = netcp;
1183 p_info.skb = skb;
1184 p_info.tx_pipe = NULL;
1185 p_info.psdata_len = 0;
1186 p_info.ts_context = NULL;
1187 p_info.txtstamp = NULL;
1188 p_info.epib = desc->epib;
1189 p_info.psdata = (u32 __force *)desc->psdata;
1190 memset(p_info.epib, 0, KNAV_DMA_NUM_EPIB_WORDS * sizeof(__le32));
1191
1192 /* Find out where to inject the packet for transmission */
1193 list_for_each_entry(tx_hook, &netcp->txhook_list_head, list) {
1194 ret = tx_hook->hook_rtn(tx_hook->order, tx_hook->hook_data,
1195 &p_info);
1196 if (unlikely(ret != 0)) {
1197 dev_err(netcp->ndev_dev, "TX hook %d rejected the packet with reason(%d)\n",
1198 tx_hook->order, ret);
1199 ret = (ret < 0) ? ret : NETDEV_TX_OK;
1200 goto out;
1201 }
1202 }
1203
1204 /* Make sure some TX hook claimed the packet */
1205 tx_pipe = p_info.tx_pipe;
1206 if (!tx_pipe) {
1207 dev_err(netcp->ndev_dev, "No TX hook claimed the packet!\n");
1208 ret = -ENXIO;
1209 goto out;
1210 }
1211
1212 tx_cb = (struct netcp_tx_cb *)skb->cb;
1213 tx_cb->ts_context = p_info.ts_context;
1214 tx_cb->txtstamp = p_info.txtstamp;
1215
1216 /* update descriptor */
1217 if (p_info.psdata_len) {
1218 /* psdata points to both native-endian and device-endian data */
1219 __le32 *psdata = (void __force *)p_info.psdata;
1220
1221 set_words((u32 *)psdata +
1222 (KNAV_DMA_NUM_PS_WORDS - p_info.psdata_len),
1223 p_info.psdata_len, psdata);
1224 tmp |= (p_info.psdata_len & KNAV_DMA_DESC_PSLEN_MASK) <<
1225 KNAV_DMA_DESC_PSLEN_SHIFT;
1226 }
1227
1228 tmp |= KNAV_DMA_DESC_HAS_EPIB |
1229 ((netcp->tx_compl_qid & KNAV_DMA_DESC_RETQ_MASK) <<
1230 KNAV_DMA_DESC_RETQ_SHIFT);
1231
1232 if (!(tx_pipe->flags & SWITCH_TO_PORT_IN_TAGINFO)) {
1233 tmp |= ((tx_pipe->switch_to_port & KNAV_DMA_DESC_PSFLAG_MASK) <<
1234 KNAV_DMA_DESC_PSFLAG_SHIFT);
1235 }
1236
1237 set_words(&tmp, 1, &desc->packet_info);
1238 /* warning!!!! We are saving the virtual ptr in the sw_data
1239 * field as a 32bit value. Will not work on 64bit machines
1240 */
1241 SET_SW_DATA0((u32)skb, desc);
1242
1243 if (tx_pipe->flags & SWITCH_TO_PORT_IN_TAGINFO) {
1244 tmp = tx_pipe->switch_to_port;
1245 set_words(&tmp, 1, &desc->tag_info);
1246 }
1247
1248 /* submit packet descriptor */
1249 ret = knav_pool_desc_map(netcp->tx_pool, desc, sizeof(*desc), &dma,
1250 &dma_sz);
1251 if (unlikely(ret)) {
1252 dev_err(netcp->ndev_dev, "%s() failed to map desc\n", __func__);
1253 ret = -ENOMEM;
1254 goto out;
1255 }
1256 skb_tx_timestamp(skb);
1257 knav_queue_push(tx_pipe->dma_queue, dma, dma_sz, 0);
1258
1259 out:
1260 return ret;
1261 }
1262
1263 /* Submit the packet */
netcp_ndo_start_xmit(struct sk_buff * skb,struct net_device * ndev)1264 static netdev_tx_t netcp_ndo_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1265 {
1266 struct netcp_intf *netcp = netdev_priv(ndev);
1267 struct netcp_stats *tx_stats = &netcp->stats;
1268 int subqueue = skb_get_queue_mapping(skb);
1269 struct knav_dma_desc *desc;
1270 int desc_count, ret = 0;
1271
1272 if (unlikely(skb->len <= 0)) {
1273 dev_kfree_skb(skb);
1274 return NETDEV_TX_OK;
1275 }
1276
1277 if (unlikely(skb->len < NETCP_MIN_PACKET_SIZE)) {
1278 ret = skb_padto(skb, NETCP_MIN_PACKET_SIZE);
1279 if (ret < 0) {
1280 /* If we get here, the skb has already been dropped */
1281 dev_warn(netcp->ndev_dev, "padding failed (%d), packet dropped\n",
1282 ret);
1283 tx_stats->tx_dropped++;
1284 return ret;
1285 }
1286 skb->len = NETCP_MIN_PACKET_SIZE;
1287 }
1288
1289 desc = netcp_tx_map_skb(skb, netcp);
1290 if (unlikely(!desc)) {
1291 netif_stop_subqueue(ndev, subqueue);
1292 ret = -ENOBUFS;
1293 goto drop;
1294 }
1295
1296 ret = netcp_tx_submit_skb(netcp, skb, desc);
1297 if (ret)
1298 goto drop;
1299
1300 /* Check Tx pool count & stop subqueue if needed */
1301 desc_count = knav_pool_count(netcp->tx_pool);
1302 if (desc_count < netcp->tx_pause_threshold) {
1303 dev_dbg(netcp->ndev_dev, "pausing tx, count(%d)\n", desc_count);
1304 netif_stop_subqueue(ndev, subqueue);
1305 }
1306 return NETDEV_TX_OK;
1307
1308 drop:
1309 tx_stats->tx_dropped++;
1310 if (desc)
1311 netcp_free_tx_desc_chain(netcp, desc, sizeof(*desc));
1312 dev_kfree_skb(skb);
1313 return ret;
1314 }
1315
netcp_txpipe_close(struct netcp_tx_pipe * tx_pipe)1316 int netcp_txpipe_close(struct netcp_tx_pipe *tx_pipe)
1317 {
1318 if (tx_pipe->dma_channel) {
1319 knav_dma_close_channel(tx_pipe->dma_channel);
1320 tx_pipe->dma_channel = NULL;
1321 }
1322 return 0;
1323 }
1324 EXPORT_SYMBOL_GPL(netcp_txpipe_close);
1325
netcp_txpipe_open(struct netcp_tx_pipe * tx_pipe)1326 int netcp_txpipe_open(struct netcp_tx_pipe *tx_pipe)
1327 {
1328 struct device *dev = tx_pipe->netcp_device->device;
1329 struct knav_dma_cfg config;
1330 int ret = 0;
1331 u8 name[16];
1332
1333 memset(&config, 0, sizeof(config));
1334 config.direction = DMA_MEM_TO_DEV;
1335 config.u.tx.filt_einfo = false;
1336 config.u.tx.filt_pswords = false;
1337 config.u.tx.priority = DMA_PRIO_MED_L;
1338
1339 tx_pipe->dma_channel = knav_dma_open_channel(dev,
1340 tx_pipe->dma_chan_name, &config);
1341 if (IS_ERR(tx_pipe->dma_channel)) {
1342 dev_err(dev, "failed opening tx chan(%s)\n",
1343 tx_pipe->dma_chan_name);
1344 ret = PTR_ERR(tx_pipe->dma_channel);
1345 goto err;
1346 }
1347
1348 snprintf(name, sizeof(name), "tx-pipe-%s", dev_name(dev));
1349 tx_pipe->dma_queue = knav_queue_open(name, tx_pipe->dma_queue_id,
1350 KNAV_QUEUE_SHARED);
1351 if (IS_ERR(tx_pipe->dma_queue)) {
1352 dev_err(dev, "Could not open DMA queue for channel \"%s\": %pe\n",
1353 name, tx_pipe->dma_queue);
1354 ret = PTR_ERR(tx_pipe->dma_queue);
1355 goto err;
1356 }
1357
1358 dev_dbg(dev, "opened tx pipe %s\n", name);
1359 return 0;
1360
1361 err:
1362 if (!IS_ERR_OR_NULL(tx_pipe->dma_channel))
1363 knav_dma_close_channel(tx_pipe->dma_channel);
1364 tx_pipe->dma_channel = NULL;
1365 return ret;
1366 }
1367 EXPORT_SYMBOL_GPL(netcp_txpipe_open);
1368
netcp_txpipe_init(struct netcp_tx_pipe * tx_pipe,struct netcp_device * netcp_device,const char * dma_chan_name,unsigned int dma_queue_id)1369 int netcp_txpipe_init(struct netcp_tx_pipe *tx_pipe,
1370 struct netcp_device *netcp_device,
1371 const char *dma_chan_name, unsigned int dma_queue_id)
1372 {
1373 memset(tx_pipe, 0, sizeof(*tx_pipe));
1374 tx_pipe->netcp_device = netcp_device;
1375 tx_pipe->dma_chan_name = dma_chan_name;
1376 tx_pipe->dma_queue_id = dma_queue_id;
1377 return 0;
1378 }
1379 EXPORT_SYMBOL_GPL(netcp_txpipe_init);
1380
netcp_addr_find(struct netcp_intf * netcp,const u8 * addr,enum netcp_addr_type type)1381 static struct netcp_addr *netcp_addr_find(struct netcp_intf *netcp,
1382 const u8 *addr,
1383 enum netcp_addr_type type)
1384 {
1385 struct netcp_addr *naddr;
1386
1387 list_for_each_entry(naddr, &netcp->addr_list, node) {
1388 if (naddr->type != type)
1389 continue;
1390 if (addr && memcmp(addr, naddr->addr, ETH_ALEN))
1391 continue;
1392 return naddr;
1393 }
1394
1395 return NULL;
1396 }
1397
netcp_addr_add(struct netcp_intf * netcp,const u8 * addr,enum netcp_addr_type type)1398 static struct netcp_addr *netcp_addr_add(struct netcp_intf *netcp,
1399 const u8 *addr,
1400 enum netcp_addr_type type)
1401 {
1402 struct netcp_addr *naddr;
1403
1404 naddr = devm_kmalloc(netcp->dev, sizeof(*naddr), GFP_ATOMIC);
1405 if (!naddr)
1406 return NULL;
1407
1408 naddr->type = type;
1409 naddr->flags = 0;
1410 naddr->netcp = netcp;
1411 if (addr)
1412 ether_addr_copy(naddr->addr, addr);
1413 else
1414 eth_zero_addr(naddr->addr);
1415 list_add_tail(&naddr->node, &netcp->addr_list);
1416
1417 return naddr;
1418 }
1419
netcp_addr_del(struct netcp_intf * netcp,struct netcp_addr * naddr)1420 static void netcp_addr_del(struct netcp_intf *netcp, struct netcp_addr *naddr)
1421 {
1422 list_del(&naddr->node);
1423 devm_kfree(netcp->dev, naddr);
1424 }
1425
netcp_addr_clear_mark(struct netcp_intf * netcp)1426 static void netcp_addr_clear_mark(struct netcp_intf *netcp)
1427 {
1428 struct netcp_addr *naddr;
1429
1430 list_for_each_entry(naddr, &netcp->addr_list, node)
1431 naddr->flags = 0;
1432 }
1433
netcp_addr_add_mark(struct netcp_intf * netcp,const u8 * addr,enum netcp_addr_type type)1434 static void netcp_addr_add_mark(struct netcp_intf *netcp, const u8 *addr,
1435 enum netcp_addr_type type)
1436 {
1437 struct netcp_addr *naddr;
1438
1439 naddr = netcp_addr_find(netcp, addr, type);
1440 if (naddr) {
1441 naddr->flags |= ADDR_VALID;
1442 return;
1443 }
1444
1445 naddr = netcp_addr_add(netcp, addr, type);
1446 if (!WARN_ON(!naddr))
1447 naddr->flags |= ADDR_NEW;
1448 }
1449
netcp_addr_sweep_del(struct netcp_intf * netcp)1450 static void netcp_addr_sweep_del(struct netcp_intf *netcp)
1451 {
1452 struct netcp_addr *naddr, *tmp;
1453 struct netcp_intf_modpriv *priv;
1454 struct netcp_module *module;
1455 int error;
1456
1457 list_for_each_entry_safe(naddr, tmp, &netcp->addr_list, node) {
1458 if (naddr->flags & (ADDR_VALID | ADDR_NEW))
1459 continue;
1460 dev_dbg(netcp->ndev_dev, "deleting address %pM, type %x\n",
1461 naddr->addr, naddr->type);
1462 for_each_module(netcp, priv) {
1463 module = priv->netcp_module;
1464 if (!module->del_addr)
1465 continue;
1466 error = module->del_addr(priv->module_priv,
1467 naddr);
1468 WARN_ON(error);
1469 }
1470 netcp_addr_del(netcp, naddr);
1471 }
1472 }
1473
netcp_addr_sweep_add(struct netcp_intf * netcp)1474 static void netcp_addr_sweep_add(struct netcp_intf *netcp)
1475 {
1476 struct netcp_addr *naddr, *tmp;
1477 struct netcp_intf_modpriv *priv;
1478 struct netcp_module *module;
1479 int error;
1480
1481 list_for_each_entry_safe(naddr, tmp, &netcp->addr_list, node) {
1482 if (!(naddr->flags & ADDR_NEW))
1483 continue;
1484 dev_dbg(netcp->ndev_dev, "adding address %pM, type %x\n",
1485 naddr->addr, naddr->type);
1486
1487 for_each_module(netcp, priv) {
1488 module = priv->netcp_module;
1489 if (!module->add_addr)
1490 continue;
1491 error = module->add_addr(priv->module_priv, naddr);
1492 WARN_ON(error);
1493 }
1494 }
1495 }
1496
netcp_set_promiscuous(struct netcp_intf * netcp,bool promisc)1497 static int netcp_set_promiscuous(struct netcp_intf *netcp, bool promisc)
1498 {
1499 struct netcp_intf_modpriv *priv;
1500 struct netcp_module *module;
1501 int error;
1502
1503 for_each_module(netcp, priv) {
1504 module = priv->netcp_module;
1505 if (!module->set_rx_mode)
1506 continue;
1507
1508 error = module->set_rx_mode(priv->module_priv, promisc);
1509 if (error)
1510 return error;
1511 }
1512 return 0;
1513 }
1514
netcp_set_rx_mode(struct net_device * ndev)1515 static void netcp_set_rx_mode(struct net_device *ndev)
1516 {
1517 struct netcp_intf *netcp = netdev_priv(ndev);
1518 struct netdev_hw_addr *ndev_addr;
1519 bool promisc;
1520
1521 promisc = (ndev->flags & IFF_PROMISC ||
1522 ndev->flags & IFF_ALLMULTI ||
1523 netdev_mc_count(ndev) > NETCP_MAX_MCAST_ADDR);
1524
1525 spin_lock(&netcp->lock);
1526 /* first clear all marks */
1527 netcp_addr_clear_mark(netcp);
1528
1529 /* next add new entries, mark existing ones */
1530 netcp_addr_add_mark(netcp, ndev->broadcast, ADDR_BCAST);
1531 for_each_dev_addr(ndev, ndev_addr)
1532 netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_DEV);
1533 netdev_for_each_uc_addr(ndev_addr, ndev)
1534 netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_UCAST);
1535 netdev_for_each_mc_addr(ndev_addr, ndev)
1536 netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_MCAST);
1537
1538 if (promisc)
1539 netcp_addr_add_mark(netcp, NULL, ADDR_ANY);
1540
1541 /* finally sweep and callout into modules */
1542 netcp_addr_sweep_del(netcp);
1543 netcp_addr_sweep_add(netcp);
1544 netcp_set_promiscuous(netcp, promisc);
1545 spin_unlock(&netcp->lock);
1546 }
1547
netcp_free_navigator_resources(struct netcp_intf * netcp)1548 static void netcp_free_navigator_resources(struct netcp_intf *netcp)
1549 {
1550 int i;
1551
1552 if (netcp->rx_channel) {
1553 knav_dma_close_channel(netcp->rx_channel);
1554 netcp->rx_channel = NULL;
1555 }
1556
1557 if (!IS_ERR_OR_NULL(netcp->rx_pool))
1558 netcp_rxpool_free(netcp);
1559
1560 if (!IS_ERR_OR_NULL(netcp->rx_queue)) {
1561 knav_queue_close(netcp->rx_queue);
1562 netcp->rx_queue = NULL;
1563 }
1564
1565 for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN &&
1566 !IS_ERR_OR_NULL(netcp->rx_fdq[i]) ; ++i) {
1567 knav_queue_close(netcp->rx_fdq[i]);
1568 netcp->rx_fdq[i] = NULL;
1569 }
1570
1571 if (!IS_ERR_OR_NULL(netcp->tx_compl_q)) {
1572 knav_queue_close(netcp->tx_compl_q);
1573 netcp->tx_compl_q = NULL;
1574 }
1575
1576 if (!IS_ERR_OR_NULL(netcp->tx_pool)) {
1577 knav_pool_destroy(netcp->tx_pool);
1578 netcp->tx_pool = NULL;
1579 }
1580 }
1581
netcp_setup_navigator_resources(struct net_device * ndev)1582 static int netcp_setup_navigator_resources(struct net_device *ndev)
1583 {
1584 struct netcp_intf *netcp = netdev_priv(ndev);
1585 struct knav_queue_notify_config notify_cfg;
1586 struct knav_dma_cfg config;
1587 u32 last_fdq = 0;
1588 u8 name[16];
1589 int ret;
1590 int i;
1591
1592 /* Create Rx/Tx descriptor pools */
1593 snprintf(name, sizeof(name), "rx-pool-%s", ndev->name);
1594 netcp->rx_pool = knav_pool_create(name, netcp->rx_pool_size,
1595 netcp->rx_pool_region_id);
1596 if (IS_ERR_OR_NULL(netcp->rx_pool)) {
1597 dev_err(netcp->ndev_dev, "Couldn't create rx pool\n");
1598 ret = PTR_ERR(netcp->rx_pool);
1599 goto fail;
1600 }
1601
1602 snprintf(name, sizeof(name), "tx-pool-%s", ndev->name);
1603 netcp->tx_pool = knav_pool_create(name, netcp->tx_pool_size,
1604 netcp->tx_pool_region_id);
1605 if (IS_ERR_OR_NULL(netcp->tx_pool)) {
1606 dev_err(netcp->ndev_dev, "Couldn't create tx pool\n");
1607 ret = PTR_ERR(netcp->tx_pool);
1608 goto fail;
1609 }
1610
1611 /* open Tx completion queue */
1612 snprintf(name, sizeof(name), "tx-compl-%s", ndev->name);
1613 netcp->tx_compl_q = knav_queue_open(name, netcp->tx_compl_qid, 0);
1614 if (IS_ERR(netcp->tx_compl_q)) {
1615 ret = PTR_ERR(netcp->tx_compl_q);
1616 goto fail;
1617 }
1618 netcp->tx_compl_qid = knav_queue_get_id(netcp->tx_compl_q);
1619
1620 /* Set notification for Tx completion */
1621 notify_cfg.fn = netcp_tx_notify;
1622 notify_cfg.fn_arg = netcp;
1623 ret = knav_queue_device_control(netcp->tx_compl_q,
1624 KNAV_QUEUE_SET_NOTIFIER,
1625 (unsigned long)¬ify_cfg);
1626 if (ret)
1627 goto fail;
1628
1629 knav_queue_disable_notify(netcp->tx_compl_q);
1630
1631 /* open Rx completion queue */
1632 snprintf(name, sizeof(name), "rx-compl-%s", ndev->name);
1633 netcp->rx_queue = knav_queue_open(name, netcp->rx_queue_id, 0);
1634 if (IS_ERR(netcp->rx_queue)) {
1635 ret = PTR_ERR(netcp->rx_queue);
1636 goto fail;
1637 }
1638 netcp->rx_queue_id = knav_queue_get_id(netcp->rx_queue);
1639
1640 /* Set notification for Rx completion */
1641 notify_cfg.fn = netcp_rx_notify;
1642 notify_cfg.fn_arg = netcp;
1643 ret = knav_queue_device_control(netcp->rx_queue,
1644 KNAV_QUEUE_SET_NOTIFIER,
1645 (unsigned long)¬ify_cfg);
1646 if (ret)
1647 goto fail;
1648
1649 knav_queue_disable_notify(netcp->rx_queue);
1650
1651 /* open Rx FDQs */
1652 for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN && netcp->rx_queue_depths[i];
1653 ++i) {
1654 snprintf(name, sizeof(name), "rx-fdq-%s-%d", ndev->name, i);
1655 netcp->rx_fdq[i] = knav_queue_open(name, KNAV_QUEUE_GP, 0);
1656 if (IS_ERR(netcp->rx_fdq[i])) {
1657 ret = PTR_ERR(netcp->rx_fdq[i]);
1658 goto fail;
1659 }
1660 }
1661
1662 memset(&config, 0, sizeof(config));
1663 config.direction = DMA_DEV_TO_MEM;
1664 config.u.rx.einfo_present = true;
1665 config.u.rx.psinfo_present = true;
1666 config.u.rx.err_mode = DMA_DROP;
1667 config.u.rx.desc_type = DMA_DESC_HOST;
1668 config.u.rx.psinfo_at_sop = false;
1669 config.u.rx.sop_offset = NETCP_SOP_OFFSET;
1670 config.u.rx.dst_q = netcp->rx_queue_id;
1671 config.u.rx.thresh = DMA_THRESH_NONE;
1672
1673 for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN; ++i) {
1674 if (netcp->rx_fdq[i])
1675 last_fdq = knav_queue_get_id(netcp->rx_fdq[i]);
1676 config.u.rx.fdq[i] = last_fdq;
1677 }
1678
1679 netcp->rx_channel = knav_dma_open_channel(netcp->netcp_device->device,
1680 netcp->dma_chan_name, &config);
1681 if (IS_ERR(netcp->rx_channel)) {
1682 dev_err(netcp->ndev_dev, "failed opening rx chan(%s\n",
1683 netcp->dma_chan_name);
1684 ret = PTR_ERR(netcp->rx_channel);
1685 goto fail;
1686 }
1687
1688 dev_dbg(netcp->ndev_dev, "opened RX channel: %p\n", netcp->rx_channel);
1689 return 0;
1690
1691 fail:
1692 netcp_free_navigator_resources(netcp);
1693 return ret;
1694 }
1695
1696 /* Open the device */
netcp_ndo_open(struct net_device * ndev)1697 static int netcp_ndo_open(struct net_device *ndev)
1698 {
1699 struct netcp_intf *netcp = netdev_priv(ndev);
1700 struct netcp_intf_modpriv *intf_modpriv;
1701 struct netcp_module *module;
1702 int ret;
1703
1704 netif_carrier_off(ndev);
1705 ret = netcp_setup_navigator_resources(ndev);
1706 if (ret) {
1707 dev_err(netcp->ndev_dev, "Failed to setup navigator resources\n");
1708 goto fail;
1709 }
1710
1711 for_each_module(netcp, intf_modpriv) {
1712 module = intf_modpriv->netcp_module;
1713 if (module->open) {
1714 ret = module->open(intf_modpriv->module_priv, ndev);
1715 if (ret != 0) {
1716 dev_err(netcp->ndev_dev, "module open failed\n");
1717 goto fail_open;
1718 }
1719 }
1720 }
1721
1722 napi_enable(&netcp->rx_napi);
1723 napi_enable(&netcp->tx_napi);
1724 knav_queue_enable_notify(netcp->tx_compl_q);
1725 knav_queue_enable_notify(netcp->rx_queue);
1726 netcp_rxpool_refill(netcp);
1727 netif_tx_wake_all_queues(ndev);
1728 dev_dbg(netcp->ndev_dev, "netcp device %s opened\n", ndev->name);
1729 return 0;
1730
1731 fail_open:
1732 for_each_module(netcp, intf_modpriv) {
1733 module = intf_modpriv->netcp_module;
1734 if (module->close)
1735 module->close(intf_modpriv->module_priv, ndev);
1736 }
1737
1738 fail:
1739 netcp_free_navigator_resources(netcp);
1740 return ret;
1741 }
1742
1743 /* Close the device */
netcp_ndo_stop(struct net_device * ndev)1744 static int netcp_ndo_stop(struct net_device *ndev)
1745 {
1746 struct netcp_intf *netcp = netdev_priv(ndev);
1747 struct netcp_intf_modpriv *intf_modpriv;
1748 struct netcp_module *module;
1749 int err = 0;
1750
1751 netif_tx_stop_all_queues(ndev);
1752 netif_carrier_off(ndev);
1753 netcp_addr_clear_mark(netcp);
1754 netcp_addr_sweep_del(netcp);
1755 knav_queue_disable_notify(netcp->rx_queue);
1756 knav_queue_disable_notify(netcp->tx_compl_q);
1757 napi_disable(&netcp->rx_napi);
1758 napi_disable(&netcp->tx_napi);
1759
1760 for_each_module(netcp, intf_modpriv) {
1761 module = intf_modpriv->netcp_module;
1762 if (module->close) {
1763 err = module->close(intf_modpriv->module_priv, ndev);
1764 if (err != 0)
1765 dev_err(netcp->ndev_dev, "Close failed\n");
1766 }
1767 }
1768
1769 /* Recycle Rx descriptors from completion queue */
1770 netcp_empty_rx_queue(netcp);
1771
1772 /* Recycle Tx descriptors from completion queue */
1773 netcp_process_tx_compl_packets(netcp, netcp->tx_pool_size);
1774
1775 if (knav_pool_count(netcp->tx_pool) != netcp->tx_pool_size)
1776 dev_err(netcp->ndev_dev, "Lost (%d) Tx descs\n",
1777 netcp->tx_pool_size - knav_pool_count(netcp->tx_pool));
1778
1779 netcp_free_navigator_resources(netcp);
1780 dev_dbg(netcp->ndev_dev, "netcp device %s stopped\n", ndev->name);
1781 return 0;
1782 }
1783
netcp_ndo_ioctl(struct net_device * ndev,struct ifreq * req,int cmd)1784 static int netcp_ndo_ioctl(struct net_device *ndev,
1785 struct ifreq *req, int cmd)
1786 {
1787 struct netcp_intf *netcp = netdev_priv(ndev);
1788 struct netcp_intf_modpriv *intf_modpriv;
1789 struct netcp_module *module;
1790 int ret = -1, err = -EOPNOTSUPP;
1791
1792 if (!netif_running(ndev))
1793 return -EINVAL;
1794
1795 for_each_module(netcp, intf_modpriv) {
1796 module = intf_modpriv->netcp_module;
1797 if (!module->ioctl)
1798 continue;
1799
1800 err = module->ioctl(intf_modpriv->module_priv, req, cmd);
1801 if ((err < 0) && (err != -EOPNOTSUPP)) {
1802 ret = err;
1803 goto out;
1804 }
1805 if (err == 0)
1806 ret = err;
1807 }
1808
1809 out:
1810 return (ret == 0) ? 0 : err;
1811 }
1812
netcp_ndo_tx_timeout(struct net_device * ndev,unsigned int txqueue)1813 static void netcp_ndo_tx_timeout(struct net_device *ndev, unsigned int txqueue)
1814 {
1815 struct netcp_intf *netcp = netdev_priv(ndev);
1816 unsigned int descs = knav_pool_count(netcp->tx_pool);
1817
1818 dev_err(netcp->ndev_dev, "transmit timed out tx descs(%d)\n", descs);
1819 netcp_process_tx_compl_packets(netcp, netcp->tx_pool_size);
1820 netif_trans_update(ndev);
1821 netif_tx_wake_all_queues(ndev);
1822 }
1823
netcp_rx_add_vid(struct net_device * ndev,__be16 proto,u16 vid)1824 static int netcp_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
1825 {
1826 struct netcp_intf *netcp = netdev_priv(ndev);
1827 struct netcp_intf_modpriv *intf_modpriv;
1828 struct netcp_module *module;
1829 unsigned long flags;
1830 int err = 0;
1831
1832 dev_dbg(netcp->ndev_dev, "adding rx vlan id: %d\n", vid);
1833
1834 spin_lock_irqsave(&netcp->lock, flags);
1835 for_each_module(netcp, intf_modpriv) {
1836 module = intf_modpriv->netcp_module;
1837 if ((module->add_vid) && (vid != 0)) {
1838 err = module->add_vid(intf_modpriv->module_priv, vid);
1839 if (err != 0) {
1840 dev_err(netcp->ndev_dev, "Could not add vlan id = %d\n",
1841 vid);
1842 break;
1843 }
1844 }
1845 }
1846 spin_unlock_irqrestore(&netcp->lock, flags);
1847
1848 return err;
1849 }
1850
netcp_rx_kill_vid(struct net_device * ndev,__be16 proto,u16 vid)1851 static int netcp_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
1852 {
1853 struct netcp_intf *netcp = netdev_priv(ndev);
1854 struct netcp_intf_modpriv *intf_modpriv;
1855 struct netcp_module *module;
1856 unsigned long flags;
1857 int err = 0;
1858
1859 dev_dbg(netcp->ndev_dev, "removing rx vlan id: %d\n", vid);
1860
1861 spin_lock_irqsave(&netcp->lock, flags);
1862 for_each_module(netcp, intf_modpriv) {
1863 module = intf_modpriv->netcp_module;
1864 if (module->del_vid) {
1865 err = module->del_vid(intf_modpriv->module_priv, vid);
1866 if (err != 0) {
1867 dev_err(netcp->ndev_dev, "Could not delete vlan id = %d\n",
1868 vid);
1869 break;
1870 }
1871 }
1872 }
1873 spin_unlock_irqrestore(&netcp->lock, flags);
1874 return err;
1875 }
1876
netcp_setup_tc(struct net_device * dev,enum tc_setup_type type,void * type_data)1877 static int netcp_setup_tc(struct net_device *dev, enum tc_setup_type type,
1878 void *type_data)
1879 {
1880 struct tc_mqprio_qopt *mqprio = type_data;
1881 u8 num_tc;
1882 int i;
1883
1884 /* setup tc must be called under rtnl lock */
1885 ASSERT_RTNL();
1886
1887 if (type != TC_SETUP_QDISC_MQPRIO)
1888 return -EOPNOTSUPP;
1889
1890 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
1891 num_tc = mqprio->num_tc;
1892
1893 /* Sanity-check the number of traffic classes requested */
1894 if ((dev->real_num_tx_queues <= 1) ||
1895 (dev->real_num_tx_queues < num_tc))
1896 return -EINVAL;
1897
1898 /* Configure traffic class to queue mappings */
1899 if (num_tc) {
1900 netdev_set_num_tc(dev, num_tc);
1901 for (i = 0; i < num_tc; i++)
1902 netdev_set_tc_queue(dev, i, 1, i);
1903 } else {
1904 netdev_reset_tc(dev);
1905 }
1906
1907 return 0;
1908 }
1909
1910 static void
netcp_get_stats(struct net_device * ndev,struct rtnl_link_stats64 * stats)1911 netcp_get_stats(struct net_device *ndev, struct rtnl_link_stats64 *stats)
1912 {
1913 struct netcp_intf *netcp = netdev_priv(ndev);
1914 struct netcp_stats *p = &netcp->stats;
1915 u64 rxpackets, rxbytes, txpackets, txbytes;
1916 unsigned int start;
1917
1918 do {
1919 start = u64_stats_fetch_begin(&p->syncp_rx);
1920 rxpackets = p->rx_packets;
1921 rxbytes = p->rx_bytes;
1922 } while (u64_stats_fetch_retry(&p->syncp_rx, start));
1923
1924 do {
1925 start = u64_stats_fetch_begin(&p->syncp_tx);
1926 txpackets = p->tx_packets;
1927 txbytes = p->tx_bytes;
1928 } while (u64_stats_fetch_retry(&p->syncp_tx, start));
1929
1930 stats->rx_packets = rxpackets;
1931 stats->rx_bytes = rxbytes;
1932 stats->tx_packets = txpackets;
1933 stats->tx_bytes = txbytes;
1934
1935 /* The following are stored as 32 bit */
1936 stats->rx_errors = p->rx_errors;
1937 stats->rx_dropped = p->rx_dropped;
1938 stats->tx_dropped = p->tx_dropped;
1939 }
1940
1941 static const struct net_device_ops netcp_netdev_ops = {
1942 .ndo_open = netcp_ndo_open,
1943 .ndo_stop = netcp_ndo_stop,
1944 .ndo_start_xmit = netcp_ndo_start_xmit,
1945 .ndo_set_rx_mode = netcp_set_rx_mode,
1946 .ndo_eth_ioctl = netcp_ndo_ioctl,
1947 .ndo_get_stats64 = netcp_get_stats,
1948 .ndo_set_mac_address = eth_mac_addr,
1949 .ndo_validate_addr = eth_validate_addr,
1950 .ndo_vlan_rx_add_vid = netcp_rx_add_vid,
1951 .ndo_vlan_rx_kill_vid = netcp_rx_kill_vid,
1952 .ndo_tx_timeout = netcp_ndo_tx_timeout,
1953 .ndo_select_queue = dev_pick_tx_zero,
1954 .ndo_setup_tc = netcp_setup_tc,
1955 };
1956
netcp_create_interface(struct netcp_device * netcp_device,struct device_node * node_interface)1957 static int netcp_create_interface(struct netcp_device *netcp_device,
1958 struct device_node *node_interface)
1959 {
1960 struct device *dev = netcp_device->device;
1961 struct device_node *node = dev->of_node;
1962 struct netcp_intf *netcp;
1963 struct net_device *ndev;
1964 resource_size_t size;
1965 struct resource res;
1966 void __iomem *efuse = NULL;
1967 u32 efuse_mac = 0;
1968 u8 efuse_mac_addr[6];
1969 u32 temp[2];
1970 int ret = 0;
1971
1972 ndev = alloc_etherdev_mqs(sizeof(*netcp), 1, 1);
1973 if (!ndev) {
1974 dev_err(dev, "Error allocating netdev\n");
1975 return -ENOMEM;
1976 }
1977
1978 ndev->features |= NETIF_F_SG;
1979 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
1980 ndev->hw_features = ndev->features;
1981 ndev->vlan_features |= NETIF_F_SG;
1982
1983 /* MTU range: 68 - 9486 */
1984 ndev->min_mtu = ETH_MIN_MTU;
1985 ndev->max_mtu = NETCP_MAX_FRAME_SIZE - (ETH_HLEN + ETH_FCS_LEN);
1986
1987 netcp = netdev_priv(ndev);
1988 spin_lock_init(&netcp->lock);
1989 INIT_LIST_HEAD(&netcp->module_head);
1990 INIT_LIST_HEAD(&netcp->txhook_list_head);
1991 INIT_LIST_HEAD(&netcp->rxhook_list_head);
1992 INIT_LIST_HEAD(&netcp->addr_list);
1993 u64_stats_init(&netcp->stats.syncp_rx);
1994 u64_stats_init(&netcp->stats.syncp_tx);
1995 netcp->netcp_device = netcp_device;
1996 netcp->dev = netcp_device->device;
1997 netcp->ndev = ndev;
1998 netcp->ndev_dev = &ndev->dev;
1999 netcp->msg_enable = netif_msg_init(netcp_debug_level, NETCP_DEBUG);
2000 netcp->tx_pause_threshold = MAX_SKB_FRAGS;
2001 netcp->tx_resume_threshold = netcp->tx_pause_threshold;
2002 netcp->node_interface = node_interface;
2003
2004 ret = of_property_read_u32(node_interface, "efuse-mac", &efuse_mac);
2005 if (efuse_mac) {
2006 if (of_address_to_resource(node, NETCP_EFUSE_REG_INDEX, &res)) {
2007 dev_err(dev, "could not find efuse-mac reg resource\n");
2008 ret = -ENODEV;
2009 goto quit;
2010 }
2011 size = resource_size(&res);
2012
2013 if (!devm_request_mem_region(dev, res.start, size,
2014 dev_name(dev))) {
2015 dev_err(dev, "could not reserve resource\n");
2016 ret = -ENOMEM;
2017 goto quit;
2018 }
2019
2020 efuse = devm_ioremap(dev, res.start, size);
2021 if (!efuse) {
2022 dev_err(dev, "could not map resource\n");
2023 devm_release_mem_region(dev, res.start, size);
2024 ret = -ENOMEM;
2025 goto quit;
2026 }
2027
2028 emac_arch_get_mac_addr(efuse_mac_addr, efuse, efuse_mac);
2029 if (is_valid_ether_addr(efuse_mac_addr))
2030 eth_hw_addr_set(ndev, efuse_mac_addr);
2031 else
2032 eth_hw_addr_random(ndev);
2033
2034 devm_iounmap(dev, efuse);
2035 devm_release_mem_region(dev, res.start, size);
2036 } else {
2037 ret = of_get_ethdev_address(node_interface, ndev);
2038 if (ret)
2039 eth_hw_addr_random(ndev);
2040 }
2041
2042 ret = of_property_read_string(node_interface, "rx-channel",
2043 &netcp->dma_chan_name);
2044 if (ret < 0) {
2045 dev_err(dev, "missing \"rx-channel\" parameter\n");
2046 ret = -ENODEV;
2047 goto quit;
2048 }
2049
2050 ret = of_property_read_u32(node_interface, "rx-queue",
2051 &netcp->rx_queue_id);
2052 if (ret < 0) {
2053 dev_warn(dev, "missing \"rx-queue\" parameter\n");
2054 netcp->rx_queue_id = KNAV_QUEUE_QPEND;
2055 }
2056
2057 ret = of_property_read_u32_array(node_interface, "rx-queue-depth",
2058 netcp->rx_queue_depths,
2059 KNAV_DMA_FDQ_PER_CHAN);
2060 if (ret < 0) {
2061 dev_err(dev, "missing \"rx-queue-depth\" parameter\n");
2062 netcp->rx_queue_depths[0] = 128;
2063 }
2064
2065 ret = of_property_read_u32_array(node_interface, "rx-pool", temp, 2);
2066 if (ret < 0) {
2067 dev_err(dev, "missing \"rx-pool\" parameter\n");
2068 ret = -ENODEV;
2069 goto quit;
2070 }
2071 netcp->rx_pool_size = temp[0];
2072 netcp->rx_pool_region_id = temp[1];
2073
2074 ret = of_property_read_u32_array(node_interface, "tx-pool", temp, 2);
2075 if (ret < 0) {
2076 dev_err(dev, "missing \"tx-pool\" parameter\n");
2077 ret = -ENODEV;
2078 goto quit;
2079 }
2080 netcp->tx_pool_size = temp[0];
2081 netcp->tx_pool_region_id = temp[1];
2082
2083 if (netcp->tx_pool_size < MAX_SKB_FRAGS) {
2084 dev_err(dev, "tx-pool size too small, must be at least %u\n",
2085 (unsigned int)MAX_SKB_FRAGS);
2086 ret = -ENODEV;
2087 goto quit;
2088 }
2089
2090 ret = of_property_read_u32(node_interface, "tx-completion-queue",
2091 &netcp->tx_compl_qid);
2092 if (ret < 0) {
2093 dev_warn(dev, "missing \"tx-completion-queue\" parameter\n");
2094 netcp->tx_compl_qid = KNAV_QUEUE_QPEND;
2095 }
2096
2097 /* NAPI register */
2098 netif_napi_add(ndev, &netcp->rx_napi, netcp_rx_poll);
2099 netif_napi_add_tx(ndev, &netcp->tx_napi, netcp_tx_poll);
2100
2101 /* Register the network device */
2102 ndev->dev_id = 0;
2103 ndev->watchdog_timeo = NETCP_TX_TIMEOUT;
2104 ndev->netdev_ops = &netcp_netdev_ops;
2105 SET_NETDEV_DEV(ndev, dev);
2106
2107 list_add_tail(&netcp->interface_list, &netcp_device->interface_head);
2108 return 0;
2109
2110 quit:
2111 free_netdev(ndev);
2112 return ret;
2113 }
2114
netcp_delete_interface(struct netcp_device * netcp_device,struct net_device * ndev)2115 static void netcp_delete_interface(struct netcp_device *netcp_device,
2116 struct net_device *ndev)
2117 {
2118 struct netcp_intf_modpriv *intf_modpriv, *tmp;
2119 struct netcp_intf *netcp = netdev_priv(ndev);
2120 struct netcp_module *module;
2121
2122 dev_dbg(netcp_device->device, "Removing interface \"%s\"\n",
2123 ndev->name);
2124
2125 /* Notify each of the modules that the interface is going away */
2126 list_for_each_entry_safe(intf_modpriv, tmp, &netcp->module_head,
2127 intf_list) {
2128 module = intf_modpriv->netcp_module;
2129 dev_dbg(netcp_device->device, "Releasing module \"%s\"\n",
2130 module->name);
2131 if (module->release)
2132 module->release(intf_modpriv->module_priv);
2133 list_del(&intf_modpriv->intf_list);
2134 }
2135 WARN(!list_empty(&netcp->module_head), "%s interface module list is not empty!\n",
2136 ndev->name);
2137
2138 list_del(&netcp->interface_list);
2139
2140 of_node_put(netcp->node_interface);
2141 unregister_netdev(ndev);
2142 free_netdev(ndev);
2143 }
2144
netcp_probe(struct platform_device * pdev)2145 static int netcp_probe(struct platform_device *pdev)
2146 {
2147 struct device_node *node = pdev->dev.of_node;
2148 struct netcp_intf *netcp_intf, *netcp_tmp;
2149 struct device_node *child, *interfaces;
2150 struct netcp_device *netcp_device;
2151 struct device *dev = &pdev->dev;
2152 struct netcp_module *module;
2153 int ret;
2154
2155 if (!knav_dma_device_ready() ||
2156 !knav_qmss_device_ready())
2157 return -EPROBE_DEFER;
2158
2159 if (!node) {
2160 dev_err(dev, "could not find device info\n");
2161 return -ENODEV;
2162 }
2163
2164 /* Allocate a new NETCP device instance */
2165 netcp_device = devm_kzalloc(dev, sizeof(*netcp_device), GFP_KERNEL);
2166 if (!netcp_device)
2167 return -ENOMEM;
2168
2169 pm_runtime_enable(&pdev->dev);
2170 ret = pm_runtime_get_sync(&pdev->dev);
2171 if (ret < 0) {
2172 dev_err(dev, "Failed to enable NETCP power-domain\n");
2173 pm_runtime_disable(&pdev->dev);
2174 return ret;
2175 }
2176
2177 /* Initialize the NETCP device instance */
2178 INIT_LIST_HEAD(&netcp_device->interface_head);
2179 INIT_LIST_HEAD(&netcp_device->modpriv_head);
2180 netcp_device->device = dev;
2181 platform_set_drvdata(pdev, netcp_device);
2182
2183 /* create interfaces */
2184 interfaces = of_get_child_by_name(node, "netcp-interfaces");
2185 if (!interfaces) {
2186 dev_err(dev, "could not find netcp-interfaces node\n");
2187 ret = -ENODEV;
2188 goto probe_quit;
2189 }
2190
2191 for_each_available_child_of_node(interfaces, child) {
2192 ret = netcp_create_interface(netcp_device, child);
2193 if (ret) {
2194 dev_err(dev, "could not create interface(%pOFn)\n",
2195 child);
2196 goto probe_quit_interface;
2197 }
2198 }
2199
2200 of_node_put(interfaces);
2201
2202 /* Add the device instance to the list */
2203 list_add_tail(&netcp_device->device_list, &netcp_devices);
2204
2205 /* Probe & attach any modules already registered */
2206 mutex_lock(&netcp_modules_lock);
2207 for_each_netcp_module(module) {
2208 ret = netcp_module_probe(netcp_device, module);
2209 if (ret < 0)
2210 dev_err(dev, "module(%s) probe failed\n", module->name);
2211 }
2212 mutex_unlock(&netcp_modules_lock);
2213 return 0;
2214
2215 probe_quit_interface:
2216 list_for_each_entry_safe(netcp_intf, netcp_tmp,
2217 &netcp_device->interface_head,
2218 interface_list) {
2219 netcp_delete_interface(netcp_device, netcp_intf->ndev);
2220 }
2221
2222 of_node_put(interfaces);
2223
2224 probe_quit:
2225 pm_runtime_put_sync(&pdev->dev);
2226 pm_runtime_disable(&pdev->dev);
2227 platform_set_drvdata(pdev, NULL);
2228 return ret;
2229 }
2230
netcp_remove(struct platform_device * pdev)2231 static void netcp_remove(struct platform_device *pdev)
2232 {
2233 struct netcp_device *netcp_device = platform_get_drvdata(pdev);
2234 struct netcp_intf *netcp_intf, *netcp_tmp;
2235 struct netcp_inst_modpriv *inst_modpriv, *tmp;
2236 struct netcp_module *module;
2237
2238 list_for_each_entry_safe(inst_modpriv, tmp, &netcp_device->modpriv_head,
2239 inst_list) {
2240 module = inst_modpriv->netcp_module;
2241 dev_dbg(&pdev->dev, "Removing module \"%s\"\n", module->name);
2242 module->remove(netcp_device, inst_modpriv->module_priv);
2243 list_del(&inst_modpriv->inst_list);
2244 }
2245
2246 /* now that all modules are removed, clean up the interfaces */
2247 list_for_each_entry_safe(netcp_intf, netcp_tmp,
2248 &netcp_device->interface_head,
2249 interface_list) {
2250 netcp_delete_interface(netcp_device, netcp_intf->ndev);
2251 }
2252
2253 WARN(!list_empty(&netcp_device->interface_head),
2254 "%s interface list not empty!\n", pdev->name);
2255
2256 pm_runtime_put_sync(&pdev->dev);
2257 pm_runtime_disable(&pdev->dev);
2258 platform_set_drvdata(pdev, NULL);
2259 }
2260
2261 static const struct of_device_id of_match[] = {
2262 { .compatible = "ti,netcp-1.0", },
2263 {},
2264 };
2265 MODULE_DEVICE_TABLE(of, of_match);
2266
2267 static struct platform_driver netcp_driver = {
2268 .driver = {
2269 .name = "netcp-1.0",
2270 .of_match_table = of_match,
2271 },
2272 .probe = netcp_probe,
2273 .remove_new = netcp_remove,
2274 };
2275 module_platform_driver(netcp_driver);
2276
2277 MODULE_LICENSE("GPL v2");
2278 MODULE_DESCRIPTION("TI NETCP driver for Keystone SOCs");
2279 MODULE_AUTHOR("Sandeep Nair <sandeep_n@ti.com");
2280