xref: /linux/arch/x86/kvm/vmx/nested.c (revision 51d90a15fedf8366cb96ef68d0ea2d0bf15417d2)
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 
4 #include <linux/objtool.h>
5 #include <linux/percpu.h>
6 
7 #include <asm/debugreg.h>
8 #include <asm/mmu_context.h>
9 #include <asm/msr.h>
10 
11 #include "x86.h"
12 #include "cpuid.h"
13 #include "hyperv.h"
14 #include "mmu.h"
15 #include "nested.h"
16 #include "pmu.h"
17 #include "posted_intr.h"
18 #include "sgx.h"
19 #include "trace.h"
20 #include "vmx.h"
21 #include "smm.h"
22 
23 static bool __read_mostly enable_shadow_vmcs = 1;
24 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
25 
26 static bool __ro_after_init warn_on_missed_cc;
27 module_param(warn_on_missed_cc, bool, 0444);
28 
29 #define CC KVM_NESTED_VMENTER_CONSISTENCY_CHECK
30 
31 /*
32  * Hyper-V requires all of these, so mark them as supported even though
33  * they are just treated the same as all-context.
34  */
35 #define VMX_VPID_EXTENT_SUPPORTED_MASK		\
36 	(VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT |	\
37 	VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT |	\
38 	VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT |	\
39 	VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
40 
41 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
42 
43 enum {
44 	VMX_VMREAD_BITMAP,
45 	VMX_VMWRITE_BITMAP,
46 	VMX_BITMAP_NR
47 };
48 static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
49 
50 #define vmx_vmread_bitmap                    (vmx_bitmap[VMX_VMREAD_BITMAP])
51 #define vmx_vmwrite_bitmap                   (vmx_bitmap[VMX_VMWRITE_BITMAP])
52 
53 struct shadow_vmcs_field {
54 	u16	encoding;
55 	u16	offset;
56 };
57 static struct shadow_vmcs_field shadow_read_only_fields[] = {
58 #define SHADOW_FIELD_RO(x, y) { x, offsetof(struct vmcs12, y) },
59 #include "vmcs_shadow_fields.h"
60 };
61 static int max_shadow_read_only_fields =
62 	ARRAY_SIZE(shadow_read_only_fields);
63 
64 static struct shadow_vmcs_field shadow_read_write_fields[] = {
65 #define SHADOW_FIELD_RW(x, y) { x, offsetof(struct vmcs12, y) },
66 #include "vmcs_shadow_fields.h"
67 };
68 static int max_shadow_read_write_fields =
69 	ARRAY_SIZE(shadow_read_write_fields);
70 
init_vmcs_shadow_fields(void)71 static void init_vmcs_shadow_fields(void)
72 {
73 	int i, j;
74 
75 	memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
76 	memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
77 
78 	for (i = j = 0; i < max_shadow_read_only_fields; i++) {
79 		struct shadow_vmcs_field entry = shadow_read_only_fields[i];
80 		u16 field = entry.encoding;
81 
82 		if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
83 		    (i + 1 == max_shadow_read_only_fields ||
84 		     shadow_read_only_fields[i + 1].encoding != field + 1))
85 			pr_err("Missing field from shadow_read_only_field %x\n",
86 			       field + 1);
87 
88 		clear_bit(field, vmx_vmread_bitmap);
89 		if (field & 1)
90 #ifdef CONFIG_X86_64
91 			continue;
92 #else
93 			entry.offset += sizeof(u32);
94 #endif
95 		shadow_read_only_fields[j++] = entry;
96 	}
97 	max_shadow_read_only_fields = j;
98 
99 	for (i = j = 0; i < max_shadow_read_write_fields; i++) {
100 		struct shadow_vmcs_field entry = shadow_read_write_fields[i];
101 		u16 field = entry.encoding;
102 
103 		if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
104 		    (i + 1 == max_shadow_read_write_fields ||
105 		     shadow_read_write_fields[i + 1].encoding != field + 1))
106 			pr_err("Missing field from shadow_read_write_field %x\n",
107 			       field + 1);
108 
109 		WARN_ONCE(field >= GUEST_ES_AR_BYTES &&
110 			  field <= GUEST_TR_AR_BYTES,
111 			  "Update vmcs12_write_any() to drop reserved bits from AR_BYTES");
112 
113 		/*
114 		 * PML and the preemption timer can be emulated, but the
115 		 * processor cannot vmwrite to fields that don't exist
116 		 * on bare metal.
117 		 */
118 		switch (field) {
119 		case GUEST_PML_INDEX:
120 			if (!cpu_has_vmx_pml())
121 				continue;
122 			break;
123 		case VMX_PREEMPTION_TIMER_VALUE:
124 			if (!cpu_has_vmx_preemption_timer())
125 				continue;
126 			break;
127 		case GUEST_INTR_STATUS:
128 			if (!cpu_has_vmx_apicv())
129 				continue;
130 			break;
131 		default:
132 			break;
133 		}
134 
135 		clear_bit(field, vmx_vmwrite_bitmap);
136 		clear_bit(field, vmx_vmread_bitmap);
137 		if (field & 1)
138 #ifdef CONFIG_X86_64
139 			continue;
140 #else
141 			entry.offset += sizeof(u32);
142 #endif
143 		shadow_read_write_fields[j++] = entry;
144 	}
145 	max_shadow_read_write_fields = j;
146 }
147 
148 /*
149  * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
150  * set the success or error code of an emulated VMX instruction (as specified
151  * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
152  * instruction.
153  */
nested_vmx_succeed(struct kvm_vcpu * vcpu)154 static int nested_vmx_succeed(struct kvm_vcpu *vcpu)
155 {
156 	vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
157 			& ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
158 			    X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
159 	return kvm_skip_emulated_instruction(vcpu);
160 }
161 
nested_vmx_failInvalid(struct kvm_vcpu * vcpu)162 static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
163 {
164 	vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
165 			& ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
166 			    X86_EFLAGS_SF | X86_EFLAGS_OF))
167 			| X86_EFLAGS_CF);
168 	return kvm_skip_emulated_instruction(vcpu);
169 }
170 
nested_vmx_failValid(struct kvm_vcpu * vcpu,u32 vm_instruction_error)171 static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
172 				u32 vm_instruction_error)
173 {
174 	vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
175 			& ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
176 			    X86_EFLAGS_SF | X86_EFLAGS_OF))
177 			| X86_EFLAGS_ZF);
178 	get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
179 	/*
180 	 * We don't need to force sync to shadow VMCS because
181 	 * VM_INSTRUCTION_ERROR is not shadowed. Enlightened VMCS 'shadows' all
182 	 * fields and thus must be synced.
183 	 */
184 	if (nested_vmx_is_evmptr12_set(to_vmx(vcpu)))
185 		to_vmx(vcpu)->nested.need_vmcs12_to_shadow_sync = true;
186 
187 	return kvm_skip_emulated_instruction(vcpu);
188 }
189 
nested_vmx_fail(struct kvm_vcpu * vcpu,u32 vm_instruction_error)190 static int nested_vmx_fail(struct kvm_vcpu *vcpu, u32 vm_instruction_error)
191 {
192 	struct vcpu_vmx *vmx = to_vmx(vcpu);
193 
194 	/*
195 	 * failValid writes the error number to the current VMCS, which
196 	 * can't be done if there isn't a current VMCS.
197 	 */
198 	if (vmx->nested.current_vmptr == INVALID_GPA &&
199 	    !nested_vmx_is_evmptr12_valid(vmx))
200 		return nested_vmx_failInvalid(vcpu);
201 
202 	return nested_vmx_failValid(vcpu, vm_instruction_error);
203 }
204 
nested_vmx_abort(struct kvm_vcpu * vcpu,u32 indicator)205 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
206 {
207 	/* TODO: not to reset guest simply here. */
208 	kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
209 	pr_debug_ratelimited("nested vmx abort, indicator %d\n", indicator);
210 }
211 
vmx_control_verify(u32 control,u32 low,u32 high)212 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
213 {
214 	return fixed_bits_valid(control, low, high);
215 }
216 
vmx_control_msr(u32 low,u32 high)217 static inline u64 vmx_control_msr(u32 low, u32 high)
218 {
219 	return low | ((u64)high << 32);
220 }
221 
vmx_disable_shadow_vmcs(struct vcpu_vmx * vmx)222 static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
223 {
224 	secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
225 	vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA);
226 	vmx->nested.need_vmcs12_to_shadow_sync = false;
227 }
228 
nested_release_evmcs(struct kvm_vcpu * vcpu)229 static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
230 {
231 #ifdef CONFIG_KVM_HYPERV
232 	struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
233 	struct vcpu_vmx *vmx = to_vmx(vcpu);
234 
235 	kvm_vcpu_unmap(vcpu, &vmx->nested.hv_evmcs_map);
236 	vmx->nested.hv_evmcs = NULL;
237 	vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
238 
239 	if (hv_vcpu) {
240 		hv_vcpu->nested.pa_page_gpa = INVALID_GPA;
241 		hv_vcpu->nested.vm_id = 0;
242 		hv_vcpu->nested.vp_id = 0;
243 	}
244 #endif
245 }
246 
nested_evmcs_handle_vmclear(struct kvm_vcpu * vcpu,gpa_t vmptr)247 static bool nested_evmcs_handle_vmclear(struct kvm_vcpu *vcpu, gpa_t vmptr)
248 {
249 #ifdef CONFIG_KVM_HYPERV
250 	struct vcpu_vmx *vmx = to_vmx(vcpu);
251 	/*
252 	 * When Enlightened VMEntry is enabled on the calling CPU we treat
253 	 * memory area pointer by vmptr as Enlightened VMCS (as there's no good
254 	 * way to distinguish it from VMCS12) and we must not corrupt it by
255 	 * writing to the non-existent 'launch_state' field. The area doesn't
256 	 * have to be the currently active EVMCS on the calling CPU and there's
257 	 * nothing KVM has to do to transition it from 'active' to 'non-active'
258 	 * state. It is possible that the area will stay mapped as
259 	 * vmx->nested.hv_evmcs but this shouldn't be a problem.
260 	 */
261 	if (!guest_cpu_cap_has_evmcs(vcpu) ||
262 	    !evmptr_is_valid(nested_get_evmptr(vcpu)))
263 		return false;
264 
265 	if (nested_vmx_evmcs(vmx) && vmptr == vmx->nested.hv_evmcs_vmptr)
266 		nested_release_evmcs(vcpu);
267 
268 	return true;
269 #else
270 	return false;
271 #endif
272 }
273 
vmx_sync_vmcs_host_state(struct vcpu_vmx * vmx,struct loaded_vmcs * prev)274 static void vmx_sync_vmcs_host_state(struct vcpu_vmx *vmx,
275 				     struct loaded_vmcs *prev)
276 {
277 	struct vmcs_host_state *dest, *src;
278 
279 	if (unlikely(!vmx->vt.guest_state_loaded))
280 		return;
281 
282 	src = &prev->host_state;
283 	dest = &vmx->loaded_vmcs->host_state;
284 
285 	vmx_set_host_fs_gs(dest, src->fs_sel, src->gs_sel, src->fs_base, src->gs_base);
286 	dest->ldt_sel = src->ldt_sel;
287 #ifdef CONFIG_X86_64
288 	dest->ds_sel = src->ds_sel;
289 	dest->es_sel = src->es_sel;
290 #endif
291 }
292 
vmx_switch_vmcs(struct kvm_vcpu * vcpu,struct loaded_vmcs * vmcs)293 static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
294 {
295 	struct vcpu_vmx *vmx = to_vmx(vcpu);
296 	struct loaded_vmcs *prev;
297 	int cpu;
298 
299 	if (WARN_ON_ONCE(vmx->loaded_vmcs == vmcs))
300 		return;
301 
302 	cpu = get_cpu();
303 	prev = vmx->loaded_vmcs;
304 	vmx->loaded_vmcs = vmcs;
305 	vmx_vcpu_load_vmcs(vcpu, cpu);
306 	vmx_sync_vmcs_host_state(vmx, prev);
307 	put_cpu();
308 
309 	vcpu->arch.regs_avail = ~VMX_REGS_LAZY_LOAD_SET;
310 
311 	/*
312 	 * All lazily updated registers will be reloaded from VMCS12 on both
313 	 * vmentry and vmexit.
314 	 */
315 	vcpu->arch.regs_dirty = 0;
316 }
317 
nested_put_vmcs12_pages(struct kvm_vcpu * vcpu)318 static void nested_put_vmcs12_pages(struct kvm_vcpu *vcpu)
319 {
320 	struct vcpu_vmx *vmx = to_vmx(vcpu);
321 
322 	kvm_vcpu_unmap(vcpu, &vmx->nested.apic_access_page_map);
323 	kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map);
324 	kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map);
325 	vmx->nested.pi_desc = NULL;
326 }
327 
328 /*
329  * Free whatever needs to be freed from vmx->nested when L1 goes down, or
330  * just stops using VMX.
331  */
free_nested(struct kvm_vcpu * vcpu)332 static void free_nested(struct kvm_vcpu *vcpu)
333 {
334 	struct vcpu_vmx *vmx = to_vmx(vcpu);
335 
336 	if (WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01))
337 		vmx_switch_vmcs(vcpu, &vmx->vmcs01);
338 
339 	if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
340 		return;
341 
342 	kvm_clear_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
343 
344 	vmx->nested.vmxon = false;
345 	vmx->nested.smm.vmxon = false;
346 	vmx->nested.vmxon_ptr = INVALID_GPA;
347 	free_vpid(vmx->nested.vpid02);
348 	vmx->nested.posted_intr_nv = -1;
349 	vmx->nested.current_vmptr = INVALID_GPA;
350 	if (enable_shadow_vmcs) {
351 		vmx_disable_shadow_vmcs(vmx);
352 		vmcs_clear(vmx->vmcs01.shadow_vmcs);
353 		free_vmcs(vmx->vmcs01.shadow_vmcs);
354 		vmx->vmcs01.shadow_vmcs = NULL;
355 	}
356 	kfree(vmx->nested.cached_vmcs12);
357 	vmx->nested.cached_vmcs12 = NULL;
358 	kfree(vmx->nested.cached_shadow_vmcs12);
359 	vmx->nested.cached_shadow_vmcs12 = NULL;
360 
361 	nested_put_vmcs12_pages(vcpu);
362 
363 	kvm_mmu_free_roots(vcpu->kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
364 
365 	nested_release_evmcs(vcpu);
366 
367 	free_loaded_vmcs(&vmx->nested.vmcs02);
368 }
369 
370 /*
371  * Ensure that the current vmcs of the logical processor is the
372  * vmcs01 of the vcpu before calling free_nested().
373  */
nested_vmx_free_vcpu(struct kvm_vcpu * vcpu)374 void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu)
375 {
376 	vcpu_load(vcpu);
377 	vmx_leave_nested(vcpu);
378 	vcpu_put(vcpu);
379 }
380 
381 #define EPTP_PA_MASK   GENMASK_ULL(51, 12)
382 
nested_ept_root_matches(hpa_t root_hpa,u64 root_eptp,u64 eptp)383 static bool nested_ept_root_matches(hpa_t root_hpa, u64 root_eptp, u64 eptp)
384 {
385 	return VALID_PAGE(root_hpa) &&
386 	       ((root_eptp & EPTP_PA_MASK) == (eptp & EPTP_PA_MASK));
387 }
388 
nested_ept_invalidate_addr(struct kvm_vcpu * vcpu,gpa_t eptp,gpa_t addr)389 static void nested_ept_invalidate_addr(struct kvm_vcpu *vcpu, gpa_t eptp,
390 				       gpa_t addr)
391 {
392 	unsigned long roots = 0;
393 	uint i;
394 	struct kvm_mmu_root_info *cached_root;
395 
396 	WARN_ON_ONCE(!mmu_is_nested(vcpu));
397 
398 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
399 		cached_root = &vcpu->arch.mmu->prev_roots[i];
400 
401 		if (nested_ept_root_matches(cached_root->hpa, cached_root->pgd,
402 					    eptp))
403 			roots |= KVM_MMU_ROOT_PREVIOUS(i);
404 	}
405 	if (roots)
406 		kvm_mmu_invalidate_addr(vcpu, vcpu->arch.mmu, addr, roots);
407 }
408 
nested_ept_inject_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)409 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
410 		struct x86_exception *fault)
411 {
412 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
413 	struct vcpu_vmx *vmx = to_vmx(vcpu);
414 	unsigned long exit_qualification;
415 	u32 vm_exit_reason;
416 
417 	if (vmx->nested.pml_full) {
418 		vm_exit_reason = EXIT_REASON_PML_FULL;
419 		vmx->nested.pml_full = false;
420 
421 		/*
422 		 * It should be impossible to trigger a nested PML Full VM-Exit
423 		 * for anything other than an EPT Violation from L2.  KVM *can*
424 		 * trigger nEPT page fault injection in response to an EPT
425 		 * Misconfig, e.g. if the MMIO SPTE was stale and L1's EPT
426 		 * tables also changed, but KVM should not treat EPT Misconfig
427 		 * VM-Exits as writes.
428 		 */
429 		WARN_ON_ONCE(vmx->vt.exit_reason.basic != EXIT_REASON_EPT_VIOLATION);
430 
431 		/*
432 		 * PML Full and EPT Violation VM-Exits both use bit 12 to report
433 		 * "NMI unblocking due to IRET", i.e. the bit can be propagated
434 		 * as-is from the original EXIT_QUALIFICATION.
435 		 */
436 		exit_qualification = vmx_get_exit_qual(vcpu) & INTR_INFO_UNBLOCK_NMI;
437 	} else {
438 		if (fault->error_code & PFERR_RSVD_MASK) {
439 			vm_exit_reason = EXIT_REASON_EPT_MISCONFIG;
440 			exit_qualification = 0;
441 		} else {
442 			exit_qualification = fault->exit_qualification;
443 			exit_qualification |= vmx_get_exit_qual(vcpu) &
444 					      (EPT_VIOLATION_GVA_IS_VALID |
445 					       EPT_VIOLATION_GVA_TRANSLATED);
446 			vm_exit_reason = EXIT_REASON_EPT_VIOLATION;
447 		}
448 
449 		/*
450 		 * Although the caller (kvm_inject_emulated_page_fault) would
451 		 * have already synced the faulting address in the shadow EPT
452 		 * tables for the current EPTP12, we also need to sync it for
453 		 * any other cached EPTP02s based on the same EP4TA, since the
454 		 * TLB associates mappings to the EP4TA rather than the full EPTP.
455 		 */
456 		nested_ept_invalidate_addr(vcpu, vmcs12->ept_pointer,
457 					   fault->address);
458 	}
459 
460 	nested_vmx_vmexit(vcpu, vm_exit_reason, 0, exit_qualification);
461 	vmcs12->guest_physical_address = fault->address;
462 }
463 
nested_ept_new_eptp(struct kvm_vcpu * vcpu)464 static void nested_ept_new_eptp(struct kvm_vcpu *vcpu)
465 {
466 	struct vcpu_vmx *vmx = to_vmx(vcpu);
467 	bool execonly = vmx->nested.msrs.ept_caps & VMX_EPT_EXECUTE_ONLY_BIT;
468 	int ept_lpage_level = ept_caps_to_lpage_level(vmx->nested.msrs.ept_caps);
469 
470 	kvm_init_shadow_ept_mmu(vcpu, execonly, ept_lpage_level,
471 				nested_ept_ad_enabled(vcpu),
472 				nested_ept_get_eptp(vcpu));
473 }
474 
nested_ept_init_mmu_context(struct kvm_vcpu * vcpu)475 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
476 {
477 	WARN_ON(mmu_is_nested(vcpu));
478 
479 	vcpu->arch.mmu = &vcpu->arch.guest_mmu;
480 	nested_ept_new_eptp(vcpu);
481 	vcpu->arch.mmu->get_guest_pgd     = nested_ept_get_eptp;
482 	vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault;
483 	vcpu->arch.mmu->get_pdptr         = kvm_pdptr_read;
484 
485 	vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
486 }
487 
nested_ept_uninit_mmu_context(struct kvm_vcpu * vcpu)488 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
489 {
490 	vcpu->arch.mmu = &vcpu->arch.root_mmu;
491 	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
492 }
493 
nested_vmx_is_page_fault_vmexit(struct vmcs12 * vmcs12,u16 error_code)494 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
495 					    u16 error_code)
496 {
497 	bool inequality, bit;
498 
499 	bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
500 	inequality =
501 		(error_code & vmcs12->page_fault_error_code_mask) !=
502 		 vmcs12->page_fault_error_code_match;
503 	return inequality ^ bit;
504 }
505 
nested_vmx_is_exception_vmexit(struct kvm_vcpu * vcpu,u8 vector,u32 error_code)506 static bool nested_vmx_is_exception_vmexit(struct kvm_vcpu *vcpu, u8 vector,
507 					   u32 error_code)
508 {
509 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
510 
511 	/*
512 	 * Drop bits 31:16 of the error code when performing the #PF mask+match
513 	 * check.  All VMCS fields involved are 32 bits, but Intel CPUs never
514 	 * set bits 31:16 and VMX disallows setting bits 31:16 in the injected
515 	 * error code.  Including the to-be-dropped bits in the check might
516 	 * result in an "impossible" or missed exit from L1's perspective.
517 	 */
518 	if (vector == PF_VECTOR)
519 		return nested_vmx_is_page_fault_vmexit(vmcs12, (u16)error_code);
520 
521 	return (vmcs12->exception_bitmap & (1u << vector));
522 }
523 
nested_vmx_check_io_bitmap_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)524 static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
525 					       struct vmcs12 *vmcs12)
526 {
527 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
528 		return 0;
529 
530 	if (CC(!page_address_valid(vcpu, vmcs12->io_bitmap_a)) ||
531 	    CC(!page_address_valid(vcpu, vmcs12->io_bitmap_b)))
532 		return -EINVAL;
533 
534 	return 0;
535 }
536 
nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)537 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
538 						struct vmcs12 *vmcs12)
539 {
540 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
541 		return 0;
542 
543 	if (CC(!page_address_valid(vcpu, vmcs12->msr_bitmap)))
544 		return -EINVAL;
545 
546 	return 0;
547 }
548 
nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)549 static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
550 						struct vmcs12 *vmcs12)
551 {
552 	if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
553 		return 0;
554 
555 	if (CC(!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr)))
556 		return -EINVAL;
557 
558 	if (CC(!nested_cpu_has_vid(vmcs12) && vmcs12->tpr_threshold >> 4))
559 		return -EINVAL;
560 
561 	return 0;
562 }
563 
564 /*
565  * For x2APIC MSRs, ignore the vmcs01 bitmap.  L1 can enable x2APIC without L1
566  * itself utilizing x2APIC.  All MSRs were previously set to be intercepted,
567  * only the "disable intercept" case needs to be handled.
568  */
nested_vmx_disable_intercept_for_x2apic_msr(unsigned long * msr_bitmap_l1,unsigned long * msr_bitmap_l0,u32 msr,int type)569 static void nested_vmx_disable_intercept_for_x2apic_msr(unsigned long *msr_bitmap_l1,
570 							unsigned long *msr_bitmap_l0,
571 							u32 msr, int type)
572 {
573 	if (type & MSR_TYPE_R && !vmx_test_msr_bitmap_read(msr_bitmap_l1, msr))
574 		vmx_clear_msr_bitmap_read(msr_bitmap_l0, msr);
575 
576 	if (type & MSR_TYPE_W && !vmx_test_msr_bitmap_write(msr_bitmap_l1, msr))
577 		vmx_clear_msr_bitmap_write(msr_bitmap_l0, msr);
578 }
579 
enable_x2apic_msr_intercepts(unsigned long * msr_bitmap)580 static inline void enable_x2apic_msr_intercepts(unsigned long *msr_bitmap)
581 {
582 	int msr;
583 
584 	for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
585 		unsigned word = msr / BITS_PER_LONG;
586 
587 		msr_bitmap[word] = ~0;
588 		msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
589 	}
590 }
591 
592 #define BUILD_NVMX_MSR_INTERCEPT_HELPER(rw)					\
593 static inline									\
594 void nested_vmx_set_msr_##rw##_intercept(struct vcpu_vmx *vmx,			\
595 					 unsigned long *msr_bitmap_l1,		\
596 					 unsigned long *msr_bitmap_l0, u32 msr)	\
597 {										\
598 	if (vmx_test_msr_bitmap_##rw(vmx->vmcs01.msr_bitmap, msr) ||		\
599 	    vmx_test_msr_bitmap_##rw(msr_bitmap_l1, msr))			\
600 		vmx_set_msr_bitmap_##rw(msr_bitmap_l0, msr);			\
601 	else									\
602 		vmx_clear_msr_bitmap_##rw(msr_bitmap_l0, msr);			\
603 }
604 BUILD_NVMX_MSR_INTERCEPT_HELPER(read)
BUILD_NVMX_MSR_INTERCEPT_HELPER(write)605 BUILD_NVMX_MSR_INTERCEPT_HELPER(write)
606 
607 static inline void nested_vmx_set_intercept_for_msr(struct vcpu_vmx *vmx,
608 						    unsigned long *msr_bitmap_l1,
609 						    unsigned long *msr_bitmap_l0,
610 						    u32 msr, int types)
611 {
612 	if (types & MSR_TYPE_R)
613 		nested_vmx_set_msr_read_intercept(vmx, msr_bitmap_l1,
614 						  msr_bitmap_l0, msr);
615 	if (types & MSR_TYPE_W)
616 		nested_vmx_set_msr_write_intercept(vmx, msr_bitmap_l1,
617 						   msr_bitmap_l0, msr);
618 }
619 
620 /*
621  * Merge L0's and L1's MSR bitmap, return false to indicate that
622  * we do not use the hardware.
623  */
nested_vmx_prepare_msr_bitmap(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)624 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
625 						 struct vmcs12 *vmcs12)
626 {
627 	struct vcpu_vmx *vmx = to_vmx(vcpu);
628 	int msr;
629 	unsigned long *msr_bitmap_l1;
630 	unsigned long *msr_bitmap_l0 = vmx->nested.vmcs02.msr_bitmap;
631 	struct kvm_host_map map;
632 
633 	/* Nothing to do if the MSR bitmap is not in use.  */
634 	if (!cpu_has_vmx_msr_bitmap() ||
635 	    !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
636 		return false;
637 
638 	/*
639 	 * MSR bitmap update can be skipped when:
640 	 * - MSR bitmap for L1 hasn't changed.
641 	 * - Nested hypervisor (L1) is attempting to launch the same L2 as
642 	 *   before.
643 	 * - Nested hypervisor (L1) has enabled 'Enlightened MSR Bitmap' feature
644 	 *   and tells KVM (L0) there were no changes in MSR bitmap for L2.
645 	 */
646 	if (!vmx->nested.force_msr_bitmap_recalc) {
647 		struct hv_enlightened_vmcs *evmcs = nested_vmx_evmcs(vmx);
648 
649 		if (evmcs && evmcs->hv_enlightenments_control.msr_bitmap &&
650 		    evmcs->hv_clean_fields & HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP)
651 			return true;
652 	}
653 
654 	if (kvm_vcpu_map_readonly(vcpu, gpa_to_gfn(vmcs12->msr_bitmap), &map))
655 		return false;
656 
657 	msr_bitmap_l1 = (unsigned long *)map.hva;
658 
659 	/*
660 	 * To keep the control flow simple, pay eight 8-byte writes (sixteen
661 	 * 4-byte writes on 32-bit systems) up front to enable intercepts for
662 	 * the x2APIC MSR range and selectively toggle those relevant to L2.
663 	 */
664 	enable_x2apic_msr_intercepts(msr_bitmap_l0);
665 
666 	if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
667 		if (nested_cpu_has_apic_reg_virt(vmcs12)) {
668 			/*
669 			 * L0 need not intercept reads for MSRs between 0x800
670 			 * and 0x8ff, it just lets the processor take the value
671 			 * from the virtual-APIC page; take those 256 bits
672 			 * directly from the L1 bitmap.
673 			 */
674 			for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
675 				unsigned word = msr / BITS_PER_LONG;
676 
677 				msr_bitmap_l0[word] = msr_bitmap_l1[word];
678 			}
679 		}
680 
681 		nested_vmx_disable_intercept_for_x2apic_msr(
682 			msr_bitmap_l1, msr_bitmap_l0,
683 			X2APIC_MSR(APIC_TASKPRI),
684 			MSR_TYPE_R | MSR_TYPE_W);
685 
686 		if (nested_cpu_has_vid(vmcs12)) {
687 			nested_vmx_disable_intercept_for_x2apic_msr(
688 				msr_bitmap_l1, msr_bitmap_l0,
689 				X2APIC_MSR(APIC_EOI),
690 				MSR_TYPE_W);
691 			nested_vmx_disable_intercept_for_x2apic_msr(
692 				msr_bitmap_l1, msr_bitmap_l0,
693 				X2APIC_MSR(APIC_SELF_IPI),
694 				MSR_TYPE_W);
695 		}
696 	}
697 
698 	/*
699 	 * Always check vmcs01's bitmap to honor userspace MSR filters and any
700 	 * other runtime changes to vmcs01's bitmap, e.g. dynamic pass-through.
701 	 */
702 #ifdef CONFIG_X86_64
703 	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
704 					 MSR_FS_BASE, MSR_TYPE_RW);
705 
706 	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
707 					 MSR_GS_BASE, MSR_TYPE_RW);
708 
709 	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
710 					 MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
711 #endif
712 	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
713 					 MSR_IA32_SPEC_CTRL, MSR_TYPE_RW);
714 
715 	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
716 					 MSR_IA32_PRED_CMD, MSR_TYPE_W);
717 
718 	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
719 					 MSR_IA32_FLUSH_CMD, MSR_TYPE_W);
720 
721 	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
722 					 MSR_IA32_APERF, MSR_TYPE_R);
723 
724 	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
725 					 MSR_IA32_MPERF, MSR_TYPE_R);
726 
727 	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
728 					 MSR_IA32_U_CET, MSR_TYPE_RW);
729 
730 	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
731 					 MSR_IA32_S_CET, MSR_TYPE_RW);
732 
733 	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
734 					 MSR_IA32_PL0_SSP, MSR_TYPE_RW);
735 
736 	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
737 					 MSR_IA32_PL1_SSP, MSR_TYPE_RW);
738 
739 	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
740 					 MSR_IA32_PL2_SSP, MSR_TYPE_RW);
741 
742 	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
743 					 MSR_IA32_PL3_SSP, MSR_TYPE_RW);
744 
745 	kvm_vcpu_unmap(vcpu, &map);
746 
747 	vmx->nested.force_msr_bitmap_recalc = false;
748 
749 	return true;
750 }
751 
nested_cache_shadow_vmcs12(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)752 static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
753 				       struct vmcs12 *vmcs12)
754 {
755 	struct vcpu_vmx *vmx = to_vmx(vcpu);
756 	struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
757 
758 	if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
759 	    vmcs12->vmcs_link_pointer == INVALID_GPA)
760 		return;
761 
762 	if (ghc->gpa != vmcs12->vmcs_link_pointer &&
763 	    kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
764 				      vmcs12->vmcs_link_pointer, VMCS12_SIZE))
765 		return;
766 
767 	kvm_read_guest_cached(vcpu->kvm, ghc, get_shadow_vmcs12(vcpu),
768 			      VMCS12_SIZE);
769 }
770 
nested_flush_cached_shadow_vmcs12(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)771 static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
772 					      struct vmcs12 *vmcs12)
773 {
774 	struct vcpu_vmx *vmx = to_vmx(vcpu);
775 	struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
776 
777 	if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
778 	    vmcs12->vmcs_link_pointer == INVALID_GPA)
779 		return;
780 
781 	if (ghc->gpa != vmcs12->vmcs_link_pointer &&
782 	    kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
783 				      vmcs12->vmcs_link_pointer, VMCS12_SIZE))
784 		return;
785 
786 	kvm_write_guest_cached(vcpu->kvm, ghc, get_shadow_vmcs12(vcpu),
787 			       VMCS12_SIZE);
788 }
789 
790 /*
791  * In nested virtualization, check if L1 has set
792  * VM_EXIT_ACK_INTR_ON_EXIT
793  */
nested_exit_intr_ack_set(struct kvm_vcpu * vcpu)794 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
795 {
796 	return get_vmcs12(vcpu)->vm_exit_controls &
797 		VM_EXIT_ACK_INTR_ON_EXIT;
798 }
799 
nested_vmx_check_apic_access_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)800 static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
801 					  struct vmcs12 *vmcs12)
802 {
803 	if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
804 	    CC(!page_address_valid(vcpu, vmcs12->apic_access_addr)))
805 		return -EINVAL;
806 	else
807 		return 0;
808 }
809 
nested_vmx_check_apicv_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)810 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
811 					   struct vmcs12 *vmcs12)
812 {
813 	if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
814 	    !nested_cpu_has_apic_reg_virt(vmcs12) &&
815 	    !nested_cpu_has_vid(vmcs12) &&
816 	    !nested_cpu_has_posted_intr(vmcs12))
817 		return 0;
818 
819 	/*
820 	 * If virtualize x2apic mode is enabled,
821 	 * virtualize apic access must be disabled.
822 	 */
823 	if (CC(nested_cpu_has_virt_x2apic_mode(vmcs12) &&
824 	       nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)))
825 		return -EINVAL;
826 
827 	/*
828 	 * If virtual interrupt delivery is enabled,
829 	 * we must exit on external interrupts.
830 	 */
831 	if (CC(nested_cpu_has_vid(vmcs12) && !nested_exit_on_intr(vcpu)))
832 		return -EINVAL;
833 
834 	/*
835 	 * bits 15:8 should be zero in posted_intr_nv,
836 	 * the descriptor address has been already checked
837 	 * in nested_get_vmcs12_pages.
838 	 *
839 	 * bits 5:0 of posted_intr_desc_addr should be zero.
840 	 */
841 	if (nested_cpu_has_posted_intr(vmcs12) &&
842 	   (CC(!nested_cpu_has_vid(vmcs12)) ||
843 	    CC(!nested_exit_intr_ack_set(vcpu)) ||
844 	    CC((vmcs12->posted_intr_nv & 0xff00)) ||
845 	    CC(!kvm_vcpu_is_legal_aligned_gpa(vcpu, vmcs12->posted_intr_desc_addr, 64))))
846 		return -EINVAL;
847 
848 	/* tpr shadow is needed by all apicv features. */
849 	if (CC(!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)))
850 		return -EINVAL;
851 
852 	return 0;
853 }
854 
nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu * vcpu)855 static u32 nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu *vcpu)
856 {
857 	struct vcpu_vmx *vmx = to_vmx(vcpu);
858 	u64 vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
859 				       vmx->nested.msrs.misc_high);
860 
861 	return (vmx_misc_max_msr(vmx_misc) + 1) * VMX_MISC_MSR_LIST_MULTIPLIER;
862 }
863 
nested_vmx_check_msr_switch(struct kvm_vcpu * vcpu,u32 count,u64 addr)864 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
865 				       u32 count, u64 addr)
866 {
867 	if (count == 0)
868 		return 0;
869 
870 	/*
871 	 * Exceeding the limit results in architecturally _undefined_ behavior,
872 	 * i.e. KVM is allowed to do literally anything in response to a bad
873 	 * limit.  Immediately generate a consistency check so that code that
874 	 * consumes the count doesn't need to worry about extreme edge cases.
875 	 */
876 	if (count > nested_vmx_max_atomic_switch_msrs(vcpu))
877 		return -EINVAL;
878 
879 	if (!kvm_vcpu_is_legal_aligned_gpa(vcpu, addr, 16) ||
880 	    !kvm_vcpu_is_legal_gpa(vcpu, (addr + count * sizeof(struct vmx_msr_entry) - 1)))
881 		return -EINVAL;
882 
883 	return 0;
884 }
885 
nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)886 static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu,
887 						     struct vmcs12 *vmcs12)
888 {
889 	if (CC(nested_vmx_check_msr_switch(vcpu,
890 					   vmcs12->vm_exit_msr_load_count,
891 					   vmcs12->vm_exit_msr_load_addr)) ||
892 	    CC(nested_vmx_check_msr_switch(vcpu,
893 					   vmcs12->vm_exit_msr_store_count,
894 					   vmcs12->vm_exit_msr_store_addr)))
895 		return -EINVAL;
896 
897 	return 0;
898 }
899 
nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)900 static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu,
901                                                       struct vmcs12 *vmcs12)
902 {
903 	if (CC(nested_vmx_check_msr_switch(vcpu,
904 					   vmcs12->vm_entry_msr_load_count,
905 					   vmcs12->vm_entry_msr_load_addr)))
906                 return -EINVAL;
907 
908 	return 0;
909 }
910 
nested_vmx_check_pml_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)911 static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
912 					 struct vmcs12 *vmcs12)
913 {
914 	if (!nested_cpu_has_pml(vmcs12))
915 		return 0;
916 
917 	if (CC(!nested_cpu_has_ept(vmcs12)) ||
918 	    CC(!page_address_valid(vcpu, vmcs12->pml_address)))
919 		return -EINVAL;
920 
921 	return 0;
922 }
923 
nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)924 static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu,
925 							struct vmcs12 *vmcs12)
926 {
927 	if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) &&
928 	       !nested_cpu_has_ept(vmcs12)))
929 		return -EINVAL;
930 	return 0;
931 }
932 
nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)933 static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu,
934 							 struct vmcs12 *vmcs12)
935 {
936 	if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) &&
937 	       !nested_cpu_has_ept(vmcs12)))
938 		return -EINVAL;
939 	return 0;
940 }
941 
nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)942 static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
943 						 struct vmcs12 *vmcs12)
944 {
945 	if (!nested_cpu_has_shadow_vmcs(vmcs12))
946 		return 0;
947 
948 	if (CC(!page_address_valid(vcpu, vmcs12->vmread_bitmap)) ||
949 	    CC(!page_address_valid(vcpu, vmcs12->vmwrite_bitmap)))
950 		return -EINVAL;
951 
952 	return 0;
953 }
954 
nested_vmx_msr_check_common(struct kvm_vcpu * vcpu,struct vmx_msr_entry * e)955 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
956 				       struct vmx_msr_entry *e)
957 {
958 	/* x2APIC MSR accesses are not allowed */
959 	if (CC(vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8))
960 		return -EINVAL;
961 	if (CC(e->index == MSR_IA32_UCODE_WRITE) || /* SDM Table 35-2 */
962 	    CC(e->index == MSR_IA32_UCODE_REV))
963 		return -EINVAL;
964 	if (CC(e->reserved != 0))
965 		return -EINVAL;
966 	return 0;
967 }
968 
nested_vmx_load_msr_check(struct kvm_vcpu * vcpu,struct vmx_msr_entry * e)969 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
970 				     struct vmx_msr_entry *e)
971 {
972 	if (CC(e->index == MSR_FS_BASE) ||
973 	    CC(e->index == MSR_GS_BASE) ||
974 	    CC(e->index == MSR_IA32_SMM_MONITOR_CTL) || /* SMM is not supported */
975 	    nested_vmx_msr_check_common(vcpu, e))
976 		return -EINVAL;
977 	return 0;
978 }
979 
nested_vmx_store_msr_check(struct kvm_vcpu * vcpu,struct vmx_msr_entry * e)980 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
981 				      struct vmx_msr_entry *e)
982 {
983 	if (CC(e->index == MSR_IA32_SMBASE) || /* SMM is not supported */
984 	    nested_vmx_msr_check_common(vcpu, e))
985 		return -EINVAL;
986 	return 0;
987 }
988 
989 /*
990  * Load guest's/host's msr at nested entry/exit.
991  * return 0 for success, entry index for failure.
992  *
993  * One of the failure modes for MSR load/store is when a list exceeds the
994  * virtual hardware's capacity. To maintain compatibility with hardware inasmuch
995  * as possible, process all valid entries before failing rather than precheck
996  * for a capacity violation.
997  */
nested_vmx_load_msr(struct kvm_vcpu * vcpu,u64 gpa,u32 count)998 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
999 {
1000 	u32 i;
1001 	struct vmx_msr_entry e;
1002 	u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
1003 
1004 	for (i = 0; i < count; i++) {
1005 		if (WARN_ON_ONCE(i >= max_msr_list_size))
1006 			goto fail;
1007 
1008 		if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
1009 					&e, sizeof(e))) {
1010 			pr_debug_ratelimited(
1011 				"%s cannot read MSR entry (%u, 0x%08llx)\n",
1012 				__func__, i, gpa + i * sizeof(e));
1013 			goto fail;
1014 		}
1015 		if (nested_vmx_load_msr_check(vcpu, &e)) {
1016 			pr_debug_ratelimited(
1017 				"%s check failed (%u, 0x%x, 0x%x)\n",
1018 				__func__, i, e.index, e.reserved);
1019 			goto fail;
1020 		}
1021 		if (kvm_emulate_msr_write(vcpu, e.index, e.value)) {
1022 			pr_debug_ratelimited(
1023 				"%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
1024 				__func__, i, e.index, e.value);
1025 			goto fail;
1026 		}
1027 	}
1028 	return 0;
1029 fail:
1030 	/* Note, max_msr_list_size is at most 4096, i.e. this can't wrap. */
1031 	return i + 1;
1032 }
1033 
nested_vmx_get_vmexit_msr_value(struct kvm_vcpu * vcpu,u32 msr_index,u64 * data)1034 static bool nested_vmx_get_vmexit_msr_value(struct kvm_vcpu *vcpu,
1035 					    u32 msr_index,
1036 					    u64 *data)
1037 {
1038 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1039 
1040 	/*
1041 	 * If the L0 hypervisor stored a more accurate value for the TSC that
1042 	 * does not include the time taken for emulation of the L2->L1
1043 	 * VM-exit in L0, use the more accurate value.
1044 	 */
1045 	if (msr_index == MSR_IA32_TSC) {
1046 		int i = vmx_find_loadstore_msr_slot(&vmx->msr_autostore.guest,
1047 						    MSR_IA32_TSC);
1048 
1049 		if (i >= 0) {
1050 			u64 val = vmx->msr_autostore.guest.val[i].value;
1051 
1052 			*data = kvm_read_l1_tsc(vcpu, val);
1053 			return true;
1054 		}
1055 	}
1056 
1057 	if (kvm_emulate_msr_read(vcpu, msr_index, data)) {
1058 		pr_debug_ratelimited("%s cannot read MSR (0x%x)\n", __func__,
1059 			msr_index);
1060 		return false;
1061 	}
1062 	return true;
1063 }
1064 
read_and_check_msr_entry(struct kvm_vcpu * vcpu,u64 gpa,int i,struct vmx_msr_entry * e)1065 static bool read_and_check_msr_entry(struct kvm_vcpu *vcpu, u64 gpa, int i,
1066 				     struct vmx_msr_entry *e)
1067 {
1068 	if (kvm_vcpu_read_guest(vcpu,
1069 				gpa + i * sizeof(*e),
1070 				e, 2 * sizeof(u32))) {
1071 		pr_debug_ratelimited(
1072 			"%s cannot read MSR entry (%u, 0x%08llx)\n",
1073 			__func__, i, gpa + i * sizeof(*e));
1074 		return false;
1075 	}
1076 	if (nested_vmx_store_msr_check(vcpu, e)) {
1077 		pr_debug_ratelimited(
1078 			"%s check failed (%u, 0x%x, 0x%x)\n",
1079 			__func__, i, e->index, e->reserved);
1080 		return false;
1081 	}
1082 	return true;
1083 }
1084 
nested_vmx_store_msr(struct kvm_vcpu * vcpu,u64 gpa,u32 count)1085 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
1086 {
1087 	u64 data;
1088 	u32 i;
1089 	struct vmx_msr_entry e;
1090 	u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
1091 
1092 	for (i = 0; i < count; i++) {
1093 		if (WARN_ON_ONCE(i >= max_msr_list_size))
1094 			return -EINVAL;
1095 
1096 		if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
1097 			return -EINVAL;
1098 
1099 		if (!nested_vmx_get_vmexit_msr_value(vcpu, e.index, &data))
1100 			return -EINVAL;
1101 
1102 		if (kvm_vcpu_write_guest(vcpu,
1103 					 gpa + i * sizeof(e) +
1104 					     offsetof(struct vmx_msr_entry, value),
1105 					 &data, sizeof(data))) {
1106 			pr_debug_ratelimited(
1107 				"%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
1108 				__func__, i, e.index, data);
1109 			return -EINVAL;
1110 		}
1111 	}
1112 	return 0;
1113 }
1114 
nested_msr_store_list_has_msr(struct kvm_vcpu * vcpu,u32 msr_index)1115 static bool nested_msr_store_list_has_msr(struct kvm_vcpu *vcpu, u32 msr_index)
1116 {
1117 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1118 	u32 count = vmcs12->vm_exit_msr_store_count;
1119 	u64 gpa = vmcs12->vm_exit_msr_store_addr;
1120 	struct vmx_msr_entry e;
1121 	u32 i;
1122 
1123 	for (i = 0; i < count; i++) {
1124 		if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
1125 			return false;
1126 
1127 		if (e.index == msr_index)
1128 			return true;
1129 	}
1130 	return false;
1131 }
1132 
prepare_vmx_msr_autostore_list(struct kvm_vcpu * vcpu,u32 msr_index)1133 static void prepare_vmx_msr_autostore_list(struct kvm_vcpu *vcpu,
1134 					   u32 msr_index)
1135 {
1136 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1137 	struct vmx_msrs *autostore = &vmx->msr_autostore.guest;
1138 	bool in_vmcs12_store_list;
1139 	int msr_autostore_slot;
1140 	bool in_autostore_list;
1141 	int last;
1142 
1143 	msr_autostore_slot = vmx_find_loadstore_msr_slot(autostore, msr_index);
1144 	in_autostore_list = msr_autostore_slot >= 0;
1145 	in_vmcs12_store_list = nested_msr_store_list_has_msr(vcpu, msr_index);
1146 
1147 	if (in_vmcs12_store_list && !in_autostore_list) {
1148 		if (autostore->nr == MAX_NR_LOADSTORE_MSRS) {
1149 			/*
1150 			 * Emulated VMEntry does not fail here.  Instead a less
1151 			 * accurate value will be returned by
1152 			 * nested_vmx_get_vmexit_msr_value() by reading KVM's
1153 			 * internal MSR state instead of reading the value from
1154 			 * the vmcs02 VMExit MSR-store area.
1155 			 */
1156 			pr_warn_ratelimited(
1157 				"Not enough msr entries in msr_autostore.  Can't add msr %x\n",
1158 				msr_index);
1159 			return;
1160 		}
1161 		last = autostore->nr++;
1162 		autostore->val[last].index = msr_index;
1163 	} else if (!in_vmcs12_store_list && in_autostore_list) {
1164 		last = --autostore->nr;
1165 		autostore->val[msr_autostore_slot] = autostore->val[last];
1166 	}
1167 }
1168 
1169 /*
1170  * Load guest's/host's cr3 at nested entry/exit.  @nested_ept is true if we are
1171  * emulating VM-Entry into a guest with EPT enabled.  On failure, the expected
1172  * Exit Qualification (for a VM-Entry consistency check VM-Exit) is assigned to
1173  * @entry_failure_code.
1174  */
nested_vmx_load_cr3(struct kvm_vcpu * vcpu,unsigned long cr3,bool nested_ept,bool reload_pdptrs,enum vm_entry_failure_code * entry_failure_code)1175 static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3,
1176 			       bool nested_ept, bool reload_pdptrs,
1177 			       enum vm_entry_failure_code *entry_failure_code)
1178 {
1179 	if (CC(!kvm_vcpu_is_legal_cr3(vcpu, cr3))) {
1180 		*entry_failure_code = ENTRY_FAIL_DEFAULT;
1181 		return -EINVAL;
1182 	}
1183 
1184 	/*
1185 	 * If PAE paging and EPT are both on, CR3 is not used by the CPU and
1186 	 * must not be dereferenced.
1187 	 */
1188 	if (reload_pdptrs && !nested_ept && is_pae_paging(vcpu) &&
1189 	    CC(!load_pdptrs(vcpu, cr3))) {
1190 		*entry_failure_code = ENTRY_FAIL_PDPTE;
1191 		return -EINVAL;
1192 	}
1193 
1194 	vcpu->arch.cr3 = cr3;
1195 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1196 
1197 	/* Re-initialize the MMU, e.g. to pick up CR4 MMU role changes. */
1198 	kvm_init_mmu(vcpu);
1199 
1200 	if (!nested_ept)
1201 		kvm_mmu_new_pgd(vcpu, cr3);
1202 
1203 	return 0;
1204 }
1205 
1206 /*
1207  * Returns if KVM is able to config CPU to tag TLB entries
1208  * populated by L2 differently than TLB entries populated
1209  * by L1.
1210  *
1211  * If L0 uses EPT, L1 and L2 run with different EPTP because
1212  * guest_mode is part of kvm_mmu_page_role. Thus, TLB entries
1213  * are tagged with different EPTP.
1214  *
1215  * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
1216  * with different VPID (L1 entries are tagged with vmx->vpid
1217  * while L2 entries are tagged with vmx->nested.vpid02).
1218  */
nested_has_guest_tlb_tag(struct kvm_vcpu * vcpu)1219 static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu)
1220 {
1221 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1222 
1223 	return enable_ept ||
1224 	       (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02);
1225 }
1226 
nested_vmx_transition_tlb_flush(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,bool is_vmenter)1227 static void nested_vmx_transition_tlb_flush(struct kvm_vcpu *vcpu,
1228 					    struct vmcs12 *vmcs12,
1229 					    bool is_vmenter)
1230 {
1231 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1232 
1233 	/* Handle pending Hyper-V TLB flush requests */
1234 	kvm_hv_nested_transtion_tlb_flush(vcpu, enable_ept);
1235 
1236 	/*
1237 	 * If VPID is disabled, then guest TLB accesses use VPID=0, i.e. the
1238 	 * same VPID as the host, and so architecturally, linear and combined
1239 	 * mappings for VPID=0 must be flushed at VM-Enter and VM-Exit.  KVM
1240 	 * emulates L2 sharing L1's VPID=0 by using vpid01 while running L2,
1241 	 * and so KVM must also emulate TLB flush of VPID=0, i.e. vpid01.  This
1242 	 * is required if VPID is disabled in KVM, as a TLB flush (there are no
1243 	 * VPIDs) still occurs from L1's perspective, and KVM may need to
1244 	 * synchronize the MMU in response to the guest TLB flush.
1245 	 *
1246 	 * Note, using TLB_FLUSH_GUEST is correct even if nested EPT is in use.
1247 	 * EPT is a special snowflake, as guest-physical mappings aren't
1248 	 * flushed on VPID invalidations, including VM-Enter or VM-Exit with
1249 	 * VPID disabled.  As a result, KVM _never_ needs to sync nEPT
1250 	 * entries on VM-Enter because L1 can't rely on VM-Enter to flush
1251 	 * those mappings.
1252 	 */
1253 	if (!nested_cpu_has_vpid(vmcs12)) {
1254 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1255 		return;
1256 	}
1257 
1258 	/* L2 should never have a VPID if VPID is disabled. */
1259 	WARN_ON(!enable_vpid);
1260 
1261 	/*
1262 	 * VPID is enabled and in use by vmcs12.  If vpid12 is changing, then
1263 	 * emulate a guest TLB flush as KVM does not track vpid12 history nor
1264 	 * is the VPID incorporated into the MMU context.  I.e. KVM must assume
1265 	 * that the new vpid12 has never been used and thus represents a new
1266 	 * guest ASID that cannot have entries in the TLB.
1267 	 */
1268 	if (is_vmenter && vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
1269 		vmx->nested.last_vpid = vmcs12->virtual_processor_id;
1270 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1271 		return;
1272 	}
1273 
1274 	/*
1275 	 * If VPID is enabled, used by vmc12, and vpid12 is not changing but
1276 	 * does not have a unique TLB tag (ASID), i.e. EPT is disabled and
1277 	 * KVM was unable to allocate a VPID for L2, flush the current context
1278 	 * as the effective ASID is common to both L1 and L2.
1279 	 */
1280 	if (!nested_has_guest_tlb_tag(vcpu))
1281 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1282 }
1283 
is_bitwise_subset(u64 superset,u64 subset,u64 mask)1284 static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
1285 {
1286 	superset &= mask;
1287 	subset &= mask;
1288 
1289 	return (superset | subset) == superset;
1290 }
1291 
vmx_restore_vmx_basic(struct vcpu_vmx * vmx,u64 data)1292 static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
1293 {
1294 	const u64 feature_bits = VMX_BASIC_DUAL_MONITOR_TREATMENT |
1295 				 VMX_BASIC_INOUT |
1296 				 VMX_BASIC_TRUE_CTLS |
1297 				 VMX_BASIC_NO_HW_ERROR_CODE_CC;
1298 
1299 	const u64 reserved_bits = GENMASK_ULL(63, 57) |
1300 				  GENMASK_ULL(47, 45) |
1301 				  BIT_ULL(31);
1302 
1303 	u64 vmx_basic = vmcs_config.nested.basic;
1304 
1305 	BUILD_BUG_ON(feature_bits & reserved_bits);
1306 
1307 	/*
1308 	 * Except for 32BIT_PHYS_ADDR_ONLY, which is an anti-feature bit (has
1309 	 * inverted polarity), the incoming value must not set feature bits or
1310 	 * reserved bits that aren't allowed/supported by KVM.  Fields, i.e.
1311 	 * multi-bit values, are explicitly checked below.
1312 	 */
1313 	if (!is_bitwise_subset(vmx_basic, data, feature_bits | reserved_bits))
1314 		return -EINVAL;
1315 
1316 	/*
1317 	 * KVM does not emulate a version of VMX that constrains physical
1318 	 * addresses of VMX structures (e.g. VMCS) to 32-bits.
1319 	 */
1320 	if (data & VMX_BASIC_32BIT_PHYS_ADDR_ONLY)
1321 		return -EINVAL;
1322 
1323 	if (vmx_basic_vmcs_revision_id(vmx_basic) !=
1324 	    vmx_basic_vmcs_revision_id(data))
1325 		return -EINVAL;
1326 
1327 	if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
1328 		return -EINVAL;
1329 
1330 	vmx->nested.msrs.basic = data;
1331 	return 0;
1332 }
1333 
vmx_get_control_msr(struct nested_vmx_msrs * msrs,u32 msr_index,u32 ** low,u32 ** high)1334 static void vmx_get_control_msr(struct nested_vmx_msrs *msrs, u32 msr_index,
1335 				u32 **low, u32 **high)
1336 {
1337 	switch (msr_index) {
1338 	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1339 		*low = &msrs->pinbased_ctls_low;
1340 		*high = &msrs->pinbased_ctls_high;
1341 		break;
1342 	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1343 		*low = &msrs->procbased_ctls_low;
1344 		*high = &msrs->procbased_ctls_high;
1345 		break;
1346 	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1347 		*low = &msrs->exit_ctls_low;
1348 		*high = &msrs->exit_ctls_high;
1349 		break;
1350 	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1351 		*low = &msrs->entry_ctls_low;
1352 		*high = &msrs->entry_ctls_high;
1353 		break;
1354 	case MSR_IA32_VMX_PROCBASED_CTLS2:
1355 		*low = &msrs->secondary_ctls_low;
1356 		*high = &msrs->secondary_ctls_high;
1357 		break;
1358 	default:
1359 		BUG();
1360 	}
1361 }
1362 
1363 static int
vmx_restore_control_msr(struct vcpu_vmx * vmx,u32 msr_index,u64 data)1364 vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1365 {
1366 	u32 *lowp, *highp;
1367 	u64 supported;
1368 
1369 	vmx_get_control_msr(&vmcs_config.nested, msr_index, &lowp, &highp);
1370 
1371 	supported = vmx_control_msr(*lowp, *highp);
1372 
1373 	/* Check must-be-1 bits are still 1. */
1374 	if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
1375 		return -EINVAL;
1376 
1377 	/* Check must-be-0 bits are still 0. */
1378 	if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
1379 		return -EINVAL;
1380 
1381 	vmx_get_control_msr(&vmx->nested.msrs, msr_index, &lowp, &highp);
1382 	*lowp = data;
1383 	*highp = data >> 32;
1384 	return 0;
1385 }
1386 
vmx_restore_vmx_misc(struct vcpu_vmx * vmx,u64 data)1387 static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
1388 {
1389 	const u64 feature_bits = VMX_MISC_SAVE_EFER_LMA |
1390 				 VMX_MISC_ACTIVITY_HLT |
1391 				 VMX_MISC_ACTIVITY_SHUTDOWN |
1392 				 VMX_MISC_ACTIVITY_WAIT_SIPI |
1393 				 VMX_MISC_INTEL_PT |
1394 				 VMX_MISC_RDMSR_IN_SMM |
1395 				 VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
1396 				 VMX_MISC_VMXOFF_BLOCK_SMI |
1397 				 VMX_MISC_ZERO_LEN_INS;
1398 
1399 	const u64 reserved_bits = BIT_ULL(31) | GENMASK_ULL(13, 9);
1400 
1401 	u64 vmx_misc = vmx_control_msr(vmcs_config.nested.misc_low,
1402 				       vmcs_config.nested.misc_high);
1403 
1404 	BUILD_BUG_ON(feature_bits & reserved_bits);
1405 
1406 	/*
1407 	 * The incoming value must not set feature bits or reserved bits that
1408 	 * aren't allowed/supported by KVM.  Fields, i.e. multi-bit values, are
1409 	 * explicitly checked below.
1410 	 */
1411 	if (!is_bitwise_subset(vmx_misc, data, feature_bits | reserved_bits))
1412 		return -EINVAL;
1413 
1414 	if ((vmx->nested.msrs.pinbased_ctls_high &
1415 	     PIN_BASED_VMX_PREEMPTION_TIMER) &&
1416 	    vmx_misc_preemption_timer_rate(data) !=
1417 	    vmx_misc_preemption_timer_rate(vmx_misc))
1418 		return -EINVAL;
1419 
1420 	if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
1421 		return -EINVAL;
1422 
1423 	if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
1424 		return -EINVAL;
1425 
1426 	if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
1427 		return -EINVAL;
1428 
1429 	vmx->nested.msrs.misc_low = data;
1430 	vmx->nested.msrs.misc_high = data >> 32;
1431 
1432 	return 0;
1433 }
1434 
vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx * vmx,u64 data)1435 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
1436 {
1437 	u64 vmx_ept_vpid_cap = vmx_control_msr(vmcs_config.nested.ept_caps,
1438 					       vmcs_config.nested.vpid_caps);
1439 
1440 	/* Every bit is either reserved or a feature bit. */
1441 	if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
1442 		return -EINVAL;
1443 
1444 	vmx->nested.msrs.ept_caps = data;
1445 	vmx->nested.msrs.vpid_caps = data >> 32;
1446 	return 0;
1447 }
1448 
vmx_get_fixed0_msr(struct nested_vmx_msrs * msrs,u32 msr_index)1449 static u64 *vmx_get_fixed0_msr(struct nested_vmx_msrs *msrs, u32 msr_index)
1450 {
1451 	switch (msr_index) {
1452 	case MSR_IA32_VMX_CR0_FIXED0:
1453 		return &msrs->cr0_fixed0;
1454 	case MSR_IA32_VMX_CR4_FIXED0:
1455 		return &msrs->cr4_fixed0;
1456 	default:
1457 		BUG();
1458 	}
1459 }
1460 
vmx_restore_fixed0_msr(struct vcpu_vmx * vmx,u32 msr_index,u64 data)1461 static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1462 {
1463 	const u64 *msr = vmx_get_fixed0_msr(&vmcs_config.nested, msr_index);
1464 
1465 	/*
1466 	 * 1 bits (which indicates bits which "must-be-1" during VMX operation)
1467 	 * must be 1 in the restored value.
1468 	 */
1469 	if (!is_bitwise_subset(data, *msr, -1ULL))
1470 		return -EINVAL;
1471 
1472 	*vmx_get_fixed0_msr(&vmx->nested.msrs, msr_index) = data;
1473 	return 0;
1474 }
1475 
1476 /*
1477  * Called when userspace is restoring VMX MSRs.
1478  *
1479  * Returns 0 on success, non-0 otherwise.
1480  */
vmx_set_vmx_msr(struct kvm_vcpu * vcpu,u32 msr_index,u64 data)1481 int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1482 {
1483 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1484 
1485 	/*
1486 	 * Don't allow changes to the VMX capability MSRs while the vCPU
1487 	 * is in VMX operation.
1488 	 */
1489 	if (vmx->nested.vmxon)
1490 		return -EBUSY;
1491 
1492 	switch (msr_index) {
1493 	case MSR_IA32_VMX_BASIC:
1494 		return vmx_restore_vmx_basic(vmx, data);
1495 	case MSR_IA32_VMX_PINBASED_CTLS:
1496 	case MSR_IA32_VMX_PROCBASED_CTLS:
1497 	case MSR_IA32_VMX_EXIT_CTLS:
1498 	case MSR_IA32_VMX_ENTRY_CTLS:
1499 		/*
1500 		 * The "non-true" VMX capability MSRs are generated from the
1501 		 * "true" MSRs, so we do not support restoring them directly.
1502 		 *
1503 		 * If userspace wants to emulate VMX_BASIC[55]=0, userspace
1504 		 * should restore the "true" MSRs with the must-be-1 bits
1505 		 * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
1506 		 * DEFAULT SETTINGS".
1507 		 */
1508 		return -EINVAL;
1509 	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1510 	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1511 	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1512 	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1513 	case MSR_IA32_VMX_PROCBASED_CTLS2:
1514 		return vmx_restore_control_msr(vmx, msr_index, data);
1515 	case MSR_IA32_VMX_MISC:
1516 		return vmx_restore_vmx_misc(vmx, data);
1517 	case MSR_IA32_VMX_CR0_FIXED0:
1518 	case MSR_IA32_VMX_CR4_FIXED0:
1519 		return vmx_restore_fixed0_msr(vmx, msr_index, data);
1520 	case MSR_IA32_VMX_CR0_FIXED1:
1521 	case MSR_IA32_VMX_CR4_FIXED1:
1522 		/*
1523 		 * These MSRs are generated based on the vCPU's CPUID, so we
1524 		 * do not support restoring them directly.
1525 		 */
1526 		return -EINVAL;
1527 	case MSR_IA32_VMX_EPT_VPID_CAP:
1528 		return vmx_restore_vmx_ept_vpid_cap(vmx, data);
1529 	case MSR_IA32_VMX_VMCS_ENUM:
1530 		vmx->nested.msrs.vmcs_enum = data;
1531 		return 0;
1532 	case MSR_IA32_VMX_VMFUNC:
1533 		if (data & ~vmcs_config.nested.vmfunc_controls)
1534 			return -EINVAL;
1535 		vmx->nested.msrs.vmfunc_controls = data;
1536 		return 0;
1537 	default:
1538 		/*
1539 		 * The rest of the VMX capability MSRs do not support restore.
1540 		 */
1541 		return -EINVAL;
1542 	}
1543 }
1544 
1545 /* Returns 0 on success, non-0 otherwise. */
vmx_get_vmx_msr(struct nested_vmx_msrs * msrs,u32 msr_index,u64 * pdata)1546 int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
1547 {
1548 	switch (msr_index) {
1549 	case MSR_IA32_VMX_BASIC:
1550 		*pdata = msrs->basic;
1551 		break;
1552 	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1553 	case MSR_IA32_VMX_PINBASED_CTLS:
1554 		*pdata = vmx_control_msr(
1555 			msrs->pinbased_ctls_low,
1556 			msrs->pinbased_ctls_high);
1557 		if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
1558 			*pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1559 		break;
1560 	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1561 	case MSR_IA32_VMX_PROCBASED_CTLS:
1562 		*pdata = vmx_control_msr(
1563 			msrs->procbased_ctls_low,
1564 			msrs->procbased_ctls_high);
1565 		if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
1566 			*pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1567 		break;
1568 	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1569 	case MSR_IA32_VMX_EXIT_CTLS:
1570 		*pdata = vmx_control_msr(
1571 			msrs->exit_ctls_low,
1572 			msrs->exit_ctls_high);
1573 		if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
1574 			*pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
1575 		break;
1576 	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1577 	case MSR_IA32_VMX_ENTRY_CTLS:
1578 		*pdata = vmx_control_msr(
1579 			msrs->entry_ctls_low,
1580 			msrs->entry_ctls_high);
1581 		if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
1582 			*pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
1583 		break;
1584 	case MSR_IA32_VMX_MISC:
1585 		*pdata = vmx_control_msr(
1586 			msrs->misc_low,
1587 			msrs->misc_high);
1588 		break;
1589 	case MSR_IA32_VMX_CR0_FIXED0:
1590 		*pdata = msrs->cr0_fixed0;
1591 		break;
1592 	case MSR_IA32_VMX_CR0_FIXED1:
1593 		*pdata = msrs->cr0_fixed1;
1594 		break;
1595 	case MSR_IA32_VMX_CR4_FIXED0:
1596 		*pdata = msrs->cr4_fixed0;
1597 		break;
1598 	case MSR_IA32_VMX_CR4_FIXED1:
1599 		*pdata = msrs->cr4_fixed1;
1600 		break;
1601 	case MSR_IA32_VMX_VMCS_ENUM:
1602 		*pdata = msrs->vmcs_enum;
1603 		break;
1604 	case MSR_IA32_VMX_PROCBASED_CTLS2:
1605 		*pdata = vmx_control_msr(
1606 			msrs->secondary_ctls_low,
1607 			msrs->secondary_ctls_high);
1608 		break;
1609 	case MSR_IA32_VMX_EPT_VPID_CAP:
1610 		*pdata = msrs->ept_caps |
1611 			((u64)msrs->vpid_caps << 32);
1612 		break;
1613 	case MSR_IA32_VMX_VMFUNC:
1614 		*pdata = msrs->vmfunc_controls;
1615 		break;
1616 	default:
1617 		return 1;
1618 	}
1619 
1620 	return 0;
1621 }
1622 
1623 /*
1624  * Copy the writable VMCS shadow fields back to the VMCS12, in case they have
1625  * been modified by the L1 guest.  Note, "writable" in this context means
1626  * "writable by the guest", i.e. tagged SHADOW_FIELD_RW; the set of
1627  * fields tagged SHADOW_FIELD_RO may or may not align with the "read-only"
1628  * VM-exit information fields (which are actually writable if the vCPU is
1629  * configured to support "VMWRITE to any supported field in the VMCS").
1630  */
copy_shadow_to_vmcs12(struct vcpu_vmx * vmx)1631 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
1632 {
1633 	struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1634 	struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1635 	struct shadow_vmcs_field field;
1636 	unsigned long val;
1637 	int i;
1638 
1639 	if (WARN_ON(!shadow_vmcs))
1640 		return;
1641 
1642 	preempt_disable();
1643 
1644 	vmcs_load(shadow_vmcs);
1645 
1646 	for (i = 0; i < max_shadow_read_write_fields; i++) {
1647 		field = shadow_read_write_fields[i];
1648 		val = __vmcs_readl(field.encoding);
1649 		vmcs12_write_any(vmcs12, field.encoding, field.offset, val);
1650 	}
1651 
1652 	vmcs_clear(shadow_vmcs);
1653 	vmcs_load(vmx->loaded_vmcs->vmcs);
1654 
1655 	preempt_enable();
1656 }
1657 
copy_vmcs12_to_shadow(struct vcpu_vmx * vmx)1658 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
1659 {
1660 	const struct shadow_vmcs_field *fields[] = {
1661 		shadow_read_write_fields,
1662 		shadow_read_only_fields
1663 	};
1664 	const int max_fields[] = {
1665 		max_shadow_read_write_fields,
1666 		max_shadow_read_only_fields
1667 	};
1668 	struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1669 	struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1670 	struct shadow_vmcs_field field;
1671 	unsigned long val;
1672 	int i, q;
1673 
1674 	if (WARN_ON(!shadow_vmcs))
1675 		return;
1676 
1677 	vmcs_load(shadow_vmcs);
1678 
1679 	for (q = 0; q < ARRAY_SIZE(fields); q++) {
1680 		for (i = 0; i < max_fields[q]; i++) {
1681 			field = fields[q][i];
1682 			val = vmcs12_read_any(vmcs12, field.encoding,
1683 					      field.offset);
1684 			__vmcs_writel(field.encoding, val);
1685 		}
1686 	}
1687 
1688 	vmcs_clear(shadow_vmcs);
1689 	vmcs_load(vmx->loaded_vmcs->vmcs);
1690 }
1691 
copy_enlightened_to_vmcs12(struct vcpu_vmx * vmx,u32 hv_clean_fields)1692 static void copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx, u32 hv_clean_fields)
1693 {
1694 #ifdef CONFIG_KVM_HYPERV
1695 	struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1696 	struct hv_enlightened_vmcs *evmcs = nested_vmx_evmcs(vmx);
1697 	struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(&vmx->vcpu);
1698 
1699 	/* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
1700 	vmcs12->tpr_threshold = evmcs->tpr_threshold;
1701 	vmcs12->guest_rip = evmcs->guest_rip;
1702 
1703 	if (unlikely(!(hv_clean_fields &
1704 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_ENLIGHTENMENTSCONTROL))) {
1705 		hv_vcpu->nested.pa_page_gpa = evmcs->partition_assist_page;
1706 		hv_vcpu->nested.vm_id = evmcs->hv_vm_id;
1707 		hv_vcpu->nested.vp_id = evmcs->hv_vp_id;
1708 	}
1709 
1710 	if (unlikely(!(hv_clean_fields &
1711 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
1712 		vmcs12->guest_rsp = evmcs->guest_rsp;
1713 		vmcs12->guest_rflags = evmcs->guest_rflags;
1714 		vmcs12->guest_interruptibility_info =
1715 			evmcs->guest_interruptibility_info;
1716 		/*
1717 		 * Not present in struct vmcs12:
1718 		 * vmcs12->guest_ssp = evmcs->guest_ssp;
1719 		 */
1720 	}
1721 
1722 	if (unlikely(!(hv_clean_fields &
1723 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
1724 		vmcs12->cpu_based_vm_exec_control =
1725 			evmcs->cpu_based_vm_exec_control;
1726 	}
1727 
1728 	if (unlikely(!(hv_clean_fields &
1729 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EXCPN))) {
1730 		vmcs12->exception_bitmap = evmcs->exception_bitmap;
1731 	}
1732 
1733 	if (unlikely(!(hv_clean_fields &
1734 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) {
1735 		vmcs12->vm_entry_controls = evmcs->vm_entry_controls;
1736 	}
1737 
1738 	if (unlikely(!(hv_clean_fields &
1739 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) {
1740 		vmcs12->vm_entry_intr_info_field =
1741 			evmcs->vm_entry_intr_info_field;
1742 		vmcs12->vm_entry_exception_error_code =
1743 			evmcs->vm_entry_exception_error_code;
1744 		vmcs12->vm_entry_instruction_len =
1745 			evmcs->vm_entry_instruction_len;
1746 	}
1747 
1748 	if (unlikely(!(hv_clean_fields &
1749 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
1750 		vmcs12->host_ia32_pat = evmcs->host_ia32_pat;
1751 		vmcs12->host_ia32_efer = evmcs->host_ia32_efer;
1752 		vmcs12->host_cr0 = evmcs->host_cr0;
1753 		vmcs12->host_cr3 = evmcs->host_cr3;
1754 		vmcs12->host_cr4 = evmcs->host_cr4;
1755 		vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp;
1756 		vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip;
1757 		vmcs12->host_rip = evmcs->host_rip;
1758 		vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs;
1759 		vmcs12->host_es_selector = evmcs->host_es_selector;
1760 		vmcs12->host_cs_selector = evmcs->host_cs_selector;
1761 		vmcs12->host_ss_selector = evmcs->host_ss_selector;
1762 		vmcs12->host_ds_selector = evmcs->host_ds_selector;
1763 		vmcs12->host_fs_selector = evmcs->host_fs_selector;
1764 		vmcs12->host_gs_selector = evmcs->host_gs_selector;
1765 		vmcs12->host_tr_selector = evmcs->host_tr_selector;
1766 		vmcs12->host_ia32_perf_global_ctrl = evmcs->host_ia32_perf_global_ctrl;
1767 		/*
1768 		 * Not present in struct vmcs12:
1769 		 * vmcs12->host_ia32_s_cet = evmcs->host_ia32_s_cet;
1770 		 * vmcs12->host_ssp = evmcs->host_ssp;
1771 		 * vmcs12->host_ia32_int_ssp_table_addr = evmcs->host_ia32_int_ssp_table_addr;
1772 		 */
1773 	}
1774 
1775 	if (unlikely(!(hv_clean_fields &
1776 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP1))) {
1777 		vmcs12->pin_based_vm_exec_control =
1778 			evmcs->pin_based_vm_exec_control;
1779 		vmcs12->vm_exit_controls = evmcs->vm_exit_controls;
1780 		vmcs12->secondary_vm_exec_control =
1781 			evmcs->secondary_vm_exec_control;
1782 	}
1783 
1784 	if (unlikely(!(hv_clean_fields &
1785 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) {
1786 		vmcs12->io_bitmap_a = evmcs->io_bitmap_a;
1787 		vmcs12->io_bitmap_b = evmcs->io_bitmap_b;
1788 	}
1789 
1790 	if (unlikely(!(hv_clean_fields &
1791 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) {
1792 		vmcs12->msr_bitmap = evmcs->msr_bitmap;
1793 	}
1794 
1795 	if (unlikely(!(hv_clean_fields &
1796 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) {
1797 		vmcs12->guest_es_base = evmcs->guest_es_base;
1798 		vmcs12->guest_cs_base = evmcs->guest_cs_base;
1799 		vmcs12->guest_ss_base = evmcs->guest_ss_base;
1800 		vmcs12->guest_ds_base = evmcs->guest_ds_base;
1801 		vmcs12->guest_fs_base = evmcs->guest_fs_base;
1802 		vmcs12->guest_gs_base = evmcs->guest_gs_base;
1803 		vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base;
1804 		vmcs12->guest_tr_base = evmcs->guest_tr_base;
1805 		vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base;
1806 		vmcs12->guest_idtr_base = evmcs->guest_idtr_base;
1807 		vmcs12->guest_es_limit = evmcs->guest_es_limit;
1808 		vmcs12->guest_cs_limit = evmcs->guest_cs_limit;
1809 		vmcs12->guest_ss_limit = evmcs->guest_ss_limit;
1810 		vmcs12->guest_ds_limit = evmcs->guest_ds_limit;
1811 		vmcs12->guest_fs_limit = evmcs->guest_fs_limit;
1812 		vmcs12->guest_gs_limit = evmcs->guest_gs_limit;
1813 		vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit;
1814 		vmcs12->guest_tr_limit = evmcs->guest_tr_limit;
1815 		vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit;
1816 		vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit;
1817 		vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes;
1818 		vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes;
1819 		vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes;
1820 		vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes;
1821 		vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes;
1822 		vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes;
1823 		vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes;
1824 		vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes;
1825 		vmcs12->guest_es_selector = evmcs->guest_es_selector;
1826 		vmcs12->guest_cs_selector = evmcs->guest_cs_selector;
1827 		vmcs12->guest_ss_selector = evmcs->guest_ss_selector;
1828 		vmcs12->guest_ds_selector = evmcs->guest_ds_selector;
1829 		vmcs12->guest_fs_selector = evmcs->guest_fs_selector;
1830 		vmcs12->guest_gs_selector = evmcs->guest_gs_selector;
1831 		vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector;
1832 		vmcs12->guest_tr_selector = evmcs->guest_tr_selector;
1833 	}
1834 
1835 	if (unlikely(!(hv_clean_fields &
1836 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) {
1837 		vmcs12->tsc_offset = evmcs->tsc_offset;
1838 		vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
1839 		vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
1840 		vmcs12->encls_exiting_bitmap = evmcs->encls_exiting_bitmap;
1841 		vmcs12->tsc_multiplier = evmcs->tsc_multiplier;
1842 	}
1843 
1844 	if (unlikely(!(hv_clean_fields &
1845 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) {
1846 		vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask;
1847 		vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask;
1848 		vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow;
1849 		vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow;
1850 		vmcs12->guest_cr0 = evmcs->guest_cr0;
1851 		vmcs12->guest_cr3 = evmcs->guest_cr3;
1852 		vmcs12->guest_cr4 = evmcs->guest_cr4;
1853 		vmcs12->guest_dr7 = evmcs->guest_dr7;
1854 	}
1855 
1856 	if (unlikely(!(hv_clean_fields &
1857 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) {
1858 		vmcs12->host_fs_base = evmcs->host_fs_base;
1859 		vmcs12->host_gs_base = evmcs->host_gs_base;
1860 		vmcs12->host_tr_base = evmcs->host_tr_base;
1861 		vmcs12->host_gdtr_base = evmcs->host_gdtr_base;
1862 		vmcs12->host_idtr_base = evmcs->host_idtr_base;
1863 		vmcs12->host_rsp = evmcs->host_rsp;
1864 	}
1865 
1866 	if (unlikely(!(hv_clean_fields &
1867 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) {
1868 		vmcs12->ept_pointer = evmcs->ept_pointer;
1869 		vmcs12->virtual_processor_id = evmcs->virtual_processor_id;
1870 	}
1871 
1872 	if (unlikely(!(hv_clean_fields &
1873 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) {
1874 		vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer;
1875 		vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl;
1876 		vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat;
1877 		vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer;
1878 		vmcs12->guest_pdptr0 = evmcs->guest_pdptr0;
1879 		vmcs12->guest_pdptr1 = evmcs->guest_pdptr1;
1880 		vmcs12->guest_pdptr2 = evmcs->guest_pdptr2;
1881 		vmcs12->guest_pdptr3 = evmcs->guest_pdptr3;
1882 		vmcs12->guest_pending_dbg_exceptions =
1883 			evmcs->guest_pending_dbg_exceptions;
1884 		vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp;
1885 		vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip;
1886 		vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
1887 		vmcs12->guest_activity_state = evmcs->guest_activity_state;
1888 		vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
1889 		vmcs12->guest_ia32_perf_global_ctrl = evmcs->guest_ia32_perf_global_ctrl;
1890 		/*
1891 		 * Not present in struct vmcs12:
1892 		 * vmcs12->guest_ia32_s_cet = evmcs->guest_ia32_s_cet;
1893 		 * vmcs12->guest_ia32_lbr_ctl = evmcs->guest_ia32_lbr_ctl;
1894 		 * vmcs12->guest_ia32_int_ssp_table_addr = evmcs->guest_ia32_int_ssp_table_addr;
1895 		 */
1896 	}
1897 
1898 	/*
1899 	 * Not used?
1900 	 * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
1901 	 * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
1902 	 * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
1903 	 * vmcs12->page_fault_error_code_mask =
1904 	 *		evmcs->page_fault_error_code_mask;
1905 	 * vmcs12->page_fault_error_code_match =
1906 	 *		evmcs->page_fault_error_code_match;
1907 	 * vmcs12->cr3_target_count = evmcs->cr3_target_count;
1908 	 * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
1909 	 * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
1910 	 * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
1911 	 */
1912 
1913 	/*
1914 	 * Read only fields:
1915 	 * vmcs12->guest_physical_address = evmcs->guest_physical_address;
1916 	 * vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
1917 	 * vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
1918 	 * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
1919 	 * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
1920 	 * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
1921 	 * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
1922 	 * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
1923 	 * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
1924 	 * vmcs12->exit_qualification = evmcs->exit_qualification;
1925 	 * vmcs12->guest_linear_address = evmcs->guest_linear_address;
1926 	 *
1927 	 * Not present in struct vmcs12:
1928 	 * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
1929 	 * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
1930 	 * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
1931 	 * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
1932 	 */
1933 
1934 	return;
1935 #else /* CONFIG_KVM_HYPERV */
1936 	KVM_BUG_ON(1, vmx->vcpu.kvm);
1937 #endif /* CONFIG_KVM_HYPERV */
1938 }
1939 
copy_vmcs12_to_enlightened(struct vcpu_vmx * vmx)1940 static void copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
1941 {
1942 #ifdef CONFIG_KVM_HYPERV
1943 	struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1944 	struct hv_enlightened_vmcs *evmcs = nested_vmx_evmcs(vmx);
1945 
1946 	/*
1947 	 * Should not be changed by KVM:
1948 	 *
1949 	 * evmcs->host_es_selector = vmcs12->host_es_selector;
1950 	 * evmcs->host_cs_selector = vmcs12->host_cs_selector;
1951 	 * evmcs->host_ss_selector = vmcs12->host_ss_selector;
1952 	 * evmcs->host_ds_selector = vmcs12->host_ds_selector;
1953 	 * evmcs->host_fs_selector = vmcs12->host_fs_selector;
1954 	 * evmcs->host_gs_selector = vmcs12->host_gs_selector;
1955 	 * evmcs->host_tr_selector = vmcs12->host_tr_selector;
1956 	 * evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
1957 	 * evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
1958 	 * evmcs->host_cr0 = vmcs12->host_cr0;
1959 	 * evmcs->host_cr3 = vmcs12->host_cr3;
1960 	 * evmcs->host_cr4 = vmcs12->host_cr4;
1961 	 * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
1962 	 * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
1963 	 * evmcs->host_rip = vmcs12->host_rip;
1964 	 * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
1965 	 * evmcs->host_fs_base = vmcs12->host_fs_base;
1966 	 * evmcs->host_gs_base = vmcs12->host_gs_base;
1967 	 * evmcs->host_tr_base = vmcs12->host_tr_base;
1968 	 * evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
1969 	 * evmcs->host_idtr_base = vmcs12->host_idtr_base;
1970 	 * evmcs->host_rsp = vmcs12->host_rsp;
1971 	 * sync_vmcs02_to_vmcs12() doesn't read these:
1972 	 * evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
1973 	 * evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
1974 	 * evmcs->msr_bitmap = vmcs12->msr_bitmap;
1975 	 * evmcs->ept_pointer = vmcs12->ept_pointer;
1976 	 * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
1977 	 * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
1978 	 * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
1979 	 * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
1980 	 * evmcs->tpr_threshold = vmcs12->tpr_threshold;
1981 	 * evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
1982 	 * evmcs->exception_bitmap = vmcs12->exception_bitmap;
1983 	 * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
1984 	 * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
1985 	 * evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
1986 	 * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
1987 	 * evmcs->page_fault_error_code_mask =
1988 	 *		vmcs12->page_fault_error_code_mask;
1989 	 * evmcs->page_fault_error_code_match =
1990 	 *		vmcs12->page_fault_error_code_match;
1991 	 * evmcs->cr3_target_count = vmcs12->cr3_target_count;
1992 	 * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
1993 	 * evmcs->tsc_offset = vmcs12->tsc_offset;
1994 	 * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
1995 	 * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
1996 	 * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
1997 	 * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
1998 	 * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
1999 	 * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
2000 	 * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
2001 	 * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
2002 	 * evmcs->guest_ia32_perf_global_ctrl = vmcs12->guest_ia32_perf_global_ctrl;
2003 	 * evmcs->host_ia32_perf_global_ctrl = vmcs12->host_ia32_perf_global_ctrl;
2004 	 * evmcs->encls_exiting_bitmap = vmcs12->encls_exiting_bitmap;
2005 	 * evmcs->tsc_multiplier = vmcs12->tsc_multiplier;
2006 	 *
2007 	 * Not present in struct vmcs12:
2008 	 * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
2009 	 * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
2010 	 * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
2011 	 * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
2012 	 * evmcs->host_ia32_s_cet = vmcs12->host_ia32_s_cet;
2013 	 * evmcs->host_ssp = vmcs12->host_ssp;
2014 	 * evmcs->host_ia32_int_ssp_table_addr = vmcs12->host_ia32_int_ssp_table_addr;
2015 	 * evmcs->guest_ia32_s_cet = vmcs12->guest_ia32_s_cet;
2016 	 * evmcs->guest_ia32_lbr_ctl = vmcs12->guest_ia32_lbr_ctl;
2017 	 * evmcs->guest_ia32_int_ssp_table_addr = vmcs12->guest_ia32_int_ssp_table_addr;
2018 	 * evmcs->guest_ssp = vmcs12->guest_ssp;
2019 	 */
2020 
2021 	evmcs->guest_es_selector = vmcs12->guest_es_selector;
2022 	evmcs->guest_cs_selector = vmcs12->guest_cs_selector;
2023 	evmcs->guest_ss_selector = vmcs12->guest_ss_selector;
2024 	evmcs->guest_ds_selector = vmcs12->guest_ds_selector;
2025 	evmcs->guest_fs_selector = vmcs12->guest_fs_selector;
2026 	evmcs->guest_gs_selector = vmcs12->guest_gs_selector;
2027 	evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector;
2028 	evmcs->guest_tr_selector = vmcs12->guest_tr_selector;
2029 
2030 	evmcs->guest_es_limit = vmcs12->guest_es_limit;
2031 	evmcs->guest_cs_limit = vmcs12->guest_cs_limit;
2032 	evmcs->guest_ss_limit = vmcs12->guest_ss_limit;
2033 	evmcs->guest_ds_limit = vmcs12->guest_ds_limit;
2034 	evmcs->guest_fs_limit = vmcs12->guest_fs_limit;
2035 	evmcs->guest_gs_limit = vmcs12->guest_gs_limit;
2036 	evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit;
2037 	evmcs->guest_tr_limit = vmcs12->guest_tr_limit;
2038 	evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit;
2039 	evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit;
2040 
2041 	evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes;
2042 	evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes;
2043 	evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes;
2044 	evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes;
2045 	evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes;
2046 	evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes;
2047 	evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes;
2048 	evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes;
2049 
2050 	evmcs->guest_es_base = vmcs12->guest_es_base;
2051 	evmcs->guest_cs_base = vmcs12->guest_cs_base;
2052 	evmcs->guest_ss_base = vmcs12->guest_ss_base;
2053 	evmcs->guest_ds_base = vmcs12->guest_ds_base;
2054 	evmcs->guest_fs_base = vmcs12->guest_fs_base;
2055 	evmcs->guest_gs_base = vmcs12->guest_gs_base;
2056 	evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base;
2057 	evmcs->guest_tr_base = vmcs12->guest_tr_base;
2058 	evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base;
2059 	evmcs->guest_idtr_base = vmcs12->guest_idtr_base;
2060 
2061 	evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat;
2062 	evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer;
2063 
2064 	evmcs->guest_pdptr0 = vmcs12->guest_pdptr0;
2065 	evmcs->guest_pdptr1 = vmcs12->guest_pdptr1;
2066 	evmcs->guest_pdptr2 = vmcs12->guest_pdptr2;
2067 	evmcs->guest_pdptr3 = vmcs12->guest_pdptr3;
2068 
2069 	evmcs->guest_pending_dbg_exceptions =
2070 		vmcs12->guest_pending_dbg_exceptions;
2071 	evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp;
2072 	evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip;
2073 
2074 	evmcs->guest_activity_state = vmcs12->guest_activity_state;
2075 	evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs;
2076 
2077 	evmcs->guest_cr0 = vmcs12->guest_cr0;
2078 	evmcs->guest_cr3 = vmcs12->guest_cr3;
2079 	evmcs->guest_cr4 = vmcs12->guest_cr4;
2080 	evmcs->guest_dr7 = vmcs12->guest_dr7;
2081 
2082 	evmcs->guest_physical_address = vmcs12->guest_physical_address;
2083 
2084 	evmcs->vm_instruction_error = vmcs12->vm_instruction_error;
2085 	evmcs->vm_exit_reason = vmcs12->vm_exit_reason;
2086 	evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info;
2087 	evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code;
2088 	evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field;
2089 	evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code;
2090 	evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len;
2091 	evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info;
2092 
2093 	evmcs->exit_qualification = vmcs12->exit_qualification;
2094 
2095 	evmcs->guest_linear_address = vmcs12->guest_linear_address;
2096 	evmcs->guest_rsp = vmcs12->guest_rsp;
2097 	evmcs->guest_rflags = vmcs12->guest_rflags;
2098 
2099 	evmcs->guest_interruptibility_info =
2100 		vmcs12->guest_interruptibility_info;
2101 	evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control;
2102 	evmcs->vm_entry_controls = vmcs12->vm_entry_controls;
2103 	evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field;
2104 	evmcs->vm_entry_exception_error_code =
2105 		vmcs12->vm_entry_exception_error_code;
2106 	evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len;
2107 
2108 	evmcs->guest_rip = vmcs12->guest_rip;
2109 
2110 	evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;
2111 
2112 	return;
2113 #else /* CONFIG_KVM_HYPERV */
2114 	KVM_BUG_ON(1, vmx->vcpu.kvm);
2115 #endif /* CONFIG_KVM_HYPERV */
2116 }
2117 
2118 /*
2119  * This is an equivalent of the nested hypervisor executing the vmptrld
2120  * instruction.
2121  */
nested_vmx_handle_enlightened_vmptrld(struct kvm_vcpu * vcpu,bool from_launch)2122 static enum nested_evmptrld_status nested_vmx_handle_enlightened_vmptrld(
2123 	struct kvm_vcpu *vcpu, bool from_launch)
2124 {
2125 #ifdef CONFIG_KVM_HYPERV
2126 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2127 	bool evmcs_gpa_changed = false;
2128 	u64 evmcs_gpa;
2129 
2130 	if (likely(!guest_cpu_cap_has_evmcs(vcpu)))
2131 		return EVMPTRLD_DISABLED;
2132 
2133 	evmcs_gpa = nested_get_evmptr(vcpu);
2134 	if (!evmptr_is_valid(evmcs_gpa)) {
2135 		nested_release_evmcs(vcpu);
2136 		return EVMPTRLD_DISABLED;
2137 	}
2138 
2139 	if (unlikely(evmcs_gpa != vmx->nested.hv_evmcs_vmptr)) {
2140 		vmx->nested.current_vmptr = INVALID_GPA;
2141 
2142 		nested_release_evmcs(vcpu);
2143 
2144 		if (kvm_vcpu_map(vcpu, gpa_to_gfn(evmcs_gpa),
2145 				 &vmx->nested.hv_evmcs_map))
2146 			return EVMPTRLD_ERROR;
2147 
2148 		vmx->nested.hv_evmcs = vmx->nested.hv_evmcs_map.hva;
2149 
2150 		/*
2151 		 * Currently, KVM only supports eVMCS version 1
2152 		 * (== KVM_EVMCS_VERSION) and thus we expect guest to set this
2153 		 * value to first u32 field of eVMCS which should specify eVMCS
2154 		 * VersionNumber.
2155 		 *
2156 		 * Guest should be aware of supported eVMCS versions by host by
2157 		 * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is
2158 		 * expected to set this CPUID leaf according to the value
2159 		 * returned in vmcs_version from nested_enable_evmcs().
2160 		 *
2161 		 * However, it turns out that Microsoft Hyper-V fails to comply
2162 		 * to their own invented interface: When Hyper-V use eVMCS, it
2163 		 * just sets first u32 field of eVMCS to revision_id specified
2164 		 * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number
2165 		 * which is one of the supported versions specified in
2166 		 * CPUID.0x4000000A.EAX[0:15].
2167 		 *
2168 		 * To overcome Hyper-V bug, we accept here either a supported
2169 		 * eVMCS version or VMCS12 revision_id as valid values for first
2170 		 * u32 field of eVMCS.
2171 		 */
2172 		if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) &&
2173 		    (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) {
2174 			nested_release_evmcs(vcpu);
2175 			return EVMPTRLD_VMFAIL;
2176 		}
2177 
2178 		vmx->nested.hv_evmcs_vmptr = evmcs_gpa;
2179 
2180 		evmcs_gpa_changed = true;
2181 		/*
2182 		 * Unlike normal vmcs12, enlightened vmcs12 is not fully
2183 		 * reloaded from guest's memory (read only fields, fields not
2184 		 * present in struct hv_enlightened_vmcs, ...). Make sure there
2185 		 * are no leftovers.
2186 		 */
2187 		if (from_launch) {
2188 			struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2189 			memset(vmcs12, 0, sizeof(*vmcs12));
2190 			vmcs12->hdr.revision_id = VMCS12_REVISION;
2191 		}
2192 
2193 	}
2194 
2195 	/*
2196 	 * Clean fields data can't be used on VMLAUNCH and when we switch
2197 	 * between different L2 guests as KVM keeps a single VMCS12 per L1.
2198 	 */
2199 	if (from_launch || evmcs_gpa_changed) {
2200 		vmx->nested.hv_evmcs->hv_clean_fields &=
2201 			~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2202 
2203 		vmx->nested.force_msr_bitmap_recalc = true;
2204 	}
2205 
2206 	return EVMPTRLD_SUCCEEDED;
2207 #else
2208 	return EVMPTRLD_DISABLED;
2209 #endif
2210 }
2211 
nested_sync_vmcs12_to_shadow(struct kvm_vcpu * vcpu)2212 void nested_sync_vmcs12_to_shadow(struct kvm_vcpu *vcpu)
2213 {
2214 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2215 
2216 	if (nested_vmx_is_evmptr12_valid(vmx))
2217 		copy_vmcs12_to_enlightened(vmx);
2218 	else
2219 		copy_vmcs12_to_shadow(vmx);
2220 
2221 	vmx->nested.need_vmcs12_to_shadow_sync = false;
2222 }
2223 
vmx_preemption_timer_fn(struct hrtimer * timer)2224 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
2225 {
2226 	struct vcpu_vmx *vmx =
2227 		container_of(timer, struct vcpu_vmx, nested.preemption_timer);
2228 
2229 	vmx->nested.preemption_timer_expired = true;
2230 	kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
2231 	kvm_vcpu_kick(&vmx->vcpu);
2232 
2233 	return HRTIMER_NORESTART;
2234 }
2235 
vmx_calc_preemption_timer_value(struct kvm_vcpu * vcpu)2236 static u64 vmx_calc_preemption_timer_value(struct kvm_vcpu *vcpu)
2237 {
2238 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2239 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2240 
2241 	u64 l1_scaled_tsc = kvm_read_l1_tsc(vcpu, rdtsc()) >>
2242 			    VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2243 
2244 	if (!vmx->nested.has_preemption_timer_deadline) {
2245 		vmx->nested.preemption_timer_deadline =
2246 			vmcs12->vmx_preemption_timer_value + l1_scaled_tsc;
2247 		vmx->nested.has_preemption_timer_deadline = true;
2248 	}
2249 	return vmx->nested.preemption_timer_deadline - l1_scaled_tsc;
2250 }
2251 
vmx_start_preemption_timer(struct kvm_vcpu * vcpu,u64 preemption_timeout)2252 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu,
2253 					u64 preemption_timeout)
2254 {
2255 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2256 
2257 	/*
2258 	 * A timer value of zero is architecturally guaranteed to cause
2259 	 * a VMExit prior to executing any instructions in the guest.
2260 	 */
2261 	if (preemption_timeout == 0) {
2262 		vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
2263 		return;
2264 	}
2265 
2266 	if (vcpu->arch.virtual_tsc_khz == 0)
2267 		return;
2268 
2269 	preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2270 	preemption_timeout *= 1000000;
2271 	do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
2272 	hrtimer_start(&vmx->nested.preemption_timer,
2273 		      ktime_add_ns(ktime_get(), preemption_timeout),
2274 		      HRTIMER_MODE_ABS_PINNED);
2275 }
2276 
nested_vmx_calc_efer(struct vcpu_vmx * vmx,struct vmcs12 * vmcs12)2277 static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2278 {
2279 	if (vmx->nested.nested_run_pending &&
2280 	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
2281 		return vmcs12->guest_ia32_efer;
2282 	else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
2283 		return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME);
2284 	else
2285 		return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME);
2286 }
2287 
prepare_vmcs02_constant_state(struct vcpu_vmx * vmx)2288 static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
2289 {
2290 	struct kvm *kvm = vmx->vcpu.kvm;
2291 
2292 	/*
2293 	 * If vmcs02 hasn't been initialized, set the constant vmcs02 state
2294 	 * according to L0's settings (vmcs12 is irrelevant here).  Host
2295 	 * fields that come from L0 and are not constant, e.g. HOST_CR3,
2296 	 * will be set as needed prior to VMLAUNCH/VMRESUME.
2297 	 */
2298 	if (vmx->nested.vmcs02_initialized)
2299 		return;
2300 	vmx->nested.vmcs02_initialized = true;
2301 
2302 	if (vmx->ve_info)
2303 		vmcs_write64(VE_INFORMATION_ADDRESS, __pa(vmx->ve_info));
2304 
2305 	/* All VMFUNCs are currently emulated through L0 vmexits.  */
2306 	if (cpu_has_vmx_vmfunc())
2307 		vmcs_write64(VM_FUNCTION_CONTROL, 0);
2308 
2309 	if (cpu_has_vmx_posted_intr())
2310 		vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
2311 
2312 	if (cpu_has_vmx_msr_bitmap())
2313 		vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
2314 
2315 	/*
2316 	 * PML is emulated for L2, but never enabled in hardware as the MMU
2317 	 * handles A/D emulation.  Disabling PML for L2 also avoids having to
2318 	 * deal with filtering out L2 GPAs from the buffer.
2319 	 */
2320 	if (enable_pml) {
2321 		vmcs_write64(PML_ADDRESS, 0);
2322 		vmcs_write16(GUEST_PML_INDEX, -1);
2323 	}
2324 
2325 	if (cpu_has_vmx_encls_vmexit())
2326 		vmcs_write64(ENCLS_EXITING_BITMAP, INVALID_GPA);
2327 
2328 	if (kvm_notify_vmexit_enabled(kvm))
2329 		vmcs_write32(NOTIFY_WINDOW, kvm->arch.notify_window);
2330 
2331 	/*
2332 	 * Set the MSR load/store lists to match L0's settings.  Only the
2333 	 * addresses are constant (for vmcs02), the counts can change based
2334 	 * on L2's behavior, e.g. switching to/from long mode.
2335 	 */
2336 	vmcs_write64(VM_EXIT_MSR_STORE_ADDR, __pa(vmx->msr_autostore.guest.val));
2337 	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
2338 	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
2339 
2340 	vmx_set_constant_host_state(vmx);
2341 }
2342 
prepare_vmcs02_early_rare(struct vcpu_vmx * vmx,struct vmcs12 * vmcs12)2343 static void prepare_vmcs02_early_rare(struct vcpu_vmx *vmx,
2344 				      struct vmcs12 *vmcs12)
2345 {
2346 	prepare_vmcs02_constant_state(vmx);
2347 
2348 	vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA);
2349 
2350 	/*
2351 	 * If VPID is disabled, then guest TLB accesses use VPID=0, i.e. the
2352 	 * same VPID as the host.  Emulate this behavior by using vpid01 for L2
2353 	 * if VPID is disabled in vmcs12.  Note, if VPID is disabled, VM-Enter
2354 	 * and VM-Exit are architecturally required to flush VPID=0, but *only*
2355 	 * VPID=0.  I.e. using vpid02 would be ok (so long as KVM emulates the
2356 	 * required flushes), but doing so would cause KVM to over-flush.  E.g.
2357 	 * if L1 runs L2 X with VPID12=1, then runs L2 Y with VPID12 disabled,
2358 	 * and then runs L2 X again, then KVM can and should retain TLB entries
2359 	 * for VPID12=1.
2360 	 */
2361 	if (enable_vpid) {
2362 		if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
2363 			vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
2364 		else
2365 			vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2366 	}
2367 }
2368 
prepare_vmcs02_early(struct vcpu_vmx * vmx,struct loaded_vmcs * vmcs01,struct vmcs12 * vmcs12)2369 static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct loaded_vmcs *vmcs01,
2370 				 struct vmcs12 *vmcs12)
2371 {
2372 	u32 exec_control;
2373 	u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);
2374 
2375 	if (vmx->nested.dirty_vmcs12 || nested_vmx_is_evmptr12_valid(vmx))
2376 		prepare_vmcs02_early_rare(vmx, vmcs12);
2377 
2378 	/*
2379 	 * PIN CONTROLS
2380 	 */
2381 	exec_control = __pin_controls_get(vmcs01);
2382 	exec_control |= (vmcs12->pin_based_vm_exec_control &
2383 			 ~PIN_BASED_VMX_PREEMPTION_TIMER);
2384 
2385 	/* Posted interrupts setting is only taken from vmcs12.  */
2386 	vmx->nested.pi_pending = false;
2387 	if (nested_cpu_has_posted_intr(vmcs12)) {
2388 		vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
2389 	} else {
2390 		vmx->nested.posted_intr_nv = -1;
2391 		exec_control &= ~PIN_BASED_POSTED_INTR;
2392 	}
2393 	pin_controls_set(vmx, exec_control);
2394 
2395 	/*
2396 	 * EXEC CONTROLS
2397 	 */
2398 	exec_control = __exec_controls_get(vmcs01); /* L0's desires */
2399 	exec_control &= ~CPU_BASED_INTR_WINDOW_EXITING;
2400 	exec_control &= ~CPU_BASED_NMI_WINDOW_EXITING;
2401 	exec_control &= ~CPU_BASED_TPR_SHADOW;
2402 	exec_control |= vmcs12->cpu_based_vm_exec_control;
2403 
2404 	vmx->nested.l1_tpr_threshold = -1;
2405 	if (exec_control & CPU_BASED_TPR_SHADOW)
2406 		vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
2407 #ifdef CONFIG_X86_64
2408 	else
2409 		exec_control |= CPU_BASED_CR8_LOAD_EXITING |
2410 				CPU_BASED_CR8_STORE_EXITING;
2411 #endif
2412 
2413 	/*
2414 	 * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
2415 	 * for I/O port accesses.
2416 	 */
2417 	exec_control |= CPU_BASED_UNCOND_IO_EXITING;
2418 	exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
2419 
2420 	/*
2421 	 * This bit will be computed in nested_get_vmcs12_pages, because
2422 	 * we do not have access to L1's MSR bitmap yet.  For now, keep
2423 	 * the same bit as before, hoping to avoid multiple VMWRITEs that
2424 	 * only set/clear this bit.
2425 	 */
2426 	exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
2427 	exec_control |= exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS;
2428 
2429 	exec_controls_set(vmx, exec_control);
2430 
2431 	/*
2432 	 * SECONDARY EXEC CONTROLS
2433 	 */
2434 	if (cpu_has_secondary_exec_ctrls()) {
2435 		exec_control = __secondary_exec_controls_get(vmcs01);
2436 
2437 		/* Take the following fields only from vmcs12 */
2438 		exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2439 				  SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2440 				  SECONDARY_EXEC_ENABLE_INVPCID |
2441 				  SECONDARY_EXEC_ENABLE_RDTSCP |
2442 				  SECONDARY_EXEC_ENABLE_XSAVES |
2443 				  SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2444 				  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2445 				  SECONDARY_EXEC_APIC_REGISTER_VIRT |
2446 				  SECONDARY_EXEC_ENABLE_VMFUNC |
2447 				  SECONDARY_EXEC_DESC);
2448 
2449 		if (nested_cpu_has(vmcs12,
2450 				   CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
2451 			exec_control |= vmcs12->secondary_vm_exec_control;
2452 
2453 		/* PML is emulated and never enabled in hardware for L2. */
2454 		exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
2455 
2456 		/* VMCS shadowing for L2 is emulated for now */
2457 		exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
2458 
2459 		/*
2460 		 * Preset *DT exiting when emulating UMIP, so that vmx_set_cr4()
2461 		 * will not have to rewrite the controls just for this bit.
2462 		 */
2463 		if (vmx_umip_emulated() && (vmcs12->guest_cr4 & X86_CR4_UMIP))
2464 			exec_control |= SECONDARY_EXEC_DESC;
2465 
2466 		if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
2467 			vmcs_write16(GUEST_INTR_STATUS,
2468 				vmcs12->guest_intr_status);
2469 
2470 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
2471 		    exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
2472 
2473 		if (exec_control & SECONDARY_EXEC_ENCLS_EXITING)
2474 			vmx_write_encls_bitmap(&vmx->vcpu, vmcs12);
2475 
2476 		secondary_exec_controls_set(vmx, exec_control);
2477 	}
2478 
2479 	/*
2480 	 * ENTRY CONTROLS
2481 	 *
2482 	 * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
2483 	 * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
2484 	 * on the related bits (if supported by the CPU) in the hope that
2485 	 * we can avoid VMWrites during vmx_set_efer().
2486 	 *
2487 	 * Similarly, take vmcs01's PERF_GLOBAL_CTRL in the hope that if KVM is
2488 	 * loading PERF_GLOBAL_CTRL via the VMCS for L1, then KVM will want to
2489 	 * do the same for L2.
2490 	 */
2491 	exec_control = __vm_entry_controls_get(vmcs01);
2492 	exec_control |= (vmcs12->vm_entry_controls &
2493 			 ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL);
2494 	exec_control &= ~(VM_ENTRY_IA32E_MODE | VM_ENTRY_LOAD_IA32_EFER);
2495 	if (cpu_has_load_ia32_efer()) {
2496 		if (guest_efer & EFER_LMA)
2497 			exec_control |= VM_ENTRY_IA32E_MODE;
2498 		if (guest_efer != kvm_host.efer)
2499 			exec_control |= VM_ENTRY_LOAD_IA32_EFER;
2500 	}
2501 	vm_entry_controls_set(vmx, exec_control);
2502 
2503 	/*
2504 	 * EXIT CONTROLS
2505 	 *
2506 	 * L2->L1 exit controls are emulated - the hardware exit is to L0 so
2507 	 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
2508 	 * bits may be modified by vmx_set_efer() in prepare_vmcs02().
2509 	 */
2510 	exec_control = __vm_exit_controls_get(vmcs01);
2511 	if (cpu_has_load_ia32_efer() && guest_efer != kvm_host.efer)
2512 		exec_control |= VM_EXIT_LOAD_IA32_EFER;
2513 	else
2514 		exec_control &= ~VM_EXIT_LOAD_IA32_EFER;
2515 	vm_exit_controls_set(vmx, exec_control);
2516 
2517 	/*
2518 	 * Interrupt/Exception Fields
2519 	 */
2520 	if (vmx->nested.nested_run_pending) {
2521 		vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2522 			     vmcs12->vm_entry_intr_info_field);
2523 		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2524 			     vmcs12->vm_entry_exception_error_code);
2525 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2526 			     vmcs12->vm_entry_instruction_len);
2527 		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
2528 			     vmcs12->guest_interruptibility_info);
2529 		vmx->loaded_vmcs->nmi_known_unmasked =
2530 			!(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
2531 	} else {
2532 		vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
2533 	}
2534 }
2535 
vmcs_read_cet_state(struct kvm_vcpu * vcpu,u64 * s_cet,u64 * ssp,u64 * ssp_tbl)2536 static void vmcs_read_cet_state(struct kvm_vcpu *vcpu, u64 *s_cet,
2537 				u64 *ssp, u64 *ssp_tbl)
2538 {
2539 	if (guest_cpu_cap_has(vcpu, X86_FEATURE_IBT) ||
2540 	    guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK))
2541 		*s_cet = vmcs_readl(GUEST_S_CET);
2542 
2543 	if (guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK)) {
2544 		*ssp = vmcs_readl(GUEST_SSP);
2545 		*ssp_tbl = vmcs_readl(GUEST_INTR_SSP_TABLE);
2546 	}
2547 }
2548 
vmcs_write_cet_state(struct kvm_vcpu * vcpu,u64 s_cet,u64 ssp,u64 ssp_tbl)2549 static void vmcs_write_cet_state(struct kvm_vcpu *vcpu, u64 s_cet,
2550 				 u64 ssp, u64 ssp_tbl)
2551 {
2552 	if (guest_cpu_cap_has(vcpu, X86_FEATURE_IBT) ||
2553 	    guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK))
2554 		vmcs_writel(GUEST_S_CET, s_cet);
2555 
2556 	if (guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK)) {
2557 		vmcs_writel(GUEST_SSP, ssp);
2558 		vmcs_writel(GUEST_INTR_SSP_TABLE, ssp_tbl);
2559 	}
2560 }
2561 
prepare_vmcs02_rare(struct vcpu_vmx * vmx,struct vmcs12 * vmcs12)2562 static void prepare_vmcs02_rare(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2563 {
2564 	struct hv_enlightened_vmcs *hv_evmcs = nested_vmx_evmcs(vmx);
2565 
2566 	if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2567 			   HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
2568 
2569 		vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
2570 		vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
2571 		vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
2572 		vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
2573 		vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
2574 		vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
2575 		vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
2576 		vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
2577 		vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
2578 		vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
2579 		vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
2580 		vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
2581 		vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
2582 		vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
2583 		vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
2584 		vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
2585 		vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
2586 		vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
2587 		vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
2588 		vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
2589 		vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
2590 		vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
2591 		vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
2592 		vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
2593 		vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
2594 		vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
2595 		vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
2596 		vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
2597 		vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
2598 		vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
2599 		vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
2600 		vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
2601 		vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
2602 		vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
2603 		vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
2604 		vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
2605 
2606 		vmx_segment_cache_clear(vmx);
2607 	}
2608 
2609 	if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2610 			   HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) {
2611 		vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
2612 		vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
2613 			    vmcs12->guest_pending_dbg_exceptions);
2614 		vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
2615 		vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
2616 
2617 		/*
2618 		 * L1 may access the L2's PDPTR, so save them to construct
2619 		 * vmcs12
2620 		 */
2621 		if (enable_ept) {
2622 			vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2623 			vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2624 			vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2625 			vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2626 		}
2627 
2628 		if (kvm_mpx_supported() && vmx->nested.nested_run_pending &&
2629 		    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
2630 			vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
2631 	}
2632 
2633 	if (nested_cpu_has_xsaves(vmcs12))
2634 		vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
2635 
2636 	/*
2637 	 * Whether page-faults are trapped is determined by a combination of
2638 	 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.  If L0
2639 	 * doesn't care about page faults then we should set all of these to
2640 	 * L1's desires. However, if L0 does care about (some) page faults, it
2641 	 * is not easy (if at all possible?) to merge L0 and L1's desires, we
2642 	 * simply ask to exit on each and every L2 page fault. This is done by
2643 	 * setting MASK=MATCH=0 and (see below) EB.PF=1.
2644 	 * Note that below we don't need special code to set EB.PF beyond the
2645 	 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
2646 	 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
2647 	 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
2648 	 */
2649 	if (vmx_need_pf_intercept(&vmx->vcpu)) {
2650 		/*
2651 		 * TODO: if both L0 and L1 need the same MASK and MATCH,
2652 		 * go ahead and use it?
2653 		 */
2654 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
2655 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
2656 	} else {
2657 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, vmcs12->page_fault_error_code_mask);
2658 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, vmcs12->page_fault_error_code_match);
2659 	}
2660 
2661 	if (cpu_has_vmx_apicv()) {
2662 		vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
2663 		vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
2664 		vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
2665 		vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
2666 	}
2667 
2668 	/*
2669 	 * Make sure the msr_autostore list is up to date before we set the
2670 	 * count in the vmcs02.
2671 	 */
2672 	prepare_vmx_msr_autostore_list(&vmx->vcpu, MSR_IA32_TSC);
2673 
2674 	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, vmx->msr_autostore.guest.nr);
2675 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2676 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2677 
2678 	if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_CET_STATE)
2679 		vmcs_write_cet_state(&vmx->vcpu, vmcs12->guest_s_cet,
2680 				     vmcs12->guest_ssp, vmcs12->guest_ssp_tbl);
2681 
2682 	set_cr4_guest_host_mask(vmx);
2683 }
2684 
2685 /*
2686  * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
2687  * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
2688  * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
2689  * guest in a way that will both be appropriate to L1's requests, and our
2690  * needs. In addition to modifying the active vmcs (which is vmcs02), this
2691  * function also has additional necessary side-effects, like setting various
2692  * vcpu->arch fields.
2693  * Returns 0 on success, 1 on failure. Invalid state exit qualification code
2694  * is assigned to entry_failure_code on failure.
2695  */
prepare_vmcs02(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,bool from_vmentry,enum vm_entry_failure_code * entry_failure_code)2696 static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
2697 			  bool from_vmentry,
2698 			  enum vm_entry_failure_code *entry_failure_code)
2699 {
2700 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2701 	struct hv_enlightened_vmcs *evmcs = nested_vmx_evmcs(vmx);
2702 	bool load_guest_pdptrs_vmcs12 = false;
2703 
2704 	if (vmx->nested.dirty_vmcs12 || nested_vmx_is_evmptr12_valid(vmx)) {
2705 		prepare_vmcs02_rare(vmx, vmcs12);
2706 		vmx->nested.dirty_vmcs12 = false;
2707 
2708 		load_guest_pdptrs_vmcs12 = !nested_vmx_is_evmptr12_valid(vmx) ||
2709 			!(evmcs->hv_clean_fields & HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1);
2710 	}
2711 
2712 	if (vmx->nested.nested_run_pending &&
2713 	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
2714 		kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
2715 		vmx_guest_debugctl_write(vcpu, vmcs12->guest_ia32_debugctl &
2716 					       vmx_get_supported_debugctl(vcpu, false));
2717 	} else {
2718 		kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
2719 		vmx_guest_debugctl_write(vcpu, vmx->nested.pre_vmenter_debugctl);
2720 	}
2721 
2722 	if (!vmx->nested.nested_run_pending ||
2723 	    !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_CET_STATE))
2724 		vmcs_write_cet_state(vcpu, vmx->nested.pre_vmenter_s_cet,
2725 				     vmx->nested.pre_vmenter_ssp,
2726 				     vmx->nested.pre_vmenter_ssp_tbl);
2727 
2728 	if (kvm_mpx_supported() && (!vmx->nested.nested_run_pending ||
2729 	    !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
2730 		vmcs_write64(GUEST_BNDCFGS, vmx->nested.pre_vmenter_bndcfgs);
2731 	vmx_set_rflags(vcpu, vmcs12->guest_rflags);
2732 
2733 	/* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
2734 	 * bitwise-or of what L1 wants to trap for L2, and what we want to
2735 	 * trap. Note that CR0.TS also needs updating - we do this later.
2736 	 */
2737 	vmx_update_exception_bitmap(vcpu);
2738 	vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
2739 	vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2740 
2741 	if (vmx->nested.nested_run_pending &&
2742 	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
2743 		vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
2744 		vcpu->arch.pat = vmcs12->guest_ia32_pat;
2745 	} else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2746 		vmcs_write64(GUEST_IA32_PAT, vcpu->arch.pat);
2747 	}
2748 
2749 	vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2750 			vcpu->arch.l1_tsc_offset,
2751 			vmx_get_l2_tsc_offset(vcpu),
2752 			vmx_get_l2_tsc_multiplier(vcpu));
2753 
2754 	vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2755 			vcpu->arch.l1_tsc_scaling_ratio,
2756 			vmx_get_l2_tsc_multiplier(vcpu));
2757 
2758 	vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
2759 	if (kvm_caps.has_tsc_control)
2760 		vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
2761 
2762 	nested_vmx_transition_tlb_flush(vcpu, vmcs12, true);
2763 
2764 	if (nested_cpu_has_ept(vmcs12))
2765 		nested_ept_init_mmu_context(vcpu);
2766 
2767 	/*
2768 	 * Override the CR0/CR4 read shadows after setting the effective guest
2769 	 * CR0/CR4.  The common helpers also set the shadows, but they don't
2770 	 * account for vmcs12's cr0/4_guest_host_mask.
2771 	 */
2772 	vmx_set_cr0(vcpu, vmcs12->guest_cr0);
2773 	vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2774 
2775 	vmx_set_cr4(vcpu, vmcs12->guest_cr4);
2776 	vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
2777 
2778 	vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12);
2779 	/* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
2780 	vmx_set_efer(vcpu, vcpu->arch.efer);
2781 
2782 	/*
2783 	 * Guest state is invalid and unrestricted guest is disabled,
2784 	 * which means L1 attempted VMEntry to L2 with invalid state.
2785 	 * Fail the VMEntry.
2786 	 *
2787 	 * However when force loading the guest state (SMM exit or
2788 	 * loading nested state after migration, it is possible to
2789 	 * have invalid guest state now, which will be later fixed by
2790 	 * restoring L2 register state
2791 	 */
2792 	if (CC(from_vmentry && !vmx_guest_state_valid(vcpu))) {
2793 		*entry_failure_code = ENTRY_FAIL_DEFAULT;
2794 		return -EINVAL;
2795 	}
2796 
2797 	/* Shadow page tables on either EPT or shadow page tables. */
2798 	if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
2799 				from_vmentry, entry_failure_code))
2800 		return -EINVAL;
2801 
2802 	/*
2803 	 * Immediately write vmcs02.GUEST_CR3.  It will be propagated to vmcs12
2804 	 * on nested VM-Exit, which can occur without actually running L2 and
2805 	 * thus without hitting vmx_load_mmu_pgd(), e.g. if L1 is entering L2 with
2806 	 * vmcs12.GUEST_ACTIVITYSTATE=HLT, in which case KVM will intercept the
2807 	 * transition to HLT instead of running L2.
2808 	 */
2809 	if (enable_ept)
2810 		vmcs_writel(GUEST_CR3, vmcs12->guest_cr3);
2811 
2812 	/* Late preparation of GUEST_PDPTRs now that EFER and CRs are set. */
2813 	if (load_guest_pdptrs_vmcs12 && nested_cpu_has_ept(vmcs12) &&
2814 	    is_pae_paging(vcpu)) {
2815 		vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2816 		vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2817 		vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2818 		vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2819 	}
2820 
2821 	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2822 	    kvm_pmu_has_perf_global_ctrl(vcpu_to_pmu(vcpu)) &&
2823 	    WARN_ON_ONCE(__kvm_emulate_msr_write(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
2824 						 vmcs12->guest_ia32_perf_global_ctrl))) {
2825 		*entry_failure_code = ENTRY_FAIL_DEFAULT;
2826 		return -EINVAL;
2827 	}
2828 
2829 	kvm_rsp_write(vcpu, vmcs12->guest_rsp);
2830 	kvm_rip_write(vcpu, vmcs12->guest_rip);
2831 
2832 	/*
2833 	 * It was observed that genuine Hyper-V running in L1 doesn't reset
2834 	 * 'hv_clean_fields' by itself, it only sets the corresponding dirty
2835 	 * bits when it changes a field in eVMCS. Mark all fields as clean
2836 	 * here.
2837 	 */
2838 	if (nested_vmx_is_evmptr12_valid(vmx))
2839 		evmcs->hv_clean_fields |= HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2840 
2841 	return 0;
2842 }
2843 
nested_vmx_check_nmi_controls(struct vmcs12 * vmcs12)2844 static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
2845 {
2846 	if (CC(!nested_cpu_has_nmi_exiting(vmcs12) &&
2847 	       nested_cpu_has_virtual_nmis(vmcs12)))
2848 		return -EINVAL;
2849 
2850 	if (CC(!nested_cpu_has_virtual_nmis(vmcs12) &&
2851 	       nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING)))
2852 		return -EINVAL;
2853 
2854 	return 0;
2855 }
2856 
nested_vmx_check_eptp(struct kvm_vcpu * vcpu,u64 new_eptp)2857 static bool nested_vmx_check_eptp(struct kvm_vcpu *vcpu, u64 new_eptp)
2858 {
2859 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2860 
2861 	/* Check for memory type validity */
2862 	switch (new_eptp & VMX_EPTP_MT_MASK) {
2863 	case VMX_EPTP_MT_UC:
2864 		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT)))
2865 			return false;
2866 		break;
2867 	case VMX_EPTP_MT_WB:
2868 		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT)))
2869 			return false;
2870 		break;
2871 	default:
2872 		return false;
2873 	}
2874 
2875 	/* Page-walk levels validity. */
2876 	switch (new_eptp & VMX_EPTP_PWL_MASK) {
2877 	case VMX_EPTP_PWL_5:
2878 		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_5_BIT)))
2879 			return false;
2880 		break;
2881 	case VMX_EPTP_PWL_4:
2882 		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_4_BIT)))
2883 			return false;
2884 		break;
2885 	default:
2886 		return false;
2887 	}
2888 
2889 	/* Reserved bits should not be set */
2890 	if (CC(!kvm_vcpu_is_legal_gpa(vcpu, new_eptp) || ((new_eptp >> 7) & 0x1f)))
2891 		return false;
2892 
2893 	/* AD, if set, should be supported */
2894 	if (new_eptp & VMX_EPTP_AD_ENABLE_BIT) {
2895 		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT)))
2896 			return false;
2897 	}
2898 
2899 	return true;
2900 }
2901 
2902 /*
2903  * Checks related to VM-Execution Control Fields
2904  */
nested_check_vm_execution_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2905 static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu,
2906                                               struct vmcs12 *vmcs12)
2907 {
2908 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2909 
2910 	if (CC(!vmx_control_verify(vmcs12->pin_based_vm_exec_control,
2911 				   vmx->nested.msrs.pinbased_ctls_low,
2912 				   vmx->nested.msrs.pinbased_ctls_high)) ||
2913 	    CC(!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
2914 				   vmx->nested.msrs.procbased_ctls_low,
2915 				   vmx->nested.msrs.procbased_ctls_high)))
2916 		return -EINVAL;
2917 
2918 	if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
2919 	    CC(!vmx_control_verify(vmcs12->secondary_vm_exec_control,
2920 				   vmx->nested.msrs.secondary_ctls_low,
2921 				   vmx->nested.msrs.secondary_ctls_high)))
2922 		return -EINVAL;
2923 
2924 	if (CC(vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu)) ||
2925 	    nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) ||
2926 	    nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) ||
2927 	    nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) ||
2928 	    nested_vmx_check_apic_access_controls(vcpu, vmcs12) ||
2929 	    nested_vmx_check_apicv_controls(vcpu, vmcs12) ||
2930 	    nested_vmx_check_nmi_controls(vmcs12) ||
2931 	    nested_vmx_check_pml_controls(vcpu, vmcs12) ||
2932 	    nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) ||
2933 	    nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) ||
2934 	    nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) ||
2935 	    CC(nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id))
2936 		return -EINVAL;
2937 
2938 	if (!nested_cpu_has_preemption_timer(vmcs12) &&
2939 	    nested_cpu_has_save_preemption_timer(vmcs12))
2940 		return -EINVAL;
2941 
2942 	if (nested_cpu_has_ept(vmcs12) &&
2943 	    CC(!nested_vmx_check_eptp(vcpu, vmcs12->ept_pointer)))
2944 		return -EINVAL;
2945 
2946 	if (nested_cpu_has_vmfunc(vmcs12)) {
2947 		if (CC(vmcs12->vm_function_control &
2948 		       ~vmx->nested.msrs.vmfunc_controls))
2949 			return -EINVAL;
2950 
2951 		if (nested_cpu_has_eptp_switching(vmcs12)) {
2952 			if (CC(!nested_cpu_has_ept(vmcs12)) ||
2953 			    CC(!page_address_valid(vcpu, vmcs12->eptp_list_address)))
2954 				return -EINVAL;
2955 		}
2956 	}
2957 
2958 	if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING) &&
2959 	    CC(!vmcs12->tsc_multiplier))
2960 		return -EINVAL;
2961 
2962 	return 0;
2963 }
2964 
2965 /*
2966  * Checks related to VM-Exit Control Fields
2967  */
nested_check_vm_exit_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2968 static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu,
2969                                          struct vmcs12 *vmcs12)
2970 {
2971 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2972 
2973 	if (CC(!vmx_control_verify(vmcs12->vm_exit_controls,
2974 				    vmx->nested.msrs.exit_ctls_low,
2975 				    vmx->nested.msrs.exit_ctls_high)) ||
2976 	    CC(nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12)))
2977 		return -EINVAL;
2978 
2979 	return 0;
2980 }
2981 
2982 /*
2983  * Checks related to VM-Entry Control Fields
2984  */
nested_check_vm_entry_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2985 static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu,
2986 					  struct vmcs12 *vmcs12)
2987 {
2988 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2989 
2990 	if (CC(!vmx_control_verify(vmcs12->vm_entry_controls,
2991 				    vmx->nested.msrs.entry_ctls_low,
2992 				    vmx->nested.msrs.entry_ctls_high)))
2993 		return -EINVAL;
2994 
2995 	/*
2996 	 * From the Intel SDM, volume 3:
2997 	 * Fields relevant to VM-entry event injection must be set properly.
2998 	 * These fields are the VM-entry interruption-information field, the
2999 	 * VM-entry exception error code, and the VM-entry instruction length.
3000 	 */
3001 	if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
3002 		u32 intr_info = vmcs12->vm_entry_intr_info_field;
3003 		u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
3004 		u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
3005 		bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
3006 		bool urg = nested_cpu_has2(vmcs12,
3007 					   SECONDARY_EXEC_UNRESTRICTED_GUEST);
3008 		bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
3009 
3010 		/* VM-entry interruption-info field: interruption type */
3011 		if (CC(intr_type == INTR_TYPE_RESERVED) ||
3012 		    CC(intr_type == INTR_TYPE_OTHER_EVENT &&
3013 		       !nested_cpu_supports_monitor_trap_flag(vcpu)))
3014 			return -EINVAL;
3015 
3016 		/* VM-entry interruption-info field: vector */
3017 		if (CC(intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
3018 		    CC(intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
3019 		    CC(intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
3020 			return -EINVAL;
3021 
3022 		/*
3023 		 * Cannot deliver error code in real mode or if the interrupt
3024 		 * type is not hardware exception. For other cases, do the
3025 		 * consistency check only if the vCPU doesn't enumerate
3026 		 * VMX_BASIC_NO_HW_ERROR_CODE_CC.
3027 		 */
3028 		if (!prot_mode || intr_type != INTR_TYPE_HARD_EXCEPTION) {
3029 			if (CC(has_error_code))
3030 				return -EINVAL;
3031 		} else if (!nested_cpu_has_no_hw_errcode_cc(vcpu)) {
3032 			if (CC(has_error_code != x86_exception_has_error_code(vector)))
3033 				return -EINVAL;
3034 		}
3035 
3036 		/* VM-entry exception error code */
3037 		if (CC(has_error_code &&
3038 		       vmcs12->vm_entry_exception_error_code & GENMASK(31, 16)))
3039 			return -EINVAL;
3040 
3041 		/* VM-entry interruption-info field: reserved bits */
3042 		if (CC(intr_info & INTR_INFO_RESVD_BITS_MASK))
3043 			return -EINVAL;
3044 
3045 		/* VM-entry instruction length */
3046 		switch (intr_type) {
3047 		case INTR_TYPE_SOFT_EXCEPTION:
3048 		case INTR_TYPE_SOFT_INTR:
3049 		case INTR_TYPE_PRIV_SW_EXCEPTION:
3050 			if (CC(vmcs12->vm_entry_instruction_len > X86_MAX_INSTRUCTION_LENGTH) ||
3051 			    CC(vmcs12->vm_entry_instruction_len == 0 &&
3052 			    CC(!nested_cpu_has_zero_length_injection(vcpu))))
3053 				return -EINVAL;
3054 		}
3055 	}
3056 
3057 	if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12))
3058 		return -EINVAL;
3059 
3060 	return 0;
3061 }
3062 
nested_vmx_check_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)3063 static int nested_vmx_check_controls(struct kvm_vcpu *vcpu,
3064 				     struct vmcs12 *vmcs12)
3065 {
3066 	if (nested_check_vm_execution_controls(vcpu, vmcs12) ||
3067 	    nested_check_vm_exit_controls(vcpu, vmcs12) ||
3068 	    nested_check_vm_entry_controls(vcpu, vmcs12))
3069 		return -EINVAL;
3070 
3071 #ifdef CONFIG_KVM_HYPERV
3072 	if (guest_cpu_cap_has_evmcs(vcpu))
3073 		return nested_evmcs_check_controls(vmcs12);
3074 #endif
3075 
3076 	return 0;
3077 }
3078 
nested_vmx_check_controls_late(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)3079 static int nested_vmx_check_controls_late(struct kvm_vcpu *vcpu,
3080 					  struct vmcs12 *vmcs12)
3081 {
3082 	void *vapic = to_vmx(vcpu)->nested.virtual_apic_map.hva;
3083 	u32 vtpr = vapic ? (*(u32 *)(vapic + APIC_TASKPRI)) >> 4 : 0;
3084 
3085 	/*
3086 	 * Don't bother with the consistency checks if KVM isn't configured to
3087 	 * WARN on missed consistency checks, as KVM needs to rely on hardware
3088 	 * to fully detect an illegal vTPR vs. TRP Threshold combination due to
3089 	 * the vTPR being writable by L1 at all times (it's an in-memory value,
3090 	 * not a VMCS field).  I.e. even if the check passes now, it might fail
3091 	 * at the actual VM-Enter.
3092 	 *
3093 	 * Keying off the module param also allows treating an invalid vAPIC
3094 	 * mapping as a consistency check failure without increasing the risk
3095 	 * of breaking a "real" VM.
3096 	 */
3097 	if (!warn_on_missed_cc)
3098 		return 0;
3099 
3100 	if ((exec_controls_get(to_vmx(vcpu)) & CPU_BASED_TPR_SHADOW) &&
3101 	    nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW) &&
3102 	    !nested_cpu_has_vid(vmcs12) &&
3103 	    !nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
3104 	    (CC(!vapic) ||
3105 	     CC((vmcs12->tpr_threshold & GENMASK(3, 0)) > (vtpr & GENMASK(3, 0)))))
3106 		return -EINVAL;
3107 
3108 	return 0;
3109 }
3110 
nested_vmx_check_address_space_size(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)3111 static int nested_vmx_check_address_space_size(struct kvm_vcpu *vcpu,
3112 				       struct vmcs12 *vmcs12)
3113 {
3114 #ifdef CONFIG_X86_64
3115 	if (CC(!!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) !=
3116 		!!(vcpu->arch.efer & EFER_LMA)))
3117 		return -EINVAL;
3118 #endif
3119 	return 0;
3120 }
3121 
is_l1_noncanonical_address_on_vmexit(u64 la,struct vmcs12 * vmcs12)3122 static bool is_l1_noncanonical_address_on_vmexit(u64 la, struct vmcs12 *vmcs12)
3123 {
3124 	/*
3125 	 * Check that the given linear address is canonical after a VM exit
3126 	 * from L2, based on HOST_CR4.LA57 value that will be loaded for L1.
3127 	 */
3128 	u8 l1_address_bits_on_exit = (vmcs12->host_cr4 & X86_CR4_LA57) ? 57 : 48;
3129 
3130 	return !__is_canonical_address(la, l1_address_bits_on_exit);
3131 }
3132 
nested_vmx_check_cet_state_common(struct kvm_vcpu * vcpu,u64 s_cet,u64 ssp,u64 ssp_tbl)3133 static int nested_vmx_check_cet_state_common(struct kvm_vcpu *vcpu, u64 s_cet,
3134 					     u64 ssp, u64 ssp_tbl)
3135 {
3136 	if (CC(!kvm_is_valid_u_s_cet(vcpu, s_cet)) || CC(!IS_ALIGNED(ssp, 4)) ||
3137 	    CC(is_noncanonical_msr_address(ssp_tbl, vcpu)))
3138 		return -EINVAL;
3139 
3140 	return 0;
3141 }
3142 
nested_vmx_check_host_state(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)3143 static int nested_vmx_check_host_state(struct kvm_vcpu *vcpu,
3144 				       struct vmcs12 *vmcs12)
3145 {
3146 	bool ia32e = !!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE);
3147 
3148 	if (CC(!nested_host_cr0_valid(vcpu, vmcs12->host_cr0)) ||
3149 	    CC(!nested_host_cr4_valid(vcpu, vmcs12->host_cr4)) ||
3150 	    CC(!kvm_vcpu_is_legal_cr3(vcpu, vmcs12->host_cr3)))
3151 		return -EINVAL;
3152 
3153 	if (CC(vmcs12->host_cr4 & X86_CR4_CET && !(vmcs12->host_cr0 & X86_CR0_WP)))
3154 		return -EINVAL;
3155 
3156 	if (CC(is_noncanonical_msr_address(vmcs12->host_ia32_sysenter_esp, vcpu)) ||
3157 	    CC(is_noncanonical_msr_address(vmcs12->host_ia32_sysenter_eip, vcpu)))
3158 		return -EINVAL;
3159 
3160 	if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) &&
3161 	    CC(!kvm_pat_valid(vmcs12->host_ia32_pat)))
3162 		return -EINVAL;
3163 
3164 	if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) &&
3165 	    CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
3166 					   vmcs12->host_ia32_perf_global_ctrl)))
3167 		return -EINVAL;
3168 
3169 	if (ia32e) {
3170 		if (CC(!(vmcs12->host_cr4 & X86_CR4_PAE)))
3171 			return -EINVAL;
3172 	} else {
3173 		if (CC(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) ||
3174 		    CC(vmcs12->host_cr4 & X86_CR4_PCIDE) ||
3175 		    CC((vmcs12->host_rip) >> 32))
3176 			return -EINVAL;
3177 	}
3178 
3179 	if (CC(vmcs12->host_cs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
3180 	    CC(vmcs12->host_ss_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
3181 	    CC(vmcs12->host_ds_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
3182 	    CC(vmcs12->host_es_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
3183 	    CC(vmcs12->host_fs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
3184 	    CC(vmcs12->host_gs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
3185 	    CC(vmcs12->host_tr_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
3186 	    CC(vmcs12->host_cs_selector == 0) ||
3187 	    CC(vmcs12->host_tr_selector == 0) ||
3188 	    CC(vmcs12->host_ss_selector == 0 && !ia32e))
3189 		return -EINVAL;
3190 
3191 	if (CC(is_noncanonical_base_address(vmcs12->host_fs_base, vcpu)) ||
3192 	    CC(is_noncanonical_base_address(vmcs12->host_gs_base, vcpu)) ||
3193 	    CC(is_noncanonical_base_address(vmcs12->host_gdtr_base, vcpu)) ||
3194 	    CC(is_noncanonical_base_address(vmcs12->host_idtr_base, vcpu)) ||
3195 	    CC(is_noncanonical_base_address(vmcs12->host_tr_base, vcpu)) ||
3196 	    CC(is_l1_noncanonical_address_on_vmexit(vmcs12->host_rip, vmcs12)))
3197 		return -EINVAL;
3198 
3199 	/*
3200 	 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
3201 	 * IA32_EFER MSR must be 0 in the field for that register. In addition,
3202 	 * the values of the LMA and LME bits in the field must each be that of
3203 	 * the host address-space size VM-exit control.
3204 	 */
3205 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
3206 		if (CC(!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer)) ||
3207 		    CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA)) ||
3208 		    CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)))
3209 			return -EINVAL;
3210 	}
3211 
3212 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_CET_STATE) {
3213 		if (nested_vmx_check_cet_state_common(vcpu, vmcs12->host_s_cet,
3214 						      vmcs12->host_ssp,
3215 						      vmcs12->host_ssp_tbl))
3216 			return -EINVAL;
3217 
3218 		/*
3219 		 * IA32_S_CET and SSP must be canonical if the host will
3220 		 * enter 64-bit mode after VM-exit; otherwise, higher
3221 		 * 32-bits must be all 0s.
3222 		 */
3223 		if (ia32e) {
3224 			if (CC(is_noncanonical_msr_address(vmcs12->host_s_cet, vcpu)) ||
3225 			    CC(is_noncanonical_msr_address(vmcs12->host_ssp, vcpu)))
3226 				return -EINVAL;
3227 		} else {
3228 			if (CC(vmcs12->host_s_cet >> 32) || CC(vmcs12->host_ssp >> 32))
3229 				return -EINVAL;
3230 		}
3231 	}
3232 
3233 	return 0;
3234 }
3235 
nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)3236 static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
3237 					  struct vmcs12 *vmcs12)
3238 {
3239 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3240 	struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
3241 	struct vmcs_hdr hdr;
3242 
3243 	if (vmcs12->vmcs_link_pointer == INVALID_GPA)
3244 		return 0;
3245 
3246 	if (CC(!page_address_valid(vcpu, vmcs12->vmcs_link_pointer)))
3247 		return -EINVAL;
3248 
3249 	if (ghc->gpa != vmcs12->vmcs_link_pointer &&
3250 	    CC(kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
3251 					 vmcs12->vmcs_link_pointer, VMCS12_SIZE)))
3252                 return -EINVAL;
3253 
3254 	if (CC(kvm_read_guest_offset_cached(vcpu->kvm, ghc, &hdr,
3255 					    offsetof(struct vmcs12, hdr),
3256 					    sizeof(hdr))))
3257 		return -EINVAL;
3258 
3259 	if (CC(hdr.revision_id != VMCS12_REVISION) ||
3260 	    CC(hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12)))
3261 		return -EINVAL;
3262 
3263 	return 0;
3264 }
3265 
3266 /*
3267  * Checks related to Guest Non-register State
3268  */
nested_check_guest_non_reg_state(struct vmcs12 * vmcs12)3269 static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12)
3270 {
3271 	if (CC(vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
3272 	       vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT &&
3273 	       vmcs12->guest_activity_state != GUEST_ACTIVITY_WAIT_SIPI))
3274 		return -EINVAL;
3275 
3276 	return 0;
3277 }
3278 
nested_vmx_check_guest_state(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,enum vm_entry_failure_code * entry_failure_code)3279 static int nested_vmx_check_guest_state(struct kvm_vcpu *vcpu,
3280 					struct vmcs12 *vmcs12,
3281 					enum vm_entry_failure_code *entry_failure_code)
3282 {
3283 	bool ia32e = !!(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE);
3284 
3285 	*entry_failure_code = ENTRY_FAIL_DEFAULT;
3286 
3287 	if (CC(!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0)) ||
3288 	    CC(!nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4)))
3289 		return -EINVAL;
3290 
3291 	if (CC(vmcs12->guest_cr4 & X86_CR4_CET && !(vmcs12->guest_cr0 & X86_CR0_WP)))
3292 		return -EINVAL;
3293 
3294 	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) &&
3295 	    (CC(!kvm_dr7_valid(vmcs12->guest_dr7)) ||
3296 	     CC(!vmx_is_valid_debugctl(vcpu, vmcs12->guest_ia32_debugctl, false))))
3297 		return -EINVAL;
3298 
3299 	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) &&
3300 	    CC(!kvm_pat_valid(vmcs12->guest_ia32_pat)))
3301 		return -EINVAL;
3302 
3303 	if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
3304 		*entry_failure_code = ENTRY_FAIL_VMCS_LINK_PTR;
3305 		return -EINVAL;
3306 	}
3307 
3308 	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
3309 	    CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
3310 					   vmcs12->guest_ia32_perf_global_ctrl)))
3311 		return -EINVAL;
3312 
3313 	if (CC((vmcs12->guest_cr0 & (X86_CR0_PG | X86_CR0_PE)) == X86_CR0_PG))
3314 		return -EINVAL;
3315 
3316 	if (CC(ia32e && !(vmcs12->guest_cr4 & X86_CR4_PAE)) ||
3317 	    CC(ia32e && !(vmcs12->guest_cr0 & X86_CR0_PG)))
3318 		return -EINVAL;
3319 
3320 	/*
3321 	 * If the load IA32_EFER VM-entry control is 1, the following checks
3322 	 * are performed on the field for the IA32_EFER MSR:
3323 	 * - Bits reserved in the IA32_EFER MSR must be 0.
3324 	 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
3325 	 *   the IA-32e mode guest VM-exit control. It must also be identical
3326 	 *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
3327 	 *   CR0.PG) is 1.
3328 	 */
3329 	if (to_vmx(vcpu)->nested.nested_run_pending &&
3330 	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
3331 		if (CC(!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer)) ||
3332 		    CC(ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA)) ||
3333 		    CC(((vmcs12->guest_cr0 & X86_CR0_PG) &&
3334 		     ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))))
3335 			return -EINVAL;
3336 	}
3337 
3338 	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
3339 	    (CC(is_noncanonical_msr_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu)) ||
3340 	     CC((vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD))))
3341 		return -EINVAL;
3342 
3343 	if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_CET_STATE) {
3344 		if (nested_vmx_check_cet_state_common(vcpu, vmcs12->guest_s_cet,
3345 						      vmcs12->guest_ssp,
3346 						      vmcs12->guest_ssp_tbl))
3347 			return -EINVAL;
3348 
3349 		/*
3350 		 * Guest SSP must have 63:N bits identical, rather than
3351 		 * be canonical (i.e., 63:N-1 bits identical), where N is
3352 		 * the CPU's maximum linear-address width. Similar to
3353 		 * is_noncanonical_msr_address(), use the host's
3354 		 * linear-address width.
3355 		 */
3356 		if (CC(!__is_canonical_address(vmcs12->guest_ssp, max_host_virt_addr_bits() + 1)))
3357 			return -EINVAL;
3358 	}
3359 
3360 	if (nested_check_guest_non_reg_state(vmcs12))
3361 		return -EINVAL;
3362 
3363 	return 0;
3364 }
3365 
3366 #ifdef CONFIG_KVM_HYPERV
nested_get_evmcs_page(struct kvm_vcpu * vcpu)3367 static bool nested_get_evmcs_page(struct kvm_vcpu *vcpu)
3368 {
3369 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3370 
3371 	/*
3372 	 * hv_evmcs may end up being not mapped after migration (when
3373 	 * L2 was running), map it here to make sure vmcs12 changes are
3374 	 * properly reflected.
3375 	 */
3376 	if (guest_cpu_cap_has_evmcs(vcpu) &&
3377 	    vmx->nested.hv_evmcs_vmptr == EVMPTR_MAP_PENDING) {
3378 		enum nested_evmptrld_status evmptrld_status =
3379 			nested_vmx_handle_enlightened_vmptrld(vcpu, false);
3380 
3381 		if (evmptrld_status == EVMPTRLD_VMFAIL ||
3382 		    evmptrld_status == EVMPTRLD_ERROR)
3383 			return false;
3384 
3385 		/*
3386 		 * Post migration VMCS12 always provides the most actual
3387 		 * information, copy it to eVMCS upon entry.
3388 		 */
3389 		vmx->nested.need_vmcs12_to_shadow_sync = true;
3390 	}
3391 
3392 	return true;
3393 }
3394 #endif
3395 
nested_get_vmcs12_pages(struct kvm_vcpu * vcpu)3396 static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
3397 {
3398 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3399 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3400 	struct kvm_host_map *map;
3401 
3402 	if (!vcpu->arch.pdptrs_from_userspace &&
3403 	    !nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
3404 		/*
3405 		 * Reload the guest's PDPTRs since after a migration
3406 		 * the guest CR3 might be restored prior to setting the nested
3407 		 * state which can lead to a load of wrong PDPTRs.
3408 		 */
3409 		if (CC(!load_pdptrs(vcpu, vcpu->arch.cr3)))
3410 			return false;
3411 	}
3412 
3413 
3414 	if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3415 		map = &vmx->nested.apic_access_page_map;
3416 
3417 		if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->apic_access_addr), map)) {
3418 			vmcs_write64(APIC_ACCESS_ADDR, pfn_to_hpa(map->pfn));
3419 		} else {
3420 			pr_debug_ratelimited("%s: no backing for APIC-access address in vmcs12\n",
3421 					     __func__);
3422 			vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3423 			vcpu->run->internal.suberror =
3424 				KVM_INTERNAL_ERROR_EMULATION;
3425 			vcpu->run->internal.ndata = 0;
3426 			return false;
3427 		}
3428 	}
3429 
3430 	if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3431 		map = &vmx->nested.virtual_apic_map;
3432 
3433 		if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->virtual_apic_page_addr), map)) {
3434 			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, pfn_to_hpa(map->pfn));
3435 		} else if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING) &&
3436 		           nested_cpu_has(vmcs12, CPU_BASED_CR8_STORE_EXITING) &&
3437 			   !nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3438 			/*
3439 			 * The processor will never use the TPR shadow, simply
3440 			 * clear the bit from the execution control.  Such a
3441 			 * configuration is useless, but it happens in tests.
3442 			 * For any other configuration, failing the vm entry is
3443 			 * _not_ what the processor does but it's basically the
3444 			 * only possibility we have.
3445 			 */
3446 			exec_controls_clearbit(vmx, CPU_BASED_TPR_SHADOW);
3447 		} else {
3448 			/*
3449 			 * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR to
3450 			 * force VM-Entry to fail.
3451 			 */
3452 			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, INVALID_GPA);
3453 		}
3454 	}
3455 
3456 	if (nested_cpu_has_posted_intr(vmcs12)) {
3457 		map = &vmx->nested.pi_desc_map;
3458 
3459 		if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->posted_intr_desc_addr), map)) {
3460 			vmx->nested.pi_desc =
3461 				(struct pi_desc *)(((void *)map->hva) +
3462 				offset_in_page(vmcs12->posted_intr_desc_addr));
3463 			vmcs_write64(POSTED_INTR_DESC_ADDR,
3464 				     pfn_to_hpa(map->pfn) + offset_in_page(vmcs12->posted_intr_desc_addr));
3465 		} else {
3466 			/*
3467 			 * Defer the KVM_INTERNAL_EXIT until KVM tries to
3468 			 * access the contents of the VMCS12 posted interrupt
3469 			 * descriptor. (Note that KVM may do this when it
3470 			 * should not, per the architectural specification.)
3471 			 */
3472 			vmx->nested.pi_desc = NULL;
3473 			pin_controls_clearbit(vmx, PIN_BASED_POSTED_INTR);
3474 		}
3475 	}
3476 	if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
3477 		exec_controls_setbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3478 	else
3479 		exec_controls_clearbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3480 
3481 	return true;
3482 }
3483 
vmx_get_nested_state_pages(struct kvm_vcpu * vcpu)3484 static bool vmx_get_nested_state_pages(struct kvm_vcpu *vcpu)
3485 {
3486 #ifdef CONFIG_KVM_HYPERV
3487 	/*
3488 	 * Note: nested_get_evmcs_page() also updates 'vp_assist_page' copy
3489 	 * in 'struct kvm_vcpu_hv' in case eVMCS is in use, this is mandatory
3490 	 * to make nested_evmcs_l2_tlb_flush_enabled() work correctly post
3491 	 * migration.
3492 	 */
3493 	if (!nested_get_evmcs_page(vcpu)) {
3494 		pr_debug_ratelimited("%s: enlightened vmptrld failed\n",
3495 				     __func__);
3496 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3497 		vcpu->run->internal.suberror =
3498 			KVM_INTERNAL_ERROR_EMULATION;
3499 		vcpu->run->internal.ndata = 0;
3500 
3501 		return false;
3502 	}
3503 #endif
3504 
3505 	if (is_guest_mode(vcpu) && !nested_get_vmcs12_pages(vcpu))
3506 		return false;
3507 
3508 	return true;
3509 }
3510 
nested_vmx_write_pml_buffer(struct kvm_vcpu * vcpu,gpa_t gpa)3511 static int nested_vmx_write_pml_buffer(struct kvm_vcpu *vcpu, gpa_t gpa)
3512 {
3513 	struct vmcs12 *vmcs12;
3514 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3515 	gpa_t dst;
3516 
3517 	if (WARN_ON_ONCE(!is_guest_mode(vcpu)))
3518 		return 0;
3519 
3520 	if (WARN_ON_ONCE(vmx->nested.pml_full))
3521 		return 1;
3522 
3523 	/*
3524 	 * Check if PML is enabled for the nested guest. Whether eptp bit 6 is
3525 	 * set is already checked as part of A/D emulation.
3526 	 */
3527 	vmcs12 = get_vmcs12(vcpu);
3528 	if (!nested_cpu_has_pml(vmcs12))
3529 		return 0;
3530 
3531 	if (vmcs12->guest_pml_index >= PML_LOG_NR_ENTRIES) {
3532 		vmx->nested.pml_full = true;
3533 		return 1;
3534 	}
3535 
3536 	gpa &= ~0xFFFull;
3537 	dst = vmcs12->pml_address + sizeof(u64) * vmcs12->guest_pml_index;
3538 
3539 	if (kvm_write_guest_page(vcpu->kvm, gpa_to_gfn(dst), &gpa,
3540 				 offset_in_page(dst), sizeof(gpa)))
3541 		return 0;
3542 
3543 	vmcs12->guest_pml_index--;
3544 
3545 	return 0;
3546 }
3547 
3548 /*
3549  * Intel's VMX Instruction Reference specifies a common set of prerequisites
3550  * for running VMX instructions (except VMXON, whose prerequisites are
3551  * slightly different). It also specifies what exception to inject otherwise.
3552  * Note that many of these exceptions have priority over VM exits, so they
3553  * don't have to be checked again here.
3554  */
nested_vmx_check_permission(struct kvm_vcpu * vcpu)3555 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
3556 {
3557 	if (!to_vmx(vcpu)->nested.vmxon) {
3558 		kvm_queue_exception(vcpu, UD_VECTOR);
3559 		return 0;
3560 	}
3561 
3562 	if (vmx_get_cpl(vcpu)) {
3563 		kvm_inject_gp(vcpu, 0);
3564 		return 0;
3565 	}
3566 
3567 	return 1;
3568 }
3569 
3570 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
3571 				   struct vmcs12 *vmcs12);
3572 
3573 /*
3574  * If from_vmentry is false, this is being called from state restore (either RSM
3575  * or KVM_SET_NESTED_STATE).  Otherwise it's called from vmlaunch/vmresume.
3576  *
3577  * Returns:
3578  *	NVMX_VMENTRY_SUCCESS: Entered VMX non-root mode
3579  *	NVMX_VMENTRY_VMFAIL:  Consistency check VMFail
3580  *	NVMX_VMENTRY_VMEXIT:  Consistency check VMExit
3581  *	NVMX_VMENTRY_KVM_INTERNAL_ERROR: KVM internal error
3582  */
nested_vmx_enter_non_root_mode(struct kvm_vcpu * vcpu,bool from_vmentry)3583 enum nvmx_vmentry_status nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu,
3584 							bool from_vmentry)
3585 {
3586 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3587 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3588 	enum vm_entry_failure_code entry_failure_code;
3589 	union vmx_exit_reason exit_reason = {
3590 		.basic = EXIT_REASON_INVALID_STATE,
3591 		.failed_vmentry = 1,
3592 	};
3593 	u32 failed_index;
3594 
3595 	trace_kvm_nested_vmenter(kvm_rip_read(vcpu),
3596 				 vmx->nested.current_vmptr,
3597 				 vmcs12->guest_rip,
3598 				 vmcs12->guest_intr_status,
3599 				 vmcs12->vm_entry_intr_info_field,
3600 				 vmcs12->secondary_vm_exec_control & SECONDARY_EXEC_ENABLE_EPT,
3601 				 vmcs12->ept_pointer,
3602 				 vmcs12->guest_cr3,
3603 				 KVM_ISA_VMX);
3604 
3605 	kvm_service_local_tlb_flush_requests(vcpu);
3606 
3607 	if (!vmx->nested.nested_run_pending ||
3608 	    !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
3609 		vmx->nested.pre_vmenter_debugctl = vmx_guest_debugctl_read();
3610 	if (kvm_mpx_supported() &&
3611 	    (!vmx->nested.nested_run_pending ||
3612 	     !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
3613 		vmx->nested.pre_vmenter_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3614 
3615 	if (!vmx->nested.nested_run_pending ||
3616 	    !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_CET_STATE))
3617 		vmcs_read_cet_state(vcpu, &vmx->nested.pre_vmenter_s_cet,
3618 				    &vmx->nested.pre_vmenter_ssp,
3619 				    &vmx->nested.pre_vmenter_ssp_tbl);
3620 
3621 	/*
3622 	 * Overwrite vmcs01.GUEST_CR3 with L1's CR3 if EPT is disabled.  In the
3623 	 * event of a "late" VM-Fail, i.e. a VM-Fail detected by hardware but
3624 	 * not KVM, KVM must unwind its software model to the pre-VM-Entry host
3625 	 * state.  When EPT is disabled, GUEST_CR3 holds KVM's shadow CR3, not
3626 	 * L1's "real" CR3, which causes nested_vmx_restore_host_state() to
3627 	 * corrupt vcpu->arch.cr3.  Stuffing vmcs01.GUEST_CR3 results in the
3628 	 * unwind naturally setting arch.cr3 to the correct value.  Smashing
3629 	 * vmcs01.GUEST_CR3 is safe because nested VM-Exits, and the unwind,
3630 	 * reset KVM's MMU, i.e. vmcs01.GUEST_CR3 is guaranteed to be
3631 	 * overwritten with a shadow CR3 prior to re-entering L1.
3632 	 */
3633 	if (!enable_ept)
3634 		vmcs_writel(GUEST_CR3, vcpu->arch.cr3);
3635 
3636 	vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
3637 
3638 	prepare_vmcs02_early(vmx, &vmx->vmcs01, vmcs12);
3639 
3640 	if (from_vmentry) {
3641 		if (unlikely(!nested_get_vmcs12_pages(vcpu))) {
3642 			vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3643 			return NVMX_VMENTRY_KVM_INTERNAL_ERROR;
3644 		}
3645 
3646 		if (nested_vmx_check_controls_late(vcpu, vmcs12)) {
3647 			vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3648 			return NVMX_VMENTRY_VMFAIL;
3649 		}
3650 
3651 		if (nested_vmx_check_guest_state(vcpu, vmcs12,
3652 						 &entry_failure_code)) {
3653 			exit_reason.basic = EXIT_REASON_INVALID_STATE;
3654 			vmcs12->exit_qualification = entry_failure_code;
3655 			goto vmentry_fail_vmexit;
3656 		}
3657 	}
3658 
3659 	enter_guest_mode(vcpu);
3660 
3661 	if (prepare_vmcs02(vcpu, vmcs12, from_vmentry, &entry_failure_code)) {
3662 		exit_reason.basic = EXIT_REASON_INVALID_STATE;
3663 		vmcs12->exit_qualification = entry_failure_code;
3664 		goto vmentry_fail_vmexit_guest_mode;
3665 	}
3666 
3667 	if (from_vmentry) {
3668 		failed_index = nested_vmx_load_msr(vcpu,
3669 						   vmcs12->vm_entry_msr_load_addr,
3670 						   vmcs12->vm_entry_msr_load_count);
3671 		if (failed_index) {
3672 			exit_reason.basic = EXIT_REASON_MSR_LOAD_FAIL;
3673 			vmcs12->exit_qualification = failed_index;
3674 			goto vmentry_fail_vmexit_guest_mode;
3675 		}
3676 	} else {
3677 		/*
3678 		 * The MMU is not initialized to point at the right entities yet and
3679 		 * "get pages" would need to read data from the guest (i.e. we will
3680 		 * need to perform gpa to hpa translation). Request a call
3681 		 * to nested_get_vmcs12_pages before the next VM-entry.  The MSRs
3682 		 * have already been set at vmentry time and should not be reset.
3683 		 */
3684 		kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
3685 	}
3686 
3687 	/*
3688 	 * Re-evaluate pending events if L1 had a pending IRQ/NMI/INIT/SIPI
3689 	 * when it executed VMLAUNCH/VMRESUME, as entering non-root mode can
3690 	 * effectively unblock various events, e.g. INIT/SIPI cause VM-Exit
3691 	 * unconditionally.  Take care to pull data from vmcs01 as appropriate,
3692 	 * e.g. when checking for interrupt windows, as vmcs02 is now loaded.
3693 	 */
3694 	if ((__exec_controls_get(&vmx->vmcs01) & (CPU_BASED_INTR_WINDOW_EXITING |
3695 						  CPU_BASED_NMI_WINDOW_EXITING)) ||
3696 	    kvm_apic_has_pending_init_or_sipi(vcpu) ||
3697 	    kvm_apic_has_interrupt(vcpu))
3698 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3699 
3700 	/*
3701 	 * Do not start the preemption timer hrtimer until after we know
3702 	 * we are successful, so that only nested_vmx_vmexit needs to cancel
3703 	 * the timer.
3704 	 */
3705 	vmx->nested.preemption_timer_expired = false;
3706 	if (nested_cpu_has_preemption_timer(vmcs12)) {
3707 		u64 timer_value = vmx_calc_preemption_timer_value(vcpu);
3708 		vmx_start_preemption_timer(vcpu, timer_value);
3709 	}
3710 
3711 	/*
3712 	 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
3713 	 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
3714 	 * returned as far as L1 is concerned. It will only return (and set
3715 	 * the success flag) when L2 exits (see nested_vmx_vmexit()).
3716 	 */
3717 	return NVMX_VMENTRY_SUCCESS;
3718 
3719 	/*
3720 	 * A failed consistency check that leads to a VMExit during L1's
3721 	 * VMEnter to L2 is a variation of a normal VMexit, as explained in
3722 	 * 26.7 "VM-entry failures during or after loading guest state".
3723 	 */
3724 vmentry_fail_vmexit_guest_mode:
3725 	if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
3726 		vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
3727 	leave_guest_mode(vcpu);
3728 
3729 vmentry_fail_vmexit:
3730 	vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3731 
3732 	if (!from_vmentry)
3733 		return NVMX_VMENTRY_VMEXIT;
3734 
3735 	load_vmcs12_host_state(vcpu, vmcs12);
3736 	vmcs12->vm_exit_reason = exit_reason.full;
3737 	if (enable_shadow_vmcs || nested_vmx_is_evmptr12_valid(vmx))
3738 		vmx->nested.need_vmcs12_to_shadow_sync = true;
3739 	return NVMX_VMENTRY_VMEXIT;
3740 }
3741 
3742 /*
3743  * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
3744  * for running an L2 nested guest.
3745  */
nested_vmx_run(struct kvm_vcpu * vcpu,bool launch)3746 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
3747 {
3748 	struct vmcs12 *vmcs12;
3749 	enum nvmx_vmentry_status status;
3750 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3751 	u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
3752 	enum nested_evmptrld_status evmptrld_status;
3753 
3754 	if (!nested_vmx_check_permission(vcpu))
3755 		return 1;
3756 
3757 	evmptrld_status = nested_vmx_handle_enlightened_vmptrld(vcpu, launch);
3758 	if (evmptrld_status == EVMPTRLD_ERROR) {
3759 		kvm_queue_exception(vcpu, UD_VECTOR);
3760 		return 1;
3761 	}
3762 
3763 	kvm_pmu_branch_retired(vcpu);
3764 
3765 	if (CC(evmptrld_status == EVMPTRLD_VMFAIL))
3766 		return nested_vmx_failInvalid(vcpu);
3767 
3768 	if (CC(!nested_vmx_is_evmptr12_valid(vmx) &&
3769 	       vmx->nested.current_vmptr == INVALID_GPA))
3770 		return nested_vmx_failInvalid(vcpu);
3771 
3772 	vmcs12 = get_vmcs12(vcpu);
3773 
3774 	/*
3775 	 * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
3776 	 * that there *is* a valid VMCS pointer, RFLAGS.CF is set
3777 	 * rather than RFLAGS.ZF, and no error number is stored to the
3778 	 * VM-instruction error field.
3779 	 */
3780 	if (CC(vmcs12->hdr.shadow_vmcs))
3781 		return nested_vmx_failInvalid(vcpu);
3782 
3783 	if (nested_vmx_is_evmptr12_valid(vmx)) {
3784 		struct hv_enlightened_vmcs *evmcs = nested_vmx_evmcs(vmx);
3785 
3786 		copy_enlightened_to_vmcs12(vmx, evmcs->hv_clean_fields);
3787 		/* Enlightened VMCS doesn't have launch state */
3788 		vmcs12->launch_state = !launch;
3789 	} else if (enable_shadow_vmcs) {
3790 		copy_shadow_to_vmcs12(vmx);
3791 	}
3792 
3793 	/*
3794 	 * The nested entry process starts with enforcing various prerequisites
3795 	 * on vmcs12 as required by the Intel SDM, and act appropriately when
3796 	 * they fail: As the SDM explains, some conditions should cause the
3797 	 * instruction to fail, while others will cause the instruction to seem
3798 	 * to succeed, but return an EXIT_REASON_INVALID_STATE.
3799 	 * To speed up the normal (success) code path, we should avoid checking
3800 	 * for misconfigurations which will anyway be caught by the processor
3801 	 * when using the merged vmcs02.
3802 	 */
3803 	if (CC(interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS))
3804 		return nested_vmx_fail(vcpu, VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
3805 
3806 	if (CC(vmcs12->launch_state == launch))
3807 		return nested_vmx_fail(vcpu,
3808 			launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
3809 			       : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
3810 
3811 	if (nested_vmx_check_controls(vcpu, vmcs12))
3812 		return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3813 
3814 	if (nested_vmx_check_address_space_size(vcpu, vmcs12))
3815 		return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3816 
3817 	if (nested_vmx_check_host_state(vcpu, vmcs12))
3818 		return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3819 
3820 	/*
3821 	 * We're finally done with prerequisite checking, and can start with
3822 	 * the nested entry.
3823 	 */
3824 	vmx->nested.nested_run_pending = 1;
3825 	vmx->nested.has_preemption_timer_deadline = false;
3826 	status = nested_vmx_enter_non_root_mode(vcpu, true);
3827 	if (unlikely(status != NVMX_VMENTRY_SUCCESS))
3828 		goto vmentry_failed;
3829 
3830 	/* Hide L1D cache contents from the nested guest.  */
3831 	kvm_request_l1tf_flush_l1d();
3832 
3833 	/*
3834 	 * Must happen outside of nested_vmx_enter_non_root_mode() as it will
3835 	 * also be used as part of restoring nVMX state for
3836 	 * snapshot restore (migration).
3837 	 *
3838 	 * In this flow, it is assumed that vmcs12 cache was
3839 	 * transferred as part of captured nVMX state and should
3840 	 * therefore not be read from guest memory (which may not
3841 	 * exist on destination host yet).
3842 	 */
3843 	nested_cache_shadow_vmcs12(vcpu, vmcs12);
3844 
3845 	switch (vmcs12->guest_activity_state) {
3846 	case GUEST_ACTIVITY_HLT:
3847 		/*
3848 		 * If we're entering a halted L2 vcpu and the L2 vcpu won't be
3849 		 * awakened by event injection or by an NMI-window VM-exit or
3850 		 * by an interrupt-window VM-exit, halt the vcpu.
3851 		 */
3852 		if (!(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) &&
3853 		    !nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING) &&
3854 		    !(nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING) &&
3855 		      (vmcs12->guest_rflags & X86_EFLAGS_IF))) {
3856 			vmx->nested.nested_run_pending = 0;
3857 			return kvm_emulate_halt_noskip(vcpu);
3858 		}
3859 		break;
3860 	case GUEST_ACTIVITY_WAIT_SIPI:
3861 		vmx->nested.nested_run_pending = 0;
3862 		kvm_set_mp_state(vcpu, KVM_MP_STATE_INIT_RECEIVED);
3863 		break;
3864 	default:
3865 		break;
3866 	}
3867 
3868 	return 1;
3869 
3870 vmentry_failed:
3871 	vmx->nested.nested_run_pending = 0;
3872 	if (status == NVMX_VMENTRY_KVM_INTERNAL_ERROR)
3873 		return 0;
3874 	if (status == NVMX_VMENTRY_VMEXIT)
3875 		return 1;
3876 	WARN_ON_ONCE(status != NVMX_VMENTRY_VMFAIL);
3877 	return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3878 }
3879 
3880 /*
3881  * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
3882  * because L2 may have changed some cr0 bits directly (CR0_GUEST_HOST_MASK).
3883  * This function returns the new value we should put in vmcs12.guest_cr0.
3884  * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
3885  *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
3886  *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
3887  *     didn't trap the bit, because if L1 did, so would L0).
3888  *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
3889  *     been modified by L2, and L1 knows it. So just leave the old value of
3890  *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
3891  *     isn't relevant, because if L0 traps this bit it can set it to anything.
3892  *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
3893  *     changed these bits, and therefore they need to be updated, but L0
3894  *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
3895  *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
3896  */
3897 static inline unsigned long
vmcs12_guest_cr0(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)3898 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3899 {
3900 	return
3901 	/*1*/	(vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
3902 	/*2*/	(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
3903 	/*3*/	(vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
3904 			vcpu->arch.cr0_guest_owned_bits));
3905 }
3906 
3907 static inline unsigned long
vmcs12_guest_cr4(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)3908 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3909 {
3910 	return
3911 	/*1*/	(vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
3912 	/*2*/	(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
3913 	/*3*/	(vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
3914 			vcpu->arch.cr4_guest_owned_bits));
3915 }
3916 
vmcs12_save_pending_event(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,u32 vm_exit_reason,u32 exit_intr_info)3917 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
3918 				      struct vmcs12 *vmcs12,
3919 				      u32 vm_exit_reason, u32 exit_intr_info)
3920 {
3921 	u32 idt_vectoring;
3922 	unsigned int nr;
3923 
3924 	/*
3925 	 * Per the SDM, VM-Exits due to double and triple faults are never
3926 	 * considered to occur during event delivery, even if the double/triple
3927 	 * fault is the result of an escalating vectoring issue.
3928 	 *
3929 	 * Note, the SDM qualifies the double fault behavior with "The original
3930 	 * event results in a double-fault exception".  It's unclear why the
3931 	 * qualification exists since exits due to double fault can occur only
3932 	 * while vectoring a different exception (injected events are never
3933 	 * subject to interception), i.e. there's _always_ an original event.
3934 	 *
3935 	 * The SDM also uses NMI as a confusing example for the "original event
3936 	 * causes the VM exit directly" clause.  NMI isn't special in any way,
3937 	 * the same rule applies to all events that cause an exit directly.
3938 	 * NMI is an odd choice for the example because NMIs can only occur on
3939 	 * instruction boundaries, i.e. they _can't_ occur during vectoring.
3940 	 */
3941 	if ((u16)vm_exit_reason == EXIT_REASON_TRIPLE_FAULT ||
3942 	    ((u16)vm_exit_reason == EXIT_REASON_EXCEPTION_NMI &&
3943 	     is_double_fault(exit_intr_info))) {
3944 		vmcs12->idt_vectoring_info_field = 0;
3945 	} else if (vcpu->arch.exception.injected) {
3946 		nr = vcpu->arch.exception.vector;
3947 		idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3948 
3949 		if (kvm_exception_is_soft(nr)) {
3950 			vmcs12->vm_exit_instruction_len =
3951 				vcpu->arch.event_exit_inst_len;
3952 			idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
3953 		} else
3954 			idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
3955 
3956 		if (vcpu->arch.exception.has_error_code) {
3957 			idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
3958 			vmcs12->idt_vectoring_error_code =
3959 				vcpu->arch.exception.error_code;
3960 		}
3961 
3962 		vmcs12->idt_vectoring_info_field = idt_vectoring;
3963 	} else if (vcpu->arch.nmi_injected) {
3964 		vmcs12->idt_vectoring_info_field =
3965 			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
3966 	} else if (vcpu->arch.interrupt.injected) {
3967 		nr = vcpu->arch.interrupt.nr;
3968 		idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3969 
3970 		if (vcpu->arch.interrupt.soft) {
3971 			idt_vectoring |= INTR_TYPE_SOFT_INTR;
3972 			vmcs12->vm_entry_instruction_len =
3973 				vcpu->arch.event_exit_inst_len;
3974 		} else
3975 			idt_vectoring |= INTR_TYPE_EXT_INTR;
3976 
3977 		vmcs12->idt_vectoring_info_field = idt_vectoring;
3978 	} else {
3979 		vmcs12->idt_vectoring_info_field = 0;
3980 	}
3981 }
3982 
3983 
nested_mark_vmcs12_pages_dirty(struct kvm_vcpu * vcpu)3984 void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
3985 {
3986 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3987 	gfn_t gfn;
3988 
3989 	/*
3990 	 * Don't need to mark the APIC access page dirty; it is never
3991 	 * written to by the CPU during APIC virtualization.
3992 	 */
3993 
3994 	if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3995 		gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
3996 		kvm_vcpu_mark_page_dirty(vcpu, gfn);
3997 	}
3998 
3999 	if (nested_cpu_has_posted_intr(vmcs12)) {
4000 		gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
4001 		kvm_vcpu_mark_page_dirty(vcpu, gfn);
4002 	}
4003 }
4004 
vmx_complete_nested_posted_interrupt(struct kvm_vcpu * vcpu)4005 static int vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
4006 {
4007 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4008 	int max_irr;
4009 	void *vapic_page;
4010 	u16 status;
4011 
4012 	if (!vmx->nested.pi_pending)
4013 		return 0;
4014 
4015 	if (!vmx->nested.pi_desc)
4016 		goto mmio_needed;
4017 
4018 	vmx->nested.pi_pending = false;
4019 
4020 	if (!pi_test_and_clear_on(vmx->nested.pi_desc))
4021 		return 0;
4022 
4023 	max_irr = pi_find_highest_vector(vmx->nested.pi_desc);
4024 	if (max_irr > 0) {
4025 		vapic_page = vmx->nested.virtual_apic_map.hva;
4026 		if (!vapic_page)
4027 			goto mmio_needed;
4028 
4029 		__kvm_apic_update_irr(vmx->nested.pi_desc->pir,
4030 			vapic_page, &max_irr);
4031 		status = vmcs_read16(GUEST_INTR_STATUS);
4032 		if ((u8)max_irr > ((u8)status & 0xff)) {
4033 			status &= ~0xff;
4034 			status |= (u8)max_irr;
4035 			vmcs_write16(GUEST_INTR_STATUS, status);
4036 		}
4037 	}
4038 
4039 	nested_mark_vmcs12_pages_dirty(vcpu);
4040 	return 0;
4041 
4042 mmio_needed:
4043 	kvm_handle_memory_failure(vcpu, X86EMUL_IO_NEEDED, NULL);
4044 	return -ENXIO;
4045 }
4046 
nested_vmx_inject_exception_vmexit(struct kvm_vcpu * vcpu)4047 static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu)
4048 {
4049 	struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit;
4050 	u32 intr_info = ex->vector | INTR_INFO_VALID_MASK;
4051 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4052 	unsigned long exit_qual;
4053 
4054 	if (ex->has_payload) {
4055 		exit_qual = ex->payload;
4056 	} else if (ex->vector == PF_VECTOR) {
4057 		exit_qual = vcpu->arch.cr2;
4058 	} else if (ex->vector == DB_VECTOR) {
4059 		exit_qual = vcpu->arch.dr6;
4060 		exit_qual &= ~DR6_BT;
4061 		exit_qual ^= DR6_ACTIVE_LOW;
4062 	} else {
4063 		exit_qual = 0;
4064 	}
4065 
4066 	/*
4067 	 * Unlike AMD's Paged Real Mode, which reports an error code on #PF
4068 	 * VM-Exits even if the CPU is in Real Mode, Intel VMX never sets the
4069 	 * "has error code" flags on VM-Exit if the CPU is in Real Mode.
4070 	 */
4071 	if (ex->has_error_code && is_protmode(vcpu)) {
4072 		/*
4073 		 * Intel CPUs do not generate error codes with bits 31:16 set,
4074 		 * and more importantly VMX disallows setting bits 31:16 in the
4075 		 * injected error code for VM-Entry.  Drop the bits to mimic
4076 		 * hardware and avoid inducing failure on nested VM-Entry if L1
4077 		 * chooses to inject the exception back to L2.  AMD CPUs _do_
4078 		 * generate "full" 32-bit error codes, so KVM allows userspace
4079 		 * to inject exception error codes with bits 31:16 set.
4080 		 */
4081 		vmcs12->vm_exit_intr_error_code = (u16)ex->error_code;
4082 		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
4083 	}
4084 
4085 	if (kvm_exception_is_soft(ex->vector))
4086 		intr_info |= INTR_TYPE_SOFT_EXCEPTION;
4087 	else
4088 		intr_info |= INTR_TYPE_HARD_EXCEPTION;
4089 
4090 	if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
4091 	    vmx_get_nmi_mask(vcpu))
4092 		intr_info |= INTR_INFO_UNBLOCK_NMI;
4093 
4094 	nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
4095 }
4096 
4097 /*
4098  * Returns true if a debug trap is (likely) pending delivery.  Infer the class
4099  * of a #DB (trap-like vs. fault-like) from the exception payload (to-be-DR6).
4100  * Using the payload is flawed because code breakpoints (fault-like) and data
4101  * breakpoints (trap-like) set the same bits in DR6 (breakpoint detected), i.e.
4102  * this will return false positives if a to-be-injected code breakpoint #DB is
4103  * pending (from KVM's perspective, but not "pending" across an instruction
4104  * boundary).  ICEBP, a.k.a. INT1, is also not reflected here even though it
4105  * too is trap-like.
4106  *
4107  * KVM "works" despite these flaws as ICEBP isn't currently supported by the
4108  * emulator, Monitor Trap Flag is not marked pending on intercepted #DBs (the
4109  * #DB has already happened), and MTF isn't marked pending on code breakpoints
4110  * from the emulator (because such #DBs are fault-like and thus don't trigger
4111  * actions that fire on instruction retire).
4112  */
vmx_get_pending_dbg_trap(struct kvm_queued_exception * ex)4113 static unsigned long vmx_get_pending_dbg_trap(struct kvm_queued_exception *ex)
4114 {
4115 	if (!ex->pending || ex->vector != DB_VECTOR)
4116 		return 0;
4117 
4118 	/* General Detect #DBs are always fault-like. */
4119 	return ex->payload & ~DR6_BD;
4120 }
4121 
4122 /*
4123  * Returns true if there's a pending #DB exception that is lower priority than
4124  * a pending Monitor Trap Flag VM-Exit.  TSS T-flag #DBs are not emulated by
4125  * KVM, but could theoretically be injected by userspace.  Note, this code is
4126  * imperfect, see above.
4127  */
vmx_is_low_priority_db_trap(struct kvm_queued_exception * ex)4128 static bool vmx_is_low_priority_db_trap(struct kvm_queued_exception *ex)
4129 {
4130 	return vmx_get_pending_dbg_trap(ex) & ~DR6_BT;
4131 }
4132 
4133 /*
4134  * Certain VM-exits set the 'pending debug exceptions' field to indicate a
4135  * recognized #DB (data or single-step) that has yet to be delivered. Since KVM
4136  * represents these debug traps with a payload that is said to be compatible
4137  * with the 'pending debug exceptions' field, write the payload to the VMCS
4138  * field if a VM-exit is delivered before the debug trap.
4139  */
nested_vmx_update_pending_dbg(struct kvm_vcpu * vcpu)4140 static void nested_vmx_update_pending_dbg(struct kvm_vcpu *vcpu)
4141 {
4142 	unsigned long pending_dbg;
4143 
4144 	pending_dbg = vmx_get_pending_dbg_trap(&vcpu->arch.exception);
4145 	if (pending_dbg)
4146 		vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, pending_dbg);
4147 }
4148 
nested_vmx_preemption_timer_pending(struct kvm_vcpu * vcpu)4149 static bool nested_vmx_preemption_timer_pending(struct kvm_vcpu *vcpu)
4150 {
4151 	return nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
4152 	       to_vmx(vcpu)->nested.preemption_timer_expired;
4153 }
4154 
vmx_has_nested_events(struct kvm_vcpu * vcpu,bool for_injection)4155 static bool vmx_has_nested_events(struct kvm_vcpu *vcpu, bool for_injection)
4156 {
4157 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4158 	void *vapic = vmx->nested.virtual_apic_map.hva;
4159 	int max_irr, vppr;
4160 
4161 	if (nested_vmx_preemption_timer_pending(vcpu) ||
4162 	    vmx->nested.mtf_pending)
4163 		return true;
4164 
4165 	/*
4166 	 * Virtual Interrupt Delivery doesn't require manual injection.  Either
4167 	 * the interrupt is already in GUEST_RVI and will be recognized by CPU
4168 	 * at VM-Entry, or there is a KVM_REQ_EVENT pending and KVM will move
4169 	 * the interrupt from the PIR to RVI prior to entering the guest.
4170 	 */
4171 	if (for_injection)
4172 		return false;
4173 
4174 	if (!nested_cpu_has_vid(get_vmcs12(vcpu)) ||
4175 	    __vmx_interrupt_blocked(vcpu))
4176 		return false;
4177 
4178 	if (!vapic)
4179 		return false;
4180 
4181 	vppr = *((u32 *)(vapic + APIC_PROCPRI));
4182 
4183 	max_irr = vmx_get_rvi();
4184 	if ((max_irr & 0xf0) > (vppr & 0xf0))
4185 		return true;
4186 
4187 	if (vmx->nested.pi_pending && vmx->nested.pi_desc &&
4188 	    pi_test_on(vmx->nested.pi_desc)) {
4189 		max_irr = pi_find_highest_vector(vmx->nested.pi_desc);
4190 		if (max_irr > 0 && (max_irr & 0xf0) > (vppr & 0xf0))
4191 			return true;
4192 	}
4193 
4194 	return false;
4195 }
4196 
4197 /*
4198  * Per the Intel SDM's table "Priority Among Concurrent Events", with minor
4199  * edits to fill in missing examples, e.g. #DB due to split-lock accesses,
4200  * and less minor edits to splice in the priority of VMX Non-Root specific
4201  * events, e.g. MTF and NMI/INTR-window exiting.
4202  *
4203  * 1 Hardware Reset and Machine Checks
4204  *	- RESET
4205  *	- Machine Check
4206  *
4207  * 2 Trap on Task Switch
4208  *	- T flag in TSS is set (on task switch)
4209  *
4210  * 3 External Hardware Interventions
4211  *	- FLUSH
4212  *	- STOPCLK
4213  *	- SMI
4214  *	- INIT
4215  *
4216  * 3.5 Monitor Trap Flag (MTF) VM-exit[1]
4217  *
4218  * 4 Traps on Previous Instruction
4219  *	- Breakpoints
4220  *	- Trap-class Debug Exceptions (#DB due to TF flag set, data/I-O
4221  *	  breakpoint, or #DB due to a split-lock access)
4222  *
4223  * 4.3	VMX-preemption timer expired VM-exit
4224  *
4225  * 4.6	NMI-window exiting VM-exit[2]
4226  *
4227  * 5 Nonmaskable Interrupts (NMI)
4228  *
4229  * 5.5 Interrupt-window exiting VM-exit and Virtual-interrupt delivery
4230  *
4231  * 6 Maskable Hardware Interrupts
4232  *
4233  * 7 Code Breakpoint Fault
4234  *
4235  * 8 Faults from Fetching Next Instruction
4236  *	- Code-Segment Limit Violation
4237  *	- Code Page Fault
4238  *	- Control protection exception (missing ENDBRANCH at target of indirect
4239  *					call or jump)
4240  *
4241  * 9 Faults from Decoding Next Instruction
4242  *	- Instruction length > 15 bytes
4243  *	- Invalid Opcode
4244  *	- Coprocessor Not Available
4245  *
4246  *10 Faults on Executing Instruction
4247  *	- Overflow
4248  *	- Bound error
4249  *	- Invalid TSS
4250  *	- Segment Not Present
4251  *	- Stack fault
4252  *	- General Protection
4253  *	- Data Page Fault
4254  *	- Alignment Check
4255  *	- x86 FPU Floating-point exception
4256  *	- SIMD floating-point exception
4257  *	- Virtualization exception
4258  *	- Control protection exception
4259  *
4260  * [1] Per the "Monitor Trap Flag" section: System-management interrupts (SMIs),
4261  *     INIT signals, and higher priority events take priority over MTF VM exits.
4262  *     MTF VM exits take priority over debug-trap exceptions and lower priority
4263  *     events.
4264  *
4265  * [2] Debug-trap exceptions and higher priority events take priority over VM exits
4266  *     caused by the VMX-preemption timer.  VM exits caused by the VMX-preemption
4267  *     timer take priority over VM exits caused by the "NMI-window exiting"
4268  *     VM-execution control and lower priority events.
4269  *
4270  * [3] Debug-trap exceptions and higher priority events take priority over VM exits
4271  *     caused by "NMI-window exiting".  VM exits caused by this control take
4272  *     priority over non-maskable interrupts (NMIs) and lower priority events.
4273  *
4274  * [4] Virtual-interrupt delivery has the same priority as that of VM exits due to
4275  *     the 1-setting of the "interrupt-window exiting" VM-execution control.  Thus,
4276  *     non-maskable interrupts (NMIs) and higher priority events take priority over
4277  *     delivery of a virtual interrupt; delivery of a virtual interrupt takes
4278  *     priority over external interrupts and lower priority events.
4279  */
vmx_check_nested_events(struct kvm_vcpu * vcpu)4280 static int vmx_check_nested_events(struct kvm_vcpu *vcpu)
4281 {
4282 	struct kvm_lapic *apic = vcpu->arch.apic;
4283 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4284 	/*
4285 	 * Only a pending nested run blocks a pending exception.  If there is a
4286 	 * previously injected event, the pending exception occurred while said
4287 	 * event was being delivered and thus needs to be handled.
4288 	 */
4289 	bool block_nested_exceptions = vmx->nested.nested_run_pending;
4290 	/*
4291 	 * Events that don't require injection, i.e. that are virtualized by
4292 	 * hardware, aren't blocked by a pending VM-Enter as KVM doesn't need
4293 	 * to regain control in order to deliver the event, and hardware will
4294 	 * handle event ordering, e.g. with respect to injected exceptions.
4295 	 *
4296 	 * But, new events (not exceptions) are only recognized at instruction
4297 	 * boundaries.  If an event needs reinjection, then KVM is handling a
4298 	 * VM-Exit that occurred _during_ instruction execution; new events,
4299 	 * irrespective of whether or not they're injected, are blocked until
4300 	 * the instruction completes.
4301 	 */
4302 	bool block_non_injected_events = kvm_event_needs_reinjection(vcpu);
4303 	/*
4304 	 * Inject events are blocked by nested VM-Enter, as KVM is responsible
4305 	 * for managing priority between concurrent events, i.e. KVM needs to
4306 	 * wait until after VM-Enter completes to deliver injected events.
4307 	 */
4308 	bool block_nested_events = block_nested_exceptions ||
4309 				   block_non_injected_events;
4310 
4311 	if (lapic_in_kernel(vcpu) &&
4312 		test_bit(KVM_APIC_INIT, &apic->pending_events)) {
4313 		if (block_nested_events)
4314 			return -EBUSY;
4315 		nested_vmx_update_pending_dbg(vcpu);
4316 		clear_bit(KVM_APIC_INIT, &apic->pending_events);
4317 		if (vcpu->arch.mp_state != KVM_MP_STATE_INIT_RECEIVED)
4318 			nested_vmx_vmexit(vcpu, EXIT_REASON_INIT_SIGNAL, 0, 0);
4319 
4320 		/* MTF is discarded if the vCPU is in WFS. */
4321 		vmx->nested.mtf_pending = false;
4322 		return 0;
4323 	}
4324 
4325 	if (lapic_in_kernel(vcpu) &&
4326 	    test_bit(KVM_APIC_SIPI, &apic->pending_events)) {
4327 		if (block_nested_events)
4328 			return -EBUSY;
4329 
4330 		clear_bit(KVM_APIC_SIPI, &apic->pending_events);
4331 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
4332 			nested_vmx_vmexit(vcpu, EXIT_REASON_SIPI_SIGNAL, 0,
4333 						apic->sipi_vector & 0xFFUL);
4334 			return 0;
4335 		}
4336 		/* Fallthrough, the SIPI is completely ignored. */
4337 	}
4338 
4339 	/*
4340 	 * Process exceptions that are higher priority than Monitor Trap Flag:
4341 	 * fault-like exceptions, TSS T flag #DB (not emulated by KVM, but
4342 	 * could theoretically come in from userspace), and ICEBP (INT1).
4343 	 *
4344 	 * TODO: SMIs have higher priority than MTF and trap-like #DBs (except
4345 	 * for TSS T flag #DBs).  KVM also doesn't save/restore pending MTF
4346 	 * across SMI/RSM as it should; that needs to be addressed in order to
4347 	 * prioritize SMI over MTF and trap-like #DBs.
4348 	 */
4349 	if (vcpu->arch.exception_vmexit.pending &&
4350 	    !vmx_is_low_priority_db_trap(&vcpu->arch.exception_vmexit)) {
4351 		if (block_nested_exceptions)
4352 			return -EBUSY;
4353 
4354 		nested_vmx_inject_exception_vmexit(vcpu);
4355 		return 0;
4356 	}
4357 
4358 	if (vcpu->arch.exception.pending &&
4359 	    !vmx_is_low_priority_db_trap(&vcpu->arch.exception)) {
4360 		if (block_nested_exceptions)
4361 			return -EBUSY;
4362 		goto no_vmexit;
4363 	}
4364 
4365 	if (vmx->nested.mtf_pending) {
4366 		if (block_nested_events)
4367 			return -EBUSY;
4368 		nested_vmx_update_pending_dbg(vcpu);
4369 		nested_vmx_vmexit(vcpu, EXIT_REASON_MONITOR_TRAP_FLAG, 0, 0);
4370 		return 0;
4371 	}
4372 
4373 	if (vcpu->arch.exception_vmexit.pending) {
4374 		if (block_nested_exceptions)
4375 			return -EBUSY;
4376 
4377 		nested_vmx_inject_exception_vmexit(vcpu);
4378 		return 0;
4379 	}
4380 
4381 	if (vcpu->arch.exception.pending) {
4382 		if (block_nested_exceptions)
4383 			return -EBUSY;
4384 		goto no_vmexit;
4385 	}
4386 
4387 	if (nested_vmx_preemption_timer_pending(vcpu)) {
4388 		if (block_nested_events)
4389 			return -EBUSY;
4390 		nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
4391 		return 0;
4392 	}
4393 
4394 	if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
4395 		if (block_nested_events)
4396 			return -EBUSY;
4397 		goto no_vmexit;
4398 	}
4399 
4400 	if (vcpu->arch.nmi_pending && !vmx_nmi_blocked(vcpu)) {
4401 		if (block_nested_events)
4402 			return -EBUSY;
4403 		if (!nested_exit_on_nmi(vcpu))
4404 			goto no_vmexit;
4405 
4406 		nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
4407 				  NMI_VECTOR | INTR_TYPE_NMI_INTR |
4408 				  INTR_INFO_VALID_MASK, 0);
4409 		/*
4410 		 * The NMI-triggered VM exit counts as injection:
4411 		 * clear this one and block further NMIs.
4412 		 */
4413 		vcpu->arch.nmi_pending = 0;
4414 		vmx_set_nmi_mask(vcpu, true);
4415 		return 0;
4416 	}
4417 
4418 	if (kvm_cpu_has_interrupt(vcpu) && !vmx_interrupt_blocked(vcpu)) {
4419 		int irq;
4420 
4421 		if (!nested_exit_on_intr(vcpu)) {
4422 			if (block_nested_events)
4423 				return -EBUSY;
4424 
4425 			goto no_vmexit;
4426 		}
4427 
4428 		if (!nested_exit_intr_ack_set(vcpu)) {
4429 			if (block_nested_events)
4430 				return -EBUSY;
4431 
4432 			nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
4433 			return 0;
4434 		}
4435 
4436 		irq = kvm_cpu_get_extint(vcpu);
4437 		if (irq != -1) {
4438 			if (block_nested_events)
4439 				return -EBUSY;
4440 
4441 			nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT,
4442 					  INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR | irq, 0);
4443 			return 0;
4444 		}
4445 
4446 		irq = kvm_apic_has_interrupt(vcpu);
4447 		if (WARN_ON_ONCE(irq < 0))
4448 			goto no_vmexit;
4449 
4450 		/*
4451 		 * If the IRQ is L2's PI notification vector, process posted
4452 		 * interrupts for L2 instead of injecting VM-Exit, as the
4453 		 * detection/morphing architecturally occurs when the IRQ is
4454 		 * delivered to the CPU.  Note, only interrupts that are routed
4455 		 * through the local APIC trigger posted interrupt processing,
4456 		 * and enabling posted interrupts requires ACK-on-exit.
4457 		 */
4458 		if (irq == vmx->nested.posted_intr_nv) {
4459 			/*
4460 			 * Nested posted interrupts are delivered via RVI, i.e.
4461 			 * aren't injected by KVM, and so can be queued even if
4462 			 * manual event injection is disallowed.
4463 			 */
4464 			if (block_non_injected_events)
4465 				return -EBUSY;
4466 
4467 			vmx->nested.pi_pending = true;
4468 			kvm_apic_clear_irr(vcpu, irq);
4469 			goto no_vmexit;
4470 		}
4471 
4472 		if (block_nested_events)
4473 			return -EBUSY;
4474 
4475 		nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT,
4476 				  INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR | irq, 0);
4477 
4478 		/*
4479 		 * ACK the interrupt _after_ emulating VM-Exit, as the IRQ must
4480 		 * be marked as in-service in vmcs01.GUEST_INTERRUPT_STATUS.SVI
4481 		 * if APICv is active.
4482 		 */
4483 		kvm_apic_ack_interrupt(vcpu, irq);
4484 		return 0;
4485 	}
4486 
4487 no_vmexit:
4488 	return vmx_complete_nested_posted_interrupt(vcpu);
4489 }
4490 
vmx_get_preemption_timer_value(struct kvm_vcpu * vcpu)4491 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
4492 {
4493 	ktime_t remaining =
4494 		hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
4495 	u64 value;
4496 
4497 	if (ktime_to_ns(remaining) <= 0)
4498 		return 0;
4499 
4500 	value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
4501 	do_div(value, 1000000);
4502 	return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
4503 }
4504 
is_vmcs12_ext_field(unsigned long field)4505 static bool is_vmcs12_ext_field(unsigned long field)
4506 {
4507 	switch (field) {
4508 	case GUEST_ES_SELECTOR:
4509 	case GUEST_CS_SELECTOR:
4510 	case GUEST_SS_SELECTOR:
4511 	case GUEST_DS_SELECTOR:
4512 	case GUEST_FS_SELECTOR:
4513 	case GUEST_GS_SELECTOR:
4514 	case GUEST_LDTR_SELECTOR:
4515 	case GUEST_TR_SELECTOR:
4516 	case GUEST_ES_LIMIT:
4517 	case GUEST_CS_LIMIT:
4518 	case GUEST_SS_LIMIT:
4519 	case GUEST_DS_LIMIT:
4520 	case GUEST_FS_LIMIT:
4521 	case GUEST_GS_LIMIT:
4522 	case GUEST_LDTR_LIMIT:
4523 	case GUEST_TR_LIMIT:
4524 	case GUEST_GDTR_LIMIT:
4525 	case GUEST_IDTR_LIMIT:
4526 	case GUEST_ES_AR_BYTES:
4527 	case GUEST_DS_AR_BYTES:
4528 	case GUEST_FS_AR_BYTES:
4529 	case GUEST_GS_AR_BYTES:
4530 	case GUEST_LDTR_AR_BYTES:
4531 	case GUEST_TR_AR_BYTES:
4532 	case GUEST_ES_BASE:
4533 	case GUEST_CS_BASE:
4534 	case GUEST_SS_BASE:
4535 	case GUEST_DS_BASE:
4536 	case GUEST_FS_BASE:
4537 	case GUEST_GS_BASE:
4538 	case GUEST_LDTR_BASE:
4539 	case GUEST_TR_BASE:
4540 	case GUEST_GDTR_BASE:
4541 	case GUEST_IDTR_BASE:
4542 	case GUEST_PENDING_DBG_EXCEPTIONS:
4543 	case GUEST_BNDCFGS:
4544 		return true;
4545 	default:
4546 		break;
4547 	}
4548 
4549 	return false;
4550 }
4551 
sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)4552 static void sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
4553 				       struct vmcs12 *vmcs12)
4554 {
4555 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4556 
4557 	vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
4558 	vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
4559 	vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
4560 	vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
4561 	vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
4562 	vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
4563 	vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
4564 	vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
4565 	vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
4566 	vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
4567 	vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
4568 	vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
4569 	vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
4570 	vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
4571 	vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
4572 	vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
4573 	vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
4574 	vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
4575 	vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
4576 	vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
4577 	vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
4578 	vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
4579 	vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
4580 	vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
4581 	vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
4582 	vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
4583 	vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
4584 	vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
4585 	vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
4586 	vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
4587 	vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
4588 	vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
4589 	vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
4590 	vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
4591 	vmcs12->guest_pending_dbg_exceptions =
4592 		vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
4593 
4594 	vmx->nested.need_sync_vmcs02_to_vmcs12_rare = false;
4595 }
4596 
copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)4597 static void copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
4598 				       struct vmcs12 *vmcs12)
4599 {
4600 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4601 	int cpu;
4602 
4603 	if (!vmx->nested.need_sync_vmcs02_to_vmcs12_rare)
4604 		return;
4605 
4606 
4607 	WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01);
4608 
4609 	cpu = get_cpu();
4610 	vmx->loaded_vmcs = &vmx->nested.vmcs02;
4611 	vmx_vcpu_load_vmcs(vcpu, cpu);
4612 
4613 	sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4614 
4615 	vmx->loaded_vmcs = &vmx->vmcs01;
4616 	vmx_vcpu_load_vmcs(vcpu, cpu);
4617 	put_cpu();
4618 }
4619 
4620 /*
4621  * Update the guest state fields of vmcs12 to reflect changes that
4622  * occurred while L2 was running. (The "IA-32e mode guest" bit of the
4623  * VM-entry controls is also updated, since this is really a guest
4624  * state bit.)
4625  */
sync_vmcs02_to_vmcs12(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)4626 static void sync_vmcs02_to_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
4627 {
4628 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4629 
4630 	if (nested_vmx_is_evmptr12_valid(vmx))
4631 		sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4632 
4633 	vmx->nested.need_sync_vmcs02_to_vmcs12_rare =
4634 		!nested_vmx_is_evmptr12_valid(vmx);
4635 
4636 	vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
4637 	vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
4638 
4639 	vmcs12->guest_rsp = kvm_rsp_read(vcpu);
4640 	vmcs12->guest_rip = kvm_rip_read(vcpu);
4641 	vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
4642 
4643 	vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
4644 	vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
4645 
4646 	vmcs12->guest_interruptibility_info =
4647 		vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
4648 
4649 	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
4650 		vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
4651 	else if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4652 		vmcs12->guest_activity_state = GUEST_ACTIVITY_WAIT_SIPI;
4653 	else
4654 		vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
4655 
4656 	if (nested_cpu_has_preemption_timer(vmcs12) &&
4657 	    vmcs12->vm_exit_controls & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER &&
4658 	    !vmx->nested.nested_run_pending)
4659 		vmcs12->vmx_preemption_timer_value =
4660 			vmx_get_preemption_timer_value(vcpu);
4661 
4662 	/*
4663 	 * In some cases (usually, nested EPT), L2 is allowed to change its
4664 	 * own CR3 without exiting. If it has changed it, we must keep it.
4665 	 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
4666 	 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
4667 	 *
4668 	 * Additionally, restore L2's PDPTR to vmcs12.
4669 	 */
4670 	if (enable_ept) {
4671 		vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
4672 		if (nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
4673 			vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
4674 			vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
4675 			vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
4676 			vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
4677 		}
4678 	}
4679 
4680 	vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
4681 
4682 	if (nested_cpu_has_vid(vmcs12))
4683 		vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
4684 
4685 	vmcs12->vm_entry_controls =
4686 		(vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
4687 		(vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
4688 
4689 	/*
4690 	 * Note!  Save DR7, but intentionally don't grab DEBUGCTL from vmcs02.
4691 	 * Writes to DEBUGCTL that aren't intercepted by L1 are immediately
4692 	 * propagated to vmcs12 (see vmx_set_msr()), as the value loaded into
4693 	 * vmcs02 doesn't strictly track vmcs12.
4694 	 */
4695 	if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS)
4696 		vmcs12->guest_dr7 = vcpu->arch.dr7;
4697 
4698 	if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
4699 		vmcs12->guest_ia32_efer = vcpu->arch.efer;
4700 
4701 	vmcs_read_cet_state(&vmx->vcpu, &vmcs12->guest_s_cet,
4702 			    &vmcs12->guest_ssp,
4703 			    &vmcs12->guest_ssp_tbl);
4704 }
4705 
4706 /*
4707  * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
4708  * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
4709  * and this function updates it to reflect the changes to the guest state while
4710  * L2 was running (and perhaps made some exits which were handled directly by L0
4711  * without going back to L1), and to reflect the exit reason.
4712  * Note that we do not have to copy here all VMCS fields, just those that
4713  * could have changed by the L2 guest or the exit - i.e., the guest-state and
4714  * exit-information fields only. Other fields are modified by L1 with VMWRITE,
4715  * which already writes to vmcs12 directly.
4716  */
prepare_vmcs12(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,u32 vm_exit_reason,u32 exit_intr_info,unsigned long exit_qualification,u32 exit_insn_len)4717 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
4718 			   u32 vm_exit_reason, u32 exit_intr_info,
4719 			   unsigned long exit_qualification, u32 exit_insn_len)
4720 {
4721 	/* update exit information fields: */
4722 	vmcs12->vm_exit_reason = vm_exit_reason;
4723 	if (vmx_get_exit_reason(vcpu).enclave_mode)
4724 		vmcs12->vm_exit_reason |= VMX_EXIT_REASONS_SGX_ENCLAVE_MODE;
4725 	vmcs12->exit_qualification = exit_qualification;
4726 
4727 	/*
4728 	 * On VM-Exit due to a failed VM-Entry, the VMCS isn't marked launched
4729 	 * and only EXIT_REASON and EXIT_QUALIFICATION are updated, all other
4730 	 * exit info fields are unmodified.
4731 	 */
4732 	if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
4733 		vmcs12->launch_state = 1;
4734 
4735 		/* vm_entry_intr_info_field is cleared on exit. Emulate this
4736 		 * instead of reading the real value. */
4737 		vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
4738 
4739 		/*
4740 		 * Transfer the event that L0 or L1 may wanted to inject into
4741 		 * L2 to IDT_VECTORING_INFO_FIELD.
4742 		 */
4743 		vmcs12_save_pending_event(vcpu, vmcs12,
4744 					  vm_exit_reason, exit_intr_info);
4745 
4746 		vmcs12->vm_exit_intr_info = exit_intr_info;
4747 		vmcs12->vm_exit_instruction_len = exit_insn_len;
4748 		vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4749 
4750 		/*
4751 		 * According to spec, there's no need to store the guest's
4752 		 * MSRs if the exit is due to a VM-entry failure that occurs
4753 		 * during or after loading the guest state. Since this exit
4754 		 * does not fall in that category, we need to save the MSRs.
4755 		 */
4756 		if (nested_vmx_store_msr(vcpu,
4757 					 vmcs12->vm_exit_msr_store_addr,
4758 					 vmcs12->vm_exit_msr_store_count))
4759 			nested_vmx_abort(vcpu,
4760 					 VMX_ABORT_SAVE_GUEST_MSR_FAIL);
4761 	}
4762 }
4763 
4764 /*
4765  * A part of what we need to when the nested L2 guest exits and we want to
4766  * run its L1 parent, is to reset L1's guest state to the host state specified
4767  * in vmcs12.
4768  * This function is to be called not only on normal nested exit, but also on
4769  * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
4770  * Failures During or After Loading Guest State").
4771  * This function should be called when the active VMCS is L1's (vmcs01).
4772  */
load_vmcs12_host_state(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)4773 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
4774 				   struct vmcs12 *vmcs12)
4775 {
4776 	enum vm_entry_failure_code ignored;
4777 	struct kvm_segment seg;
4778 
4779 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
4780 		vcpu->arch.efer = vmcs12->host_ia32_efer;
4781 	else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4782 		vcpu->arch.efer |= (EFER_LMA | EFER_LME);
4783 	else
4784 		vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
4785 	vmx_set_efer(vcpu, vcpu->arch.efer);
4786 
4787 	kvm_rsp_write(vcpu, vmcs12->host_rsp);
4788 	kvm_rip_write(vcpu, vmcs12->host_rip);
4789 	vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
4790 	vmx_set_interrupt_shadow(vcpu, 0);
4791 
4792 	/*
4793 	 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
4794 	 * actually changed, because vmx_set_cr0 refers to efer set above.
4795 	 *
4796 	 * CR0_GUEST_HOST_MASK is already set in the original vmcs01
4797 	 * (KVM doesn't change it);
4798 	 */
4799 	vcpu->arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits();
4800 	vmx_set_cr0(vcpu, vmcs12->host_cr0);
4801 
4802 	/* Same as above - no reason to call set_cr4_guest_host_mask().  */
4803 	vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4804 	vmx_set_cr4(vcpu, vmcs12->host_cr4);
4805 
4806 	nested_ept_uninit_mmu_context(vcpu);
4807 
4808 	/*
4809 	 * Only PDPTE load can fail as the value of cr3 was checked on entry and
4810 	 * couldn't have changed.
4811 	 */
4812 	if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, true, &ignored))
4813 		nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
4814 
4815 	nested_vmx_transition_tlb_flush(vcpu, vmcs12, false);
4816 
4817 	vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
4818 	vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
4819 	vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
4820 	vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
4821 	vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
4822 	vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
4823 	vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
4824 
4825 	/* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
4826 	if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
4827 		vmcs_write64(GUEST_BNDCFGS, 0);
4828 
4829 	/*
4830 	 * Load CET state from host state if VM_EXIT_LOAD_CET_STATE is set.
4831 	 * otherwise CET state should be retained across VM-exit, i.e.,
4832 	 * guest values should be propagated from vmcs12 to vmcs01.
4833 	 */
4834 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_CET_STATE)
4835 		vmcs_write_cet_state(vcpu, vmcs12->host_s_cet, vmcs12->host_ssp,
4836 				     vmcs12->host_ssp_tbl);
4837 	else
4838 		vmcs_write_cet_state(vcpu, vmcs12->guest_s_cet, vmcs12->guest_ssp,
4839 				     vmcs12->guest_ssp_tbl);
4840 
4841 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
4842 		vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
4843 		vcpu->arch.pat = vmcs12->host_ia32_pat;
4844 	}
4845 	if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) &&
4846 	    kvm_pmu_has_perf_global_ctrl(vcpu_to_pmu(vcpu)))
4847 		WARN_ON_ONCE(__kvm_emulate_msr_write(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
4848 						     vmcs12->host_ia32_perf_global_ctrl));
4849 
4850 	/* Set L1 segment info according to Intel SDM
4851 	    27.5.2 Loading Host Segment and Descriptor-Table Registers */
4852 	seg = (struct kvm_segment) {
4853 		.base = 0,
4854 		.limit = 0xFFFFFFFF,
4855 		.selector = vmcs12->host_cs_selector,
4856 		.type = 11,
4857 		.present = 1,
4858 		.s = 1,
4859 		.g = 1
4860 	};
4861 	if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4862 		seg.l = 1;
4863 	else
4864 		seg.db = 1;
4865 	__vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
4866 	seg = (struct kvm_segment) {
4867 		.base = 0,
4868 		.limit = 0xFFFFFFFF,
4869 		.type = 3,
4870 		.present = 1,
4871 		.s = 1,
4872 		.db = 1,
4873 		.g = 1
4874 	};
4875 	seg.selector = vmcs12->host_ds_selector;
4876 	__vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
4877 	seg.selector = vmcs12->host_es_selector;
4878 	__vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
4879 	seg.selector = vmcs12->host_ss_selector;
4880 	__vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
4881 	seg.selector = vmcs12->host_fs_selector;
4882 	seg.base = vmcs12->host_fs_base;
4883 	__vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
4884 	seg.selector = vmcs12->host_gs_selector;
4885 	seg.base = vmcs12->host_gs_base;
4886 	__vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
4887 	seg = (struct kvm_segment) {
4888 		.base = vmcs12->host_tr_base,
4889 		.limit = 0x67,
4890 		.selector = vmcs12->host_tr_selector,
4891 		.type = 11,
4892 		.present = 1
4893 	};
4894 	__vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
4895 
4896 	memset(&seg, 0, sizeof(seg));
4897 	seg.unusable = 1;
4898 	__vmx_set_segment(vcpu, &seg, VCPU_SREG_LDTR);
4899 
4900 	kvm_set_dr(vcpu, 7, 0x400);
4901 	vmx_guest_debugctl_write(vcpu, 0);
4902 
4903 	if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
4904 				vmcs12->vm_exit_msr_load_count))
4905 		nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4906 
4907 	to_vt(vcpu)->emulation_required = vmx_emulation_required(vcpu);
4908 }
4909 
nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx * vmx)4910 static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
4911 {
4912 	struct vmx_uret_msr *efer_msr;
4913 	unsigned int i;
4914 
4915 	if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
4916 		return vmcs_read64(GUEST_IA32_EFER);
4917 
4918 	if (cpu_has_load_ia32_efer())
4919 		return kvm_host.efer;
4920 
4921 	for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
4922 		if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
4923 			return vmx->msr_autoload.guest.val[i].value;
4924 	}
4925 
4926 	efer_msr = vmx_find_uret_msr(vmx, MSR_EFER);
4927 	if (efer_msr)
4928 		return efer_msr->data;
4929 
4930 	return kvm_host.efer;
4931 }
4932 
nested_vmx_restore_host_state(struct kvm_vcpu * vcpu)4933 static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
4934 {
4935 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4936 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4937 	struct vmx_msr_entry g, h;
4938 	gpa_t gpa;
4939 	u32 i, j;
4940 
4941 	vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);
4942 
4943 	if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
4944 		/*
4945 		 * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
4946 		 * as vmcs01.GUEST_DR7 contains a userspace defined value
4947 		 * and vcpu->arch.dr7 is not squirreled away before the
4948 		 * nested VMENTER (not worth adding a variable in nested_vmx).
4949 		 */
4950 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
4951 			kvm_set_dr(vcpu, 7, DR7_FIXED_1);
4952 		else
4953 			WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
4954 	}
4955 
4956 	/* Reload DEBUGCTL to ensure vmcs01 has a fresh FREEZE_IN_SMM value. */
4957 	vmx_reload_guest_debugctl(vcpu);
4958 
4959 	/*
4960 	 * Note that calling vmx_set_{efer,cr0,cr4} is important as they
4961 	 * handle a variety of side effects to KVM's software model.
4962 	 */
4963 	vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
4964 
4965 	vcpu->arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits();
4966 	vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
4967 
4968 	vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4969 	vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));
4970 
4971 	nested_ept_uninit_mmu_context(vcpu);
4972 	vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
4973 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
4974 
4975 	/*
4976 	 * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
4977 	 * from vmcs01 (if necessary).  The PDPTRs are not loaded on
4978 	 * VMFail, like everything else we just need to ensure our
4979 	 * software model is up-to-date.
4980 	 */
4981 	if (enable_ept && is_pae_paging(vcpu))
4982 		ept_save_pdptrs(vcpu);
4983 
4984 	kvm_mmu_reset_context(vcpu);
4985 
4986 	/*
4987 	 * This nasty bit of open coding is a compromise between blindly
4988 	 * loading L1's MSRs using the exit load lists (incorrect emulation
4989 	 * of VMFail), leaving the nested VM's MSRs in the software model
4990 	 * (incorrect behavior) and snapshotting the modified MSRs (too
4991 	 * expensive since the lists are unbound by hardware).  For each
4992 	 * MSR that was (prematurely) loaded from the nested VMEntry load
4993 	 * list, reload it from the exit load list if it exists and differs
4994 	 * from the guest value.  The intent is to stuff host state as
4995 	 * silently as possible, not to fully process the exit load list.
4996 	 */
4997 	for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
4998 		gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
4999 		if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
5000 			pr_debug_ratelimited(
5001 				"%s read MSR index failed (%u, 0x%08llx)\n",
5002 				__func__, i, gpa);
5003 			goto vmabort;
5004 		}
5005 
5006 		for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
5007 			gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
5008 			if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
5009 				pr_debug_ratelimited(
5010 					"%s read MSR failed (%u, 0x%08llx)\n",
5011 					__func__, j, gpa);
5012 				goto vmabort;
5013 			}
5014 			if (h.index != g.index)
5015 				continue;
5016 			if (h.value == g.value)
5017 				break;
5018 
5019 			if (nested_vmx_load_msr_check(vcpu, &h)) {
5020 				pr_debug_ratelimited(
5021 					"%s check failed (%u, 0x%x, 0x%x)\n",
5022 					__func__, j, h.index, h.reserved);
5023 				goto vmabort;
5024 			}
5025 
5026 			if (kvm_emulate_msr_write(vcpu, h.index, h.value)) {
5027 				pr_debug_ratelimited(
5028 					"%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
5029 					__func__, j, h.index, h.value);
5030 				goto vmabort;
5031 			}
5032 		}
5033 	}
5034 
5035 	return;
5036 
5037 vmabort:
5038 	nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
5039 }
5040 
5041 /*
5042  * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
5043  * and modify vmcs12 to make it see what it would expect to see there if
5044  * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
5045  */
__nested_vmx_vmexit(struct kvm_vcpu * vcpu,u32 vm_exit_reason,u32 exit_intr_info,unsigned long exit_qualification,u32 exit_insn_len)5046 void __nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 vm_exit_reason,
5047 			 u32 exit_intr_info, unsigned long exit_qualification,
5048 			 u32 exit_insn_len)
5049 {
5050 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5051 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5052 
5053 	/* Pending MTF traps are discarded on VM-Exit. */
5054 	vmx->nested.mtf_pending = false;
5055 
5056 	/* trying to cancel vmlaunch/vmresume is a bug */
5057 	WARN_ON_ONCE(vmx->nested.nested_run_pending);
5058 
5059 #ifdef CONFIG_KVM_HYPERV
5060 	if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
5061 		/*
5062 		 * KVM_REQ_GET_NESTED_STATE_PAGES is also used to map
5063 		 * Enlightened VMCS after migration and we still need to
5064 		 * do that when something is forcing L2->L1 exit prior to
5065 		 * the first L2 run.
5066 		 */
5067 		(void)nested_get_evmcs_page(vcpu);
5068 	}
5069 #endif
5070 
5071 	/* Service pending TLB flush requests for L2 before switching to L1. */
5072 	kvm_service_local_tlb_flush_requests(vcpu);
5073 
5074 	/*
5075 	 * VCPU_EXREG_PDPTR will be clobbered in arch/x86/kvm/vmx/vmx.h between
5076 	 * now and the new vmentry.  Ensure that the VMCS02 PDPTR fields are
5077 	 * up-to-date before switching to L1.
5078 	 */
5079 	if (enable_ept && is_pae_paging(vcpu))
5080 		vmx_ept_load_pdptrs(vcpu);
5081 
5082 	leave_guest_mode(vcpu);
5083 
5084 	if (nested_cpu_has_preemption_timer(vmcs12))
5085 		hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
5086 
5087 	if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING)) {
5088 		vcpu->arch.tsc_offset = vcpu->arch.l1_tsc_offset;
5089 		if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
5090 			vcpu->arch.tsc_scaling_ratio = vcpu->arch.l1_tsc_scaling_ratio;
5091 	}
5092 
5093 	if (likely(!vmx->fail)) {
5094 		sync_vmcs02_to_vmcs12(vcpu, vmcs12);
5095 
5096 		if (vm_exit_reason != -1)
5097 			prepare_vmcs12(vcpu, vmcs12, vm_exit_reason,
5098 				       exit_intr_info, exit_qualification,
5099 				       exit_insn_len);
5100 
5101 		/*
5102 		 * Must happen outside of sync_vmcs02_to_vmcs12() as it will
5103 		 * also be used to capture vmcs12 cache as part of
5104 		 * capturing nVMX state for snapshot (migration).
5105 		 *
5106 		 * Otherwise, this flush will dirty guest memory at a
5107 		 * point it is already assumed by user-space to be
5108 		 * immutable.
5109 		 */
5110 		nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
5111 	} else {
5112 		/*
5113 		 * The only expected VM-instruction error is "VM entry with
5114 		 * invalid control field(s)." Anything else indicates a
5115 		 * problem with L0.
5116 		 */
5117 		WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
5118 			     VMXERR_ENTRY_INVALID_CONTROL_FIELD);
5119 
5120 		/* VM-Fail at VM-Entry means KVM missed a consistency check. */
5121 		WARN_ON_ONCE(warn_on_missed_cc);
5122 	}
5123 
5124 	/*
5125 	 * Drop events/exceptions that were queued for re-injection to L2
5126 	 * (picked up via vmx_complete_interrupts()), as well as exceptions
5127 	 * that were pending for L2.  Note, this must NOT be hoisted above
5128 	 * prepare_vmcs12(), events/exceptions queued for re-injection need to
5129 	 * be captured in vmcs12 (see vmcs12_save_pending_event()).
5130 	 */
5131 	vcpu->arch.nmi_injected = false;
5132 	kvm_clear_exception_queue(vcpu);
5133 	kvm_clear_interrupt_queue(vcpu);
5134 
5135 	vmx_switch_vmcs(vcpu, &vmx->vmcs01);
5136 
5137 	kvm_nested_vmexit_handle_ibrs(vcpu);
5138 
5139 	/* Update any VMCS fields that might have changed while L2 ran */
5140 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
5141 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
5142 	vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
5143 	if (kvm_caps.has_tsc_control)
5144 		vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
5145 
5146 	if (vmx->nested.l1_tpr_threshold != -1)
5147 		vmcs_write32(TPR_THRESHOLD, vmx->nested.l1_tpr_threshold);
5148 
5149 	if (vmx->nested.change_vmcs01_virtual_apic_mode) {
5150 		vmx->nested.change_vmcs01_virtual_apic_mode = false;
5151 		vmx_set_virtual_apic_mode(vcpu);
5152 	}
5153 
5154 	if (vmx->nested.update_vmcs01_cpu_dirty_logging) {
5155 		vmx->nested.update_vmcs01_cpu_dirty_logging = false;
5156 		vmx_update_cpu_dirty_logging(vcpu);
5157 	}
5158 
5159 	nested_put_vmcs12_pages(vcpu);
5160 
5161 	if (vmx->nested.reload_vmcs01_apic_access_page) {
5162 		vmx->nested.reload_vmcs01_apic_access_page = false;
5163 		kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
5164 	}
5165 
5166 	if (vmx->nested.update_vmcs01_apicv_status) {
5167 		vmx->nested.update_vmcs01_apicv_status = false;
5168 		kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
5169 	}
5170 
5171 	if (vmx->nested.update_vmcs01_hwapic_isr) {
5172 		vmx->nested.update_vmcs01_hwapic_isr = false;
5173 		kvm_apic_update_hwapic_isr(vcpu);
5174 	}
5175 
5176 	if ((vm_exit_reason != -1) &&
5177 	    (enable_shadow_vmcs || nested_vmx_is_evmptr12_valid(vmx)))
5178 		vmx->nested.need_vmcs12_to_shadow_sync = true;
5179 
5180 	/* in case we halted in L2 */
5181 	kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE);
5182 
5183 	if (likely(!vmx->fail)) {
5184 		if (vm_exit_reason != -1)
5185 			trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
5186 						       vmcs12->exit_qualification,
5187 						       vmcs12->idt_vectoring_info_field,
5188 						       vmcs12->vm_exit_intr_info,
5189 						       vmcs12->vm_exit_intr_error_code,
5190 						       KVM_ISA_VMX);
5191 
5192 		load_vmcs12_host_state(vcpu, vmcs12);
5193 
5194 		/*
5195 		 * Process events if an injectable IRQ or NMI is pending, even
5196 		 * if the event is blocked (RFLAGS.IF is cleared on VM-Exit).
5197 		 * If an event became pending while L2 was active, KVM needs to
5198 		 * either inject the event or request an IRQ/NMI window.  SMIs
5199 		 * don't need to be processed as SMM is mutually exclusive with
5200 		 * non-root mode.  INIT/SIPI don't need to be checked as INIT
5201 		 * is blocked post-VMXON, and SIPIs are ignored.
5202 		 */
5203 		if (kvm_cpu_has_injectable_intr(vcpu) || vcpu->arch.nmi_pending)
5204 			kvm_make_request(KVM_REQ_EVENT, vcpu);
5205 		return;
5206 	}
5207 
5208 	/*
5209 	 * After an early L2 VM-entry failure, we're now back
5210 	 * in L1 which thinks it just finished a VMLAUNCH or
5211 	 * VMRESUME instruction, so we need to set the failure
5212 	 * flag and the VM-instruction error field of the VMCS
5213 	 * accordingly, and skip the emulated instruction.
5214 	 */
5215 	(void)nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
5216 
5217 	/*
5218 	 * Restore L1's host state to KVM's software model.  We're here
5219 	 * because a consistency check was caught by hardware, which
5220 	 * means some amount of guest state has been propagated to KVM's
5221 	 * model and needs to be unwound to the host's state.
5222 	 */
5223 	nested_vmx_restore_host_state(vcpu);
5224 
5225 	vmx->fail = 0;
5226 }
5227 
nested_vmx_triple_fault(struct kvm_vcpu * vcpu)5228 static void nested_vmx_triple_fault(struct kvm_vcpu *vcpu)
5229 {
5230 	kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5231 	nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0);
5232 }
5233 
5234 /*
5235  * Decode the memory-address operand of a vmx instruction, as recorded on an
5236  * exit caused by such an instruction (run by a guest hypervisor).
5237  * On success, returns 0. When the operand is invalid, returns 1 and throws
5238  * #UD, #GP, or #SS.
5239  */
get_vmx_mem_address(struct kvm_vcpu * vcpu,unsigned long exit_qualification,u32 vmx_instruction_info,bool wr,int len,gva_t * ret)5240 int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
5241 			u32 vmx_instruction_info, bool wr, int len, gva_t *ret)
5242 {
5243 	gva_t off;
5244 	bool exn;
5245 	struct kvm_segment s;
5246 
5247 	/*
5248 	 * According to Vol. 3B, "Information for VM Exits Due to Instruction
5249 	 * Execution", on an exit, vmx_instruction_info holds most of the
5250 	 * addressing components of the operand. Only the displacement part
5251 	 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
5252 	 * For how an actual address is calculated from all these components,
5253 	 * refer to Vol. 1, "Operand Addressing".
5254 	 */
5255 	int  scaling = vmx_instruction_info & 3;
5256 	int  addr_size = (vmx_instruction_info >> 7) & 7;
5257 	bool is_reg = vmx_instruction_info & (1u << 10);
5258 	int  seg_reg = (vmx_instruction_info >> 15) & 7;
5259 	int  index_reg = (vmx_instruction_info >> 18) & 0xf;
5260 	bool index_is_valid = !(vmx_instruction_info & (1u << 22));
5261 	int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
5262 	bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
5263 
5264 	if (is_reg) {
5265 		kvm_queue_exception(vcpu, UD_VECTOR);
5266 		return 1;
5267 	}
5268 
5269 	/* Addr = segment_base + offset */
5270 	/* offset = base + [index * scale] + displacement */
5271 	off = exit_qualification; /* holds the displacement */
5272 	if (addr_size == 1)
5273 		off = (gva_t)sign_extend64(off, 31);
5274 	else if (addr_size == 0)
5275 		off = (gva_t)sign_extend64(off, 15);
5276 	if (base_is_valid)
5277 		off += kvm_register_read(vcpu, base_reg);
5278 	if (index_is_valid)
5279 		off += kvm_register_read(vcpu, index_reg) << scaling;
5280 	vmx_get_segment(vcpu, &s, seg_reg);
5281 
5282 	/*
5283 	 * The effective address, i.e. @off, of a memory operand is truncated
5284 	 * based on the address size of the instruction.  Note that this is
5285 	 * the *effective address*, i.e. the address prior to accounting for
5286 	 * the segment's base.
5287 	 */
5288 	if (addr_size == 1) /* 32 bit */
5289 		off &= 0xffffffff;
5290 	else if (addr_size == 0) /* 16 bit */
5291 		off &= 0xffff;
5292 
5293 	/* Checks for #GP/#SS exceptions. */
5294 	exn = false;
5295 	if (is_long_mode(vcpu)) {
5296 		/*
5297 		 * The virtual/linear address is never truncated in 64-bit
5298 		 * mode, e.g. a 32-bit address size can yield a 64-bit virtual
5299 		 * address when using FS/GS with a non-zero base.
5300 		 */
5301 		if (seg_reg == VCPU_SREG_FS || seg_reg == VCPU_SREG_GS)
5302 			*ret = s.base + off;
5303 		else
5304 			*ret = off;
5305 
5306 		*ret = vmx_get_untagged_addr(vcpu, *ret, 0);
5307 		/* Long mode: #GP(0)/#SS(0) if the memory address is in a
5308 		 * non-canonical form. This is the only check on the memory
5309 		 * destination for long mode!
5310 		 */
5311 		exn = is_noncanonical_address(*ret, vcpu, 0);
5312 	} else {
5313 		/*
5314 		 * When not in long mode, the virtual/linear address is
5315 		 * unconditionally truncated to 32 bits regardless of the
5316 		 * address size.
5317 		 */
5318 		*ret = (s.base + off) & 0xffffffff;
5319 
5320 		/* Protected mode: apply checks for segment validity in the
5321 		 * following order:
5322 		 * - segment type check (#GP(0) may be thrown)
5323 		 * - usability check (#GP(0)/#SS(0))
5324 		 * - limit check (#GP(0)/#SS(0))
5325 		 */
5326 		if (wr)
5327 			/* #GP(0) if the destination operand is located in a
5328 			 * read-only data segment or any code segment.
5329 			 */
5330 			exn = ((s.type & 0xa) == 0 || (s.type & 8));
5331 		else
5332 			/* #GP(0) if the source operand is located in an
5333 			 * execute-only code segment
5334 			 */
5335 			exn = ((s.type & 0xa) == 8);
5336 		if (exn) {
5337 			kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
5338 			return 1;
5339 		}
5340 		/* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
5341 		 */
5342 		exn = (s.unusable != 0);
5343 
5344 		/*
5345 		 * Protected mode: #GP(0)/#SS(0) if the memory operand is
5346 		 * outside the segment limit.  All CPUs that support VMX ignore
5347 		 * limit checks for flat segments, i.e. segments with base==0,
5348 		 * limit==0xffffffff and of type expand-up data or code.
5349 		 */
5350 		if (!(s.base == 0 && s.limit == 0xffffffff &&
5351 		     ((s.type & 8) || !(s.type & 4))))
5352 			exn = exn || ((u64)off + len - 1 > s.limit);
5353 	}
5354 	if (exn) {
5355 		kvm_queue_exception_e(vcpu,
5356 				      seg_reg == VCPU_SREG_SS ?
5357 						SS_VECTOR : GP_VECTOR,
5358 				      0);
5359 		return 1;
5360 	}
5361 
5362 	return 0;
5363 }
5364 
nested_vmx_get_vmptr(struct kvm_vcpu * vcpu,gpa_t * vmpointer,int * ret)5365 static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer,
5366 				int *ret)
5367 {
5368 	gva_t gva;
5369 	struct x86_exception e;
5370 	int r;
5371 
5372 	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5373 				vmcs_read32(VMX_INSTRUCTION_INFO), false,
5374 				sizeof(*vmpointer), &gva)) {
5375 		*ret = 1;
5376 		return -EINVAL;
5377 	}
5378 
5379 	r = kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e);
5380 	if (r != X86EMUL_CONTINUE) {
5381 		*ret = kvm_handle_memory_failure(vcpu, r, &e);
5382 		return -EINVAL;
5383 	}
5384 
5385 	return 0;
5386 }
5387 
5388 /*
5389  * Allocate a shadow VMCS and associate it with the currently loaded
5390  * VMCS, unless such a shadow VMCS already exists. The newly allocated
5391  * VMCS is also VMCLEARed, so that it is ready for use.
5392  */
alloc_shadow_vmcs(struct kvm_vcpu * vcpu)5393 static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
5394 {
5395 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5396 	struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
5397 
5398 	/*
5399 	 * KVM allocates a shadow VMCS only when L1 executes VMXON and frees it
5400 	 * when L1 executes VMXOFF or the vCPU is forced out of nested
5401 	 * operation.  VMXON faults if the CPU is already post-VMXON, so it
5402 	 * should be impossible to already have an allocated shadow VMCS.  KVM
5403 	 * doesn't support virtualization of VMCS shadowing, so vmcs01 should
5404 	 * always be the loaded VMCS.
5405 	 */
5406 	if (WARN_ON(loaded_vmcs != &vmx->vmcs01 || loaded_vmcs->shadow_vmcs))
5407 		return loaded_vmcs->shadow_vmcs;
5408 
5409 	loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
5410 	if (loaded_vmcs->shadow_vmcs)
5411 		vmcs_clear(loaded_vmcs->shadow_vmcs);
5412 
5413 	return loaded_vmcs->shadow_vmcs;
5414 }
5415 
enter_vmx_operation(struct kvm_vcpu * vcpu)5416 static int enter_vmx_operation(struct kvm_vcpu *vcpu)
5417 {
5418 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5419 	int r;
5420 
5421 	r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
5422 	if (r < 0)
5423 		goto out_vmcs02;
5424 
5425 	vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
5426 	if (!vmx->nested.cached_vmcs12)
5427 		goto out_cached_vmcs12;
5428 
5429 	vmx->nested.shadow_vmcs12_cache.gpa = INVALID_GPA;
5430 	vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
5431 	if (!vmx->nested.cached_shadow_vmcs12)
5432 		goto out_cached_shadow_vmcs12;
5433 
5434 	if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
5435 		goto out_shadow_vmcs;
5436 
5437 	hrtimer_setup(&vmx->nested.preemption_timer, vmx_preemption_timer_fn, CLOCK_MONOTONIC,
5438 		      HRTIMER_MODE_ABS_PINNED);
5439 
5440 	vmx->nested.vpid02 = allocate_vpid();
5441 
5442 	vmx->nested.vmcs02_initialized = false;
5443 	vmx->nested.vmxon = true;
5444 
5445 	if (vmx_pt_mode_is_host_guest()) {
5446 		vmx->pt_desc.guest.ctl = 0;
5447 		pt_update_intercept_for_msr(vcpu);
5448 	}
5449 
5450 	return 0;
5451 
5452 out_shadow_vmcs:
5453 	kfree(vmx->nested.cached_shadow_vmcs12);
5454 
5455 out_cached_shadow_vmcs12:
5456 	kfree(vmx->nested.cached_vmcs12);
5457 
5458 out_cached_vmcs12:
5459 	free_loaded_vmcs(&vmx->nested.vmcs02);
5460 
5461 out_vmcs02:
5462 	return -ENOMEM;
5463 }
5464 
5465 /* Emulate the VMXON instruction. */
handle_vmxon(struct kvm_vcpu * vcpu)5466 static int handle_vmxon(struct kvm_vcpu *vcpu)
5467 {
5468 	int ret;
5469 	gpa_t vmptr;
5470 	uint32_t revision;
5471 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5472 	const u64 VMXON_NEEDED_FEATURES = FEAT_CTL_LOCKED
5473 		| FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
5474 
5475 	/*
5476 	 * Manually check CR4.VMXE checks, KVM must force CR4.VMXE=1 to enter
5477 	 * the guest and so cannot rely on hardware to perform the check,
5478 	 * which has higher priority than VM-Exit (see Intel SDM's pseudocode
5479 	 * for VMXON).
5480 	 *
5481 	 * Rely on hardware for the other pre-VM-Exit checks, CR0.PE=1, !VM86
5482 	 * and !COMPATIBILITY modes.  For an unrestricted guest, KVM doesn't
5483 	 * force any of the relevant guest state.  For a restricted guest, KVM
5484 	 * does force CR0.PE=1, but only to also force VM86 in order to emulate
5485 	 * Real Mode, and so there's no need to check CR0.PE manually.
5486 	 */
5487 	if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_VMXE)) {
5488 		kvm_queue_exception(vcpu, UD_VECTOR);
5489 		return 1;
5490 	}
5491 
5492 	/*
5493 	 * The CPL is checked for "not in VMX operation" and for "in VMX root",
5494 	 * and has higher priority than the VM-Fail due to being post-VMXON,
5495 	 * i.e. VMXON #GPs outside of VMX non-root if CPL!=0.  In VMX non-root,
5496 	 * VMXON causes VM-Exit and KVM unconditionally forwards VMXON VM-Exits
5497 	 * from L2 to L1, i.e. there's no need to check for the vCPU being in
5498 	 * VMX non-root.
5499 	 *
5500 	 * Forwarding the VM-Exit unconditionally, i.e. without performing the
5501 	 * #UD checks (see above), is functionally ok because KVM doesn't allow
5502 	 * L1 to run L2 without CR4.VMXE=0, and because KVM never modifies L2's
5503 	 * CR0 or CR4, i.e. it's L2's responsibility to emulate #UDs that are
5504 	 * missed by hardware due to shadowing CR0 and/or CR4.
5505 	 */
5506 	if (vmx_get_cpl(vcpu)) {
5507 		kvm_inject_gp(vcpu, 0);
5508 		return 1;
5509 	}
5510 
5511 	if (vmx->nested.vmxon)
5512 		return nested_vmx_fail(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
5513 
5514 	/*
5515 	 * Invalid CR0/CR4 generates #GP.  These checks are performed if and
5516 	 * only if the vCPU isn't already in VMX operation, i.e. effectively
5517 	 * have lower priority than the VM-Fail above.
5518 	 */
5519 	if (!nested_host_cr0_valid(vcpu, kvm_read_cr0(vcpu)) ||
5520 	    !nested_host_cr4_valid(vcpu, kvm_read_cr4(vcpu))) {
5521 		kvm_inject_gp(vcpu, 0);
5522 		return 1;
5523 	}
5524 
5525 	if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
5526 			!= VMXON_NEEDED_FEATURES) {
5527 		kvm_inject_gp(vcpu, 0);
5528 		return 1;
5529 	}
5530 
5531 	if (nested_vmx_get_vmptr(vcpu, &vmptr, &ret))
5532 		return ret;
5533 
5534 	/*
5535 	 * SDM 3: 24.11.5
5536 	 * The first 4 bytes of VMXON region contain the supported
5537 	 * VMCS revision identifier
5538 	 *
5539 	 * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
5540 	 * which replaces physical address width with 32
5541 	 */
5542 	if (!page_address_valid(vcpu, vmptr))
5543 		return nested_vmx_failInvalid(vcpu);
5544 
5545 	if (kvm_read_guest(vcpu->kvm, vmptr, &revision, sizeof(revision)) ||
5546 	    revision != VMCS12_REVISION)
5547 		return nested_vmx_failInvalid(vcpu);
5548 
5549 	vmx->nested.vmxon_ptr = vmptr;
5550 	ret = enter_vmx_operation(vcpu);
5551 	if (ret)
5552 		return ret;
5553 
5554 	return nested_vmx_succeed(vcpu);
5555 }
5556 
nested_release_vmcs12(struct kvm_vcpu * vcpu)5557 static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
5558 {
5559 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5560 
5561 	if (vmx->nested.current_vmptr == INVALID_GPA)
5562 		return;
5563 
5564 	copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
5565 
5566 	if (enable_shadow_vmcs) {
5567 		/* copy to memory all shadowed fields in case
5568 		   they were modified */
5569 		copy_shadow_to_vmcs12(vmx);
5570 		vmx_disable_shadow_vmcs(vmx);
5571 	}
5572 	vmx->nested.posted_intr_nv = -1;
5573 
5574 	/* Flush VMCS12 to guest memory */
5575 	kvm_vcpu_write_guest_page(vcpu,
5576 				  vmx->nested.current_vmptr >> PAGE_SHIFT,
5577 				  vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
5578 
5579 	kvm_mmu_free_roots(vcpu->kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5580 
5581 	vmx->nested.current_vmptr = INVALID_GPA;
5582 }
5583 
5584 /* Emulate the VMXOFF instruction */
handle_vmxoff(struct kvm_vcpu * vcpu)5585 static int handle_vmxoff(struct kvm_vcpu *vcpu)
5586 {
5587 	if (!nested_vmx_check_permission(vcpu))
5588 		return 1;
5589 
5590 	free_nested(vcpu);
5591 
5592 	if (kvm_apic_has_pending_init_or_sipi(vcpu))
5593 		kvm_make_request(KVM_REQ_EVENT, vcpu);
5594 
5595 	return nested_vmx_succeed(vcpu);
5596 }
5597 
5598 /* Emulate the VMCLEAR instruction */
handle_vmclear(struct kvm_vcpu * vcpu)5599 static int handle_vmclear(struct kvm_vcpu *vcpu)
5600 {
5601 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5602 	u32 zero = 0;
5603 	gpa_t vmptr;
5604 	int r;
5605 
5606 	if (!nested_vmx_check_permission(vcpu))
5607 		return 1;
5608 
5609 	if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
5610 		return r;
5611 
5612 	if (!page_address_valid(vcpu, vmptr))
5613 		return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
5614 
5615 	if (vmptr == vmx->nested.vmxon_ptr)
5616 		return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_VMXON_POINTER);
5617 
5618 	if (likely(!nested_evmcs_handle_vmclear(vcpu, vmptr))) {
5619 		if (vmptr == vmx->nested.current_vmptr)
5620 			nested_release_vmcs12(vcpu);
5621 
5622 		/*
5623 		 * Silently ignore memory errors on VMCLEAR, Intel's pseudocode
5624 		 * for VMCLEAR includes a "ensure that data for VMCS referenced
5625 		 * by the operand is in memory" clause that guards writes to
5626 		 * memory, i.e. doing nothing for I/O is architecturally valid.
5627 		 *
5628 		 * FIXME: Suppress failures if and only if no memslot is found,
5629 		 * i.e. exit to userspace if __copy_to_user() fails.
5630 		 */
5631 		(void)kvm_vcpu_write_guest(vcpu,
5632 					   vmptr + offsetof(struct vmcs12,
5633 							    launch_state),
5634 					   &zero, sizeof(zero));
5635 	}
5636 
5637 	return nested_vmx_succeed(vcpu);
5638 }
5639 
5640 /* Emulate the VMLAUNCH instruction */
handle_vmlaunch(struct kvm_vcpu * vcpu)5641 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
5642 {
5643 	return nested_vmx_run(vcpu, true);
5644 }
5645 
5646 /* Emulate the VMRESUME instruction */
handle_vmresume(struct kvm_vcpu * vcpu)5647 static int handle_vmresume(struct kvm_vcpu *vcpu)
5648 {
5649 
5650 	return nested_vmx_run(vcpu, false);
5651 }
5652 
handle_vmread(struct kvm_vcpu * vcpu)5653 static int handle_vmread(struct kvm_vcpu *vcpu)
5654 {
5655 	struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
5656 						    : get_vmcs12(vcpu);
5657 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5658 	u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5659 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5660 	struct x86_exception e;
5661 	unsigned long field;
5662 	u64 value;
5663 	gva_t gva = 0;
5664 	short offset;
5665 	int len, r;
5666 
5667 	if (!nested_vmx_check_permission(vcpu))
5668 		return 1;
5669 
5670 	/* Decode instruction info and find the field to read */
5671 	field = kvm_register_read(vcpu, (((instr_info) >> 28) & 0xf));
5672 
5673 	if (!nested_vmx_is_evmptr12_valid(vmx)) {
5674 		/*
5675 		 * In VMX non-root operation, when the VMCS-link pointer is INVALID_GPA,
5676 		 * any VMREAD sets the ALU flags for VMfailInvalid.
5677 		 */
5678 		if (vmx->nested.current_vmptr == INVALID_GPA ||
5679 		    (is_guest_mode(vcpu) &&
5680 		     get_vmcs12(vcpu)->vmcs_link_pointer == INVALID_GPA))
5681 			return nested_vmx_failInvalid(vcpu);
5682 
5683 		offset = get_vmcs12_field_offset(field);
5684 		if (offset < 0)
5685 			return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5686 
5687 		if (!is_guest_mode(vcpu) && is_vmcs12_ext_field(field))
5688 			copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5689 
5690 		/* Read the field, zero-extended to a u64 value */
5691 		value = vmcs12_read_any(vmcs12, field, offset);
5692 	} else {
5693 		/*
5694 		 * Hyper-V TLFS (as of 6.0b) explicitly states, that while an
5695 		 * enlightened VMCS is active VMREAD/VMWRITE instructions are
5696 		 * unsupported. Unfortunately, certain versions of Windows 11
5697 		 * don't comply with this requirement which is not enforced in
5698 		 * genuine Hyper-V. Allow VMREAD from an enlightened VMCS as a
5699 		 * workaround, as misbehaving guests will panic on VM-Fail.
5700 		 * Note, enlightened VMCS is incompatible with shadow VMCS so
5701 		 * all VMREADs from L2 should go to L1.
5702 		 */
5703 		if (WARN_ON_ONCE(is_guest_mode(vcpu)))
5704 			return nested_vmx_failInvalid(vcpu);
5705 
5706 		offset = evmcs_field_offset(field, NULL);
5707 		if (offset < 0)
5708 			return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5709 
5710 		/* Read the field, zero-extended to a u64 value */
5711 		value = evmcs_read_any(nested_vmx_evmcs(vmx), field, offset);
5712 	}
5713 
5714 	/*
5715 	 * Now copy part of this value to register or memory, as requested.
5716 	 * Note that the number of bits actually copied is 32 or 64 depending
5717 	 * on the guest's mode (32 or 64 bit), not on the given field's length.
5718 	 */
5719 	if (instr_info & BIT(10)) {
5720 		kvm_register_write(vcpu, (((instr_info) >> 3) & 0xf), value);
5721 	} else {
5722 		len = is_64_bit_mode(vcpu) ? 8 : 4;
5723 		if (get_vmx_mem_address(vcpu, exit_qualification,
5724 					instr_info, true, len, &gva))
5725 			return 1;
5726 		/* _system ok, nested_vmx_check_permission has verified cpl=0 */
5727 		r = kvm_write_guest_virt_system(vcpu, gva, &value, len, &e);
5728 		if (r != X86EMUL_CONTINUE)
5729 			return kvm_handle_memory_failure(vcpu, r, &e);
5730 	}
5731 
5732 	return nested_vmx_succeed(vcpu);
5733 }
5734 
is_shadow_field_rw(unsigned long field)5735 static bool is_shadow_field_rw(unsigned long field)
5736 {
5737 	switch (field) {
5738 #define SHADOW_FIELD_RW(x, y) case x:
5739 #include "vmcs_shadow_fields.h"
5740 		return true;
5741 	default:
5742 		break;
5743 	}
5744 	return false;
5745 }
5746 
is_shadow_field_ro(unsigned long field)5747 static bool is_shadow_field_ro(unsigned long field)
5748 {
5749 	switch (field) {
5750 #define SHADOW_FIELD_RO(x, y) case x:
5751 #include "vmcs_shadow_fields.h"
5752 		return true;
5753 	default:
5754 		break;
5755 	}
5756 	return false;
5757 }
5758 
handle_vmwrite(struct kvm_vcpu * vcpu)5759 static int handle_vmwrite(struct kvm_vcpu *vcpu)
5760 {
5761 	struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
5762 						    : get_vmcs12(vcpu);
5763 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5764 	u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5765 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5766 	struct x86_exception e;
5767 	unsigned long field;
5768 	short offset;
5769 	gva_t gva;
5770 	int len, r;
5771 
5772 	/*
5773 	 * The value to write might be 32 or 64 bits, depending on L1's long
5774 	 * mode, and eventually we need to write that into a field of several
5775 	 * possible lengths. The code below first zero-extends the value to 64
5776 	 * bit (value), and then copies only the appropriate number of
5777 	 * bits into the vmcs12 field.
5778 	 */
5779 	u64 value = 0;
5780 
5781 	if (!nested_vmx_check_permission(vcpu))
5782 		return 1;
5783 
5784 	/*
5785 	 * In VMX non-root operation, when the VMCS-link pointer is INVALID_GPA,
5786 	 * any VMWRITE sets the ALU flags for VMfailInvalid.
5787 	 */
5788 	if (vmx->nested.current_vmptr == INVALID_GPA ||
5789 	    (is_guest_mode(vcpu) &&
5790 	     get_vmcs12(vcpu)->vmcs_link_pointer == INVALID_GPA))
5791 		return nested_vmx_failInvalid(vcpu);
5792 
5793 	if (instr_info & BIT(10))
5794 		value = kvm_register_read(vcpu, (((instr_info) >> 3) & 0xf));
5795 	else {
5796 		len = is_64_bit_mode(vcpu) ? 8 : 4;
5797 		if (get_vmx_mem_address(vcpu, exit_qualification,
5798 					instr_info, false, len, &gva))
5799 			return 1;
5800 		r = kvm_read_guest_virt(vcpu, gva, &value, len, &e);
5801 		if (r != X86EMUL_CONTINUE)
5802 			return kvm_handle_memory_failure(vcpu, r, &e);
5803 	}
5804 
5805 	field = kvm_register_read(vcpu, (((instr_info) >> 28) & 0xf));
5806 
5807 	offset = get_vmcs12_field_offset(field);
5808 	if (offset < 0)
5809 		return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5810 
5811 	/*
5812 	 * If the vCPU supports "VMWRITE to any supported field in the
5813 	 * VMCS," then the "read-only" fields are actually read/write.
5814 	 */
5815 	if (vmcs_field_readonly(field) &&
5816 	    !nested_cpu_has_vmwrite_any_field(vcpu))
5817 		return nested_vmx_fail(vcpu, VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
5818 
5819 	/*
5820 	 * Ensure vmcs12 is up-to-date before any VMWRITE that dirties
5821 	 * vmcs12, else we may crush a field or consume a stale value.
5822 	 */
5823 	if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field))
5824 		copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5825 
5826 	/*
5827 	 * Some Intel CPUs intentionally drop the reserved bits of the AR byte
5828 	 * fields on VMWRITE.  Emulate this behavior to ensure consistent KVM
5829 	 * behavior regardless of the underlying hardware, e.g. if an AR_BYTE
5830 	 * field is intercepted for VMWRITE but not VMREAD (in L1), then VMREAD
5831 	 * from L1 will return a different value than VMREAD from L2 (L1 sees
5832 	 * the stripped down value, L2 sees the full value as stored by KVM).
5833 	 */
5834 	if (field >= GUEST_ES_AR_BYTES && field <= GUEST_TR_AR_BYTES)
5835 		value &= 0x1f0ff;
5836 
5837 	vmcs12_write_any(vmcs12, field, offset, value);
5838 
5839 	/*
5840 	 * Do not track vmcs12 dirty-state if in guest-mode as we actually
5841 	 * dirty shadow vmcs12 instead of vmcs12.  Fields that can be updated
5842 	 * by L1 without a vmexit are always updated in the vmcs02, i.e. don't
5843 	 * "dirty" vmcs12, all others go down the prepare_vmcs02() slow path.
5844 	 */
5845 	if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field)) {
5846 		/*
5847 		 * L1 can read these fields without exiting, ensure the
5848 		 * shadow VMCS is up-to-date.
5849 		 */
5850 		if (enable_shadow_vmcs && is_shadow_field_ro(field)) {
5851 			preempt_disable();
5852 			vmcs_load(vmx->vmcs01.shadow_vmcs);
5853 
5854 			__vmcs_writel(field, value);
5855 
5856 			vmcs_clear(vmx->vmcs01.shadow_vmcs);
5857 			vmcs_load(vmx->loaded_vmcs->vmcs);
5858 			preempt_enable();
5859 		}
5860 		vmx->nested.dirty_vmcs12 = true;
5861 	}
5862 
5863 	return nested_vmx_succeed(vcpu);
5864 }
5865 
set_current_vmptr(struct vcpu_vmx * vmx,gpa_t vmptr)5866 static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
5867 {
5868 	vmx->nested.current_vmptr = vmptr;
5869 	if (enable_shadow_vmcs) {
5870 		secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
5871 		vmcs_write64(VMCS_LINK_POINTER,
5872 			     __pa(vmx->vmcs01.shadow_vmcs));
5873 		vmx->nested.need_vmcs12_to_shadow_sync = true;
5874 	}
5875 	vmx->nested.dirty_vmcs12 = true;
5876 	vmx->nested.force_msr_bitmap_recalc = true;
5877 }
5878 
5879 /* Emulate the VMPTRLD instruction */
handle_vmptrld(struct kvm_vcpu * vcpu)5880 static int handle_vmptrld(struct kvm_vcpu *vcpu)
5881 {
5882 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5883 	gpa_t vmptr;
5884 	int r;
5885 
5886 	if (!nested_vmx_check_permission(vcpu))
5887 		return 1;
5888 
5889 	if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
5890 		return r;
5891 
5892 	if (!page_address_valid(vcpu, vmptr))
5893 		return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
5894 
5895 	if (vmptr == vmx->nested.vmxon_ptr)
5896 		return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_VMXON_POINTER);
5897 
5898 	/* Forbid normal VMPTRLD if Enlightened version was used */
5899 	if (nested_vmx_is_evmptr12_valid(vmx))
5900 		return 1;
5901 
5902 	if (vmx->nested.current_vmptr != vmptr) {
5903 		struct gfn_to_hva_cache *ghc = &vmx->nested.vmcs12_cache;
5904 		struct vmcs_hdr hdr;
5905 
5906 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, vmptr, VMCS12_SIZE)) {
5907 			/*
5908 			 * Reads from an unbacked page return all 1s,
5909 			 * which means that the 32 bits located at the
5910 			 * given physical address won't match the required
5911 			 * VMCS12_REVISION identifier.
5912 			 */
5913 			return nested_vmx_fail(vcpu,
5914 				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5915 		}
5916 
5917 		if (kvm_read_guest_offset_cached(vcpu->kvm, ghc, &hdr,
5918 						 offsetof(struct vmcs12, hdr),
5919 						 sizeof(hdr))) {
5920 			return nested_vmx_fail(vcpu,
5921 				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5922 		}
5923 
5924 		if (hdr.revision_id != VMCS12_REVISION ||
5925 		    (hdr.shadow_vmcs &&
5926 		     !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
5927 			return nested_vmx_fail(vcpu,
5928 				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5929 		}
5930 
5931 		nested_release_vmcs12(vcpu);
5932 
5933 		/*
5934 		 * Load VMCS12 from guest memory since it is not already
5935 		 * cached.
5936 		 */
5937 		if (kvm_read_guest_cached(vcpu->kvm, ghc, vmx->nested.cached_vmcs12,
5938 					  VMCS12_SIZE)) {
5939 			return nested_vmx_fail(vcpu,
5940 				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5941 		}
5942 
5943 		set_current_vmptr(vmx, vmptr);
5944 	}
5945 
5946 	return nested_vmx_succeed(vcpu);
5947 }
5948 
5949 /* Emulate the VMPTRST instruction */
handle_vmptrst(struct kvm_vcpu * vcpu)5950 static int handle_vmptrst(struct kvm_vcpu *vcpu)
5951 {
5952 	unsigned long exit_qual = vmx_get_exit_qual(vcpu);
5953 	u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5954 	gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
5955 	struct x86_exception e;
5956 	gva_t gva;
5957 	int r;
5958 
5959 	if (!nested_vmx_check_permission(vcpu))
5960 		return 1;
5961 
5962 	if (unlikely(nested_vmx_is_evmptr12_valid(to_vmx(vcpu))))
5963 		return 1;
5964 
5965 	if (get_vmx_mem_address(vcpu, exit_qual, instr_info,
5966 				true, sizeof(gpa_t), &gva))
5967 		return 1;
5968 	/* *_system ok, nested_vmx_check_permission has verified cpl=0 */
5969 	r = kvm_write_guest_virt_system(vcpu, gva, (void *)&current_vmptr,
5970 					sizeof(gpa_t), &e);
5971 	if (r != X86EMUL_CONTINUE)
5972 		return kvm_handle_memory_failure(vcpu, r, &e);
5973 
5974 	return nested_vmx_succeed(vcpu);
5975 }
5976 
5977 /* Emulate the INVEPT instruction */
handle_invept(struct kvm_vcpu * vcpu)5978 static int handle_invept(struct kvm_vcpu *vcpu)
5979 {
5980 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5981 	u32 vmx_instruction_info, types;
5982 	unsigned long type, roots_to_free;
5983 	struct kvm_mmu *mmu;
5984 	gva_t gva;
5985 	struct x86_exception e;
5986 	struct {
5987 		u64 eptp, gpa;
5988 	} operand;
5989 	int i, r, gpr_index;
5990 
5991 	if (!(vmx->nested.msrs.secondary_ctls_high &
5992 	      SECONDARY_EXEC_ENABLE_EPT) ||
5993 	    !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
5994 		kvm_queue_exception(vcpu, UD_VECTOR);
5995 		return 1;
5996 	}
5997 
5998 	if (!nested_vmx_check_permission(vcpu))
5999 		return 1;
6000 
6001 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6002 	gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
6003 	type = kvm_register_read(vcpu, gpr_index);
6004 
6005 	types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
6006 
6007 	if (type >= 32 || !(types & (1 << type)))
6008 		return nested_vmx_fail(vcpu, VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6009 
6010 	/* According to the Intel VMX instruction reference, the memory
6011 	 * operand is read even if it isn't needed (e.g., for type==global)
6012 	 */
6013 	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
6014 			vmx_instruction_info, false, sizeof(operand), &gva))
6015 		return 1;
6016 	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
6017 	if (r != X86EMUL_CONTINUE)
6018 		return kvm_handle_memory_failure(vcpu, r, &e);
6019 
6020 	/*
6021 	 * Nested EPT roots are always held through guest_mmu,
6022 	 * not root_mmu.
6023 	 */
6024 	mmu = &vcpu->arch.guest_mmu;
6025 
6026 	switch (type) {
6027 	case VMX_EPT_EXTENT_CONTEXT:
6028 		if (!nested_vmx_check_eptp(vcpu, operand.eptp))
6029 			return nested_vmx_fail(vcpu,
6030 				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6031 
6032 		roots_to_free = 0;
6033 		if (nested_ept_root_matches(mmu->root.hpa, mmu->root.pgd,
6034 					    operand.eptp))
6035 			roots_to_free |= KVM_MMU_ROOT_CURRENT;
6036 
6037 		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
6038 			if (nested_ept_root_matches(mmu->prev_roots[i].hpa,
6039 						    mmu->prev_roots[i].pgd,
6040 						    operand.eptp))
6041 				roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
6042 		}
6043 		break;
6044 	case VMX_EPT_EXTENT_GLOBAL:
6045 		roots_to_free = KVM_MMU_ROOTS_ALL;
6046 		break;
6047 	default:
6048 		BUG();
6049 		break;
6050 	}
6051 
6052 	if (roots_to_free)
6053 		kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
6054 
6055 	return nested_vmx_succeed(vcpu);
6056 }
6057 
handle_invvpid(struct kvm_vcpu * vcpu)6058 static int handle_invvpid(struct kvm_vcpu *vcpu)
6059 {
6060 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6061 	u32 vmx_instruction_info;
6062 	unsigned long type, types;
6063 	gva_t gva;
6064 	struct x86_exception e;
6065 	struct {
6066 		u64 vpid;
6067 		u64 gla;
6068 	} operand;
6069 	u16 vpid02;
6070 	int r, gpr_index;
6071 
6072 	if (!(vmx->nested.msrs.secondary_ctls_high &
6073 	      SECONDARY_EXEC_ENABLE_VPID) ||
6074 			!(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
6075 		kvm_queue_exception(vcpu, UD_VECTOR);
6076 		return 1;
6077 	}
6078 
6079 	if (!nested_vmx_check_permission(vcpu))
6080 		return 1;
6081 
6082 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6083 	gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
6084 	type = kvm_register_read(vcpu, gpr_index);
6085 
6086 	types = (vmx->nested.msrs.vpid_caps &
6087 			VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
6088 
6089 	if (type >= 32 || !(types & (1 << type)))
6090 		return nested_vmx_fail(vcpu,
6091 			VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6092 
6093 	/* according to the intel vmx instruction reference, the memory
6094 	 * operand is read even if it isn't needed (e.g., for type==global)
6095 	 */
6096 	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
6097 			vmx_instruction_info, false, sizeof(operand), &gva))
6098 		return 1;
6099 	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
6100 	if (r != X86EMUL_CONTINUE)
6101 		return kvm_handle_memory_failure(vcpu, r, &e);
6102 
6103 	if (operand.vpid >> 16)
6104 		return nested_vmx_fail(vcpu,
6105 			VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6106 
6107 	/*
6108 	 * Always flush the effective vpid02, i.e. never flush the current VPID
6109 	 * and never explicitly flush vpid01.  INVVPID targets a VPID, not a
6110 	 * VMCS, and so whether or not the current vmcs12 has VPID enabled is
6111 	 * irrelevant (and there may not be a loaded vmcs12).
6112 	 */
6113 	vpid02 = nested_get_vpid02(vcpu);
6114 	switch (type) {
6115 	case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
6116 		/*
6117 		 * LAM doesn't apply to addresses that are inputs to TLB
6118 		 * invalidation.
6119 		 */
6120 		if (!operand.vpid ||
6121 		    is_noncanonical_invlpg_address(operand.gla, vcpu))
6122 			return nested_vmx_fail(vcpu,
6123 				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6124 		vpid_sync_vcpu_addr(vpid02, operand.gla);
6125 		break;
6126 	case VMX_VPID_EXTENT_SINGLE_CONTEXT:
6127 	case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
6128 		if (!operand.vpid)
6129 			return nested_vmx_fail(vcpu,
6130 				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6131 		vpid_sync_context(vpid02);
6132 		break;
6133 	case VMX_VPID_EXTENT_ALL_CONTEXT:
6134 		vpid_sync_context(vpid02);
6135 		break;
6136 	default:
6137 		WARN_ON_ONCE(1);
6138 		return kvm_skip_emulated_instruction(vcpu);
6139 	}
6140 
6141 	/*
6142 	 * Sync the shadow page tables if EPT is disabled, L1 is invalidating
6143 	 * linear mappings for L2 (tagged with L2's VPID).  Free all guest
6144 	 * roots as VPIDs are not tracked in the MMU role.
6145 	 *
6146 	 * Note, this operates on root_mmu, not guest_mmu, as L1 and L2 share
6147 	 * an MMU when EPT is disabled.
6148 	 *
6149 	 * TODO: sync only the affected SPTEs for INVDIVIDUAL_ADDR.
6150 	 */
6151 	if (!enable_ept)
6152 		kvm_mmu_free_guest_mode_roots(vcpu->kvm, &vcpu->arch.root_mmu);
6153 
6154 	return nested_vmx_succeed(vcpu);
6155 }
6156 
nested_vmx_eptp_switching(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)6157 static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
6158 				     struct vmcs12 *vmcs12)
6159 {
6160 	u32 index = kvm_rcx_read(vcpu);
6161 	u64 new_eptp;
6162 
6163 	if (WARN_ON_ONCE(!nested_cpu_has_ept(vmcs12)))
6164 		return 1;
6165 	if (index >= VMFUNC_EPTP_ENTRIES)
6166 		return 1;
6167 
6168 	if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
6169 				     &new_eptp, index * 8, 8))
6170 		return 1;
6171 
6172 	/*
6173 	 * If the (L2) guest does a vmfunc to the currently
6174 	 * active ept pointer, we don't have to do anything else
6175 	 */
6176 	if (vmcs12->ept_pointer != new_eptp) {
6177 		if (!nested_vmx_check_eptp(vcpu, new_eptp))
6178 			return 1;
6179 
6180 		vmcs12->ept_pointer = new_eptp;
6181 		nested_ept_new_eptp(vcpu);
6182 
6183 		if (!nested_cpu_has_vpid(vmcs12))
6184 			kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
6185 	}
6186 
6187 	return 0;
6188 }
6189 
handle_vmfunc(struct kvm_vcpu * vcpu)6190 static int handle_vmfunc(struct kvm_vcpu *vcpu)
6191 {
6192 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6193 	struct vmcs12 *vmcs12;
6194 	u32 function = kvm_rax_read(vcpu);
6195 
6196 	/*
6197 	 * VMFUNC should never execute cleanly while L1 is active; KVM supports
6198 	 * VMFUNC for nested VMs, but not for L1.
6199 	 */
6200 	if (WARN_ON_ONCE(!is_guest_mode(vcpu))) {
6201 		kvm_queue_exception(vcpu, UD_VECTOR);
6202 		return 1;
6203 	}
6204 
6205 	vmcs12 = get_vmcs12(vcpu);
6206 
6207 	/*
6208 	 * #UD on out-of-bounds function has priority over VM-Exit, and VMFUNC
6209 	 * is enabled in vmcs02 if and only if it's enabled in vmcs12.
6210 	 */
6211 	if (WARN_ON_ONCE((function > 63) || !nested_cpu_has_vmfunc(vmcs12))) {
6212 		kvm_queue_exception(vcpu, UD_VECTOR);
6213 		return 1;
6214 	}
6215 
6216 	if (!(vmcs12->vm_function_control & BIT_ULL(function)))
6217 		goto fail;
6218 
6219 	switch (function) {
6220 	case 0:
6221 		if (nested_vmx_eptp_switching(vcpu, vmcs12))
6222 			goto fail;
6223 		break;
6224 	default:
6225 		goto fail;
6226 	}
6227 	return kvm_skip_emulated_instruction(vcpu);
6228 
6229 fail:
6230 	/*
6231 	 * This is effectively a reflected VM-Exit, as opposed to a synthesized
6232 	 * nested VM-Exit.  Pass the original exit reason, i.e. don't hardcode
6233 	 * EXIT_REASON_VMFUNC as the exit reason.
6234 	 */
6235 	nested_vmx_vmexit(vcpu, vmx->vt.exit_reason.full,
6236 			  vmx_get_intr_info(vcpu),
6237 			  vmx_get_exit_qual(vcpu));
6238 	return 1;
6239 }
6240 
6241 /*
6242  * Return true if an IO instruction with the specified port and size should cause
6243  * a VM-exit into L1.
6244  */
nested_vmx_check_io_bitmaps(struct kvm_vcpu * vcpu,unsigned int port,int size)6245 bool nested_vmx_check_io_bitmaps(struct kvm_vcpu *vcpu, unsigned int port,
6246 				 int size)
6247 {
6248 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6249 	gpa_t bitmap, last_bitmap;
6250 	u8 b;
6251 
6252 	last_bitmap = INVALID_GPA;
6253 	b = -1;
6254 
6255 	while (size > 0) {
6256 		if (port < 0x8000)
6257 			bitmap = vmcs12->io_bitmap_a;
6258 		else if (port < 0x10000)
6259 			bitmap = vmcs12->io_bitmap_b;
6260 		else
6261 			return true;
6262 		bitmap += (port & 0x7fff) / 8;
6263 
6264 		if (last_bitmap != bitmap)
6265 			if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
6266 				return true;
6267 		if (b & (1 << (port & 7)))
6268 			return true;
6269 
6270 		port++;
6271 		size--;
6272 		last_bitmap = bitmap;
6273 	}
6274 
6275 	return false;
6276 }
6277 
nested_vmx_exit_handled_io(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)6278 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
6279 				       struct vmcs12 *vmcs12)
6280 {
6281 	unsigned long exit_qualification;
6282 	unsigned short port;
6283 	int size;
6284 
6285 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
6286 		return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
6287 
6288 	exit_qualification = vmx_get_exit_qual(vcpu);
6289 
6290 	port = exit_qualification >> 16;
6291 	size = (exit_qualification & 7) + 1;
6292 
6293 	return nested_vmx_check_io_bitmaps(vcpu, port, size);
6294 }
6295 
6296 /*
6297  * Return 1 if we should exit from L2 to L1 to handle an MSR access,
6298  * rather than handle it ourselves in L0. I.e., check whether L1 expressed
6299  * disinterest in the current event (read or write a specific MSR) by using an
6300  * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
6301  */
nested_vmx_exit_handled_msr(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,union vmx_exit_reason exit_reason)6302 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
6303 					struct vmcs12 *vmcs12,
6304 					union vmx_exit_reason exit_reason)
6305 {
6306 	u32 msr_index;
6307 	gpa_t bitmap;
6308 
6309 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
6310 		return true;
6311 
6312 	if (exit_reason.basic == EXIT_REASON_MSR_READ_IMM ||
6313 	    exit_reason.basic == EXIT_REASON_MSR_WRITE_IMM)
6314 		msr_index = vmx_get_exit_qual(vcpu);
6315 	else
6316 		msr_index = kvm_rcx_read(vcpu);
6317 
6318 	/*
6319 	 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
6320 	 * for the four combinations of read/write and low/high MSR numbers.
6321 	 * First we need to figure out which of the four to use:
6322 	 */
6323 	bitmap = vmcs12->msr_bitmap;
6324 	if (exit_reason.basic == EXIT_REASON_MSR_WRITE ||
6325 	    exit_reason.basic == EXIT_REASON_MSR_WRITE_IMM)
6326 		bitmap += 2048;
6327 	if (msr_index >= 0xc0000000) {
6328 		msr_index -= 0xc0000000;
6329 		bitmap += 1024;
6330 	}
6331 
6332 	/* Then read the msr_index'th bit from this bitmap: */
6333 	if (msr_index < 1024*8) {
6334 		unsigned char b;
6335 		if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
6336 			return true;
6337 		return 1 & (b >> (msr_index & 7));
6338 	} else
6339 		return true; /* let L1 handle the wrong parameter */
6340 }
6341 
6342 /*
6343  * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
6344  * rather than handle it ourselves in L0. I.e., check if L1 wanted to
6345  * intercept (via guest_host_mask etc.) the current event.
6346  */
nested_vmx_exit_handled_cr(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)6347 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
6348 	struct vmcs12 *vmcs12)
6349 {
6350 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
6351 	int cr = exit_qualification & 15;
6352 	int reg;
6353 	unsigned long val;
6354 
6355 	switch ((exit_qualification >> 4) & 3) {
6356 	case 0: /* mov to cr */
6357 		reg = (exit_qualification >> 8) & 15;
6358 		val = kvm_register_read(vcpu, reg);
6359 		switch (cr) {
6360 		case 0:
6361 			if (vmcs12->cr0_guest_host_mask &
6362 			    (val ^ vmcs12->cr0_read_shadow))
6363 				return true;
6364 			break;
6365 		case 3:
6366 			if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
6367 				return true;
6368 			break;
6369 		case 4:
6370 			if (vmcs12->cr4_guest_host_mask &
6371 			    (vmcs12->cr4_read_shadow ^ val))
6372 				return true;
6373 			break;
6374 		case 8:
6375 			if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
6376 				return true;
6377 			break;
6378 		}
6379 		break;
6380 	case 2: /* clts */
6381 		if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
6382 		    (vmcs12->cr0_read_shadow & X86_CR0_TS))
6383 			return true;
6384 		break;
6385 	case 1: /* mov from cr */
6386 		switch (cr) {
6387 		case 3:
6388 			if (vmcs12->cpu_based_vm_exec_control &
6389 			    CPU_BASED_CR3_STORE_EXITING)
6390 				return true;
6391 			break;
6392 		case 8:
6393 			if (vmcs12->cpu_based_vm_exec_control &
6394 			    CPU_BASED_CR8_STORE_EXITING)
6395 				return true;
6396 			break;
6397 		}
6398 		break;
6399 	case 3: /* lmsw */
6400 		/*
6401 		 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
6402 		 * cr0. Other attempted changes are ignored, with no exit.
6403 		 */
6404 		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
6405 		if (vmcs12->cr0_guest_host_mask & 0xe &
6406 		    (val ^ vmcs12->cr0_read_shadow))
6407 			return true;
6408 		if ((vmcs12->cr0_guest_host_mask & 0x1) &&
6409 		    !(vmcs12->cr0_read_shadow & 0x1) &&
6410 		    (val & 0x1))
6411 			return true;
6412 		break;
6413 	}
6414 	return false;
6415 }
6416 
nested_vmx_exit_handled_encls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)6417 static bool nested_vmx_exit_handled_encls(struct kvm_vcpu *vcpu,
6418 					  struct vmcs12 *vmcs12)
6419 {
6420 	u32 encls_leaf;
6421 
6422 	if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SGX) ||
6423 	    !nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENCLS_EXITING))
6424 		return false;
6425 
6426 	encls_leaf = kvm_rax_read(vcpu);
6427 	if (encls_leaf > 62)
6428 		encls_leaf = 63;
6429 	return vmcs12->encls_exiting_bitmap & BIT_ULL(encls_leaf);
6430 }
6431 
nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,gpa_t bitmap)6432 static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
6433 	struct vmcs12 *vmcs12, gpa_t bitmap)
6434 {
6435 	u32 vmx_instruction_info;
6436 	unsigned long field;
6437 	u8 b;
6438 
6439 	if (!nested_cpu_has_shadow_vmcs(vmcs12))
6440 		return true;
6441 
6442 	/* Decode instruction info and find the field to access */
6443 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6444 	field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
6445 
6446 	/* Out-of-range fields always cause a VM exit from L2 to L1 */
6447 	if (field >> 15)
6448 		return true;
6449 
6450 	if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
6451 		return true;
6452 
6453 	return 1 & (b >> (field & 7));
6454 }
6455 
nested_vmx_exit_handled_mtf(struct vmcs12 * vmcs12)6456 static bool nested_vmx_exit_handled_mtf(struct vmcs12 *vmcs12)
6457 {
6458 	u32 entry_intr_info = vmcs12->vm_entry_intr_info_field;
6459 
6460 	if (nested_cpu_has_mtf(vmcs12))
6461 		return true;
6462 
6463 	/*
6464 	 * An MTF VM-exit may be injected into the guest by setting the
6465 	 * interruption-type to 7 (other event) and the vector field to 0. Such
6466 	 * is the case regardless of the 'monitor trap flag' VM-execution
6467 	 * control.
6468 	 */
6469 	return entry_intr_info == (INTR_INFO_VALID_MASK
6470 				   | INTR_TYPE_OTHER_EVENT);
6471 }
6472 
6473 /*
6474  * Return true if L0 wants to handle an exit from L2 regardless of whether or not
6475  * L1 wants the exit.  Only call this when in is_guest_mode (L2).
6476  */
nested_vmx_l0_wants_exit(struct kvm_vcpu * vcpu,union vmx_exit_reason exit_reason)6477 static bool nested_vmx_l0_wants_exit(struct kvm_vcpu *vcpu,
6478 				     union vmx_exit_reason exit_reason)
6479 {
6480 	u32 intr_info;
6481 
6482 	switch ((u16)exit_reason.basic) {
6483 	case EXIT_REASON_EXCEPTION_NMI:
6484 		intr_info = vmx_get_intr_info(vcpu);
6485 		if (is_nmi(intr_info))
6486 			return true;
6487 		else if (is_page_fault(intr_info))
6488 			return vcpu->arch.apf.host_apf_flags ||
6489 			       vmx_need_pf_intercept(vcpu);
6490 		else if (is_debug(intr_info) &&
6491 			 vcpu->guest_debug &
6492 			 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
6493 			return true;
6494 		else if (is_breakpoint(intr_info) &&
6495 			 vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
6496 			return true;
6497 		else if (is_alignment_check(intr_info) &&
6498 			 !vmx_guest_inject_ac(vcpu))
6499 			return true;
6500 		else if (is_ve_fault(intr_info))
6501 			return true;
6502 		return false;
6503 	case EXIT_REASON_EXTERNAL_INTERRUPT:
6504 		return true;
6505 	case EXIT_REASON_MCE_DURING_VMENTRY:
6506 		return true;
6507 	case EXIT_REASON_EPT_VIOLATION:
6508 		/*
6509 		 * L0 always deals with the EPT violation. If nested EPT is
6510 		 * used, and the nested mmu code discovers that the address is
6511 		 * missing in the guest EPT table (EPT12), the EPT violation
6512 		 * will be injected with nested_ept_inject_page_fault()
6513 		 */
6514 		return true;
6515 	case EXIT_REASON_EPT_MISCONFIG:
6516 		/*
6517 		 * L2 never uses directly L1's EPT, but rather L0's own EPT
6518 		 * table (shadow on EPT) or a merged EPT table that L0 built
6519 		 * (EPT on EPT). So any problems with the structure of the
6520 		 * table is L0's fault.
6521 		 */
6522 		return true;
6523 	case EXIT_REASON_PREEMPTION_TIMER:
6524 		return true;
6525 	case EXIT_REASON_PML_FULL:
6526 		/*
6527 		 * PML is emulated for an L1 VMM and should never be enabled in
6528 		 * vmcs02, always "handle" PML_FULL by exiting to userspace.
6529 		 */
6530 		return true;
6531 	case EXIT_REASON_VMFUNC:
6532 		/* VM functions are emulated through L2->L0 vmexits. */
6533 		return true;
6534 	case EXIT_REASON_BUS_LOCK:
6535 		/*
6536 		 * At present, bus lock VM exit is never exposed to L1.
6537 		 * Handle L2's bus locks in L0 directly.
6538 		 */
6539 		return true;
6540 #ifdef CONFIG_KVM_HYPERV
6541 	case EXIT_REASON_VMCALL:
6542 		/* Hyper-V L2 TLB flush hypercall is handled by L0 */
6543 		return guest_hv_cpuid_has_l2_tlb_flush(vcpu) &&
6544 			nested_evmcs_l2_tlb_flush_enabled(vcpu) &&
6545 			kvm_hv_is_tlb_flush_hcall(vcpu);
6546 #endif
6547 	default:
6548 		break;
6549 	}
6550 	return false;
6551 }
6552 
6553 /*
6554  * Return 1 if L1 wants to intercept an exit from L2.  Only call this when in
6555  * is_guest_mode (L2).
6556  */
nested_vmx_l1_wants_exit(struct kvm_vcpu * vcpu,union vmx_exit_reason exit_reason)6557 static bool nested_vmx_l1_wants_exit(struct kvm_vcpu *vcpu,
6558 				     union vmx_exit_reason exit_reason)
6559 {
6560 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6561 	u32 intr_info;
6562 
6563 	switch ((u16)exit_reason.basic) {
6564 	case EXIT_REASON_EXCEPTION_NMI:
6565 		intr_info = vmx_get_intr_info(vcpu);
6566 		if (is_nmi(intr_info))
6567 			return true;
6568 		else if (is_page_fault(intr_info))
6569 			return true;
6570 		return vmcs12->exception_bitmap &
6571 				(1u << (intr_info & INTR_INFO_VECTOR_MASK));
6572 	case EXIT_REASON_EXTERNAL_INTERRUPT:
6573 		return nested_exit_on_intr(vcpu);
6574 	case EXIT_REASON_TRIPLE_FAULT:
6575 		return true;
6576 	case EXIT_REASON_INTERRUPT_WINDOW:
6577 		return nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING);
6578 	case EXIT_REASON_NMI_WINDOW:
6579 		return nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING);
6580 	case EXIT_REASON_TASK_SWITCH:
6581 		return true;
6582 	case EXIT_REASON_CPUID:
6583 		return true;
6584 	case EXIT_REASON_HLT:
6585 		return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
6586 	case EXIT_REASON_INVD:
6587 		return true;
6588 	case EXIT_REASON_INVLPG:
6589 		return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
6590 	case EXIT_REASON_RDPMC:
6591 		return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
6592 	case EXIT_REASON_RDRAND:
6593 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
6594 	case EXIT_REASON_RDSEED:
6595 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
6596 	case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
6597 		return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
6598 	case EXIT_REASON_VMREAD:
6599 		return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
6600 			vmcs12->vmread_bitmap);
6601 	case EXIT_REASON_VMWRITE:
6602 		return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
6603 			vmcs12->vmwrite_bitmap);
6604 	case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
6605 	case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
6606 	case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
6607 	case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
6608 	case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
6609 		/*
6610 		 * VMX instructions trap unconditionally. This allows L1 to
6611 		 * emulate them for its L2 guest, i.e., allows 3-level nesting!
6612 		 */
6613 		return true;
6614 	case EXIT_REASON_CR_ACCESS:
6615 		return nested_vmx_exit_handled_cr(vcpu, vmcs12);
6616 	case EXIT_REASON_DR_ACCESS:
6617 		return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
6618 	case EXIT_REASON_IO_INSTRUCTION:
6619 		return nested_vmx_exit_handled_io(vcpu, vmcs12);
6620 	case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
6621 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
6622 	case EXIT_REASON_MSR_READ:
6623 	case EXIT_REASON_MSR_WRITE:
6624 	case EXIT_REASON_MSR_READ_IMM:
6625 	case EXIT_REASON_MSR_WRITE_IMM:
6626 		return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
6627 	case EXIT_REASON_INVALID_STATE:
6628 		return true;
6629 	case EXIT_REASON_MWAIT_INSTRUCTION:
6630 		return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
6631 	case EXIT_REASON_MONITOR_TRAP_FLAG:
6632 		return nested_vmx_exit_handled_mtf(vmcs12);
6633 	case EXIT_REASON_MONITOR_INSTRUCTION:
6634 		return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
6635 	case EXIT_REASON_PAUSE_INSTRUCTION:
6636 		return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
6637 			nested_cpu_has2(vmcs12,
6638 				SECONDARY_EXEC_PAUSE_LOOP_EXITING);
6639 	case EXIT_REASON_MCE_DURING_VMENTRY:
6640 		return true;
6641 	case EXIT_REASON_TPR_BELOW_THRESHOLD:
6642 		return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
6643 	case EXIT_REASON_APIC_ACCESS:
6644 	case EXIT_REASON_APIC_WRITE:
6645 	case EXIT_REASON_EOI_INDUCED:
6646 		/*
6647 		 * The controls for "virtualize APIC accesses," "APIC-
6648 		 * register virtualization," and "virtual-interrupt
6649 		 * delivery" only come from vmcs12.
6650 		 */
6651 		return true;
6652 	case EXIT_REASON_INVPCID:
6653 		return
6654 			nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
6655 			nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
6656 	case EXIT_REASON_WBINVD:
6657 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
6658 	case EXIT_REASON_XSETBV:
6659 		return true;
6660 	case EXIT_REASON_XSAVES:
6661 	case EXIT_REASON_XRSTORS:
6662 		/*
6663 		 * Always forward XSAVES/XRSTORS to L1 as KVM doesn't utilize
6664 		 * XSS-bitmap, and always loads vmcs02 with vmcs12's XSS-bitmap
6665 		 * verbatim, i.e. any exit is due to L1's bitmap.  WARN if
6666 		 * XSAVES isn't enabled, as the CPU is supposed to inject #UD
6667 		 * in that case, before consulting the XSS-bitmap.
6668 		 */
6669 		WARN_ON_ONCE(!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_XSAVES));
6670 		return true;
6671 	case EXIT_REASON_UMWAIT:
6672 	case EXIT_REASON_TPAUSE:
6673 		return nested_cpu_has2(vmcs12,
6674 			SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE);
6675 	case EXIT_REASON_ENCLS:
6676 		return nested_vmx_exit_handled_encls(vcpu, vmcs12);
6677 	case EXIT_REASON_NOTIFY:
6678 		/* Notify VM exit is not exposed to L1 */
6679 		return false;
6680 	case EXIT_REASON_SEAMCALL:
6681 	case EXIT_REASON_TDCALL:
6682 		/*
6683 		 * SEAMCALL and TDCALL unconditionally VM-Exit, but aren't
6684 		 * virtualized by KVM for L1 hypervisors, i.e. L1 should
6685 		 * never want or expect such an exit.
6686 		 */
6687 		return false;
6688 	default:
6689 		return true;
6690 	}
6691 }
6692 
6693 /*
6694  * Conditionally reflect a VM-Exit into L1.  Returns %true if the VM-Exit was
6695  * reflected into L1.
6696  */
nested_vmx_reflect_vmexit(struct kvm_vcpu * vcpu)6697 bool nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu)
6698 {
6699 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6700 	union vmx_exit_reason exit_reason = vmx->vt.exit_reason;
6701 	unsigned long exit_qual;
6702 	u32 exit_intr_info;
6703 
6704 	WARN_ON_ONCE(vmx->nested.nested_run_pending);
6705 
6706 	/*
6707 	 * Late nested VM-Fail shares the same flow as nested VM-Exit since KVM
6708 	 * has already loaded L2's state.
6709 	 */
6710 	if (unlikely(vmx->fail)) {
6711 		trace_kvm_nested_vmenter_failed(
6712 			"hardware VM-instruction error: ",
6713 			vmcs_read32(VM_INSTRUCTION_ERROR));
6714 		exit_intr_info = 0;
6715 		exit_qual = 0;
6716 		goto reflect_vmexit;
6717 	}
6718 
6719 	trace_kvm_nested_vmexit(vcpu, KVM_ISA_VMX);
6720 
6721 	/* If L0 (KVM) wants the exit, it trumps L1's desires. */
6722 	if (nested_vmx_l0_wants_exit(vcpu, exit_reason))
6723 		return false;
6724 
6725 	/* If L1 doesn't want the exit, handle it in L0. */
6726 	if (!nested_vmx_l1_wants_exit(vcpu, exit_reason))
6727 		return false;
6728 
6729 	/*
6730 	 * vmcs.VM_EXIT_INTR_INFO is only valid for EXCEPTION_NMI exits.  For
6731 	 * EXTERNAL_INTERRUPT, the value for vmcs12->vm_exit_intr_info would
6732 	 * need to be synthesized by querying the in-kernel LAPIC, but external
6733 	 * interrupts are never reflected to L1 so it's a non-issue.
6734 	 */
6735 	exit_intr_info = vmx_get_intr_info(vcpu);
6736 	if (is_exception_with_error_code(exit_intr_info)) {
6737 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6738 
6739 		vmcs12->vm_exit_intr_error_code =
6740 			vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6741 	}
6742 	exit_qual = vmx_get_exit_qual(vcpu);
6743 
6744 reflect_vmexit:
6745 	nested_vmx_vmexit(vcpu, exit_reason.full, exit_intr_info, exit_qual);
6746 	return true;
6747 }
6748 
vmx_get_nested_state(struct kvm_vcpu * vcpu,struct kvm_nested_state __user * user_kvm_nested_state,u32 user_data_size)6749 static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
6750 				struct kvm_nested_state __user *user_kvm_nested_state,
6751 				u32 user_data_size)
6752 {
6753 	struct vcpu_vmx *vmx;
6754 	struct vmcs12 *vmcs12;
6755 	struct kvm_nested_state kvm_state = {
6756 		.flags = 0,
6757 		.format = KVM_STATE_NESTED_FORMAT_VMX,
6758 		.size = sizeof(kvm_state),
6759 		.hdr.vmx.flags = 0,
6760 		.hdr.vmx.vmxon_pa = INVALID_GPA,
6761 		.hdr.vmx.vmcs12_pa = INVALID_GPA,
6762 		.hdr.vmx.preemption_timer_deadline = 0,
6763 	};
6764 	struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6765 		&user_kvm_nested_state->data.vmx[0];
6766 
6767 	if (!vcpu)
6768 		return kvm_state.size + sizeof(*user_vmx_nested_state);
6769 
6770 	vmx = to_vmx(vcpu);
6771 	vmcs12 = get_vmcs12(vcpu);
6772 
6773 	if (guest_cpu_cap_has(vcpu, X86_FEATURE_VMX) &&
6774 	    (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
6775 		kvm_state.hdr.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
6776 		kvm_state.hdr.vmx.vmcs12_pa = vmx->nested.current_vmptr;
6777 
6778 		if (vmx_has_valid_vmcs12(vcpu)) {
6779 			kvm_state.size += sizeof(user_vmx_nested_state->vmcs12);
6780 
6781 			/* 'hv_evmcs_vmptr' can also be EVMPTR_MAP_PENDING here */
6782 			if (nested_vmx_is_evmptr12_set(vmx))
6783 				kvm_state.flags |= KVM_STATE_NESTED_EVMCS;
6784 
6785 			if (is_guest_mode(vcpu) &&
6786 			    nested_cpu_has_shadow_vmcs(vmcs12) &&
6787 			    vmcs12->vmcs_link_pointer != INVALID_GPA)
6788 				kvm_state.size += sizeof(user_vmx_nested_state->shadow_vmcs12);
6789 		}
6790 
6791 		if (vmx->nested.smm.vmxon)
6792 			kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
6793 
6794 		if (vmx->nested.smm.guest_mode)
6795 			kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
6796 
6797 		if (is_guest_mode(vcpu)) {
6798 			kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
6799 
6800 			if (vmx->nested.nested_run_pending)
6801 				kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
6802 
6803 			if (vmx->nested.mtf_pending)
6804 				kvm_state.flags |= KVM_STATE_NESTED_MTF_PENDING;
6805 
6806 			if (nested_cpu_has_preemption_timer(vmcs12) &&
6807 			    vmx->nested.has_preemption_timer_deadline) {
6808 				kvm_state.hdr.vmx.flags |=
6809 					KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE;
6810 				kvm_state.hdr.vmx.preemption_timer_deadline =
6811 					vmx->nested.preemption_timer_deadline;
6812 			}
6813 		}
6814 	}
6815 
6816 	if (user_data_size < kvm_state.size)
6817 		goto out;
6818 
6819 	if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
6820 		return -EFAULT;
6821 
6822 	if (!vmx_has_valid_vmcs12(vcpu))
6823 		goto out;
6824 
6825 	/*
6826 	 * When running L2, the authoritative vmcs12 state is in the
6827 	 * vmcs02. When running L1, the authoritative vmcs12 state is
6828 	 * in the shadow or enlightened vmcs linked to vmcs01, unless
6829 	 * need_vmcs12_to_shadow_sync is set, in which case, the authoritative
6830 	 * vmcs12 state is in the vmcs12 already.
6831 	 */
6832 	if (is_guest_mode(vcpu)) {
6833 		sync_vmcs02_to_vmcs12(vcpu, vmcs12);
6834 		sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
6835 	} else  {
6836 		copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
6837 		if (!vmx->nested.need_vmcs12_to_shadow_sync) {
6838 			if (nested_vmx_is_evmptr12_valid(vmx))
6839 				/*
6840 				 * L1 hypervisor is not obliged to keep eVMCS
6841 				 * clean fields data always up-to-date while
6842 				 * not in guest mode, 'hv_clean_fields' is only
6843 				 * supposed to be actual upon vmentry so we need
6844 				 * to ignore it here and do full copy.
6845 				 */
6846 				copy_enlightened_to_vmcs12(vmx, 0);
6847 			else if (enable_shadow_vmcs)
6848 				copy_shadow_to_vmcs12(vmx);
6849 		}
6850 	}
6851 
6852 	BUILD_BUG_ON(sizeof(user_vmx_nested_state->vmcs12) < VMCS12_SIZE);
6853 	BUILD_BUG_ON(sizeof(user_vmx_nested_state->shadow_vmcs12) < VMCS12_SIZE);
6854 
6855 	/*
6856 	 * Copy over the full allocated size of vmcs12 rather than just the size
6857 	 * of the struct.
6858 	 */
6859 	if (copy_to_user(user_vmx_nested_state->vmcs12, vmcs12, VMCS12_SIZE))
6860 		return -EFAULT;
6861 
6862 	if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6863 	    vmcs12->vmcs_link_pointer != INVALID_GPA) {
6864 		if (copy_to_user(user_vmx_nested_state->shadow_vmcs12,
6865 				 get_shadow_vmcs12(vcpu), VMCS12_SIZE))
6866 			return -EFAULT;
6867 	}
6868 out:
6869 	return kvm_state.size;
6870 }
6871 
vmx_leave_nested(struct kvm_vcpu * vcpu)6872 void vmx_leave_nested(struct kvm_vcpu *vcpu)
6873 {
6874 	if (is_guest_mode(vcpu)) {
6875 		to_vmx(vcpu)->nested.nested_run_pending = 0;
6876 		nested_vmx_vmexit(vcpu, -1, 0, 0);
6877 	}
6878 	free_nested(vcpu);
6879 }
6880 
vmx_set_nested_state(struct kvm_vcpu * vcpu,struct kvm_nested_state __user * user_kvm_nested_state,struct kvm_nested_state * kvm_state)6881 static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
6882 				struct kvm_nested_state __user *user_kvm_nested_state,
6883 				struct kvm_nested_state *kvm_state)
6884 {
6885 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6886 	struct vmcs12 *vmcs12;
6887 	enum vm_entry_failure_code ignored;
6888 	struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6889 		&user_kvm_nested_state->data.vmx[0];
6890 	int ret;
6891 
6892 	if (kvm_state->format != KVM_STATE_NESTED_FORMAT_VMX)
6893 		return -EINVAL;
6894 
6895 	if (kvm_state->hdr.vmx.vmxon_pa == INVALID_GPA) {
6896 		if (kvm_state->hdr.vmx.smm.flags)
6897 			return -EINVAL;
6898 
6899 		if (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA)
6900 			return -EINVAL;
6901 
6902 		/*
6903 		 * KVM_STATE_NESTED_EVMCS used to signal that KVM should
6904 		 * enable eVMCS capability on vCPU. However, since then
6905 		 * code was changed such that flag signals vmcs12 should
6906 		 * be copied into eVMCS in guest memory.
6907 		 *
6908 		 * To preserve backwards compatibility, allow user
6909 		 * to set this flag even when there is no VMXON region.
6910 		 */
6911 		if (kvm_state->flags & ~KVM_STATE_NESTED_EVMCS)
6912 			return -EINVAL;
6913 	} else {
6914 		if (!guest_cpu_cap_has(vcpu, X86_FEATURE_VMX))
6915 			return -EINVAL;
6916 
6917 		if (!page_address_valid(vcpu, kvm_state->hdr.vmx.vmxon_pa))
6918 			return -EINVAL;
6919 	}
6920 
6921 	if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6922 	    (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6923 		return -EINVAL;
6924 
6925 	if (kvm_state->hdr.vmx.smm.flags &
6926 	    ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
6927 		return -EINVAL;
6928 
6929 	if (kvm_state->hdr.vmx.flags & ~KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE)
6930 		return -EINVAL;
6931 
6932 	/*
6933 	 * SMM temporarily disables VMX, so we cannot be in guest mode,
6934 	 * nor can VMLAUNCH/VMRESUME be pending.  Outside SMM, SMM flags
6935 	 * must be zero.
6936 	 */
6937 	if (is_smm(vcpu) ?
6938 		(kvm_state->flags &
6939 		 (KVM_STATE_NESTED_GUEST_MODE | KVM_STATE_NESTED_RUN_PENDING))
6940 		: kvm_state->hdr.vmx.smm.flags)
6941 		return -EINVAL;
6942 
6943 	if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6944 	    !(kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
6945 		return -EINVAL;
6946 
6947 	if ((kvm_state->flags & KVM_STATE_NESTED_EVMCS) &&
6948 	    (!guest_cpu_cap_has(vcpu, X86_FEATURE_VMX) ||
6949 	     !vmx->nested.enlightened_vmcs_enabled))
6950 			return -EINVAL;
6951 
6952 	vmx_leave_nested(vcpu);
6953 
6954 	if (kvm_state->hdr.vmx.vmxon_pa == INVALID_GPA)
6955 		return 0;
6956 
6957 	vmx->nested.vmxon_ptr = kvm_state->hdr.vmx.vmxon_pa;
6958 	ret = enter_vmx_operation(vcpu);
6959 	if (ret)
6960 		return ret;
6961 
6962 	/* Empty 'VMXON' state is permitted if no VMCS loaded */
6963 	if (kvm_state->size < sizeof(*kvm_state) + sizeof(*vmcs12)) {
6964 		/* See vmx_has_valid_vmcs12.  */
6965 		if ((kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE) ||
6966 		    (kvm_state->flags & KVM_STATE_NESTED_EVMCS) ||
6967 		    (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA))
6968 			return -EINVAL;
6969 		else
6970 			return 0;
6971 	}
6972 
6973 	if (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA) {
6974 		if (kvm_state->hdr.vmx.vmcs12_pa == kvm_state->hdr.vmx.vmxon_pa ||
6975 		    !page_address_valid(vcpu, kvm_state->hdr.vmx.vmcs12_pa))
6976 			return -EINVAL;
6977 
6978 		set_current_vmptr(vmx, kvm_state->hdr.vmx.vmcs12_pa);
6979 #ifdef CONFIG_KVM_HYPERV
6980 	} else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
6981 		/*
6982 		 * nested_vmx_handle_enlightened_vmptrld() cannot be called
6983 		 * directly from here as HV_X64_MSR_VP_ASSIST_PAGE may not be
6984 		 * restored yet. EVMCS will be mapped from
6985 		 * nested_get_vmcs12_pages().
6986 		 */
6987 		vmx->nested.hv_evmcs_vmptr = EVMPTR_MAP_PENDING;
6988 		kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
6989 #endif
6990 	} else {
6991 		return -EINVAL;
6992 	}
6993 
6994 	if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
6995 		vmx->nested.smm.vmxon = true;
6996 		vmx->nested.vmxon = false;
6997 
6998 		if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
6999 			vmx->nested.smm.guest_mode = true;
7000 	}
7001 
7002 	vmcs12 = get_vmcs12(vcpu);
7003 	if (copy_from_user(vmcs12, user_vmx_nested_state->vmcs12, sizeof(*vmcs12)))
7004 		return -EFAULT;
7005 
7006 	if (vmcs12->hdr.revision_id != VMCS12_REVISION)
7007 		return -EINVAL;
7008 
7009 	if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
7010 		return 0;
7011 
7012 	vmx->nested.nested_run_pending =
7013 		!!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
7014 
7015 	vmx->nested.mtf_pending =
7016 		!!(kvm_state->flags & KVM_STATE_NESTED_MTF_PENDING);
7017 
7018 	ret = -EINVAL;
7019 	if (nested_cpu_has_shadow_vmcs(vmcs12) &&
7020 	    vmcs12->vmcs_link_pointer != INVALID_GPA) {
7021 		struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
7022 
7023 		if (kvm_state->size <
7024 		    sizeof(*kvm_state) +
7025 		    sizeof(user_vmx_nested_state->vmcs12) + sizeof(*shadow_vmcs12))
7026 			goto error_guest_mode;
7027 
7028 		if (copy_from_user(shadow_vmcs12,
7029 				   user_vmx_nested_state->shadow_vmcs12,
7030 				   sizeof(*shadow_vmcs12))) {
7031 			ret = -EFAULT;
7032 			goto error_guest_mode;
7033 		}
7034 
7035 		if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
7036 		    !shadow_vmcs12->hdr.shadow_vmcs)
7037 			goto error_guest_mode;
7038 	}
7039 
7040 	vmx->nested.has_preemption_timer_deadline = false;
7041 	if (kvm_state->hdr.vmx.flags & KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE) {
7042 		vmx->nested.has_preemption_timer_deadline = true;
7043 		vmx->nested.preemption_timer_deadline =
7044 			kvm_state->hdr.vmx.preemption_timer_deadline;
7045 	}
7046 
7047 	if (nested_vmx_check_controls(vcpu, vmcs12) ||
7048 	    nested_vmx_check_host_state(vcpu, vmcs12) ||
7049 	    nested_vmx_check_guest_state(vcpu, vmcs12, &ignored))
7050 		goto error_guest_mode;
7051 
7052 	vmx->nested.dirty_vmcs12 = true;
7053 	vmx->nested.force_msr_bitmap_recalc = true;
7054 	ret = nested_vmx_enter_non_root_mode(vcpu, false);
7055 	if (ret)
7056 		goto error_guest_mode;
7057 
7058 	if (vmx->nested.mtf_pending)
7059 		kvm_make_request(KVM_REQ_EVENT, vcpu);
7060 
7061 	return 0;
7062 
7063 error_guest_mode:
7064 	vmx->nested.nested_run_pending = 0;
7065 	return ret;
7066 }
7067 
nested_vmx_set_vmcs_shadowing_bitmap(void)7068 void nested_vmx_set_vmcs_shadowing_bitmap(void)
7069 {
7070 	if (enable_shadow_vmcs) {
7071 		vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
7072 		vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
7073 	}
7074 }
7075 
7076 /*
7077  * Indexing into the vmcs12 uses the VMCS encoding rotated left by 6.  Undo
7078  * that madness to get the encoding for comparison.
7079  */
7080 #define VMCS12_IDX_TO_ENC(idx) ((u16)(((u16)(idx) >> 6) | ((u16)(idx) << 10)))
7081 
nested_vmx_calc_vmcs_enum_msr(void)7082 static u64 nested_vmx_calc_vmcs_enum_msr(void)
7083 {
7084 	/*
7085 	 * Note these are the so called "index" of the VMCS field encoding, not
7086 	 * the index into vmcs12.
7087 	 */
7088 	unsigned int max_idx, idx;
7089 	int i;
7090 
7091 	/*
7092 	 * For better or worse, KVM allows VMREAD/VMWRITE to all fields in
7093 	 * vmcs12, regardless of whether or not the associated feature is
7094 	 * exposed to L1.  Simply find the field with the highest index.
7095 	 */
7096 	max_idx = 0;
7097 	for (i = 0; i < nr_vmcs12_fields; i++) {
7098 		/* The vmcs12 table is very, very sparsely populated. */
7099 		if (!vmcs12_field_offsets[i])
7100 			continue;
7101 
7102 		idx = vmcs_field_index(VMCS12_IDX_TO_ENC(i));
7103 		if (idx > max_idx)
7104 			max_idx = idx;
7105 	}
7106 
7107 	return (u64)max_idx << VMCS_FIELD_INDEX_SHIFT;
7108 }
7109 
nested_vmx_setup_pinbased_ctls(struct vmcs_config * vmcs_conf,struct nested_vmx_msrs * msrs)7110 static void nested_vmx_setup_pinbased_ctls(struct vmcs_config *vmcs_conf,
7111 					   struct nested_vmx_msrs *msrs)
7112 {
7113 	msrs->pinbased_ctls_low =
7114 		PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
7115 
7116 	msrs->pinbased_ctls_high = vmcs_conf->pin_based_exec_ctrl;
7117 	msrs->pinbased_ctls_high &=
7118 		PIN_BASED_EXT_INTR_MASK |
7119 		PIN_BASED_NMI_EXITING |
7120 		PIN_BASED_VIRTUAL_NMIS |
7121 		(enable_apicv ? PIN_BASED_POSTED_INTR : 0);
7122 	msrs->pinbased_ctls_high |=
7123 		PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
7124 		PIN_BASED_VMX_PREEMPTION_TIMER;
7125 }
7126 
nested_vmx_setup_exit_ctls(struct vmcs_config * vmcs_conf,struct nested_vmx_msrs * msrs)7127 static void nested_vmx_setup_exit_ctls(struct vmcs_config *vmcs_conf,
7128 				       struct nested_vmx_msrs *msrs)
7129 {
7130 	msrs->exit_ctls_low =
7131 		VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
7132 
7133 	msrs->exit_ctls_high = vmcs_conf->vmexit_ctrl;
7134 	msrs->exit_ctls_high &=
7135 #ifdef CONFIG_X86_64
7136 		VM_EXIT_HOST_ADDR_SPACE_SIZE |
7137 #endif
7138 		VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT |
7139 		VM_EXIT_CLEAR_BNDCFGS | VM_EXIT_LOAD_CET_STATE;
7140 	msrs->exit_ctls_high |=
7141 		VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
7142 		VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
7143 		VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT |
7144 		VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
7145 
7146 	if (!kvm_cpu_cap_has(X86_FEATURE_SHSTK) &&
7147 	    !kvm_cpu_cap_has(X86_FEATURE_IBT))
7148 		msrs->exit_ctls_high &= ~VM_EXIT_LOAD_CET_STATE;
7149 
7150 	/* We support free control of debug control saving. */
7151 	msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
7152 }
7153 
nested_vmx_setup_entry_ctls(struct vmcs_config * vmcs_conf,struct nested_vmx_msrs * msrs)7154 static void nested_vmx_setup_entry_ctls(struct vmcs_config *vmcs_conf,
7155 					struct nested_vmx_msrs *msrs)
7156 {
7157 	msrs->entry_ctls_low =
7158 		VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
7159 
7160 	msrs->entry_ctls_high = vmcs_conf->vmentry_ctrl;
7161 	msrs->entry_ctls_high &=
7162 #ifdef CONFIG_X86_64
7163 		VM_ENTRY_IA32E_MODE |
7164 #endif
7165 		VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS |
7166 		VM_ENTRY_LOAD_CET_STATE;
7167 	msrs->entry_ctls_high |=
7168 		(VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER |
7169 		 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL);
7170 
7171 	if (!kvm_cpu_cap_has(X86_FEATURE_SHSTK) &&
7172 	    !kvm_cpu_cap_has(X86_FEATURE_IBT))
7173 		msrs->entry_ctls_high &= ~VM_ENTRY_LOAD_CET_STATE;
7174 
7175 	/* We support free control of debug control loading. */
7176 	msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
7177 }
7178 
nested_vmx_setup_cpubased_ctls(struct vmcs_config * vmcs_conf,struct nested_vmx_msrs * msrs)7179 static void nested_vmx_setup_cpubased_ctls(struct vmcs_config *vmcs_conf,
7180 					   struct nested_vmx_msrs *msrs)
7181 {
7182 	msrs->procbased_ctls_low =
7183 		CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
7184 
7185 	msrs->procbased_ctls_high = vmcs_conf->cpu_based_exec_ctrl;
7186 	msrs->procbased_ctls_high &=
7187 		CPU_BASED_INTR_WINDOW_EXITING |
7188 		CPU_BASED_NMI_WINDOW_EXITING | CPU_BASED_USE_TSC_OFFSETTING |
7189 		CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
7190 		CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
7191 		CPU_BASED_CR3_STORE_EXITING |
7192 #ifdef CONFIG_X86_64
7193 		CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
7194 #endif
7195 		CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
7196 		CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
7197 		CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
7198 		CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
7199 		CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
7200 	/*
7201 	 * We can allow some features even when not supported by the
7202 	 * hardware. For example, L1 can specify an MSR bitmap - and we
7203 	 * can use it to avoid exits to L1 - even when L0 runs L2
7204 	 * without MSR bitmaps.
7205 	 */
7206 	msrs->procbased_ctls_high |=
7207 		CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
7208 		CPU_BASED_USE_MSR_BITMAPS;
7209 
7210 	/* We support free control of CR3 access interception. */
7211 	msrs->procbased_ctls_low &=
7212 		~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
7213 }
7214 
nested_vmx_setup_secondary_ctls(u32 ept_caps,struct vmcs_config * vmcs_conf,struct nested_vmx_msrs * msrs)7215 static void nested_vmx_setup_secondary_ctls(u32 ept_caps,
7216 					    struct vmcs_config *vmcs_conf,
7217 					    struct nested_vmx_msrs *msrs)
7218 {
7219 	msrs->secondary_ctls_low = 0;
7220 
7221 	msrs->secondary_ctls_high = vmcs_conf->cpu_based_2nd_exec_ctrl;
7222 	msrs->secondary_ctls_high &=
7223 		SECONDARY_EXEC_DESC |
7224 		SECONDARY_EXEC_ENABLE_RDTSCP |
7225 		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
7226 		SECONDARY_EXEC_WBINVD_EXITING |
7227 		SECONDARY_EXEC_APIC_REGISTER_VIRT |
7228 		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
7229 		SECONDARY_EXEC_RDRAND_EXITING |
7230 		SECONDARY_EXEC_ENABLE_INVPCID |
7231 		SECONDARY_EXEC_ENABLE_VMFUNC |
7232 		SECONDARY_EXEC_RDSEED_EXITING |
7233 		SECONDARY_EXEC_ENABLE_XSAVES |
7234 		SECONDARY_EXEC_TSC_SCALING |
7235 		SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
7236 
7237 	/*
7238 	 * We can emulate "VMCS shadowing," even if the hardware
7239 	 * doesn't support it.
7240 	 */
7241 	msrs->secondary_ctls_high |=
7242 		SECONDARY_EXEC_SHADOW_VMCS;
7243 
7244 	if (enable_ept) {
7245 		/* nested EPT: emulate EPT also to L1 */
7246 		msrs->secondary_ctls_high |=
7247 			SECONDARY_EXEC_ENABLE_EPT;
7248 		msrs->ept_caps =
7249 			VMX_EPT_PAGE_WALK_4_BIT |
7250 			VMX_EPT_PAGE_WALK_5_BIT |
7251 			VMX_EPTP_WB_BIT |
7252 			VMX_EPT_INVEPT_BIT |
7253 			VMX_EPT_EXECUTE_ONLY_BIT;
7254 
7255 		msrs->ept_caps &= ept_caps;
7256 		msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
7257 			VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
7258 			VMX_EPT_1GB_PAGE_BIT;
7259 		if (enable_ept_ad_bits) {
7260 			msrs->secondary_ctls_high |=
7261 				SECONDARY_EXEC_ENABLE_PML;
7262 			msrs->ept_caps |= VMX_EPT_AD_BIT;
7263 		}
7264 
7265 		/*
7266 		 * Advertise EPTP switching irrespective of hardware support,
7267 		 * KVM emulates it in software so long as VMFUNC is supported.
7268 		 */
7269 		if (cpu_has_vmx_vmfunc())
7270 			msrs->vmfunc_controls = VMX_VMFUNC_EPTP_SWITCHING;
7271 	}
7272 
7273 	/*
7274 	 * Old versions of KVM use the single-context version without
7275 	 * checking for support, so declare that it is supported even
7276 	 * though it is treated as global context.  The alternative is
7277 	 * not failing the single-context invvpid, and it is worse.
7278 	 */
7279 	if (enable_vpid) {
7280 		msrs->secondary_ctls_high |=
7281 			SECONDARY_EXEC_ENABLE_VPID;
7282 		msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
7283 			VMX_VPID_EXTENT_SUPPORTED_MASK;
7284 	}
7285 
7286 	if (enable_unrestricted_guest)
7287 		msrs->secondary_ctls_high |=
7288 			SECONDARY_EXEC_UNRESTRICTED_GUEST;
7289 
7290 	if (flexpriority_enabled)
7291 		msrs->secondary_ctls_high |=
7292 			SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7293 
7294 	if (enable_sgx)
7295 		msrs->secondary_ctls_high |= SECONDARY_EXEC_ENCLS_EXITING;
7296 }
7297 
nested_vmx_setup_misc_data(struct vmcs_config * vmcs_conf,struct nested_vmx_msrs * msrs)7298 static void nested_vmx_setup_misc_data(struct vmcs_config *vmcs_conf,
7299 				       struct nested_vmx_msrs *msrs)
7300 {
7301 	msrs->misc_low = (u32)vmcs_conf->misc & VMX_MISC_SAVE_EFER_LMA;
7302 	msrs->misc_low |=
7303 		VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
7304 		VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
7305 		VMX_MISC_ACTIVITY_HLT |
7306 		VMX_MISC_ACTIVITY_WAIT_SIPI;
7307 	msrs->misc_high = 0;
7308 }
7309 
nested_vmx_setup_basic(struct nested_vmx_msrs * msrs)7310 static void nested_vmx_setup_basic(struct nested_vmx_msrs *msrs)
7311 {
7312 	/*
7313 	 * This MSR reports some information about VMX support. We
7314 	 * should return information about the VMX we emulate for the
7315 	 * guest, and the VMCS structure we give it - not about the
7316 	 * VMX support of the underlying hardware.
7317 	 */
7318 	msrs->basic = vmx_basic_encode_vmcs_info(VMCS12_REVISION, VMCS12_SIZE,
7319 						 X86_MEMTYPE_WB);
7320 
7321 	msrs->basic |= VMX_BASIC_TRUE_CTLS;
7322 	if (cpu_has_vmx_basic_inout())
7323 		msrs->basic |= VMX_BASIC_INOUT;
7324 	if (cpu_has_vmx_basic_no_hw_errcode_cc())
7325 		msrs->basic |= VMX_BASIC_NO_HW_ERROR_CODE_CC;
7326 }
7327 
nested_vmx_setup_cr_fixed(struct nested_vmx_msrs * msrs)7328 static void nested_vmx_setup_cr_fixed(struct nested_vmx_msrs *msrs)
7329 {
7330 	/*
7331 	 * These MSRs specify bits which the guest must keep fixed on
7332 	 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
7333 	 * We picked the standard core2 setting.
7334 	 */
7335 #define VMXON_CR0_ALWAYSON     (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
7336 #define VMXON_CR4_ALWAYSON     X86_CR4_VMXE
7337 	msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
7338 	msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
7339 
7340 	/* These MSRs specify bits which the guest must keep fixed off. */
7341 	rdmsrq(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
7342 	rdmsrq(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
7343 
7344 	if (vmx_umip_emulated())
7345 		msrs->cr4_fixed1 |= X86_CR4_UMIP;
7346 }
7347 
7348 /*
7349  * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
7350  * returned for the various VMX controls MSRs when nested VMX is enabled.
7351  * The same values should also be used to verify that vmcs12 control fields are
7352  * valid during nested entry from L1 to L2.
7353  * Each of these control msrs has a low and high 32-bit half: A low bit is on
7354  * if the corresponding bit in the (32-bit) control field *must* be on, and a
7355  * bit in the high half is on if the corresponding bit in the control field
7356  * may be on. See also vmx_control_verify().
7357  */
nested_vmx_setup_ctls_msrs(struct vmcs_config * vmcs_conf,u32 ept_caps)7358 void nested_vmx_setup_ctls_msrs(struct vmcs_config *vmcs_conf, u32 ept_caps)
7359 {
7360 	struct nested_vmx_msrs *msrs = &vmcs_conf->nested;
7361 
7362 	/*
7363 	 * Note that as a general rule, the high half of the MSRs (bits in
7364 	 * the control fields which may be 1) should be initialized by the
7365 	 * intersection of the underlying hardware's MSR (i.e., features which
7366 	 * can be supported) and the list of features we want to expose -
7367 	 * because they are known to be properly supported in our code.
7368 	 * Also, usually, the low half of the MSRs (bits which must be 1) can
7369 	 * be set to 0, meaning that L1 may turn off any of these bits. The
7370 	 * reason is that if one of these bits is necessary, it will appear
7371 	 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
7372 	 * fields of vmcs01 and vmcs02, will turn these bits off - and
7373 	 * nested_vmx_l1_wants_exit() will not pass related exits to L1.
7374 	 * These rules have exceptions below.
7375 	 */
7376 	nested_vmx_setup_pinbased_ctls(vmcs_conf, msrs);
7377 
7378 	nested_vmx_setup_exit_ctls(vmcs_conf, msrs);
7379 
7380 	nested_vmx_setup_entry_ctls(vmcs_conf, msrs);
7381 
7382 	nested_vmx_setup_cpubased_ctls(vmcs_conf, msrs);
7383 
7384 	nested_vmx_setup_secondary_ctls(ept_caps, vmcs_conf, msrs);
7385 
7386 	nested_vmx_setup_misc_data(vmcs_conf, msrs);
7387 
7388 	nested_vmx_setup_basic(msrs);
7389 
7390 	nested_vmx_setup_cr_fixed(msrs);
7391 
7392 	msrs->vmcs_enum = nested_vmx_calc_vmcs_enum_msr();
7393 }
7394 
nested_vmx_hardware_unsetup(void)7395 void nested_vmx_hardware_unsetup(void)
7396 {
7397 	int i;
7398 
7399 	if (enable_shadow_vmcs) {
7400 		for (i = 0; i < VMX_BITMAP_NR; i++)
7401 			free_page((unsigned long)vmx_bitmap[i]);
7402 	}
7403 }
7404 
nested_vmx_hardware_setup(int (* exit_handlers[])(struct kvm_vcpu *))7405 __init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *))
7406 {
7407 	int i;
7408 
7409 	if (!cpu_has_vmx_shadow_vmcs())
7410 		enable_shadow_vmcs = 0;
7411 	if (enable_shadow_vmcs) {
7412 		for (i = 0; i < VMX_BITMAP_NR; i++) {
7413 			/*
7414 			 * The vmx_bitmap is not tied to a VM and so should
7415 			 * not be charged to a memcg.
7416 			 */
7417 			vmx_bitmap[i] = (unsigned long *)
7418 				__get_free_page(GFP_KERNEL);
7419 			if (!vmx_bitmap[i]) {
7420 				nested_vmx_hardware_unsetup();
7421 				return -ENOMEM;
7422 			}
7423 		}
7424 
7425 		init_vmcs_shadow_fields();
7426 	}
7427 
7428 	exit_handlers[EXIT_REASON_VMCLEAR]	= handle_vmclear;
7429 	exit_handlers[EXIT_REASON_VMLAUNCH]	= handle_vmlaunch;
7430 	exit_handlers[EXIT_REASON_VMPTRLD]	= handle_vmptrld;
7431 	exit_handlers[EXIT_REASON_VMPTRST]	= handle_vmptrst;
7432 	exit_handlers[EXIT_REASON_VMREAD]	= handle_vmread;
7433 	exit_handlers[EXIT_REASON_VMRESUME]	= handle_vmresume;
7434 	exit_handlers[EXIT_REASON_VMWRITE]	= handle_vmwrite;
7435 	exit_handlers[EXIT_REASON_VMOFF]	= handle_vmxoff;
7436 	exit_handlers[EXIT_REASON_VMON]		= handle_vmxon;
7437 	exit_handlers[EXIT_REASON_INVEPT]	= handle_invept;
7438 	exit_handlers[EXIT_REASON_INVVPID]	= handle_invvpid;
7439 	exit_handlers[EXIT_REASON_VMFUNC]	= handle_vmfunc;
7440 
7441 	return 0;
7442 }
7443 
7444 struct kvm_x86_nested_ops vmx_nested_ops = {
7445 	.leave_nested = vmx_leave_nested,
7446 	.is_exception_vmexit = nested_vmx_is_exception_vmexit,
7447 	.check_events = vmx_check_nested_events,
7448 	.has_events = vmx_has_nested_events,
7449 	.triple_fault = nested_vmx_triple_fault,
7450 	.get_state = vmx_get_nested_state,
7451 	.set_state = vmx_set_nested_state,
7452 	.get_nested_state_pages = vmx_get_nested_state_pages,
7453 	.write_log_dirty = nested_vmx_write_pml_buffer,
7454 #ifdef CONFIG_KVM_HYPERV
7455 	.enable_evmcs = nested_enable_evmcs,
7456 	.get_evmcs_version = nested_get_evmcs_version,
7457 	.hv_inject_synthetic_vmexit_post_tlb_flush = vmx_hv_inject_synthetic_vmexit_post_tlb_flush,
7458 #endif
7459 };
7460