1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3
4 #include <linux/objtool.h>
5 #include <linux/percpu.h>
6
7 #include <asm/debugreg.h>
8 #include <asm/mmu_context.h>
9 #include <asm/msr.h>
10
11 #include "x86.h"
12 #include "cpuid.h"
13 #include "hyperv.h"
14 #include "mmu.h"
15 #include "nested.h"
16 #include "pmu.h"
17 #include "posted_intr.h"
18 #include "sgx.h"
19 #include "trace.h"
20 #include "vmx.h"
21 #include "smm.h"
22
23 static bool __read_mostly enable_shadow_vmcs = 1;
24 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
25
26 static bool __ro_after_init warn_on_missed_cc;
27 module_param(warn_on_missed_cc, bool, 0444);
28
29 #define CC KVM_NESTED_VMENTER_CONSISTENCY_CHECK
30
31 /*
32 * Hyper-V requires all of these, so mark them as supported even though
33 * they are just treated the same as all-context.
34 */
35 #define VMX_VPID_EXTENT_SUPPORTED_MASK \
36 (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT | \
37 VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT | \
38 VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT | \
39 VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
40
41 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
42
43 enum {
44 VMX_VMREAD_BITMAP,
45 VMX_VMWRITE_BITMAP,
46 VMX_BITMAP_NR
47 };
48 static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
49
50 #define vmx_vmread_bitmap (vmx_bitmap[VMX_VMREAD_BITMAP])
51 #define vmx_vmwrite_bitmap (vmx_bitmap[VMX_VMWRITE_BITMAP])
52
53 struct shadow_vmcs_field {
54 u16 encoding;
55 u16 offset;
56 };
57 static struct shadow_vmcs_field shadow_read_only_fields[] = {
58 #define SHADOW_FIELD_RO(x, y) { x, offsetof(struct vmcs12, y) },
59 #include "vmcs_shadow_fields.h"
60 };
61 static int max_shadow_read_only_fields =
62 ARRAY_SIZE(shadow_read_only_fields);
63
64 static struct shadow_vmcs_field shadow_read_write_fields[] = {
65 #define SHADOW_FIELD_RW(x, y) { x, offsetof(struct vmcs12, y) },
66 #include "vmcs_shadow_fields.h"
67 };
68 static int max_shadow_read_write_fields =
69 ARRAY_SIZE(shadow_read_write_fields);
70
init_vmcs_shadow_fields(void)71 static void init_vmcs_shadow_fields(void)
72 {
73 int i, j;
74
75 memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
76 memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
77
78 for (i = j = 0; i < max_shadow_read_only_fields; i++) {
79 struct shadow_vmcs_field entry = shadow_read_only_fields[i];
80 u16 field = entry.encoding;
81
82 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
83 (i + 1 == max_shadow_read_only_fields ||
84 shadow_read_only_fields[i + 1].encoding != field + 1))
85 pr_err("Missing field from shadow_read_only_field %x\n",
86 field + 1);
87
88 clear_bit(field, vmx_vmread_bitmap);
89 if (field & 1)
90 #ifdef CONFIG_X86_64
91 continue;
92 #else
93 entry.offset += sizeof(u32);
94 #endif
95 shadow_read_only_fields[j++] = entry;
96 }
97 max_shadow_read_only_fields = j;
98
99 for (i = j = 0; i < max_shadow_read_write_fields; i++) {
100 struct shadow_vmcs_field entry = shadow_read_write_fields[i];
101 u16 field = entry.encoding;
102
103 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
104 (i + 1 == max_shadow_read_write_fields ||
105 shadow_read_write_fields[i + 1].encoding != field + 1))
106 pr_err("Missing field from shadow_read_write_field %x\n",
107 field + 1);
108
109 WARN_ONCE(field >= GUEST_ES_AR_BYTES &&
110 field <= GUEST_TR_AR_BYTES,
111 "Update vmcs12_write_any() to drop reserved bits from AR_BYTES");
112
113 /*
114 * PML and the preemption timer can be emulated, but the
115 * processor cannot vmwrite to fields that don't exist
116 * on bare metal.
117 */
118 switch (field) {
119 case GUEST_PML_INDEX:
120 if (!cpu_has_vmx_pml())
121 continue;
122 break;
123 case VMX_PREEMPTION_TIMER_VALUE:
124 if (!cpu_has_vmx_preemption_timer())
125 continue;
126 break;
127 case GUEST_INTR_STATUS:
128 if (!cpu_has_vmx_apicv())
129 continue;
130 break;
131 default:
132 break;
133 }
134
135 clear_bit(field, vmx_vmwrite_bitmap);
136 clear_bit(field, vmx_vmread_bitmap);
137 if (field & 1)
138 #ifdef CONFIG_X86_64
139 continue;
140 #else
141 entry.offset += sizeof(u32);
142 #endif
143 shadow_read_write_fields[j++] = entry;
144 }
145 max_shadow_read_write_fields = j;
146 }
147
148 /*
149 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
150 * set the success or error code of an emulated VMX instruction (as specified
151 * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
152 * instruction.
153 */
nested_vmx_succeed(struct kvm_vcpu * vcpu)154 static int nested_vmx_succeed(struct kvm_vcpu *vcpu)
155 {
156 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
157 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
158 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
159 return kvm_skip_emulated_instruction(vcpu);
160 }
161
nested_vmx_failInvalid(struct kvm_vcpu * vcpu)162 static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
163 {
164 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
165 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
166 X86_EFLAGS_SF | X86_EFLAGS_OF))
167 | X86_EFLAGS_CF);
168 return kvm_skip_emulated_instruction(vcpu);
169 }
170
nested_vmx_failValid(struct kvm_vcpu * vcpu,u32 vm_instruction_error)171 static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
172 u32 vm_instruction_error)
173 {
174 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
175 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
176 X86_EFLAGS_SF | X86_EFLAGS_OF))
177 | X86_EFLAGS_ZF);
178 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
179 /*
180 * We don't need to force sync to shadow VMCS because
181 * VM_INSTRUCTION_ERROR is not shadowed. Enlightened VMCS 'shadows' all
182 * fields and thus must be synced.
183 */
184 if (nested_vmx_is_evmptr12_set(to_vmx(vcpu)))
185 to_vmx(vcpu)->nested.need_vmcs12_to_shadow_sync = true;
186
187 return kvm_skip_emulated_instruction(vcpu);
188 }
189
nested_vmx_fail(struct kvm_vcpu * vcpu,u32 vm_instruction_error)190 static int nested_vmx_fail(struct kvm_vcpu *vcpu, u32 vm_instruction_error)
191 {
192 struct vcpu_vmx *vmx = to_vmx(vcpu);
193
194 /*
195 * failValid writes the error number to the current VMCS, which
196 * can't be done if there isn't a current VMCS.
197 */
198 if (vmx->nested.current_vmptr == INVALID_GPA &&
199 !nested_vmx_is_evmptr12_valid(vmx))
200 return nested_vmx_failInvalid(vcpu);
201
202 return nested_vmx_failValid(vcpu, vm_instruction_error);
203 }
204
nested_vmx_abort(struct kvm_vcpu * vcpu,u32 indicator)205 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
206 {
207 /* TODO: not to reset guest simply here. */
208 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
209 pr_debug_ratelimited("nested vmx abort, indicator %d\n", indicator);
210 }
211
vmx_control_verify(u32 control,u32 low,u32 high)212 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
213 {
214 return fixed_bits_valid(control, low, high);
215 }
216
vmx_control_msr(u32 low,u32 high)217 static inline u64 vmx_control_msr(u32 low, u32 high)
218 {
219 return low | ((u64)high << 32);
220 }
221
vmx_disable_shadow_vmcs(struct vcpu_vmx * vmx)222 static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
223 {
224 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
225 vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA);
226 vmx->nested.need_vmcs12_to_shadow_sync = false;
227 }
228
nested_release_evmcs(struct kvm_vcpu * vcpu)229 static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
230 {
231 #ifdef CONFIG_KVM_HYPERV
232 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
233 struct vcpu_vmx *vmx = to_vmx(vcpu);
234
235 kvm_vcpu_unmap(vcpu, &vmx->nested.hv_evmcs_map);
236 vmx->nested.hv_evmcs = NULL;
237 vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
238
239 if (hv_vcpu) {
240 hv_vcpu->nested.pa_page_gpa = INVALID_GPA;
241 hv_vcpu->nested.vm_id = 0;
242 hv_vcpu->nested.vp_id = 0;
243 }
244 #endif
245 }
246
nested_evmcs_handle_vmclear(struct kvm_vcpu * vcpu,gpa_t vmptr)247 static bool nested_evmcs_handle_vmclear(struct kvm_vcpu *vcpu, gpa_t vmptr)
248 {
249 #ifdef CONFIG_KVM_HYPERV
250 struct vcpu_vmx *vmx = to_vmx(vcpu);
251 /*
252 * When Enlightened VMEntry is enabled on the calling CPU we treat
253 * memory area pointer by vmptr as Enlightened VMCS (as there's no good
254 * way to distinguish it from VMCS12) and we must not corrupt it by
255 * writing to the non-existent 'launch_state' field. The area doesn't
256 * have to be the currently active EVMCS on the calling CPU and there's
257 * nothing KVM has to do to transition it from 'active' to 'non-active'
258 * state. It is possible that the area will stay mapped as
259 * vmx->nested.hv_evmcs but this shouldn't be a problem.
260 */
261 if (!guest_cpu_cap_has_evmcs(vcpu) ||
262 !evmptr_is_valid(nested_get_evmptr(vcpu)))
263 return false;
264
265 if (nested_vmx_evmcs(vmx) && vmptr == vmx->nested.hv_evmcs_vmptr)
266 nested_release_evmcs(vcpu);
267
268 return true;
269 #else
270 return false;
271 #endif
272 }
273
vmx_sync_vmcs_host_state(struct vcpu_vmx * vmx,struct loaded_vmcs * prev)274 static void vmx_sync_vmcs_host_state(struct vcpu_vmx *vmx,
275 struct loaded_vmcs *prev)
276 {
277 struct vmcs_host_state *dest, *src;
278
279 if (unlikely(!vmx->vt.guest_state_loaded))
280 return;
281
282 src = &prev->host_state;
283 dest = &vmx->loaded_vmcs->host_state;
284
285 vmx_set_host_fs_gs(dest, src->fs_sel, src->gs_sel, src->fs_base, src->gs_base);
286 dest->ldt_sel = src->ldt_sel;
287 #ifdef CONFIG_X86_64
288 dest->ds_sel = src->ds_sel;
289 dest->es_sel = src->es_sel;
290 #endif
291 }
292
vmx_switch_vmcs(struct kvm_vcpu * vcpu,struct loaded_vmcs * vmcs)293 static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
294 {
295 struct vcpu_vmx *vmx = to_vmx(vcpu);
296 struct loaded_vmcs *prev;
297 int cpu;
298
299 if (WARN_ON_ONCE(vmx->loaded_vmcs == vmcs))
300 return;
301
302 cpu = get_cpu();
303 prev = vmx->loaded_vmcs;
304 vmx->loaded_vmcs = vmcs;
305 vmx_vcpu_load_vmcs(vcpu, cpu);
306 vmx_sync_vmcs_host_state(vmx, prev);
307 put_cpu();
308
309 vcpu->arch.regs_avail = ~VMX_REGS_LAZY_LOAD_SET;
310
311 /*
312 * All lazily updated registers will be reloaded from VMCS12 on both
313 * vmentry and vmexit.
314 */
315 vcpu->arch.regs_dirty = 0;
316 }
317
nested_put_vmcs12_pages(struct kvm_vcpu * vcpu)318 static void nested_put_vmcs12_pages(struct kvm_vcpu *vcpu)
319 {
320 struct vcpu_vmx *vmx = to_vmx(vcpu);
321
322 kvm_vcpu_unmap(vcpu, &vmx->nested.apic_access_page_map);
323 kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map);
324 kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map);
325 vmx->nested.pi_desc = NULL;
326 }
327
328 /*
329 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
330 * just stops using VMX.
331 */
free_nested(struct kvm_vcpu * vcpu)332 static void free_nested(struct kvm_vcpu *vcpu)
333 {
334 struct vcpu_vmx *vmx = to_vmx(vcpu);
335
336 if (WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01))
337 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
338
339 if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
340 return;
341
342 kvm_clear_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
343
344 vmx->nested.vmxon = false;
345 vmx->nested.smm.vmxon = false;
346 vmx->nested.vmxon_ptr = INVALID_GPA;
347 free_vpid(vmx->nested.vpid02);
348 vmx->nested.posted_intr_nv = -1;
349 vmx->nested.current_vmptr = INVALID_GPA;
350 if (enable_shadow_vmcs) {
351 vmx_disable_shadow_vmcs(vmx);
352 vmcs_clear(vmx->vmcs01.shadow_vmcs);
353 free_vmcs(vmx->vmcs01.shadow_vmcs);
354 vmx->vmcs01.shadow_vmcs = NULL;
355 }
356 kfree(vmx->nested.cached_vmcs12);
357 vmx->nested.cached_vmcs12 = NULL;
358 kfree(vmx->nested.cached_shadow_vmcs12);
359 vmx->nested.cached_shadow_vmcs12 = NULL;
360
361 nested_put_vmcs12_pages(vcpu);
362
363 kvm_mmu_free_roots(vcpu->kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
364
365 nested_release_evmcs(vcpu);
366
367 free_loaded_vmcs(&vmx->nested.vmcs02);
368 }
369
370 /*
371 * Ensure that the current vmcs of the logical processor is the
372 * vmcs01 of the vcpu before calling free_nested().
373 */
nested_vmx_free_vcpu(struct kvm_vcpu * vcpu)374 void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu)
375 {
376 vcpu_load(vcpu);
377 vmx_leave_nested(vcpu);
378 vcpu_put(vcpu);
379 }
380
381 #define EPTP_PA_MASK GENMASK_ULL(51, 12)
382
nested_ept_root_matches(hpa_t root_hpa,u64 root_eptp,u64 eptp)383 static bool nested_ept_root_matches(hpa_t root_hpa, u64 root_eptp, u64 eptp)
384 {
385 return VALID_PAGE(root_hpa) &&
386 ((root_eptp & EPTP_PA_MASK) == (eptp & EPTP_PA_MASK));
387 }
388
nested_ept_invalidate_addr(struct kvm_vcpu * vcpu,gpa_t eptp,gpa_t addr)389 static void nested_ept_invalidate_addr(struct kvm_vcpu *vcpu, gpa_t eptp,
390 gpa_t addr)
391 {
392 unsigned long roots = 0;
393 uint i;
394 struct kvm_mmu_root_info *cached_root;
395
396 WARN_ON_ONCE(!mmu_is_nested(vcpu));
397
398 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
399 cached_root = &vcpu->arch.mmu->prev_roots[i];
400
401 if (nested_ept_root_matches(cached_root->hpa, cached_root->pgd,
402 eptp))
403 roots |= KVM_MMU_ROOT_PREVIOUS(i);
404 }
405 if (roots)
406 kvm_mmu_invalidate_addr(vcpu, vcpu->arch.mmu, addr, roots);
407 }
408
nested_ept_inject_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)409 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
410 struct x86_exception *fault)
411 {
412 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
413 struct vcpu_vmx *vmx = to_vmx(vcpu);
414 unsigned long exit_qualification;
415 u32 vm_exit_reason;
416
417 if (vmx->nested.pml_full) {
418 vm_exit_reason = EXIT_REASON_PML_FULL;
419 vmx->nested.pml_full = false;
420
421 /*
422 * It should be impossible to trigger a nested PML Full VM-Exit
423 * for anything other than an EPT Violation from L2. KVM *can*
424 * trigger nEPT page fault injection in response to an EPT
425 * Misconfig, e.g. if the MMIO SPTE was stale and L1's EPT
426 * tables also changed, but KVM should not treat EPT Misconfig
427 * VM-Exits as writes.
428 */
429 WARN_ON_ONCE(vmx->vt.exit_reason.basic != EXIT_REASON_EPT_VIOLATION);
430
431 /*
432 * PML Full and EPT Violation VM-Exits both use bit 12 to report
433 * "NMI unblocking due to IRET", i.e. the bit can be propagated
434 * as-is from the original EXIT_QUALIFICATION.
435 */
436 exit_qualification = vmx_get_exit_qual(vcpu) & INTR_INFO_UNBLOCK_NMI;
437 } else {
438 if (fault->error_code & PFERR_RSVD_MASK) {
439 vm_exit_reason = EXIT_REASON_EPT_MISCONFIG;
440 exit_qualification = 0;
441 } else {
442 exit_qualification = fault->exit_qualification;
443 exit_qualification |= vmx_get_exit_qual(vcpu) &
444 (EPT_VIOLATION_GVA_IS_VALID |
445 EPT_VIOLATION_GVA_TRANSLATED);
446 vm_exit_reason = EXIT_REASON_EPT_VIOLATION;
447 }
448
449 /*
450 * Although the caller (kvm_inject_emulated_page_fault) would
451 * have already synced the faulting address in the shadow EPT
452 * tables for the current EPTP12, we also need to sync it for
453 * any other cached EPTP02s based on the same EP4TA, since the
454 * TLB associates mappings to the EP4TA rather than the full EPTP.
455 */
456 nested_ept_invalidate_addr(vcpu, vmcs12->ept_pointer,
457 fault->address);
458 }
459
460 nested_vmx_vmexit(vcpu, vm_exit_reason, 0, exit_qualification);
461 vmcs12->guest_physical_address = fault->address;
462 }
463
nested_ept_new_eptp(struct kvm_vcpu * vcpu)464 static void nested_ept_new_eptp(struct kvm_vcpu *vcpu)
465 {
466 struct vcpu_vmx *vmx = to_vmx(vcpu);
467 bool execonly = vmx->nested.msrs.ept_caps & VMX_EPT_EXECUTE_ONLY_BIT;
468 int ept_lpage_level = ept_caps_to_lpage_level(vmx->nested.msrs.ept_caps);
469
470 kvm_init_shadow_ept_mmu(vcpu, execonly, ept_lpage_level,
471 nested_ept_ad_enabled(vcpu),
472 nested_ept_get_eptp(vcpu));
473 }
474
nested_ept_init_mmu_context(struct kvm_vcpu * vcpu)475 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
476 {
477 WARN_ON(mmu_is_nested(vcpu));
478
479 vcpu->arch.mmu = &vcpu->arch.guest_mmu;
480 nested_ept_new_eptp(vcpu);
481 vcpu->arch.mmu->get_guest_pgd = nested_ept_get_eptp;
482 vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault;
483 vcpu->arch.mmu->get_pdptr = kvm_pdptr_read;
484
485 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
486 }
487
nested_ept_uninit_mmu_context(struct kvm_vcpu * vcpu)488 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
489 {
490 vcpu->arch.mmu = &vcpu->arch.root_mmu;
491 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
492 }
493
nested_vmx_is_page_fault_vmexit(struct vmcs12 * vmcs12,u16 error_code)494 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
495 u16 error_code)
496 {
497 bool inequality, bit;
498
499 bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
500 inequality =
501 (error_code & vmcs12->page_fault_error_code_mask) !=
502 vmcs12->page_fault_error_code_match;
503 return inequality ^ bit;
504 }
505
nested_vmx_is_exception_vmexit(struct kvm_vcpu * vcpu,u8 vector,u32 error_code)506 static bool nested_vmx_is_exception_vmexit(struct kvm_vcpu *vcpu, u8 vector,
507 u32 error_code)
508 {
509 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
510
511 /*
512 * Drop bits 31:16 of the error code when performing the #PF mask+match
513 * check. All VMCS fields involved are 32 bits, but Intel CPUs never
514 * set bits 31:16 and VMX disallows setting bits 31:16 in the injected
515 * error code. Including the to-be-dropped bits in the check might
516 * result in an "impossible" or missed exit from L1's perspective.
517 */
518 if (vector == PF_VECTOR)
519 return nested_vmx_is_page_fault_vmexit(vmcs12, (u16)error_code);
520
521 return (vmcs12->exception_bitmap & (1u << vector));
522 }
523
nested_vmx_check_io_bitmap_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)524 static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
525 struct vmcs12 *vmcs12)
526 {
527 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
528 return 0;
529
530 if (CC(!page_address_valid(vcpu, vmcs12->io_bitmap_a)) ||
531 CC(!page_address_valid(vcpu, vmcs12->io_bitmap_b)))
532 return -EINVAL;
533
534 return 0;
535 }
536
nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)537 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
538 struct vmcs12 *vmcs12)
539 {
540 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
541 return 0;
542
543 if (CC(!page_address_valid(vcpu, vmcs12->msr_bitmap)))
544 return -EINVAL;
545
546 return 0;
547 }
548
nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)549 static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
550 struct vmcs12 *vmcs12)
551 {
552 if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
553 return 0;
554
555 if (CC(!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr)))
556 return -EINVAL;
557
558 if (CC(!nested_cpu_has_vid(vmcs12) && vmcs12->tpr_threshold >> 4))
559 return -EINVAL;
560
561 return 0;
562 }
563
564 /*
565 * For x2APIC MSRs, ignore the vmcs01 bitmap. L1 can enable x2APIC without L1
566 * itself utilizing x2APIC. All MSRs were previously set to be intercepted,
567 * only the "disable intercept" case needs to be handled.
568 */
nested_vmx_disable_intercept_for_x2apic_msr(unsigned long * msr_bitmap_l1,unsigned long * msr_bitmap_l0,u32 msr,int type)569 static void nested_vmx_disable_intercept_for_x2apic_msr(unsigned long *msr_bitmap_l1,
570 unsigned long *msr_bitmap_l0,
571 u32 msr, int type)
572 {
573 if (type & MSR_TYPE_R && !vmx_test_msr_bitmap_read(msr_bitmap_l1, msr))
574 vmx_clear_msr_bitmap_read(msr_bitmap_l0, msr);
575
576 if (type & MSR_TYPE_W && !vmx_test_msr_bitmap_write(msr_bitmap_l1, msr))
577 vmx_clear_msr_bitmap_write(msr_bitmap_l0, msr);
578 }
579
enable_x2apic_msr_intercepts(unsigned long * msr_bitmap)580 static inline void enable_x2apic_msr_intercepts(unsigned long *msr_bitmap)
581 {
582 int msr;
583
584 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
585 unsigned word = msr / BITS_PER_LONG;
586
587 msr_bitmap[word] = ~0;
588 msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
589 }
590 }
591
592 #define BUILD_NVMX_MSR_INTERCEPT_HELPER(rw) \
593 static inline \
594 void nested_vmx_set_msr_##rw##_intercept(struct vcpu_vmx *vmx, \
595 unsigned long *msr_bitmap_l1, \
596 unsigned long *msr_bitmap_l0, u32 msr) \
597 { \
598 if (vmx_test_msr_bitmap_##rw(vmx->vmcs01.msr_bitmap, msr) || \
599 vmx_test_msr_bitmap_##rw(msr_bitmap_l1, msr)) \
600 vmx_set_msr_bitmap_##rw(msr_bitmap_l0, msr); \
601 else \
602 vmx_clear_msr_bitmap_##rw(msr_bitmap_l0, msr); \
603 }
604 BUILD_NVMX_MSR_INTERCEPT_HELPER(read)
BUILD_NVMX_MSR_INTERCEPT_HELPER(write)605 BUILD_NVMX_MSR_INTERCEPT_HELPER(write)
606
607 static inline void nested_vmx_set_intercept_for_msr(struct vcpu_vmx *vmx,
608 unsigned long *msr_bitmap_l1,
609 unsigned long *msr_bitmap_l0,
610 u32 msr, int types)
611 {
612 if (types & MSR_TYPE_R)
613 nested_vmx_set_msr_read_intercept(vmx, msr_bitmap_l1,
614 msr_bitmap_l0, msr);
615 if (types & MSR_TYPE_W)
616 nested_vmx_set_msr_write_intercept(vmx, msr_bitmap_l1,
617 msr_bitmap_l0, msr);
618 }
619
620 /*
621 * Merge L0's and L1's MSR bitmap, return false to indicate that
622 * we do not use the hardware.
623 */
nested_vmx_prepare_msr_bitmap(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)624 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
625 struct vmcs12 *vmcs12)
626 {
627 struct vcpu_vmx *vmx = to_vmx(vcpu);
628 int msr;
629 unsigned long *msr_bitmap_l1;
630 unsigned long *msr_bitmap_l0 = vmx->nested.vmcs02.msr_bitmap;
631 struct kvm_host_map map;
632
633 /* Nothing to do if the MSR bitmap is not in use. */
634 if (!cpu_has_vmx_msr_bitmap() ||
635 !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
636 return false;
637
638 /*
639 * MSR bitmap update can be skipped when:
640 * - MSR bitmap for L1 hasn't changed.
641 * - Nested hypervisor (L1) is attempting to launch the same L2 as
642 * before.
643 * - Nested hypervisor (L1) has enabled 'Enlightened MSR Bitmap' feature
644 * and tells KVM (L0) there were no changes in MSR bitmap for L2.
645 */
646 if (!vmx->nested.force_msr_bitmap_recalc) {
647 struct hv_enlightened_vmcs *evmcs = nested_vmx_evmcs(vmx);
648
649 if (evmcs && evmcs->hv_enlightenments_control.msr_bitmap &&
650 evmcs->hv_clean_fields & HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP)
651 return true;
652 }
653
654 if (kvm_vcpu_map_readonly(vcpu, gpa_to_gfn(vmcs12->msr_bitmap), &map))
655 return false;
656
657 msr_bitmap_l1 = (unsigned long *)map.hva;
658
659 /*
660 * To keep the control flow simple, pay eight 8-byte writes (sixteen
661 * 4-byte writes on 32-bit systems) up front to enable intercepts for
662 * the x2APIC MSR range and selectively toggle those relevant to L2.
663 */
664 enable_x2apic_msr_intercepts(msr_bitmap_l0);
665
666 if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
667 if (nested_cpu_has_apic_reg_virt(vmcs12)) {
668 /*
669 * L0 need not intercept reads for MSRs between 0x800
670 * and 0x8ff, it just lets the processor take the value
671 * from the virtual-APIC page; take those 256 bits
672 * directly from the L1 bitmap.
673 */
674 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
675 unsigned word = msr / BITS_PER_LONG;
676
677 msr_bitmap_l0[word] = msr_bitmap_l1[word];
678 }
679 }
680
681 nested_vmx_disable_intercept_for_x2apic_msr(
682 msr_bitmap_l1, msr_bitmap_l0,
683 X2APIC_MSR(APIC_TASKPRI),
684 MSR_TYPE_R | MSR_TYPE_W);
685
686 if (nested_cpu_has_vid(vmcs12)) {
687 nested_vmx_disable_intercept_for_x2apic_msr(
688 msr_bitmap_l1, msr_bitmap_l0,
689 X2APIC_MSR(APIC_EOI),
690 MSR_TYPE_W);
691 nested_vmx_disable_intercept_for_x2apic_msr(
692 msr_bitmap_l1, msr_bitmap_l0,
693 X2APIC_MSR(APIC_SELF_IPI),
694 MSR_TYPE_W);
695 }
696 }
697
698 /*
699 * Always check vmcs01's bitmap to honor userspace MSR filters and any
700 * other runtime changes to vmcs01's bitmap, e.g. dynamic pass-through.
701 */
702 #ifdef CONFIG_X86_64
703 nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
704 MSR_FS_BASE, MSR_TYPE_RW);
705
706 nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
707 MSR_GS_BASE, MSR_TYPE_RW);
708
709 nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
710 MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
711 #endif
712 nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
713 MSR_IA32_SPEC_CTRL, MSR_TYPE_RW);
714
715 nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
716 MSR_IA32_PRED_CMD, MSR_TYPE_W);
717
718 nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
719 MSR_IA32_FLUSH_CMD, MSR_TYPE_W);
720
721 nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
722 MSR_IA32_APERF, MSR_TYPE_R);
723
724 nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
725 MSR_IA32_MPERF, MSR_TYPE_R);
726
727 nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
728 MSR_IA32_U_CET, MSR_TYPE_RW);
729
730 nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
731 MSR_IA32_S_CET, MSR_TYPE_RW);
732
733 nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
734 MSR_IA32_PL0_SSP, MSR_TYPE_RW);
735
736 nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
737 MSR_IA32_PL1_SSP, MSR_TYPE_RW);
738
739 nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
740 MSR_IA32_PL2_SSP, MSR_TYPE_RW);
741
742 nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
743 MSR_IA32_PL3_SSP, MSR_TYPE_RW);
744
745 kvm_vcpu_unmap(vcpu, &map);
746
747 vmx->nested.force_msr_bitmap_recalc = false;
748
749 return true;
750 }
751
nested_cache_shadow_vmcs12(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)752 static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
753 struct vmcs12 *vmcs12)
754 {
755 struct vcpu_vmx *vmx = to_vmx(vcpu);
756 struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
757
758 if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
759 vmcs12->vmcs_link_pointer == INVALID_GPA)
760 return;
761
762 if (ghc->gpa != vmcs12->vmcs_link_pointer &&
763 kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
764 vmcs12->vmcs_link_pointer, VMCS12_SIZE))
765 return;
766
767 kvm_read_guest_cached(vcpu->kvm, ghc, get_shadow_vmcs12(vcpu),
768 VMCS12_SIZE);
769 }
770
nested_flush_cached_shadow_vmcs12(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)771 static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
772 struct vmcs12 *vmcs12)
773 {
774 struct vcpu_vmx *vmx = to_vmx(vcpu);
775 struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
776
777 if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
778 vmcs12->vmcs_link_pointer == INVALID_GPA)
779 return;
780
781 if (ghc->gpa != vmcs12->vmcs_link_pointer &&
782 kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
783 vmcs12->vmcs_link_pointer, VMCS12_SIZE))
784 return;
785
786 kvm_write_guest_cached(vcpu->kvm, ghc, get_shadow_vmcs12(vcpu),
787 VMCS12_SIZE);
788 }
789
790 /*
791 * In nested virtualization, check if L1 has set
792 * VM_EXIT_ACK_INTR_ON_EXIT
793 */
nested_exit_intr_ack_set(struct kvm_vcpu * vcpu)794 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
795 {
796 return get_vmcs12(vcpu)->vm_exit_controls &
797 VM_EXIT_ACK_INTR_ON_EXIT;
798 }
799
nested_vmx_check_apic_access_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)800 static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
801 struct vmcs12 *vmcs12)
802 {
803 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
804 CC(!page_address_valid(vcpu, vmcs12->apic_access_addr)))
805 return -EINVAL;
806 else
807 return 0;
808 }
809
nested_vmx_check_apicv_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)810 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
811 struct vmcs12 *vmcs12)
812 {
813 if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
814 !nested_cpu_has_apic_reg_virt(vmcs12) &&
815 !nested_cpu_has_vid(vmcs12) &&
816 !nested_cpu_has_posted_intr(vmcs12))
817 return 0;
818
819 /*
820 * If virtualize x2apic mode is enabled,
821 * virtualize apic access must be disabled.
822 */
823 if (CC(nested_cpu_has_virt_x2apic_mode(vmcs12) &&
824 nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)))
825 return -EINVAL;
826
827 /*
828 * If virtual interrupt delivery is enabled,
829 * we must exit on external interrupts.
830 */
831 if (CC(nested_cpu_has_vid(vmcs12) && !nested_exit_on_intr(vcpu)))
832 return -EINVAL;
833
834 /*
835 * bits 15:8 should be zero in posted_intr_nv,
836 * the descriptor address has been already checked
837 * in nested_get_vmcs12_pages.
838 *
839 * bits 5:0 of posted_intr_desc_addr should be zero.
840 */
841 if (nested_cpu_has_posted_intr(vmcs12) &&
842 (CC(!nested_cpu_has_vid(vmcs12)) ||
843 CC(!nested_exit_intr_ack_set(vcpu)) ||
844 CC((vmcs12->posted_intr_nv & 0xff00)) ||
845 CC(!kvm_vcpu_is_legal_aligned_gpa(vcpu, vmcs12->posted_intr_desc_addr, 64))))
846 return -EINVAL;
847
848 /* tpr shadow is needed by all apicv features. */
849 if (CC(!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)))
850 return -EINVAL;
851
852 return 0;
853 }
854
nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu * vcpu)855 static u32 nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu *vcpu)
856 {
857 struct vcpu_vmx *vmx = to_vmx(vcpu);
858 u64 vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
859 vmx->nested.msrs.misc_high);
860
861 return (vmx_misc_max_msr(vmx_misc) + 1) * VMX_MISC_MSR_LIST_MULTIPLIER;
862 }
863
nested_vmx_check_msr_switch(struct kvm_vcpu * vcpu,u32 count,u64 addr)864 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
865 u32 count, u64 addr)
866 {
867 if (count == 0)
868 return 0;
869
870 /*
871 * Exceeding the limit results in architecturally _undefined_ behavior,
872 * i.e. KVM is allowed to do literally anything in response to a bad
873 * limit. Immediately generate a consistency check so that code that
874 * consumes the count doesn't need to worry about extreme edge cases.
875 */
876 if (count > nested_vmx_max_atomic_switch_msrs(vcpu))
877 return -EINVAL;
878
879 if (!kvm_vcpu_is_legal_aligned_gpa(vcpu, addr, 16) ||
880 !kvm_vcpu_is_legal_gpa(vcpu, (addr + count * sizeof(struct vmx_msr_entry) - 1)))
881 return -EINVAL;
882
883 return 0;
884 }
885
nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)886 static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu,
887 struct vmcs12 *vmcs12)
888 {
889 if (CC(nested_vmx_check_msr_switch(vcpu,
890 vmcs12->vm_exit_msr_load_count,
891 vmcs12->vm_exit_msr_load_addr)) ||
892 CC(nested_vmx_check_msr_switch(vcpu,
893 vmcs12->vm_exit_msr_store_count,
894 vmcs12->vm_exit_msr_store_addr)))
895 return -EINVAL;
896
897 return 0;
898 }
899
nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)900 static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu,
901 struct vmcs12 *vmcs12)
902 {
903 if (CC(nested_vmx_check_msr_switch(vcpu,
904 vmcs12->vm_entry_msr_load_count,
905 vmcs12->vm_entry_msr_load_addr)))
906 return -EINVAL;
907
908 return 0;
909 }
910
nested_vmx_check_pml_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)911 static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
912 struct vmcs12 *vmcs12)
913 {
914 if (!nested_cpu_has_pml(vmcs12))
915 return 0;
916
917 if (CC(!nested_cpu_has_ept(vmcs12)) ||
918 CC(!page_address_valid(vcpu, vmcs12->pml_address)))
919 return -EINVAL;
920
921 return 0;
922 }
923
nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)924 static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu,
925 struct vmcs12 *vmcs12)
926 {
927 if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) &&
928 !nested_cpu_has_ept(vmcs12)))
929 return -EINVAL;
930 return 0;
931 }
932
nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)933 static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu,
934 struct vmcs12 *vmcs12)
935 {
936 if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) &&
937 !nested_cpu_has_ept(vmcs12)))
938 return -EINVAL;
939 return 0;
940 }
941
nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)942 static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
943 struct vmcs12 *vmcs12)
944 {
945 if (!nested_cpu_has_shadow_vmcs(vmcs12))
946 return 0;
947
948 if (CC(!page_address_valid(vcpu, vmcs12->vmread_bitmap)) ||
949 CC(!page_address_valid(vcpu, vmcs12->vmwrite_bitmap)))
950 return -EINVAL;
951
952 return 0;
953 }
954
nested_vmx_msr_check_common(struct kvm_vcpu * vcpu,struct vmx_msr_entry * e)955 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
956 struct vmx_msr_entry *e)
957 {
958 /* x2APIC MSR accesses are not allowed */
959 if (CC(vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8))
960 return -EINVAL;
961 if (CC(e->index == MSR_IA32_UCODE_WRITE) || /* SDM Table 35-2 */
962 CC(e->index == MSR_IA32_UCODE_REV))
963 return -EINVAL;
964 if (CC(e->reserved != 0))
965 return -EINVAL;
966 return 0;
967 }
968
nested_vmx_load_msr_check(struct kvm_vcpu * vcpu,struct vmx_msr_entry * e)969 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
970 struct vmx_msr_entry *e)
971 {
972 if (CC(e->index == MSR_FS_BASE) ||
973 CC(e->index == MSR_GS_BASE) ||
974 CC(e->index == MSR_IA32_SMM_MONITOR_CTL) || /* SMM is not supported */
975 nested_vmx_msr_check_common(vcpu, e))
976 return -EINVAL;
977 return 0;
978 }
979
nested_vmx_store_msr_check(struct kvm_vcpu * vcpu,struct vmx_msr_entry * e)980 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
981 struct vmx_msr_entry *e)
982 {
983 if (CC(e->index == MSR_IA32_SMBASE) || /* SMM is not supported */
984 nested_vmx_msr_check_common(vcpu, e))
985 return -EINVAL;
986 return 0;
987 }
988
989 /*
990 * Load guest's/host's msr at nested entry/exit.
991 * return 0 for success, entry index for failure.
992 *
993 * One of the failure modes for MSR load/store is when a list exceeds the
994 * virtual hardware's capacity. To maintain compatibility with hardware inasmuch
995 * as possible, process all valid entries before failing rather than precheck
996 * for a capacity violation.
997 */
nested_vmx_load_msr(struct kvm_vcpu * vcpu,u64 gpa,u32 count)998 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
999 {
1000 u32 i;
1001 struct vmx_msr_entry e;
1002 u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
1003
1004 for (i = 0; i < count; i++) {
1005 if (WARN_ON_ONCE(i >= max_msr_list_size))
1006 goto fail;
1007
1008 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
1009 &e, sizeof(e))) {
1010 pr_debug_ratelimited(
1011 "%s cannot read MSR entry (%u, 0x%08llx)\n",
1012 __func__, i, gpa + i * sizeof(e));
1013 goto fail;
1014 }
1015 if (nested_vmx_load_msr_check(vcpu, &e)) {
1016 pr_debug_ratelimited(
1017 "%s check failed (%u, 0x%x, 0x%x)\n",
1018 __func__, i, e.index, e.reserved);
1019 goto fail;
1020 }
1021 if (kvm_emulate_msr_write(vcpu, e.index, e.value)) {
1022 pr_debug_ratelimited(
1023 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
1024 __func__, i, e.index, e.value);
1025 goto fail;
1026 }
1027 }
1028 return 0;
1029 fail:
1030 /* Note, max_msr_list_size is at most 4096, i.e. this can't wrap. */
1031 return i + 1;
1032 }
1033
nested_vmx_get_vmexit_msr_value(struct kvm_vcpu * vcpu,u32 msr_index,u64 * data)1034 static bool nested_vmx_get_vmexit_msr_value(struct kvm_vcpu *vcpu,
1035 u32 msr_index,
1036 u64 *data)
1037 {
1038 struct vcpu_vmx *vmx = to_vmx(vcpu);
1039
1040 /*
1041 * If the L0 hypervisor stored a more accurate value for the TSC that
1042 * does not include the time taken for emulation of the L2->L1
1043 * VM-exit in L0, use the more accurate value.
1044 */
1045 if (msr_index == MSR_IA32_TSC) {
1046 int i = vmx_find_loadstore_msr_slot(&vmx->msr_autostore.guest,
1047 MSR_IA32_TSC);
1048
1049 if (i >= 0) {
1050 u64 val = vmx->msr_autostore.guest.val[i].value;
1051
1052 *data = kvm_read_l1_tsc(vcpu, val);
1053 return true;
1054 }
1055 }
1056
1057 if (kvm_emulate_msr_read(vcpu, msr_index, data)) {
1058 pr_debug_ratelimited("%s cannot read MSR (0x%x)\n", __func__,
1059 msr_index);
1060 return false;
1061 }
1062 return true;
1063 }
1064
read_and_check_msr_entry(struct kvm_vcpu * vcpu,u64 gpa,int i,struct vmx_msr_entry * e)1065 static bool read_and_check_msr_entry(struct kvm_vcpu *vcpu, u64 gpa, int i,
1066 struct vmx_msr_entry *e)
1067 {
1068 if (kvm_vcpu_read_guest(vcpu,
1069 gpa + i * sizeof(*e),
1070 e, 2 * sizeof(u32))) {
1071 pr_debug_ratelimited(
1072 "%s cannot read MSR entry (%u, 0x%08llx)\n",
1073 __func__, i, gpa + i * sizeof(*e));
1074 return false;
1075 }
1076 if (nested_vmx_store_msr_check(vcpu, e)) {
1077 pr_debug_ratelimited(
1078 "%s check failed (%u, 0x%x, 0x%x)\n",
1079 __func__, i, e->index, e->reserved);
1080 return false;
1081 }
1082 return true;
1083 }
1084
nested_vmx_store_msr(struct kvm_vcpu * vcpu,u64 gpa,u32 count)1085 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
1086 {
1087 u64 data;
1088 u32 i;
1089 struct vmx_msr_entry e;
1090 u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
1091
1092 for (i = 0; i < count; i++) {
1093 if (WARN_ON_ONCE(i >= max_msr_list_size))
1094 return -EINVAL;
1095
1096 if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
1097 return -EINVAL;
1098
1099 if (!nested_vmx_get_vmexit_msr_value(vcpu, e.index, &data))
1100 return -EINVAL;
1101
1102 if (kvm_vcpu_write_guest(vcpu,
1103 gpa + i * sizeof(e) +
1104 offsetof(struct vmx_msr_entry, value),
1105 &data, sizeof(data))) {
1106 pr_debug_ratelimited(
1107 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
1108 __func__, i, e.index, data);
1109 return -EINVAL;
1110 }
1111 }
1112 return 0;
1113 }
1114
nested_msr_store_list_has_msr(struct kvm_vcpu * vcpu,u32 msr_index)1115 static bool nested_msr_store_list_has_msr(struct kvm_vcpu *vcpu, u32 msr_index)
1116 {
1117 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1118 u32 count = vmcs12->vm_exit_msr_store_count;
1119 u64 gpa = vmcs12->vm_exit_msr_store_addr;
1120 struct vmx_msr_entry e;
1121 u32 i;
1122
1123 for (i = 0; i < count; i++) {
1124 if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
1125 return false;
1126
1127 if (e.index == msr_index)
1128 return true;
1129 }
1130 return false;
1131 }
1132
prepare_vmx_msr_autostore_list(struct kvm_vcpu * vcpu,u32 msr_index)1133 static void prepare_vmx_msr_autostore_list(struct kvm_vcpu *vcpu,
1134 u32 msr_index)
1135 {
1136 struct vcpu_vmx *vmx = to_vmx(vcpu);
1137 struct vmx_msrs *autostore = &vmx->msr_autostore.guest;
1138 bool in_vmcs12_store_list;
1139 int msr_autostore_slot;
1140 bool in_autostore_list;
1141 int last;
1142
1143 msr_autostore_slot = vmx_find_loadstore_msr_slot(autostore, msr_index);
1144 in_autostore_list = msr_autostore_slot >= 0;
1145 in_vmcs12_store_list = nested_msr_store_list_has_msr(vcpu, msr_index);
1146
1147 if (in_vmcs12_store_list && !in_autostore_list) {
1148 if (autostore->nr == MAX_NR_LOADSTORE_MSRS) {
1149 /*
1150 * Emulated VMEntry does not fail here. Instead a less
1151 * accurate value will be returned by
1152 * nested_vmx_get_vmexit_msr_value() by reading KVM's
1153 * internal MSR state instead of reading the value from
1154 * the vmcs02 VMExit MSR-store area.
1155 */
1156 pr_warn_ratelimited(
1157 "Not enough msr entries in msr_autostore. Can't add msr %x\n",
1158 msr_index);
1159 return;
1160 }
1161 last = autostore->nr++;
1162 autostore->val[last].index = msr_index;
1163 } else if (!in_vmcs12_store_list && in_autostore_list) {
1164 last = --autostore->nr;
1165 autostore->val[msr_autostore_slot] = autostore->val[last];
1166 }
1167 }
1168
1169 /*
1170 * Load guest's/host's cr3 at nested entry/exit. @nested_ept is true if we are
1171 * emulating VM-Entry into a guest with EPT enabled. On failure, the expected
1172 * Exit Qualification (for a VM-Entry consistency check VM-Exit) is assigned to
1173 * @entry_failure_code.
1174 */
nested_vmx_load_cr3(struct kvm_vcpu * vcpu,unsigned long cr3,bool nested_ept,bool reload_pdptrs,enum vm_entry_failure_code * entry_failure_code)1175 static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3,
1176 bool nested_ept, bool reload_pdptrs,
1177 enum vm_entry_failure_code *entry_failure_code)
1178 {
1179 if (CC(!kvm_vcpu_is_legal_cr3(vcpu, cr3))) {
1180 *entry_failure_code = ENTRY_FAIL_DEFAULT;
1181 return -EINVAL;
1182 }
1183
1184 /*
1185 * If PAE paging and EPT are both on, CR3 is not used by the CPU and
1186 * must not be dereferenced.
1187 */
1188 if (reload_pdptrs && !nested_ept && is_pae_paging(vcpu) &&
1189 CC(!load_pdptrs(vcpu, cr3))) {
1190 *entry_failure_code = ENTRY_FAIL_PDPTE;
1191 return -EINVAL;
1192 }
1193
1194 vcpu->arch.cr3 = cr3;
1195 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1196
1197 /* Re-initialize the MMU, e.g. to pick up CR4 MMU role changes. */
1198 kvm_init_mmu(vcpu);
1199
1200 if (!nested_ept)
1201 kvm_mmu_new_pgd(vcpu, cr3);
1202
1203 return 0;
1204 }
1205
1206 /*
1207 * Returns if KVM is able to config CPU to tag TLB entries
1208 * populated by L2 differently than TLB entries populated
1209 * by L1.
1210 *
1211 * If L0 uses EPT, L1 and L2 run with different EPTP because
1212 * guest_mode is part of kvm_mmu_page_role. Thus, TLB entries
1213 * are tagged with different EPTP.
1214 *
1215 * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
1216 * with different VPID (L1 entries are tagged with vmx->vpid
1217 * while L2 entries are tagged with vmx->nested.vpid02).
1218 */
nested_has_guest_tlb_tag(struct kvm_vcpu * vcpu)1219 static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu)
1220 {
1221 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1222
1223 return enable_ept ||
1224 (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02);
1225 }
1226
nested_vmx_transition_tlb_flush(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,bool is_vmenter)1227 static void nested_vmx_transition_tlb_flush(struct kvm_vcpu *vcpu,
1228 struct vmcs12 *vmcs12,
1229 bool is_vmenter)
1230 {
1231 struct vcpu_vmx *vmx = to_vmx(vcpu);
1232
1233 /* Handle pending Hyper-V TLB flush requests */
1234 kvm_hv_nested_transtion_tlb_flush(vcpu, enable_ept);
1235
1236 /*
1237 * If VPID is disabled, then guest TLB accesses use VPID=0, i.e. the
1238 * same VPID as the host, and so architecturally, linear and combined
1239 * mappings for VPID=0 must be flushed at VM-Enter and VM-Exit. KVM
1240 * emulates L2 sharing L1's VPID=0 by using vpid01 while running L2,
1241 * and so KVM must also emulate TLB flush of VPID=0, i.e. vpid01. This
1242 * is required if VPID is disabled in KVM, as a TLB flush (there are no
1243 * VPIDs) still occurs from L1's perspective, and KVM may need to
1244 * synchronize the MMU in response to the guest TLB flush.
1245 *
1246 * Note, using TLB_FLUSH_GUEST is correct even if nested EPT is in use.
1247 * EPT is a special snowflake, as guest-physical mappings aren't
1248 * flushed on VPID invalidations, including VM-Enter or VM-Exit with
1249 * VPID disabled. As a result, KVM _never_ needs to sync nEPT
1250 * entries on VM-Enter because L1 can't rely on VM-Enter to flush
1251 * those mappings.
1252 */
1253 if (!nested_cpu_has_vpid(vmcs12)) {
1254 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1255 return;
1256 }
1257
1258 /* L2 should never have a VPID if VPID is disabled. */
1259 WARN_ON(!enable_vpid);
1260
1261 /*
1262 * VPID is enabled and in use by vmcs12. If vpid12 is changing, then
1263 * emulate a guest TLB flush as KVM does not track vpid12 history nor
1264 * is the VPID incorporated into the MMU context. I.e. KVM must assume
1265 * that the new vpid12 has never been used and thus represents a new
1266 * guest ASID that cannot have entries in the TLB.
1267 */
1268 if (is_vmenter && vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
1269 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
1270 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1271 return;
1272 }
1273
1274 /*
1275 * If VPID is enabled, used by vmc12, and vpid12 is not changing but
1276 * does not have a unique TLB tag (ASID), i.e. EPT is disabled and
1277 * KVM was unable to allocate a VPID for L2, flush the current context
1278 * as the effective ASID is common to both L1 and L2.
1279 */
1280 if (!nested_has_guest_tlb_tag(vcpu))
1281 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1282 }
1283
is_bitwise_subset(u64 superset,u64 subset,u64 mask)1284 static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
1285 {
1286 superset &= mask;
1287 subset &= mask;
1288
1289 return (superset | subset) == superset;
1290 }
1291
vmx_restore_vmx_basic(struct vcpu_vmx * vmx,u64 data)1292 static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
1293 {
1294 const u64 feature_bits = VMX_BASIC_DUAL_MONITOR_TREATMENT |
1295 VMX_BASIC_INOUT |
1296 VMX_BASIC_TRUE_CTLS |
1297 VMX_BASIC_NO_HW_ERROR_CODE_CC;
1298
1299 const u64 reserved_bits = GENMASK_ULL(63, 57) |
1300 GENMASK_ULL(47, 45) |
1301 BIT_ULL(31);
1302
1303 u64 vmx_basic = vmcs_config.nested.basic;
1304
1305 BUILD_BUG_ON(feature_bits & reserved_bits);
1306
1307 /*
1308 * Except for 32BIT_PHYS_ADDR_ONLY, which is an anti-feature bit (has
1309 * inverted polarity), the incoming value must not set feature bits or
1310 * reserved bits that aren't allowed/supported by KVM. Fields, i.e.
1311 * multi-bit values, are explicitly checked below.
1312 */
1313 if (!is_bitwise_subset(vmx_basic, data, feature_bits | reserved_bits))
1314 return -EINVAL;
1315
1316 /*
1317 * KVM does not emulate a version of VMX that constrains physical
1318 * addresses of VMX structures (e.g. VMCS) to 32-bits.
1319 */
1320 if (data & VMX_BASIC_32BIT_PHYS_ADDR_ONLY)
1321 return -EINVAL;
1322
1323 if (vmx_basic_vmcs_revision_id(vmx_basic) !=
1324 vmx_basic_vmcs_revision_id(data))
1325 return -EINVAL;
1326
1327 if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
1328 return -EINVAL;
1329
1330 vmx->nested.msrs.basic = data;
1331 return 0;
1332 }
1333
vmx_get_control_msr(struct nested_vmx_msrs * msrs,u32 msr_index,u32 ** low,u32 ** high)1334 static void vmx_get_control_msr(struct nested_vmx_msrs *msrs, u32 msr_index,
1335 u32 **low, u32 **high)
1336 {
1337 switch (msr_index) {
1338 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1339 *low = &msrs->pinbased_ctls_low;
1340 *high = &msrs->pinbased_ctls_high;
1341 break;
1342 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1343 *low = &msrs->procbased_ctls_low;
1344 *high = &msrs->procbased_ctls_high;
1345 break;
1346 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1347 *low = &msrs->exit_ctls_low;
1348 *high = &msrs->exit_ctls_high;
1349 break;
1350 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1351 *low = &msrs->entry_ctls_low;
1352 *high = &msrs->entry_ctls_high;
1353 break;
1354 case MSR_IA32_VMX_PROCBASED_CTLS2:
1355 *low = &msrs->secondary_ctls_low;
1356 *high = &msrs->secondary_ctls_high;
1357 break;
1358 default:
1359 BUG();
1360 }
1361 }
1362
1363 static int
vmx_restore_control_msr(struct vcpu_vmx * vmx,u32 msr_index,u64 data)1364 vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1365 {
1366 u32 *lowp, *highp;
1367 u64 supported;
1368
1369 vmx_get_control_msr(&vmcs_config.nested, msr_index, &lowp, &highp);
1370
1371 supported = vmx_control_msr(*lowp, *highp);
1372
1373 /* Check must-be-1 bits are still 1. */
1374 if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
1375 return -EINVAL;
1376
1377 /* Check must-be-0 bits are still 0. */
1378 if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
1379 return -EINVAL;
1380
1381 vmx_get_control_msr(&vmx->nested.msrs, msr_index, &lowp, &highp);
1382 *lowp = data;
1383 *highp = data >> 32;
1384 return 0;
1385 }
1386
vmx_restore_vmx_misc(struct vcpu_vmx * vmx,u64 data)1387 static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
1388 {
1389 const u64 feature_bits = VMX_MISC_SAVE_EFER_LMA |
1390 VMX_MISC_ACTIVITY_HLT |
1391 VMX_MISC_ACTIVITY_SHUTDOWN |
1392 VMX_MISC_ACTIVITY_WAIT_SIPI |
1393 VMX_MISC_INTEL_PT |
1394 VMX_MISC_RDMSR_IN_SMM |
1395 VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
1396 VMX_MISC_VMXOFF_BLOCK_SMI |
1397 VMX_MISC_ZERO_LEN_INS;
1398
1399 const u64 reserved_bits = BIT_ULL(31) | GENMASK_ULL(13, 9);
1400
1401 u64 vmx_misc = vmx_control_msr(vmcs_config.nested.misc_low,
1402 vmcs_config.nested.misc_high);
1403
1404 BUILD_BUG_ON(feature_bits & reserved_bits);
1405
1406 /*
1407 * The incoming value must not set feature bits or reserved bits that
1408 * aren't allowed/supported by KVM. Fields, i.e. multi-bit values, are
1409 * explicitly checked below.
1410 */
1411 if (!is_bitwise_subset(vmx_misc, data, feature_bits | reserved_bits))
1412 return -EINVAL;
1413
1414 if ((vmx->nested.msrs.pinbased_ctls_high &
1415 PIN_BASED_VMX_PREEMPTION_TIMER) &&
1416 vmx_misc_preemption_timer_rate(data) !=
1417 vmx_misc_preemption_timer_rate(vmx_misc))
1418 return -EINVAL;
1419
1420 if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
1421 return -EINVAL;
1422
1423 if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
1424 return -EINVAL;
1425
1426 if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
1427 return -EINVAL;
1428
1429 vmx->nested.msrs.misc_low = data;
1430 vmx->nested.msrs.misc_high = data >> 32;
1431
1432 return 0;
1433 }
1434
vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx * vmx,u64 data)1435 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
1436 {
1437 u64 vmx_ept_vpid_cap = vmx_control_msr(vmcs_config.nested.ept_caps,
1438 vmcs_config.nested.vpid_caps);
1439
1440 /* Every bit is either reserved or a feature bit. */
1441 if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
1442 return -EINVAL;
1443
1444 vmx->nested.msrs.ept_caps = data;
1445 vmx->nested.msrs.vpid_caps = data >> 32;
1446 return 0;
1447 }
1448
vmx_get_fixed0_msr(struct nested_vmx_msrs * msrs,u32 msr_index)1449 static u64 *vmx_get_fixed0_msr(struct nested_vmx_msrs *msrs, u32 msr_index)
1450 {
1451 switch (msr_index) {
1452 case MSR_IA32_VMX_CR0_FIXED0:
1453 return &msrs->cr0_fixed0;
1454 case MSR_IA32_VMX_CR4_FIXED0:
1455 return &msrs->cr4_fixed0;
1456 default:
1457 BUG();
1458 }
1459 }
1460
vmx_restore_fixed0_msr(struct vcpu_vmx * vmx,u32 msr_index,u64 data)1461 static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1462 {
1463 const u64 *msr = vmx_get_fixed0_msr(&vmcs_config.nested, msr_index);
1464
1465 /*
1466 * 1 bits (which indicates bits which "must-be-1" during VMX operation)
1467 * must be 1 in the restored value.
1468 */
1469 if (!is_bitwise_subset(data, *msr, -1ULL))
1470 return -EINVAL;
1471
1472 *vmx_get_fixed0_msr(&vmx->nested.msrs, msr_index) = data;
1473 return 0;
1474 }
1475
1476 /*
1477 * Called when userspace is restoring VMX MSRs.
1478 *
1479 * Returns 0 on success, non-0 otherwise.
1480 */
vmx_set_vmx_msr(struct kvm_vcpu * vcpu,u32 msr_index,u64 data)1481 int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1482 {
1483 struct vcpu_vmx *vmx = to_vmx(vcpu);
1484
1485 /*
1486 * Don't allow changes to the VMX capability MSRs while the vCPU
1487 * is in VMX operation.
1488 */
1489 if (vmx->nested.vmxon)
1490 return -EBUSY;
1491
1492 switch (msr_index) {
1493 case MSR_IA32_VMX_BASIC:
1494 return vmx_restore_vmx_basic(vmx, data);
1495 case MSR_IA32_VMX_PINBASED_CTLS:
1496 case MSR_IA32_VMX_PROCBASED_CTLS:
1497 case MSR_IA32_VMX_EXIT_CTLS:
1498 case MSR_IA32_VMX_ENTRY_CTLS:
1499 /*
1500 * The "non-true" VMX capability MSRs are generated from the
1501 * "true" MSRs, so we do not support restoring them directly.
1502 *
1503 * If userspace wants to emulate VMX_BASIC[55]=0, userspace
1504 * should restore the "true" MSRs with the must-be-1 bits
1505 * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
1506 * DEFAULT SETTINGS".
1507 */
1508 return -EINVAL;
1509 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1510 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1511 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1512 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1513 case MSR_IA32_VMX_PROCBASED_CTLS2:
1514 return vmx_restore_control_msr(vmx, msr_index, data);
1515 case MSR_IA32_VMX_MISC:
1516 return vmx_restore_vmx_misc(vmx, data);
1517 case MSR_IA32_VMX_CR0_FIXED0:
1518 case MSR_IA32_VMX_CR4_FIXED0:
1519 return vmx_restore_fixed0_msr(vmx, msr_index, data);
1520 case MSR_IA32_VMX_CR0_FIXED1:
1521 case MSR_IA32_VMX_CR4_FIXED1:
1522 /*
1523 * These MSRs are generated based on the vCPU's CPUID, so we
1524 * do not support restoring them directly.
1525 */
1526 return -EINVAL;
1527 case MSR_IA32_VMX_EPT_VPID_CAP:
1528 return vmx_restore_vmx_ept_vpid_cap(vmx, data);
1529 case MSR_IA32_VMX_VMCS_ENUM:
1530 vmx->nested.msrs.vmcs_enum = data;
1531 return 0;
1532 case MSR_IA32_VMX_VMFUNC:
1533 if (data & ~vmcs_config.nested.vmfunc_controls)
1534 return -EINVAL;
1535 vmx->nested.msrs.vmfunc_controls = data;
1536 return 0;
1537 default:
1538 /*
1539 * The rest of the VMX capability MSRs do not support restore.
1540 */
1541 return -EINVAL;
1542 }
1543 }
1544
1545 /* Returns 0 on success, non-0 otherwise. */
vmx_get_vmx_msr(struct nested_vmx_msrs * msrs,u32 msr_index,u64 * pdata)1546 int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
1547 {
1548 switch (msr_index) {
1549 case MSR_IA32_VMX_BASIC:
1550 *pdata = msrs->basic;
1551 break;
1552 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1553 case MSR_IA32_VMX_PINBASED_CTLS:
1554 *pdata = vmx_control_msr(
1555 msrs->pinbased_ctls_low,
1556 msrs->pinbased_ctls_high);
1557 if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
1558 *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1559 break;
1560 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1561 case MSR_IA32_VMX_PROCBASED_CTLS:
1562 *pdata = vmx_control_msr(
1563 msrs->procbased_ctls_low,
1564 msrs->procbased_ctls_high);
1565 if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
1566 *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1567 break;
1568 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1569 case MSR_IA32_VMX_EXIT_CTLS:
1570 *pdata = vmx_control_msr(
1571 msrs->exit_ctls_low,
1572 msrs->exit_ctls_high);
1573 if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
1574 *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
1575 break;
1576 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1577 case MSR_IA32_VMX_ENTRY_CTLS:
1578 *pdata = vmx_control_msr(
1579 msrs->entry_ctls_low,
1580 msrs->entry_ctls_high);
1581 if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
1582 *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
1583 break;
1584 case MSR_IA32_VMX_MISC:
1585 *pdata = vmx_control_msr(
1586 msrs->misc_low,
1587 msrs->misc_high);
1588 break;
1589 case MSR_IA32_VMX_CR0_FIXED0:
1590 *pdata = msrs->cr0_fixed0;
1591 break;
1592 case MSR_IA32_VMX_CR0_FIXED1:
1593 *pdata = msrs->cr0_fixed1;
1594 break;
1595 case MSR_IA32_VMX_CR4_FIXED0:
1596 *pdata = msrs->cr4_fixed0;
1597 break;
1598 case MSR_IA32_VMX_CR4_FIXED1:
1599 *pdata = msrs->cr4_fixed1;
1600 break;
1601 case MSR_IA32_VMX_VMCS_ENUM:
1602 *pdata = msrs->vmcs_enum;
1603 break;
1604 case MSR_IA32_VMX_PROCBASED_CTLS2:
1605 *pdata = vmx_control_msr(
1606 msrs->secondary_ctls_low,
1607 msrs->secondary_ctls_high);
1608 break;
1609 case MSR_IA32_VMX_EPT_VPID_CAP:
1610 *pdata = msrs->ept_caps |
1611 ((u64)msrs->vpid_caps << 32);
1612 break;
1613 case MSR_IA32_VMX_VMFUNC:
1614 *pdata = msrs->vmfunc_controls;
1615 break;
1616 default:
1617 return 1;
1618 }
1619
1620 return 0;
1621 }
1622
1623 /*
1624 * Copy the writable VMCS shadow fields back to the VMCS12, in case they have
1625 * been modified by the L1 guest. Note, "writable" in this context means
1626 * "writable by the guest", i.e. tagged SHADOW_FIELD_RW; the set of
1627 * fields tagged SHADOW_FIELD_RO may or may not align with the "read-only"
1628 * VM-exit information fields (which are actually writable if the vCPU is
1629 * configured to support "VMWRITE to any supported field in the VMCS").
1630 */
copy_shadow_to_vmcs12(struct vcpu_vmx * vmx)1631 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
1632 {
1633 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1634 struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1635 struct shadow_vmcs_field field;
1636 unsigned long val;
1637 int i;
1638
1639 if (WARN_ON(!shadow_vmcs))
1640 return;
1641
1642 preempt_disable();
1643
1644 vmcs_load(shadow_vmcs);
1645
1646 for (i = 0; i < max_shadow_read_write_fields; i++) {
1647 field = shadow_read_write_fields[i];
1648 val = __vmcs_readl(field.encoding);
1649 vmcs12_write_any(vmcs12, field.encoding, field.offset, val);
1650 }
1651
1652 vmcs_clear(shadow_vmcs);
1653 vmcs_load(vmx->loaded_vmcs->vmcs);
1654
1655 preempt_enable();
1656 }
1657
copy_vmcs12_to_shadow(struct vcpu_vmx * vmx)1658 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
1659 {
1660 const struct shadow_vmcs_field *fields[] = {
1661 shadow_read_write_fields,
1662 shadow_read_only_fields
1663 };
1664 const int max_fields[] = {
1665 max_shadow_read_write_fields,
1666 max_shadow_read_only_fields
1667 };
1668 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1669 struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1670 struct shadow_vmcs_field field;
1671 unsigned long val;
1672 int i, q;
1673
1674 if (WARN_ON(!shadow_vmcs))
1675 return;
1676
1677 vmcs_load(shadow_vmcs);
1678
1679 for (q = 0; q < ARRAY_SIZE(fields); q++) {
1680 for (i = 0; i < max_fields[q]; i++) {
1681 field = fields[q][i];
1682 val = vmcs12_read_any(vmcs12, field.encoding,
1683 field.offset);
1684 __vmcs_writel(field.encoding, val);
1685 }
1686 }
1687
1688 vmcs_clear(shadow_vmcs);
1689 vmcs_load(vmx->loaded_vmcs->vmcs);
1690 }
1691
copy_enlightened_to_vmcs12(struct vcpu_vmx * vmx,u32 hv_clean_fields)1692 static void copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx, u32 hv_clean_fields)
1693 {
1694 #ifdef CONFIG_KVM_HYPERV
1695 struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1696 struct hv_enlightened_vmcs *evmcs = nested_vmx_evmcs(vmx);
1697 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(&vmx->vcpu);
1698
1699 /* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
1700 vmcs12->tpr_threshold = evmcs->tpr_threshold;
1701 vmcs12->guest_rip = evmcs->guest_rip;
1702
1703 if (unlikely(!(hv_clean_fields &
1704 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ENLIGHTENMENTSCONTROL))) {
1705 hv_vcpu->nested.pa_page_gpa = evmcs->partition_assist_page;
1706 hv_vcpu->nested.vm_id = evmcs->hv_vm_id;
1707 hv_vcpu->nested.vp_id = evmcs->hv_vp_id;
1708 }
1709
1710 if (unlikely(!(hv_clean_fields &
1711 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
1712 vmcs12->guest_rsp = evmcs->guest_rsp;
1713 vmcs12->guest_rflags = evmcs->guest_rflags;
1714 vmcs12->guest_interruptibility_info =
1715 evmcs->guest_interruptibility_info;
1716 /*
1717 * Not present in struct vmcs12:
1718 * vmcs12->guest_ssp = evmcs->guest_ssp;
1719 */
1720 }
1721
1722 if (unlikely(!(hv_clean_fields &
1723 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
1724 vmcs12->cpu_based_vm_exec_control =
1725 evmcs->cpu_based_vm_exec_control;
1726 }
1727
1728 if (unlikely(!(hv_clean_fields &
1729 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EXCPN))) {
1730 vmcs12->exception_bitmap = evmcs->exception_bitmap;
1731 }
1732
1733 if (unlikely(!(hv_clean_fields &
1734 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) {
1735 vmcs12->vm_entry_controls = evmcs->vm_entry_controls;
1736 }
1737
1738 if (unlikely(!(hv_clean_fields &
1739 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) {
1740 vmcs12->vm_entry_intr_info_field =
1741 evmcs->vm_entry_intr_info_field;
1742 vmcs12->vm_entry_exception_error_code =
1743 evmcs->vm_entry_exception_error_code;
1744 vmcs12->vm_entry_instruction_len =
1745 evmcs->vm_entry_instruction_len;
1746 }
1747
1748 if (unlikely(!(hv_clean_fields &
1749 HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
1750 vmcs12->host_ia32_pat = evmcs->host_ia32_pat;
1751 vmcs12->host_ia32_efer = evmcs->host_ia32_efer;
1752 vmcs12->host_cr0 = evmcs->host_cr0;
1753 vmcs12->host_cr3 = evmcs->host_cr3;
1754 vmcs12->host_cr4 = evmcs->host_cr4;
1755 vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp;
1756 vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip;
1757 vmcs12->host_rip = evmcs->host_rip;
1758 vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs;
1759 vmcs12->host_es_selector = evmcs->host_es_selector;
1760 vmcs12->host_cs_selector = evmcs->host_cs_selector;
1761 vmcs12->host_ss_selector = evmcs->host_ss_selector;
1762 vmcs12->host_ds_selector = evmcs->host_ds_selector;
1763 vmcs12->host_fs_selector = evmcs->host_fs_selector;
1764 vmcs12->host_gs_selector = evmcs->host_gs_selector;
1765 vmcs12->host_tr_selector = evmcs->host_tr_selector;
1766 vmcs12->host_ia32_perf_global_ctrl = evmcs->host_ia32_perf_global_ctrl;
1767 /*
1768 * Not present in struct vmcs12:
1769 * vmcs12->host_ia32_s_cet = evmcs->host_ia32_s_cet;
1770 * vmcs12->host_ssp = evmcs->host_ssp;
1771 * vmcs12->host_ia32_int_ssp_table_addr = evmcs->host_ia32_int_ssp_table_addr;
1772 */
1773 }
1774
1775 if (unlikely(!(hv_clean_fields &
1776 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP1))) {
1777 vmcs12->pin_based_vm_exec_control =
1778 evmcs->pin_based_vm_exec_control;
1779 vmcs12->vm_exit_controls = evmcs->vm_exit_controls;
1780 vmcs12->secondary_vm_exec_control =
1781 evmcs->secondary_vm_exec_control;
1782 }
1783
1784 if (unlikely(!(hv_clean_fields &
1785 HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) {
1786 vmcs12->io_bitmap_a = evmcs->io_bitmap_a;
1787 vmcs12->io_bitmap_b = evmcs->io_bitmap_b;
1788 }
1789
1790 if (unlikely(!(hv_clean_fields &
1791 HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) {
1792 vmcs12->msr_bitmap = evmcs->msr_bitmap;
1793 }
1794
1795 if (unlikely(!(hv_clean_fields &
1796 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) {
1797 vmcs12->guest_es_base = evmcs->guest_es_base;
1798 vmcs12->guest_cs_base = evmcs->guest_cs_base;
1799 vmcs12->guest_ss_base = evmcs->guest_ss_base;
1800 vmcs12->guest_ds_base = evmcs->guest_ds_base;
1801 vmcs12->guest_fs_base = evmcs->guest_fs_base;
1802 vmcs12->guest_gs_base = evmcs->guest_gs_base;
1803 vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base;
1804 vmcs12->guest_tr_base = evmcs->guest_tr_base;
1805 vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base;
1806 vmcs12->guest_idtr_base = evmcs->guest_idtr_base;
1807 vmcs12->guest_es_limit = evmcs->guest_es_limit;
1808 vmcs12->guest_cs_limit = evmcs->guest_cs_limit;
1809 vmcs12->guest_ss_limit = evmcs->guest_ss_limit;
1810 vmcs12->guest_ds_limit = evmcs->guest_ds_limit;
1811 vmcs12->guest_fs_limit = evmcs->guest_fs_limit;
1812 vmcs12->guest_gs_limit = evmcs->guest_gs_limit;
1813 vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit;
1814 vmcs12->guest_tr_limit = evmcs->guest_tr_limit;
1815 vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit;
1816 vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit;
1817 vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes;
1818 vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes;
1819 vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes;
1820 vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes;
1821 vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes;
1822 vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes;
1823 vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes;
1824 vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes;
1825 vmcs12->guest_es_selector = evmcs->guest_es_selector;
1826 vmcs12->guest_cs_selector = evmcs->guest_cs_selector;
1827 vmcs12->guest_ss_selector = evmcs->guest_ss_selector;
1828 vmcs12->guest_ds_selector = evmcs->guest_ds_selector;
1829 vmcs12->guest_fs_selector = evmcs->guest_fs_selector;
1830 vmcs12->guest_gs_selector = evmcs->guest_gs_selector;
1831 vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector;
1832 vmcs12->guest_tr_selector = evmcs->guest_tr_selector;
1833 }
1834
1835 if (unlikely(!(hv_clean_fields &
1836 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) {
1837 vmcs12->tsc_offset = evmcs->tsc_offset;
1838 vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
1839 vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
1840 vmcs12->encls_exiting_bitmap = evmcs->encls_exiting_bitmap;
1841 vmcs12->tsc_multiplier = evmcs->tsc_multiplier;
1842 }
1843
1844 if (unlikely(!(hv_clean_fields &
1845 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) {
1846 vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask;
1847 vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask;
1848 vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow;
1849 vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow;
1850 vmcs12->guest_cr0 = evmcs->guest_cr0;
1851 vmcs12->guest_cr3 = evmcs->guest_cr3;
1852 vmcs12->guest_cr4 = evmcs->guest_cr4;
1853 vmcs12->guest_dr7 = evmcs->guest_dr7;
1854 }
1855
1856 if (unlikely(!(hv_clean_fields &
1857 HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) {
1858 vmcs12->host_fs_base = evmcs->host_fs_base;
1859 vmcs12->host_gs_base = evmcs->host_gs_base;
1860 vmcs12->host_tr_base = evmcs->host_tr_base;
1861 vmcs12->host_gdtr_base = evmcs->host_gdtr_base;
1862 vmcs12->host_idtr_base = evmcs->host_idtr_base;
1863 vmcs12->host_rsp = evmcs->host_rsp;
1864 }
1865
1866 if (unlikely(!(hv_clean_fields &
1867 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) {
1868 vmcs12->ept_pointer = evmcs->ept_pointer;
1869 vmcs12->virtual_processor_id = evmcs->virtual_processor_id;
1870 }
1871
1872 if (unlikely(!(hv_clean_fields &
1873 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) {
1874 vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer;
1875 vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl;
1876 vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat;
1877 vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer;
1878 vmcs12->guest_pdptr0 = evmcs->guest_pdptr0;
1879 vmcs12->guest_pdptr1 = evmcs->guest_pdptr1;
1880 vmcs12->guest_pdptr2 = evmcs->guest_pdptr2;
1881 vmcs12->guest_pdptr3 = evmcs->guest_pdptr3;
1882 vmcs12->guest_pending_dbg_exceptions =
1883 evmcs->guest_pending_dbg_exceptions;
1884 vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp;
1885 vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip;
1886 vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
1887 vmcs12->guest_activity_state = evmcs->guest_activity_state;
1888 vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
1889 vmcs12->guest_ia32_perf_global_ctrl = evmcs->guest_ia32_perf_global_ctrl;
1890 /*
1891 * Not present in struct vmcs12:
1892 * vmcs12->guest_ia32_s_cet = evmcs->guest_ia32_s_cet;
1893 * vmcs12->guest_ia32_lbr_ctl = evmcs->guest_ia32_lbr_ctl;
1894 * vmcs12->guest_ia32_int_ssp_table_addr = evmcs->guest_ia32_int_ssp_table_addr;
1895 */
1896 }
1897
1898 /*
1899 * Not used?
1900 * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
1901 * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
1902 * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
1903 * vmcs12->page_fault_error_code_mask =
1904 * evmcs->page_fault_error_code_mask;
1905 * vmcs12->page_fault_error_code_match =
1906 * evmcs->page_fault_error_code_match;
1907 * vmcs12->cr3_target_count = evmcs->cr3_target_count;
1908 * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
1909 * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
1910 * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
1911 */
1912
1913 /*
1914 * Read only fields:
1915 * vmcs12->guest_physical_address = evmcs->guest_physical_address;
1916 * vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
1917 * vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
1918 * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
1919 * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
1920 * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
1921 * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
1922 * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
1923 * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
1924 * vmcs12->exit_qualification = evmcs->exit_qualification;
1925 * vmcs12->guest_linear_address = evmcs->guest_linear_address;
1926 *
1927 * Not present in struct vmcs12:
1928 * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
1929 * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
1930 * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
1931 * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
1932 */
1933
1934 return;
1935 #else /* CONFIG_KVM_HYPERV */
1936 KVM_BUG_ON(1, vmx->vcpu.kvm);
1937 #endif /* CONFIG_KVM_HYPERV */
1938 }
1939
copy_vmcs12_to_enlightened(struct vcpu_vmx * vmx)1940 static void copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
1941 {
1942 #ifdef CONFIG_KVM_HYPERV
1943 struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1944 struct hv_enlightened_vmcs *evmcs = nested_vmx_evmcs(vmx);
1945
1946 /*
1947 * Should not be changed by KVM:
1948 *
1949 * evmcs->host_es_selector = vmcs12->host_es_selector;
1950 * evmcs->host_cs_selector = vmcs12->host_cs_selector;
1951 * evmcs->host_ss_selector = vmcs12->host_ss_selector;
1952 * evmcs->host_ds_selector = vmcs12->host_ds_selector;
1953 * evmcs->host_fs_selector = vmcs12->host_fs_selector;
1954 * evmcs->host_gs_selector = vmcs12->host_gs_selector;
1955 * evmcs->host_tr_selector = vmcs12->host_tr_selector;
1956 * evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
1957 * evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
1958 * evmcs->host_cr0 = vmcs12->host_cr0;
1959 * evmcs->host_cr3 = vmcs12->host_cr3;
1960 * evmcs->host_cr4 = vmcs12->host_cr4;
1961 * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
1962 * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
1963 * evmcs->host_rip = vmcs12->host_rip;
1964 * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
1965 * evmcs->host_fs_base = vmcs12->host_fs_base;
1966 * evmcs->host_gs_base = vmcs12->host_gs_base;
1967 * evmcs->host_tr_base = vmcs12->host_tr_base;
1968 * evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
1969 * evmcs->host_idtr_base = vmcs12->host_idtr_base;
1970 * evmcs->host_rsp = vmcs12->host_rsp;
1971 * sync_vmcs02_to_vmcs12() doesn't read these:
1972 * evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
1973 * evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
1974 * evmcs->msr_bitmap = vmcs12->msr_bitmap;
1975 * evmcs->ept_pointer = vmcs12->ept_pointer;
1976 * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
1977 * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
1978 * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
1979 * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
1980 * evmcs->tpr_threshold = vmcs12->tpr_threshold;
1981 * evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
1982 * evmcs->exception_bitmap = vmcs12->exception_bitmap;
1983 * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
1984 * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
1985 * evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
1986 * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
1987 * evmcs->page_fault_error_code_mask =
1988 * vmcs12->page_fault_error_code_mask;
1989 * evmcs->page_fault_error_code_match =
1990 * vmcs12->page_fault_error_code_match;
1991 * evmcs->cr3_target_count = vmcs12->cr3_target_count;
1992 * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
1993 * evmcs->tsc_offset = vmcs12->tsc_offset;
1994 * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
1995 * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
1996 * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
1997 * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
1998 * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
1999 * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
2000 * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
2001 * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
2002 * evmcs->guest_ia32_perf_global_ctrl = vmcs12->guest_ia32_perf_global_ctrl;
2003 * evmcs->host_ia32_perf_global_ctrl = vmcs12->host_ia32_perf_global_ctrl;
2004 * evmcs->encls_exiting_bitmap = vmcs12->encls_exiting_bitmap;
2005 * evmcs->tsc_multiplier = vmcs12->tsc_multiplier;
2006 *
2007 * Not present in struct vmcs12:
2008 * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
2009 * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
2010 * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
2011 * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
2012 * evmcs->host_ia32_s_cet = vmcs12->host_ia32_s_cet;
2013 * evmcs->host_ssp = vmcs12->host_ssp;
2014 * evmcs->host_ia32_int_ssp_table_addr = vmcs12->host_ia32_int_ssp_table_addr;
2015 * evmcs->guest_ia32_s_cet = vmcs12->guest_ia32_s_cet;
2016 * evmcs->guest_ia32_lbr_ctl = vmcs12->guest_ia32_lbr_ctl;
2017 * evmcs->guest_ia32_int_ssp_table_addr = vmcs12->guest_ia32_int_ssp_table_addr;
2018 * evmcs->guest_ssp = vmcs12->guest_ssp;
2019 */
2020
2021 evmcs->guest_es_selector = vmcs12->guest_es_selector;
2022 evmcs->guest_cs_selector = vmcs12->guest_cs_selector;
2023 evmcs->guest_ss_selector = vmcs12->guest_ss_selector;
2024 evmcs->guest_ds_selector = vmcs12->guest_ds_selector;
2025 evmcs->guest_fs_selector = vmcs12->guest_fs_selector;
2026 evmcs->guest_gs_selector = vmcs12->guest_gs_selector;
2027 evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector;
2028 evmcs->guest_tr_selector = vmcs12->guest_tr_selector;
2029
2030 evmcs->guest_es_limit = vmcs12->guest_es_limit;
2031 evmcs->guest_cs_limit = vmcs12->guest_cs_limit;
2032 evmcs->guest_ss_limit = vmcs12->guest_ss_limit;
2033 evmcs->guest_ds_limit = vmcs12->guest_ds_limit;
2034 evmcs->guest_fs_limit = vmcs12->guest_fs_limit;
2035 evmcs->guest_gs_limit = vmcs12->guest_gs_limit;
2036 evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit;
2037 evmcs->guest_tr_limit = vmcs12->guest_tr_limit;
2038 evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit;
2039 evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit;
2040
2041 evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes;
2042 evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes;
2043 evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes;
2044 evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes;
2045 evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes;
2046 evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes;
2047 evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes;
2048 evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes;
2049
2050 evmcs->guest_es_base = vmcs12->guest_es_base;
2051 evmcs->guest_cs_base = vmcs12->guest_cs_base;
2052 evmcs->guest_ss_base = vmcs12->guest_ss_base;
2053 evmcs->guest_ds_base = vmcs12->guest_ds_base;
2054 evmcs->guest_fs_base = vmcs12->guest_fs_base;
2055 evmcs->guest_gs_base = vmcs12->guest_gs_base;
2056 evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base;
2057 evmcs->guest_tr_base = vmcs12->guest_tr_base;
2058 evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base;
2059 evmcs->guest_idtr_base = vmcs12->guest_idtr_base;
2060
2061 evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat;
2062 evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer;
2063
2064 evmcs->guest_pdptr0 = vmcs12->guest_pdptr0;
2065 evmcs->guest_pdptr1 = vmcs12->guest_pdptr1;
2066 evmcs->guest_pdptr2 = vmcs12->guest_pdptr2;
2067 evmcs->guest_pdptr3 = vmcs12->guest_pdptr3;
2068
2069 evmcs->guest_pending_dbg_exceptions =
2070 vmcs12->guest_pending_dbg_exceptions;
2071 evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp;
2072 evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip;
2073
2074 evmcs->guest_activity_state = vmcs12->guest_activity_state;
2075 evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs;
2076
2077 evmcs->guest_cr0 = vmcs12->guest_cr0;
2078 evmcs->guest_cr3 = vmcs12->guest_cr3;
2079 evmcs->guest_cr4 = vmcs12->guest_cr4;
2080 evmcs->guest_dr7 = vmcs12->guest_dr7;
2081
2082 evmcs->guest_physical_address = vmcs12->guest_physical_address;
2083
2084 evmcs->vm_instruction_error = vmcs12->vm_instruction_error;
2085 evmcs->vm_exit_reason = vmcs12->vm_exit_reason;
2086 evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info;
2087 evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code;
2088 evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field;
2089 evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code;
2090 evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len;
2091 evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info;
2092
2093 evmcs->exit_qualification = vmcs12->exit_qualification;
2094
2095 evmcs->guest_linear_address = vmcs12->guest_linear_address;
2096 evmcs->guest_rsp = vmcs12->guest_rsp;
2097 evmcs->guest_rflags = vmcs12->guest_rflags;
2098
2099 evmcs->guest_interruptibility_info =
2100 vmcs12->guest_interruptibility_info;
2101 evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control;
2102 evmcs->vm_entry_controls = vmcs12->vm_entry_controls;
2103 evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field;
2104 evmcs->vm_entry_exception_error_code =
2105 vmcs12->vm_entry_exception_error_code;
2106 evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len;
2107
2108 evmcs->guest_rip = vmcs12->guest_rip;
2109
2110 evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;
2111
2112 return;
2113 #else /* CONFIG_KVM_HYPERV */
2114 KVM_BUG_ON(1, vmx->vcpu.kvm);
2115 #endif /* CONFIG_KVM_HYPERV */
2116 }
2117
2118 /*
2119 * This is an equivalent of the nested hypervisor executing the vmptrld
2120 * instruction.
2121 */
nested_vmx_handle_enlightened_vmptrld(struct kvm_vcpu * vcpu,bool from_launch)2122 static enum nested_evmptrld_status nested_vmx_handle_enlightened_vmptrld(
2123 struct kvm_vcpu *vcpu, bool from_launch)
2124 {
2125 #ifdef CONFIG_KVM_HYPERV
2126 struct vcpu_vmx *vmx = to_vmx(vcpu);
2127 bool evmcs_gpa_changed = false;
2128 u64 evmcs_gpa;
2129
2130 if (likely(!guest_cpu_cap_has_evmcs(vcpu)))
2131 return EVMPTRLD_DISABLED;
2132
2133 evmcs_gpa = nested_get_evmptr(vcpu);
2134 if (!evmptr_is_valid(evmcs_gpa)) {
2135 nested_release_evmcs(vcpu);
2136 return EVMPTRLD_DISABLED;
2137 }
2138
2139 if (unlikely(evmcs_gpa != vmx->nested.hv_evmcs_vmptr)) {
2140 vmx->nested.current_vmptr = INVALID_GPA;
2141
2142 nested_release_evmcs(vcpu);
2143
2144 if (kvm_vcpu_map(vcpu, gpa_to_gfn(evmcs_gpa),
2145 &vmx->nested.hv_evmcs_map))
2146 return EVMPTRLD_ERROR;
2147
2148 vmx->nested.hv_evmcs = vmx->nested.hv_evmcs_map.hva;
2149
2150 /*
2151 * Currently, KVM only supports eVMCS version 1
2152 * (== KVM_EVMCS_VERSION) and thus we expect guest to set this
2153 * value to first u32 field of eVMCS which should specify eVMCS
2154 * VersionNumber.
2155 *
2156 * Guest should be aware of supported eVMCS versions by host by
2157 * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is
2158 * expected to set this CPUID leaf according to the value
2159 * returned in vmcs_version from nested_enable_evmcs().
2160 *
2161 * However, it turns out that Microsoft Hyper-V fails to comply
2162 * to their own invented interface: When Hyper-V use eVMCS, it
2163 * just sets first u32 field of eVMCS to revision_id specified
2164 * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number
2165 * which is one of the supported versions specified in
2166 * CPUID.0x4000000A.EAX[0:15].
2167 *
2168 * To overcome Hyper-V bug, we accept here either a supported
2169 * eVMCS version or VMCS12 revision_id as valid values for first
2170 * u32 field of eVMCS.
2171 */
2172 if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) &&
2173 (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) {
2174 nested_release_evmcs(vcpu);
2175 return EVMPTRLD_VMFAIL;
2176 }
2177
2178 vmx->nested.hv_evmcs_vmptr = evmcs_gpa;
2179
2180 evmcs_gpa_changed = true;
2181 /*
2182 * Unlike normal vmcs12, enlightened vmcs12 is not fully
2183 * reloaded from guest's memory (read only fields, fields not
2184 * present in struct hv_enlightened_vmcs, ...). Make sure there
2185 * are no leftovers.
2186 */
2187 if (from_launch) {
2188 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2189 memset(vmcs12, 0, sizeof(*vmcs12));
2190 vmcs12->hdr.revision_id = VMCS12_REVISION;
2191 }
2192
2193 }
2194
2195 /*
2196 * Clean fields data can't be used on VMLAUNCH and when we switch
2197 * between different L2 guests as KVM keeps a single VMCS12 per L1.
2198 */
2199 if (from_launch || evmcs_gpa_changed) {
2200 vmx->nested.hv_evmcs->hv_clean_fields &=
2201 ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2202
2203 vmx->nested.force_msr_bitmap_recalc = true;
2204 }
2205
2206 return EVMPTRLD_SUCCEEDED;
2207 #else
2208 return EVMPTRLD_DISABLED;
2209 #endif
2210 }
2211
nested_sync_vmcs12_to_shadow(struct kvm_vcpu * vcpu)2212 void nested_sync_vmcs12_to_shadow(struct kvm_vcpu *vcpu)
2213 {
2214 struct vcpu_vmx *vmx = to_vmx(vcpu);
2215
2216 if (nested_vmx_is_evmptr12_valid(vmx))
2217 copy_vmcs12_to_enlightened(vmx);
2218 else
2219 copy_vmcs12_to_shadow(vmx);
2220
2221 vmx->nested.need_vmcs12_to_shadow_sync = false;
2222 }
2223
vmx_preemption_timer_fn(struct hrtimer * timer)2224 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
2225 {
2226 struct vcpu_vmx *vmx =
2227 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
2228
2229 vmx->nested.preemption_timer_expired = true;
2230 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
2231 kvm_vcpu_kick(&vmx->vcpu);
2232
2233 return HRTIMER_NORESTART;
2234 }
2235
vmx_calc_preemption_timer_value(struct kvm_vcpu * vcpu)2236 static u64 vmx_calc_preemption_timer_value(struct kvm_vcpu *vcpu)
2237 {
2238 struct vcpu_vmx *vmx = to_vmx(vcpu);
2239 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2240
2241 u64 l1_scaled_tsc = kvm_read_l1_tsc(vcpu, rdtsc()) >>
2242 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2243
2244 if (!vmx->nested.has_preemption_timer_deadline) {
2245 vmx->nested.preemption_timer_deadline =
2246 vmcs12->vmx_preemption_timer_value + l1_scaled_tsc;
2247 vmx->nested.has_preemption_timer_deadline = true;
2248 }
2249 return vmx->nested.preemption_timer_deadline - l1_scaled_tsc;
2250 }
2251
vmx_start_preemption_timer(struct kvm_vcpu * vcpu,u64 preemption_timeout)2252 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu,
2253 u64 preemption_timeout)
2254 {
2255 struct vcpu_vmx *vmx = to_vmx(vcpu);
2256
2257 /*
2258 * A timer value of zero is architecturally guaranteed to cause
2259 * a VMExit prior to executing any instructions in the guest.
2260 */
2261 if (preemption_timeout == 0) {
2262 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
2263 return;
2264 }
2265
2266 if (vcpu->arch.virtual_tsc_khz == 0)
2267 return;
2268
2269 preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2270 preemption_timeout *= 1000000;
2271 do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
2272 hrtimer_start(&vmx->nested.preemption_timer,
2273 ktime_add_ns(ktime_get(), preemption_timeout),
2274 HRTIMER_MODE_ABS_PINNED);
2275 }
2276
nested_vmx_calc_efer(struct vcpu_vmx * vmx,struct vmcs12 * vmcs12)2277 static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2278 {
2279 if (vmx->nested.nested_run_pending &&
2280 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
2281 return vmcs12->guest_ia32_efer;
2282 else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
2283 return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME);
2284 else
2285 return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME);
2286 }
2287
prepare_vmcs02_constant_state(struct vcpu_vmx * vmx)2288 static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
2289 {
2290 struct kvm *kvm = vmx->vcpu.kvm;
2291
2292 /*
2293 * If vmcs02 hasn't been initialized, set the constant vmcs02 state
2294 * according to L0's settings (vmcs12 is irrelevant here). Host
2295 * fields that come from L0 and are not constant, e.g. HOST_CR3,
2296 * will be set as needed prior to VMLAUNCH/VMRESUME.
2297 */
2298 if (vmx->nested.vmcs02_initialized)
2299 return;
2300 vmx->nested.vmcs02_initialized = true;
2301
2302 if (vmx->ve_info)
2303 vmcs_write64(VE_INFORMATION_ADDRESS, __pa(vmx->ve_info));
2304
2305 /* All VMFUNCs are currently emulated through L0 vmexits. */
2306 if (cpu_has_vmx_vmfunc())
2307 vmcs_write64(VM_FUNCTION_CONTROL, 0);
2308
2309 if (cpu_has_vmx_posted_intr())
2310 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
2311
2312 if (cpu_has_vmx_msr_bitmap())
2313 vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
2314
2315 /*
2316 * PML is emulated for L2, but never enabled in hardware as the MMU
2317 * handles A/D emulation. Disabling PML for L2 also avoids having to
2318 * deal with filtering out L2 GPAs from the buffer.
2319 */
2320 if (enable_pml) {
2321 vmcs_write64(PML_ADDRESS, 0);
2322 vmcs_write16(GUEST_PML_INDEX, -1);
2323 }
2324
2325 if (cpu_has_vmx_encls_vmexit())
2326 vmcs_write64(ENCLS_EXITING_BITMAP, INVALID_GPA);
2327
2328 if (kvm_notify_vmexit_enabled(kvm))
2329 vmcs_write32(NOTIFY_WINDOW, kvm->arch.notify_window);
2330
2331 /*
2332 * Set the MSR load/store lists to match L0's settings. Only the
2333 * addresses are constant (for vmcs02), the counts can change based
2334 * on L2's behavior, e.g. switching to/from long mode.
2335 */
2336 vmcs_write64(VM_EXIT_MSR_STORE_ADDR, __pa(vmx->msr_autostore.guest.val));
2337 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
2338 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
2339
2340 vmx_set_constant_host_state(vmx);
2341 }
2342
prepare_vmcs02_early_rare(struct vcpu_vmx * vmx,struct vmcs12 * vmcs12)2343 static void prepare_vmcs02_early_rare(struct vcpu_vmx *vmx,
2344 struct vmcs12 *vmcs12)
2345 {
2346 prepare_vmcs02_constant_state(vmx);
2347
2348 vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA);
2349
2350 /*
2351 * If VPID is disabled, then guest TLB accesses use VPID=0, i.e. the
2352 * same VPID as the host. Emulate this behavior by using vpid01 for L2
2353 * if VPID is disabled in vmcs12. Note, if VPID is disabled, VM-Enter
2354 * and VM-Exit are architecturally required to flush VPID=0, but *only*
2355 * VPID=0. I.e. using vpid02 would be ok (so long as KVM emulates the
2356 * required flushes), but doing so would cause KVM to over-flush. E.g.
2357 * if L1 runs L2 X with VPID12=1, then runs L2 Y with VPID12 disabled,
2358 * and then runs L2 X again, then KVM can and should retain TLB entries
2359 * for VPID12=1.
2360 */
2361 if (enable_vpid) {
2362 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
2363 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
2364 else
2365 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2366 }
2367 }
2368
prepare_vmcs02_early(struct vcpu_vmx * vmx,struct loaded_vmcs * vmcs01,struct vmcs12 * vmcs12)2369 static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct loaded_vmcs *vmcs01,
2370 struct vmcs12 *vmcs12)
2371 {
2372 u32 exec_control;
2373 u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);
2374
2375 if (vmx->nested.dirty_vmcs12 || nested_vmx_is_evmptr12_valid(vmx))
2376 prepare_vmcs02_early_rare(vmx, vmcs12);
2377
2378 /*
2379 * PIN CONTROLS
2380 */
2381 exec_control = __pin_controls_get(vmcs01);
2382 exec_control |= (vmcs12->pin_based_vm_exec_control &
2383 ~PIN_BASED_VMX_PREEMPTION_TIMER);
2384
2385 /* Posted interrupts setting is only taken from vmcs12. */
2386 vmx->nested.pi_pending = false;
2387 if (nested_cpu_has_posted_intr(vmcs12)) {
2388 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
2389 } else {
2390 vmx->nested.posted_intr_nv = -1;
2391 exec_control &= ~PIN_BASED_POSTED_INTR;
2392 }
2393 pin_controls_set(vmx, exec_control);
2394
2395 /*
2396 * EXEC CONTROLS
2397 */
2398 exec_control = __exec_controls_get(vmcs01); /* L0's desires */
2399 exec_control &= ~CPU_BASED_INTR_WINDOW_EXITING;
2400 exec_control &= ~CPU_BASED_NMI_WINDOW_EXITING;
2401 exec_control &= ~CPU_BASED_TPR_SHADOW;
2402 exec_control |= vmcs12->cpu_based_vm_exec_control;
2403
2404 vmx->nested.l1_tpr_threshold = -1;
2405 if (exec_control & CPU_BASED_TPR_SHADOW)
2406 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
2407 #ifdef CONFIG_X86_64
2408 else
2409 exec_control |= CPU_BASED_CR8_LOAD_EXITING |
2410 CPU_BASED_CR8_STORE_EXITING;
2411 #endif
2412
2413 /*
2414 * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
2415 * for I/O port accesses.
2416 */
2417 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
2418 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
2419
2420 /*
2421 * This bit will be computed in nested_get_vmcs12_pages, because
2422 * we do not have access to L1's MSR bitmap yet. For now, keep
2423 * the same bit as before, hoping to avoid multiple VMWRITEs that
2424 * only set/clear this bit.
2425 */
2426 exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
2427 exec_control |= exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS;
2428
2429 exec_controls_set(vmx, exec_control);
2430
2431 /*
2432 * SECONDARY EXEC CONTROLS
2433 */
2434 if (cpu_has_secondary_exec_ctrls()) {
2435 exec_control = __secondary_exec_controls_get(vmcs01);
2436
2437 /* Take the following fields only from vmcs12 */
2438 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2439 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2440 SECONDARY_EXEC_ENABLE_INVPCID |
2441 SECONDARY_EXEC_ENABLE_RDTSCP |
2442 SECONDARY_EXEC_ENABLE_XSAVES |
2443 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2444 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2445 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2446 SECONDARY_EXEC_ENABLE_VMFUNC |
2447 SECONDARY_EXEC_DESC);
2448
2449 if (nested_cpu_has(vmcs12,
2450 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
2451 exec_control |= vmcs12->secondary_vm_exec_control;
2452
2453 /* PML is emulated and never enabled in hardware for L2. */
2454 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
2455
2456 /* VMCS shadowing for L2 is emulated for now */
2457 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
2458
2459 /*
2460 * Preset *DT exiting when emulating UMIP, so that vmx_set_cr4()
2461 * will not have to rewrite the controls just for this bit.
2462 */
2463 if (vmx_umip_emulated() && (vmcs12->guest_cr4 & X86_CR4_UMIP))
2464 exec_control |= SECONDARY_EXEC_DESC;
2465
2466 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
2467 vmcs_write16(GUEST_INTR_STATUS,
2468 vmcs12->guest_intr_status);
2469
2470 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
2471 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
2472
2473 if (exec_control & SECONDARY_EXEC_ENCLS_EXITING)
2474 vmx_write_encls_bitmap(&vmx->vcpu, vmcs12);
2475
2476 secondary_exec_controls_set(vmx, exec_control);
2477 }
2478
2479 /*
2480 * ENTRY CONTROLS
2481 *
2482 * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
2483 * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
2484 * on the related bits (if supported by the CPU) in the hope that
2485 * we can avoid VMWrites during vmx_set_efer().
2486 *
2487 * Similarly, take vmcs01's PERF_GLOBAL_CTRL in the hope that if KVM is
2488 * loading PERF_GLOBAL_CTRL via the VMCS for L1, then KVM will want to
2489 * do the same for L2.
2490 */
2491 exec_control = __vm_entry_controls_get(vmcs01);
2492 exec_control |= (vmcs12->vm_entry_controls &
2493 ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL);
2494 exec_control &= ~(VM_ENTRY_IA32E_MODE | VM_ENTRY_LOAD_IA32_EFER);
2495 if (cpu_has_load_ia32_efer()) {
2496 if (guest_efer & EFER_LMA)
2497 exec_control |= VM_ENTRY_IA32E_MODE;
2498 if (guest_efer != kvm_host.efer)
2499 exec_control |= VM_ENTRY_LOAD_IA32_EFER;
2500 }
2501 vm_entry_controls_set(vmx, exec_control);
2502
2503 /*
2504 * EXIT CONTROLS
2505 *
2506 * L2->L1 exit controls are emulated - the hardware exit is to L0 so
2507 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
2508 * bits may be modified by vmx_set_efer() in prepare_vmcs02().
2509 */
2510 exec_control = __vm_exit_controls_get(vmcs01);
2511 if (cpu_has_load_ia32_efer() && guest_efer != kvm_host.efer)
2512 exec_control |= VM_EXIT_LOAD_IA32_EFER;
2513 else
2514 exec_control &= ~VM_EXIT_LOAD_IA32_EFER;
2515 vm_exit_controls_set(vmx, exec_control);
2516
2517 /*
2518 * Interrupt/Exception Fields
2519 */
2520 if (vmx->nested.nested_run_pending) {
2521 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2522 vmcs12->vm_entry_intr_info_field);
2523 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2524 vmcs12->vm_entry_exception_error_code);
2525 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2526 vmcs12->vm_entry_instruction_len);
2527 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
2528 vmcs12->guest_interruptibility_info);
2529 vmx->loaded_vmcs->nmi_known_unmasked =
2530 !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
2531 } else {
2532 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
2533 }
2534 }
2535
vmcs_read_cet_state(struct kvm_vcpu * vcpu,u64 * s_cet,u64 * ssp,u64 * ssp_tbl)2536 static void vmcs_read_cet_state(struct kvm_vcpu *vcpu, u64 *s_cet,
2537 u64 *ssp, u64 *ssp_tbl)
2538 {
2539 if (guest_cpu_cap_has(vcpu, X86_FEATURE_IBT) ||
2540 guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK))
2541 *s_cet = vmcs_readl(GUEST_S_CET);
2542
2543 if (guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK)) {
2544 *ssp = vmcs_readl(GUEST_SSP);
2545 *ssp_tbl = vmcs_readl(GUEST_INTR_SSP_TABLE);
2546 }
2547 }
2548
vmcs_write_cet_state(struct kvm_vcpu * vcpu,u64 s_cet,u64 ssp,u64 ssp_tbl)2549 static void vmcs_write_cet_state(struct kvm_vcpu *vcpu, u64 s_cet,
2550 u64 ssp, u64 ssp_tbl)
2551 {
2552 if (guest_cpu_cap_has(vcpu, X86_FEATURE_IBT) ||
2553 guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK))
2554 vmcs_writel(GUEST_S_CET, s_cet);
2555
2556 if (guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK)) {
2557 vmcs_writel(GUEST_SSP, ssp);
2558 vmcs_writel(GUEST_INTR_SSP_TABLE, ssp_tbl);
2559 }
2560 }
2561
prepare_vmcs02_rare(struct vcpu_vmx * vmx,struct vmcs12 * vmcs12)2562 static void prepare_vmcs02_rare(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2563 {
2564 struct hv_enlightened_vmcs *hv_evmcs = nested_vmx_evmcs(vmx);
2565
2566 if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2567 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
2568
2569 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
2570 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
2571 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
2572 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
2573 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
2574 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
2575 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
2576 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
2577 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
2578 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
2579 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
2580 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
2581 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
2582 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
2583 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
2584 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
2585 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
2586 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
2587 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
2588 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
2589 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
2590 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
2591 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
2592 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
2593 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
2594 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
2595 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
2596 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
2597 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
2598 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
2599 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
2600 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
2601 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
2602 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
2603 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
2604 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
2605
2606 vmx_segment_cache_clear(vmx);
2607 }
2608
2609 if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2610 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) {
2611 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
2612 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
2613 vmcs12->guest_pending_dbg_exceptions);
2614 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
2615 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
2616
2617 /*
2618 * L1 may access the L2's PDPTR, so save them to construct
2619 * vmcs12
2620 */
2621 if (enable_ept) {
2622 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2623 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2624 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2625 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2626 }
2627
2628 if (kvm_mpx_supported() && vmx->nested.nested_run_pending &&
2629 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
2630 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
2631 }
2632
2633 if (nested_cpu_has_xsaves(vmcs12))
2634 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
2635
2636 /*
2637 * Whether page-faults are trapped is determined by a combination of
2638 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF. If L0
2639 * doesn't care about page faults then we should set all of these to
2640 * L1's desires. However, if L0 does care about (some) page faults, it
2641 * is not easy (if at all possible?) to merge L0 and L1's desires, we
2642 * simply ask to exit on each and every L2 page fault. This is done by
2643 * setting MASK=MATCH=0 and (see below) EB.PF=1.
2644 * Note that below we don't need special code to set EB.PF beyond the
2645 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
2646 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
2647 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
2648 */
2649 if (vmx_need_pf_intercept(&vmx->vcpu)) {
2650 /*
2651 * TODO: if both L0 and L1 need the same MASK and MATCH,
2652 * go ahead and use it?
2653 */
2654 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
2655 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
2656 } else {
2657 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, vmcs12->page_fault_error_code_mask);
2658 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, vmcs12->page_fault_error_code_match);
2659 }
2660
2661 if (cpu_has_vmx_apicv()) {
2662 vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
2663 vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
2664 vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
2665 vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
2666 }
2667
2668 /*
2669 * Make sure the msr_autostore list is up to date before we set the
2670 * count in the vmcs02.
2671 */
2672 prepare_vmx_msr_autostore_list(&vmx->vcpu, MSR_IA32_TSC);
2673
2674 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, vmx->msr_autostore.guest.nr);
2675 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2676 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2677
2678 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_CET_STATE)
2679 vmcs_write_cet_state(&vmx->vcpu, vmcs12->guest_s_cet,
2680 vmcs12->guest_ssp, vmcs12->guest_ssp_tbl);
2681
2682 set_cr4_guest_host_mask(vmx);
2683 }
2684
2685 /*
2686 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
2687 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
2688 * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
2689 * guest in a way that will both be appropriate to L1's requests, and our
2690 * needs. In addition to modifying the active vmcs (which is vmcs02), this
2691 * function also has additional necessary side-effects, like setting various
2692 * vcpu->arch fields.
2693 * Returns 0 on success, 1 on failure. Invalid state exit qualification code
2694 * is assigned to entry_failure_code on failure.
2695 */
prepare_vmcs02(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,bool from_vmentry,enum vm_entry_failure_code * entry_failure_code)2696 static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
2697 bool from_vmentry,
2698 enum vm_entry_failure_code *entry_failure_code)
2699 {
2700 struct vcpu_vmx *vmx = to_vmx(vcpu);
2701 struct hv_enlightened_vmcs *evmcs = nested_vmx_evmcs(vmx);
2702 bool load_guest_pdptrs_vmcs12 = false;
2703
2704 if (vmx->nested.dirty_vmcs12 || nested_vmx_is_evmptr12_valid(vmx)) {
2705 prepare_vmcs02_rare(vmx, vmcs12);
2706 vmx->nested.dirty_vmcs12 = false;
2707
2708 load_guest_pdptrs_vmcs12 = !nested_vmx_is_evmptr12_valid(vmx) ||
2709 !(evmcs->hv_clean_fields & HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1);
2710 }
2711
2712 if (vmx->nested.nested_run_pending &&
2713 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
2714 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
2715 vmx_guest_debugctl_write(vcpu, vmcs12->guest_ia32_debugctl &
2716 vmx_get_supported_debugctl(vcpu, false));
2717 } else {
2718 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
2719 vmx_guest_debugctl_write(vcpu, vmx->nested.pre_vmenter_debugctl);
2720 }
2721
2722 if (!vmx->nested.nested_run_pending ||
2723 !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_CET_STATE))
2724 vmcs_write_cet_state(vcpu, vmx->nested.pre_vmenter_s_cet,
2725 vmx->nested.pre_vmenter_ssp,
2726 vmx->nested.pre_vmenter_ssp_tbl);
2727
2728 if (kvm_mpx_supported() && (!vmx->nested.nested_run_pending ||
2729 !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
2730 vmcs_write64(GUEST_BNDCFGS, vmx->nested.pre_vmenter_bndcfgs);
2731 vmx_set_rflags(vcpu, vmcs12->guest_rflags);
2732
2733 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
2734 * bitwise-or of what L1 wants to trap for L2, and what we want to
2735 * trap. Note that CR0.TS also needs updating - we do this later.
2736 */
2737 vmx_update_exception_bitmap(vcpu);
2738 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
2739 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2740
2741 if (vmx->nested.nested_run_pending &&
2742 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
2743 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
2744 vcpu->arch.pat = vmcs12->guest_ia32_pat;
2745 } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2746 vmcs_write64(GUEST_IA32_PAT, vcpu->arch.pat);
2747 }
2748
2749 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2750 vcpu->arch.l1_tsc_offset,
2751 vmx_get_l2_tsc_offset(vcpu),
2752 vmx_get_l2_tsc_multiplier(vcpu));
2753
2754 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2755 vcpu->arch.l1_tsc_scaling_ratio,
2756 vmx_get_l2_tsc_multiplier(vcpu));
2757
2758 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
2759 if (kvm_caps.has_tsc_control)
2760 vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
2761
2762 nested_vmx_transition_tlb_flush(vcpu, vmcs12, true);
2763
2764 if (nested_cpu_has_ept(vmcs12))
2765 nested_ept_init_mmu_context(vcpu);
2766
2767 /*
2768 * Override the CR0/CR4 read shadows after setting the effective guest
2769 * CR0/CR4. The common helpers also set the shadows, but they don't
2770 * account for vmcs12's cr0/4_guest_host_mask.
2771 */
2772 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
2773 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2774
2775 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
2776 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
2777
2778 vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12);
2779 /* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
2780 vmx_set_efer(vcpu, vcpu->arch.efer);
2781
2782 /*
2783 * Guest state is invalid and unrestricted guest is disabled,
2784 * which means L1 attempted VMEntry to L2 with invalid state.
2785 * Fail the VMEntry.
2786 *
2787 * However when force loading the guest state (SMM exit or
2788 * loading nested state after migration, it is possible to
2789 * have invalid guest state now, which will be later fixed by
2790 * restoring L2 register state
2791 */
2792 if (CC(from_vmentry && !vmx_guest_state_valid(vcpu))) {
2793 *entry_failure_code = ENTRY_FAIL_DEFAULT;
2794 return -EINVAL;
2795 }
2796
2797 /* Shadow page tables on either EPT or shadow page tables. */
2798 if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
2799 from_vmentry, entry_failure_code))
2800 return -EINVAL;
2801
2802 /*
2803 * Immediately write vmcs02.GUEST_CR3. It will be propagated to vmcs12
2804 * on nested VM-Exit, which can occur without actually running L2 and
2805 * thus without hitting vmx_load_mmu_pgd(), e.g. if L1 is entering L2 with
2806 * vmcs12.GUEST_ACTIVITYSTATE=HLT, in which case KVM will intercept the
2807 * transition to HLT instead of running L2.
2808 */
2809 if (enable_ept)
2810 vmcs_writel(GUEST_CR3, vmcs12->guest_cr3);
2811
2812 /* Late preparation of GUEST_PDPTRs now that EFER and CRs are set. */
2813 if (load_guest_pdptrs_vmcs12 && nested_cpu_has_ept(vmcs12) &&
2814 is_pae_paging(vcpu)) {
2815 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2816 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2817 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2818 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2819 }
2820
2821 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2822 kvm_pmu_has_perf_global_ctrl(vcpu_to_pmu(vcpu)) &&
2823 WARN_ON_ONCE(__kvm_emulate_msr_write(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
2824 vmcs12->guest_ia32_perf_global_ctrl))) {
2825 *entry_failure_code = ENTRY_FAIL_DEFAULT;
2826 return -EINVAL;
2827 }
2828
2829 kvm_rsp_write(vcpu, vmcs12->guest_rsp);
2830 kvm_rip_write(vcpu, vmcs12->guest_rip);
2831
2832 /*
2833 * It was observed that genuine Hyper-V running in L1 doesn't reset
2834 * 'hv_clean_fields' by itself, it only sets the corresponding dirty
2835 * bits when it changes a field in eVMCS. Mark all fields as clean
2836 * here.
2837 */
2838 if (nested_vmx_is_evmptr12_valid(vmx))
2839 evmcs->hv_clean_fields |= HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2840
2841 return 0;
2842 }
2843
nested_vmx_check_nmi_controls(struct vmcs12 * vmcs12)2844 static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
2845 {
2846 if (CC(!nested_cpu_has_nmi_exiting(vmcs12) &&
2847 nested_cpu_has_virtual_nmis(vmcs12)))
2848 return -EINVAL;
2849
2850 if (CC(!nested_cpu_has_virtual_nmis(vmcs12) &&
2851 nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING)))
2852 return -EINVAL;
2853
2854 return 0;
2855 }
2856
nested_vmx_check_eptp(struct kvm_vcpu * vcpu,u64 new_eptp)2857 static bool nested_vmx_check_eptp(struct kvm_vcpu *vcpu, u64 new_eptp)
2858 {
2859 struct vcpu_vmx *vmx = to_vmx(vcpu);
2860
2861 /* Check for memory type validity */
2862 switch (new_eptp & VMX_EPTP_MT_MASK) {
2863 case VMX_EPTP_MT_UC:
2864 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT)))
2865 return false;
2866 break;
2867 case VMX_EPTP_MT_WB:
2868 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT)))
2869 return false;
2870 break;
2871 default:
2872 return false;
2873 }
2874
2875 /* Page-walk levels validity. */
2876 switch (new_eptp & VMX_EPTP_PWL_MASK) {
2877 case VMX_EPTP_PWL_5:
2878 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_5_BIT)))
2879 return false;
2880 break;
2881 case VMX_EPTP_PWL_4:
2882 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_4_BIT)))
2883 return false;
2884 break;
2885 default:
2886 return false;
2887 }
2888
2889 /* Reserved bits should not be set */
2890 if (CC(!kvm_vcpu_is_legal_gpa(vcpu, new_eptp) || ((new_eptp >> 7) & 0x1f)))
2891 return false;
2892
2893 /* AD, if set, should be supported */
2894 if (new_eptp & VMX_EPTP_AD_ENABLE_BIT) {
2895 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT)))
2896 return false;
2897 }
2898
2899 return true;
2900 }
2901
2902 /*
2903 * Checks related to VM-Execution Control Fields
2904 */
nested_check_vm_execution_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2905 static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu,
2906 struct vmcs12 *vmcs12)
2907 {
2908 struct vcpu_vmx *vmx = to_vmx(vcpu);
2909
2910 if (CC(!vmx_control_verify(vmcs12->pin_based_vm_exec_control,
2911 vmx->nested.msrs.pinbased_ctls_low,
2912 vmx->nested.msrs.pinbased_ctls_high)) ||
2913 CC(!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
2914 vmx->nested.msrs.procbased_ctls_low,
2915 vmx->nested.msrs.procbased_ctls_high)))
2916 return -EINVAL;
2917
2918 if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
2919 CC(!vmx_control_verify(vmcs12->secondary_vm_exec_control,
2920 vmx->nested.msrs.secondary_ctls_low,
2921 vmx->nested.msrs.secondary_ctls_high)))
2922 return -EINVAL;
2923
2924 if (CC(vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu)) ||
2925 nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) ||
2926 nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) ||
2927 nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) ||
2928 nested_vmx_check_apic_access_controls(vcpu, vmcs12) ||
2929 nested_vmx_check_apicv_controls(vcpu, vmcs12) ||
2930 nested_vmx_check_nmi_controls(vmcs12) ||
2931 nested_vmx_check_pml_controls(vcpu, vmcs12) ||
2932 nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) ||
2933 nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) ||
2934 nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) ||
2935 CC(nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id))
2936 return -EINVAL;
2937
2938 if (!nested_cpu_has_preemption_timer(vmcs12) &&
2939 nested_cpu_has_save_preemption_timer(vmcs12))
2940 return -EINVAL;
2941
2942 if (nested_cpu_has_ept(vmcs12) &&
2943 CC(!nested_vmx_check_eptp(vcpu, vmcs12->ept_pointer)))
2944 return -EINVAL;
2945
2946 if (nested_cpu_has_vmfunc(vmcs12)) {
2947 if (CC(vmcs12->vm_function_control &
2948 ~vmx->nested.msrs.vmfunc_controls))
2949 return -EINVAL;
2950
2951 if (nested_cpu_has_eptp_switching(vmcs12)) {
2952 if (CC(!nested_cpu_has_ept(vmcs12)) ||
2953 CC(!page_address_valid(vcpu, vmcs12->eptp_list_address)))
2954 return -EINVAL;
2955 }
2956 }
2957
2958 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING) &&
2959 CC(!vmcs12->tsc_multiplier))
2960 return -EINVAL;
2961
2962 return 0;
2963 }
2964
2965 /*
2966 * Checks related to VM-Exit Control Fields
2967 */
nested_check_vm_exit_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2968 static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu,
2969 struct vmcs12 *vmcs12)
2970 {
2971 struct vcpu_vmx *vmx = to_vmx(vcpu);
2972
2973 if (CC(!vmx_control_verify(vmcs12->vm_exit_controls,
2974 vmx->nested.msrs.exit_ctls_low,
2975 vmx->nested.msrs.exit_ctls_high)) ||
2976 CC(nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12)))
2977 return -EINVAL;
2978
2979 return 0;
2980 }
2981
2982 /*
2983 * Checks related to VM-Entry Control Fields
2984 */
nested_check_vm_entry_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2985 static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu,
2986 struct vmcs12 *vmcs12)
2987 {
2988 struct vcpu_vmx *vmx = to_vmx(vcpu);
2989
2990 if (CC(!vmx_control_verify(vmcs12->vm_entry_controls,
2991 vmx->nested.msrs.entry_ctls_low,
2992 vmx->nested.msrs.entry_ctls_high)))
2993 return -EINVAL;
2994
2995 /*
2996 * From the Intel SDM, volume 3:
2997 * Fields relevant to VM-entry event injection must be set properly.
2998 * These fields are the VM-entry interruption-information field, the
2999 * VM-entry exception error code, and the VM-entry instruction length.
3000 */
3001 if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
3002 u32 intr_info = vmcs12->vm_entry_intr_info_field;
3003 u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
3004 u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
3005 bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
3006 bool urg = nested_cpu_has2(vmcs12,
3007 SECONDARY_EXEC_UNRESTRICTED_GUEST);
3008 bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
3009
3010 /* VM-entry interruption-info field: interruption type */
3011 if (CC(intr_type == INTR_TYPE_RESERVED) ||
3012 CC(intr_type == INTR_TYPE_OTHER_EVENT &&
3013 !nested_cpu_supports_monitor_trap_flag(vcpu)))
3014 return -EINVAL;
3015
3016 /* VM-entry interruption-info field: vector */
3017 if (CC(intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
3018 CC(intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
3019 CC(intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
3020 return -EINVAL;
3021
3022 /*
3023 * Cannot deliver error code in real mode or if the interrupt
3024 * type is not hardware exception. For other cases, do the
3025 * consistency check only if the vCPU doesn't enumerate
3026 * VMX_BASIC_NO_HW_ERROR_CODE_CC.
3027 */
3028 if (!prot_mode || intr_type != INTR_TYPE_HARD_EXCEPTION) {
3029 if (CC(has_error_code))
3030 return -EINVAL;
3031 } else if (!nested_cpu_has_no_hw_errcode_cc(vcpu)) {
3032 if (CC(has_error_code != x86_exception_has_error_code(vector)))
3033 return -EINVAL;
3034 }
3035
3036 /* VM-entry exception error code */
3037 if (CC(has_error_code &&
3038 vmcs12->vm_entry_exception_error_code & GENMASK(31, 16)))
3039 return -EINVAL;
3040
3041 /* VM-entry interruption-info field: reserved bits */
3042 if (CC(intr_info & INTR_INFO_RESVD_BITS_MASK))
3043 return -EINVAL;
3044
3045 /* VM-entry instruction length */
3046 switch (intr_type) {
3047 case INTR_TYPE_SOFT_EXCEPTION:
3048 case INTR_TYPE_SOFT_INTR:
3049 case INTR_TYPE_PRIV_SW_EXCEPTION:
3050 if (CC(vmcs12->vm_entry_instruction_len > X86_MAX_INSTRUCTION_LENGTH) ||
3051 CC(vmcs12->vm_entry_instruction_len == 0 &&
3052 CC(!nested_cpu_has_zero_length_injection(vcpu))))
3053 return -EINVAL;
3054 }
3055 }
3056
3057 if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12))
3058 return -EINVAL;
3059
3060 return 0;
3061 }
3062
nested_vmx_check_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)3063 static int nested_vmx_check_controls(struct kvm_vcpu *vcpu,
3064 struct vmcs12 *vmcs12)
3065 {
3066 if (nested_check_vm_execution_controls(vcpu, vmcs12) ||
3067 nested_check_vm_exit_controls(vcpu, vmcs12) ||
3068 nested_check_vm_entry_controls(vcpu, vmcs12))
3069 return -EINVAL;
3070
3071 #ifdef CONFIG_KVM_HYPERV
3072 if (guest_cpu_cap_has_evmcs(vcpu))
3073 return nested_evmcs_check_controls(vmcs12);
3074 #endif
3075
3076 return 0;
3077 }
3078
nested_vmx_check_controls_late(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)3079 static int nested_vmx_check_controls_late(struct kvm_vcpu *vcpu,
3080 struct vmcs12 *vmcs12)
3081 {
3082 void *vapic = to_vmx(vcpu)->nested.virtual_apic_map.hva;
3083 u32 vtpr = vapic ? (*(u32 *)(vapic + APIC_TASKPRI)) >> 4 : 0;
3084
3085 /*
3086 * Don't bother with the consistency checks if KVM isn't configured to
3087 * WARN on missed consistency checks, as KVM needs to rely on hardware
3088 * to fully detect an illegal vTPR vs. TRP Threshold combination due to
3089 * the vTPR being writable by L1 at all times (it's an in-memory value,
3090 * not a VMCS field). I.e. even if the check passes now, it might fail
3091 * at the actual VM-Enter.
3092 *
3093 * Keying off the module param also allows treating an invalid vAPIC
3094 * mapping as a consistency check failure without increasing the risk
3095 * of breaking a "real" VM.
3096 */
3097 if (!warn_on_missed_cc)
3098 return 0;
3099
3100 if ((exec_controls_get(to_vmx(vcpu)) & CPU_BASED_TPR_SHADOW) &&
3101 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW) &&
3102 !nested_cpu_has_vid(vmcs12) &&
3103 !nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
3104 (CC(!vapic) ||
3105 CC((vmcs12->tpr_threshold & GENMASK(3, 0)) > (vtpr & GENMASK(3, 0)))))
3106 return -EINVAL;
3107
3108 return 0;
3109 }
3110
nested_vmx_check_address_space_size(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)3111 static int nested_vmx_check_address_space_size(struct kvm_vcpu *vcpu,
3112 struct vmcs12 *vmcs12)
3113 {
3114 #ifdef CONFIG_X86_64
3115 if (CC(!!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) !=
3116 !!(vcpu->arch.efer & EFER_LMA)))
3117 return -EINVAL;
3118 #endif
3119 return 0;
3120 }
3121
is_l1_noncanonical_address_on_vmexit(u64 la,struct vmcs12 * vmcs12)3122 static bool is_l1_noncanonical_address_on_vmexit(u64 la, struct vmcs12 *vmcs12)
3123 {
3124 /*
3125 * Check that the given linear address is canonical after a VM exit
3126 * from L2, based on HOST_CR4.LA57 value that will be loaded for L1.
3127 */
3128 u8 l1_address_bits_on_exit = (vmcs12->host_cr4 & X86_CR4_LA57) ? 57 : 48;
3129
3130 return !__is_canonical_address(la, l1_address_bits_on_exit);
3131 }
3132
nested_vmx_check_cet_state_common(struct kvm_vcpu * vcpu,u64 s_cet,u64 ssp,u64 ssp_tbl)3133 static int nested_vmx_check_cet_state_common(struct kvm_vcpu *vcpu, u64 s_cet,
3134 u64 ssp, u64 ssp_tbl)
3135 {
3136 if (CC(!kvm_is_valid_u_s_cet(vcpu, s_cet)) || CC(!IS_ALIGNED(ssp, 4)) ||
3137 CC(is_noncanonical_msr_address(ssp_tbl, vcpu)))
3138 return -EINVAL;
3139
3140 return 0;
3141 }
3142
nested_vmx_check_host_state(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)3143 static int nested_vmx_check_host_state(struct kvm_vcpu *vcpu,
3144 struct vmcs12 *vmcs12)
3145 {
3146 bool ia32e = !!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE);
3147
3148 if (CC(!nested_host_cr0_valid(vcpu, vmcs12->host_cr0)) ||
3149 CC(!nested_host_cr4_valid(vcpu, vmcs12->host_cr4)) ||
3150 CC(!kvm_vcpu_is_legal_cr3(vcpu, vmcs12->host_cr3)))
3151 return -EINVAL;
3152
3153 if (CC(vmcs12->host_cr4 & X86_CR4_CET && !(vmcs12->host_cr0 & X86_CR0_WP)))
3154 return -EINVAL;
3155
3156 if (CC(is_noncanonical_msr_address(vmcs12->host_ia32_sysenter_esp, vcpu)) ||
3157 CC(is_noncanonical_msr_address(vmcs12->host_ia32_sysenter_eip, vcpu)))
3158 return -EINVAL;
3159
3160 if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) &&
3161 CC(!kvm_pat_valid(vmcs12->host_ia32_pat)))
3162 return -EINVAL;
3163
3164 if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) &&
3165 CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
3166 vmcs12->host_ia32_perf_global_ctrl)))
3167 return -EINVAL;
3168
3169 if (ia32e) {
3170 if (CC(!(vmcs12->host_cr4 & X86_CR4_PAE)))
3171 return -EINVAL;
3172 } else {
3173 if (CC(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) ||
3174 CC(vmcs12->host_cr4 & X86_CR4_PCIDE) ||
3175 CC((vmcs12->host_rip) >> 32))
3176 return -EINVAL;
3177 }
3178
3179 if (CC(vmcs12->host_cs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
3180 CC(vmcs12->host_ss_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
3181 CC(vmcs12->host_ds_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
3182 CC(vmcs12->host_es_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
3183 CC(vmcs12->host_fs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
3184 CC(vmcs12->host_gs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
3185 CC(vmcs12->host_tr_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
3186 CC(vmcs12->host_cs_selector == 0) ||
3187 CC(vmcs12->host_tr_selector == 0) ||
3188 CC(vmcs12->host_ss_selector == 0 && !ia32e))
3189 return -EINVAL;
3190
3191 if (CC(is_noncanonical_base_address(vmcs12->host_fs_base, vcpu)) ||
3192 CC(is_noncanonical_base_address(vmcs12->host_gs_base, vcpu)) ||
3193 CC(is_noncanonical_base_address(vmcs12->host_gdtr_base, vcpu)) ||
3194 CC(is_noncanonical_base_address(vmcs12->host_idtr_base, vcpu)) ||
3195 CC(is_noncanonical_base_address(vmcs12->host_tr_base, vcpu)) ||
3196 CC(is_l1_noncanonical_address_on_vmexit(vmcs12->host_rip, vmcs12)))
3197 return -EINVAL;
3198
3199 /*
3200 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
3201 * IA32_EFER MSR must be 0 in the field for that register. In addition,
3202 * the values of the LMA and LME bits in the field must each be that of
3203 * the host address-space size VM-exit control.
3204 */
3205 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
3206 if (CC(!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer)) ||
3207 CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA)) ||
3208 CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)))
3209 return -EINVAL;
3210 }
3211
3212 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_CET_STATE) {
3213 if (nested_vmx_check_cet_state_common(vcpu, vmcs12->host_s_cet,
3214 vmcs12->host_ssp,
3215 vmcs12->host_ssp_tbl))
3216 return -EINVAL;
3217
3218 /*
3219 * IA32_S_CET and SSP must be canonical if the host will
3220 * enter 64-bit mode after VM-exit; otherwise, higher
3221 * 32-bits must be all 0s.
3222 */
3223 if (ia32e) {
3224 if (CC(is_noncanonical_msr_address(vmcs12->host_s_cet, vcpu)) ||
3225 CC(is_noncanonical_msr_address(vmcs12->host_ssp, vcpu)))
3226 return -EINVAL;
3227 } else {
3228 if (CC(vmcs12->host_s_cet >> 32) || CC(vmcs12->host_ssp >> 32))
3229 return -EINVAL;
3230 }
3231 }
3232
3233 return 0;
3234 }
3235
nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)3236 static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
3237 struct vmcs12 *vmcs12)
3238 {
3239 struct vcpu_vmx *vmx = to_vmx(vcpu);
3240 struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
3241 struct vmcs_hdr hdr;
3242
3243 if (vmcs12->vmcs_link_pointer == INVALID_GPA)
3244 return 0;
3245
3246 if (CC(!page_address_valid(vcpu, vmcs12->vmcs_link_pointer)))
3247 return -EINVAL;
3248
3249 if (ghc->gpa != vmcs12->vmcs_link_pointer &&
3250 CC(kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
3251 vmcs12->vmcs_link_pointer, VMCS12_SIZE)))
3252 return -EINVAL;
3253
3254 if (CC(kvm_read_guest_offset_cached(vcpu->kvm, ghc, &hdr,
3255 offsetof(struct vmcs12, hdr),
3256 sizeof(hdr))))
3257 return -EINVAL;
3258
3259 if (CC(hdr.revision_id != VMCS12_REVISION) ||
3260 CC(hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12)))
3261 return -EINVAL;
3262
3263 return 0;
3264 }
3265
3266 /*
3267 * Checks related to Guest Non-register State
3268 */
nested_check_guest_non_reg_state(struct vmcs12 * vmcs12)3269 static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12)
3270 {
3271 if (CC(vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
3272 vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT &&
3273 vmcs12->guest_activity_state != GUEST_ACTIVITY_WAIT_SIPI))
3274 return -EINVAL;
3275
3276 return 0;
3277 }
3278
nested_vmx_check_guest_state(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,enum vm_entry_failure_code * entry_failure_code)3279 static int nested_vmx_check_guest_state(struct kvm_vcpu *vcpu,
3280 struct vmcs12 *vmcs12,
3281 enum vm_entry_failure_code *entry_failure_code)
3282 {
3283 bool ia32e = !!(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE);
3284
3285 *entry_failure_code = ENTRY_FAIL_DEFAULT;
3286
3287 if (CC(!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0)) ||
3288 CC(!nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4)))
3289 return -EINVAL;
3290
3291 if (CC(vmcs12->guest_cr4 & X86_CR4_CET && !(vmcs12->guest_cr0 & X86_CR0_WP)))
3292 return -EINVAL;
3293
3294 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) &&
3295 (CC(!kvm_dr7_valid(vmcs12->guest_dr7)) ||
3296 CC(!vmx_is_valid_debugctl(vcpu, vmcs12->guest_ia32_debugctl, false))))
3297 return -EINVAL;
3298
3299 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) &&
3300 CC(!kvm_pat_valid(vmcs12->guest_ia32_pat)))
3301 return -EINVAL;
3302
3303 if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
3304 *entry_failure_code = ENTRY_FAIL_VMCS_LINK_PTR;
3305 return -EINVAL;
3306 }
3307
3308 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
3309 CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
3310 vmcs12->guest_ia32_perf_global_ctrl)))
3311 return -EINVAL;
3312
3313 if (CC((vmcs12->guest_cr0 & (X86_CR0_PG | X86_CR0_PE)) == X86_CR0_PG))
3314 return -EINVAL;
3315
3316 if (CC(ia32e && !(vmcs12->guest_cr4 & X86_CR4_PAE)) ||
3317 CC(ia32e && !(vmcs12->guest_cr0 & X86_CR0_PG)))
3318 return -EINVAL;
3319
3320 /*
3321 * If the load IA32_EFER VM-entry control is 1, the following checks
3322 * are performed on the field for the IA32_EFER MSR:
3323 * - Bits reserved in the IA32_EFER MSR must be 0.
3324 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
3325 * the IA-32e mode guest VM-exit control. It must also be identical
3326 * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
3327 * CR0.PG) is 1.
3328 */
3329 if (to_vmx(vcpu)->nested.nested_run_pending &&
3330 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
3331 if (CC(!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer)) ||
3332 CC(ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA)) ||
3333 CC(((vmcs12->guest_cr0 & X86_CR0_PG) &&
3334 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))))
3335 return -EINVAL;
3336 }
3337
3338 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
3339 (CC(is_noncanonical_msr_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu)) ||
3340 CC((vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD))))
3341 return -EINVAL;
3342
3343 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_CET_STATE) {
3344 if (nested_vmx_check_cet_state_common(vcpu, vmcs12->guest_s_cet,
3345 vmcs12->guest_ssp,
3346 vmcs12->guest_ssp_tbl))
3347 return -EINVAL;
3348
3349 /*
3350 * Guest SSP must have 63:N bits identical, rather than
3351 * be canonical (i.e., 63:N-1 bits identical), where N is
3352 * the CPU's maximum linear-address width. Similar to
3353 * is_noncanonical_msr_address(), use the host's
3354 * linear-address width.
3355 */
3356 if (CC(!__is_canonical_address(vmcs12->guest_ssp, max_host_virt_addr_bits() + 1)))
3357 return -EINVAL;
3358 }
3359
3360 if (nested_check_guest_non_reg_state(vmcs12))
3361 return -EINVAL;
3362
3363 return 0;
3364 }
3365
3366 #ifdef CONFIG_KVM_HYPERV
nested_get_evmcs_page(struct kvm_vcpu * vcpu)3367 static bool nested_get_evmcs_page(struct kvm_vcpu *vcpu)
3368 {
3369 struct vcpu_vmx *vmx = to_vmx(vcpu);
3370
3371 /*
3372 * hv_evmcs may end up being not mapped after migration (when
3373 * L2 was running), map it here to make sure vmcs12 changes are
3374 * properly reflected.
3375 */
3376 if (guest_cpu_cap_has_evmcs(vcpu) &&
3377 vmx->nested.hv_evmcs_vmptr == EVMPTR_MAP_PENDING) {
3378 enum nested_evmptrld_status evmptrld_status =
3379 nested_vmx_handle_enlightened_vmptrld(vcpu, false);
3380
3381 if (evmptrld_status == EVMPTRLD_VMFAIL ||
3382 evmptrld_status == EVMPTRLD_ERROR)
3383 return false;
3384
3385 /*
3386 * Post migration VMCS12 always provides the most actual
3387 * information, copy it to eVMCS upon entry.
3388 */
3389 vmx->nested.need_vmcs12_to_shadow_sync = true;
3390 }
3391
3392 return true;
3393 }
3394 #endif
3395
nested_get_vmcs12_pages(struct kvm_vcpu * vcpu)3396 static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
3397 {
3398 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3399 struct vcpu_vmx *vmx = to_vmx(vcpu);
3400 struct kvm_host_map *map;
3401
3402 if (!vcpu->arch.pdptrs_from_userspace &&
3403 !nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
3404 /*
3405 * Reload the guest's PDPTRs since after a migration
3406 * the guest CR3 might be restored prior to setting the nested
3407 * state which can lead to a load of wrong PDPTRs.
3408 */
3409 if (CC(!load_pdptrs(vcpu, vcpu->arch.cr3)))
3410 return false;
3411 }
3412
3413
3414 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3415 map = &vmx->nested.apic_access_page_map;
3416
3417 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->apic_access_addr), map)) {
3418 vmcs_write64(APIC_ACCESS_ADDR, pfn_to_hpa(map->pfn));
3419 } else {
3420 pr_debug_ratelimited("%s: no backing for APIC-access address in vmcs12\n",
3421 __func__);
3422 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3423 vcpu->run->internal.suberror =
3424 KVM_INTERNAL_ERROR_EMULATION;
3425 vcpu->run->internal.ndata = 0;
3426 return false;
3427 }
3428 }
3429
3430 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3431 map = &vmx->nested.virtual_apic_map;
3432
3433 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->virtual_apic_page_addr), map)) {
3434 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, pfn_to_hpa(map->pfn));
3435 } else if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING) &&
3436 nested_cpu_has(vmcs12, CPU_BASED_CR8_STORE_EXITING) &&
3437 !nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3438 /*
3439 * The processor will never use the TPR shadow, simply
3440 * clear the bit from the execution control. Such a
3441 * configuration is useless, but it happens in tests.
3442 * For any other configuration, failing the vm entry is
3443 * _not_ what the processor does but it's basically the
3444 * only possibility we have.
3445 */
3446 exec_controls_clearbit(vmx, CPU_BASED_TPR_SHADOW);
3447 } else {
3448 /*
3449 * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR to
3450 * force VM-Entry to fail.
3451 */
3452 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, INVALID_GPA);
3453 }
3454 }
3455
3456 if (nested_cpu_has_posted_intr(vmcs12)) {
3457 map = &vmx->nested.pi_desc_map;
3458
3459 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->posted_intr_desc_addr), map)) {
3460 vmx->nested.pi_desc =
3461 (struct pi_desc *)(((void *)map->hva) +
3462 offset_in_page(vmcs12->posted_intr_desc_addr));
3463 vmcs_write64(POSTED_INTR_DESC_ADDR,
3464 pfn_to_hpa(map->pfn) + offset_in_page(vmcs12->posted_intr_desc_addr));
3465 } else {
3466 /*
3467 * Defer the KVM_INTERNAL_EXIT until KVM tries to
3468 * access the contents of the VMCS12 posted interrupt
3469 * descriptor. (Note that KVM may do this when it
3470 * should not, per the architectural specification.)
3471 */
3472 vmx->nested.pi_desc = NULL;
3473 pin_controls_clearbit(vmx, PIN_BASED_POSTED_INTR);
3474 }
3475 }
3476 if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
3477 exec_controls_setbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3478 else
3479 exec_controls_clearbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3480
3481 return true;
3482 }
3483
vmx_get_nested_state_pages(struct kvm_vcpu * vcpu)3484 static bool vmx_get_nested_state_pages(struct kvm_vcpu *vcpu)
3485 {
3486 #ifdef CONFIG_KVM_HYPERV
3487 /*
3488 * Note: nested_get_evmcs_page() also updates 'vp_assist_page' copy
3489 * in 'struct kvm_vcpu_hv' in case eVMCS is in use, this is mandatory
3490 * to make nested_evmcs_l2_tlb_flush_enabled() work correctly post
3491 * migration.
3492 */
3493 if (!nested_get_evmcs_page(vcpu)) {
3494 pr_debug_ratelimited("%s: enlightened vmptrld failed\n",
3495 __func__);
3496 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3497 vcpu->run->internal.suberror =
3498 KVM_INTERNAL_ERROR_EMULATION;
3499 vcpu->run->internal.ndata = 0;
3500
3501 return false;
3502 }
3503 #endif
3504
3505 if (is_guest_mode(vcpu) && !nested_get_vmcs12_pages(vcpu))
3506 return false;
3507
3508 return true;
3509 }
3510
nested_vmx_write_pml_buffer(struct kvm_vcpu * vcpu,gpa_t gpa)3511 static int nested_vmx_write_pml_buffer(struct kvm_vcpu *vcpu, gpa_t gpa)
3512 {
3513 struct vmcs12 *vmcs12;
3514 struct vcpu_vmx *vmx = to_vmx(vcpu);
3515 gpa_t dst;
3516
3517 if (WARN_ON_ONCE(!is_guest_mode(vcpu)))
3518 return 0;
3519
3520 if (WARN_ON_ONCE(vmx->nested.pml_full))
3521 return 1;
3522
3523 /*
3524 * Check if PML is enabled for the nested guest. Whether eptp bit 6 is
3525 * set is already checked as part of A/D emulation.
3526 */
3527 vmcs12 = get_vmcs12(vcpu);
3528 if (!nested_cpu_has_pml(vmcs12))
3529 return 0;
3530
3531 if (vmcs12->guest_pml_index >= PML_LOG_NR_ENTRIES) {
3532 vmx->nested.pml_full = true;
3533 return 1;
3534 }
3535
3536 gpa &= ~0xFFFull;
3537 dst = vmcs12->pml_address + sizeof(u64) * vmcs12->guest_pml_index;
3538
3539 if (kvm_write_guest_page(vcpu->kvm, gpa_to_gfn(dst), &gpa,
3540 offset_in_page(dst), sizeof(gpa)))
3541 return 0;
3542
3543 vmcs12->guest_pml_index--;
3544
3545 return 0;
3546 }
3547
3548 /*
3549 * Intel's VMX Instruction Reference specifies a common set of prerequisites
3550 * for running VMX instructions (except VMXON, whose prerequisites are
3551 * slightly different). It also specifies what exception to inject otherwise.
3552 * Note that many of these exceptions have priority over VM exits, so they
3553 * don't have to be checked again here.
3554 */
nested_vmx_check_permission(struct kvm_vcpu * vcpu)3555 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
3556 {
3557 if (!to_vmx(vcpu)->nested.vmxon) {
3558 kvm_queue_exception(vcpu, UD_VECTOR);
3559 return 0;
3560 }
3561
3562 if (vmx_get_cpl(vcpu)) {
3563 kvm_inject_gp(vcpu, 0);
3564 return 0;
3565 }
3566
3567 return 1;
3568 }
3569
3570 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
3571 struct vmcs12 *vmcs12);
3572
3573 /*
3574 * If from_vmentry is false, this is being called from state restore (either RSM
3575 * or KVM_SET_NESTED_STATE). Otherwise it's called from vmlaunch/vmresume.
3576 *
3577 * Returns:
3578 * NVMX_VMENTRY_SUCCESS: Entered VMX non-root mode
3579 * NVMX_VMENTRY_VMFAIL: Consistency check VMFail
3580 * NVMX_VMENTRY_VMEXIT: Consistency check VMExit
3581 * NVMX_VMENTRY_KVM_INTERNAL_ERROR: KVM internal error
3582 */
nested_vmx_enter_non_root_mode(struct kvm_vcpu * vcpu,bool from_vmentry)3583 enum nvmx_vmentry_status nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu,
3584 bool from_vmentry)
3585 {
3586 struct vcpu_vmx *vmx = to_vmx(vcpu);
3587 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3588 enum vm_entry_failure_code entry_failure_code;
3589 union vmx_exit_reason exit_reason = {
3590 .basic = EXIT_REASON_INVALID_STATE,
3591 .failed_vmentry = 1,
3592 };
3593 u32 failed_index;
3594
3595 trace_kvm_nested_vmenter(kvm_rip_read(vcpu),
3596 vmx->nested.current_vmptr,
3597 vmcs12->guest_rip,
3598 vmcs12->guest_intr_status,
3599 vmcs12->vm_entry_intr_info_field,
3600 vmcs12->secondary_vm_exec_control & SECONDARY_EXEC_ENABLE_EPT,
3601 vmcs12->ept_pointer,
3602 vmcs12->guest_cr3,
3603 KVM_ISA_VMX);
3604
3605 kvm_service_local_tlb_flush_requests(vcpu);
3606
3607 if (!vmx->nested.nested_run_pending ||
3608 !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
3609 vmx->nested.pre_vmenter_debugctl = vmx_guest_debugctl_read();
3610 if (kvm_mpx_supported() &&
3611 (!vmx->nested.nested_run_pending ||
3612 !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
3613 vmx->nested.pre_vmenter_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3614
3615 if (!vmx->nested.nested_run_pending ||
3616 !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_CET_STATE))
3617 vmcs_read_cet_state(vcpu, &vmx->nested.pre_vmenter_s_cet,
3618 &vmx->nested.pre_vmenter_ssp,
3619 &vmx->nested.pre_vmenter_ssp_tbl);
3620
3621 /*
3622 * Overwrite vmcs01.GUEST_CR3 with L1's CR3 if EPT is disabled. In the
3623 * event of a "late" VM-Fail, i.e. a VM-Fail detected by hardware but
3624 * not KVM, KVM must unwind its software model to the pre-VM-Entry host
3625 * state. When EPT is disabled, GUEST_CR3 holds KVM's shadow CR3, not
3626 * L1's "real" CR3, which causes nested_vmx_restore_host_state() to
3627 * corrupt vcpu->arch.cr3. Stuffing vmcs01.GUEST_CR3 results in the
3628 * unwind naturally setting arch.cr3 to the correct value. Smashing
3629 * vmcs01.GUEST_CR3 is safe because nested VM-Exits, and the unwind,
3630 * reset KVM's MMU, i.e. vmcs01.GUEST_CR3 is guaranteed to be
3631 * overwritten with a shadow CR3 prior to re-entering L1.
3632 */
3633 if (!enable_ept)
3634 vmcs_writel(GUEST_CR3, vcpu->arch.cr3);
3635
3636 vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
3637
3638 prepare_vmcs02_early(vmx, &vmx->vmcs01, vmcs12);
3639
3640 if (from_vmentry) {
3641 if (unlikely(!nested_get_vmcs12_pages(vcpu))) {
3642 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3643 return NVMX_VMENTRY_KVM_INTERNAL_ERROR;
3644 }
3645
3646 if (nested_vmx_check_controls_late(vcpu, vmcs12)) {
3647 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3648 return NVMX_VMENTRY_VMFAIL;
3649 }
3650
3651 if (nested_vmx_check_guest_state(vcpu, vmcs12,
3652 &entry_failure_code)) {
3653 exit_reason.basic = EXIT_REASON_INVALID_STATE;
3654 vmcs12->exit_qualification = entry_failure_code;
3655 goto vmentry_fail_vmexit;
3656 }
3657 }
3658
3659 enter_guest_mode(vcpu);
3660
3661 if (prepare_vmcs02(vcpu, vmcs12, from_vmentry, &entry_failure_code)) {
3662 exit_reason.basic = EXIT_REASON_INVALID_STATE;
3663 vmcs12->exit_qualification = entry_failure_code;
3664 goto vmentry_fail_vmexit_guest_mode;
3665 }
3666
3667 if (from_vmentry) {
3668 failed_index = nested_vmx_load_msr(vcpu,
3669 vmcs12->vm_entry_msr_load_addr,
3670 vmcs12->vm_entry_msr_load_count);
3671 if (failed_index) {
3672 exit_reason.basic = EXIT_REASON_MSR_LOAD_FAIL;
3673 vmcs12->exit_qualification = failed_index;
3674 goto vmentry_fail_vmexit_guest_mode;
3675 }
3676 } else {
3677 /*
3678 * The MMU is not initialized to point at the right entities yet and
3679 * "get pages" would need to read data from the guest (i.e. we will
3680 * need to perform gpa to hpa translation). Request a call
3681 * to nested_get_vmcs12_pages before the next VM-entry. The MSRs
3682 * have already been set at vmentry time and should not be reset.
3683 */
3684 kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
3685 }
3686
3687 /*
3688 * Re-evaluate pending events if L1 had a pending IRQ/NMI/INIT/SIPI
3689 * when it executed VMLAUNCH/VMRESUME, as entering non-root mode can
3690 * effectively unblock various events, e.g. INIT/SIPI cause VM-Exit
3691 * unconditionally. Take care to pull data from vmcs01 as appropriate,
3692 * e.g. when checking for interrupt windows, as vmcs02 is now loaded.
3693 */
3694 if ((__exec_controls_get(&vmx->vmcs01) & (CPU_BASED_INTR_WINDOW_EXITING |
3695 CPU_BASED_NMI_WINDOW_EXITING)) ||
3696 kvm_apic_has_pending_init_or_sipi(vcpu) ||
3697 kvm_apic_has_interrupt(vcpu))
3698 kvm_make_request(KVM_REQ_EVENT, vcpu);
3699
3700 /*
3701 * Do not start the preemption timer hrtimer until after we know
3702 * we are successful, so that only nested_vmx_vmexit needs to cancel
3703 * the timer.
3704 */
3705 vmx->nested.preemption_timer_expired = false;
3706 if (nested_cpu_has_preemption_timer(vmcs12)) {
3707 u64 timer_value = vmx_calc_preemption_timer_value(vcpu);
3708 vmx_start_preemption_timer(vcpu, timer_value);
3709 }
3710
3711 /*
3712 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
3713 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
3714 * returned as far as L1 is concerned. It will only return (and set
3715 * the success flag) when L2 exits (see nested_vmx_vmexit()).
3716 */
3717 return NVMX_VMENTRY_SUCCESS;
3718
3719 /*
3720 * A failed consistency check that leads to a VMExit during L1's
3721 * VMEnter to L2 is a variation of a normal VMexit, as explained in
3722 * 26.7 "VM-entry failures during or after loading guest state".
3723 */
3724 vmentry_fail_vmexit_guest_mode:
3725 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
3726 vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
3727 leave_guest_mode(vcpu);
3728
3729 vmentry_fail_vmexit:
3730 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3731
3732 if (!from_vmentry)
3733 return NVMX_VMENTRY_VMEXIT;
3734
3735 load_vmcs12_host_state(vcpu, vmcs12);
3736 vmcs12->vm_exit_reason = exit_reason.full;
3737 if (enable_shadow_vmcs || nested_vmx_is_evmptr12_valid(vmx))
3738 vmx->nested.need_vmcs12_to_shadow_sync = true;
3739 return NVMX_VMENTRY_VMEXIT;
3740 }
3741
3742 /*
3743 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
3744 * for running an L2 nested guest.
3745 */
nested_vmx_run(struct kvm_vcpu * vcpu,bool launch)3746 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
3747 {
3748 struct vmcs12 *vmcs12;
3749 enum nvmx_vmentry_status status;
3750 struct vcpu_vmx *vmx = to_vmx(vcpu);
3751 u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
3752 enum nested_evmptrld_status evmptrld_status;
3753
3754 if (!nested_vmx_check_permission(vcpu))
3755 return 1;
3756
3757 evmptrld_status = nested_vmx_handle_enlightened_vmptrld(vcpu, launch);
3758 if (evmptrld_status == EVMPTRLD_ERROR) {
3759 kvm_queue_exception(vcpu, UD_VECTOR);
3760 return 1;
3761 }
3762
3763 kvm_pmu_branch_retired(vcpu);
3764
3765 if (CC(evmptrld_status == EVMPTRLD_VMFAIL))
3766 return nested_vmx_failInvalid(vcpu);
3767
3768 if (CC(!nested_vmx_is_evmptr12_valid(vmx) &&
3769 vmx->nested.current_vmptr == INVALID_GPA))
3770 return nested_vmx_failInvalid(vcpu);
3771
3772 vmcs12 = get_vmcs12(vcpu);
3773
3774 /*
3775 * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
3776 * that there *is* a valid VMCS pointer, RFLAGS.CF is set
3777 * rather than RFLAGS.ZF, and no error number is stored to the
3778 * VM-instruction error field.
3779 */
3780 if (CC(vmcs12->hdr.shadow_vmcs))
3781 return nested_vmx_failInvalid(vcpu);
3782
3783 if (nested_vmx_is_evmptr12_valid(vmx)) {
3784 struct hv_enlightened_vmcs *evmcs = nested_vmx_evmcs(vmx);
3785
3786 copy_enlightened_to_vmcs12(vmx, evmcs->hv_clean_fields);
3787 /* Enlightened VMCS doesn't have launch state */
3788 vmcs12->launch_state = !launch;
3789 } else if (enable_shadow_vmcs) {
3790 copy_shadow_to_vmcs12(vmx);
3791 }
3792
3793 /*
3794 * The nested entry process starts with enforcing various prerequisites
3795 * on vmcs12 as required by the Intel SDM, and act appropriately when
3796 * they fail: As the SDM explains, some conditions should cause the
3797 * instruction to fail, while others will cause the instruction to seem
3798 * to succeed, but return an EXIT_REASON_INVALID_STATE.
3799 * To speed up the normal (success) code path, we should avoid checking
3800 * for misconfigurations which will anyway be caught by the processor
3801 * when using the merged vmcs02.
3802 */
3803 if (CC(interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS))
3804 return nested_vmx_fail(vcpu, VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
3805
3806 if (CC(vmcs12->launch_state == launch))
3807 return nested_vmx_fail(vcpu,
3808 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
3809 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
3810
3811 if (nested_vmx_check_controls(vcpu, vmcs12))
3812 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3813
3814 if (nested_vmx_check_address_space_size(vcpu, vmcs12))
3815 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3816
3817 if (nested_vmx_check_host_state(vcpu, vmcs12))
3818 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3819
3820 /*
3821 * We're finally done with prerequisite checking, and can start with
3822 * the nested entry.
3823 */
3824 vmx->nested.nested_run_pending = 1;
3825 vmx->nested.has_preemption_timer_deadline = false;
3826 status = nested_vmx_enter_non_root_mode(vcpu, true);
3827 if (unlikely(status != NVMX_VMENTRY_SUCCESS))
3828 goto vmentry_failed;
3829
3830 /* Hide L1D cache contents from the nested guest. */
3831 kvm_request_l1tf_flush_l1d();
3832
3833 /*
3834 * Must happen outside of nested_vmx_enter_non_root_mode() as it will
3835 * also be used as part of restoring nVMX state for
3836 * snapshot restore (migration).
3837 *
3838 * In this flow, it is assumed that vmcs12 cache was
3839 * transferred as part of captured nVMX state and should
3840 * therefore not be read from guest memory (which may not
3841 * exist on destination host yet).
3842 */
3843 nested_cache_shadow_vmcs12(vcpu, vmcs12);
3844
3845 switch (vmcs12->guest_activity_state) {
3846 case GUEST_ACTIVITY_HLT:
3847 /*
3848 * If we're entering a halted L2 vcpu and the L2 vcpu won't be
3849 * awakened by event injection or by an NMI-window VM-exit or
3850 * by an interrupt-window VM-exit, halt the vcpu.
3851 */
3852 if (!(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) &&
3853 !nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING) &&
3854 !(nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING) &&
3855 (vmcs12->guest_rflags & X86_EFLAGS_IF))) {
3856 vmx->nested.nested_run_pending = 0;
3857 return kvm_emulate_halt_noskip(vcpu);
3858 }
3859 break;
3860 case GUEST_ACTIVITY_WAIT_SIPI:
3861 vmx->nested.nested_run_pending = 0;
3862 kvm_set_mp_state(vcpu, KVM_MP_STATE_INIT_RECEIVED);
3863 break;
3864 default:
3865 break;
3866 }
3867
3868 return 1;
3869
3870 vmentry_failed:
3871 vmx->nested.nested_run_pending = 0;
3872 if (status == NVMX_VMENTRY_KVM_INTERNAL_ERROR)
3873 return 0;
3874 if (status == NVMX_VMENTRY_VMEXIT)
3875 return 1;
3876 WARN_ON_ONCE(status != NVMX_VMENTRY_VMFAIL);
3877 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3878 }
3879
3880 /*
3881 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
3882 * because L2 may have changed some cr0 bits directly (CR0_GUEST_HOST_MASK).
3883 * This function returns the new value we should put in vmcs12.guest_cr0.
3884 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
3885 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
3886 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
3887 * didn't trap the bit, because if L1 did, so would L0).
3888 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
3889 * been modified by L2, and L1 knows it. So just leave the old value of
3890 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
3891 * isn't relevant, because if L0 traps this bit it can set it to anything.
3892 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
3893 * changed these bits, and therefore they need to be updated, but L0
3894 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
3895 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
3896 */
3897 static inline unsigned long
vmcs12_guest_cr0(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)3898 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3899 {
3900 return
3901 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
3902 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
3903 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
3904 vcpu->arch.cr0_guest_owned_bits));
3905 }
3906
3907 static inline unsigned long
vmcs12_guest_cr4(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)3908 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3909 {
3910 return
3911 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
3912 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
3913 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
3914 vcpu->arch.cr4_guest_owned_bits));
3915 }
3916
vmcs12_save_pending_event(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,u32 vm_exit_reason,u32 exit_intr_info)3917 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
3918 struct vmcs12 *vmcs12,
3919 u32 vm_exit_reason, u32 exit_intr_info)
3920 {
3921 u32 idt_vectoring;
3922 unsigned int nr;
3923
3924 /*
3925 * Per the SDM, VM-Exits due to double and triple faults are never
3926 * considered to occur during event delivery, even if the double/triple
3927 * fault is the result of an escalating vectoring issue.
3928 *
3929 * Note, the SDM qualifies the double fault behavior with "The original
3930 * event results in a double-fault exception". It's unclear why the
3931 * qualification exists since exits due to double fault can occur only
3932 * while vectoring a different exception (injected events are never
3933 * subject to interception), i.e. there's _always_ an original event.
3934 *
3935 * The SDM also uses NMI as a confusing example for the "original event
3936 * causes the VM exit directly" clause. NMI isn't special in any way,
3937 * the same rule applies to all events that cause an exit directly.
3938 * NMI is an odd choice for the example because NMIs can only occur on
3939 * instruction boundaries, i.e. they _can't_ occur during vectoring.
3940 */
3941 if ((u16)vm_exit_reason == EXIT_REASON_TRIPLE_FAULT ||
3942 ((u16)vm_exit_reason == EXIT_REASON_EXCEPTION_NMI &&
3943 is_double_fault(exit_intr_info))) {
3944 vmcs12->idt_vectoring_info_field = 0;
3945 } else if (vcpu->arch.exception.injected) {
3946 nr = vcpu->arch.exception.vector;
3947 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3948
3949 if (kvm_exception_is_soft(nr)) {
3950 vmcs12->vm_exit_instruction_len =
3951 vcpu->arch.event_exit_inst_len;
3952 idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
3953 } else
3954 idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
3955
3956 if (vcpu->arch.exception.has_error_code) {
3957 idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
3958 vmcs12->idt_vectoring_error_code =
3959 vcpu->arch.exception.error_code;
3960 }
3961
3962 vmcs12->idt_vectoring_info_field = idt_vectoring;
3963 } else if (vcpu->arch.nmi_injected) {
3964 vmcs12->idt_vectoring_info_field =
3965 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
3966 } else if (vcpu->arch.interrupt.injected) {
3967 nr = vcpu->arch.interrupt.nr;
3968 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3969
3970 if (vcpu->arch.interrupt.soft) {
3971 idt_vectoring |= INTR_TYPE_SOFT_INTR;
3972 vmcs12->vm_entry_instruction_len =
3973 vcpu->arch.event_exit_inst_len;
3974 } else
3975 idt_vectoring |= INTR_TYPE_EXT_INTR;
3976
3977 vmcs12->idt_vectoring_info_field = idt_vectoring;
3978 } else {
3979 vmcs12->idt_vectoring_info_field = 0;
3980 }
3981 }
3982
3983
nested_mark_vmcs12_pages_dirty(struct kvm_vcpu * vcpu)3984 void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
3985 {
3986 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3987 gfn_t gfn;
3988
3989 /*
3990 * Don't need to mark the APIC access page dirty; it is never
3991 * written to by the CPU during APIC virtualization.
3992 */
3993
3994 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3995 gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
3996 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3997 }
3998
3999 if (nested_cpu_has_posted_intr(vmcs12)) {
4000 gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
4001 kvm_vcpu_mark_page_dirty(vcpu, gfn);
4002 }
4003 }
4004
vmx_complete_nested_posted_interrupt(struct kvm_vcpu * vcpu)4005 static int vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
4006 {
4007 struct vcpu_vmx *vmx = to_vmx(vcpu);
4008 int max_irr;
4009 void *vapic_page;
4010 u16 status;
4011
4012 if (!vmx->nested.pi_pending)
4013 return 0;
4014
4015 if (!vmx->nested.pi_desc)
4016 goto mmio_needed;
4017
4018 vmx->nested.pi_pending = false;
4019
4020 if (!pi_test_and_clear_on(vmx->nested.pi_desc))
4021 return 0;
4022
4023 max_irr = pi_find_highest_vector(vmx->nested.pi_desc);
4024 if (max_irr > 0) {
4025 vapic_page = vmx->nested.virtual_apic_map.hva;
4026 if (!vapic_page)
4027 goto mmio_needed;
4028
4029 __kvm_apic_update_irr(vmx->nested.pi_desc->pir,
4030 vapic_page, &max_irr);
4031 status = vmcs_read16(GUEST_INTR_STATUS);
4032 if ((u8)max_irr > ((u8)status & 0xff)) {
4033 status &= ~0xff;
4034 status |= (u8)max_irr;
4035 vmcs_write16(GUEST_INTR_STATUS, status);
4036 }
4037 }
4038
4039 nested_mark_vmcs12_pages_dirty(vcpu);
4040 return 0;
4041
4042 mmio_needed:
4043 kvm_handle_memory_failure(vcpu, X86EMUL_IO_NEEDED, NULL);
4044 return -ENXIO;
4045 }
4046
nested_vmx_inject_exception_vmexit(struct kvm_vcpu * vcpu)4047 static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu)
4048 {
4049 struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit;
4050 u32 intr_info = ex->vector | INTR_INFO_VALID_MASK;
4051 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4052 unsigned long exit_qual;
4053
4054 if (ex->has_payload) {
4055 exit_qual = ex->payload;
4056 } else if (ex->vector == PF_VECTOR) {
4057 exit_qual = vcpu->arch.cr2;
4058 } else if (ex->vector == DB_VECTOR) {
4059 exit_qual = vcpu->arch.dr6;
4060 exit_qual &= ~DR6_BT;
4061 exit_qual ^= DR6_ACTIVE_LOW;
4062 } else {
4063 exit_qual = 0;
4064 }
4065
4066 /*
4067 * Unlike AMD's Paged Real Mode, which reports an error code on #PF
4068 * VM-Exits even if the CPU is in Real Mode, Intel VMX never sets the
4069 * "has error code" flags on VM-Exit if the CPU is in Real Mode.
4070 */
4071 if (ex->has_error_code && is_protmode(vcpu)) {
4072 /*
4073 * Intel CPUs do not generate error codes with bits 31:16 set,
4074 * and more importantly VMX disallows setting bits 31:16 in the
4075 * injected error code for VM-Entry. Drop the bits to mimic
4076 * hardware and avoid inducing failure on nested VM-Entry if L1
4077 * chooses to inject the exception back to L2. AMD CPUs _do_
4078 * generate "full" 32-bit error codes, so KVM allows userspace
4079 * to inject exception error codes with bits 31:16 set.
4080 */
4081 vmcs12->vm_exit_intr_error_code = (u16)ex->error_code;
4082 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
4083 }
4084
4085 if (kvm_exception_is_soft(ex->vector))
4086 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
4087 else
4088 intr_info |= INTR_TYPE_HARD_EXCEPTION;
4089
4090 if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
4091 vmx_get_nmi_mask(vcpu))
4092 intr_info |= INTR_INFO_UNBLOCK_NMI;
4093
4094 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
4095 }
4096
4097 /*
4098 * Returns true if a debug trap is (likely) pending delivery. Infer the class
4099 * of a #DB (trap-like vs. fault-like) from the exception payload (to-be-DR6).
4100 * Using the payload is flawed because code breakpoints (fault-like) and data
4101 * breakpoints (trap-like) set the same bits in DR6 (breakpoint detected), i.e.
4102 * this will return false positives if a to-be-injected code breakpoint #DB is
4103 * pending (from KVM's perspective, but not "pending" across an instruction
4104 * boundary). ICEBP, a.k.a. INT1, is also not reflected here even though it
4105 * too is trap-like.
4106 *
4107 * KVM "works" despite these flaws as ICEBP isn't currently supported by the
4108 * emulator, Monitor Trap Flag is not marked pending on intercepted #DBs (the
4109 * #DB has already happened), and MTF isn't marked pending on code breakpoints
4110 * from the emulator (because such #DBs are fault-like and thus don't trigger
4111 * actions that fire on instruction retire).
4112 */
vmx_get_pending_dbg_trap(struct kvm_queued_exception * ex)4113 static unsigned long vmx_get_pending_dbg_trap(struct kvm_queued_exception *ex)
4114 {
4115 if (!ex->pending || ex->vector != DB_VECTOR)
4116 return 0;
4117
4118 /* General Detect #DBs are always fault-like. */
4119 return ex->payload & ~DR6_BD;
4120 }
4121
4122 /*
4123 * Returns true if there's a pending #DB exception that is lower priority than
4124 * a pending Monitor Trap Flag VM-Exit. TSS T-flag #DBs are not emulated by
4125 * KVM, but could theoretically be injected by userspace. Note, this code is
4126 * imperfect, see above.
4127 */
vmx_is_low_priority_db_trap(struct kvm_queued_exception * ex)4128 static bool vmx_is_low_priority_db_trap(struct kvm_queued_exception *ex)
4129 {
4130 return vmx_get_pending_dbg_trap(ex) & ~DR6_BT;
4131 }
4132
4133 /*
4134 * Certain VM-exits set the 'pending debug exceptions' field to indicate a
4135 * recognized #DB (data or single-step) that has yet to be delivered. Since KVM
4136 * represents these debug traps with a payload that is said to be compatible
4137 * with the 'pending debug exceptions' field, write the payload to the VMCS
4138 * field if a VM-exit is delivered before the debug trap.
4139 */
nested_vmx_update_pending_dbg(struct kvm_vcpu * vcpu)4140 static void nested_vmx_update_pending_dbg(struct kvm_vcpu *vcpu)
4141 {
4142 unsigned long pending_dbg;
4143
4144 pending_dbg = vmx_get_pending_dbg_trap(&vcpu->arch.exception);
4145 if (pending_dbg)
4146 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, pending_dbg);
4147 }
4148
nested_vmx_preemption_timer_pending(struct kvm_vcpu * vcpu)4149 static bool nested_vmx_preemption_timer_pending(struct kvm_vcpu *vcpu)
4150 {
4151 return nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
4152 to_vmx(vcpu)->nested.preemption_timer_expired;
4153 }
4154
vmx_has_nested_events(struct kvm_vcpu * vcpu,bool for_injection)4155 static bool vmx_has_nested_events(struct kvm_vcpu *vcpu, bool for_injection)
4156 {
4157 struct vcpu_vmx *vmx = to_vmx(vcpu);
4158 void *vapic = vmx->nested.virtual_apic_map.hva;
4159 int max_irr, vppr;
4160
4161 if (nested_vmx_preemption_timer_pending(vcpu) ||
4162 vmx->nested.mtf_pending)
4163 return true;
4164
4165 /*
4166 * Virtual Interrupt Delivery doesn't require manual injection. Either
4167 * the interrupt is already in GUEST_RVI and will be recognized by CPU
4168 * at VM-Entry, or there is a KVM_REQ_EVENT pending and KVM will move
4169 * the interrupt from the PIR to RVI prior to entering the guest.
4170 */
4171 if (for_injection)
4172 return false;
4173
4174 if (!nested_cpu_has_vid(get_vmcs12(vcpu)) ||
4175 __vmx_interrupt_blocked(vcpu))
4176 return false;
4177
4178 if (!vapic)
4179 return false;
4180
4181 vppr = *((u32 *)(vapic + APIC_PROCPRI));
4182
4183 max_irr = vmx_get_rvi();
4184 if ((max_irr & 0xf0) > (vppr & 0xf0))
4185 return true;
4186
4187 if (vmx->nested.pi_pending && vmx->nested.pi_desc &&
4188 pi_test_on(vmx->nested.pi_desc)) {
4189 max_irr = pi_find_highest_vector(vmx->nested.pi_desc);
4190 if (max_irr > 0 && (max_irr & 0xf0) > (vppr & 0xf0))
4191 return true;
4192 }
4193
4194 return false;
4195 }
4196
4197 /*
4198 * Per the Intel SDM's table "Priority Among Concurrent Events", with minor
4199 * edits to fill in missing examples, e.g. #DB due to split-lock accesses,
4200 * and less minor edits to splice in the priority of VMX Non-Root specific
4201 * events, e.g. MTF and NMI/INTR-window exiting.
4202 *
4203 * 1 Hardware Reset and Machine Checks
4204 * - RESET
4205 * - Machine Check
4206 *
4207 * 2 Trap on Task Switch
4208 * - T flag in TSS is set (on task switch)
4209 *
4210 * 3 External Hardware Interventions
4211 * - FLUSH
4212 * - STOPCLK
4213 * - SMI
4214 * - INIT
4215 *
4216 * 3.5 Monitor Trap Flag (MTF) VM-exit[1]
4217 *
4218 * 4 Traps on Previous Instruction
4219 * - Breakpoints
4220 * - Trap-class Debug Exceptions (#DB due to TF flag set, data/I-O
4221 * breakpoint, or #DB due to a split-lock access)
4222 *
4223 * 4.3 VMX-preemption timer expired VM-exit
4224 *
4225 * 4.6 NMI-window exiting VM-exit[2]
4226 *
4227 * 5 Nonmaskable Interrupts (NMI)
4228 *
4229 * 5.5 Interrupt-window exiting VM-exit and Virtual-interrupt delivery
4230 *
4231 * 6 Maskable Hardware Interrupts
4232 *
4233 * 7 Code Breakpoint Fault
4234 *
4235 * 8 Faults from Fetching Next Instruction
4236 * - Code-Segment Limit Violation
4237 * - Code Page Fault
4238 * - Control protection exception (missing ENDBRANCH at target of indirect
4239 * call or jump)
4240 *
4241 * 9 Faults from Decoding Next Instruction
4242 * - Instruction length > 15 bytes
4243 * - Invalid Opcode
4244 * - Coprocessor Not Available
4245 *
4246 *10 Faults on Executing Instruction
4247 * - Overflow
4248 * - Bound error
4249 * - Invalid TSS
4250 * - Segment Not Present
4251 * - Stack fault
4252 * - General Protection
4253 * - Data Page Fault
4254 * - Alignment Check
4255 * - x86 FPU Floating-point exception
4256 * - SIMD floating-point exception
4257 * - Virtualization exception
4258 * - Control protection exception
4259 *
4260 * [1] Per the "Monitor Trap Flag" section: System-management interrupts (SMIs),
4261 * INIT signals, and higher priority events take priority over MTF VM exits.
4262 * MTF VM exits take priority over debug-trap exceptions and lower priority
4263 * events.
4264 *
4265 * [2] Debug-trap exceptions and higher priority events take priority over VM exits
4266 * caused by the VMX-preemption timer. VM exits caused by the VMX-preemption
4267 * timer take priority over VM exits caused by the "NMI-window exiting"
4268 * VM-execution control and lower priority events.
4269 *
4270 * [3] Debug-trap exceptions and higher priority events take priority over VM exits
4271 * caused by "NMI-window exiting". VM exits caused by this control take
4272 * priority over non-maskable interrupts (NMIs) and lower priority events.
4273 *
4274 * [4] Virtual-interrupt delivery has the same priority as that of VM exits due to
4275 * the 1-setting of the "interrupt-window exiting" VM-execution control. Thus,
4276 * non-maskable interrupts (NMIs) and higher priority events take priority over
4277 * delivery of a virtual interrupt; delivery of a virtual interrupt takes
4278 * priority over external interrupts and lower priority events.
4279 */
vmx_check_nested_events(struct kvm_vcpu * vcpu)4280 static int vmx_check_nested_events(struct kvm_vcpu *vcpu)
4281 {
4282 struct kvm_lapic *apic = vcpu->arch.apic;
4283 struct vcpu_vmx *vmx = to_vmx(vcpu);
4284 /*
4285 * Only a pending nested run blocks a pending exception. If there is a
4286 * previously injected event, the pending exception occurred while said
4287 * event was being delivered and thus needs to be handled.
4288 */
4289 bool block_nested_exceptions = vmx->nested.nested_run_pending;
4290 /*
4291 * Events that don't require injection, i.e. that are virtualized by
4292 * hardware, aren't blocked by a pending VM-Enter as KVM doesn't need
4293 * to regain control in order to deliver the event, and hardware will
4294 * handle event ordering, e.g. with respect to injected exceptions.
4295 *
4296 * But, new events (not exceptions) are only recognized at instruction
4297 * boundaries. If an event needs reinjection, then KVM is handling a
4298 * VM-Exit that occurred _during_ instruction execution; new events,
4299 * irrespective of whether or not they're injected, are blocked until
4300 * the instruction completes.
4301 */
4302 bool block_non_injected_events = kvm_event_needs_reinjection(vcpu);
4303 /*
4304 * Inject events are blocked by nested VM-Enter, as KVM is responsible
4305 * for managing priority between concurrent events, i.e. KVM needs to
4306 * wait until after VM-Enter completes to deliver injected events.
4307 */
4308 bool block_nested_events = block_nested_exceptions ||
4309 block_non_injected_events;
4310
4311 if (lapic_in_kernel(vcpu) &&
4312 test_bit(KVM_APIC_INIT, &apic->pending_events)) {
4313 if (block_nested_events)
4314 return -EBUSY;
4315 nested_vmx_update_pending_dbg(vcpu);
4316 clear_bit(KVM_APIC_INIT, &apic->pending_events);
4317 if (vcpu->arch.mp_state != KVM_MP_STATE_INIT_RECEIVED)
4318 nested_vmx_vmexit(vcpu, EXIT_REASON_INIT_SIGNAL, 0, 0);
4319
4320 /* MTF is discarded if the vCPU is in WFS. */
4321 vmx->nested.mtf_pending = false;
4322 return 0;
4323 }
4324
4325 if (lapic_in_kernel(vcpu) &&
4326 test_bit(KVM_APIC_SIPI, &apic->pending_events)) {
4327 if (block_nested_events)
4328 return -EBUSY;
4329
4330 clear_bit(KVM_APIC_SIPI, &apic->pending_events);
4331 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
4332 nested_vmx_vmexit(vcpu, EXIT_REASON_SIPI_SIGNAL, 0,
4333 apic->sipi_vector & 0xFFUL);
4334 return 0;
4335 }
4336 /* Fallthrough, the SIPI is completely ignored. */
4337 }
4338
4339 /*
4340 * Process exceptions that are higher priority than Monitor Trap Flag:
4341 * fault-like exceptions, TSS T flag #DB (not emulated by KVM, but
4342 * could theoretically come in from userspace), and ICEBP (INT1).
4343 *
4344 * TODO: SMIs have higher priority than MTF and trap-like #DBs (except
4345 * for TSS T flag #DBs). KVM also doesn't save/restore pending MTF
4346 * across SMI/RSM as it should; that needs to be addressed in order to
4347 * prioritize SMI over MTF and trap-like #DBs.
4348 */
4349 if (vcpu->arch.exception_vmexit.pending &&
4350 !vmx_is_low_priority_db_trap(&vcpu->arch.exception_vmexit)) {
4351 if (block_nested_exceptions)
4352 return -EBUSY;
4353
4354 nested_vmx_inject_exception_vmexit(vcpu);
4355 return 0;
4356 }
4357
4358 if (vcpu->arch.exception.pending &&
4359 !vmx_is_low_priority_db_trap(&vcpu->arch.exception)) {
4360 if (block_nested_exceptions)
4361 return -EBUSY;
4362 goto no_vmexit;
4363 }
4364
4365 if (vmx->nested.mtf_pending) {
4366 if (block_nested_events)
4367 return -EBUSY;
4368 nested_vmx_update_pending_dbg(vcpu);
4369 nested_vmx_vmexit(vcpu, EXIT_REASON_MONITOR_TRAP_FLAG, 0, 0);
4370 return 0;
4371 }
4372
4373 if (vcpu->arch.exception_vmexit.pending) {
4374 if (block_nested_exceptions)
4375 return -EBUSY;
4376
4377 nested_vmx_inject_exception_vmexit(vcpu);
4378 return 0;
4379 }
4380
4381 if (vcpu->arch.exception.pending) {
4382 if (block_nested_exceptions)
4383 return -EBUSY;
4384 goto no_vmexit;
4385 }
4386
4387 if (nested_vmx_preemption_timer_pending(vcpu)) {
4388 if (block_nested_events)
4389 return -EBUSY;
4390 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
4391 return 0;
4392 }
4393
4394 if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
4395 if (block_nested_events)
4396 return -EBUSY;
4397 goto no_vmexit;
4398 }
4399
4400 if (vcpu->arch.nmi_pending && !vmx_nmi_blocked(vcpu)) {
4401 if (block_nested_events)
4402 return -EBUSY;
4403 if (!nested_exit_on_nmi(vcpu))
4404 goto no_vmexit;
4405
4406 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
4407 NMI_VECTOR | INTR_TYPE_NMI_INTR |
4408 INTR_INFO_VALID_MASK, 0);
4409 /*
4410 * The NMI-triggered VM exit counts as injection:
4411 * clear this one and block further NMIs.
4412 */
4413 vcpu->arch.nmi_pending = 0;
4414 vmx_set_nmi_mask(vcpu, true);
4415 return 0;
4416 }
4417
4418 if (kvm_cpu_has_interrupt(vcpu) && !vmx_interrupt_blocked(vcpu)) {
4419 int irq;
4420
4421 if (!nested_exit_on_intr(vcpu)) {
4422 if (block_nested_events)
4423 return -EBUSY;
4424
4425 goto no_vmexit;
4426 }
4427
4428 if (!nested_exit_intr_ack_set(vcpu)) {
4429 if (block_nested_events)
4430 return -EBUSY;
4431
4432 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
4433 return 0;
4434 }
4435
4436 irq = kvm_cpu_get_extint(vcpu);
4437 if (irq != -1) {
4438 if (block_nested_events)
4439 return -EBUSY;
4440
4441 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT,
4442 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR | irq, 0);
4443 return 0;
4444 }
4445
4446 irq = kvm_apic_has_interrupt(vcpu);
4447 if (WARN_ON_ONCE(irq < 0))
4448 goto no_vmexit;
4449
4450 /*
4451 * If the IRQ is L2's PI notification vector, process posted
4452 * interrupts for L2 instead of injecting VM-Exit, as the
4453 * detection/morphing architecturally occurs when the IRQ is
4454 * delivered to the CPU. Note, only interrupts that are routed
4455 * through the local APIC trigger posted interrupt processing,
4456 * and enabling posted interrupts requires ACK-on-exit.
4457 */
4458 if (irq == vmx->nested.posted_intr_nv) {
4459 /*
4460 * Nested posted interrupts are delivered via RVI, i.e.
4461 * aren't injected by KVM, and so can be queued even if
4462 * manual event injection is disallowed.
4463 */
4464 if (block_non_injected_events)
4465 return -EBUSY;
4466
4467 vmx->nested.pi_pending = true;
4468 kvm_apic_clear_irr(vcpu, irq);
4469 goto no_vmexit;
4470 }
4471
4472 if (block_nested_events)
4473 return -EBUSY;
4474
4475 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT,
4476 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR | irq, 0);
4477
4478 /*
4479 * ACK the interrupt _after_ emulating VM-Exit, as the IRQ must
4480 * be marked as in-service in vmcs01.GUEST_INTERRUPT_STATUS.SVI
4481 * if APICv is active.
4482 */
4483 kvm_apic_ack_interrupt(vcpu, irq);
4484 return 0;
4485 }
4486
4487 no_vmexit:
4488 return vmx_complete_nested_posted_interrupt(vcpu);
4489 }
4490
vmx_get_preemption_timer_value(struct kvm_vcpu * vcpu)4491 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
4492 {
4493 ktime_t remaining =
4494 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
4495 u64 value;
4496
4497 if (ktime_to_ns(remaining) <= 0)
4498 return 0;
4499
4500 value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
4501 do_div(value, 1000000);
4502 return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
4503 }
4504
is_vmcs12_ext_field(unsigned long field)4505 static bool is_vmcs12_ext_field(unsigned long field)
4506 {
4507 switch (field) {
4508 case GUEST_ES_SELECTOR:
4509 case GUEST_CS_SELECTOR:
4510 case GUEST_SS_SELECTOR:
4511 case GUEST_DS_SELECTOR:
4512 case GUEST_FS_SELECTOR:
4513 case GUEST_GS_SELECTOR:
4514 case GUEST_LDTR_SELECTOR:
4515 case GUEST_TR_SELECTOR:
4516 case GUEST_ES_LIMIT:
4517 case GUEST_CS_LIMIT:
4518 case GUEST_SS_LIMIT:
4519 case GUEST_DS_LIMIT:
4520 case GUEST_FS_LIMIT:
4521 case GUEST_GS_LIMIT:
4522 case GUEST_LDTR_LIMIT:
4523 case GUEST_TR_LIMIT:
4524 case GUEST_GDTR_LIMIT:
4525 case GUEST_IDTR_LIMIT:
4526 case GUEST_ES_AR_BYTES:
4527 case GUEST_DS_AR_BYTES:
4528 case GUEST_FS_AR_BYTES:
4529 case GUEST_GS_AR_BYTES:
4530 case GUEST_LDTR_AR_BYTES:
4531 case GUEST_TR_AR_BYTES:
4532 case GUEST_ES_BASE:
4533 case GUEST_CS_BASE:
4534 case GUEST_SS_BASE:
4535 case GUEST_DS_BASE:
4536 case GUEST_FS_BASE:
4537 case GUEST_GS_BASE:
4538 case GUEST_LDTR_BASE:
4539 case GUEST_TR_BASE:
4540 case GUEST_GDTR_BASE:
4541 case GUEST_IDTR_BASE:
4542 case GUEST_PENDING_DBG_EXCEPTIONS:
4543 case GUEST_BNDCFGS:
4544 return true;
4545 default:
4546 break;
4547 }
4548
4549 return false;
4550 }
4551
sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)4552 static void sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
4553 struct vmcs12 *vmcs12)
4554 {
4555 struct vcpu_vmx *vmx = to_vmx(vcpu);
4556
4557 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
4558 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
4559 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
4560 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
4561 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
4562 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
4563 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
4564 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
4565 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
4566 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
4567 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
4568 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
4569 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
4570 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
4571 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
4572 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
4573 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
4574 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
4575 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
4576 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
4577 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
4578 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
4579 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
4580 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
4581 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
4582 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
4583 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
4584 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
4585 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
4586 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
4587 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
4588 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
4589 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
4590 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
4591 vmcs12->guest_pending_dbg_exceptions =
4592 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
4593
4594 vmx->nested.need_sync_vmcs02_to_vmcs12_rare = false;
4595 }
4596
copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)4597 static void copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
4598 struct vmcs12 *vmcs12)
4599 {
4600 struct vcpu_vmx *vmx = to_vmx(vcpu);
4601 int cpu;
4602
4603 if (!vmx->nested.need_sync_vmcs02_to_vmcs12_rare)
4604 return;
4605
4606
4607 WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01);
4608
4609 cpu = get_cpu();
4610 vmx->loaded_vmcs = &vmx->nested.vmcs02;
4611 vmx_vcpu_load_vmcs(vcpu, cpu);
4612
4613 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4614
4615 vmx->loaded_vmcs = &vmx->vmcs01;
4616 vmx_vcpu_load_vmcs(vcpu, cpu);
4617 put_cpu();
4618 }
4619
4620 /*
4621 * Update the guest state fields of vmcs12 to reflect changes that
4622 * occurred while L2 was running. (The "IA-32e mode guest" bit of the
4623 * VM-entry controls is also updated, since this is really a guest
4624 * state bit.)
4625 */
sync_vmcs02_to_vmcs12(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)4626 static void sync_vmcs02_to_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
4627 {
4628 struct vcpu_vmx *vmx = to_vmx(vcpu);
4629
4630 if (nested_vmx_is_evmptr12_valid(vmx))
4631 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4632
4633 vmx->nested.need_sync_vmcs02_to_vmcs12_rare =
4634 !nested_vmx_is_evmptr12_valid(vmx);
4635
4636 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
4637 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
4638
4639 vmcs12->guest_rsp = kvm_rsp_read(vcpu);
4640 vmcs12->guest_rip = kvm_rip_read(vcpu);
4641 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
4642
4643 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
4644 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
4645
4646 vmcs12->guest_interruptibility_info =
4647 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
4648
4649 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
4650 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
4651 else if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4652 vmcs12->guest_activity_state = GUEST_ACTIVITY_WAIT_SIPI;
4653 else
4654 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
4655
4656 if (nested_cpu_has_preemption_timer(vmcs12) &&
4657 vmcs12->vm_exit_controls & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER &&
4658 !vmx->nested.nested_run_pending)
4659 vmcs12->vmx_preemption_timer_value =
4660 vmx_get_preemption_timer_value(vcpu);
4661
4662 /*
4663 * In some cases (usually, nested EPT), L2 is allowed to change its
4664 * own CR3 without exiting. If it has changed it, we must keep it.
4665 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
4666 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
4667 *
4668 * Additionally, restore L2's PDPTR to vmcs12.
4669 */
4670 if (enable_ept) {
4671 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
4672 if (nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
4673 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
4674 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
4675 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
4676 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
4677 }
4678 }
4679
4680 vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
4681
4682 if (nested_cpu_has_vid(vmcs12))
4683 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
4684
4685 vmcs12->vm_entry_controls =
4686 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
4687 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
4688
4689 /*
4690 * Note! Save DR7, but intentionally don't grab DEBUGCTL from vmcs02.
4691 * Writes to DEBUGCTL that aren't intercepted by L1 are immediately
4692 * propagated to vmcs12 (see vmx_set_msr()), as the value loaded into
4693 * vmcs02 doesn't strictly track vmcs12.
4694 */
4695 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS)
4696 vmcs12->guest_dr7 = vcpu->arch.dr7;
4697
4698 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
4699 vmcs12->guest_ia32_efer = vcpu->arch.efer;
4700
4701 vmcs_read_cet_state(&vmx->vcpu, &vmcs12->guest_s_cet,
4702 &vmcs12->guest_ssp,
4703 &vmcs12->guest_ssp_tbl);
4704 }
4705
4706 /*
4707 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
4708 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
4709 * and this function updates it to reflect the changes to the guest state while
4710 * L2 was running (and perhaps made some exits which were handled directly by L0
4711 * without going back to L1), and to reflect the exit reason.
4712 * Note that we do not have to copy here all VMCS fields, just those that
4713 * could have changed by the L2 guest or the exit - i.e., the guest-state and
4714 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
4715 * which already writes to vmcs12 directly.
4716 */
prepare_vmcs12(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,u32 vm_exit_reason,u32 exit_intr_info,unsigned long exit_qualification,u32 exit_insn_len)4717 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
4718 u32 vm_exit_reason, u32 exit_intr_info,
4719 unsigned long exit_qualification, u32 exit_insn_len)
4720 {
4721 /* update exit information fields: */
4722 vmcs12->vm_exit_reason = vm_exit_reason;
4723 if (vmx_get_exit_reason(vcpu).enclave_mode)
4724 vmcs12->vm_exit_reason |= VMX_EXIT_REASONS_SGX_ENCLAVE_MODE;
4725 vmcs12->exit_qualification = exit_qualification;
4726
4727 /*
4728 * On VM-Exit due to a failed VM-Entry, the VMCS isn't marked launched
4729 * and only EXIT_REASON and EXIT_QUALIFICATION are updated, all other
4730 * exit info fields are unmodified.
4731 */
4732 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
4733 vmcs12->launch_state = 1;
4734
4735 /* vm_entry_intr_info_field is cleared on exit. Emulate this
4736 * instead of reading the real value. */
4737 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
4738
4739 /*
4740 * Transfer the event that L0 or L1 may wanted to inject into
4741 * L2 to IDT_VECTORING_INFO_FIELD.
4742 */
4743 vmcs12_save_pending_event(vcpu, vmcs12,
4744 vm_exit_reason, exit_intr_info);
4745
4746 vmcs12->vm_exit_intr_info = exit_intr_info;
4747 vmcs12->vm_exit_instruction_len = exit_insn_len;
4748 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4749
4750 /*
4751 * According to spec, there's no need to store the guest's
4752 * MSRs if the exit is due to a VM-entry failure that occurs
4753 * during or after loading the guest state. Since this exit
4754 * does not fall in that category, we need to save the MSRs.
4755 */
4756 if (nested_vmx_store_msr(vcpu,
4757 vmcs12->vm_exit_msr_store_addr,
4758 vmcs12->vm_exit_msr_store_count))
4759 nested_vmx_abort(vcpu,
4760 VMX_ABORT_SAVE_GUEST_MSR_FAIL);
4761 }
4762 }
4763
4764 /*
4765 * A part of what we need to when the nested L2 guest exits and we want to
4766 * run its L1 parent, is to reset L1's guest state to the host state specified
4767 * in vmcs12.
4768 * This function is to be called not only on normal nested exit, but also on
4769 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
4770 * Failures During or After Loading Guest State").
4771 * This function should be called when the active VMCS is L1's (vmcs01).
4772 */
load_vmcs12_host_state(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)4773 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
4774 struct vmcs12 *vmcs12)
4775 {
4776 enum vm_entry_failure_code ignored;
4777 struct kvm_segment seg;
4778
4779 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
4780 vcpu->arch.efer = vmcs12->host_ia32_efer;
4781 else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4782 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
4783 else
4784 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
4785 vmx_set_efer(vcpu, vcpu->arch.efer);
4786
4787 kvm_rsp_write(vcpu, vmcs12->host_rsp);
4788 kvm_rip_write(vcpu, vmcs12->host_rip);
4789 vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
4790 vmx_set_interrupt_shadow(vcpu, 0);
4791
4792 /*
4793 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
4794 * actually changed, because vmx_set_cr0 refers to efer set above.
4795 *
4796 * CR0_GUEST_HOST_MASK is already set in the original vmcs01
4797 * (KVM doesn't change it);
4798 */
4799 vcpu->arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits();
4800 vmx_set_cr0(vcpu, vmcs12->host_cr0);
4801
4802 /* Same as above - no reason to call set_cr4_guest_host_mask(). */
4803 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4804 vmx_set_cr4(vcpu, vmcs12->host_cr4);
4805
4806 nested_ept_uninit_mmu_context(vcpu);
4807
4808 /*
4809 * Only PDPTE load can fail as the value of cr3 was checked on entry and
4810 * couldn't have changed.
4811 */
4812 if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, true, &ignored))
4813 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
4814
4815 nested_vmx_transition_tlb_flush(vcpu, vmcs12, false);
4816
4817 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
4818 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
4819 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
4820 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
4821 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
4822 vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
4823 vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
4824
4825 /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */
4826 if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
4827 vmcs_write64(GUEST_BNDCFGS, 0);
4828
4829 /*
4830 * Load CET state from host state if VM_EXIT_LOAD_CET_STATE is set.
4831 * otherwise CET state should be retained across VM-exit, i.e.,
4832 * guest values should be propagated from vmcs12 to vmcs01.
4833 */
4834 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_CET_STATE)
4835 vmcs_write_cet_state(vcpu, vmcs12->host_s_cet, vmcs12->host_ssp,
4836 vmcs12->host_ssp_tbl);
4837 else
4838 vmcs_write_cet_state(vcpu, vmcs12->guest_s_cet, vmcs12->guest_ssp,
4839 vmcs12->guest_ssp_tbl);
4840
4841 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
4842 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
4843 vcpu->arch.pat = vmcs12->host_ia32_pat;
4844 }
4845 if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) &&
4846 kvm_pmu_has_perf_global_ctrl(vcpu_to_pmu(vcpu)))
4847 WARN_ON_ONCE(__kvm_emulate_msr_write(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
4848 vmcs12->host_ia32_perf_global_ctrl));
4849
4850 /* Set L1 segment info according to Intel SDM
4851 27.5.2 Loading Host Segment and Descriptor-Table Registers */
4852 seg = (struct kvm_segment) {
4853 .base = 0,
4854 .limit = 0xFFFFFFFF,
4855 .selector = vmcs12->host_cs_selector,
4856 .type = 11,
4857 .present = 1,
4858 .s = 1,
4859 .g = 1
4860 };
4861 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4862 seg.l = 1;
4863 else
4864 seg.db = 1;
4865 __vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
4866 seg = (struct kvm_segment) {
4867 .base = 0,
4868 .limit = 0xFFFFFFFF,
4869 .type = 3,
4870 .present = 1,
4871 .s = 1,
4872 .db = 1,
4873 .g = 1
4874 };
4875 seg.selector = vmcs12->host_ds_selector;
4876 __vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
4877 seg.selector = vmcs12->host_es_selector;
4878 __vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
4879 seg.selector = vmcs12->host_ss_selector;
4880 __vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
4881 seg.selector = vmcs12->host_fs_selector;
4882 seg.base = vmcs12->host_fs_base;
4883 __vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
4884 seg.selector = vmcs12->host_gs_selector;
4885 seg.base = vmcs12->host_gs_base;
4886 __vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
4887 seg = (struct kvm_segment) {
4888 .base = vmcs12->host_tr_base,
4889 .limit = 0x67,
4890 .selector = vmcs12->host_tr_selector,
4891 .type = 11,
4892 .present = 1
4893 };
4894 __vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
4895
4896 memset(&seg, 0, sizeof(seg));
4897 seg.unusable = 1;
4898 __vmx_set_segment(vcpu, &seg, VCPU_SREG_LDTR);
4899
4900 kvm_set_dr(vcpu, 7, 0x400);
4901 vmx_guest_debugctl_write(vcpu, 0);
4902
4903 if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
4904 vmcs12->vm_exit_msr_load_count))
4905 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4906
4907 to_vt(vcpu)->emulation_required = vmx_emulation_required(vcpu);
4908 }
4909
nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx * vmx)4910 static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
4911 {
4912 struct vmx_uret_msr *efer_msr;
4913 unsigned int i;
4914
4915 if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
4916 return vmcs_read64(GUEST_IA32_EFER);
4917
4918 if (cpu_has_load_ia32_efer())
4919 return kvm_host.efer;
4920
4921 for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
4922 if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
4923 return vmx->msr_autoload.guest.val[i].value;
4924 }
4925
4926 efer_msr = vmx_find_uret_msr(vmx, MSR_EFER);
4927 if (efer_msr)
4928 return efer_msr->data;
4929
4930 return kvm_host.efer;
4931 }
4932
nested_vmx_restore_host_state(struct kvm_vcpu * vcpu)4933 static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
4934 {
4935 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4936 struct vcpu_vmx *vmx = to_vmx(vcpu);
4937 struct vmx_msr_entry g, h;
4938 gpa_t gpa;
4939 u32 i, j;
4940
4941 vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);
4942
4943 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
4944 /*
4945 * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
4946 * as vmcs01.GUEST_DR7 contains a userspace defined value
4947 * and vcpu->arch.dr7 is not squirreled away before the
4948 * nested VMENTER (not worth adding a variable in nested_vmx).
4949 */
4950 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
4951 kvm_set_dr(vcpu, 7, DR7_FIXED_1);
4952 else
4953 WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
4954 }
4955
4956 /* Reload DEBUGCTL to ensure vmcs01 has a fresh FREEZE_IN_SMM value. */
4957 vmx_reload_guest_debugctl(vcpu);
4958
4959 /*
4960 * Note that calling vmx_set_{efer,cr0,cr4} is important as they
4961 * handle a variety of side effects to KVM's software model.
4962 */
4963 vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
4964
4965 vcpu->arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits();
4966 vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
4967
4968 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4969 vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));
4970
4971 nested_ept_uninit_mmu_context(vcpu);
4972 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
4973 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
4974
4975 /*
4976 * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
4977 * from vmcs01 (if necessary). The PDPTRs are not loaded on
4978 * VMFail, like everything else we just need to ensure our
4979 * software model is up-to-date.
4980 */
4981 if (enable_ept && is_pae_paging(vcpu))
4982 ept_save_pdptrs(vcpu);
4983
4984 kvm_mmu_reset_context(vcpu);
4985
4986 /*
4987 * This nasty bit of open coding is a compromise between blindly
4988 * loading L1's MSRs using the exit load lists (incorrect emulation
4989 * of VMFail), leaving the nested VM's MSRs in the software model
4990 * (incorrect behavior) and snapshotting the modified MSRs (too
4991 * expensive since the lists are unbound by hardware). For each
4992 * MSR that was (prematurely) loaded from the nested VMEntry load
4993 * list, reload it from the exit load list if it exists and differs
4994 * from the guest value. The intent is to stuff host state as
4995 * silently as possible, not to fully process the exit load list.
4996 */
4997 for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
4998 gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
4999 if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
5000 pr_debug_ratelimited(
5001 "%s read MSR index failed (%u, 0x%08llx)\n",
5002 __func__, i, gpa);
5003 goto vmabort;
5004 }
5005
5006 for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
5007 gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
5008 if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
5009 pr_debug_ratelimited(
5010 "%s read MSR failed (%u, 0x%08llx)\n",
5011 __func__, j, gpa);
5012 goto vmabort;
5013 }
5014 if (h.index != g.index)
5015 continue;
5016 if (h.value == g.value)
5017 break;
5018
5019 if (nested_vmx_load_msr_check(vcpu, &h)) {
5020 pr_debug_ratelimited(
5021 "%s check failed (%u, 0x%x, 0x%x)\n",
5022 __func__, j, h.index, h.reserved);
5023 goto vmabort;
5024 }
5025
5026 if (kvm_emulate_msr_write(vcpu, h.index, h.value)) {
5027 pr_debug_ratelimited(
5028 "%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
5029 __func__, j, h.index, h.value);
5030 goto vmabort;
5031 }
5032 }
5033 }
5034
5035 return;
5036
5037 vmabort:
5038 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
5039 }
5040
5041 /*
5042 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
5043 * and modify vmcs12 to make it see what it would expect to see there if
5044 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
5045 */
__nested_vmx_vmexit(struct kvm_vcpu * vcpu,u32 vm_exit_reason,u32 exit_intr_info,unsigned long exit_qualification,u32 exit_insn_len)5046 void __nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 vm_exit_reason,
5047 u32 exit_intr_info, unsigned long exit_qualification,
5048 u32 exit_insn_len)
5049 {
5050 struct vcpu_vmx *vmx = to_vmx(vcpu);
5051 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5052
5053 /* Pending MTF traps are discarded on VM-Exit. */
5054 vmx->nested.mtf_pending = false;
5055
5056 /* trying to cancel vmlaunch/vmresume is a bug */
5057 WARN_ON_ONCE(vmx->nested.nested_run_pending);
5058
5059 #ifdef CONFIG_KVM_HYPERV
5060 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
5061 /*
5062 * KVM_REQ_GET_NESTED_STATE_PAGES is also used to map
5063 * Enlightened VMCS after migration and we still need to
5064 * do that when something is forcing L2->L1 exit prior to
5065 * the first L2 run.
5066 */
5067 (void)nested_get_evmcs_page(vcpu);
5068 }
5069 #endif
5070
5071 /* Service pending TLB flush requests for L2 before switching to L1. */
5072 kvm_service_local_tlb_flush_requests(vcpu);
5073
5074 /*
5075 * VCPU_EXREG_PDPTR will be clobbered in arch/x86/kvm/vmx/vmx.h between
5076 * now and the new vmentry. Ensure that the VMCS02 PDPTR fields are
5077 * up-to-date before switching to L1.
5078 */
5079 if (enable_ept && is_pae_paging(vcpu))
5080 vmx_ept_load_pdptrs(vcpu);
5081
5082 leave_guest_mode(vcpu);
5083
5084 if (nested_cpu_has_preemption_timer(vmcs12))
5085 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
5086
5087 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING)) {
5088 vcpu->arch.tsc_offset = vcpu->arch.l1_tsc_offset;
5089 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
5090 vcpu->arch.tsc_scaling_ratio = vcpu->arch.l1_tsc_scaling_ratio;
5091 }
5092
5093 if (likely(!vmx->fail)) {
5094 sync_vmcs02_to_vmcs12(vcpu, vmcs12);
5095
5096 if (vm_exit_reason != -1)
5097 prepare_vmcs12(vcpu, vmcs12, vm_exit_reason,
5098 exit_intr_info, exit_qualification,
5099 exit_insn_len);
5100
5101 /*
5102 * Must happen outside of sync_vmcs02_to_vmcs12() as it will
5103 * also be used to capture vmcs12 cache as part of
5104 * capturing nVMX state for snapshot (migration).
5105 *
5106 * Otherwise, this flush will dirty guest memory at a
5107 * point it is already assumed by user-space to be
5108 * immutable.
5109 */
5110 nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
5111 } else {
5112 /*
5113 * The only expected VM-instruction error is "VM entry with
5114 * invalid control field(s)." Anything else indicates a
5115 * problem with L0.
5116 */
5117 WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
5118 VMXERR_ENTRY_INVALID_CONTROL_FIELD);
5119
5120 /* VM-Fail at VM-Entry means KVM missed a consistency check. */
5121 WARN_ON_ONCE(warn_on_missed_cc);
5122 }
5123
5124 /*
5125 * Drop events/exceptions that were queued for re-injection to L2
5126 * (picked up via vmx_complete_interrupts()), as well as exceptions
5127 * that were pending for L2. Note, this must NOT be hoisted above
5128 * prepare_vmcs12(), events/exceptions queued for re-injection need to
5129 * be captured in vmcs12 (see vmcs12_save_pending_event()).
5130 */
5131 vcpu->arch.nmi_injected = false;
5132 kvm_clear_exception_queue(vcpu);
5133 kvm_clear_interrupt_queue(vcpu);
5134
5135 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
5136
5137 kvm_nested_vmexit_handle_ibrs(vcpu);
5138
5139 /* Update any VMCS fields that might have changed while L2 ran */
5140 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
5141 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
5142 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
5143 if (kvm_caps.has_tsc_control)
5144 vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
5145
5146 if (vmx->nested.l1_tpr_threshold != -1)
5147 vmcs_write32(TPR_THRESHOLD, vmx->nested.l1_tpr_threshold);
5148
5149 if (vmx->nested.change_vmcs01_virtual_apic_mode) {
5150 vmx->nested.change_vmcs01_virtual_apic_mode = false;
5151 vmx_set_virtual_apic_mode(vcpu);
5152 }
5153
5154 if (vmx->nested.update_vmcs01_cpu_dirty_logging) {
5155 vmx->nested.update_vmcs01_cpu_dirty_logging = false;
5156 vmx_update_cpu_dirty_logging(vcpu);
5157 }
5158
5159 nested_put_vmcs12_pages(vcpu);
5160
5161 if (vmx->nested.reload_vmcs01_apic_access_page) {
5162 vmx->nested.reload_vmcs01_apic_access_page = false;
5163 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
5164 }
5165
5166 if (vmx->nested.update_vmcs01_apicv_status) {
5167 vmx->nested.update_vmcs01_apicv_status = false;
5168 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
5169 }
5170
5171 if (vmx->nested.update_vmcs01_hwapic_isr) {
5172 vmx->nested.update_vmcs01_hwapic_isr = false;
5173 kvm_apic_update_hwapic_isr(vcpu);
5174 }
5175
5176 if ((vm_exit_reason != -1) &&
5177 (enable_shadow_vmcs || nested_vmx_is_evmptr12_valid(vmx)))
5178 vmx->nested.need_vmcs12_to_shadow_sync = true;
5179
5180 /* in case we halted in L2 */
5181 kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE);
5182
5183 if (likely(!vmx->fail)) {
5184 if (vm_exit_reason != -1)
5185 trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
5186 vmcs12->exit_qualification,
5187 vmcs12->idt_vectoring_info_field,
5188 vmcs12->vm_exit_intr_info,
5189 vmcs12->vm_exit_intr_error_code,
5190 KVM_ISA_VMX);
5191
5192 load_vmcs12_host_state(vcpu, vmcs12);
5193
5194 /*
5195 * Process events if an injectable IRQ or NMI is pending, even
5196 * if the event is blocked (RFLAGS.IF is cleared on VM-Exit).
5197 * If an event became pending while L2 was active, KVM needs to
5198 * either inject the event or request an IRQ/NMI window. SMIs
5199 * don't need to be processed as SMM is mutually exclusive with
5200 * non-root mode. INIT/SIPI don't need to be checked as INIT
5201 * is blocked post-VMXON, and SIPIs are ignored.
5202 */
5203 if (kvm_cpu_has_injectable_intr(vcpu) || vcpu->arch.nmi_pending)
5204 kvm_make_request(KVM_REQ_EVENT, vcpu);
5205 return;
5206 }
5207
5208 /*
5209 * After an early L2 VM-entry failure, we're now back
5210 * in L1 which thinks it just finished a VMLAUNCH or
5211 * VMRESUME instruction, so we need to set the failure
5212 * flag and the VM-instruction error field of the VMCS
5213 * accordingly, and skip the emulated instruction.
5214 */
5215 (void)nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
5216
5217 /*
5218 * Restore L1's host state to KVM's software model. We're here
5219 * because a consistency check was caught by hardware, which
5220 * means some amount of guest state has been propagated to KVM's
5221 * model and needs to be unwound to the host's state.
5222 */
5223 nested_vmx_restore_host_state(vcpu);
5224
5225 vmx->fail = 0;
5226 }
5227
nested_vmx_triple_fault(struct kvm_vcpu * vcpu)5228 static void nested_vmx_triple_fault(struct kvm_vcpu *vcpu)
5229 {
5230 kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5231 nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0);
5232 }
5233
5234 /*
5235 * Decode the memory-address operand of a vmx instruction, as recorded on an
5236 * exit caused by such an instruction (run by a guest hypervisor).
5237 * On success, returns 0. When the operand is invalid, returns 1 and throws
5238 * #UD, #GP, or #SS.
5239 */
get_vmx_mem_address(struct kvm_vcpu * vcpu,unsigned long exit_qualification,u32 vmx_instruction_info,bool wr,int len,gva_t * ret)5240 int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
5241 u32 vmx_instruction_info, bool wr, int len, gva_t *ret)
5242 {
5243 gva_t off;
5244 bool exn;
5245 struct kvm_segment s;
5246
5247 /*
5248 * According to Vol. 3B, "Information for VM Exits Due to Instruction
5249 * Execution", on an exit, vmx_instruction_info holds most of the
5250 * addressing components of the operand. Only the displacement part
5251 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
5252 * For how an actual address is calculated from all these components,
5253 * refer to Vol. 1, "Operand Addressing".
5254 */
5255 int scaling = vmx_instruction_info & 3;
5256 int addr_size = (vmx_instruction_info >> 7) & 7;
5257 bool is_reg = vmx_instruction_info & (1u << 10);
5258 int seg_reg = (vmx_instruction_info >> 15) & 7;
5259 int index_reg = (vmx_instruction_info >> 18) & 0xf;
5260 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
5261 int base_reg = (vmx_instruction_info >> 23) & 0xf;
5262 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
5263
5264 if (is_reg) {
5265 kvm_queue_exception(vcpu, UD_VECTOR);
5266 return 1;
5267 }
5268
5269 /* Addr = segment_base + offset */
5270 /* offset = base + [index * scale] + displacement */
5271 off = exit_qualification; /* holds the displacement */
5272 if (addr_size == 1)
5273 off = (gva_t)sign_extend64(off, 31);
5274 else if (addr_size == 0)
5275 off = (gva_t)sign_extend64(off, 15);
5276 if (base_is_valid)
5277 off += kvm_register_read(vcpu, base_reg);
5278 if (index_is_valid)
5279 off += kvm_register_read(vcpu, index_reg) << scaling;
5280 vmx_get_segment(vcpu, &s, seg_reg);
5281
5282 /*
5283 * The effective address, i.e. @off, of a memory operand is truncated
5284 * based on the address size of the instruction. Note that this is
5285 * the *effective address*, i.e. the address prior to accounting for
5286 * the segment's base.
5287 */
5288 if (addr_size == 1) /* 32 bit */
5289 off &= 0xffffffff;
5290 else if (addr_size == 0) /* 16 bit */
5291 off &= 0xffff;
5292
5293 /* Checks for #GP/#SS exceptions. */
5294 exn = false;
5295 if (is_long_mode(vcpu)) {
5296 /*
5297 * The virtual/linear address is never truncated in 64-bit
5298 * mode, e.g. a 32-bit address size can yield a 64-bit virtual
5299 * address when using FS/GS with a non-zero base.
5300 */
5301 if (seg_reg == VCPU_SREG_FS || seg_reg == VCPU_SREG_GS)
5302 *ret = s.base + off;
5303 else
5304 *ret = off;
5305
5306 *ret = vmx_get_untagged_addr(vcpu, *ret, 0);
5307 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
5308 * non-canonical form. This is the only check on the memory
5309 * destination for long mode!
5310 */
5311 exn = is_noncanonical_address(*ret, vcpu, 0);
5312 } else {
5313 /*
5314 * When not in long mode, the virtual/linear address is
5315 * unconditionally truncated to 32 bits regardless of the
5316 * address size.
5317 */
5318 *ret = (s.base + off) & 0xffffffff;
5319
5320 /* Protected mode: apply checks for segment validity in the
5321 * following order:
5322 * - segment type check (#GP(0) may be thrown)
5323 * - usability check (#GP(0)/#SS(0))
5324 * - limit check (#GP(0)/#SS(0))
5325 */
5326 if (wr)
5327 /* #GP(0) if the destination operand is located in a
5328 * read-only data segment or any code segment.
5329 */
5330 exn = ((s.type & 0xa) == 0 || (s.type & 8));
5331 else
5332 /* #GP(0) if the source operand is located in an
5333 * execute-only code segment
5334 */
5335 exn = ((s.type & 0xa) == 8);
5336 if (exn) {
5337 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
5338 return 1;
5339 }
5340 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
5341 */
5342 exn = (s.unusable != 0);
5343
5344 /*
5345 * Protected mode: #GP(0)/#SS(0) if the memory operand is
5346 * outside the segment limit. All CPUs that support VMX ignore
5347 * limit checks for flat segments, i.e. segments with base==0,
5348 * limit==0xffffffff and of type expand-up data or code.
5349 */
5350 if (!(s.base == 0 && s.limit == 0xffffffff &&
5351 ((s.type & 8) || !(s.type & 4))))
5352 exn = exn || ((u64)off + len - 1 > s.limit);
5353 }
5354 if (exn) {
5355 kvm_queue_exception_e(vcpu,
5356 seg_reg == VCPU_SREG_SS ?
5357 SS_VECTOR : GP_VECTOR,
5358 0);
5359 return 1;
5360 }
5361
5362 return 0;
5363 }
5364
nested_vmx_get_vmptr(struct kvm_vcpu * vcpu,gpa_t * vmpointer,int * ret)5365 static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer,
5366 int *ret)
5367 {
5368 gva_t gva;
5369 struct x86_exception e;
5370 int r;
5371
5372 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5373 vmcs_read32(VMX_INSTRUCTION_INFO), false,
5374 sizeof(*vmpointer), &gva)) {
5375 *ret = 1;
5376 return -EINVAL;
5377 }
5378
5379 r = kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e);
5380 if (r != X86EMUL_CONTINUE) {
5381 *ret = kvm_handle_memory_failure(vcpu, r, &e);
5382 return -EINVAL;
5383 }
5384
5385 return 0;
5386 }
5387
5388 /*
5389 * Allocate a shadow VMCS and associate it with the currently loaded
5390 * VMCS, unless such a shadow VMCS already exists. The newly allocated
5391 * VMCS is also VMCLEARed, so that it is ready for use.
5392 */
alloc_shadow_vmcs(struct kvm_vcpu * vcpu)5393 static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
5394 {
5395 struct vcpu_vmx *vmx = to_vmx(vcpu);
5396 struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
5397
5398 /*
5399 * KVM allocates a shadow VMCS only when L1 executes VMXON and frees it
5400 * when L1 executes VMXOFF or the vCPU is forced out of nested
5401 * operation. VMXON faults if the CPU is already post-VMXON, so it
5402 * should be impossible to already have an allocated shadow VMCS. KVM
5403 * doesn't support virtualization of VMCS shadowing, so vmcs01 should
5404 * always be the loaded VMCS.
5405 */
5406 if (WARN_ON(loaded_vmcs != &vmx->vmcs01 || loaded_vmcs->shadow_vmcs))
5407 return loaded_vmcs->shadow_vmcs;
5408
5409 loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
5410 if (loaded_vmcs->shadow_vmcs)
5411 vmcs_clear(loaded_vmcs->shadow_vmcs);
5412
5413 return loaded_vmcs->shadow_vmcs;
5414 }
5415
enter_vmx_operation(struct kvm_vcpu * vcpu)5416 static int enter_vmx_operation(struct kvm_vcpu *vcpu)
5417 {
5418 struct vcpu_vmx *vmx = to_vmx(vcpu);
5419 int r;
5420
5421 r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
5422 if (r < 0)
5423 goto out_vmcs02;
5424
5425 vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
5426 if (!vmx->nested.cached_vmcs12)
5427 goto out_cached_vmcs12;
5428
5429 vmx->nested.shadow_vmcs12_cache.gpa = INVALID_GPA;
5430 vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
5431 if (!vmx->nested.cached_shadow_vmcs12)
5432 goto out_cached_shadow_vmcs12;
5433
5434 if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
5435 goto out_shadow_vmcs;
5436
5437 hrtimer_setup(&vmx->nested.preemption_timer, vmx_preemption_timer_fn, CLOCK_MONOTONIC,
5438 HRTIMER_MODE_ABS_PINNED);
5439
5440 vmx->nested.vpid02 = allocate_vpid();
5441
5442 vmx->nested.vmcs02_initialized = false;
5443 vmx->nested.vmxon = true;
5444
5445 if (vmx_pt_mode_is_host_guest()) {
5446 vmx->pt_desc.guest.ctl = 0;
5447 pt_update_intercept_for_msr(vcpu);
5448 }
5449
5450 return 0;
5451
5452 out_shadow_vmcs:
5453 kfree(vmx->nested.cached_shadow_vmcs12);
5454
5455 out_cached_shadow_vmcs12:
5456 kfree(vmx->nested.cached_vmcs12);
5457
5458 out_cached_vmcs12:
5459 free_loaded_vmcs(&vmx->nested.vmcs02);
5460
5461 out_vmcs02:
5462 return -ENOMEM;
5463 }
5464
5465 /* Emulate the VMXON instruction. */
handle_vmxon(struct kvm_vcpu * vcpu)5466 static int handle_vmxon(struct kvm_vcpu *vcpu)
5467 {
5468 int ret;
5469 gpa_t vmptr;
5470 uint32_t revision;
5471 struct vcpu_vmx *vmx = to_vmx(vcpu);
5472 const u64 VMXON_NEEDED_FEATURES = FEAT_CTL_LOCKED
5473 | FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
5474
5475 /*
5476 * Manually check CR4.VMXE checks, KVM must force CR4.VMXE=1 to enter
5477 * the guest and so cannot rely on hardware to perform the check,
5478 * which has higher priority than VM-Exit (see Intel SDM's pseudocode
5479 * for VMXON).
5480 *
5481 * Rely on hardware for the other pre-VM-Exit checks, CR0.PE=1, !VM86
5482 * and !COMPATIBILITY modes. For an unrestricted guest, KVM doesn't
5483 * force any of the relevant guest state. For a restricted guest, KVM
5484 * does force CR0.PE=1, but only to also force VM86 in order to emulate
5485 * Real Mode, and so there's no need to check CR0.PE manually.
5486 */
5487 if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_VMXE)) {
5488 kvm_queue_exception(vcpu, UD_VECTOR);
5489 return 1;
5490 }
5491
5492 /*
5493 * The CPL is checked for "not in VMX operation" and for "in VMX root",
5494 * and has higher priority than the VM-Fail due to being post-VMXON,
5495 * i.e. VMXON #GPs outside of VMX non-root if CPL!=0. In VMX non-root,
5496 * VMXON causes VM-Exit and KVM unconditionally forwards VMXON VM-Exits
5497 * from L2 to L1, i.e. there's no need to check for the vCPU being in
5498 * VMX non-root.
5499 *
5500 * Forwarding the VM-Exit unconditionally, i.e. without performing the
5501 * #UD checks (see above), is functionally ok because KVM doesn't allow
5502 * L1 to run L2 without CR4.VMXE=0, and because KVM never modifies L2's
5503 * CR0 or CR4, i.e. it's L2's responsibility to emulate #UDs that are
5504 * missed by hardware due to shadowing CR0 and/or CR4.
5505 */
5506 if (vmx_get_cpl(vcpu)) {
5507 kvm_inject_gp(vcpu, 0);
5508 return 1;
5509 }
5510
5511 if (vmx->nested.vmxon)
5512 return nested_vmx_fail(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
5513
5514 /*
5515 * Invalid CR0/CR4 generates #GP. These checks are performed if and
5516 * only if the vCPU isn't already in VMX operation, i.e. effectively
5517 * have lower priority than the VM-Fail above.
5518 */
5519 if (!nested_host_cr0_valid(vcpu, kvm_read_cr0(vcpu)) ||
5520 !nested_host_cr4_valid(vcpu, kvm_read_cr4(vcpu))) {
5521 kvm_inject_gp(vcpu, 0);
5522 return 1;
5523 }
5524
5525 if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
5526 != VMXON_NEEDED_FEATURES) {
5527 kvm_inject_gp(vcpu, 0);
5528 return 1;
5529 }
5530
5531 if (nested_vmx_get_vmptr(vcpu, &vmptr, &ret))
5532 return ret;
5533
5534 /*
5535 * SDM 3: 24.11.5
5536 * The first 4 bytes of VMXON region contain the supported
5537 * VMCS revision identifier
5538 *
5539 * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
5540 * which replaces physical address width with 32
5541 */
5542 if (!page_address_valid(vcpu, vmptr))
5543 return nested_vmx_failInvalid(vcpu);
5544
5545 if (kvm_read_guest(vcpu->kvm, vmptr, &revision, sizeof(revision)) ||
5546 revision != VMCS12_REVISION)
5547 return nested_vmx_failInvalid(vcpu);
5548
5549 vmx->nested.vmxon_ptr = vmptr;
5550 ret = enter_vmx_operation(vcpu);
5551 if (ret)
5552 return ret;
5553
5554 return nested_vmx_succeed(vcpu);
5555 }
5556
nested_release_vmcs12(struct kvm_vcpu * vcpu)5557 static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
5558 {
5559 struct vcpu_vmx *vmx = to_vmx(vcpu);
5560
5561 if (vmx->nested.current_vmptr == INVALID_GPA)
5562 return;
5563
5564 copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
5565
5566 if (enable_shadow_vmcs) {
5567 /* copy to memory all shadowed fields in case
5568 they were modified */
5569 copy_shadow_to_vmcs12(vmx);
5570 vmx_disable_shadow_vmcs(vmx);
5571 }
5572 vmx->nested.posted_intr_nv = -1;
5573
5574 /* Flush VMCS12 to guest memory */
5575 kvm_vcpu_write_guest_page(vcpu,
5576 vmx->nested.current_vmptr >> PAGE_SHIFT,
5577 vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
5578
5579 kvm_mmu_free_roots(vcpu->kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5580
5581 vmx->nested.current_vmptr = INVALID_GPA;
5582 }
5583
5584 /* Emulate the VMXOFF instruction */
handle_vmxoff(struct kvm_vcpu * vcpu)5585 static int handle_vmxoff(struct kvm_vcpu *vcpu)
5586 {
5587 if (!nested_vmx_check_permission(vcpu))
5588 return 1;
5589
5590 free_nested(vcpu);
5591
5592 if (kvm_apic_has_pending_init_or_sipi(vcpu))
5593 kvm_make_request(KVM_REQ_EVENT, vcpu);
5594
5595 return nested_vmx_succeed(vcpu);
5596 }
5597
5598 /* Emulate the VMCLEAR instruction */
handle_vmclear(struct kvm_vcpu * vcpu)5599 static int handle_vmclear(struct kvm_vcpu *vcpu)
5600 {
5601 struct vcpu_vmx *vmx = to_vmx(vcpu);
5602 u32 zero = 0;
5603 gpa_t vmptr;
5604 int r;
5605
5606 if (!nested_vmx_check_permission(vcpu))
5607 return 1;
5608
5609 if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
5610 return r;
5611
5612 if (!page_address_valid(vcpu, vmptr))
5613 return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
5614
5615 if (vmptr == vmx->nested.vmxon_ptr)
5616 return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_VMXON_POINTER);
5617
5618 if (likely(!nested_evmcs_handle_vmclear(vcpu, vmptr))) {
5619 if (vmptr == vmx->nested.current_vmptr)
5620 nested_release_vmcs12(vcpu);
5621
5622 /*
5623 * Silently ignore memory errors on VMCLEAR, Intel's pseudocode
5624 * for VMCLEAR includes a "ensure that data for VMCS referenced
5625 * by the operand is in memory" clause that guards writes to
5626 * memory, i.e. doing nothing for I/O is architecturally valid.
5627 *
5628 * FIXME: Suppress failures if and only if no memslot is found,
5629 * i.e. exit to userspace if __copy_to_user() fails.
5630 */
5631 (void)kvm_vcpu_write_guest(vcpu,
5632 vmptr + offsetof(struct vmcs12,
5633 launch_state),
5634 &zero, sizeof(zero));
5635 }
5636
5637 return nested_vmx_succeed(vcpu);
5638 }
5639
5640 /* Emulate the VMLAUNCH instruction */
handle_vmlaunch(struct kvm_vcpu * vcpu)5641 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
5642 {
5643 return nested_vmx_run(vcpu, true);
5644 }
5645
5646 /* Emulate the VMRESUME instruction */
handle_vmresume(struct kvm_vcpu * vcpu)5647 static int handle_vmresume(struct kvm_vcpu *vcpu)
5648 {
5649
5650 return nested_vmx_run(vcpu, false);
5651 }
5652
handle_vmread(struct kvm_vcpu * vcpu)5653 static int handle_vmread(struct kvm_vcpu *vcpu)
5654 {
5655 struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
5656 : get_vmcs12(vcpu);
5657 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5658 u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5659 struct vcpu_vmx *vmx = to_vmx(vcpu);
5660 struct x86_exception e;
5661 unsigned long field;
5662 u64 value;
5663 gva_t gva = 0;
5664 short offset;
5665 int len, r;
5666
5667 if (!nested_vmx_check_permission(vcpu))
5668 return 1;
5669
5670 /* Decode instruction info and find the field to read */
5671 field = kvm_register_read(vcpu, (((instr_info) >> 28) & 0xf));
5672
5673 if (!nested_vmx_is_evmptr12_valid(vmx)) {
5674 /*
5675 * In VMX non-root operation, when the VMCS-link pointer is INVALID_GPA,
5676 * any VMREAD sets the ALU flags for VMfailInvalid.
5677 */
5678 if (vmx->nested.current_vmptr == INVALID_GPA ||
5679 (is_guest_mode(vcpu) &&
5680 get_vmcs12(vcpu)->vmcs_link_pointer == INVALID_GPA))
5681 return nested_vmx_failInvalid(vcpu);
5682
5683 offset = get_vmcs12_field_offset(field);
5684 if (offset < 0)
5685 return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5686
5687 if (!is_guest_mode(vcpu) && is_vmcs12_ext_field(field))
5688 copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5689
5690 /* Read the field, zero-extended to a u64 value */
5691 value = vmcs12_read_any(vmcs12, field, offset);
5692 } else {
5693 /*
5694 * Hyper-V TLFS (as of 6.0b) explicitly states, that while an
5695 * enlightened VMCS is active VMREAD/VMWRITE instructions are
5696 * unsupported. Unfortunately, certain versions of Windows 11
5697 * don't comply with this requirement which is not enforced in
5698 * genuine Hyper-V. Allow VMREAD from an enlightened VMCS as a
5699 * workaround, as misbehaving guests will panic on VM-Fail.
5700 * Note, enlightened VMCS is incompatible with shadow VMCS so
5701 * all VMREADs from L2 should go to L1.
5702 */
5703 if (WARN_ON_ONCE(is_guest_mode(vcpu)))
5704 return nested_vmx_failInvalid(vcpu);
5705
5706 offset = evmcs_field_offset(field, NULL);
5707 if (offset < 0)
5708 return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5709
5710 /* Read the field, zero-extended to a u64 value */
5711 value = evmcs_read_any(nested_vmx_evmcs(vmx), field, offset);
5712 }
5713
5714 /*
5715 * Now copy part of this value to register or memory, as requested.
5716 * Note that the number of bits actually copied is 32 or 64 depending
5717 * on the guest's mode (32 or 64 bit), not on the given field's length.
5718 */
5719 if (instr_info & BIT(10)) {
5720 kvm_register_write(vcpu, (((instr_info) >> 3) & 0xf), value);
5721 } else {
5722 len = is_64_bit_mode(vcpu) ? 8 : 4;
5723 if (get_vmx_mem_address(vcpu, exit_qualification,
5724 instr_info, true, len, &gva))
5725 return 1;
5726 /* _system ok, nested_vmx_check_permission has verified cpl=0 */
5727 r = kvm_write_guest_virt_system(vcpu, gva, &value, len, &e);
5728 if (r != X86EMUL_CONTINUE)
5729 return kvm_handle_memory_failure(vcpu, r, &e);
5730 }
5731
5732 return nested_vmx_succeed(vcpu);
5733 }
5734
is_shadow_field_rw(unsigned long field)5735 static bool is_shadow_field_rw(unsigned long field)
5736 {
5737 switch (field) {
5738 #define SHADOW_FIELD_RW(x, y) case x:
5739 #include "vmcs_shadow_fields.h"
5740 return true;
5741 default:
5742 break;
5743 }
5744 return false;
5745 }
5746
is_shadow_field_ro(unsigned long field)5747 static bool is_shadow_field_ro(unsigned long field)
5748 {
5749 switch (field) {
5750 #define SHADOW_FIELD_RO(x, y) case x:
5751 #include "vmcs_shadow_fields.h"
5752 return true;
5753 default:
5754 break;
5755 }
5756 return false;
5757 }
5758
handle_vmwrite(struct kvm_vcpu * vcpu)5759 static int handle_vmwrite(struct kvm_vcpu *vcpu)
5760 {
5761 struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
5762 : get_vmcs12(vcpu);
5763 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5764 u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5765 struct vcpu_vmx *vmx = to_vmx(vcpu);
5766 struct x86_exception e;
5767 unsigned long field;
5768 short offset;
5769 gva_t gva;
5770 int len, r;
5771
5772 /*
5773 * The value to write might be 32 or 64 bits, depending on L1's long
5774 * mode, and eventually we need to write that into a field of several
5775 * possible lengths. The code below first zero-extends the value to 64
5776 * bit (value), and then copies only the appropriate number of
5777 * bits into the vmcs12 field.
5778 */
5779 u64 value = 0;
5780
5781 if (!nested_vmx_check_permission(vcpu))
5782 return 1;
5783
5784 /*
5785 * In VMX non-root operation, when the VMCS-link pointer is INVALID_GPA,
5786 * any VMWRITE sets the ALU flags for VMfailInvalid.
5787 */
5788 if (vmx->nested.current_vmptr == INVALID_GPA ||
5789 (is_guest_mode(vcpu) &&
5790 get_vmcs12(vcpu)->vmcs_link_pointer == INVALID_GPA))
5791 return nested_vmx_failInvalid(vcpu);
5792
5793 if (instr_info & BIT(10))
5794 value = kvm_register_read(vcpu, (((instr_info) >> 3) & 0xf));
5795 else {
5796 len = is_64_bit_mode(vcpu) ? 8 : 4;
5797 if (get_vmx_mem_address(vcpu, exit_qualification,
5798 instr_info, false, len, &gva))
5799 return 1;
5800 r = kvm_read_guest_virt(vcpu, gva, &value, len, &e);
5801 if (r != X86EMUL_CONTINUE)
5802 return kvm_handle_memory_failure(vcpu, r, &e);
5803 }
5804
5805 field = kvm_register_read(vcpu, (((instr_info) >> 28) & 0xf));
5806
5807 offset = get_vmcs12_field_offset(field);
5808 if (offset < 0)
5809 return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5810
5811 /*
5812 * If the vCPU supports "VMWRITE to any supported field in the
5813 * VMCS," then the "read-only" fields are actually read/write.
5814 */
5815 if (vmcs_field_readonly(field) &&
5816 !nested_cpu_has_vmwrite_any_field(vcpu))
5817 return nested_vmx_fail(vcpu, VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
5818
5819 /*
5820 * Ensure vmcs12 is up-to-date before any VMWRITE that dirties
5821 * vmcs12, else we may crush a field or consume a stale value.
5822 */
5823 if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field))
5824 copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5825
5826 /*
5827 * Some Intel CPUs intentionally drop the reserved bits of the AR byte
5828 * fields on VMWRITE. Emulate this behavior to ensure consistent KVM
5829 * behavior regardless of the underlying hardware, e.g. if an AR_BYTE
5830 * field is intercepted for VMWRITE but not VMREAD (in L1), then VMREAD
5831 * from L1 will return a different value than VMREAD from L2 (L1 sees
5832 * the stripped down value, L2 sees the full value as stored by KVM).
5833 */
5834 if (field >= GUEST_ES_AR_BYTES && field <= GUEST_TR_AR_BYTES)
5835 value &= 0x1f0ff;
5836
5837 vmcs12_write_any(vmcs12, field, offset, value);
5838
5839 /*
5840 * Do not track vmcs12 dirty-state if in guest-mode as we actually
5841 * dirty shadow vmcs12 instead of vmcs12. Fields that can be updated
5842 * by L1 without a vmexit are always updated in the vmcs02, i.e. don't
5843 * "dirty" vmcs12, all others go down the prepare_vmcs02() slow path.
5844 */
5845 if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field)) {
5846 /*
5847 * L1 can read these fields without exiting, ensure the
5848 * shadow VMCS is up-to-date.
5849 */
5850 if (enable_shadow_vmcs && is_shadow_field_ro(field)) {
5851 preempt_disable();
5852 vmcs_load(vmx->vmcs01.shadow_vmcs);
5853
5854 __vmcs_writel(field, value);
5855
5856 vmcs_clear(vmx->vmcs01.shadow_vmcs);
5857 vmcs_load(vmx->loaded_vmcs->vmcs);
5858 preempt_enable();
5859 }
5860 vmx->nested.dirty_vmcs12 = true;
5861 }
5862
5863 return nested_vmx_succeed(vcpu);
5864 }
5865
set_current_vmptr(struct vcpu_vmx * vmx,gpa_t vmptr)5866 static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
5867 {
5868 vmx->nested.current_vmptr = vmptr;
5869 if (enable_shadow_vmcs) {
5870 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
5871 vmcs_write64(VMCS_LINK_POINTER,
5872 __pa(vmx->vmcs01.shadow_vmcs));
5873 vmx->nested.need_vmcs12_to_shadow_sync = true;
5874 }
5875 vmx->nested.dirty_vmcs12 = true;
5876 vmx->nested.force_msr_bitmap_recalc = true;
5877 }
5878
5879 /* Emulate the VMPTRLD instruction */
handle_vmptrld(struct kvm_vcpu * vcpu)5880 static int handle_vmptrld(struct kvm_vcpu *vcpu)
5881 {
5882 struct vcpu_vmx *vmx = to_vmx(vcpu);
5883 gpa_t vmptr;
5884 int r;
5885
5886 if (!nested_vmx_check_permission(vcpu))
5887 return 1;
5888
5889 if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
5890 return r;
5891
5892 if (!page_address_valid(vcpu, vmptr))
5893 return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
5894
5895 if (vmptr == vmx->nested.vmxon_ptr)
5896 return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_VMXON_POINTER);
5897
5898 /* Forbid normal VMPTRLD if Enlightened version was used */
5899 if (nested_vmx_is_evmptr12_valid(vmx))
5900 return 1;
5901
5902 if (vmx->nested.current_vmptr != vmptr) {
5903 struct gfn_to_hva_cache *ghc = &vmx->nested.vmcs12_cache;
5904 struct vmcs_hdr hdr;
5905
5906 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, vmptr, VMCS12_SIZE)) {
5907 /*
5908 * Reads from an unbacked page return all 1s,
5909 * which means that the 32 bits located at the
5910 * given physical address won't match the required
5911 * VMCS12_REVISION identifier.
5912 */
5913 return nested_vmx_fail(vcpu,
5914 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5915 }
5916
5917 if (kvm_read_guest_offset_cached(vcpu->kvm, ghc, &hdr,
5918 offsetof(struct vmcs12, hdr),
5919 sizeof(hdr))) {
5920 return nested_vmx_fail(vcpu,
5921 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5922 }
5923
5924 if (hdr.revision_id != VMCS12_REVISION ||
5925 (hdr.shadow_vmcs &&
5926 !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
5927 return nested_vmx_fail(vcpu,
5928 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5929 }
5930
5931 nested_release_vmcs12(vcpu);
5932
5933 /*
5934 * Load VMCS12 from guest memory since it is not already
5935 * cached.
5936 */
5937 if (kvm_read_guest_cached(vcpu->kvm, ghc, vmx->nested.cached_vmcs12,
5938 VMCS12_SIZE)) {
5939 return nested_vmx_fail(vcpu,
5940 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5941 }
5942
5943 set_current_vmptr(vmx, vmptr);
5944 }
5945
5946 return nested_vmx_succeed(vcpu);
5947 }
5948
5949 /* Emulate the VMPTRST instruction */
handle_vmptrst(struct kvm_vcpu * vcpu)5950 static int handle_vmptrst(struct kvm_vcpu *vcpu)
5951 {
5952 unsigned long exit_qual = vmx_get_exit_qual(vcpu);
5953 u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5954 gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
5955 struct x86_exception e;
5956 gva_t gva;
5957 int r;
5958
5959 if (!nested_vmx_check_permission(vcpu))
5960 return 1;
5961
5962 if (unlikely(nested_vmx_is_evmptr12_valid(to_vmx(vcpu))))
5963 return 1;
5964
5965 if (get_vmx_mem_address(vcpu, exit_qual, instr_info,
5966 true, sizeof(gpa_t), &gva))
5967 return 1;
5968 /* *_system ok, nested_vmx_check_permission has verified cpl=0 */
5969 r = kvm_write_guest_virt_system(vcpu, gva, (void *)¤t_vmptr,
5970 sizeof(gpa_t), &e);
5971 if (r != X86EMUL_CONTINUE)
5972 return kvm_handle_memory_failure(vcpu, r, &e);
5973
5974 return nested_vmx_succeed(vcpu);
5975 }
5976
5977 /* Emulate the INVEPT instruction */
handle_invept(struct kvm_vcpu * vcpu)5978 static int handle_invept(struct kvm_vcpu *vcpu)
5979 {
5980 struct vcpu_vmx *vmx = to_vmx(vcpu);
5981 u32 vmx_instruction_info, types;
5982 unsigned long type, roots_to_free;
5983 struct kvm_mmu *mmu;
5984 gva_t gva;
5985 struct x86_exception e;
5986 struct {
5987 u64 eptp, gpa;
5988 } operand;
5989 int i, r, gpr_index;
5990
5991 if (!(vmx->nested.msrs.secondary_ctls_high &
5992 SECONDARY_EXEC_ENABLE_EPT) ||
5993 !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
5994 kvm_queue_exception(vcpu, UD_VECTOR);
5995 return 1;
5996 }
5997
5998 if (!nested_vmx_check_permission(vcpu))
5999 return 1;
6000
6001 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6002 gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
6003 type = kvm_register_read(vcpu, gpr_index);
6004
6005 types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
6006
6007 if (type >= 32 || !(types & (1 << type)))
6008 return nested_vmx_fail(vcpu, VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6009
6010 /* According to the Intel VMX instruction reference, the memory
6011 * operand is read even if it isn't needed (e.g., for type==global)
6012 */
6013 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
6014 vmx_instruction_info, false, sizeof(operand), &gva))
6015 return 1;
6016 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
6017 if (r != X86EMUL_CONTINUE)
6018 return kvm_handle_memory_failure(vcpu, r, &e);
6019
6020 /*
6021 * Nested EPT roots are always held through guest_mmu,
6022 * not root_mmu.
6023 */
6024 mmu = &vcpu->arch.guest_mmu;
6025
6026 switch (type) {
6027 case VMX_EPT_EXTENT_CONTEXT:
6028 if (!nested_vmx_check_eptp(vcpu, operand.eptp))
6029 return nested_vmx_fail(vcpu,
6030 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6031
6032 roots_to_free = 0;
6033 if (nested_ept_root_matches(mmu->root.hpa, mmu->root.pgd,
6034 operand.eptp))
6035 roots_to_free |= KVM_MMU_ROOT_CURRENT;
6036
6037 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
6038 if (nested_ept_root_matches(mmu->prev_roots[i].hpa,
6039 mmu->prev_roots[i].pgd,
6040 operand.eptp))
6041 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
6042 }
6043 break;
6044 case VMX_EPT_EXTENT_GLOBAL:
6045 roots_to_free = KVM_MMU_ROOTS_ALL;
6046 break;
6047 default:
6048 BUG();
6049 break;
6050 }
6051
6052 if (roots_to_free)
6053 kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
6054
6055 return nested_vmx_succeed(vcpu);
6056 }
6057
handle_invvpid(struct kvm_vcpu * vcpu)6058 static int handle_invvpid(struct kvm_vcpu *vcpu)
6059 {
6060 struct vcpu_vmx *vmx = to_vmx(vcpu);
6061 u32 vmx_instruction_info;
6062 unsigned long type, types;
6063 gva_t gva;
6064 struct x86_exception e;
6065 struct {
6066 u64 vpid;
6067 u64 gla;
6068 } operand;
6069 u16 vpid02;
6070 int r, gpr_index;
6071
6072 if (!(vmx->nested.msrs.secondary_ctls_high &
6073 SECONDARY_EXEC_ENABLE_VPID) ||
6074 !(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
6075 kvm_queue_exception(vcpu, UD_VECTOR);
6076 return 1;
6077 }
6078
6079 if (!nested_vmx_check_permission(vcpu))
6080 return 1;
6081
6082 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6083 gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
6084 type = kvm_register_read(vcpu, gpr_index);
6085
6086 types = (vmx->nested.msrs.vpid_caps &
6087 VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
6088
6089 if (type >= 32 || !(types & (1 << type)))
6090 return nested_vmx_fail(vcpu,
6091 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6092
6093 /* according to the intel vmx instruction reference, the memory
6094 * operand is read even if it isn't needed (e.g., for type==global)
6095 */
6096 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
6097 vmx_instruction_info, false, sizeof(operand), &gva))
6098 return 1;
6099 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
6100 if (r != X86EMUL_CONTINUE)
6101 return kvm_handle_memory_failure(vcpu, r, &e);
6102
6103 if (operand.vpid >> 16)
6104 return nested_vmx_fail(vcpu,
6105 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6106
6107 /*
6108 * Always flush the effective vpid02, i.e. never flush the current VPID
6109 * and never explicitly flush vpid01. INVVPID targets a VPID, not a
6110 * VMCS, and so whether or not the current vmcs12 has VPID enabled is
6111 * irrelevant (and there may not be a loaded vmcs12).
6112 */
6113 vpid02 = nested_get_vpid02(vcpu);
6114 switch (type) {
6115 case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
6116 /*
6117 * LAM doesn't apply to addresses that are inputs to TLB
6118 * invalidation.
6119 */
6120 if (!operand.vpid ||
6121 is_noncanonical_invlpg_address(operand.gla, vcpu))
6122 return nested_vmx_fail(vcpu,
6123 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6124 vpid_sync_vcpu_addr(vpid02, operand.gla);
6125 break;
6126 case VMX_VPID_EXTENT_SINGLE_CONTEXT:
6127 case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
6128 if (!operand.vpid)
6129 return nested_vmx_fail(vcpu,
6130 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6131 vpid_sync_context(vpid02);
6132 break;
6133 case VMX_VPID_EXTENT_ALL_CONTEXT:
6134 vpid_sync_context(vpid02);
6135 break;
6136 default:
6137 WARN_ON_ONCE(1);
6138 return kvm_skip_emulated_instruction(vcpu);
6139 }
6140
6141 /*
6142 * Sync the shadow page tables if EPT is disabled, L1 is invalidating
6143 * linear mappings for L2 (tagged with L2's VPID). Free all guest
6144 * roots as VPIDs are not tracked in the MMU role.
6145 *
6146 * Note, this operates on root_mmu, not guest_mmu, as L1 and L2 share
6147 * an MMU when EPT is disabled.
6148 *
6149 * TODO: sync only the affected SPTEs for INVDIVIDUAL_ADDR.
6150 */
6151 if (!enable_ept)
6152 kvm_mmu_free_guest_mode_roots(vcpu->kvm, &vcpu->arch.root_mmu);
6153
6154 return nested_vmx_succeed(vcpu);
6155 }
6156
nested_vmx_eptp_switching(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)6157 static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
6158 struct vmcs12 *vmcs12)
6159 {
6160 u32 index = kvm_rcx_read(vcpu);
6161 u64 new_eptp;
6162
6163 if (WARN_ON_ONCE(!nested_cpu_has_ept(vmcs12)))
6164 return 1;
6165 if (index >= VMFUNC_EPTP_ENTRIES)
6166 return 1;
6167
6168 if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
6169 &new_eptp, index * 8, 8))
6170 return 1;
6171
6172 /*
6173 * If the (L2) guest does a vmfunc to the currently
6174 * active ept pointer, we don't have to do anything else
6175 */
6176 if (vmcs12->ept_pointer != new_eptp) {
6177 if (!nested_vmx_check_eptp(vcpu, new_eptp))
6178 return 1;
6179
6180 vmcs12->ept_pointer = new_eptp;
6181 nested_ept_new_eptp(vcpu);
6182
6183 if (!nested_cpu_has_vpid(vmcs12))
6184 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
6185 }
6186
6187 return 0;
6188 }
6189
handle_vmfunc(struct kvm_vcpu * vcpu)6190 static int handle_vmfunc(struct kvm_vcpu *vcpu)
6191 {
6192 struct vcpu_vmx *vmx = to_vmx(vcpu);
6193 struct vmcs12 *vmcs12;
6194 u32 function = kvm_rax_read(vcpu);
6195
6196 /*
6197 * VMFUNC should never execute cleanly while L1 is active; KVM supports
6198 * VMFUNC for nested VMs, but not for L1.
6199 */
6200 if (WARN_ON_ONCE(!is_guest_mode(vcpu))) {
6201 kvm_queue_exception(vcpu, UD_VECTOR);
6202 return 1;
6203 }
6204
6205 vmcs12 = get_vmcs12(vcpu);
6206
6207 /*
6208 * #UD on out-of-bounds function has priority over VM-Exit, and VMFUNC
6209 * is enabled in vmcs02 if and only if it's enabled in vmcs12.
6210 */
6211 if (WARN_ON_ONCE((function > 63) || !nested_cpu_has_vmfunc(vmcs12))) {
6212 kvm_queue_exception(vcpu, UD_VECTOR);
6213 return 1;
6214 }
6215
6216 if (!(vmcs12->vm_function_control & BIT_ULL(function)))
6217 goto fail;
6218
6219 switch (function) {
6220 case 0:
6221 if (nested_vmx_eptp_switching(vcpu, vmcs12))
6222 goto fail;
6223 break;
6224 default:
6225 goto fail;
6226 }
6227 return kvm_skip_emulated_instruction(vcpu);
6228
6229 fail:
6230 /*
6231 * This is effectively a reflected VM-Exit, as opposed to a synthesized
6232 * nested VM-Exit. Pass the original exit reason, i.e. don't hardcode
6233 * EXIT_REASON_VMFUNC as the exit reason.
6234 */
6235 nested_vmx_vmexit(vcpu, vmx->vt.exit_reason.full,
6236 vmx_get_intr_info(vcpu),
6237 vmx_get_exit_qual(vcpu));
6238 return 1;
6239 }
6240
6241 /*
6242 * Return true if an IO instruction with the specified port and size should cause
6243 * a VM-exit into L1.
6244 */
nested_vmx_check_io_bitmaps(struct kvm_vcpu * vcpu,unsigned int port,int size)6245 bool nested_vmx_check_io_bitmaps(struct kvm_vcpu *vcpu, unsigned int port,
6246 int size)
6247 {
6248 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6249 gpa_t bitmap, last_bitmap;
6250 u8 b;
6251
6252 last_bitmap = INVALID_GPA;
6253 b = -1;
6254
6255 while (size > 0) {
6256 if (port < 0x8000)
6257 bitmap = vmcs12->io_bitmap_a;
6258 else if (port < 0x10000)
6259 bitmap = vmcs12->io_bitmap_b;
6260 else
6261 return true;
6262 bitmap += (port & 0x7fff) / 8;
6263
6264 if (last_bitmap != bitmap)
6265 if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
6266 return true;
6267 if (b & (1 << (port & 7)))
6268 return true;
6269
6270 port++;
6271 size--;
6272 last_bitmap = bitmap;
6273 }
6274
6275 return false;
6276 }
6277
nested_vmx_exit_handled_io(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)6278 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
6279 struct vmcs12 *vmcs12)
6280 {
6281 unsigned long exit_qualification;
6282 unsigned short port;
6283 int size;
6284
6285 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
6286 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
6287
6288 exit_qualification = vmx_get_exit_qual(vcpu);
6289
6290 port = exit_qualification >> 16;
6291 size = (exit_qualification & 7) + 1;
6292
6293 return nested_vmx_check_io_bitmaps(vcpu, port, size);
6294 }
6295
6296 /*
6297 * Return 1 if we should exit from L2 to L1 to handle an MSR access,
6298 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
6299 * disinterest in the current event (read or write a specific MSR) by using an
6300 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
6301 */
nested_vmx_exit_handled_msr(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,union vmx_exit_reason exit_reason)6302 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
6303 struct vmcs12 *vmcs12,
6304 union vmx_exit_reason exit_reason)
6305 {
6306 u32 msr_index;
6307 gpa_t bitmap;
6308
6309 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
6310 return true;
6311
6312 if (exit_reason.basic == EXIT_REASON_MSR_READ_IMM ||
6313 exit_reason.basic == EXIT_REASON_MSR_WRITE_IMM)
6314 msr_index = vmx_get_exit_qual(vcpu);
6315 else
6316 msr_index = kvm_rcx_read(vcpu);
6317
6318 /*
6319 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
6320 * for the four combinations of read/write and low/high MSR numbers.
6321 * First we need to figure out which of the four to use:
6322 */
6323 bitmap = vmcs12->msr_bitmap;
6324 if (exit_reason.basic == EXIT_REASON_MSR_WRITE ||
6325 exit_reason.basic == EXIT_REASON_MSR_WRITE_IMM)
6326 bitmap += 2048;
6327 if (msr_index >= 0xc0000000) {
6328 msr_index -= 0xc0000000;
6329 bitmap += 1024;
6330 }
6331
6332 /* Then read the msr_index'th bit from this bitmap: */
6333 if (msr_index < 1024*8) {
6334 unsigned char b;
6335 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
6336 return true;
6337 return 1 & (b >> (msr_index & 7));
6338 } else
6339 return true; /* let L1 handle the wrong parameter */
6340 }
6341
6342 /*
6343 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
6344 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
6345 * intercept (via guest_host_mask etc.) the current event.
6346 */
nested_vmx_exit_handled_cr(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)6347 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
6348 struct vmcs12 *vmcs12)
6349 {
6350 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
6351 int cr = exit_qualification & 15;
6352 int reg;
6353 unsigned long val;
6354
6355 switch ((exit_qualification >> 4) & 3) {
6356 case 0: /* mov to cr */
6357 reg = (exit_qualification >> 8) & 15;
6358 val = kvm_register_read(vcpu, reg);
6359 switch (cr) {
6360 case 0:
6361 if (vmcs12->cr0_guest_host_mask &
6362 (val ^ vmcs12->cr0_read_shadow))
6363 return true;
6364 break;
6365 case 3:
6366 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
6367 return true;
6368 break;
6369 case 4:
6370 if (vmcs12->cr4_guest_host_mask &
6371 (vmcs12->cr4_read_shadow ^ val))
6372 return true;
6373 break;
6374 case 8:
6375 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
6376 return true;
6377 break;
6378 }
6379 break;
6380 case 2: /* clts */
6381 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
6382 (vmcs12->cr0_read_shadow & X86_CR0_TS))
6383 return true;
6384 break;
6385 case 1: /* mov from cr */
6386 switch (cr) {
6387 case 3:
6388 if (vmcs12->cpu_based_vm_exec_control &
6389 CPU_BASED_CR3_STORE_EXITING)
6390 return true;
6391 break;
6392 case 8:
6393 if (vmcs12->cpu_based_vm_exec_control &
6394 CPU_BASED_CR8_STORE_EXITING)
6395 return true;
6396 break;
6397 }
6398 break;
6399 case 3: /* lmsw */
6400 /*
6401 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
6402 * cr0. Other attempted changes are ignored, with no exit.
6403 */
6404 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
6405 if (vmcs12->cr0_guest_host_mask & 0xe &
6406 (val ^ vmcs12->cr0_read_shadow))
6407 return true;
6408 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
6409 !(vmcs12->cr0_read_shadow & 0x1) &&
6410 (val & 0x1))
6411 return true;
6412 break;
6413 }
6414 return false;
6415 }
6416
nested_vmx_exit_handled_encls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)6417 static bool nested_vmx_exit_handled_encls(struct kvm_vcpu *vcpu,
6418 struct vmcs12 *vmcs12)
6419 {
6420 u32 encls_leaf;
6421
6422 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SGX) ||
6423 !nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENCLS_EXITING))
6424 return false;
6425
6426 encls_leaf = kvm_rax_read(vcpu);
6427 if (encls_leaf > 62)
6428 encls_leaf = 63;
6429 return vmcs12->encls_exiting_bitmap & BIT_ULL(encls_leaf);
6430 }
6431
nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,gpa_t bitmap)6432 static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
6433 struct vmcs12 *vmcs12, gpa_t bitmap)
6434 {
6435 u32 vmx_instruction_info;
6436 unsigned long field;
6437 u8 b;
6438
6439 if (!nested_cpu_has_shadow_vmcs(vmcs12))
6440 return true;
6441
6442 /* Decode instruction info and find the field to access */
6443 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6444 field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
6445
6446 /* Out-of-range fields always cause a VM exit from L2 to L1 */
6447 if (field >> 15)
6448 return true;
6449
6450 if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
6451 return true;
6452
6453 return 1 & (b >> (field & 7));
6454 }
6455
nested_vmx_exit_handled_mtf(struct vmcs12 * vmcs12)6456 static bool nested_vmx_exit_handled_mtf(struct vmcs12 *vmcs12)
6457 {
6458 u32 entry_intr_info = vmcs12->vm_entry_intr_info_field;
6459
6460 if (nested_cpu_has_mtf(vmcs12))
6461 return true;
6462
6463 /*
6464 * An MTF VM-exit may be injected into the guest by setting the
6465 * interruption-type to 7 (other event) and the vector field to 0. Such
6466 * is the case regardless of the 'monitor trap flag' VM-execution
6467 * control.
6468 */
6469 return entry_intr_info == (INTR_INFO_VALID_MASK
6470 | INTR_TYPE_OTHER_EVENT);
6471 }
6472
6473 /*
6474 * Return true if L0 wants to handle an exit from L2 regardless of whether or not
6475 * L1 wants the exit. Only call this when in is_guest_mode (L2).
6476 */
nested_vmx_l0_wants_exit(struct kvm_vcpu * vcpu,union vmx_exit_reason exit_reason)6477 static bool nested_vmx_l0_wants_exit(struct kvm_vcpu *vcpu,
6478 union vmx_exit_reason exit_reason)
6479 {
6480 u32 intr_info;
6481
6482 switch ((u16)exit_reason.basic) {
6483 case EXIT_REASON_EXCEPTION_NMI:
6484 intr_info = vmx_get_intr_info(vcpu);
6485 if (is_nmi(intr_info))
6486 return true;
6487 else if (is_page_fault(intr_info))
6488 return vcpu->arch.apf.host_apf_flags ||
6489 vmx_need_pf_intercept(vcpu);
6490 else if (is_debug(intr_info) &&
6491 vcpu->guest_debug &
6492 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
6493 return true;
6494 else if (is_breakpoint(intr_info) &&
6495 vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
6496 return true;
6497 else if (is_alignment_check(intr_info) &&
6498 !vmx_guest_inject_ac(vcpu))
6499 return true;
6500 else if (is_ve_fault(intr_info))
6501 return true;
6502 return false;
6503 case EXIT_REASON_EXTERNAL_INTERRUPT:
6504 return true;
6505 case EXIT_REASON_MCE_DURING_VMENTRY:
6506 return true;
6507 case EXIT_REASON_EPT_VIOLATION:
6508 /*
6509 * L0 always deals with the EPT violation. If nested EPT is
6510 * used, and the nested mmu code discovers that the address is
6511 * missing in the guest EPT table (EPT12), the EPT violation
6512 * will be injected with nested_ept_inject_page_fault()
6513 */
6514 return true;
6515 case EXIT_REASON_EPT_MISCONFIG:
6516 /*
6517 * L2 never uses directly L1's EPT, but rather L0's own EPT
6518 * table (shadow on EPT) or a merged EPT table that L0 built
6519 * (EPT on EPT). So any problems with the structure of the
6520 * table is L0's fault.
6521 */
6522 return true;
6523 case EXIT_REASON_PREEMPTION_TIMER:
6524 return true;
6525 case EXIT_REASON_PML_FULL:
6526 /*
6527 * PML is emulated for an L1 VMM and should never be enabled in
6528 * vmcs02, always "handle" PML_FULL by exiting to userspace.
6529 */
6530 return true;
6531 case EXIT_REASON_VMFUNC:
6532 /* VM functions are emulated through L2->L0 vmexits. */
6533 return true;
6534 case EXIT_REASON_BUS_LOCK:
6535 /*
6536 * At present, bus lock VM exit is never exposed to L1.
6537 * Handle L2's bus locks in L0 directly.
6538 */
6539 return true;
6540 #ifdef CONFIG_KVM_HYPERV
6541 case EXIT_REASON_VMCALL:
6542 /* Hyper-V L2 TLB flush hypercall is handled by L0 */
6543 return guest_hv_cpuid_has_l2_tlb_flush(vcpu) &&
6544 nested_evmcs_l2_tlb_flush_enabled(vcpu) &&
6545 kvm_hv_is_tlb_flush_hcall(vcpu);
6546 #endif
6547 default:
6548 break;
6549 }
6550 return false;
6551 }
6552
6553 /*
6554 * Return 1 if L1 wants to intercept an exit from L2. Only call this when in
6555 * is_guest_mode (L2).
6556 */
nested_vmx_l1_wants_exit(struct kvm_vcpu * vcpu,union vmx_exit_reason exit_reason)6557 static bool nested_vmx_l1_wants_exit(struct kvm_vcpu *vcpu,
6558 union vmx_exit_reason exit_reason)
6559 {
6560 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6561 u32 intr_info;
6562
6563 switch ((u16)exit_reason.basic) {
6564 case EXIT_REASON_EXCEPTION_NMI:
6565 intr_info = vmx_get_intr_info(vcpu);
6566 if (is_nmi(intr_info))
6567 return true;
6568 else if (is_page_fault(intr_info))
6569 return true;
6570 return vmcs12->exception_bitmap &
6571 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
6572 case EXIT_REASON_EXTERNAL_INTERRUPT:
6573 return nested_exit_on_intr(vcpu);
6574 case EXIT_REASON_TRIPLE_FAULT:
6575 return true;
6576 case EXIT_REASON_INTERRUPT_WINDOW:
6577 return nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING);
6578 case EXIT_REASON_NMI_WINDOW:
6579 return nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING);
6580 case EXIT_REASON_TASK_SWITCH:
6581 return true;
6582 case EXIT_REASON_CPUID:
6583 return true;
6584 case EXIT_REASON_HLT:
6585 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
6586 case EXIT_REASON_INVD:
6587 return true;
6588 case EXIT_REASON_INVLPG:
6589 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
6590 case EXIT_REASON_RDPMC:
6591 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
6592 case EXIT_REASON_RDRAND:
6593 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
6594 case EXIT_REASON_RDSEED:
6595 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
6596 case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
6597 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
6598 case EXIT_REASON_VMREAD:
6599 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
6600 vmcs12->vmread_bitmap);
6601 case EXIT_REASON_VMWRITE:
6602 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
6603 vmcs12->vmwrite_bitmap);
6604 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
6605 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
6606 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
6607 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
6608 case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
6609 /*
6610 * VMX instructions trap unconditionally. This allows L1 to
6611 * emulate them for its L2 guest, i.e., allows 3-level nesting!
6612 */
6613 return true;
6614 case EXIT_REASON_CR_ACCESS:
6615 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
6616 case EXIT_REASON_DR_ACCESS:
6617 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
6618 case EXIT_REASON_IO_INSTRUCTION:
6619 return nested_vmx_exit_handled_io(vcpu, vmcs12);
6620 case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
6621 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
6622 case EXIT_REASON_MSR_READ:
6623 case EXIT_REASON_MSR_WRITE:
6624 case EXIT_REASON_MSR_READ_IMM:
6625 case EXIT_REASON_MSR_WRITE_IMM:
6626 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
6627 case EXIT_REASON_INVALID_STATE:
6628 return true;
6629 case EXIT_REASON_MWAIT_INSTRUCTION:
6630 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
6631 case EXIT_REASON_MONITOR_TRAP_FLAG:
6632 return nested_vmx_exit_handled_mtf(vmcs12);
6633 case EXIT_REASON_MONITOR_INSTRUCTION:
6634 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
6635 case EXIT_REASON_PAUSE_INSTRUCTION:
6636 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
6637 nested_cpu_has2(vmcs12,
6638 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
6639 case EXIT_REASON_MCE_DURING_VMENTRY:
6640 return true;
6641 case EXIT_REASON_TPR_BELOW_THRESHOLD:
6642 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
6643 case EXIT_REASON_APIC_ACCESS:
6644 case EXIT_REASON_APIC_WRITE:
6645 case EXIT_REASON_EOI_INDUCED:
6646 /*
6647 * The controls for "virtualize APIC accesses," "APIC-
6648 * register virtualization," and "virtual-interrupt
6649 * delivery" only come from vmcs12.
6650 */
6651 return true;
6652 case EXIT_REASON_INVPCID:
6653 return
6654 nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
6655 nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
6656 case EXIT_REASON_WBINVD:
6657 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
6658 case EXIT_REASON_XSETBV:
6659 return true;
6660 case EXIT_REASON_XSAVES:
6661 case EXIT_REASON_XRSTORS:
6662 /*
6663 * Always forward XSAVES/XRSTORS to L1 as KVM doesn't utilize
6664 * XSS-bitmap, and always loads vmcs02 with vmcs12's XSS-bitmap
6665 * verbatim, i.e. any exit is due to L1's bitmap. WARN if
6666 * XSAVES isn't enabled, as the CPU is supposed to inject #UD
6667 * in that case, before consulting the XSS-bitmap.
6668 */
6669 WARN_ON_ONCE(!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_XSAVES));
6670 return true;
6671 case EXIT_REASON_UMWAIT:
6672 case EXIT_REASON_TPAUSE:
6673 return nested_cpu_has2(vmcs12,
6674 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE);
6675 case EXIT_REASON_ENCLS:
6676 return nested_vmx_exit_handled_encls(vcpu, vmcs12);
6677 case EXIT_REASON_NOTIFY:
6678 /* Notify VM exit is not exposed to L1 */
6679 return false;
6680 case EXIT_REASON_SEAMCALL:
6681 case EXIT_REASON_TDCALL:
6682 /*
6683 * SEAMCALL and TDCALL unconditionally VM-Exit, but aren't
6684 * virtualized by KVM for L1 hypervisors, i.e. L1 should
6685 * never want or expect such an exit.
6686 */
6687 return false;
6688 default:
6689 return true;
6690 }
6691 }
6692
6693 /*
6694 * Conditionally reflect a VM-Exit into L1. Returns %true if the VM-Exit was
6695 * reflected into L1.
6696 */
nested_vmx_reflect_vmexit(struct kvm_vcpu * vcpu)6697 bool nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu)
6698 {
6699 struct vcpu_vmx *vmx = to_vmx(vcpu);
6700 union vmx_exit_reason exit_reason = vmx->vt.exit_reason;
6701 unsigned long exit_qual;
6702 u32 exit_intr_info;
6703
6704 WARN_ON_ONCE(vmx->nested.nested_run_pending);
6705
6706 /*
6707 * Late nested VM-Fail shares the same flow as nested VM-Exit since KVM
6708 * has already loaded L2's state.
6709 */
6710 if (unlikely(vmx->fail)) {
6711 trace_kvm_nested_vmenter_failed(
6712 "hardware VM-instruction error: ",
6713 vmcs_read32(VM_INSTRUCTION_ERROR));
6714 exit_intr_info = 0;
6715 exit_qual = 0;
6716 goto reflect_vmexit;
6717 }
6718
6719 trace_kvm_nested_vmexit(vcpu, KVM_ISA_VMX);
6720
6721 /* If L0 (KVM) wants the exit, it trumps L1's desires. */
6722 if (nested_vmx_l0_wants_exit(vcpu, exit_reason))
6723 return false;
6724
6725 /* If L1 doesn't want the exit, handle it in L0. */
6726 if (!nested_vmx_l1_wants_exit(vcpu, exit_reason))
6727 return false;
6728
6729 /*
6730 * vmcs.VM_EXIT_INTR_INFO is only valid for EXCEPTION_NMI exits. For
6731 * EXTERNAL_INTERRUPT, the value for vmcs12->vm_exit_intr_info would
6732 * need to be synthesized by querying the in-kernel LAPIC, but external
6733 * interrupts are never reflected to L1 so it's a non-issue.
6734 */
6735 exit_intr_info = vmx_get_intr_info(vcpu);
6736 if (is_exception_with_error_code(exit_intr_info)) {
6737 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6738
6739 vmcs12->vm_exit_intr_error_code =
6740 vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6741 }
6742 exit_qual = vmx_get_exit_qual(vcpu);
6743
6744 reflect_vmexit:
6745 nested_vmx_vmexit(vcpu, exit_reason.full, exit_intr_info, exit_qual);
6746 return true;
6747 }
6748
vmx_get_nested_state(struct kvm_vcpu * vcpu,struct kvm_nested_state __user * user_kvm_nested_state,u32 user_data_size)6749 static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
6750 struct kvm_nested_state __user *user_kvm_nested_state,
6751 u32 user_data_size)
6752 {
6753 struct vcpu_vmx *vmx;
6754 struct vmcs12 *vmcs12;
6755 struct kvm_nested_state kvm_state = {
6756 .flags = 0,
6757 .format = KVM_STATE_NESTED_FORMAT_VMX,
6758 .size = sizeof(kvm_state),
6759 .hdr.vmx.flags = 0,
6760 .hdr.vmx.vmxon_pa = INVALID_GPA,
6761 .hdr.vmx.vmcs12_pa = INVALID_GPA,
6762 .hdr.vmx.preemption_timer_deadline = 0,
6763 };
6764 struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6765 &user_kvm_nested_state->data.vmx[0];
6766
6767 if (!vcpu)
6768 return kvm_state.size + sizeof(*user_vmx_nested_state);
6769
6770 vmx = to_vmx(vcpu);
6771 vmcs12 = get_vmcs12(vcpu);
6772
6773 if (guest_cpu_cap_has(vcpu, X86_FEATURE_VMX) &&
6774 (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
6775 kvm_state.hdr.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
6776 kvm_state.hdr.vmx.vmcs12_pa = vmx->nested.current_vmptr;
6777
6778 if (vmx_has_valid_vmcs12(vcpu)) {
6779 kvm_state.size += sizeof(user_vmx_nested_state->vmcs12);
6780
6781 /* 'hv_evmcs_vmptr' can also be EVMPTR_MAP_PENDING here */
6782 if (nested_vmx_is_evmptr12_set(vmx))
6783 kvm_state.flags |= KVM_STATE_NESTED_EVMCS;
6784
6785 if (is_guest_mode(vcpu) &&
6786 nested_cpu_has_shadow_vmcs(vmcs12) &&
6787 vmcs12->vmcs_link_pointer != INVALID_GPA)
6788 kvm_state.size += sizeof(user_vmx_nested_state->shadow_vmcs12);
6789 }
6790
6791 if (vmx->nested.smm.vmxon)
6792 kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
6793
6794 if (vmx->nested.smm.guest_mode)
6795 kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
6796
6797 if (is_guest_mode(vcpu)) {
6798 kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
6799
6800 if (vmx->nested.nested_run_pending)
6801 kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
6802
6803 if (vmx->nested.mtf_pending)
6804 kvm_state.flags |= KVM_STATE_NESTED_MTF_PENDING;
6805
6806 if (nested_cpu_has_preemption_timer(vmcs12) &&
6807 vmx->nested.has_preemption_timer_deadline) {
6808 kvm_state.hdr.vmx.flags |=
6809 KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE;
6810 kvm_state.hdr.vmx.preemption_timer_deadline =
6811 vmx->nested.preemption_timer_deadline;
6812 }
6813 }
6814 }
6815
6816 if (user_data_size < kvm_state.size)
6817 goto out;
6818
6819 if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
6820 return -EFAULT;
6821
6822 if (!vmx_has_valid_vmcs12(vcpu))
6823 goto out;
6824
6825 /*
6826 * When running L2, the authoritative vmcs12 state is in the
6827 * vmcs02. When running L1, the authoritative vmcs12 state is
6828 * in the shadow or enlightened vmcs linked to vmcs01, unless
6829 * need_vmcs12_to_shadow_sync is set, in which case, the authoritative
6830 * vmcs12 state is in the vmcs12 already.
6831 */
6832 if (is_guest_mode(vcpu)) {
6833 sync_vmcs02_to_vmcs12(vcpu, vmcs12);
6834 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
6835 } else {
6836 copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
6837 if (!vmx->nested.need_vmcs12_to_shadow_sync) {
6838 if (nested_vmx_is_evmptr12_valid(vmx))
6839 /*
6840 * L1 hypervisor is not obliged to keep eVMCS
6841 * clean fields data always up-to-date while
6842 * not in guest mode, 'hv_clean_fields' is only
6843 * supposed to be actual upon vmentry so we need
6844 * to ignore it here and do full copy.
6845 */
6846 copy_enlightened_to_vmcs12(vmx, 0);
6847 else if (enable_shadow_vmcs)
6848 copy_shadow_to_vmcs12(vmx);
6849 }
6850 }
6851
6852 BUILD_BUG_ON(sizeof(user_vmx_nested_state->vmcs12) < VMCS12_SIZE);
6853 BUILD_BUG_ON(sizeof(user_vmx_nested_state->shadow_vmcs12) < VMCS12_SIZE);
6854
6855 /*
6856 * Copy over the full allocated size of vmcs12 rather than just the size
6857 * of the struct.
6858 */
6859 if (copy_to_user(user_vmx_nested_state->vmcs12, vmcs12, VMCS12_SIZE))
6860 return -EFAULT;
6861
6862 if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6863 vmcs12->vmcs_link_pointer != INVALID_GPA) {
6864 if (copy_to_user(user_vmx_nested_state->shadow_vmcs12,
6865 get_shadow_vmcs12(vcpu), VMCS12_SIZE))
6866 return -EFAULT;
6867 }
6868 out:
6869 return kvm_state.size;
6870 }
6871
vmx_leave_nested(struct kvm_vcpu * vcpu)6872 void vmx_leave_nested(struct kvm_vcpu *vcpu)
6873 {
6874 if (is_guest_mode(vcpu)) {
6875 to_vmx(vcpu)->nested.nested_run_pending = 0;
6876 nested_vmx_vmexit(vcpu, -1, 0, 0);
6877 }
6878 free_nested(vcpu);
6879 }
6880
vmx_set_nested_state(struct kvm_vcpu * vcpu,struct kvm_nested_state __user * user_kvm_nested_state,struct kvm_nested_state * kvm_state)6881 static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
6882 struct kvm_nested_state __user *user_kvm_nested_state,
6883 struct kvm_nested_state *kvm_state)
6884 {
6885 struct vcpu_vmx *vmx = to_vmx(vcpu);
6886 struct vmcs12 *vmcs12;
6887 enum vm_entry_failure_code ignored;
6888 struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6889 &user_kvm_nested_state->data.vmx[0];
6890 int ret;
6891
6892 if (kvm_state->format != KVM_STATE_NESTED_FORMAT_VMX)
6893 return -EINVAL;
6894
6895 if (kvm_state->hdr.vmx.vmxon_pa == INVALID_GPA) {
6896 if (kvm_state->hdr.vmx.smm.flags)
6897 return -EINVAL;
6898
6899 if (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA)
6900 return -EINVAL;
6901
6902 /*
6903 * KVM_STATE_NESTED_EVMCS used to signal that KVM should
6904 * enable eVMCS capability on vCPU. However, since then
6905 * code was changed such that flag signals vmcs12 should
6906 * be copied into eVMCS in guest memory.
6907 *
6908 * To preserve backwards compatibility, allow user
6909 * to set this flag even when there is no VMXON region.
6910 */
6911 if (kvm_state->flags & ~KVM_STATE_NESTED_EVMCS)
6912 return -EINVAL;
6913 } else {
6914 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_VMX))
6915 return -EINVAL;
6916
6917 if (!page_address_valid(vcpu, kvm_state->hdr.vmx.vmxon_pa))
6918 return -EINVAL;
6919 }
6920
6921 if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6922 (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6923 return -EINVAL;
6924
6925 if (kvm_state->hdr.vmx.smm.flags &
6926 ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
6927 return -EINVAL;
6928
6929 if (kvm_state->hdr.vmx.flags & ~KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE)
6930 return -EINVAL;
6931
6932 /*
6933 * SMM temporarily disables VMX, so we cannot be in guest mode,
6934 * nor can VMLAUNCH/VMRESUME be pending. Outside SMM, SMM flags
6935 * must be zero.
6936 */
6937 if (is_smm(vcpu) ?
6938 (kvm_state->flags &
6939 (KVM_STATE_NESTED_GUEST_MODE | KVM_STATE_NESTED_RUN_PENDING))
6940 : kvm_state->hdr.vmx.smm.flags)
6941 return -EINVAL;
6942
6943 if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6944 !(kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
6945 return -EINVAL;
6946
6947 if ((kvm_state->flags & KVM_STATE_NESTED_EVMCS) &&
6948 (!guest_cpu_cap_has(vcpu, X86_FEATURE_VMX) ||
6949 !vmx->nested.enlightened_vmcs_enabled))
6950 return -EINVAL;
6951
6952 vmx_leave_nested(vcpu);
6953
6954 if (kvm_state->hdr.vmx.vmxon_pa == INVALID_GPA)
6955 return 0;
6956
6957 vmx->nested.vmxon_ptr = kvm_state->hdr.vmx.vmxon_pa;
6958 ret = enter_vmx_operation(vcpu);
6959 if (ret)
6960 return ret;
6961
6962 /* Empty 'VMXON' state is permitted if no VMCS loaded */
6963 if (kvm_state->size < sizeof(*kvm_state) + sizeof(*vmcs12)) {
6964 /* See vmx_has_valid_vmcs12. */
6965 if ((kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE) ||
6966 (kvm_state->flags & KVM_STATE_NESTED_EVMCS) ||
6967 (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA))
6968 return -EINVAL;
6969 else
6970 return 0;
6971 }
6972
6973 if (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA) {
6974 if (kvm_state->hdr.vmx.vmcs12_pa == kvm_state->hdr.vmx.vmxon_pa ||
6975 !page_address_valid(vcpu, kvm_state->hdr.vmx.vmcs12_pa))
6976 return -EINVAL;
6977
6978 set_current_vmptr(vmx, kvm_state->hdr.vmx.vmcs12_pa);
6979 #ifdef CONFIG_KVM_HYPERV
6980 } else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
6981 /*
6982 * nested_vmx_handle_enlightened_vmptrld() cannot be called
6983 * directly from here as HV_X64_MSR_VP_ASSIST_PAGE may not be
6984 * restored yet. EVMCS will be mapped from
6985 * nested_get_vmcs12_pages().
6986 */
6987 vmx->nested.hv_evmcs_vmptr = EVMPTR_MAP_PENDING;
6988 kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
6989 #endif
6990 } else {
6991 return -EINVAL;
6992 }
6993
6994 if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
6995 vmx->nested.smm.vmxon = true;
6996 vmx->nested.vmxon = false;
6997
6998 if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
6999 vmx->nested.smm.guest_mode = true;
7000 }
7001
7002 vmcs12 = get_vmcs12(vcpu);
7003 if (copy_from_user(vmcs12, user_vmx_nested_state->vmcs12, sizeof(*vmcs12)))
7004 return -EFAULT;
7005
7006 if (vmcs12->hdr.revision_id != VMCS12_REVISION)
7007 return -EINVAL;
7008
7009 if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
7010 return 0;
7011
7012 vmx->nested.nested_run_pending =
7013 !!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
7014
7015 vmx->nested.mtf_pending =
7016 !!(kvm_state->flags & KVM_STATE_NESTED_MTF_PENDING);
7017
7018 ret = -EINVAL;
7019 if (nested_cpu_has_shadow_vmcs(vmcs12) &&
7020 vmcs12->vmcs_link_pointer != INVALID_GPA) {
7021 struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
7022
7023 if (kvm_state->size <
7024 sizeof(*kvm_state) +
7025 sizeof(user_vmx_nested_state->vmcs12) + sizeof(*shadow_vmcs12))
7026 goto error_guest_mode;
7027
7028 if (copy_from_user(shadow_vmcs12,
7029 user_vmx_nested_state->shadow_vmcs12,
7030 sizeof(*shadow_vmcs12))) {
7031 ret = -EFAULT;
7032 goto error_guest_mode;
7033 }
7034
7035 if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
7036 !shadow_vmcs12->hdr.shadow_vmcs)
7037 goto error_guest_mode;
7038 }
7039
7040 vmx->nested.has_preemption_timer_deadline = false;
7041 if (kvm_state->hdr.vmx.flags & KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE) {
7042 vmx->nested.has_preemption_timer_deadline = true;
7043 vmx->nested.preemption_timer_deadline =
7044 kvm_state->hdr.vmx.preemption_timer_deadline;
7045 }
7046
7047 if (nested_vmx_check_controls(vcpu, vmcs12) ||
7048 nested_vmx_check_host_state(vcpu, vmcs12) ||
7049 nested_vmx_check_guest_state(vcpu, vmcs12, &ignored))
7050 goto error_guest_mode;
7051
7052 vmx->nested.dirty_vmcs12 = true;
7053 vmx->nested.force_msr_bitmap_recalc = true;
7054 ret = nested_vmx_enter_non_root_mode(vcpu, false);
7055 if (ret)
7056 goto error_guest_mode;
7057
7058 if (vmx->nested.mtf_pending)
7059 kvm_make_request(KVM_REQ_EVENT, vcpu);
7060
7061 return 0;
7062
7063 error_guest_mode:
7064 vmx->nested.nested_run_pending = 0;
7065 return ret;
7066 }
7067
nested_vmx_set_vmcs_shadowing_bitmap(void)7068 void nested_vmx_set_vmcs_shadowing_bitmap(void)
7069 {
7070 if (enable_shadow_vmcs) {
7071 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
7072 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
7073 }
7074 }
7075
7076 /*
7077 * Indexing into the vmcs12 uses the VMCS encoding rotated left by 6. Undo
7078 * that madness to get the encoding for comparison.
7079 */
7080 #define VMCS12_IDX_TO_ENC(idx) ((u16)(((u16)(idx) >> 6) | ((u16)(idx) << 10)))
7081
nested_vmx_calc_vmcs_enum_msr(void)7082 static u64 nested_vmx_calc_vmcs_enum_msr(void)
7083 {
7084 /*
7085 * Note these are the so called "index" of the VMCS field encoding, not
7086 * the index into vmcs12.
7087 */
7088 unsigned int max_idx, idx;
7089 int i;
7090
7091 /*
7092 * For better or worse, KVM allows VMREAD/VMWRITE to all fields in
7093 * vmcs12, regardless of whether or not the associated feature is
7094 * exposed to L1. Simply find the field with the highest index.
7095 */
7096 max_idx = 0;
7097 for (i = 0; i < nr_vmcs12_fields; i++) {
7098 /* The vmcs12 table is very, very sparsely populated. */
7099 if (!vmcs12_field_offsets[i])
7100 continue;
7101
7102 idx = vmcs_field_index(VMCS12_IDX_TO_ENC(i));
7103 if (idx > max_idx)
7104 max_idx = idx;
7105 }
7106
7107 return (u64)max_idx << VMCS_FIELD_INDEX_SHIFT;
7108 }
7109
nested_vmx_setup_pinbased_ctls(struct vmcs_config * vmcs_conf,struct nested_vmx_msrs * msrs)7110 static void nested_vmx_setup_pinbased_ctls(struct vmcs_config *vmcs_conf,
7111 struct nested_vmx_msrs *msrs)
7112 {
7113 msrs->pinbased_ctls_low =
7114 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
7115
7116 msrs->pinbased_ctls_high = vmcs_conf->pin_based_exec_ctrl;
7117 msrs->pinbased_ctls_high &=
7118 PIN_BASED_EXT_INTR_MASK |
7119 PIN_BASED_NMI_EXITING |
7120 PIN_BASED_VIRTUAL_NMIS |
7121 (enable_apicv ? PIN_BASED_POSTED_INTR : 0);
7122 msrs->pinbased_ctls_high |=
7123 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
7124 PIN_BASED_VMX_PREEMPTION_TIMER;
7125 }
7126
nested_vmx_setup_exit_ctls(struct vmcs_config * vmcs_conf,struct nested_vmx_msrs * msrs)7127 static void nested_vmx_setup_exit_ctls(struct vmcs_config *vmcs_conf,
7128 struct nested_vmx_msrs *msrs)
7129 {
7130 msrs->exit_ctls_low =
7131 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
7132
7133 msrs->exit_ctls_high = vmcs_conf->vmexit_ctrl;
7134 msrs->exit_ctls_high &=
7135 #ifdef CONFIG_X86_64
7136 VM_EXIT_HOST_ADDR_SPACE_SIZE |
7137 #endif
7138 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT |
7139 VM_EXIT_CLEAR_BNDCFGS | VM_EXIT_LOAD_CET_STATE;
7140 msrs->exit_ctls_high |=
7141 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
7142 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
7143 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT |
7144 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
7145
7146 if (!kvm_cpu_cap_has(X86_FEATURE_SHSTK) &&
7147 !kvm_cpu_cap_has(X86_FEATURE_IBT))
7148 msrs->exit_ctls_high &= ~VM_EXIT_LOAD_CET_STATE;
7149
7150 /* We support free control of debug control saving. */
7151 msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
7152 }
7153
nested_vmx_setup_entry_ctls(struct vmcs_config * vmcs_conf,struct nested_vmx_msrs * msrs)7154 static void nested_vmx_setup_entry_ctls(struct vmcs_config *vmcs_conf,
7155 struct nested_vmx_msrs *msrs)
7156 {
7157 msrs->entry_ctls_low =
7158 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
7159
7160 msrs->entry_ctls_high = vmcs_conf->vmentry_ctrl;
7161 msrs->entry_ctls_high &=
7162 #ifdef CONFIG_X86_64
7163 VM_ENTRY_IA32E_MODE |
7164 #endif
7165 VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS |
7166 VM_ENTRY_LOAD_CET_STATE;
7167 msrs->entry_ctls_high |=
7168 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER |
7169 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL);
7170
7171 if (!kvm_cpu_cap_has(X86_FEATURE_SHSTK) &&
7172 !kvm_cpu_cap_has(X86_FEATURE_IBT))
7173 msrs->entry_ctls_high &= ~VM_ENTRY_LOAD_CET_STATE;
7174
7175 /* We support free control of debug control loading. */
7176 msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
7177 }
7178
nested_vmx_setup_cpubased_ctls(struct vmcs_config * vmcs_conf,struct nested_vmx_msrs * msrs)7179 static void nested_vmx_setup_cpubased_ctls(struct vmcs_config *vmcs_conf,
7180 struct nested_vmx_msrs *msrs)
7181 {
7182 msrs->procbased_ctls_low =
7183 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
7184
7185 msrs->procbased_ctls_high = vmcs_conf->cpu_based_exec_ctrl;
7186 msrs->procbased_ctls_high &=
7187 CPU_BASED_INTR_WINDOW_EXITING |
7188 CPU_BASED_NMI_WINDOW_EXITING | CPU_BASED_USE_TSC_OFFSETTING |
7189 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
7190 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
7191 CPU_BASED_CR3_STORE_EXITING |
7192 #ifdef CONFIG_X86_64
7193 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
7194 #endif
7195 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
7196 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
7197 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
7198 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
7199 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
7200 /*
7201 * We can allow some features even when not supported by the
7202 * hardware. For example, L1 can specify an MSR bitmap - and we
7203 * can use it to avoid exits to L1 - even when L0 runs L2
7204 * without MSR bitmaps.
7205 */
7206 msrs->procbased_ctls_high |=
7207 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
7208 CPU_BASED_USE_MSR_BITMAPS;
7209
7210 /* We support free control of CR3 access interception. */
7211 msrs->procbased_ctls_low &=
7212 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
7213 }
7214
nested_vmx_setup_secondary_ctls(u32 ept_caps,struct vmcs_config * vmcs_conf,struct nested_vmx_msrs * msrs)7215 static void nested_vmx_setup_secondary_ctls(u32 ept_caps,
7216 struct vmcs_config *vmcs_conf,
7217 struct nested_vmx_msrs *msrs)
7218 {
7219 msrs->secondary_ctls_low = 0;
7220
7221 msrs->secondary_ctls_high = vmcs_conf->cpu_based_2nd_exec_ctrl;
7222 msrs->secondary_ctls_high &=
7223 SECONDARY_EXEC_DESC |
7224 SECONDARY_EXEC_ENABLE_RDTSCP |
7225 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
7226 SECONDARY_EXEC_WBINVD_EXITING |
7227 SECONDARY_EXEC_APIC_REGISTER_VIRT |
7228 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
7229 SECONDARY_EXEC_RDRAND_EXITING |
7230 SECONDARY_EXEC_ENABLE_INVPCID |
7231 SECONDARY_EXEC_ENABLE_VMFUNC |
7232 SECONDARY_EXEC_RDSEED_EXITING |
7233 SECONDARY_EXEC_ENABLE_XSAVES |
7234 SECONDARY_EXEC_TSC_SCALING |
7235 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
7236
7237 /*
7238 * We can emulate "VMCS shadowing," even if the hardware
7239 * doesn't support it.
7240 */
7241 msrs->secondary_ctls_high |=
7242 SECONDARY_EXEC_SHADOW_VMCS;
7243
7244 if (enable_ept) {
7245 /* nested EPT: emulate EPT also to L1 */
7246 msrs->secondary_ctls_high |=
7247 SECONDARY_EXEC_ENABLE_EPT;
7248 msrs->ept_caps =
7249 VMX_EPT_PAGE_WALK_4_BIT |
7250 VMX_EPT_PAGE_WALK_5_BIT |
7251 VMX_EPTP_WB_BIT |
7252 VMX_EPT_INVEPT_BIT |
7253 VMX_EPT_EXECUTE_ONLY_BIT;
7254
7255 msrs->ept_caps &= ept_caps;
7256 msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
7257 VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
7258 VMX_EPT_1GB_PAGE_BIT;
7259 if (enable_ept_ad_bits) {
7260 msrs->secondary_ctls_high |=
7261 SECONDARY_EXEC_ENABLE_PML;
7262 msrs->ept_caps |= VMX_EPT_AD_BIT;
7263 }
7264
7265 /*
7266 * Advertise EPTP switching irrespective of hardware support,
7267 * KVM emulates it in software so long as VMFUNC is supported.
7268 */
7269 if (cpu_has_vmx_vmfunc())
7270 msrs->vmfunc_controls = VMX_VMFUNC_EPTP_SWITCHING;
7271 }
7272
7273 /*
7274 * Old versions of KVM use the single-context version without
7275 * checking for support, so declare that it is supported even
7276 * though it is treated as global context. The alternative is
7277 * not failing the single-context invvpid, and it is worse.
7278 */
7279 if (enable_vpid) {
7280 msrs->secondary_ctls_high |=
7281 SECONDARY_EXEC_ENABLE_VPID;
7282 msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
7283 VMX_VPID_EXTENT_SUPPORTED_MASK;
7284 }
7285
7286 if (enable_unrestricted_guest)
7287 msrs->secondary_ctls_high |=
7288 SECONDARY_EXEC_UNRESTRICTED_GUEST;
7289
7290 if (flexpriority_enabled)
7291 msrs->secondary_ctls_high |=
7292 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7293
7294 if (enable_sgx)
7295 msrs->secondary_ctls_high |= SECONDARY_EXEC_ENCLS_EXITING;
7296 }
7297
nested_vmx_setup_misc_data(struct vmcs_config * vmcs_conf,struct nested_vmx_msrs * msrs)7298 static void nested_vmx_setup_misc_data(struct vmcs_config *vmcs_conf,
7299 struct nested_vmx_msrs *msrs)
7300 {
7301 msrs->misc_low = (u32)vmcs_conf->misc & VMX_MISC_SAVE_EFER_LMA;
7302 msrs->misc_low |=
7303 VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
7304 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
7305 VMX_MISC_ACTIVITY_HLT |
7306 VMX_MISC_ACTIVITY_WAIT_SIPI;
7307 msrs->misc_high = 0;
7308 }
7309
nested_vmx_setup_basic(struct nested_vmx_msrs * msrs)7310 static void nested_vmx_setup_basic(struct nested_vmx_msrs *msrs)
7311 {
7312 /*
7313 * This MSR reports some information about VMX support. We
7314 * should return information about the VMX we emulate for the
7315 * guest, and the VMCS structure we give it - not about the
7316 * VMX support of the underlying hardware.
7317 */
7318 msrs->basic = vmx_basic_encode_vmcs_info(VMCS12_REVISION, VMCS12_SIZE,
7319 X86_MEMTYPE_WB);
7320
7321 msrs->basic |= VMX_BASIC_TRUE_CTLS;
7322 if (cpu_has_vmx_basic_inout())
7323 msrs->basic |= VMX_BASIC_INOUT;
7324 if (cpu_has_vmx_basic_no_hw_errcode_cc())
7325 msrs->basic |= VMX_BASIC_NO_HW_ERROR_CODE_CC;
7326 }
7327
nested_vmx_setup_cr_fixed(struct nested_vmx_msrs * msrs)7328 static void nested_vmx_setup_cr_fixed(struct nested_vmx_msrs *msrs)
7329 {
7330 /*
7331 * These MSRs specify bits which the guest must keep fixed on
7332 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
7333 * We picked the standard core2 setting.
7334 */
7335 #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
7336 #define VMXON_CR4_ALWAYSON X86_CR4_VMXE
7337 msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
7338 msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
7339
7340 /* These MSRs specify bits which the guest must keep fixed off. */
7341 rdmsrq(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
7342 rdmsrq(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
7343
7344 if (vmx_umip_emulated())
7345 msrs->cr4_fixed1 |= X86_CR4_UMIP;
7346 }
7347
7348 /*
7349 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
7350 * returned for the various VMX controls MSRs when nested VMX is enabled.
7351 * The same values should also be used to verify that vmcs12 control fields are
7352 * valid during nested entry from L1 to L2.
7353 * Each of these control msrs has a low and high 32-bit half: A low bit is on
7354 * if the corresponding bit in the (32-bit) control field *must* be on, and a
7355 * bit in the high half is on if the corresponding bit in the control field
7356 * may be on. See also vmx_control_verify().
7357 */
nested_vmx_setup_ctls_msrs(struct vmcs_config * vmcs_conf,u32 ept_caps)7358 void nested_vmx_setup_ctls_msrs(struct vmcs_config *vmcs_conf, u32 ept_caps)
7359 {
7360 struct nested_vmx_msrs *msrs = &vmcs_conf->nested;
7361
7362 /*
7363 * Note that as a general rule, the high half of the MSRs (bits in
7364 * the control fields which may be 1) should be initialized by the
7365 * intersection of the underlying hardware's MSR (i.e., features which
7366 * can be supported) and the list of features we want to expose -
7367 * because they are known to be properly supported in our code.
7368 * Also, usually, the low half of the MSRs (bits which must be 1) can
7369 * be set to 0, meaning that L1 may turn off any of these bits. The
7370 * reason is that if one of these bits is necessary, it will appear
7371 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
7372 * fields of vmcs01 and vmcs02, will turn these bits off - and
7373 * nested_vmx_l1_wants_exit() will not pass related exits to L1.
7374 * These rules have exceptions below.
7375 */
7376 nested_vmx_setup_pinbased_ctls(vmcs_conf, msrs);
7377
7378 nested_vmx_setup_exit_ctls(vmcs_conf, msrs);
7379
7380 nested_vmx_setup_entry_ctls(vmcs_conf, msrs);
7381
7382 nested_vmx_setup_cpubased_ctls(vmcs_conf, msrs);
7383
7384 nested_vmx_setup_secondary_ctls(ept_caps, vmcs_conf, msrs);
7385
7386 nested_vmx_setup_misc_data(vmcs_conf, msrs);
7387
7388 nested_vmx_setup_basic(msrs);
7389
7390 nested_vmx_setup_cr_fixed(msrs);
7391
7392 msrs->vmcs_enum = nested_vmx_calc_vmcs_enum_msr();
7393 }
7394
nested_vmx_hardware_unsetup(void)7395 void nested_vmx_hardware_unsetup(void)
7396 {
7397 int i;
7398
7399 if (enable_shadow_vmcs) {
7400 for (i = 0; i < VMX_BITMAP_NR; i++)
7401 free_page((unsigned long)vmx_bitmap[i]);
7402 }
7403 }
7404
nested_vmx_hardware_setup(int (* exit_handlers[])(struct kvm_vcpu *))7405 __init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *))
7406 {
7407 int i;
7408
7409 if (!cpu_has_vmx_shadow_vmcs())
7410 enable_shadow_vmcs = 0;
7411 if (enable_shadow_vmcs) {
7412 for (i = 0; i < VMX_BITMAP_NR; i++) {
7413 /*
7414 * The vmx_bitmap is not tied to a VM and so should
7415 * not be charged to a memcg.
7416 */
7417 vmx_bitmap[i] = (unsigned long *)
7418 __get_free_page(GFP_KERNEL);
7419 if (!vmx_bitmap[i]) {
7420 nested_vmx_hardware_unsetup();
7421 return -ENOMEM;
7422 }
7423 }
7424
7425 init_vmcs_shadow_fields();
7426 }
7427
7428 exit_handlers[EXIT_REASON_VMCLEAR] = handle_vmclear;
7429 exit_handlers[EXIT_REASON_VMLAUNCH] = handle_vmlaunch;
7430 exit_handlers[EXIT_REASON_VMPTRLD] = handle_vmptrld;
7431 exit_handlers[EXIT_REASON_VMPTRST] = handle_vmptrst;
7432 exit_handlers[EXIT_REASON_VMREAD] = handle_vmread;
7433 exit_handlers[EXIT_REASON_VMRESUME] = handle_vmresume;
7434 exit_handlers[EXIT_REASON_VMWRITE] = handle_vmwrite;
7435 exit_handlers[EXIT_REASON_VMOFF] = handle_vmxoff;
7436 exit_handlers[EXIT_REASON_VMON] = handle_vmxon;
7437 exit_handlers[EXIT_REASON_INVEPT] = handle_invept;
7438 exit_handlers[EXIT_REASON_INVVPID] = handle_invvpid;
7439 exit_handlers[EXIT_REASON_VMFUNC] = handle_vmfunc;
7440
7441 return 0;
7442 }
7443
7444 struct kvm_x86_nested_ops vmx_nested_ops = {
7445 .leave_nested = vmx_leave_nested,
7446 .is_exception_vmexit = nested_vmx_is_exception_vmexit,
7447 .check_events = vmx_check_nested_events,
7448 .has_events = vmx_has_nested_events,
7449 .triple_fault = nested_vmx_triple_fault,
7450 .get_state = vmx_get_nested_state,
7451 .set_state = vmx_set_nested_state,
7452 .get_nested_state_pages = vmx_get_nested_state_pages,
7453 .write_log_dirty = nested_vmx_write_pml_buffer,
7454 #ifdef CONFIG_KVM_HYPERV
7455 .enable_evmcs = nested_enable_evmcs,
7456 .get_evmcs_version = nested_get_evmcs_version,
7457 .hv_inject_synthetic_vmexit_post_tlb_flush = vmx_hv_inject_synthetic_vmexit_post_tlb_flush,
7458 #endif
7459 };
7460