1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3
4 #include <linux/objtool.h>
5 #include <linux/percpu.h>
6
7 #include <asm/debugreg.h>
8 #include <asm/mmu_context.h>
9
10 #include "x86.h"
11 #include "cpuid.h"
12 #include "hyperv.h"
13 #include "mmu.h"
14 #include "nested.h"
15 #include "pmu.h"
16 #include "posted_intr.h"
17 #include "sgx.h"
18 #include "trace.h"
19 #include "vmx.h"
20 #include "smm.h"
21
22 static bool __read_mostly enable_shadow_vmcs = 1;
23 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
24
25 static bool __read_mostly nested_early_check = 0;
26 module_param(nested_early_check, bool, S_IRUGO);
27
28 #define CC KVM_NESTED_VMENTER_CONSISTENCY_CHECK
29
30 /*
31 * Hyper-V requires all of these, so mark them as supported even though
32 * they are just treated the same as all-context.
33 */
34 #define VMX_VPID_EXTENT_SUPPORTED_MASK \
35 (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT | \
36 VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT | \
37 VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT | \
38 VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
39
40 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
41
42 enum {
43 VMX_VMREAD_BITMAP,
44 VMX_VMWRITE_BITMAP,
45 VMX_BITMAP_NR
46 };
47 static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
48
49 #define vmx_vmread_bitmap (vmx_bitmap[VMX_VMREAD_BITMAP])
50 #define vmx_vmwrite_bitmap (vmx_bitmap[VMX_VMWRITE_BITMAP])
51
52 struct shadow_vmcs_field {
53 u16 encoding;
54 u16 offset;
55 };
56 static struct shadow_vmcs_field shadow_read_only_fields[] = {
57 #define SHADOW_FIELD_RO(x, y) { x, offsetof(struct vmcs12, y) },
58 #include "vmcs_shadow_fields.h"
59 };
60 static int max_shadow_read_only_fields =
61 ARRAY_SIZE(shadow_read_only_fields);
62
63 static struct shadow_vmcs_field shadow_read_write_fields[] = {
64 #define SHADOW_FIELD_RW(x, y) { x, offsetof(struct vmcs12, y) },
65 #include "vmcs_shadow_fields.h"
66 };
67 static int max_shadow_read_write_fields =
68 ARRAY_SIZE(shadow_read_write_fields);
69
init_vmcs_shadow_fields(void)70 static void init_vmcs_shadow_fields(void)
71 {
72 int i, j;
73
74 memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
75 memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
76
77 for (i = j = 0; i < max_shadow_read_only_fields; i++) {
78 struct shadow_vmcs_field entry = shadow_read_only_fields[i];
79 u16 field = entry.encoding;
80
81 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
82 (i + 1 == max_shadow_read_only_fields ||
83 shadow_read_only_fields[i + 1].encoding != field + 1))
84 pr_err("Missing field from shadow_read_only_field %x\n",
85 field + 1);
86
87 clear_bit(field, vmx_vmread_bitmap);
88 if (field & 1)
89 #ifdef CONFIG_X86_64
90 continue;
91 #else
92 entry.offset += sizeof(u32);
93 #endif
94 shadow_read_only_fields[j++] = entry;
95 }
96 max_shadow_read_only_fields = j;
97
98 for (i = j = 0; i < max_shadow_read_write_fields; i++) {
99 struct shadow_vmcs_field entry = shadow_read_write_fields[i];
100 u16 field = entry.encoding;
101
102 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
103 (i + 1 == max_shadow_read_write_fields ||
104 shadow_read_write_fields[i + 1].encoding != field + 1))
105 pr_err("Missing field from shadow_read_write_field %x\n",
106 field + 1);
107
108 WARN_ONCE(field >= GUEST_ES_AR_BYTES &&
109 field <= GUEST_TR_AR_BYTES,
110 "Update vmcs12_write_any() to drop reserved bits from AR_BYTES");
111
112 /*
113 * PML and the preemption timer can be emulated, but the
114 * processor cannot vmwrite to fields that don't exist
115 * on bare metal.
116 */
117 switch (field) {
118 case GUEST_PML_INDEX:
119 if (!cpu_has_vmx_pml())
120 continue;
121 break;
122 case VMX_PREEMPTION_TIMER_VALUE:
123 if (!cpu_has_vmx_preemption_timer())
124 continue;
125 break;
126 case GUEST_INTR_STATUS:
127 if (!cpu_has_vmx_apicv())
128 continue;
129 break;
130 default:
131 break;
132 }
133
134 clear_bit(field, vmx_vmwrite_bitmap);
135 clear_bit(field, vmx_vmread_bitmap);
136 if (field & 1)
137 #ifdef CONFIG_X86_64
138 continue;
139 #else
140 entry.offset += sizeof(u32);
141 #endif
142 shadow_read_write_fields[j++] = entry;
143 }
144 max_shadow_read_write_fields = j;
145 }
146
147 /*
148 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
149 * set the success or error code of an emulated VMX instruction (as specified
150 * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
151 * instruction.
152 */
nested_vmx_succeed(struct kvm_vcpu * vcpu)153 static int nested_vmx_succeed(struct kvm_vcpu *vcpu)
154 {
155 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
156 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
157 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
158 return kvm_skip_emulated_instruction(vcpu);
159 }
160
nested_vmx_failInvalid(struct kvm_vcpu * vcpu)161 static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
162 {
163 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
164 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
165 X86_EFLAGS_SF | X86_EFLAGS_OF))
166 | X86_EFLAGS_CF);
167 return kvm_skip_emulated_instruction(vcpu);
168 }
169
nested_vmx_failValid(struct kvm_vcpu * vcpu,u32 vm_instruction_error)170 static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
171 u32 vm_instruction_error)
172 {
173 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
174 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
175 X86_EFLAGS_SF | X86_EFLAGS_OF))
176 | X86_EFLAGS_ZF);
177 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
178 /*
179 * We don't need to force sync to shadow VMCS because
180 * VM_INSTRUCTION_ERROR is not shadowed. Enlightened VMCS 'shadows' all
181 * fields and thus must be synced.
182 */
183 if (nested_vmx_is_evmptr12_set(to_vmx(vcpu)))
184 to_vmx(vcpu)->nested.need_vmcs12_to_shadow_sync = true;
185
186 return kvm_skip_emulated_instruction(vcpu);
187 }
188
nested_vmx_fail(struct kvm_vcpu * vcpu,u32 vm_instruction_error)189 static int nested_vmx_fail(struct kvm_vcpu *vcpu, u32 vm_instruction_error)
190 {
191 struct vcpu_vmx *vmx = to_vmx(vcpu);
192
193 /*
194 * failValid writes the error number to the current VMCS, which
195 * can't be done if there isn't a current VMCS.
196 */
197 if (vmx->nested.current_vmptr == INVALID_GPA &&
198 !nested_vmx_is_evmptr12_valid(vmx))
199 return nested_vmx_failInvalid(vcpu);
200
201 return nested_vmx_failValid(vcpu, vm_instruction_error);
202 }
203
nested_vmx_abort(struct kvm_vcpu * vcpu,u32 indicator)204 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
205 {
206 /* TODO: not to reset guest simply here. */
207 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
208 pr_debug_ratelimited("nested vmx abort, indicator %d\n", indicator);
209 }
210
vmx_control_verify(u32 control,u32 low,u32 high)211 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
212 {
213 return fixed_bits_valid(control, low, high);
214 }
215
vmx_control_msr(u32 low,u32 high)216 static inline u64 vmx_control_msr(u32 low, u32 high)
217 {
218 return low | ((u64)high << 32);
219 }
220
vmx_disable_shadow_vmcs(struct vcpu_vmx * vmx)221 static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
222 {
223 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
224 vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA);
225 vmx->nested.need_vmcs12_to_shadow_sync = false;
226 }
227
nested_release_evmcs(struct kvm_vcpu * vcpu)228 static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
229 {
230 #ifdef CONFIG_KVM_HYPERV
231 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
232 struct vcpu_vmx *vmx = to_vmx(vcpu);
233
234 kvm_vcpu_unmap(vcpu, &vmx->nested.hv_evmcs_map);
235 vmx->nested.hv_evmcs = NULL;
236 vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
237
238 if (hv_vcpu) {
239 hv_vcpu->nested.pa_page_gpa = INVALID_GPA;
240 hv_vcpu->nested.vm_id = 0;
241 hv_vcpu->nested.vp_id = 0;
242 }
243 #endif
244 }
245
nested_evmcs_handle_vmclear(struct kvm_vcpu * vcpu,gpa_t vmptr)246 static bool nested_evmcs_handle_vmclear(struct kvm_vcpu *vcpu, gpa_t vmptr)
247 {
248 #ifdef CONFIG_KVM_HYPERV
249 struct vcpu_vmx *vmx = to_vmx(vcpu);
250 /*
251 * When Enlightened VMEntry is enabled on the calling CPU we treat
252 * memory area pointer by vmptr as Enlightened VMCS (as there's no good
253 * way to distinguish it from VMCS12) and we must not corrupt it by
254 * writing to the non-existent 'launch_state' field. The area doesn't
255 * have to be the currently active EVMCS on the calling CPU and there's
256 * nothing KVM has to do to transition it from 'active' to 'non-active'
257 * state. It is possible that the area will stay mapped as
258 * vmx->nested.hv_evmcs but this shouldn't be a problem.
259 */
260 if (!guest_cpu_cap_has_evmcs(vcpu) ||
261 !evmptr_is_valid(nested_get_evmptr(vcpu)))
262 return false;
263
264 if (nested_vmx_evmcs(vmx) && vmptr == vmx->nested.hv_evmcs_vmptr)
265 nested_release_evmcs(vcpu);
266
267 return true;
268 #else
269 return false;
270 #endif
271 }
272
vmx_sync_vmcs_host_state(struct vcpu_vmx * vmx,struct loaded_vmcs * prev)273 static void vmx_sync_vmcs_host_state(struct vcpu_vmx *vmx,
274 struct loaded_vmcs *prev)
275 {
276 struct vmcs_host_state *dest, *src;
277
278 if (unlikely(!vmx->guest_state_loaded))
279 return;
280
281 src = &prev->host_state;
282 dest = &vmx->loaded_vmcs->host_state;
283
284 vmx_set_host_fs_gs(dest, src->fs_sel, src->gs_sel, src->fs_base, src->gs_base);
285 dest->ldt_sel = src->ldt_sel;
286 #ifdef CONFIG_X86_64
287 dest->ds_sel = src->ds_sel;
288 dest->es_sel = src->es_sel;
289 #endif
290 }
291
vmx_switch_vmcs(struct kvm_vcpu * vcpu,struct loaded_vmcs * vmcs)292 static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
293 {
294 struct vcpu_vmx *vmx = to_vmx(vcpu);
295 struct loaded_vmcs *prev;
296 int cpu;
297
298 if (WARN_ON_ONCE(vmx->loaded_vmcs == vmcs))
299 return;
300
301 cpu = get_cpu();
302 prev = vmx->loaded_vmcs;
303 vmx->loaded_vmcs = vmcs;
304 vmx_vcpu_load_vmcs(vcpu, cpu, prev);
305 vmx_sync_vmcs_host_state(vmx, prev);
306 put_cpu();
307
308 vcpu->arch.regs_avail = ~VMX_REGS_LAZY_LOAD_SET;
309
310 /*
311 * All lazily updated registers will be reloaded from VMCS12 on both
312 * vmentry and vmexit.
313 */
314 vcpu->arch.regs_dirty = 0;
315 }
316
nested_put_vmcs12_pages(struct kvm_vcpu * vcpu)317 static void nested_put_vmcs12_pages(struct kvm_vcpu *vcpu)
318 {
319 struct vcpu_vmx *vmx = to_vmx(vcpu);
320
321 kvm_vcpu_unmap(vcpu, &vmx->nested.apic_access_page_map);
322 kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map);
323 kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map);
324 vmx->nested.pi_desc = NULL;
325 }
326
327 /*
328 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
329 * just stops using VMX.
330 */
free_nested(struct kvm_vcpu * vcpu)331 static void free_nested(struct kvm_vcpu *vcpu)
332 {
333 struct vcpu_vmx *vmx = to_vmx(vcpu);
334
335 if (WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01))
336 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
337
338 if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
339 return;
340
341 kvm_clear_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
342
343 vmx->nested.vmxon = false;
344 vmx->nested.smm.vmxon = false;
345 vmx->nested.vmxon_ptr = INVALID_GPA;
346 free_vpid(vmx->nested.vpid02);
347 vmx->nested.posted_intr_nv = -1;
348 vmx->nested.current_vmptr = INVALID_GPA;
349 if (enable_shadow_vmcs) {
350 vmx_disable_shadow_vmcs(vmx);
351 vmcs_clear(vmx->vmcs01.shadow_vmcs);
352 free_vmcs(vmx->vmcs01.shadow_vmcs);
353 vmx->vmcs01.shadow_vmcs = NULL;
354 }
355 kfree(vmx->nested.cached_vmcs12);
356 vmx->nested.cached_vmcs12 = NULL;
357 kfree(vmx->nested.cached_shadow_vmcs12);
358 vmx->nested.cached_shadow_vmcs12 = NULL;
359
360 nested_put_vmcs12_pages(vcpu);
361
362 kvm_mmu_free_roots(vcpu->kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
363
364 nested_release_evmcs(vcpu);
365
366 free_loaded_vmcs(&vmx->nested.vmcs02);
367 }
368
369 /*
370 * Ensure that the current vmcs of the logical processor is the
371 * vmcs01 of the vcpu before calling free_nested().
372 */
nested_vmx_free_vcpu(struct kvm_vcpu * vcpu)373 void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu)
374 {
375 vcpu_load(vcpu);
376 vmx_leave_nested(vcpu);
377 vcpu_put(vcpu);
378 }
379
380 #define EPTP_PA_MASK GENMASK_ULL(51, 12)
381
nested_ept_root_matches(hpa_t root_hpa,u64 root_eptp,u64 eptp)382 static bool nested_ept_root_matches(hpa_t root_hpa, u64 root_eptp, u64 eptp)
383 {
384 return VALID_PAGE(root_hpa) &&
385 ((root_eptp & EPTP_PA_MASK) == (eptp & EPTP_PA_MASK));
386 }
387
nested_ept_invalidate_addr(struct kvm_vcpu * vcpu,gpa_t eptp,gpa_t addr)388 static void nested_ept_invalidate_addr(struct kvm_vcpu *vcpu, gpa_t eptp,
389 gpa_t addr)
390 {
391 unsigned long roots = 0;
392 uint i;
393 struct kvm_mmu_root_info *cached_root;
394
395 WARN_ON_ONCE(!mmu_is_nested(vcpu));
396
397 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
398 cached_root = &vcpu->arch.mmu->prev_roots[i];
399
400 if (nested_ept_root_matches(cached_root->hpa, cached_root->pgd,
401 eptp))
402 roots |= KVM_MMU_ROOT_PREVIOUS(i);
403 }
404 if (roots)
405 kvm_mmu_invalidate_addr(vcpu, vcpu->arch.mmu, addr, roots);
406 }
407
nested_ept_inject_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)408 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
409 struct x86_exception *fault)
410 {
411 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
412 struct vcpu_vmx *vmx = to_vmx(vcpu);
413 unsigned long exit_qualification;
414 u32 vm_exit_reason;
415
416 if (vmx->nested.pml_full) {
417 vm_exit_reason = EXIT_REASON_PML_FULL;
418 vmx->nested.pml_full = false;
419
420 /*
421 * It should be impossible to trigger a nested PML Full VM-Exit
422 * for anything other than an EPT Violation from L2. KVM *can*
423 * trigger nEPT page fault injection in response to an EPT
424 * Misconfig, e.g. if the MMIO SPTE was stale and L1's EPT
425 * tables also changed, but KVM should not treat EPT Misconfig
426 * VM-Exits as writes.
427 */
428 WARN_ON_ONCE(vmx->exit_reason.basic != EXIT_REASON_EPT_VIOLATION);
429
430 /*
431 * PML Full and EPT Violation VM-Exits both use bit 12 to report
432 * "NMI unblocking due to IRET", i.e. the bit can be propagated
433 * as-is from the original EXIT_QUALIFICATION.
434 */
435 exit_qualification = vmx_get_exit_qual(vcpu) & INTR_INFO_UNBLOCK_NMI;
436 } else {
437 if (fault->error_code & PFERR_RSVD_MASK) {
438 vm_exit_reason = EXIT_REASON_EPT_MISCONFIG;
439 exit_qualification = 0;
440 } else {
441 exit_qualification = fault->exit_qualification;
442 exit_qualification |= vmx_get_exit_qual(vcpu) &
443 (EPT_VIOLATION_GVA_IS_VALID |
444 EPT_VIOLATION_GVA_TRANSLATED);
445 vm_exit_reason = EXIT_REASON_EPT_VIOLATION;
446 }
447
448 /*
449 * Although the caller (kvm_inject_emulated_page_fault) would
450 * have already synced the faulting address in the shadow EPT
451 * tables for the current EPTP12, we also need to sync it for
452 * any other cached EPTP02s based on the same EP4TA, since the
453 * TLB associates mappings to the EP4TA rather than the full EPTP.
454 */
455 nested_ept_invalidate_addr(vcpu, vmcs12->ept_pointer,
456 fault->address);
457 }
458
459 nested_vmx_vmexit(vcpu, vm_exit_reason, 0, exit_qualification);
460 vmcs12->guest_physical_address = fault->address;
461 }
462
nested_ept_new_eptp(struct kvm_vcpu * vcpu)463 static void nested_ept_new_eptp(struct kvm_vcpu *vcpu)
464 {
465 struct vcpu_vmx *vmx = to_vmx(vcpu);
466 bool execonly = vmx->nested.msrs.ept_caps & VMX_EPT_EXECUTE_ONLY_BIT;
467 int ept_lpage_level = ept_caps_to_lpage_level(vmx->nested.msrs.ept_caps);
468
469 kvm_init_shadow_ept_mmu(vcpu, execonly, ept_lpage_level,
470 nested_ept_ad_enabled(vcpu),
471 nested_ept_get_eptp(vcpu));
472 }
473
nested_ept_init_mmu_context(struct kvm_vcpu * vcpu)474 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
475 {
476 WARN_ON(mmu_is_nested(vcpu));
477
478 vcpu->arch.mmu = &vcpu->arch.guest_mmu;
479 nested_ept_new_eptp(vcpu);
480 vcpu->arch.mmu->get_guest_pgd = nested_ept_get_eptp;
481 vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault;
482 vcpu->arch.mmu->get_pdptr = kvm_pdptr_read;
483
484 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
485 }
486
nested_ept_uninit_mmu_context(struct kvm_vcpu * vcpu)487 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
488 {
489 vcpu->arch.mmu = &vcpu->arch.root_mmu;
490 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
491 }
492
nested_vmx_is_page_fault_vmexit(struct vmcs12 * vmcs12,u16 error_code)493 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
494 u16 error_code)
495 {
496 bool inequality, bit;
497
498 bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
499 inequality =
500 (error_code & vmcs12->page_fault_error_code_mask) !=
501 vmcs12->page_fault_error_code_match;
502 return inequality ^ bit;
503 }
504
nested_vmx_is_exception_vmexit(struct kvm_vcpu * vcpu,u8 vector,u32 error_code)505 static bool nested_vmx_is_exception_vmexit(struct kvm_vcpu *vcpu, u8 vector,
506 u32 error_code)
507 {
508 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
509
510 /*
511 * Drop bits 31:16 of the error code when performing the #PF mask+match
512 * check. All VMCS fields involved are 32 bits, but Intel CPUs never
513 * set bits 31:16 and VMX disallows setting bits 31:16 in the injected
514 * error code. Including the to-be-dropped bits in the check might
515 * result in an "impossible" or missed exit from L1's perspective.
516 */
517 if (vector == PF_VECTOR)
518 return nested_vmx_is_page_fault_vmexit(vmcs12, (u16)error_code);
519
520 return (vmcs12->exception_bitmap & (1u << vector));
521 }
522
nested_vmx_check_io_bitmap_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)523 static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
524 struct vmcs12 *vmcs12)
525 {
526 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
527 return 0;
528
529 if (CC(!page_address_valid(vcpu, vmcs12->io_bitmap_a)) ||
530 CC(!page_address_valid(vcpu, vmcs12->io_bitmap_b)))
531 return -EINVAL;
532
533 return 0;
534 }
535
nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)536 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
537 struct vmcs12 *vmcs12)
538 {
539 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
540 return 0;
541
542 if (CC(!page_address_valid(vcpu, vmcs12->msr_bitmap)))
543 return -EINVAL;
544
545 return 0;
546 }
547
nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)548 static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
549 struct vmcs12 *vmcs12)
550 {
551 if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
552 return 0;
553
554 if (CC(!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr)))
555 return -EINVAL;
556
557 return 0;
558 }
559
560 /*
561 * For x2APIC MSRs, ignore the vmcs01 bitmap. L1 can enable x2APIC without L1
562 * itself utilizing x2APIC. All MSRs were previously set to be intercepted,
563 * only the "disable intercept" case needs to be handled.
564 */
nested_vmx_disable_intercept_for_x2apic_msr(unsigned long * msr_bitmap_l1,unsigned long * msr_bitmap_l0,u32 msr,int type)565 static void nested_vmx_disable_intercept_for_x2apic_msr(unsigned long *msr_bitmap_l1,
566 unsigned long *msr_bitmap_l0,
567 u32 msr, int type)
568 {
569 if (type & MSR_TYPE_R && !vmx_test_msr_bitmap_read(msr_bitmap_l1, msr))
570 vmx_clear_msr_bitmap_read(msr_bitmap_l0, msr);
571
572 if (type & MSR_TYPE_W && !vmx_test_msr_bitmap_write(msr_bitmap_l1, msr))
573 vmx_clear_msr_bitmap_write(msr_bitmap_l0, msr);
574 }
575
enable_x2apic_msr_intercepts(unsigned long * msr_bitmap)576 static inline void enable_x2apic_msr_intercepts(unsigned long *msr_bitmap)
577 {
578 int msr;
579
580 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
581 unsigned word = msr / BITS_PER_LONG;
582
583 msr_bitmap[word] = ~0;
584 msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
585 }
586 }
587
588 #define BUILD_NVMX_MSR_INTERCEPT_HELPER(rw) \
589 static inline \
590 void nested_vmx_set_msr_##rw##_intercept(struct vcpu_vmx *vmx, \
591 unsigned long *msr_bitmap_l1, \
592 unsigned long *msr_bitmap_l0, u32 msr) \
593 { \
594 if (vmx_test_msr_bitmap_##rw(vmx->vmcs01.msr_bitmap, msr) || \
595 vmx_test_msr_bitmap_##rw(msr_bitmap_l1, msr)) \
596 vmx_set_msr_bitmap_##rw(msr_bitmap_l0, msr); \
597 else \
598 vmx_clear_msr_bitmap_##rw(msr_bitmap_l0, msr); \
599 }
600 BUILD_NVMX_MSR_INTERCEPT_HELPER(read)
BUILD_NVMX_MSR_INTERCEPT_HELPER(write)601 BUILD_NVMX_MSR_INTERCEPT_HELPER(write)
602
603 static inline void nested_vmx_set_intercept_for_msr(struct vcpu_vmx *vmx,
604 unsigned long *msr_bitmap_l1,
605 unsigned long *msr_bitmap_l0,
606 u32 msr, int types)
607 {
608 if (types & MSR_TYPE_R)
609 nested_vmx_set_msr_read_intercept(vmx, msr_bitmap_l1,
610 msr_bitmap_l0, msr);
611 if (types & MSR_TYPE_W)
612 nested_vmx_set_msr_write_intercept(vmx, msr_bitmap_l1,
613 msr_bitmap_l0, msr);
614 }
615
616 /*
617 * Merge L0's and L1's MSR bitmap, return false to indicate that
618 * we do not use the hardware.
619 */
nested_vmx_prepare_msr_bitmap(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)620 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
621 struct vmcs12 *vmcs12)
622 {
623 struct vcpu_vmx *vmx = to_vmx(vcpu);
624 int msr;
625 unsigned long *msr_bitmap_l1;
626 unsigned long *msr_bitmap_l0 = vmx->nested.vmcs02.msr_bitmap;
627 struct kvm_host_map map;
628
629 /* Nothing to do if the MSR bitmap is not in use. */
630 if (!cpu_has_vmx_msr_bitmap() ||
631 !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
632 return false;
633
634 /*
635 * MSR bitmap update can be skipped when:
636 * - MSR bitmap for L1 hasn't changed.
637 * - Nested hypervisor (L1) is attempting to launch the same L2 as
638 * before.
639 * - Nested hypervisor (L1) has enabled 'Enlightened MSR Bitmap' feature
640 * and tells KVM (L0) there were no changes in MSR bitmap for L2.
641 */
642 if (!vmx->nested.force_msr_bitmap_recalc) {
643 struct hv_enlightened_vmcs *evmcs = nested_vmx_evmcs(vmx);
644
645 if (evmcs && evmcs->hv_enlightenments_control.msr_bitmap &&
646 evmcs->hv_clean_fields & HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP)
647 return true;
648 }
649
650 if (kvm_vcpu_map_readonly(vcpu, gpa_to_gfn(vmcs12->msr_bitmap), &map))
651 return false;
652
653 msr_bitmap_l1 = (unsigned long *)map.hva;
654
655 /*
656 * To keep the control flow simple, pay eight 8-byte writes (sixteen
657 * 4-byte writes on 32-bit systems) up front to enable intercepts for
658 * the x2APIC MSR range and selectively toggle those relevant to L2.
659 */
660 enable_x2apic_msr_intercepts(msr_bitmap_l0);
661
662 if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
663 if (nested_cpu_has_apic_reg_virt(vmcs12)) {
664 /*
665 * L0 need not intercept reads for MSRs between 0x800
666 * and 0x8ff, it just lets the processor take the value
667 * from the virtual-APIC page; take those 256 bits
668 * directly from the L1 bitmap.
669 */
670 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
671 unsigned word = msr / BITS_PER_LONG;
672
673 msr_bitmap_l0[word] = msr_bitmap_l1[word];
674 }
675 }
676
677 nested_vmx_disable_intercept_for_x2apic_msr(
678 msr_bitmap_l1, msr_bitmap_l0,
679 X2APIC_MSR(APIC_TASKPRI),
680 MSR_TYPE_R | MSR_TYPE_W);
681
682 if (nested_cpu_has_vid(vmcs12)) {
683 nested_vmx_disable_intercept_for_x2apic_msr(
684 msr_bitmap_l1, msr_bitmap_l0,
685 X2APIC_MSR(APIC_EOI),
686 MSR_TYPE_W);
687 nested_vmx_disable_intercept_for_x2apic_msr(
688 msr_bitmap_l1, msr_bitmap_l0,
689 X2APIC_MSR(APIC_SELF_IPI),
690 MSR_TYPE_W);
691 }
692 }
693
694 /*
695 * Always check vmcs01's bitmap to honor userspace MSR filters and any
696 * other runtime changes to vmcs01's bitmap, e.g. dynamic pass-through.
697 */
698 #ifdef CONFIG_X86_64
699 nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
700 MSR_FS_BASE, MSR_TYPE_RW);
701
702 nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
703 MSR_GS_BASE, MSR_TYPE_RW);
704
705 nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
706 MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
707 #endif
708 nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
709 MSR_IA32_SPEC_CTRL, MSR_TYPE_RW);
710
711 nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
712 MSR_IA32_PRED_CMD, MSR_TYPE_W);
713
714 nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
715 MSR_IA32_FLUSH_CMD, MSR_TYPE_W);
716
717 kvm_vcpu_unmap(vcpu, &map);
718
719 vmx->nested.force_msr_bitmap_recalc = false;
720
721 return true;
722 }
723
nested_cache_shadow_vmcs12(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)724 static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
725 struct vmcs12 *vmcs12)
726 {
727 struct vcpu_vmx *vmx = to_vmx(vcpu);
728 struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
729
730 if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
731 vmcs12->vmcs_link_pointer == INVALID_GPA)
732 return;
733
734 if (ghc->gpa != vmcs12->vmcs_link_pointer &&
735 kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
736 vmcs12->vmcs_link_pointer, VMCS12_SIZE))
737 return;
738
739 kvm_read_guest_cached(vmx->vcpu.kvm, ghc, get_shadow_vmcs12(vcpu),
740 VMCS12_SIZE);
741 }
742
nested_flush_cached_shadow_vmcs12(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)743 static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
744 struct vmcs12 *vmcs12)
745 {
746 struct vcpu_vmx *vmx = to_vmx(vcpu);
747 struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
748
749 if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
750 vmcs12->vmcs_link_pointer == INVALID_GPA)
751 return;
752
753 if (ghc->gpa != vmcs12->vmcs_link_pointer &&
754 kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
755 vmcs12->vmcs_link_pointer, VMCS12_SIZE))
756 return;
757
758 kvm_write_guest_cached(vmx->vcpu.kvm, ghc, get_shadow_vmcs12(vcpu),
759 VMCS12_SIZE);
760 }
761
762 /*
763 * In nested virtualization, check if L1 has set
764 * VM_EXIT_ACK_INTR_ON_EXIT
765 */
nested_exit_intr_ack_set(struct kvm_vcpu * vcpu)766 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
767 {
768 return get_vmcs12(vcpu)->vm_exit_controls &
769 VM_EXIT_ACK_INTR_ON_EXIT;
770 }
771
nested_vmx_check_apic_access_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)772 static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
773 struct vmcs12 *vmcs12)
774 {
775 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
776 CC(!page_address_valid(vcpu, vmcs12->apic_access_addr)))
777 return -EINVAL;
778 else
779 return 0;
780 }
781
nested_vmx_check_apicv_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)782 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
783 struct vmcs12 *vmcs12)
784 {
785 if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
786 !nested_cpu_has_apic_reg_virt(vmcs12) &&
787 !nested_cpu_has_vid(vmcs12) &&
788 !nested_cpu_has_posted_intr(vmcs12))
789 return 0;
790
791 /*
792 * If virtualize x2apic mode is enabled,
793 * virtualize apic access must be disabled.
794 */
795 if (CC(nested_cpu_has_virt_x2apic_mode(vmcs12) &&
796 nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)))
797 return -EINVAL;
798
799 /*
800 * If virtual interrupt delivery is enabled,
801 * we must exit on external interrupts.
802 */
803 if (CC(nested_cpu_has_vid(vmcs12) && !nested_exit_on_intr(vcpu)))
804 return -EINVAL;
805
806 /*
807 * bits 15:8 should be zero in posted_intr_nv,
808 * the descriptor address has been already checked
809 * in nested_get_vmcs12_pages.
810 *
811 * bits 5:0 of posted_intr_desc_addr should be zero.
812 */
813 if (nested_cpu_has_posted_intr(vmcs12) &&
814 (CC(!nested_cpu_has_vid(vmcs12)) ||
815 CC(!nested_exit_intr_ack_set(vcpu)) ||
816 CC((vmcs12->posted_intr_nv & 0xff00)) ||
817 CC(!kvm_vcpu_is_legal_aligned_gpa(vcpu, vmcs12->posted_intr_desc_addr, 64))))
818 return -EINVAL;
819
820 /* tpr shadow is needed by all apicv features. */
821 if (CC(!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)))
822 return -EINVAL;
823
824 return 0;
825 }
826
nested_vmx_check_msr_switch(struct kvm_vcpu * vcpu,u32 count,u64 addr)827 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
828 u32 count, u64 addr)
829 {
830 if (count == 0)
831 return 0;
832
833 if (!kvm_vcpu_is_legal_aligned_gpa(vcpu, addr, 16) ||
834 !kvm_vcpu_is_legal_gpa(vcpu, (addr + count * sizeof(struct vmx_msr_entry) - 1)))
835 return -EINVAL;
836
837 return 0;
838 }
839
nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)840 static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu,
841 struct vmcs12 *vmcs12)
842 {
843 if (CC(nested_vmx_check_msr_switch(vcpu,
844 vmcs12->vm_exit_msr_load_count,
845 vmcs12->vm_exit_msr_load_addr)) ||
846 CC(nested_vmx_check_msr_switch(vcpu,
847 vmcs12->vm_exit_msr_store_count,
848 vmcs12->vm_exit_msr_store_addr)))
849 return -EINVAL;
850
851 return 0;
852 }
853
nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)854 static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu,
855 struct vmcs12 *vmcs12)
856 {
857 if (CC(nested_vmx_check_msr_switch(vcpu,
858 vmcs12->vm_entry_msr_load_count,
859 vmcs12->vm_entry_msr_load_addr)))
860 return -EINVAL;
861
862 return 0;
863 }
864
nested_vmx_check_pml_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)865 static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
866 struct vmcs12 *vmcs12)
867 {
868 if (!nested_cpu_has_pml(vmcs12))
869 return 0;
870
871 if (CC(!nested_cpu_has_ept(vmcs12)) ||
872 CC(!page_address_valid(vcpu, vmcs12->pml_address)))
873 return -EINVAL;
874
875 return 0;
876 }
877
nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)878 static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu,
879 struct vmcs12 *vmcs12)
880 {
881 if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) &&
882 !nested_cpu_has_ept(vmcs12)))
883 return -EINVAL;
884 return 0;
885 }
886
nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)887 static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu,
888 struct vmcs12 *vmcs12)
889 {
890 if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) &&
891 !nested_cpu_has_ept(vmcs12)))
892 return -EINVAL;
893 return 0;
894 }
895
nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)896 static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
897 struct vmcs12 *vmcs12)
898 {
899 if (!nested_cpu_has_shadow_vmcs(vmcs12))
900 return 0;
901
902 if (CC(!page_address_valid(vcpu, vmcs12->vmread_bitmap)) ||
903 CC(!page_address_valid(vcpu, vmcs12->vmwrite_bitmap)))
904 return -EINVAL;
905
906 return 0;
907 }
908
nested_vmx_msr_check_common(struct kvm_vcpu * vcpu,struct vmx_msr_entry * e)909 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
910 struct vmx_msr_entry *e)
911 {
912 /* x2APIC MSR accesses are not allowed */
913 if (CC(vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8))
914 return -EINVAL;
915 if (CC(e->index == MSR_IA32_UCODE_WRITE) || /* SDM Table 35-2 */
916 CC(e->index == MSR_IA32_UCODE_REV))
917 return -EINVAL;
918 if (CC(e->reserved != 0))
919 return -EINVAL;
920 return 0;
921 }
922
nested_vmx_load_msr_check(struct kvm_vcpu * vcpu,struct vmx_msr_entry * e)923 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
924 struct vmx_msr_entry *e)
925 {
926 if (CC(e->index == MSR_FS_BASE) ||
927 CC(e->index == MSR_GS_BASE) ||
928 CC(e->index == MSR_IA32_SMM_MONITOR_CTL) || /* SMM is not supported */
929 nested_vmx_msr_check_common(vcpu, e))
930 return -EINVAL;
931 return 0;
932 }
933
nested_vmx_store_msr_check(struct kvm_vcpu * vcpu,struct vmx_msr_entry * e)934 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
935 struct vmx_msr_entry *e)
936 {
937 if (CC(e->index == MSR_IA32_SMBASE) || /* SMM is not supported */
938 nested_vmx_msr_check_common(vcpu, e))
939 return -EINVAL;
940 return 0;
941 }
942
nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu * vcpu)943 static u32 nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu *vcpu)
944 {
945 struct vcpu_vmx *vmx = to_vmx(vcpu);
946 u64 vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
947 vmx->nested.msrs.misc_high);
948
949 return (vmx_misc_max_msr(vmx_misc) + 1) * VMX_MISC_MSR_LIST_MULTIPLIER;
950 }
951
952 /*
953 * Load guest's/host's msr at nested entry/exit.
954 * return 0 for success, entry index for failure.
955 *
956 * One of the failure modes for MSR load/store is when a list exceeds the
957 * virtual hardware's capacity. To maintain compatibility with hardware inasmuch
958 * as possible, process all valid entries before failing rather than precheck
959 * for a capacity violation.
960 */
nested_vmx_load_msr(struct kvm_vcpu * vcpu,u64 gpa,u32 count)961 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
962 {
963 u32 i;
964 struct vmx_msr_entry e;
965 u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
966
967 for (i = 0; i < count; i++) {
968 if (unlikely(i >= max_msr_list_size))
969 goto fail;
970
971 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
972 &e, sizeof(e))) {
973 pr_debug_ratelimited(
974 "%s cannot read MSR entry (%u, 0x%08llx)\n",
975 __func__, i, gpa + i * sizeof(e));
976 goto fail;
977 }
978 if (nested_vmx_load_msr_check(vcpu, &e)) {
979 pr_debug_ratelimited(
980 "%s check failed (%u, 0x%x, 0x%x)\n",
981 __func__, i, e.index, e.reserved);
982 goto fail;
983 }
984 if (kvm_set_msr_with_filter(vcpu, e.index, e.value)) {
985 pr_debug_ratelimited(
986 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
987 __func__, i, e.index, e.value);
988 goto fail;
989 }
990 }
991 return 0;
992 fail:
993 /* Note, max_msr_list_size is at most 4096, i.e. this can't wrap. */
994 return i + 1;
995 }
996
nested_vmx_get_vmexit_msr_value(struct kvm_vcpu * vcpu,u32 msr_index,u64 * data)997 static bool nested_vmx_get_vmexit_msr_value(struct kvm_vcpu *vcpu,
998 u32 msr_index,
999 u64 *data)
1000 {
1001 struct vcpu_vmx *vmx = to_vmx(vcpu);
1002
1003 /*
1004 * If the L0 hypervisor stored a more accurate value for the TSC that
1005 * does not include the time taken for emulation of the L2->L1
1006 * VM-exit in L0, use the more accurate value.
1007 */
1008 if (msr_index == MSR_IA32_TSC) {
1009 int i = vmx_find_loadstore_msr_slot(&vmx->msr_autostore.guest,
1010 MSR_IA32_TSC);
1011
1012 if (i >= 0) {
1013 u64 val = vmx->msr_autostore.guest.val[i].value;
1014
1015 *data = kvm_read_l1_tsc(vcpu, val);
1016 return true;
1017 }
1018 }
1019
1020 if (kvm_get_msr_with_filter(vcpu, msr_index, data)) {
1021 pr_debug_ratelimited("%s cannot read MSR (0x%x)\n", __func__,
1022 msr_index);
1023 return false;
1024 }
1025 return true;
1026 }
1027
read_and_check_msr_entry(struct kvm_vcpu * vcpu,u64 gpa,int i,struct vmx_msr_entry * e)1028 static bool read_and_check_msr_entry(struct kvm_vcpu *vcpu, u64 gpa, int i,
1029 struct vmx_msr_entry *e)
1030 {
1031 if (kvm_vcpu_read_guest(vcpu,
1032 gpa + i * sizeof(*e),
1033 e, 2 * sizeof(u32))) {
1034 pr_debug_ratelimited(
1035 "%s cannot read MSR entry (%u, 0x%08llx)\n",
1036 __func__, i, gpa + i * sizeof(*e));
1037 return false;
1038 }
1039 if (nested_vmx_store_msr_check(vcpu, e)) {
1040 pr_debug_ratelimited(
1041 "%s check failed (%u, 0x%x, 0x%x)\n",
1042 __func__, i, e->index, e->reserved);
1043 return false;
1044 }
1045 return true;
1046 }
1047
nested_vmx_store_msr(struct kvm_vcpu * vcpu,u64 gpa,u32 count)1048 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
1049 {
1050 u64 data;
1051 u32 i;
1052 struct vmx_msr_entry e;
1053 u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
1054
1055 for (i = 0; i < count; i++) {
1056 if (unlikely(i >= max_msr_list_size))
1057 return -EINVAL;
1058
1059 if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
1060 return -EINVAL;
1061
1062 if (!nested_vmx_get_vmexit_msr_value(vcpu, e.index, &data))
1063 return -EINVAL;
1064
1065 if (kvm_vcpu_write_guest(vcpu,
1066 gpa + i * sizeof(e) +
1067 offsetof(struct vmx_msr_entry, value),
1068 &data, sizeof(data))) {
1069 pr_debug_ratelimited(
1070 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
1071 __func__, i, e.index, data);
1072 return -EINVAL;
1073 }
1074 }
1075 return 0;
1076 }
1077
nested_msr_store_list_has_msr(struct kvm_vcpu * vcpu,u32 msr_index)1078 static bool nested_msr_store_list_has_msr(struct kvm_vcpu *vcpu, u32 msr_index)
1079 {
1080 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1081 u32 count = vmcs12->vm_exit_msr_store_count;
1082 u64 gpa = vmcs12->vm_exit_msr_store_addr;
1083 struct vmx_msr_entry e;
1084 u32 i;
1085
1086 for (i = 0; i < count; i++) {
1087 if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
1088 return false;
1089
1090 if (e.index == msr_index)
1091 return true;
1092 }
1093 return false;
1094 }
1095
prepare_vmx_msr_autostore_list(struct kvm_vcpu * vcpu,u32 msr_index)1096 static void prepare_vmx_msr_autostore_list(struct kvm_vcpu *vcpu,
1097 u32 msr_index)
1098 {
1099 struct vcpu_vmx *vmx = to_vmx(vcpu);
1100 struct vmx_msrs *autostore = &vmx->msr_autostore.guest;
1101 bool in_vmcs12_store_list;
1102 int msr_autostore_slot;
1103 bool in_autostore_list;
1104 int last;
1105
1106 msr_autostore_slot = vmx_find_loadstore_msr_slot(autostore, msr_index);
1107 in_autostore_list = msr_autostore_slot >= 0;
1108 in_vmcs12_store_list = nested_msr_store_list_has_msr(vcpu, msr_index);
1109
1110 if (in_vmcs12_store_list && !in_autostore_list) {
1111 if (autostore->nr == MAX_NR_LOADSTORE_MSRS) {
1112 /*
1113 * Emulated VMEntry does not fail here. Instead a less
1114 * accurate value will be returned by
1115 * nested_vmx_get_vmexit_msr_value() by reading KVM's
1116 * internal MSR state instead of reading the value from
1117 * the vmcs02 VMExit MSR-store area.
1118 */
1119 pr_warn_ratelimited(
1120 "Not enough msr entries in msr_autostore. Can't add msr %x\n",
1121 msr_index);
1122 return;
1123 }
1124 last = autostore->nr++;
1125 autostore->val[last].index = msr_index;
1126 } else if (!in_vmcs12_store_list && in_autostore_list) {
1127 last = --autostore->nr;
1128 autostore->val[msr_autostore_slot] = autostore->val[last];
1129 }
1130 }
1131
1132 /*
1133 * Load guest's/host's cr3 at nested entry/exit. @nested_ept is true if we are
1134 * emulating VM-Entry into a guest with EPT enabled. On failure, the expected
1135 * Exit Qualification (for a VM-Entry consistency check VM-Exit) is assigned to
1136 * @entry_failure_code.
1137 */
nested_vmx_load_cr3(struct kvm_vcpu * vcpu,unsigned long cr3,bool nested_ept,bool reload_pdptrs,enum vm_entry_failure_code * entry_failure_code)1138 static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3,
1139 bool nested_ept, bool reload_pdptrs,
1140 enum vm_entry_failure_code *entry_failure_code)
1141 {
1142 if (CC(!kvm_vcpu_is_legal_cr3(vcpu, cr3))) {
1143 *entry_failure_code = ENTRY_FAIL_DEFAULT;
1144 return -EINVAL;
1145 }
1146
1147 /*
1148 * If PAE paging and EPT are both on, CR3 is not used by the CPU and
1149 * must not be dereferenced.
1150 */
1151 if (reload_pdptrs && !nested_ept && is_pae_paging(vcpu) &&
1152 CC(!load_pdptrs(vcpu, cr3))) {
1153 *entry_failure_code = ENTRY_FAIL_PDPTE;
1154 return -EINVAL;
1155 }
1156
1157 vcpu->arch.cr3 = cr3;
1158 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1159
1160 /* Re-initialize the MMU, e.g. to pick up CR4 MMU role changes. */
1161 kvm_init_mmu(vcpu);
1162
1163 if (!nested_ept)
1164 kvm_mmu_new_pgd(vcpu, cr3);
1165
1166 return 0;
1167 }
1168
1169 /*
1170 * Returns if KVM is able to config CPU to tag TLB entries
1171 * populated by L2 differently than TLB entries populated
1172 * by L1.
1173 *
1174 * If L0 uses EPT, L1 and L2 run with different EPTP because
1175 * guest_mode is part of kvm_mmu_page_role. Thus, TLB entries
1176 * are tagged with different EPTP.
1177 *
1178 * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
1179 * with different VPID (L1 entries are tagged with vmx->vpid
1180 * while L2 entries are tagged with vmx->nested.vpid02).
1181 */
nested_has_guest_tlb_tag(struct kvm_vcpu * vcpu)1182 static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu)
1183 {
1184 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1185
1186 return enable_ept ||
1187 (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02);
1188 }
1189
nested_vmx_transition_tlb_flush(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,bool is_vmenter)1190 static void nested_vmx_transition_tlb_flush(struct kvm_vcpu *vcpu,
1191 struct vmcs12 *vmcs12,
1192 bool is_vmenter)
1193 {
1194 struct vcpu_vmx *vmx = to_vmx(vcpu);
1195
1196 /* Handle pending Hyper-V TLB flush requests */
1197 kvm_hv_nested_transtion_tlb_flush(vcpu, enable_ept);
1198
1199 /*
1200 * If VPID is disabled, then guest TLB accesses use VPID=0, i.e. the
1201 * same VPID as the host, and so architecturally, linear and combined
1202 * mappings for VPID=0 must be flushed at VM-Enter and VM-Exit. KVM
1203 * emulates L2 sharing L1's VPID=0 by using vpid01 while running L2,
1204 * and so KVM must also emulate TLB flush of VPID=0, i.e. vpid01. This
1205 * is required if VPID is disabled in KVM, as a TLB flush (there are no
1206 * VPIDs) still occurs from L1's perspective, and KVM may need to
1207 * synchronize the MMU in response to the guest TLB flush.
1208 *
1209 * Note, using TLB_FLUSH_GUEST is correct even if nested EPT is in use.
1210 * EPT is a special snowflake, as guest-physical mappings aren't
1211 * flushed on VPID invalidations, including VM-Enter or VM-Exit with
1212 * VPID disabled. As a result, KVM _never_ needs to sync nEPT
1213 * entries on VM-Enter because L1 can't rely on VM-Enter to flush
1214 * those mappings.
1215 */
1216 if (!nested_cpu_has_vpid(vmcs12)) {
1217 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1218 return;
1219 }
1220
1221 /* L2 should never have a VPID if VPID is disabled. */
1222 WARN_ON(!enable_vpid);
1223
1224 /*
1225 * VPID is enabled and in use by vmcs12. If vpid12 is changing, then
1226 * emulate a guest TLB flush as KVM does not track vpid12 history nor
1227 * is the VPID incorporated into the MMU context. I.e. KVM must assume
1228 * that the new vpid12 has never been used and thus represents a new
1229 * guest ASID that cannot have entries in the TLB.
1230 */
1231 if (is_vmenter && vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
1232 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
1233 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1234 return;
1235 }
1236
1237 /*
1238 * If VPID is enabled, used by vmc12, and vpid12 is not changing but
1239 * does not have a unique TLB tag (ASID), i.e. EPT is disabled and
1240 * KVM was unable to allocate a VPID for L2, flush the current context
1241 * as the effective ASID is common to both L1 and L2.
1242 */
1243 if (!nested_has_guest_tlb_tag(vcpu))
1244 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1245 }
1246
is_bitwise_subset(u64 superset,u64 subset,u64 mask)1247 static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
1248 {
1249 superset &= mask;
1250 subset &= mask;
1251
1252 return (superset | subset) == superset;
1253 }
1254
vmx_restore_vmx_basic(struct vcpu_vmx * vmx,u64 data)1255 static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
1256 {
1257 const u64 feature_bits = VMX_BASIC_DUAL_MONITOR_TREATMENT |
1258 VMX_BASIC_INOUT |
1259 VMX_BASIC_TRUE_CTLS;
1260
1261 const u64 reserved_bits = GENMASK_ULL(63, 56) |
1262 GENMASK_ULL(47, 45) |
1263 BIT_ULL(31);
1264
1265 u64 vmx_basic = vmcs_config.nested.basic;
1266
1267 BUILD_BUG_ON(feature_bits & reserved_bits);
1268
1269 /*
1270 * Except for 32BIT_PHYS_ADDR_ONLY, which is an anti-feature bit (has
1271 * inverted polarity), the incoming value must not set feature bits or
1272 * reserved bits that aren't allowed/supported by KVM. Fields, i.e.
1273 * multi-bit values, are explicitly checked below.
1274 */
1275 if (!is_bitwise_subset(vmx_basic, data, feature_bits | reserved_bits))
1276 return -EINVAL;
1277
1278 /*
1279 * KVM does not emulate a version of VMX that constrains physical
1280 * addresses of VMX structures (e.g. VMCS) to 32-bits.
1281 */
1282 if (data & VMX_BASIC_32BIT_PHYS_ADDR_ONLY)
1283 return -EINVAL;
1284
1285 if (vmx_basic_vmcs_revision_id(vmx_basic) !=
1286 vmx_basic_vmcs_revision_id(data))
1287 return -EINVAL;
1288
1289 if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
1290 return -EINVAL;
1291
1292 vmx->nested.msrs.basic = data;
1293 return 0;
1294 }
1295
vmx_get_control_msr(struct nested_vmx_msrs * msrs,u32 msr_index,u32 ** low,u32 ** high)1296 static void vmx_get_control_msr(struct nested_vmx_msrs *msrs, u32 msr_index,
1297 u32 **low, u32 **high)
1298 {
1299 switch (msr_index) {
1300 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1301 *low = &msrs->pinbased_ctls_low;
1302 *high = &msrs->pinbased_ctls_high;
1303 break;
1304 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1305 *low = &msrs->procbased_ctls_low;
1306 *high = &msrs->procbased_ctls_high;
1307 break;
1308 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1309 *low = &msrs->exit_ctls_low;
1310 *high = &msrs->exit_ctls_high;
1311 break;
1312 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1313 *low = &msrs->entry_ctls_low;
1314 *high = &msrs->entry_ctls_high;
1315 break;
1316 case MSR_IA32_VMX_PROCBASED_CTLS2:
1317 *low = &msrs->secondary_ctls_low;
1318 *high = &msrs->secondary_ctls_high;
1319 break;
1320 default:
1321 BUG();
1322 }
1323 }
1324
1325 static int
vmx_restore_control_msr(struct vcpu_vmx * vmx,u32 msr_index,u64 data)1326 vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1327 {
1328 u32 *lowp, *highp;
1329 u64 supported;
1330
1331 vmx_get_control_msr(&vmcs_config.nested, msr_index, &lowp, &highp);
1332
1333 supported = vmx_control_msr(*lowp, *highp);
1334
1335 /* Check must-be-1 bits are still 1. */
1336 if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
1337 return -EINVAL;
1338
1339 /* Check must-be-0 bits are still 0. */
1340 if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
1341 return -EINVAL;
1342
1343 vmx_get_control_msr(&vmx->nested.msrs, msr_index, &lowp, &highp);
1344 *lowp = data;
1345 *highp = data >> 32;
1346 return 0;
1347 }
1348
vmx_restore_vmx_misc(struct vcpu_vmx * vmx,u64 data)1349 static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
1350 {
1351 const u64 feature_bits = VMX_MISC_SAVE_EFER_LMA |
1352 VMX_MISC_ACTIVITY_HLT |
1353 VMX_MISC_ACTIVITY_SHUTDOWN |
1354 VMX_MISC_ACTIVITY_WAIT_SIPI |
1355 VMX_MISC_INTEL_PT |
1356 VMX_MISC_RDMSR_IN_SMM |
1357 VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
1358 VMX_MISC_VMXOFF_BLOCK_SMI |
1359 VMX_MISC_ZERO_LEN_INS;
1360
1361 const u64 reserved_bits = BIT_ULL(31) | GENMASK_ULL(13, 9);
1362
1363 u64 vmx_misc = vmx_control_msr(vmcs_config.nested.misc_low,
1364 vmcs_config.nested.misc_high);
1365
1366 BUILD_BUG_ON(feature_bits & reserved_bits);
1367
1368 /*
1369 * The incoming value must not set feature bits or reserved bits that
1370 * aren't allowed/supported by KVM. Fields, i.e. multi-bit values, are
1371 * explicitly checked below.
1372 */
1373 if (!is_bitwise_subset(vmx_misc, data, feature_bits | reserved_bits))
1374 return -EINVAL;
1375
1376 if ((vmx->nested.msrs.pinbased_ctls_high &
1377 PIN_BASED_VMX_PREEMPTION_TIMER) &&
1378 vmx_misc_preemption_timer_rate(data) !=
1379 vmx_misc_preemption_timer_rate(vmx_misc))
1380 return -EINVAL;
1381
1382 if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
1383 return -EINVAL;
1384
1385 if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
1386 return -EINVAL;
1387
1388 if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
1389 return -EINVAL;
1390
1391 vmx->nested.msrs.misc_low = data;
1392 vmx->nested.msrs.misc_high = data >> 32;
1393
1394 return 0;
1395 }
1396
vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx * vmx,u64 data)1397 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
1398 {
1399 u64 vmx_ept_vpid_cap = vmx_control_msr(vmcs_config.nested.ept_caps,
1400 vmcs_config.nested.vpid_caps);
1401
1402 /* Every bit is either reserved or a feature bit. */
1403 if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
1404 return -EINVAL;
1405
1406 vmx->nested.msrs.ept_caps = data;
1407 vmx->nested.msrs.vpid_caps = data >> 32;
1408 return 0;
1409 }
1410
vmx_get_fixed0_msr(struct nested_vmx_msrs * msrs,u32 msr_index)1411 static u64 *vmx_get_fixed0_msr(struct nested_vmx_msrs *msrs, u32 msr_index)
1412 {
1413 switch (msr_index) {
1414 case MSR_IA32_VMX_CR0_FIXED0:
1415 return &msrs->cr0_fixed0;
1416 case MSR_IA32_VMX_CR4_FIXED0:
1417 return &msrs->cr4_fixed0;
1418 default:
1419 BUG();
1420 }
1421 }
1422
vmx_restore_fixed0_msr(struct vcpu_vmx * vmx,u32 msr_index,u64 data)1423 static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1424 {
1425 const u64 *msr = vmx_get_fixed0_msr(&vmcs_config.nested, msr_index);
1426
1427 /*
1428 * 1 bits (which indicates bits which "must-be-1" during VMX operation)
1429 * must be 1 in the restored value.
1430 */
1431 if (!is_bitwise_subset(data, *msr, -1ULL))
1432 return -EINVAL;
1433
1434 *vmx_get_fixed0_msr(&vmx->nested.msrs, msr_index) = data;
1435 return 0;
1436 }
1437
1438 /*
1439 * Called when userspace is restoring VMX MSRs.
1440 *
1441 * Returns 0 on success, non-0 otherwise.
1442 */
vmx_set_vmx_msr(struct kvm_vcpu * vcpu,u32 msr_index,u64 data)1443 int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1444 {
1445 struct vcpu_vmx *vmx = to_vmx(vcpu);
1446
1447 /*
1448 * Don't allow changes to the VMX capability MSRs while the vCPU
1449 * is in VMX operation.
1450 */
1451 if (vmx->nested.vmxon)
1452 return -EBUSY;
1453
1454 switch (msr_index) {
1455 case MSR_IA32_VMX_BASIC:
1456 return vmx_restore_vmx_basic(vmx, data);
1457 case MSR_IA32_VMX_PINBASED_CTLS:
1458 case MSR_IA32_VMX_PROCBASED_CTLS:
1459 case MSR_IA32_VMX_EXIT_CTLS:
1460 case MSR_IA32_VMX_ENTRY_CTLS:
1461 /*
1462 * The "non-true" VMX capability MSRs are generated from the
1463 * "true" MSRs, so we do not support restoring them directly.
1464 *
1465 * If userspace wants to emulate VMX_BASIC[55]=0, userspace
1466 * should restore the "true" MSRs with the must-be-1 bits
1467 * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
1468 * DEFAULT SETTINGS".
1469 */
1470 return -EINVAL;
1471 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1472 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1473 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1474 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1475 case MSR_IA32_VMX_PROCBASED_CTLS2:
1476 return vmx_restore_control_msr(vmx, msr_index, data);
1477 case MSR_IA32_VMX_MISC:
1478 return vmx_restore_vmx_misc(vmx, data);
1479 case MSR_IA32_VMX_CR0_FIXED0:
1480 case MSR_IA32_VMX_CR4_FIXED0:
1481 return vmx_restore_fixed0_msr(vmx, msr_index, data);
1482 case MSR_IA32_VMX_CR0_FIXED1:
1483 case MSR_IA32_VMX_CR4_FIXED1:
1484 /*
1485 * These MSRs are generated based on the vCPU's CPUID, so we
1486 * do not support restoring them directly.
1487 */
1488 return -EINVAL;
1489 case MSR_IA32_VMX_EPT_VPID_CAP:
1490 return vmx_restore_vmx_ept_vpid_cap(vmx, data);
1491 case MSR_IA32_VMX_VMCS_ENUM:
1492 vmx->nested.msrs.vmcs_enum = data;
1493 return 0;
1494 case MSR_IA32_VMX_VMFUNC:
1495 if (data & ~vmcs_config.nested.vmfunc_controls)
1496 return -EINVAL;
1497 vmx->nested.msrs.vmfunc_controls = data;
1498 return 0;
1499 default:
1500 /*
1501 * The rest of the VMX capability MSRs do not support restore.
1502 */
1503 return -EINVAL;
1504 }
1505 }
1506
1507 /* Returns 0 on success, non-0 otherwise. */
vmx_get_vmx_msr(struct nested_vmx_msrs * msrs,u32 msr_index,u64 * pdata)1508 int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
1509 {
1510 switch (msr_index) {
1511 case MSR_IA32_VMX_BASIC:
1512 *pdata = msrs->basic;
1513 break;
1514 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1515 case MSR_IA32_VMX_PINBASED_CTLS:
1516 *pdata = vmx_control_msr(
1517 msrs->pinbased_ctls_low,
1518 msrs->pinbased_ctls_high);
1519 if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
1520 *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1521 break;
1522 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1523 case MSR_IA32_VMX_PROCBASED_CTLS:
1524 *pdata = vmx_control_msr(
1525 msrs->procbased_ctls_low,
1526 msrs->procbased_ctls_high);
1527 if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
1528 *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1529 break;
1530 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1531 case MSR_IA32_VMX_EXIT_CTLS:
1532 *pdata = vmx_control_msr(
1533 msrs->exit_ctls_low,
1534 msrs->exit_ctls_high);
1535 if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
1536 *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
1537 break;
1538 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1539 case MSR_IA32_VMX_ENTRY_CTLS:
1540 *pdata = vmx_control_msr(
1541 msrs->entry_ctls_low,
1542 msrs->entry_ctls_high);
1543 if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
1544 *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
1545 break;
1546 case MSR_IA32_VMX_MISC:
1547 *pdata = vmx_control_msr(
1548 msrs->misc_low,
1549 msrs->misc_high);
1550 break;
1551 case MSR_IA32_VMX_CR0_FIXED0:
1552 *pdata = msrs->cr0_fixed0;
1553 break;
1554 case MSR_IA32_VMX_CR0_FIXED1:
1555 *pdata = msrs->cr0_fixed1;
1556 break;
1557 case MSR_IA32_VMX_CR4_FIXED0:
1558 *pdata = msrs->cr4_fixed0;
1559 break;
1560 case MSR_IA32_VMX_CR4_FIXED1:
1561 *pdata = msrs->cr4_fixed1;
1562 break;
1563 case MSR_IA32_VMX_VMCS_ENUM:
1564 *pdata = msrs->vmcs_enum;
1565 break;
1566 case MSR_IA32_VMX_PROCBASED_CTLS2:
1567 *pdata = vmx_control_msr(
1568 msrs->secondary_ctls_low,
1569 msrs->secondary_ctls_high);
1570 break;
1571 case MSR_IA32_VMX_EPT_VPID_CAP:
1572 *pdata = msrs->ept_caps |
1573 ((u64)msrs->vpid_caps << 32);
1574 break;
1575 case MSR_IA32_VMX_VMFUNC:
1576 *pdata = msrs->vmfunc_controls;
1577 break;
1578 default:
1579 return 1;
1580 }
1581
1582 return 0;
1583 }
1584
1585 /*
1586 * Copy the writable VMCS shadow fields back to the VMCS12, in case they have
1587 * been modified by the L1 guest. Note, "writable" in this context means
1588 * "writable by the guest", i.e. tagged SHADOW_FIELD_RW; the set of
1589 * fields tagged SHADOW_FIELD_RO may or may not align with the "read-only"
1590 * VM-exit information fields (which are actually writable if the vCPU is
1591 * configured to support "VMWRITE to any supported field in the VMCS").
1592 */
copy_shadow_to_vmcs12(struct vcpu_vmx * vmx)1593 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
1594 {
1595 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1596 struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1597 struct shadow_vmcs_field field;
1598 unsigned long val;
1599 int i;
1600
1601 if (WARN_ON(!shadow_vmcs))
1602 return;
1603
1604 preempt_disable();
1605
1606 vmcs_load(shadow_vmcs);
1607
1608 for (i = 0; i < max_shadow_read_write_fields; i++) {
1609 field = shadow_read_write_fields[i];
1610 val = __vmcs_readl(field.encoding);
1611 vmcs12_write_any(vmcs12, field.encoding, field.offset, val);
1612 }
1613
1614 vmcs_clear(shadow_vmcs);
1615 vmcs_load(vmx->loaded_vmcs->vmcs);
1616
1617 preempt_enable();
1618 }
1619
copy_vmcs12_to_shadow(struct vcpu_vmx * vmx)1620 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
1621 {
1622 const struct shadow_vmcs_field *fields[] = {
1623 shadow_read_write_fields,
1624 shadow_read_only_fields
1625 };
1626 const int max_fields[] = {
1627 max_shadow_read_write_fields,
1628 max_shadow_read_only_fields
1629 };
1630 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1631 struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1632 struct shadow_vmcs_field field;
1633 unsigned long val;
1634 int i, q;
1635
1636 if (WARN_ON(!shadow_vmcs))
1637 return;
1638
1639 vmcs_load(shadow_vmcs);
1640
1641 for (q = 0; q < ARRAY_SIZE(fields); q++) {
1642 for (i = 0; i < max_fields[q]; i++) {
1643 field = fields[q][i];
1644 val = vmcs12_read_any(vmcs12, field.encoding,
1645 field.offset);
1646 __vmcs_writel(field.encoding, val);
1647 }
1648 }
1649
1650 vmcs_clear(shadow_vmcs);
1651 vmcs_load(vmx->loaded_vmcs->vmcs);
1652 }
1653
copy_enlightened_to_vmcs12(struct vcpu_vmx * vmx,u32 hv_clean_fields)1654 static void copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx, u32 hv_clean_fields)
1655 {
1656 #ifdef CONFIG_KVM_HYPERV
1657 struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1658 struct hv_enlightened_vmcs *evmcs = nested_vmx_evmcs(vmx);
1659 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(&vmx->vcpu);
1660
1661 /* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
1662 vmcs12->tpr_threshold = evmcs->tpr_threshold;
1663 vmcs12->guest_rip = evmcs->guest_rip;
1664
1665 if (unlikely(!(hv_clean_fields &
1666 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ENLIGHTENMENTSCONTROL))) {
1667 hv_vcpu->nested.pa_page_gpa = evmcs->partition_assist_page;
1668 hv_vcpu->nested.vm_id = evmcs->hv_vm_id;
1669 hv_vcpu->nested.vp_id = evmcs->hv_vp_id;
1670 }
1671
1672 if (unlikely(!(hv_clean_fields &
1673 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
1674 vmcs12->guest_rsp = evmcs->guest_rsp;
1675 vmcs12->guest_rflags = evmcs->guest_rflags;
1676 vmcs12->guest_interruptibility_info =
1677 evmcs->guest_interruptibility_info;
1678 /*
1679 * Not present in struct vmcs12:
1680 * vmcs12->guest_ssp = evmcs->guest_ssp;
1681 */
1682 }
1683
1684 if (unlikely(!(hv_clean_fields &
1685 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
1686 vmcs12->cpu_based_vm_exec_control =
1687 evmcs->cpu_based_vm_exec_control;
1688 }
1689
1690 if (unlikely(!(hv_clean_fields &
1691 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EXCPN))) {
1692 vmcs12->exception_bitmap = evmcs->exception_bitmap;
1693 }
1694
1695 if (unlikely(!(hv_clean_fields &
1696 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) {
1697 vmcs12->vm_entry_controls = evmcs->vm_entry_controls;
1698 }
1699
1700 if (unlikely(!(hv_clean_fields &
1701 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) {
1702 vmcs12->vm_entry_intr_info_field =
1703 evmcs->vm_entry_intr_info_field;
1704 vmcs12->vm_entry_exception_error_code =
1705 evmcs->vm_entry_exception_error_code;
1706 vmcs12->vm_entry_instruction_len =
1707 evmcs->vm_entry_instruction_len;
1708 }
1709
1710 if (unlikely(!(hv_clean_fields &
1711 HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
1712 vmcs12->host_ia32_pat = evmcs->host_ia32_pat;
1713 vmcs12->host_ia32_efer = evmcs->host_ia32_efer;
1714 vmcs12->host_cr0 = evmcs->host_cr0;
1715 vmcs12->host_cr3 = evmcs->host_cr3;
1716 vmcs12->host_cr4 = evmcs->host_cr4;
1717 vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp;
1718 vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip;
1719 vmcs12->host_rip = evmcs->host_rip;
1720 vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs;
1721 vmcs12->host_es_selector = evmcs->host_es_selector;
1722 vmcs12->host_cs_selector = evmcs->host_cs_selector;
1723 vmcs12->host_ss_selector = evmcs->host_ss_selector;
1724 vmcs12->host_ds_selector = evmcs->host_ds_selector;
1725 vmcs12->host_fs_selector = evmcs->host_fs_selector;
1726 vmcs12->host_gs_selector = evmcs->host_gs_selector;
1727 vmcs12->host_tr_selector = evmcs->host_tr_selector;
1728 vmcs12->host_ia32_perf_global_ctrl = evmcs->host_ia32_perf_global_ctrl;
1729 /*
1730 * Not present in struct vmcs12:
1731 * vmcs12->host_ia32_s_cet = evmcs->host_ia32_s_cet;
1732 * vmcs12->host_ssp = evmcs->host_ssp;
1733 * vmcs12->host_ia32_int_ssp_table_addr = evmcs->host_ia32_int_ssp_table_addr;
1734 */
1735 }
1736
1737 if (unlikely(!(hv_clean_fields &
1738 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP1))) {
1739 vmcs12->pin_based_vm_exec_control =
1740 evmcs->pin_based_vm_exec_control;
1741 vmcs12->vm_exit_controls = evmcs->vm_exit_controls;
1742 vmcs12->secondary_vm_exec_control =
1743 evmcs->secondary_vm_exec_control;
1744 }
1745
1746 if (unlikely(!(hv_clean_fields &
1747 HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) {
1748 vmcs12->io_bitmap_a = evmcs->io_bitmap_a;
1749 vmcs12->io_bitmap_b = evmcs->io_bitmap_b;
1750 }
1751
1752 if (unlikely(!(hv_clean_fields &
1753 HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) {
1754 vmcs12->msr_bitmap = evmcs->msr_bitmap;
1755 }
1756
1757 if (unlikely(!(hv_clean_fields &
1758 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) {
1759 vmcs12->guest_es_base = evmcs->guest_es_base;
1760 vmcs12->guest_cs_base = evmcs->guest_cs_base;
1761 vmcs12->guest_ss_base = evmcs->guest_ss_base;
1762 vmcs12->guest_ds_base = evmcs->guest_ds_base;
1763 vmcs12->guest_fs_base = evmcs->guest_fs_base;
1764 vmcs12->guest_gs_base = evmcs->guest_gs_base;
1765 vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base;
1766 vmcs12->guest_tr_base = evmcs->guest_tr_base;
1767 vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base;
1768 vmcs12->guest_idtr_base = evmcs->guest_idtr_base;
1769 vmcs12->guest_es_limit = evmcs->guest_es_limit;
1770 vmcs12->guest_cs_limit = evmcs->guest_cs_limit;
1771 vmcs12->guest_ss_limit = evmcs->guest_ss_limit;
1772 vmcs12->guest_ds_limit = evmcs->guest_ds_limit;
1773 vmcs12->guest_fs_limit = evmcs->guest_fs_limit;
1774 vmcs12->guest_gs_limit = evmcs->guest_gs_limit;
1775 vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit;
1776 vmcs12->guest_tr_limit = evmcs->guest_tr_limit;
1777 vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit;
1778 vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit;
1779 vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes;
1780 vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes;
1781 vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes;
1782 vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes;
1783 vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes;
1784 vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes;
1785 vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes;
1786 vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes;
1787 vmcs12->guest_es_selector = evmcs->guest_es_selector;
1788 vmcs12->guest_cs_selector = evmcs->guest_cs_selector;
1789 vmcs12->guest_ss_selector = evmcs->guest_ss_selector;
1790 vmcs12->guest_ds_selector = evmcs->guest_ds_selector;
1791 vmcs12->guest_fs_selector = evmcs->guest_fs_selector;
1792 vmcs12->guest_gs_selector = evmcs->guest_gs_selector;
1793 vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector;
1794 vmcs12->guest_tr_selector = evmcs->guest_tr_selector;
1795 }
1796
1797 if (unlikely(!(hv_clean_fields &
1798 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) {
1799 vmcs12->tsc_offset = evmcs->tsc_offset;
1800 vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
1801 vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
1802 vmcs12->encls_exiting_bitmap = evmcs->encls_exiting_bitmap;
1803 vmcs12->tsc_multiplier = evmcs->tsc_multiplier;
1804 }
1805
1806 if (unlikely(!(hv_clean_fields &
1807 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) {
1808 vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask;
1809 vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask;
1810 vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow;
1811 vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow;
1812 vmcs12->guest_cr0 = evmcs->guest_cr0;
1813 vmcs12->guest_cr3 = evmcs->guest_cr3;
1814 vmcs12->guest_cr4 = evmcs->guest_cr4;
1815 vmcs12->guest_dr7 = evmcs->guest_dr7;
1816 }
1817
1818 if (unlikely(!(hv_clean_fields &
1819 HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) {
1820 vmcs12->host_fs_base = evmcs->host_fs_base;
1821 vmcs12->host_gs_base = evmcs->host_gs_base;
1822 vmcs12->host_tr_base = evmcs->host_tr_base;
1823 vmcs12->host_gdtr_base = evmcs->host_gdtr_base;
1824 vmcs12->host_idtr_base = evmcs->host_idtr_base;
1825 vmcs12->host_rsp = evmcs->host_rsp;
1826 }
1827
1828 if (unlikely(!(hv_clean_fields &
1829 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) {
1830 vmcs12->ept_pointer = evmcs->ept_pointer;
1831 vmcs12->virtual_processor_id = evmcs->virtual_processor_id;
1832 }
1833
1834 if (unlikely(!(hv_clean_fields &
1835 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) {
1836 vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer;
1837 vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl;
1838 vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat;
1839 vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer;
1840 vmcs12->guest_pdptr0 = evmcs->guest_pdptr0;
1841 vmcs12->guest_pdptr1 = evmcs->guest_pdptr1;
1842 vmcs12->guest_pdptr2 = evmcs->guest_pdptr2;
1843 vmcs12->guest_pdptr3 = evmcs->guest_pdptr3;
1844 vmcs12->guest_pending_dbg_exceptions =
1845 evmcs->guest_pending_dbg_exceptions;
1846 vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp;
1847 vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip;
1848 vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
1849 vmcs12->guest_activity_state = evmcs->guest_activity_state;
1850 vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
1851 vmcs12->guest_ia32_perf_global_ctrl = evmcs->guest_ia32_perf_global_ctrl;
1852 /*
1853 * Not present in struct vmcs12:
1854 * vmcs12->guest_ia32_s_cet = evmcs->guest_ia32_s_cet;
1855 * vmcs12->guest_ia32_lbr_ctl = evmcs->guest_ia32_lbr_ctl;
1856 * vmcs12->guest_ia32_int_ssp_table_addr = evmcs->guest_ia32_int_ssp_table_addr;
1857 */
1858 }
1859
1860 /*
1861 * Not used?
1862 * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
1863 * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
1864 * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
1865 * vmcs12->page_fault_error_code_mask =
1866 * evmcs->page_fault_error_code_mask;
1867 * vmcs12->page_fault_error_code_match =
1868 * evmcs->page_fault_error_code_match;
1869 * vmcs12->cr3_target_count = evmcs->cr3_target_count;
1870 * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
1871 * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
1872 * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
1873 */
1874
1875 /*
1876 * Read only fields:
1877 * vmcs12->guest_physical_address = evmcs->guest_physical_address;
1878 * vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
1879 * vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
1880 * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
1881 * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
1882 * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
1883 * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
1884 * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
1885 * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
1886 * vmcs12->exit_qualification = evmcs->exit_qualification;
1887 * vmcs12->guest_linear_address = evmcs->guest_linear_address;
1888 *
1889 * Not present in struct vmcs12:
1890 * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
1891 * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
1892 * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
1893 * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
1894 */
1895
1896 return;
1897 #else /* CONFIG_KVM_HYPERV */
1898 KVM_BUG_ON(1, vmx->vcpu.kvm);
1899 #endif /* CONFIG_KVM_HYPERV */
1900 }
1901
copy_vmcs12_to_enlightened(struct vcpu_vmx * vmx)1902 static void copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
1903 {
1904 #ifdef CONFIG_KVM_HYPERV
1905 struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1906 struct hv_enlightened_vmcs *evmcs = nested_vmx_evmcs(vmx);
1907
1908 /*
1909 * Should not be changed by KVM:
1910 *
1911 * evmcs->host_es_selector = vmcs12->host_es_selector;
1912 * evmcs->host_cs_selector = vmcs12->host_cs_selector;
1913 * evmcs->host_ss_selector = vmcs12->host_ss_selector;
1914 * evmcs->host_ds_selector = vmcs12->host_ds_selector;
1915 * evmcs->host_fs_selector = vmcs12->host_fs_selector;
1916 * evmcs->host_gs_selector = vmcs12->host_gs_selector;
1917 * evmcs->host_tr_selector = vmcs12->host_tr_selector;
1918 * evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
1919 * evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
1920 * evmcs->host_cr0 = vmcs12->host_cr0;
1921 * evmcs->host_cr3 = vmcs12->host_cr3;
1922 * evmcs->host_cr4 = vmcs12->host_cr4;
1923 * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
1924 * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
1925 * evmcs->host_rip = vmcs12->host_rip;
1926 * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
1927 * evmcs->host_fs_base = vmcs12->host_fs_base;
1928 * evmcs->host_gs_base = vmcs12->host_gs_base;
1929 * evmcs->host_tr_base = vmcs12->host_tr_base;
1930 * evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
1931 * evmcs->host_idtr_base = vmcs12->host_idtr_base;
1932 * evmcs->host_rsp = vmcs12->host_rsp;
1933 * sync_vmcs02_to_vmcs12() doesn't read these:
1934 * evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
1935 * evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
1936 * evmcs->msr_bitmap = vmcs12->msr_bitmap;
1937 * evmcs->ept_pointer = vmcs12->ept_pointer;
1938 * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
1939 * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
1940 * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
1941 * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
1942 * evmcs->tpr_threshold = vmcs12->tpr_threshold;
1943 * evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
1944 * evmcs->exception_bitmap = vmcs12->exception_bitmap;
1945 * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
1946 * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
1947 * evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
1948 * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
1949 * evmcs->page_fault_error_code_mask =
1950 * vmcs12->page_fault_error_code_mask;
1951 * evmcs->page_fault_error_code_match =
1952 * vmcs12->page_fault_error_code_match;
1953 * evmcs->cr3_target_count = vmcs12->cr3_target_count;
1954 * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
1955 * evmcs->tsc_offset = vmcs12->tsc_offset;
1956 * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
1957 * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
1958 * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
1959 * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
1960 * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
1961 * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
1962 * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
1963 * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
1964 * evmcs->guest_ia32_perf_global_ctrl = vmcs12->guest_ia32_perf_global_ctrl;
1965 * evmcs->host_ia32_perf_global_ctrl = vmcs12->host_ia32_perf_global_ctrl;
1966 * evmcs->encls_exiting_bitmap = vmcs12->encls_exiting_bitmap;
1967 * evmcs->tsc_multiplier = vmcs12->tsc_multiplier;
1968 *
1969 * Not present in struct vmcs12:
1970 * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
1971 * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
1972 * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
1973 * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
1974 * evmcs->host_ia32_s_cet = vmcs12->host_ia32_s_cet;
1975 * evmcs->host_ssp = vmcs12->host_ssp;
1976 * evmcs->host_ia32_int_ssp_table_addr = vmcs12->host_ia32_int_ssp_table_addr;
1977 * evmcs->guest_ia32_s_cet = vmcs12->guest_ia32_s_cet;
1978 * evmcs->guest_ia32_lbr_ctl = vmcs12->guest_ia32_lbr_ctl;
1979 * evmcs->guest_ia32_int_ssp_table_addr = vmcs12->guest_ia32_int_ssp_table_addr;
1980 * evmcs->guest_ssp = vmcs12->guest_ssp;
1981 */
1982
1983 evmcs->guest_es_selector = vmcs12->guest_es_selector;
1984 evmcs->guest_cs_selector = vmcs12->guest_cs_selector;
1985 evmcs->guest_ss_selector = vmcs12->guest_ss_selector;
1986 evmcs->guest_ds_selector = vmcs12->guest_ds_selector;
1987 evmcs->guest_fs_selector = vmcs12->guest_fs_selector;
1988 evmcs->guest_gs_selector = vmcs12->guest_gs_selector;
1989 evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector;
1990 evmcs->guest_tr_selector = vmcs12->guest_tr_selector;
1991
1992 evmcs->guest_es_limit = vmcs12->guest_es_limit;
1993 evmcs->guest_cs_limit = vmcs12->guest_cs_limit;
1994 evmcs->guest_ss_limit = vmcs12->guest_ss_limit;
1995 evmcs->guest_ds_limit = vmcs12->guest_ds_limit;
1996 evmcs->guest_fs_limit = vmcs12->guest_fs_limit;
1997 evmcs->guest_gs_limit = vmcs12->guest_gs_limit;
1998 evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit;
1999 evmcs->guest_tr_limit = vmcs12->guest_tr_limit;
2000 evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit;
2001 evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit;
2002
2003 evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes;
2004 evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes;
2005 evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes;
2006 evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes;
2007 evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes;
2008 evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes;
2009 evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes;
2010 evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes;
2011
2012 evmcs->guest_es_base = vmcs12->guest_es_base;
2013 evmcs->guest_cs_base = vmcs12->guest_cs_base;
2014 evmcs->guest_ss_base = vmcs12->guest_ss_base;
2015 evmcs->guest_ds_base = vmcs12->guest_ds_base;
2016 evmcs->guest_fs_base = vmcs12->guest_fs_base;
2017 evmcs->guest_gs_base = vmcs12->guest_gs_base;
2018 evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base;
2019 evmcs->guest_tr_base = vmcs12->guest_tr_base;
2020 evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base;
2021 evmcs->guest_idtr_base = vmcs12->guest_idtr_base;
2022
2023 evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat;
2024 evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer;
2025
2026 evmcs->guest_pdptr0 = vmcs12->guest_pdptr0;
2027 evmcs->guest_pdptr1 = vmcs12->guest_pdptr1;
2028 evmcs->guest_pdptr2 = vmcs12->guest_pdptr2;
2029 evmcs->guest_pdptr3 = vmcs12->guest_pdptr3;
2030
2031 evmcs->guest_pending_dbg_exceptions =
2032 vmcs12->guest_pending_dbg_exceptions;
2033 evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp;
2034 evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip;
2035
2036 evmcs->guest_activity_state = vmcs12->guest_activity_state;
2037 evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs;
2038
2039 evmcs->guest_cr0 = vmcs12->guest_cr0;
2040 evmcs->guest_cr3 = vmcs12->guest_cr3;
2041 evmcs->guest_cr4 = vmcs12->guest_cr4;
2042 evmcs->guest_dr7 = vmcs12->guest_dr7;
2043
2044 evmcs->guest_physical_address = vmcs12->guest_physical_address;
2045
2046 evmcs->vm_instruction_error = vmcs12->vm_instruction_error;
2047 evmcs->vm_exit_reason = vmcs12->vm_exit_reason;
2048 evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info;
2049 evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code;
2050 evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field;
2051 evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code;
2052 evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len;
2053 evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info;
2054
2055 evmcs->exit_qualification = vmcs12->exit_qualification;
2056
2057 evmcs->guest_linear_address = vmcs12->guest_linear_address;
2058 evmcs->guest_rsp = vmcs12->guest_rsp;
2059 evmcs->guest_rflags = vmcs12->guest_rflags;
2060
2061 evmcs->guest_interruptibility_info =
2062 vmcs12->guest_interruptibility_info;
2063 evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control;
2064 evmcs->vm_entry_controls = vmcs12->vm_entry_controls;
2065 evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field;
2066 evmcs->vm_entry_exception_error_code =
2067 vmcs12->vm_entry_exception_error_code;
2068 evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len;
2069
2070 evmcs->guest_rip = vmcs12->guest_rip;
2071
2072 evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;
2073
2074 return;
2075 #else /* CONFIG_KVM_HYPERV */
2076 KVM_BUG_ON(1, vmx->vcpu.kvm);
2077 #endif /* CONFIG_KVM_HYPERV */
2078 }
2079
2080 /*
2081 * This is an equivalent of the nested hypervisor executing the vmptrld
2082 * instruction.
2083 */
nested_vmx_handle_enlightened_vmptrld(struct kvm_vcpu * vcpu,bool from_launch)2084 static enum nested_evmptrld_status nested_vmx_handle_enlightened_vmptrld(
2085 struct kvm_vcpu *vcpu, bool from_launch)
2086 {
2087 #ifdef CONFIG_KVM_HYPERV
2088 struct vcpu_vmx *vmx = to_vmx(vcpu);
2089 bool evmcs_gpa_changed = false;
2090 u64 evmcs_gpa;
2091
2092 if (likely(!guest_cpu_cap_has_evmcs(vcpu)))
2093 return EVMPTRLD_DISABLED;
2094
2095 evmcs_gpa = nested_get_evmptr(vcpu);
2096 if (!evmptr_is_valid(evmcs_gpa)) {
2097 nested_release_evmcs(vcpu);
2098 return EVMPTRLD_DISABLED;
2099 }
2100
2101 if (unlikely(evmcs_gpa != vmx->nested.hv_evmcs_vmptr)) {
2102 vmx->nested.current_vmptr = INVALID_GPA;
2103
2104 nested_release_evmcs(vcpu);
2105
2106 if (kvm_vcpu_map(vcpu, gpa_to_gfn(evmcs_gpa),
2107 &vmx->nested.hv_evmcs_map))
2108 return EVMPTRLD_ERROR;
2109
2110 vmx->nested.hv_evmcs = vmx->nested.hv_evmcs_map.hva;
2111
2112 /*
2113 * Currently, KVM only supports eVMCS version 1
2114 * (== KVM_EVMCS_VERSION) and thus we expect guest to set this
2115 * value to first u32 field of eVMCS which should specify eVMCS
2116 * VersionNumber.
2117 *
2118 * Guest should be aware of supported eVMCS versions by host by
2119 * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is
2120 * expected to set this CPUID leaf according to the value
2121 * returned in vmcs_version from nested_enable_evmcs().
2122 *
2123 * However, it turns out that Microsoft Hyper-V fails to comply
2124 * to their own invented interface: When Hyper-V use eVMCS, it
2125 * just sets first u32 field of eVMCS to revision_id specified
2126 * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number
2127 * which is one of the supported versions specified in
2128 * CPUID.0x4000000A.EAX[0:15].
2129 *
2130 * To overcome Hyper-V bug, we accept here either a supported
2131 * eVMCS version or VMCS12 revision_id as valid values for first
2132 * u32 field of eVMCS.
2133 */
2134 if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) &&
2135 (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) {
2136 nested_release_evmcs(vcpu);
2137 return EVMPTRLD_VMFAIL;
2138 }
2139
2140 vmx->nested.hv_evmcs_vmptr = evmcs_gpa;
2141
2142 evmcs_gpa_changed = true;
2143 /*
2144 * Unlike normal vmcs12, enlightened vmcs12 is not fully
2145 * reloaded from guest's memory (read only fields, fields not
2146 * present in struct hv_enlightened_vmcs, ...). Make sure there
2147 * are no leftovers.
2148 */
2149 if (from_launch) {
2150 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2151 memset(vmcs12, 0, sizeof(*vmcs12));
2152 vmcs12->hdr.revision_id = VMCS12_REVISION;
2153 }
2154
2155 }
2156
2157 /*
2158 * Clean fields data can't be used on VMLAUNCH and when we switch
2159 * between different L2 guests as KVM keeps a single VMCS12 per L1.
2160 */
2161 if (from_launch || evmcs_gpa_changed) {
2162 vmx->nested.hv_evmcs->hv_clean_fields &=
2163 ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2164
2165 vmx->nested.force_msr_bitmap_recalc = true;
2166 }
2167
2168 return EVMPTRLD_SUCCEEDED;
2169 #else
2170 return EVMPTRLD_DISABLED;
2171 #endif
2172 }
2173
nested_sync_vmcs12_to_shadow(struct kvm_vcpu * vcpu)2174 void nested_sync_vmcs12_to_shadow(struct kvm_vcpu *vcpu)
2175 {
2176 struct vcpu_vmx *vmx = to_vmx(vcpu);
2177
2178 if (nested_vmx_is_evmptr12_valid(vmx))
2179 copy_vmcs12_to_enlightened(vmx);
2180 else
2181 copy_vmcs12_to_shadow(vmx);
2182
2183 vmx->nested.need_vmcs12_to_shadow_sync = false;
2184 }
2185
vmx_preemption_timer_fn(struct hrtimer * timer)2186 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
2187 {
2188 struct vcpu_vmx *vmx =
2189 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
2190
2191 vmx->nested.preemption_timer_expired = true;
2192 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
2193 kvm_vcpu_kick(&vmx->vcpu);
2194
2195 return HRTIMER_NORESTART;
2196 }
2197
vmx_calc_preemption_timer_value(struct kvm_vcpu * vcpu)2198 static u64 vmx_calc_preemption_timer_value(struct kvm_vcpu *vcpu)
2199 {
2200 struct vcpu_vmx *vmx = to_vmx(vcpu);
2201 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2202
2203 u64 l1_scaled_tsc = kvm_read_l1_tsc(vcpu, rdtsc()) >>
2204 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2205
2206 if (!vmx->nested.has_preemption_timer_deadline) {
2207 vmx->nested.preemption_timer_deadline =
2208 vmcs12->vmx_preemption_timer_value + l1_scaled_tsc;
2209 vmx->nested.has_preemption_timer_deadline = true;
2210 }
2211 return vmx->nested.preemption_timer_deadline - l1_scaled_tsc;
2212 }
2213
vmx_start_preemption_timer(struct kvm_vcpu * vcpu,u64 preemption_timeout)2214 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu,
2215 u64 preemption_timeout)
2216 {
2217 struct vcpu_vmx *vmx = to_vmx(vcpu);
2218
2219 /*
2220 * A timer value of zero is architecturally guaranteed to cause
2221 * a VMExit prior to executing any instructions in the guest.
2222 */
2223 if (preemption_timeout == 0) {
2224 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
2225 return;
2226 }
2227
2228 if (vcpu->arch.virtual_tsc_khz == 0)
2229 return;
2230
2231 preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2232 preemption_timeout *= 1000000;
2233 do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
2234 hrtimer_start(&vmx->nested.preemption_timer,
2235 ktime_add_ns(ktime_get(), preemption_timeout),
2236 HRTIMER_MODE_ABS_PINNED);
2237 }
2238
nested_vmx_calc_efer(struct vcpu_vmx * vmx,struct vmcs12 * vmcs12)2239 static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2240 {
2241 if (vmx->nested.nested_run_pending &&
2242 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
2243 return vmcs12->guest_ia32_efer;
2244 else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
2245 return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME);
2246 else
2247 return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME);
2248 }
2249
prepare_vmcs02_constant_state(struct vcpu_vmx * vmx)2250 static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
2251 {
2252 struct kvm *kvm = vmx->vcpu.kvm;
2253
2254 /*
2255 * If vmcs02 hasn't been initialized, set the constant vmcs02 state
2256 * according to L0's settings (vmcs12 is irrelevant here). Host
2257 * fields that come from L0 and are not constant, e.g. HOST_CR3,
2258 * will be set as needed prior to VMLAUNCH/VMRESUME.
2259 */
2260 if (vmx->nested.vmcs02_initialized)
2261 return;
2262 vmx->nested.vmcs02_initialized = true;
2263
2264 /*
2265 * We don't care what the EPTP value is we just need to guarantee
2266 * it's valid so we don't get a false positive when doing early
2267 * consistency checks.
2268 */
2269 if (enable_ept && nested_early_check)
2270 vmcs_write64(EPT_POINTER,
2271 construct_eptp(&vmx->vcpu, 0, PT64_ROOT_4LEVEL));
2272
2273 if (vmx->ve_info)
2274 vmcs_write64(VE_INFORMATION_ADDRESS, __pa(vmx->ve_info));
2275
2276 /* All VMFUNCs are currently emulated through L0 vmexits. */
2277 if (cpu_has_vmx_vmfunc())
2278 vmcs_write64(VM_FUNCTION_CONTROL, 0);
2279
2280 if (cpu_has_vmx_posted_intr())
2281 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
2282
2283 if (cpu_has_vmx_msr_bitmap())
2284 vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
2285
2286 /*
2287 * PML is emulated for L2, but never enabled in hardware as the MMU
2288 * handles A/D emulation. Disabling PML for L2 also avoids having to
2289 * deal with filtering out L2 GPAs from the buffer.
2290 */
2291 if (enable_pml) {
2292 vmcs_write64(PML_ADDRESS, 0);
2293 vmcs_write16(GUEST_PML_INDEX, -1);
2294 }
2295
2296 if (cpu_has_vmx_encls_vmexit())
2297 vmcs_write64(ENCLS_EXITING_BITMAP, INVALID_GPA);
2298
2299 if (kvm_notify_vmexit_enabled(kvm))
2300 vmcs_write32(NOTIFY_WINDOW, kvm->arch.notify_window);
2301
2302 /*
2303 * Set the MSR load/store lists to match L0's settings. Only the
2304 * addresses are constant (for vmcs02), the counts can change based
2305 * on L2's behavior, e.g. switching to/from long mode.
2306 */
2307 vmcs_write64(VM_EXIT_MSR_STORE_ADDR, __pa(vmx->msr_autostore.guest.val));
2308 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
2309 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
2310
2311 vmx_set_constant_host_state(vmx);
2312 }
2313
prepare_vmcs02_early_rare(struct vcpu_vmx * vmx,struct vmcs12 * vmcs12)2314 static void prepare_vmcs02_early_rare(struct vcpu_vmx *vmx,
2315 struct vmcs12 *vmcs12)
2316 {
2317 prepare_vmcs02_constant_state(vmx);
2318
2319 vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA);
2320
2321 /*
2322 * If VPID is disabled, then guest TLB accesses use VPID=0, i.e. the
2323 * same VPID as the host. Emulate this behavior by using vpid01 for L2
2324 * if VPID is disabled in vmcs12. Note, if VPID is disabled, VM-Enter
2325 * and VM-Exit are architecturally required to flush VPID=0, but *only*
2326 * VPID=0. I.e. using vpid02 would be ok (so long as KVM emulates the
2327 * required flushes), but doing so would cause KVM to over-flush. E.g.
2328 * if L1 runs L2 X with VPID12=1, then runs L2 Y with VPID12 disabled,
2329 * and then runs L2 X again, then KVM can and should retain TLB entries
2330 * for VPID12=1.
2331 */
2332 if (enable_vpid) {
2333 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
2334 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
2335 else
2336 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2337 }
2338 }
2339
prepare_vmcs02_early(struct vcpu_vmx * vmx,struct loaded_vmcs * vmcs01,struct vmcs12 * vmcs12)2340 static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct loaded_vmcs *vmcs01,
2341 struct vmcs12 *vmcs12)
2342 {
2343 u32 exec_control;
2344 u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);
2345
2346 if (vmx->nested.dirty_vmcs12 || nested_vmx_is_evmptr12_valid(vmx))
2347 prepare_vmcs02_early_rare(vmx, vmcs12);
2348
2349 /*
2350 * PIN CONTROLS
2351 */
2352 exec_control = __pin_controls_get(vmcs01);
2353 exec_control |= (vmcs12->pin_based_vm_exec_control &
2354 ~PIN_BASED_VMX_PREEMPTION_TIMER);
2355
2356 /* Posted interrupts setting is only taken from vmcs12. */
2357 vmx->nested.pi_pending = false;
2358 if (nested_cpu_has_posted_intr(vmcs12)) {
2359 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
2360 } else {
2361 vmx->nested.posted_intr_nv = -1;
2362 exec_control &= ~PIN_BASED_POSTED_INTR;
2363 }
2364 pin_controls_set(vmx, exec_control);
2365
2366 /*
2367 * EXEC CONTROLS
2368 */
2369 exec_control = __exec_controls_get(vmcs01); /* L0's desires */
2370 exec_control &= ~CPU_BASED_INTR_WINDOW_EXITING;
2371 exec_control &= ~CPU_BASED_NMI_WINDOW_EXITING;
2372 exec_control &= ~CPU_BASED_TPR_SHADOW;
2373 exec_control |= vmcs12->cpu_based_vm_exec_control;
2374
2375 vmx->nested.l1_tpr_threshold = -1;
2376 if (exec_control & CPU_BASED_TPR_SHADOW)
2377 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
2378 #ifdef CONFIG_X86_64
2379 else
2380 exec_control |= CPU_BASED_CR8_LOAD_EXITING |
2381 CPU_BASED_CR8_STORE_EXITING;
2382 #endif
2383
2384 /*
2385 * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
2386 * for I/O port accesses.
2387 */
2388 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
2389 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
2390
2391 /*
2392 * This bit will be computed in nested_get_vmcs12_pages, because
2393 * we do not have access to L1's MSR bitmap yet. For now, keep
2394 * the same bit as before, hoping to avoid multiple VMWRITEs that
2395 * only set/clear this bit.
2396 */
2397 exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
2398 exec_control |= exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS;
2399
2400 exec_controls_set(vmx, exec_control);
2401
2402 /*
2403 * SECONDARY EXEC CONTROLS
2404 */
2405 if (cpu_has_secondary_exec_ctrls()) {
2406 exec_control = __secondary_exec_controls_get(vmcs01);
2407
2408 /* Take the following fields only from vmcs12 */
2409 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2410 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2411 SECONDARY_EXEC_ENABLE_INVPCID |
2412 SECONDARY_EXEC_ENABLE_RDTSCP |
2413 SECONDARY_EXEC_ENABLE_XSAVES |
2414 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2415 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2416 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2417 SECONDARY_EXEC_ENABLE_VMFUNC |
2418 SECONDARY_EXEC_DESC);
2419
2420 if (nested_cpu_has(vmcs12,
2421 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
2422 exec_control |= vmcs12->secondary_vm_exec_control;
2423
2424 /* PML is emulated and never enabled in hardware for L2. */
2425 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
2426
2427 /* VMCS shadowing for L2 is emulated for now */
2428 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
2429
2430 /*
2431 * Preset *DT exiting when emulating UMIP, so that vmx_set_cr4()
2432 * will not have to rewrite the controls just for this bit.
2433 */
2434 if (vmx_umip_emulated() && (vmcs12->guest_cr4 & X86_CR4_UMIP))
2435 exec_control |= SECONDARY_EXEC_DESC;
2436
2437 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
2438 vmcs_write16(GUEST_INTR_STATUS,
2439 vmcs12->guest_intr_status);
2440
2441 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
2442 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
2443
2444 if (exec_control & SECONDARY_EXEC_ENCLS_EXITING)
2445 vmx_write_encls_bitmap(&vmx->vcpu, vmcs12);
2446
2447 secondary_exec_controls_set(vmx, exec_control);
2448 }
2449
2450 /*
2451 * ENTRY CONTROLS
2452 *
2453 * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
2454 * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
2455 * on the related bits (if supported by the CPU) in the hope that
2456 * we can avoid VMWrites during vmx_set_efer().
2457 *
2458 * Similarly, take vmcs01's PERF_GLOBAL_CTRL in the hope that if KVM is
2459 * loading PERF_GLOBAL_CTRL via the VMCS for L1, then KVM will want to
2460 * do the same for L2.
2461 */
2462 exec_control = __vm_entry_controls_get(vmcs01);
2463 exec_control |= (vmcs12->vm_entry_controls &
2464 ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL);
2465 exec_control &= ~(VM_ENTRY_IA32E_MODE | VM_ENTRY_LOAD_IA32_EFER);
2466 if (cpu_has_load_ia32_efer()) {
2467 if (guest_efer & EFER_LMA)
2468 exec_control |= VM_ENTRY_IA32E_MODE;
2469 if (guest_efer != kvm_host.efer)
2470 exec_control |= VM_ENTRY_LOAD_IA32_EFER;
2471 }
2472 vm_entry_controls_set(vmx, exec_control);
2473
2474 /*
2475 * EXIT CONTROLS
2476 *
2477 * L2->L1 exit controls are emulated - the hardware exit is to L0 so
2478 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
2479 * bits may be modified by vmx_set_efer() in prepare_vmcs02().
2480 */
2481 exec_control = __vm_exit_controls_get(vmcs01);
2482 if (cpu_has_load_ia32_efer() && guest_efer != kvm_host.efer)
2483 exec_control |= VM_EXIT_LOAD_IA32_EFER;
2484 else
2485 exec_control &= ~VM_EXIT_LOAD_IA32_EFER;
2486 vm_exit_controls_set(vmx, exec_control);
2487
2488 /*
2489 * Interrupt/Exception Fields
2490 */
2491 if (vmx->nested.nested_run_pending) {
2492 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2493 vmcs12->vm_entry_intr_info_field);
2494 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2495 vmcs12->vm_entry_exception_error_code);
2496 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2497 vmcs12->vm_entry_instruction_len);
2498 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
2499 vmcs12->guest_interruptibility_info);
2500 vmx->loaded_vmcs->nmi_known_unmasked =
2501 !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
2502 } else {
2503 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
2504 }
2505 }
2506
prepare_vmcs02_rare(struct vcpu_vmx * vmx,struct vmcs12 * vmcs12)2507 static void prepare_vmcs02_rare(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2508 {
2509 struct hv_enlightened_vmcs *hv_evmcs = nested_vmx_evmcs(vmx);
2510
2511 if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2512 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
2513
2514 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
2515 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
2516 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
2517 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
2518 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
2519 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
2520 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
2521 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
2522 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
2523 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
2524 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
2525 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
2526 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
2527 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
2528 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
2529 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
2530 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
2531 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
2532 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
2533 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
2534 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
2535 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
2536 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
2537 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
2538 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
2539 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
2540 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
2541 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
2542 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
2543 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
2544 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
2545 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
2546 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
2547 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
2548 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
2549 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
2550
2551 vmx_segment_cache_clear(vmx);
2552 }
2553
2554 if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2555 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) {
2556 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
2557 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
2558 vmcs12->guest_pending_dbg_exceptions);
2559 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
2560 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
2561
2562 /*
2563 * L1 may access the L2's PDPTR, so save them to construct
2564 * vmcs12
2565 */
2566 if (enable_ept) {
2567 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2568 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2569 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2570 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2571 }
2572
2573 if (kvm_mpx_supported() && vmx->nested.nested_run_pending &&
2574 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
2575 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
2576 }
2577
2578 if (nested_cpu_has_xsaves(vmcs12))
2579 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
2580
2581 /*
2582 * Whether page-faults are trapped is determined by a combination of
2583 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF. If L0
2584 * doesn't care about page faults then we should set all of these to
2585 * L1's desires. However, if L0 does care about (some) page faults, it
2586 * is not easy (if at all possible?) to merge L0 and L1's desires, we
2587 * simply ask to exit on each and every L2 page fault. This is done by
2588 * setting MASK=MATCH=0 and (see below) EB.PF=1.
2589 * Note that below we don't need special code to set EB.PF beyond the
2590 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
2591 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
2592 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
2593 */
2594 if (vmx_need_pf_intercept(&vmx->vcpu)) {
2595 /*
2596 * TODO: if both L0 and L1 need the same MASK and MATCH,
2597 * go ahead and use it?
2598 */
2599 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
2600 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
2601 } else {
2602 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, vmcs12->page_fault_error_code_mask);
2603 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, vmcs12->page_fault_error_code_match);
2604 }
2605
2606 if (cpu_has_vmx_apicv()) {
2607 vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
2608 vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
2609 vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
2610 vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
2611 }
2612
2613 /*
2614 * Make sure the msr_autostore list is up to date before we set the
2615 * count in the vmcs02.
2616 */
2617 prepare_vmx_msr_autostore_list(&vmx->vcpu, MSR_IA32_TSC);
2618
2619 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, vmx->msr_autostore.guest.nr);
2620 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2621 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2622
2623 set_cr4_guest_host_mask(vmx);
2624 }
2625
2626 /*
2627 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
2628 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
2629 * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
2630 * guest in a way that will both be appropriate to L1's requests, and our
2631 * needs. In addition to modifying the active vmcs (which is vmcs02), this
2632 * function also has additional necessary side-effects, like setting various
2633 * vcpu->arch fields.
2634 * Returns 0 on success, 1 on failure. Invalid state exit qualification code
2635 * is assigned to entry_failure_code on failure.
2636 */
prepare_vmcs02(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,bool from_vmentry,enum vm_entry_failure_code * entry_failure_code)2637 static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
2638 bool from_vmentry,
2639 enum vm_entry_failure_code *entry_failure_code)
2640 {
2641 struct vcpu_vmx *vmx = to_vmx(vcpu);
2642 struct hv_enlightened_vmcs *evmcs = nested_vmx_evmcs(vmx);
2643 bool load_guest_pdptrs_vmcs12 = false;
2644
2645 if (vmx->nested.dirty_vmcs12 || nested_vmx_is_evmptr12_valid(vmx)) {
2646 prepare_vmcs02_rare(vmx, vmcs12);
2647 vmx->nested.dirty_vmcs12 = false;
2648
2649 load_guest_pdptrs_vmcs12 = !nested_vmx_is_evmptr12_valid(vmx) ||
2650 !(evmcs->hv_clean_fields & HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1);
2651 }
2652
2653 if (vmx->nested.nested_run_pending &&
2654 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
2655 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
2656 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
2657 } else {
2658 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
2659 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.pre_vmenter_debugctl);
2660 }
2661 if (kvm_mpx_supported() && (!vmx->nested.nested_run_pending ||
2662 !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
2663 vmcs_write64(GUEST_BNDCFGS, vmx->nested.pre_vmenter_bndcfgs);
2664 vmx_set_rflags(vcpu, vmcs12->guest_rflags);
2665
2666 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
2667 * bitwise-or of what L1 wants to trap for L2, and what we want to
2668 * trap. Note that CR0.TS also needs updating - we do this later.
2669 */
2670 vmx_update_exception_bitmap(vcpu);
2671 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
2672 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2673
2674 if (vmx->nested.nested_run_pending &&
2675 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
2676 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
2677 vcpu->arch.pat = vmcs12->guest_ia32_pat;
2678 } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2679 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
2680 }
2681
2682 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2683 vcpu->arch.l1_tsc_offset,
2684 vmx_get_l2_tsc_offset(vcpu),
2685 vmx_get_l2_tsc_multiplier(vcpu));
2686
2687 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2688 vcpu->arch.l1_tsc_scaling_ratio,
2689 vmx_get_l2_tsc_multiplier(vcpu));
2690
2691 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
2692 if (kvm_caps.has_tsc_control)
2693 vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
2694
2695 nested_vmx_transition_tlb_flush(vcpu, vmcs12, true);
2696
2697 if (nested_cpu_has_ept(vmcs12))
2698 nested_ept_init_mmu_context(vcpu);
2699
2700 /*
2701 * Override the CR0/CR4 read shadows after setting the effective guest
2702 * CR0/CR4. The common helpers also set the shadows, but they don't
2703 * account for vmcs12's cr0/4_guest_host_mask.
2704 */
2705 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
2706 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2707
2708 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
2709 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
2710
2711 vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12);
2712 /* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
2713 vmx_set_efer(vcpu, vcpu->arch.efer);
2714
2715 /*
2716 * Guest state is invalid and unrestricted guest is disabled,
2717 * which means L1 attempted VMEntry to L2 with invalid state.
2718 * Fail the VMEntry.
2719 *
2720 * However when force loading the guest state (SMM exit or
2721 * loading nested state after migration, it is possible to
2722 * have invalid guest state now, which will be later fixed by
2723 * restoring L2 register state
2724 */
2725 if (CC(from_vmentry && !vmx_guest_state_valid(vcpu))) {
2726 *entry_failure_code = ENTRY_FAIL_DEFAULT;
2727 return -EINVAL;
2728 }
2729
2730 /* Shadow page tables on either EPT or shadow page tables. */
2731 if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
2732 from_vmentry, entry_failure_code))
2733 return -EINVAL;
2734
2735 /*
2736 * Immediately write vmcs02.GUEST_CR3. It will be propagated to vmcs12
2737 * on nested VM-Exit, which can occur without actually running L2 and
2738 * thus without hitting vmx_load_mmu_pgd(), e.g. if L1 is entering L2 with
2739 * vmcs12.GUEST_ACTIVITYSTATE=HLT, in which case KVM will intercept the
2740 * transition to HLT instead of running L2.
2741 */
2742 if (enable_ept)
2743 vmcs_writel(GUEST_CR3, vmcs12->guest_cr3);
2744
2745 /* Late preparation of GUEST_PDPTRs now that EFER and CRs are set. */
2746 if (load_guest_pdptrs_vmcs12 && nested_cpu_has_ept(vmcs12) &&
2747 is_pae_paging(vcpu)) {
2748 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2749 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2750 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2751 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2752 }
2753
2754 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2755 kvm_pmu_has_perf_global_ctrl(vcpu_to_pmu(vcpu)) &&
2756 WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
2757 vmcs12->guest_ia32_perf_global_ctrl))) {
2758 *entry_failure_code = ENTRY_FAIL_DEFAULT;
2759 return -EINVAL;
2760 }
2761
2762 kvm_rsp_write(vcpu, vmcs12->guest_rsp);
2763 kvm_rip_write(vcpu, vmcs12->guest_rip);
2764
2765 /*
2766 * It was observed that genuine Hyper-V running in L1 doesn't reset
2767 * 'hv_clean_fields' by itself, it only sets the corresponding dirty
2768 * bits when it changes a field in eVMCS. Mark all fields as clean
2769 * here.
2770 */
2771 if (nested_vmx_is_evmptr12_valid(vmx))
2772 evmcs->hv_clean_fields |= HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2773
2774 return 0;
2775 }
2776
nested_vmx_check_nmi_controls(struct vmcs12 * vmcs12)2777 static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
2778 {
2779 if (CC(!nested_cpu_has_nmi_exiting(vmcs12) &&
2780 nested_cpu_has_virtual_nmis(vmcs12)))
2781 return -EINVAL;
2782
2783 if (CC(!nested_cpu_has_virtual_nmis(vmcs12) &&
2784 nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING)))
2785 return -EINVAL;
2786
2787 return 0;
2788 }
2789
nested_vmx_check_eptp(struct kvm_vcpu * vcpu,u64 new_eptp)2790 static bool nested_vmx_check_eptp(struct kvm_vcpu *vcpu, u64 new_eptp)
2791 {
2792 struct vcpu_vmx *vmx = to_vmx(vcpu);
2793
2794 /* Check for memory type validity */
2795 switch (new_eptp & VMX_EPTP_MT_MASK) {
2796 case VMX_EPTP_MT_UC:
2797 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT)))
2798 return false;
2799 break;
2800 case VMX_EPTP_MT_WB:
2801 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT)))
2802 return false;
2803 break;
2804 default:
2805 return false;
2806 }
2807
2808 /* Page-walk levels validity. */
2809 switch (new_eptp & VMX_EPTP_PWL_MASK) {
2810 case VMX_EPTP_PWL_5:
2811 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_5_BIT)))
2812 return false;
2813 break;
2814 case VMX_EPTP_PWL_4:
2815 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_4_BIT)))
2816 return false;
2817 break;
2818 default:
2819 return false;
2820 }
2821
2822 /* Reserved bits should not be set */
2823 if (CC(!kvm_vcpu_is_legal_gpa(vcpu, new_eptp) || ((new_eptp >> 7) & 0x1f)))
2824 return false;
2825
2826 /* AD, if set, should be supported */
2827 if (new_eptp & VMX_EPTP_AD_ENABLE_BIT) {
2828 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT)))
2829 return false;
2830 }
2831
2832 return true;
2833 }
2834
2835 /*
2836 * Checks related to VM-Execution Control Fields
2837 */
nested_check_vm_execution_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2838 static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu,
2839 struct vmcs12 *vmcs12)
2840 {
2841 struct vcpu_vmx *vmx = to_vmx(vcpu);
2842
2843 if (CC(!vmx_control_verify(vmcs12->pin_based_vm_exec_control,
2844 vmx->nested.msrs.pinbased_ctls_low,
2845 vmx->nested.msrs.pinbased_ctls_high)) ||
2846 CC(!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
2847 vmx->nested.msrs.procbased_ctls_low,
2848 vmx->nested.msrs.procbased_ctls_high)))
2849 return -EINVAL;
2850
2851 if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
2852 CC(!vmx_control_verify(vmcs12->secondary_vm_exec_control,
2853 vmx->nested.msrs.secondary_ctls_low,
2854 vmx->nested.msrs.secondary_ctls_high)))
2855 return -EINVAL;
2856
2857 if (CC(vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu)) ||
2858 nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) ||
2859 nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) ||
2860 nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) ||
2861 nested_vmx_check_apic_access_controls(vcpu, vmcs12) ||
2862 nested_vmx_check_apicv_controls(vcpu, vmcs12) ||
2863 nested_vmx_check_nmi_controls(vmcs12) ||
2864 nested_vmx_check_pml_controls(vcpu, vmcs12) ||
2865 nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) ||
2866 nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) ||
2867 nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) ||
2868 CC(nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id))
2869 return -EINVAL;
2870
2871 if (!nested_cpu_has_preemption_timer(vmcs12) &&
2872 nested_cpu_has_save_preemption_timer(vmcs12))
2873 return -EINVAL;
2874
2875 if (nested_cpu_has_ept(vmcs12) &&
2876 CC(!nested_vmx_check_eptp(vcpu, vmcs12->ept_pointer)))
2877 return -EINVAL;
2878
2879 if (nested_cpu_has_vmfunc(vmcs12)) {
2880 if (CC(vmcs12->vm_function_control &
2881 ~vmx->nested.msrs.vmfunc_controls))
2882 return -EINVAL;
2883
2884 if (nested_cpu_has_eptp_switching(vmcs12)) {
2885 if (CC(!nested_cpu_has_ept(vmcs12)) ||
2886 CC(!page_address_valid(vcpu, vmcs12->eptp_list_address)))
2887 return -EINVAL;
2888 }
2889 }
2890
2891 return 0;
2892 }
2893
2894 /*
2895 * Checks related to VM-Exit Control Fields
2896 */
nested_check_vm_exit_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2897 static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu,
2898 struct vmcs12 *vmcs12)
2899 {
2900 struct vcpu_vmx *vmx = to_vmx(vcpu);
2901
2902 if (CC(!vmx_control_verify(vmcs12->vm_exit_controls,
2903 vmx->nested.msrs.exit_ctls_low,
2904 vmx->nested.msrs.exit_ctls_high)) ||
2905 CC(nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12)))
2906 return -EINVAL;
2907
2908 return 0;
2909 }
2910
2911 /*
2912 * Checks related to VM-Entry Control Fields
2913 */
nested_check_vm_entry_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2914 static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu,
2915 struct vmcs12 *vmcs12)
2916 {
2917 struct vcpu_vmx *vmx = to_vmx(vcpu);
2918
2919 if (CC(!vmx_control_verify(vmcs12->vm_entry_controls,
2920 vmx->nested.msrs.entry_ctls_low,
2921 vmx->nested.msrs.entry_ctls_high)))
2922 return -EINVAL;
2923
2924 /*
2925 * From the Intel SDM, volume 3:
2926 * Fields relevant to VM-entry event injection must be set properly.
2927 * These fields are the VM-entry interruption-information field, the
2928 * VM-entry exception error code, and the VM-entry instruction length.
2929 */
2930 if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
2931 u32 intr_info = vmcs12->vm_entry_intr_info_field;
2932 u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
2933 u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
2934 bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
2935 bool should_have_error_code;
2936 bool urg = nested_cpu_has2(vmcs12,
2937 SECONDARY_EXEC_UNRESTRICTED_GUEST);
2938 bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
2939
2940 /* VM-entry interruption-info field: interruption type */
2941 if (CC(intr_type == INTR_TYPE_RESERVED) ||
2942 CC(intr_type == INTR_TYPE_OTHER_EVENT &&
2943 !nested_cpu_supports_monitor_trap_flag(vcpu)))
2944 return -EINVAL;
2945
2946 /* VM-entry interruption-info field: vector */
2947 if (CC(intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
2948 CC(intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
2949 CC(intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
2950 return -EINVAL;
2951
2952 /* VM-entry interruption-info field: deliver error code */
2953 should_have_error_code =
2954 intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
2955 x86_exception_has_error_code(vector);
2956 if (CC(has_error_code != should_have_error_code))
2957 return -EINVAL;
2958
2959 /* VM-entry exception error code */
2960 if (CC(has_error_code &&
2961 vmcs12->vm_entry_exception_error_code & GENMASK(31, 16)))
2962 return -EINVAL;
2963
2964 /* VM-entry interruption-info field: reserved bits */
2965 if (CC(intr_info & INTR_INFO_RESVD_BITS_MASK))
2966 return -EINVAL;
2967
2968 /* VM-entry instruction length */
2969 switch (intr_type) {
2970 case INTR_TYPE_SOFT_EXCEPTION:
2971 case INTR_TYPE_SOFT_INTR:
2972 case INTR_TYPE_PRIV_SW_EXCEPTION:
2973 if (CC(vmcs12->vm_entry_instruction_len > X86_MAX_INSTRUCTION_LENGTH) ||
2974 CC(vmcs12->vm_entry_instruction_len == 0 &&
2975 CC(!nested_cpu_has_zero_length_injection(vcpu))))
2976 return -EINVAL;
2977 }
2978 }
2979
2980 if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12))
2981 return -EINVAL;
2982
2983 return 0;
2984 }
2985
nested_vmx_check_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2986 static int nested_vmx_check_controls(struct kvm_vcpu *vcpu,
2987 struct vmcs12 *vmcs12)
2988 {
2989 if (nested_check_vm_execution_controls(vcpu, vmcs12) ||
2990 nested_check_vm_exit_controls(vcpu, vmcs12) ||
2991 nested_check_vm_entry_controls(vcpu, vmcs12))
2992 return -EINVAL;
2993
2994 #ifdef CONFIG_KVM_HYPERV
2995 if (guest_cpu_cap_has_evmcs(vcpu))
2996 return nested_evmcs_check_controls(vmcs12);
2997 #endif
2998
2999 return 0;
3000 }
3001
nested_vmx_check_address_space_size(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)3002 static int nested_vmx_check_address_space_size(struct kvm_vcpu *vcpu,
3003 struct vmcs12 *vmcs12)
3004 {
3005 #ifdef CONFIG_X86_64
3006 if (CC(!!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) !=
3007 !!(vcpu->arch.efer & EFER_LMA)))
3008 return -EINVAL;
3009 #endif
3010 return 0;
3011 }
3012
is_l1_noncanonical_address_on_vmexit(u64 la,struct vmcs12 * vmcs12)3013 static bool is_l1_noncanonical_address_on_vmexit(u64 la, struct vmcs12 *vmcs12)
3014 {
3015 /*
3016 * Check that the given linear address is canonical after a VM exit
3017 * from L2, based on HOST_CR4.LA57 value that will be loaded for L1.
3018 */
3019 u8 l1_address_bits_on_exit = (vmcs12->host_cr4 & X86_CR4_LA57) ? 57 : 48;
3020
3021 return !__is_canonical_address(la, l1_address_bits_on_exit);
3022 }
3023
nested_vmx_check_host_state(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)3024 static int nested_vmx_check_host_state(struct kvm_vcpu *vcpu,
3025 struct vmcs12 *vmcs12)
3026 {
3027 bool ia32e = !!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE);
3028
3029 if (CC(!nested_host_cr0_valid(vcpu, vmcs12->host_cr0)) ||
3030 CC(!nested_host_cr4_valid(vcpu, vmcs12->host_cr4)) ||
3031 CC(!kvm_vcpu_is_legal_cr3(vcpu, vmcs12->host_cr3)))
3032 return -EINVAL;
3033
3034 if (CC(is_noncanonical_msr_address(vmcs12->host_ia32_sysenter_esp, vcpu)) ||
3035 CC(is_noncanonical_msr_address(vmcs12->host_ia32_sysenter_eip, vcpu)))
3036 return -EINVAL;
3037
3038 if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) &&
3039 CC(!kvm_pat_valid(vmcs12->host_ia32_pat)))
3040 return -EINVAL;
3041
3042 if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) &&
3043 CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
3044 vmcs12->host_ia32_perf_global_ctrl)))
3045 return -EINVAL;
3046
3047 if (ia32e) {
3048 if (CC(!(vmcs12->host_cr4 & X86_CR4_PAE)))
3049 return -EINVAL;
3050 } else {
3051 if (CC(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) ||
3052 CC(vmcs12->host_cr4 & X86_CR4_PCIDE) ||
3053 CC((vmcs12->host_rip) >> 32))
3054 return -EINVAL;
3055 }
3056
3057 if (CC(vmcs12->host_cs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
3058 CC(vmcs12->host_ss_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
3059 CC(vmcs12->host_ds_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
3060 CC(vmcs12->host_es_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
3061 CC(vmcs12->host_fs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
3062 CC(vmcs12->host_gs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
3063 CC(vmcs12->host_tr_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
3064 CC(vmcs12->host_cs_selector == 0) ||
3065 CC(vmcs12->host_tr_selector == 0) ||
3066 CC(vmcs12->host_ss_selector == 0 && !ia32e))
3067 return -EINVAL;
3068
3069 if (CC(is_noncanonical_base_address(vmcs12->host_fs_base, vcpu)) ||
3070 CC(is_noncanonical_base_address(vmcs12->host_gs_base, vcpu)) ||
3071 CC(is_noncanonical_base_address(vmcs12->host_gdtr_base, vcpu)) ||
3072 CC(is_noncanonical_base_address(vmcs12->host_idtr_base, vcpu)) ||
3073 CC(is_noncanonical_base_address(vmcs12->host_tr_base, vcpu)) ||
3074 CC(is_l1_noncanonical_address_on_vmexit(vmcs12->host_rip, vmcs12)))
3075 return -EINVAL;
3076
3077 /*
3078 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
3079 * IA32_EFER MSR must be 0 in the field for that register. In addition,
3080 * the values of the LMA and LME bits in the field must each be that of
3081 * the host address-space size VM-exit control.
3082 */
3083 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
3084 if (CC(!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer)) ||
3085 CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA)) ||
3086 CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)))
3087 return -EINVAL;
3088 }
3089
3090 return 0;
3091 }
3092
nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)3093 static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
3094 struct vmcs12 *vmcs12)
3095 {
3096 struct vcpu_vmx *vmx = to_vmx(vcpu);
3097 struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
3098 struct vmcs_hdr hdr;
3099
3100 if (vmcs12->vmcs_link_pointer == INVALID_GPA)
3101 return 0;
3102
3103 if (CC(!page_address_valid(vcpu, vmcs12->vmcs_link_pointer)))
3104 return -EINVAL;
3105
3106 if (ghc->gpa != vmcs12->vmcs_link_pointer &&
3107 CC(kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
3108 vmcs12->vmcs_link_pointer, VMCS12_SIZE)))
3109 return -EINVAL;
3110
3111 if (CC(kvm_read_guest_offset_cached(vcpu->kvm, ghc, &hdr,
3112 offsetof(struct vmcs12, hdr),
3113 sizeof(hdr))))
3114 return -EINVAL;
3115
3116 if (CC(hdr.revision_id != VMCS12_REVISION) ||
3117 CC(hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12)))
3118 return -EINVAL;
3119
3120 return 0;
3121 }
3122
3123 /*
3124 * Checks related to Guest Non-register State
3125 */
nested_check_guest_non_reg_state(struct vmcs12 * vmcs12)3126 static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12)
3127 {
3128 if (CC(vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
3129 vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT &&
3130 vmcs12->guest_activity_state != GUEST_ACTIVITY_WAIT_SIPI))
3131 return -EINVAL;
3132
3133 return 0;
3134 }
3135
nested_vmx_check_guest_state(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,enum vm_entry_failure_code * entry_failure_code)3136 static int nested_vmx_check_guest_state(struct kvm_vcpu *vcpu,
3137 struct vmcs12 *vmcs12,
3138 enum vm_entry_failure_code *entry_failure_code)
3139 {
3140 bool ia32e = !!(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE);
3141
3142 *entry_failure_code = ENTRY_FAIL_DEFAULT;
3143
3144 if (CC(!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0)) ||
3145 CC(!nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4)))
3146 return -EINVAL;
3147
3148 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) &&
3149 CC(!kvm_dr7_valid(vmcs12->guest_dr7)))
3150 return -EINVAL;
3151
3152 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) &&
3153 CC(!kvm_pat_valid(vmcs12->guest_ia32_pat)))
3154 return -EINVAL;
3155
3156 if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
3157 *entry_failure_code = ENTRY_FAIL_VMCS_LINK_PTR;
3158 return -EINVAL;
3159 }
3160
3161 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
3162 CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
3163 vmcs12->guest_ia32_perf_global_ctrl)))
3164 return -EINVAL;
3165
3166 if (CC((vmcs12->guest_cr0 & (X86_CR0_PG | X86_CR0_PE)) == X86_CR0_PG))
3167 return -EINVAL;
3168
3169 if (CC(ia32e && !(vmcs12->guest_cr4 & X86_CR4_PAE)) ||
3170 CC(ia32e && !(vmcs12->guest_cr0 & X86_CR0_PG)))
3171 return -EINVAL;
3172
3173 /*
3174 * If the load IA32_EFER VM-entry control is 1, the following checks
3175 * are performed on the field for the IA32_EFER MSR:
3176 * - Bits reserved in the IA32_EFER MSR must be 0.
3177 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
3178 * the IA-32e mode guest VM-exit control. It must also be identical
3179 * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
3180 * CR0.PG) is 1.
3181 */
3182 if (to_vmx(vcpu)->nested.nested_run_pending &&
3183 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
3184 if (CC(!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer)) ||
3185 CC(ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA)) ||
3186 CC(((vmcs12->guest_cr0 & X86_CR0_PG) &&
3187 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))))
3188 return -EINVAL;
3189 }
3190
3191 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
3192 (CC(is_noncanonical_msr_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu)) ||
3193 CC((vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD))))
3194 return -EINVAL;
3195
3196 if (nested_check_guest_non_reg_state(vmcs12))
3197 return -EINVAL;
3198
3199 return 0;
3200 }
3201
nested_vmx_check_vmentry_hw(struct kvm_vcpu * vcpu)3202 static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu)
3203 {
3204 struct vcpu_vmx *vmx = to_vmx(vcpu);
3205 unsigned long cr3, cr4;
3206 bool vm_fail;
3207
3208 if (!nested_early_check)
3209 return 0;
3210
3211 if (vmx->msr_autoload.host.nr)
3212 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
3213 if (vmx->msr_autoload.guest.nr)
3214 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
3215
3216 preempt_disable();
3217
3218 vmx_prepare_switch_to_guest(vcpu);
3219
3220 /*
3221 * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS,
3222 * which is reserved to '1' by hardware. GUEST_RFLAGS is guaranteed to
3223 * be written (by prepare_vmcs02()) before the "real" VMEnter, i.e.
3224 * there is no need to preserve other bits or save/restore the field.
3225 */
3226 vmcs_writel(GUEST_RFLAGS, 0);
3227
3228 cr3 = __get_current_cr3_fast();
3229 if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
3230 vmcs_writel(HOST_CR3, cr3);
3231 vmx->loaded_vmcs->host_state.cr3 = cr3;
3232 }
3233
3234 cr4 = cr4_read_shadow();
3235 if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
3236 vmcs_writel(HOST_CR4, cr4);
3237 vmx->loaded_vmcs->host_state.cr4 = cr4;
3238 }
3239
3240 vm_fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
3241 __vmx_vcpu_run_flags(vmx));
3242
3243 if (vmx->msr_autoload.host.nr)
3244 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
3245 if (vmx->msr_autoload.guest.nr)
3246 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
3247
3248 if (vm_fail) {
3249 u32 error = vmcs_read32(VM_INSTRUCTION_ERROR);
3250
3251 preempt_enable();
3252
3253 trace_kvm_nested_vmenter_failed(
3254 "early hardware check VM-instruction error: ", error);
3255 WARN_ON_ONCE(error != VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3256 return 1;
3257 }
3258
3259 /*
3260 * VMExit clears RFLAGS.IF and DR7, even on a consistency check.
3261 */
3262 if (hw_breakpoint_active())
3263 set_debugreg(__this_cpu_read(cpu_dr7), 7);
3264 local_irq_enable();
3265 preempt_enable();
3266
3267 /*
3268 * A non-failing VMEntry means we somehow entered guest mode with
3269 * an illegal RIP, and that's just the tip of the iceberg. There
3270 * is no telling what memory has been modified or what state has
3271 * been exposed to unknown code. Hitting this all but guarantees
3272 * a (very critical) hardware issue.
3273 */
3274 WARN_ON(!(vmcs_read32(VM_EXIT_REASON) &
3275 VMX_EXIT_REASONS_FAILED_VMENTRY));
3276
3277 return 0;
3278 }
3279
3280 #ifdef CONFIG_KVM_HYPERV
nested_get_evmcs_page(struct kvm_vcpu * vcpu)3281 static bool nested_get_evmcs_page(struct kvm_vcpu *vcpu)
3282 {
3283 struct vcpu_vmx *vmx = to_vmx(vcpu);
3284
3285 /*
3286 * hv_evmcs may end up being not mapped after migration (when
3287 * L2 was running), map it here to make sure vmcs12 changes are
3288 * properly reflected.
3289 */
3290 if (guest_cpu_cap_has_evmcs(vcpu) &&
3291 vmx->nested.hv_evmcs_vmptr == EVMPTR_MAP_PENDING) {
3292 enum nested_evmptrld_status evmptrld_status =
3293 nested_vmx_handle_enlightened_vmptrld(vcpu, false);
3294
3295 if (evmptrld_status == EVMPTRLD_VMFAIL ||
3296 evmptrld_status == EVMPTRLD_ERROR)
3297 return false;
3298
3299 /*
3300 * Post migration VMCS12 always provides the most actual
3301 * information, copy it to eVMCS upon entry.
3302 */
3303 vmx->nested.need_vmcs12_to_shadow_sync = true;
3304 }
3305
3306 return true;
3307 }
3308 #endif
3309
nested_get_vmcs12_pages(struct kvm_vcpu * vcpu)3310 static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
3311 {
3312 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3313 struct vcpu_vmx *vmx = to_vmx(vcpu);
3314 struct kvm_host_map *map;
3315
3316 if (!vcpu->arch.pdptrs_from_userspace &&
3317 !nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
3318 /*
3319 * Reload the guest's PDPTRs since after a migration
3320 * the guest CR3 might be restored prior to setting the nested
3321 * state which can lead to a load of wrong PDPTRs.
3322 */
3323 if (CC(!load_pdptrs(vcpu, vcpu->arch.cr3)))
3324 return false;
3325 }
3326
3327
3328 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3329 map = &vmx->nested.apic_access_page_map;
3330
3331 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->apic_access_addr), map)) {
3332 vmcs_write64(APIC_ACCESS_ADDR, pfn_to_hpa(map->pfn));
3333 } else {
3334 pr_debug_ratelimited("%s: no backing for APIC-access address in vmcs12\n",
3335 __func__);
3336 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3337 vcpu->run->internal.suberror =
3338 KVM_INTERNAL_ERROR_EMULATION;
3339 vcpu->run->internal.ndata = 0;
3340 return false;
3341 }
3342 }
3343
3344 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3345 map = &vmx->nested.virtual_apic_map;
3346
3347 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->virtual_apic_page_addr), map)) {
3348 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, pfn_to_hpa(map->pfn));
3349 } else if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING) &&
3350 nested_cpu_has(vmcs12, CPU_BASED_CR8_STORE_EXITING) &&
3351 !nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3352 /*
3353 * The processor will never use the TPR shadow, simply
3354 * clear the bit from the execution control. Such a
3355 * configuration is useless, but it happens in tests.
3356 * For any other configuration, failing the vm entry is
3357 * _not_ what the processor does but it's basically the
3358 * only possibility we have.
3359 */
3360 exec_controls_clearbit(vmx, CPU_BASED_TPR_SHADOW);
3361 } else {
3362 /*
3363 * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR to
3364 * force VM-Entry to fail.
3365 */
3366 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, INVALID_GPA);
3367 }
3368 }
3369
3370 if (nested_cpu_has_posted_intr(vmcs12)) {
3371 map = &vmx->nested.pi_desc_map;
3372
3373 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->posted_intr_desc_addr), map)) {
3374 vmx->nested.pi_desc =
3375 (struct pi_desc *)(((void *)map->hva) +
3376 offset_in_page(vmcs12->posted_intr_desc_addr));
3377 vmcs_write64(POSTED_INTR_DESC_ADDR,
3378 pfn_to_hpa(map->pfn) + offset_in_page(vmcs12->posted_intr_desc_addr));
3379 } else {
3380 /*
3381 * Defer the KVM_INTERNAL_EXIT until KVM tries to
3382 * access the contents of the VMCS12 posted interrupt
3383 * descriptor. (Note that KVM may do this when it
3384 * should not, per the architectural specification.)
3385 */
3386 vmx->nested.pi_desc = NULL;
3387 pin_controls_clearbit(vmx, PIN_BASED_POSTED_INTR);
3388 }
3389 }
3390 if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
3391 exec_controls_setbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3392 else
3393 exec_controls_clearbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3394
3395 return true;
3396 }
3397
vmx_get_nested_state_pages(struct kvm_vcpu * vcpu)3398 static bool vmx_get_nested_state_pages(struct kvm_vcpu *vcpu)
3399 {
3400 #ifdef CONFIG_KVM_HYPERV
3401 /*
3402 * Note: nested_get_evmcs_page() also updates 'vp_assist_page' copy
3403 * in 'struct kvm_vcpu_hv' in case eVMCS is in use, this is mandatory
3404 * to make nested_evmcs_l2_tlb_flush_enabled() work correctly post
3405 * migration.
3406 */
3407 if (!nested_get_evmcs_page(vcpu)) {
3408 pr_debug_ratelimited("%s: enlightened vmptrld failed\n",
3409 __func__);
3410 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3411 vcpu->run->internal.suberror =
3412 KVM_INTERNAL_ERROR_EMULATION;
3413 vcpu->run->internal.ndata = 0;
3414
3415 return false;
3416 }
3417 #endif
3418
3419 if (is_guest_mode(vcpu) && !nested_get_vmcs12_pages(vcpu))
3420 return false;
3421
3422 return true;
3423 }
3424
nested_vmx_write_pml_buffer(struct kvm_vcpu * vcpu,gpa_t gpa)3425 static int nested_vmx_write_pml_buffer(struct kvm_vcpu *vcpu, gpa_t gpa)
3426 {
3427 struct vmcs12 *vmcs12;
3428 struct vcpu_vmx *vmx = to_vmx(vcpu);
3429 gpa_t dst;
3430
3431 if (WARN_ON_ONCE(!is_guest_mode(vcpu)))
3432 return 0;
3433
3434 if (WARN_ON_ONCE(vmx->nested.pml_full))
3435 return 1;
3436
3437 /*
3438 * Check if PML is enabled for the nested guest. Whether eptp bit 6 is
3439 * set is already checked as part of A/D emulation.
3440 */
3441 vmcs12 = get_vmcs12(vcpu);
3442 if (!nested_cpu_has_pml(vmcs12))
3443 return 0;
3444
3445 if (vmcs12->guest_pml_index >= PML_LOG_NR_ENTRIES) {
3446 vmx->nested.pml_full = true;
3447 return 1;
3448 }
3449
3450 gpa &= ~0xFFFull;
3451 dst = vmcs12->pml_address + sizeof(u64) * vmcs12->guest_pml_index;
3452
3453 if (kvm_write_guest_page(vcpu->kvm, gpa_to_gfn(dst), &gpa,
3454 offset_in_page(dst), sizeof(gpa)))
3455 return 0;
3456
3457 vmcs12->guest_pml_index--;
3458
3459 return 0;
3460 }
3461
3462 /*
3463 * Intel's VMX Instruction Reference specifies a common set of prerequisites
3464 * for running VMX instructions (except VMXON, whose prerequisites are
3465 * slightly different). It also specifies what exception to inject otherwise.
3466 * Note that many of these exceptions have priority over VM exits, so they
3467 * don't have to be checked again here.
3468 */
nested_vmx_check_permission(struct kvm_vcpu * vcpu)3469 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
3470 {
3471 if (!to_vmx(vcpu)->nested.vmxon) {
3472 kvm_queue_exception(vcpu, UD_VECTOR);
3473 return 0;
3474 }
3475
3476 if (vmx_get_cpl(vcpu)) {
3477 kvm_inject_gp(vcpu, 0);
3478 return 0;
3479 }
3480
3481 return 1;
3482 }
3483
3484 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
3485 struct vmcs12 *vmcs12);
3486
3487 /*
3488 * If from_vmentry is false, this is being called from state restore (either RSM
3489 * or KVM_SET_NESTED_STATE). Otherwise it's called from vmlaunch/vmresume.
3490 *
3491 * Returns:
3492 * NVMX_VMENTRY_SUCCESS: Entered VMX non-root mode
3493 * NVMX_VMENTRY_VMFAIL: Consistency check VMFail
3494 * NVMX_VMENTRY_VMEXIT: Consistency check VMExit
3495 * NVMX_VMENTRY_KVM_INTERNAL_ERROR: KVM internal error
3496 */
nested_vmx_enter_non_root_mode(struct kvm_vcpu * vcpu,bool from_vmentry)3497 enum nvmx_vmentry_status nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu,
3498 bool from_vmentry)
3499 {
3500 struct vcpu_vmx *vmx = to_vmx(vcpu);
3501 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3502 enum vm_entry_failure_code entry_failure_code;
3503 union vmx_exit_reason exit_reason = {
3504 .basic = EXIT_REASON_INVALID_STATE,
3505 .failed_vmentry = 1,
3506 };
3507 u32 failed_index;
3508
3509 trace_kvm_nested_vmenter(kvm_rip_read(vcpu),
3510 vmx->nested.current_vmptr,
3511 vmcs12->guest_rip,
3512 vmcs12->guest_intr_status,
3513 vmcs12->vm_entry_intr_info_field,
3514 vmcs12->secondary_vm_exec_control & SECONDARY_EXEC_ENABLE_EPT,
3515 vmcs12->ept_pointer,
3516 vmcs12->guest_cr3,
3517 KVM_ISA_VMX);
3518
3519 kvm_service_local_tlb_flush_requests(vcpu);
3520
3521 if (!vmx->nested.nested_run_pending ||
3522 !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
3523 vmx->nested.pre_vmenter_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
3524 if (kvm_mpx_supported() &&
3525 (!vmx->nested.nested_run_pending ||
3526 !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
3527 vmx->nested.pre_vmenter_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3528
3529 /*
3530 * Overwrite vmcs01.GUEST_CR3 with L1's CR3 if EPT is disabled *and*
3531 * nested early checks are disabled. In the event of a "late" VM-Fail,
3532 * i.e. a VM-Fail detected by hardware but not KVM, KVM must unwind its
3533 * software model to the pre-VMEntry host state. When EPT is disabled,
3534 * GUEST_CR3 holds KVM's shadow CR3, not L1's "real" CR3, which causes
3535 * nested_vmx_restore_host_state() to corrupt vcpu->arch.cr3. Stuffing
3536 * vmcs01.GUEST_CR3 results in the unwind naturally setting arch.cr3 to
3537 * the correct value. Smashing vmcs01.GUEST_CR3 is safe because nested
3538 * VM-Exits, and the unwind, reset KVM's MMU, i.e. vmcs01.GUEST_CR3 is
3539 * guaranteed to be overwritten with a shadow CR3 prior to re-entering
3540 * L1. Don't stuff vmcs01.GUEST_CR3 when using nested early checks as
3541 * KVM modifies vcpu->arch.cr3 if and only if the early hardware checks
3542 * pass, and early VM-Fails do not reset KVM's MMU, i.e. the VM-Fail
3543 * path would need to manually save/restore vmcs01.GUEST_CR3.
3544 */
3545 if (!enable_ept && !nested_early_check)
3546 vmcs_writel(GUEST_CR3, vcpu->arch.cr3);
3547
3548 vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
3549
3550 prepare_vmcs02_early(vmx, &vmx->vmcs01, vmcs12);
3551
3552 if (from_vmentry) {
3553 if (unlikely(!nested_get_vmcs12_pages(vcpu))) {
3554 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3555 return NVMX_VMENTRY_KVM_INTERNAL_ERROR;
3556 }
3557
3558 if (nested_vmx_check_vmentry_hw(vcpu)) {
3559 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3560 return NVMX_VMENTRY_VMFAIL;
3561 }
3562
3563 if (nested_vmx_check_guest_state(vcpu, vmcs12,
3564 &entry_failure_code)) {
3565 exit_reason.basic = EXIT_REASON_INVALID_STATE;
3566 vmcs12->exit_qualification = entry_failure_code;
3567 goto vmentry_fail_vmexit;
3568 }
3569 }
3570
3571 enter_guest_mode(vcpu);
3572
3573 if (prepare_vmcs02(vcpu, vmcs12, from_vmentry, &entry_failure_code)) {
3574 exit_reason.basic = EXIT_REASON_INVALID_STATE;
3575 vmcs12->exit_qualification = entry_failure_code;
3576 goto vmentry_fail_vmexit_guest_mode;
3577 }
3578
3579 if (from_vmentry) {
3580 failed_index = nested_vmx_load_msr(vcpu,
3581 vmcs12->vm_entry_msr_load_addr,
3582 vmcs12->vm_entry_msr_load_count);
3583 if (failed_index) {
3584 exit_reason.basic = EXIT_REASON_MSR_LOAD_FAIL;
3585 vmcs12->exit_qualification = failed_index;
3586 goto vmentry_fail_vmexit_guest_mode;
3587 }
3588 } else {
3589 /*
3590 * The MMU is not initialized to point at the right entities yet and
3591 * "get pages" would need to read data from the guest (i.e. we will
3592 * need to perform gpa to hpa translation). Request a call
3593 * to nested_get_vmcs12_pages before the next VM-entry. The MSRs
3594 * have already been set at vmentry time and should not be reset.
3595 */
3596 kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
3597 }
3598
3599 /*
3600 * Re-evaluate pending events if L1 had a pending IRQ/NMI/INIT/SIPI
3601 * when it executed VMLAUNCH/VMRESUME, as entering non-root mode can
3602 * effectively unblock various events, e.g. INIT/SIPI cause VM-Exit
3603 * unconditionally. Take care to pull data from vmcs01 as appropriate,
3604 * e.g. when checking for interrupt windows, as vmcs02 is now loaded.
3605 */
3606 if ((__exec_controls_get(&vmx->vmcs01) & (CPU_BASED_INTR_WINDOW_EXITING |
3607 CPU_BASED_NMI_WINDOW_EXITING)) ||
3608 kvm_apic_has_pending_init_or_sipi(vcpu) ||
3609 kvm_apic_has_interrupt(vcpu))
3610 kvm_make_request(KVM_REQ_EVENT, vcpu);
3611
3612 /*
3613 * Do not start the preemption timer hrtimer until after we know
3614 * we are successful, so that only nested_vmx_vmexit needs to cancel
3615 * the timer.
3616 */
3617 vmx->nested.preemption_timer_expired = false;
3618 if (nested_cpu_has_preemption_timer(vmcs12)) {
3619 u64 timer_value = vmx_calc_preemption_timer_value(vcpu);
3620 vmx_start_preemption_timer(vcpu, timer_value);
3621 }
3622
3623 /*
3624 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
3625 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
3626 * returned as far as L1 is concerned. It will only return (and set
3627 * the success flag) when L2 exits (see nested_vmx_vmexit()).
3628 */
3629 return NVMX_VMENTRY_SUCCESS;
3630
3631 /*
3632 * A failed consistency check that leads to a VMExit during L1's
3633 * VMEnter to L2 is a variation of a normal VMexit, as explained in
3634 * 26.7 "VM-entry failures during or after loading guest state".
3635 */
3636 vmentry_fail_vmexit_guest_mode:
3637 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
3638 vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
3639 leave_guest_mode(vcpu);
3640
3641 vmentry_fail_vmexit:
3642 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3643
3644 if (!from_vmentry)
3645 return NVMX_VMENTRY_VMEXIT;
3646
3647 load_vmcs12_host_state(vcpu, vmcs12);
3648 vmcs12->vm_exit_reason = exit_reason.full;
3649 if (enable_shadow_vmcs || nested_vmx_is_evmptr12_valid(vmx))
3650 vmx->nested.need_vmcs12_to_shadow_sync = true;
3651 return NVMX_VMENTRY_VMEXIT;
3652 }
3653
3654 /*
3655 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
3656 * for running an L2 nested guest.
3657 */
nested_vmx_run(struct kvm_vcpu * vcpu,bool launch)3658 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
3659 {
3660 struct vmcs12 *vmcs12;
3661 enum nvmx_vmentry_status status;
3662 struct vcpu_vmx *vmx = to_vmx(vcpu);
3663 u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
3664 enum nested_evmptrld_status evmptrld_status;
3665
3666 if (!nested_vmx_check_permission(vcpu))
3667 return 1;
3668
3669 evmptrld_status = nested_vmx_handle_enlightened_vmptrld(vcpu, launch);
3670 if (evmptrld_status == EVMPTRLD_ERROR) {
3671 kvm_queue_exception(vcpu, UD_VECTOR);
3672 return 1;
3673 }
3674
3675 kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.BRANCH_INSTRUCTIONS_RETIRED);
3676
3677 if (CC(evmptrld_status == EVMPTRLD_VMFAIL))
3678 return nested_vmx_failInvalid(vcpu);
3679
3680 if (CC(!nested_vmx_is_evmptr12_valid(vmx) &&
3681 vmx->nested.current_vmptr == INVALID_GPA))
3682 return nested_vmx_failInvalid(vcpu);
3683
3684 vmcs12 = get_vmcs12(vcpu);
3685
3686 /*
3687 * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
3688 * that there *is* a valid VMCS pointer, RFLAGS.CF is set
3689 * rather than RFLAGS.ZF, and no error number is stored to the
3690 * VM-instruction error field.
3691 */
3692 if (CC(vmcs12->hdr.shadow_vmcs))
3693 return nested_vmx_failInvalid(vcpu);
3694
3695 if (nested_vmx_is_evmptr12_valid(vmx)) {
3696 struct hv_enlightened_vmcs *evmcs = nested_vmx_evmcs(vmx);
3697
3698 copy_enlightened_to_vmcs12(vmx, evmcs->hv_clean_fields);
3699 /* Enlightened VMCS doesn't have launch state */
3700 vmcs12->launch_state = !launch;
3701 } else if (enable_shadow_vmcs) {
3702 copy_shadow_to_vmcs12(vmx);
3703 }
3704
3705 /*
3706 * The nested entry process starts with enforcing various prerequisites
3707 * on vmcs12 as required by the Intel SDM, and act appropriately when
3708 * they fail: As the SDM explains, some conditions should cause the
3709 * instruction to fail, while others will cause the instruction to seem
3710 * to succeed, but return an EXIT_REASON_INVALID_STATE.
3711 * To speed up the normal (success) code path, we should avoid checking
3712 * for misconfigurations which will anyway be caught by the processor
3713 * when using the merged vmcs02.
3714 */
3715 if (CC(interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS))
3716 return nested_vmx_fail(vcpu, VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
3717
3718 if (CC(vmcs12->launch_state == launch))
3719 return nested_vmx_fail(vcpu,
3720 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
3721 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
3722
3723 if (nested_vmx_check_controls(vcpu, vmcs12))
3724 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3725
3726 if (nested_vmx_check_address_space_size(vcpu, vmcs12))
3727 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3728
3729 if (nested_vmx_check_host_state(vcpu, vmcs12))
3730 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3731
3732 /*
3733 * We're finally done with prerequisite checking, and can start with
3734 * the nested entry.
3735 */
3736 vmx->nested.nested_run_pending = 1;
3737 vmx->nested.has_preemption_timer_deadline = false;
3738 status = nested_vmx_enter_non_root_mode(vcpu, true);
3739 if (unlikely(status != NVMX_VMENTRY_SUCCESS))
3740 goto vmentry_failed;
3741
3742 /* Hide L1D cache contents from the nested guest. */
3743 vmx->vcpu.arch.l1tf_flush_l1d = true;
3744
3745 /*
3746 * Must happen outside of nested_vmx_enter_non_root_mode() as it will
3747 * also be used as part of restoring nVMX state for
3748 * snapshot restore (migration).
3749 *
3750 * In this flow, it is assumed that vmcs12 cache was
3751 * transferred as part of captured nVMX state and should
3752 * therefore not be read from guest memory (which may not
3753 * exist on destination host yet).
3754 */
3755 nested_cache_shadow_vmcs12(vcpu, vmcs12);
3756
3757 switch (vmcs12->guest_activity_state) {
3758 case GUEST_ACTIVITY_HLT:
3759 /*
3760 * If we're entering a halted L2 vcpu and the L2 vcpu won't be
3761 * awakened by event injection or by an NMI-window VM-exit or
3762 * by an interrupt-window VM-exit, halt the vcpu.
3763 */
3764 if (!(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) &&
3765 !nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING) &&
3766 !(nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING) &&
3767 (vmcs12->guest_rflags & X86_EFLAGS_IF))) {
3768 vmx->nested.nested_run_pending = 0;
3769 return kvm_emulate_halt_noskip(vcpu);
3770 }
3771 break;
3772 case GUEST_ACTIVITY_WAIT_SIPI:
3773 vmx->nested.nested_run_pending = 0;
3774 kvm_set_mp_state(vcpu, KVM_MP_STATE_INIT_RECEIVED);
3775 break;
3776 default:
3777 break;
3778 }
3779
3780 return 1;
3781
3782 vmentry_failed:
3783 vmx->nested.nested_run_pending = 0;
3784 if (status == NVMX_VMENTRY_KVM_INTERNAL_ERROR)
3785 return 0;
3786 if (status == NVMX_VMENTRY_VMEXIT)
3787 return 1;
3788 WARN_ON_ONCE(status != NVMX_VMENTRY_VMFAIL);
3789 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3790 }
3791
3792 /*
3793 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
3794 * because L2 may have changed some cr0 bits directly (CR0_GUEST_HOST_MASK).
3795 * This function returns the new value we should put in vmcs12.guest_cr0.
3796 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
3797 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
3798 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
3799 * didn't trap the bit, because if L1 did, so would L0).
3800 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
3801 * been modified by L2, and L1 knows it. So just leave the old value of
3802 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
3803 * isn't relevant, because if L0 traps this bit it can set it to anything.
3804 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
3805 * changed these bits, and therefore they need to be updated, but L0
3806 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
3807 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
3808 */
3809 static inline unsigned long
vmcs12_guest_cr0(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)3810 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3811 {
3812 return
3813 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
3814 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
3815 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
3816 vcpu->arch.cr0_guest_owned_bits));
3817 }
3818
3819 static inline unsigned long
vmcs12_guest_cr4(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)3820 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3821 {
3822 return
3823 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
3824 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
3825 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
3826 vcpu->arch.cr4_guest_owned_bits));
3827 }
3828
vmcs12_save_pending_event(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,u32 vm_exit_reason,u32 exit_intr_info)3829 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
3830 struct vmcs12 *vmcs12,
3831 u32 vm_exit_reason, u32 exit_intr_info)
3832 {
3833 u32 idt_vectoring;
3834 unsigned int nr;
3835
3836 /*
3837 * Per the SDM, VM-Exits due to double and triple faults are never
3838 * considered to occur during event delivery, even if the double/triple
3839 * fault is the result of an escalating vectoring issue.
3840 *
3841 * Note, the SDM qualifies the double fault behavior with "The original
3842 * event results in a double-fault exception". It's unclear why the
3843 * qualification exists since exits due to double fault can occur only
3844 * while vectoring a different exception (injected events are never
3845 * subject to interception), i.e. there's _always_ an original event.
3846 *
3847 * The SDM also uses NMI as a confusing example for the "original event
3848 * causes the VM exit directly" clause. NMI isn't special in any way,
3849 * the same rule applies to all events that cause an exit directly.
3850 * NMI is an odd choice for the example because NMIs can only occur on
3851 * instruction boundaries, i.e. they _can't_ occur during vectoring.
3852 */
3853 if ((u16)vm_exit_reason == EXIT_REASON_TRIPLE_FAULT ||
3854 ((u16)vm_exit_reason == EXIT_REASON_EXCEPTION_NMI &&
3855 is_double_fault(exit_intr_info))) {
3856 vmcs12->idt_vectoring_info_field = 0;
3857 } else if (vcpu->arch.exception.injected) {
3858 nr = vcpu->arch.exception.vector;
3859 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3860
3861 if (kvm_exception_is_soft(nr)) {
3862 vmcs12->vm_exit_instruction_len =
3863 vcpu->arch.event_exit_inst_len;
3864 idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
3865 } else
3866 idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
3867
3868 if (vcpu->arch.exception.has_error_code) {
3869 idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
3870 vmcs12->idt_vectoring_error_code =
3871 vcpu->arch.exception.error_code;
3872 }
3873
3874 vmcs12->idt_vectoring_info_field = idt_vectoring;
3875 } else if (vcpu->arch.nmi_injected) {
3876 vmcs12->idt_vectoring_info_field =
3877 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
3878 } else if (vcpu->arch.interrupt.injected) {
3879 nr = vcpu->arch.interrupt.nr;
3880 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3881
3882 if (vcpu->arch.interrupt.soft) {
3883 idt_vectoring |= INTR_TYPE_SOFT_INTR;
3884 vmcs12->vm_entry_instruction_len =
3885 vcpu->arch.event_exit_inst_len;
3886 } else
3887 idt_vectoring |= INTR_TYPE_EXT_INTR;
3888
3889 vmcs12->idt_vectoring_info_field = idt_vectoring;
3890 } else {
3891 vmcs12->idt_vectoring_info_field = 0;
3892 }
3893 }
3894
3895
nested_mark_vmcs12_pages_dirty(struct kvm_vcpu * vcpu)3896 void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
3897 {
3898 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3899 gfn_t gfn;
3900
3901 /*
3902 * Don't need to mark the APIC access page dirty; it is never
3903 * written to by the CPU during APIC virtualization.
3904 */
3905
3906 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3907 gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
3908 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3909 }
3910
3911 if (nested_cpu_has_posted_intr(vmcs12)) {
3912 gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
3913 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3914 }
3915 }
3916
vmx_complete_nested_posted_interrupt(struct kvm_vcpu * vcpu)3917 static int vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
3918 {
3919 struct vcpu_vmx *vmx = to_vmx(vcpu);
3920 int max_irr;
3921 void *vapic_page;
3922 u16 status;
3923
3924 if (!vmx->nested.pi_pending)
3925 return 0;
3926
3927 if (!vmx->nested.pi_desc)
3928 goto mmio_needed;
3929
3930 vmx->nested.pi_pending = false;
3931
3932 if (!pi_test_and_clear_on(vmx->nested.pi_desc))
3933 return 0;
3934
3935 max_irr = pi_find_highest_vector(vmx->nested.pi_desc);
3936 if (max_irr > 0) {
3937 vapic_page = vmx->nested.virtual_apic_map.hva;
3938 if (!vapic_page)
3939 goto mmio_needed;
3940
3941 __kvm_apic_update_irr(vmx->nested.pi_desc->pir,
3942 vapic_page, &max_irr);
3943 status = vmcs_read16(GUEST_INTR_STATUS);
3944 if ((u8)max_irr > ((u8)status & 0xff)) {
3945 status &= ~0xff;
3946 status |= (u8)max_irr;
3947 vmcs_write16(GUEST_INTR_STATUS, status);
3948 }
3949 }
3950
3951 nested_mark_vmcs12_pages_dirty(vcpu);
3952 return 0;
3953
3954 mmio_needed:
3955 kvm_handle_memory_failure(vcpu, X86EMUL_IO_NEEDED, NULL);
3956 return -ENXIO;
3957 }
3958
nested_vmx_inject_exception_vmexit(struct kvm_vcpu * vcpu)3959 static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu)
3960 {
3961 struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit;
3962 u32 intr_info = ex->vector | INTR_INFO_VALID_MASK;
3963 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3964 unsigned long exit_qual;
3965
3966 if (ex->has_payload) {
3967 exit_qual = ex->payload;
3968 } else if (ex->vector == PF_VECTOR) {
3969 exit_qual = vcpu->arch.cr2;
3970 } else if (ex->vector == DB_VECTOR) {
3971 exit_qual = vcpu->arch.dr6;
3972 exit_qual &= ~DR6_BT;
3973 exit_qual ^= DR6_ACTIVE_LOW;
3974 } else {
3975 exit_qual = 0;
3976 }
3977
3978 /*
3979 * Unlike AMD's Paged Real Mode, which reports an error code on #PF
3980 * VM-Exits even if the CPU is in Real Mode, Intel VMX never sets the
3981 * "has error code" flags on VM-Exit if the CPU is in Real Mode.
3982 */
3983 if (ex->has_error_code && is_protmode(vcpu)) {
3984 /*
3985 * Intel CPUs do not generate error codes with bits 31:16 set,
3986 * and more importantly VMX disallows setting bits 31:16 in the
3987 * injected error code for VM-Entry. Drop the bits to mimic
3988 * hardware and avoid inducing failure on nested VM-Entry if L1
3989 * chooses to inject the exception back to L2. AMD CPUs _do_
3990 * generate "full" 32-bit error codes, so KVM allows userspace
3991 * to inject exception error codes with bits 31:16 set.
3992 */
3993 vmcs12->vm_exit_intr_error_code = (u16)ex->error_code;
3994 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
3995 }
3996
3997 if (kvm_exception_is_soft(ex->vector))
3998 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
3999 else
4000 intr_info |= INTR_TYPE_HARD_EXCEPTION;
4001
4002 if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
4003 vmx_get_nmi_mask(vcpu))
4004 intr_info |= INTR_INFO_UNBLOCK_NMI;
4005
4006 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
4007 }
4008
4009 /*
4010 * Returns true if a debug trap is (likely) pending delivery. Infer the class
4011 * of a #DB (trap-like vs. fault-like) from the exception payload (to-be-DR6).
4012 * Using the payload is flawed because code breakpoints (fault-like) and data
4013 * breakpoints (trap-like) set the same bits in DR6 (breakpoint detected), i.e.
4014 * this will return false positives if a to-be-injected code breakpoint #DB is
4015 * pending (from KVM's perspective, but not "pending" across an instruction
4016 * boundary). ICEBP, a.k.a. INT1, is also not reflected here even though it
4017 * too is trap-like.
4018 *
4019 * KVM "works" despite these flaws as ICEBP isn't currently supported by the
4020 * emulator, Monitor Trap Flag is not marked pending on intercepted #DBs (the
4021 * #DB has already happened), and MTF isn't marked pending on code breakpoints
4022 * from the emulator (because such #DBs are fault-like and thus don't trigger
4023 * actions that fire on instruction retire).
4024 */
vmx_get_pending_dbg_trap(struct kvm_queued_exception * ex)4025 static unsigned long vmx_get_pending_dbg_trap(struct kvm_queued_exception *ex)
4026 {
4027 if (!ex->pending || ex->vector != DB_VECTOR)
4028 return 0;
4029
4030 /* General Detect #DBs are always fault-like. */
4031 return ex->payload & ~DR6_BD;
4032 }
4033
4034 /*
4035 * Returns true if there's a pending #DB exception that is lower priority than
4036 * a pending Monitor Trap Flag VM-Exit. TSS T-flag #DBs are not emulated by
4037 * KVM, but could theoretically be injected by userspace. Note, this code is
4038 * imperfect, see above.
4039 */
vmx_is_low_priority_db_trap(struct kvm_queued_exception * ex)4040 static bool vmx_is_low_priority_db_trap(struct kvm_queued_exception *ex)
4041 {
4042 return vmx_get_pending_dbg_trap(ex) & ~DR6_BT;
4043 }
4044
4045 /*
4046 * Certain VM-exits set the 'pending debug exceptions' field to indicate a
4047 * recognized #DB (data or single-step) that has yet to be delivered. Since KVM
4048 * represents these debug traps with a payload that is said to be compatible
4049 * with the 'pending debug exceptions' field, write the payload to the VMCS
4050 * field if a VM-exit is delivered before the debug trap.
4051 */
nested_vmx_update_pending_dbg(struct kvm_vcpu * vcpu)4052 static void nested_vmx_update_pending_dbg(struct kvm_vcpu *vcpu)
4053 {
4054 unsigned long pending_dbg;
4055
4056 pending_dbg = vmx_get_pending_dbg_trap(&vcpu->arch.exception);
4057 if (pending_dbg)
4058 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, pending_dbg);
4059 }
4060
nested_vmx_preemption_timer_pending(struct kvm_vcpu * vcpu)4061 static bool nested_vmx_preemption_timer_pending(struct kvm_vcpu *vcpu)
4062 {
4063 return nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
4064 to_vmx(vcpu)->nested.preemption_timer_expired;
4065 }
4066
vmx_has_nested_events(struct kvm_vcpu * vcpu,bool for_injection)4067 static bool vmx_has_nested_events(struct kvm_vcpu *vcpu, bool for_injection)
4068 {
4069 struct vcpu_vmx *vmx = to_vmx(vcpu);
4070 void *vapic = vmx->nested.virtual_apic_map.hva;
4071 int max_irr, vppr;
4072
4073 if (nested_vmx_preemption_timer_pending(vcpu) ||
4074 vmx->nested.mtf_pending)
4075 return true;
4076
4077 /*
4078 * Virtual Interrupt Delivery doesn't require manual injection. Either
4079 * the interrupt is already in GUEST_RVI and will be recognized by CPU
4080 * at VM-Entry, or there is a KVM_REQ_EVENT pending and KVM will move
4081 * the interrupt from the PIR to RVI prior to entering the guest.
4082 */
4083 if (for_injection)
4084 return false;
4085
4086 if (!nested_cpu_has_vid(get_vmcs12(vcpu)) ||
4087 __vmx_interrupt_blocked(vcpu))
4088 return false;
4089
4090 if (!vapic)
4091 return false;
4092
4093 vppr = *((u32 *)(vapic + APIC_PROCPRI));
4094
4095 max_irr = vmx_get_rvi();
4096 if ((max_irr & 0xf0) > (vppr & 0xf0))
4097 return true;
4098
4099 if (vmx->nested.pi_pending && vmx->nested.pi_desc &&
4100 pi_test_on(vmx->nested.pi_desc)) {
4101 max_irr = pi_find_highest_vector(vmx->nested.pi_desc);
4102 if (max_irr > 0 && (max_irr & 0xf0) > (vppr & 0xf0))
4103 return true;
4104 }
4105
4106 return false;
4107 }
4108
4109 /*
4110 * Per the Intel SDM's table "Priority Among Concurrent Events", with minor
4111 * edits to fill in missing examples, e.g. #DB due to split-lock accesses,
4112 * and less minor edits to splice in the priority of VMX Non-Root specific
4113 * events, e.g. MTF and NMI/INTR-window exiting.
4114 *
4115 * 1 Hardware Reset and Machine Checks
4116 * - RESET
4117 * - Machine Check
4118 *
4119 * 2 Trap on Task Switch
4120 * - T flag in TSS is set (on task switch)
4121 *
4122 * 3 External Hardware Interventions
4123 * - FLUSH
4124 * - STOPCLK
4125 * - SMI
4126 * - INIT
4127 *
4128 * 3.5 Monitor Trap Flag (MTF) VM-exit[1]
4129 *
4130 * 4 Traps on Previous Instruction
4131 * - Breakpoints
4132 * - Trap-class Debug Exceptions (#DB due to TF flag set, data/I-O
4133 * breakpoint, or #DB due to a split-lock access)
4134 *
4135 * 4.3 VMX-preemption timer expired VM-exit
4136 *
4137 * 4.6 NMI-window exiting VM-exit[2]
4138 *
4139 * 5 Nonmaskable Interrupts (NMI)
4140 *
4141 * 5.5 Interrupt-window exiting VM-exit and Virtual-interrupt delivery
4142 *
4143 * 6 Maskable Hardware Interrupts
4144 *
4145 * 7 Code Breakpoint Fault
4146 *
4147 * 8 Faults from Fetching Next Instruction
4148 * - Code-Segment Limit Violation
4149 * - Code Page Fault
4150 * - Control protection exception (missing ENDBRANCH at target of indirect
4151 * call or jump)
4152 *
4153 * 9 Faults from Decoding Next Instruction
4154 * - Instruction length > 15 bytes
4155 * - Invalid Opcode
4156 * - Coprocessor Not Available
4157 *
4158 *10 Faults on Executing Instruction
4159 * - Overflow
4160 * - Bound error
4161 * - Invalid TSS
4162 * - Segment Not Present
4163 * - Stack fault
4164 * - General Protection
4165 * - Data Page Fault
4166 * - Alignment Check
4167 * - x86 FPU Floating-point exception
4168 * - SIMD floating-point exception
4169 * - Virtualization exception
4170 * - Control protection exception
4171 *
4172 * [1] Per the "Monitor Trap Flag" section: System-management interrupts (SMIs),
4173 * INIT signals, and higher priority events take priority over MTF VM exits.
4174 * MTF VM exits take priority over debug-trap exceptions and lower priority
4175 * events.
4176 *
4177 * [2] Debug-trap exceptions and higher priority events take priority over VM exits
4178 * caused by the VMX-preemption timer. VM exits caused by the VMX-preemption
4179 * timer take priority over VM exits caused by the "NMI-window exiting"
4180 * VM-execution control and lower priority events.
4181 *
4182 * [3] Debug-trap exceptions and higher priority events take priority over VM exits
4183 * caused by "NMI-window exiting". VM exits caused by this control take
4184 * priority over non-maskable interrupts (NMIs) and lower priority events.
4185 *
4186 * [4] Virtual-interrupt delivery has the same priority as that of VM exits due to
4187 * the 1-setting of the "interrupt-window exiting" VM-execution control. Thus,
4188 * non-maskable interrupts (NMIs) and higher priority events take priority over
4189 * delivery of a virtual interrupt; delivery of a virtual interrupt takes
4190 * priority over external interrupts and lower priority events.
4191 */
vmx_check_nested_events(struct kvm_vcpu * vcpu)4192 static int vmx_check_nested_events(struct kvm_vcpu *vcpu)
4193 {
4194 struct kvm_lapic *apic = vcpu->arch.apic;
4195 struct vcpu_vmx *vmx = to_vmx(vcpu);
4196 /*
4197 * Only a pending nested run blocks a pending exception. If there is a
4198 * previously injected event, the pending exception occurred while said
4199 * event was being delivered and thus needs to be handled.
4200 */
4201 bool block_nested_exceptions = vmx->nested.nested_run_pending;
4202 /*
4203 * Events that don't require injection, i.e. that are virtualized by
4204 * hardware, aren't blocked by a pending VM-Enter as KVM doesn't need
4205 * to regain control in order to deliver the event, and hardware will
4206 * handle event ordering, e.g. with respect to injected exceptions.
4207 *
4208 * But, new events (not exceptions) are only recognized at instruction
4209 * boundaries. If an event needs reinjection, then KVM is handling a
4210 * VM-Exit that occurred _during_ instruction execution; new events,
4211 * irrespective of whether or not they're injected, are blocked until
4212 * the instruction completes.
4213 */
4214 bool block_non_injected_events = kvm_event_needs_reinjection(vcpu);
4215 /*
4216 * Inject events are blocked by nested VM-Enter, as KVM is responsible
4217 * for managing priority between concurrent events, i.e. KVM needs to
4218 * wait until after VM-Enter completes to deliver injected events.
4219 */
4220 bool block_nested_events = block_nested_exceptions ||
4221 block_non_injected_events;
4222
4223 if (lapic_in_kernel(vcpu) &&
4224 test_bit(KVM_APIC_INIT, &apic->pending_events)) {
4225 if (block_nested_events)
4226 return -EBUSY;
4227 nested_vmx_update_pending_dbg(vcpu);
4228 clear_bit(KVM_APIC_INIT, &apic->pending_events);
4229 if (vcpu->arch.mp_state != KVM_MP_STATE_INIT_RECEIVED)
4230 nested_vmx_vmexit(vcpu, EXIT_REASON_INIT_SIGNAL, 0, 0);
4231
4232 /* MTF is discarded if the vCPU is in WFS. */
4233 vmx->nested.mtf_pending = false;
4234 return 0;
4235 }
4236
4237 if (lapic_in_kernel(vcpu) &&
4238 test_bit(KVM_APIC_SIPI, &apic->pending_events)) {
4239 if (block_nested_events)
4240 return -EBUSY;
4241
4242 clear_bit(KVM_APIC_SIPI, &apic->pending_events);
4243 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
4244 nested_vmx_vmexit(vcpu, EXIT_REASON_SIPI_SIGNAL, 0,
4245 apic->sipi_vector & 0xFFUL);
4246 return 0;
4247 }
4248 /* Fallthrough, the SIPI is completely ignored. */
4249 }
4250
4251 /*
4252 * Process exceptions that are higher priority than Monitor Trap Flag:
4253 * fault-like exceptions, TSS T flag #DB (not emulated by KVM, but
4254 * could theoretically come in from userspace), and ICEBP (INT1).
4255 *
4256 * TODO: SMIs have higher priority than MTF and trap-like #DBs (except
4257 * for TSS T flag #DBs). KVM also doesn't save/restore pending MTF
4258 * across SMI/RSM as it should; that needs to be addressed in order to
4259 * prioritize SMI over MTF and trap-like #DBs.
4260 */
4261 if (vcpu->arch.exception_vmexit.pending &&
4262 !vmx_is_low_priority_db_trap(&vcpu->arch.exception_vmexit)) {
4263 if (block_nested_exceptions)
4264 return -EBUSY;
4265
4266 nested_vmx_inject_exception_vmexit(vcpu);
4267 return 0;
4268 }
4269
4270 if (vcpu->arch.exception.pending &&
4271 !vmx_is_low_priority_db_trap(&vcpu->arch.exception)) {
4272 if (block_nested_exceptions)
4273 return -EBUSY;
4274 goto no_vmexit;
4275 }
4276
4277 if (vmx->nested.mtf_pending) {
4278 if (block_nested_events)
4279 return -EBUSY;
4280 nested_vmx_update_pending_dbg(vcpu);
4281 nested_vmx_vmexit(vcpu, EXIT_REASON_MONITOR_TRAP_FLAG, 0, 0);
4282 return 0;
4283 }
4284
4285 if (vcpu->arch.exception_vmexit.pending) {
4286 if (block_nested_exceptions)
4287 return -EBUSY;
4288
4289 nested_vmx_inject_exception_vmexit(vcpu);
4290 return 0;
4291 }
4292
4293 if (vcpu->arch.exception.pending) {
4294 if (block_nested_exceptions)
4295 return -EBUSY;
4296 goto no_vmexit;
4297 }
4298
4299 if (nested_vmx_preemption_timer_pending(vcpu)) {
4300 if (block_nested_events)
4301 return -EBUSY;
4302 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
4303 return 0;
4304 }
4305
4306 if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
4307 if (block_nested_events)
4308 return -EBUSY;
4309 goto no_vmexit;
4310 }
4311
4312 if (vcpu->arch.nmi_pending && !vmx_nmi_blocked(vcpu)) {
4313 if (block_nested_events)
4314 return -EBUSY;
4315 if (!nested_exit_on_nmi(vcpu))
4316 goto no_vmexit;
4317
4318 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
4319 NMI_VECTOR | INTR_TYPE_NMI_INTR |
4320 INTR_INFO_VALID_MASK, 0);
4321 /*
4322 * The NMI-triggered VM exit counts as injection:
4323 * clear this one and block further NMIs.
4324 */
4325 vcpu->arch.nmi_pending = 0;
4326 vmx_set_nmi_mask(vcpu, true);
4327 return 0;
4328 }
4329
4330 if (kvm_cpu_has_interrupt(vcpu) && !vmx_interrupt_blocked(vcpu)) {
4331 int irq;
4332
4333 if (!nested_exit_on_intr(vcpu)) {
4334 if (block_nested_events)
4335 return -EBUSY;
4336
4337 goto no_vmexit;
4338 }
4339
4340 if (!nested_exit_intr_ack_set(vcpu)) {
4341 if (block_nested_events)
4342 return -EBUSY;
4343
4344 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
4345 return 0;
4346 }
4347
4348 irq = kvm_cpu_get_extint(vcpu);
4349 if (irq != -1) {
4350 if (block_nested_events)
4351 return -EBUSY;
4352
4353 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT,
4354 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR | irq, 0);
4355 return 0;
4356 }
4357
4358 irq = kvm_apic_has_interrupt(vcpu);
4359 if (WARN_ON_ONCE(irq < 0))
4360 goto no_vmexit;
4361
4362 /*
4363 * If the IRQ is L2's PI notification vector, process posted
4364 * interrupts for L2 instead of injecting VM-Exit, as the
4365 * detection/morphing architecturally occurs when the IRQ is
4366 * delivered to the CPU. Note, only interrupts that are routed
4367 * through the local APIC trigger posted interrupt processing,
4368 * and enabling posted interrupts requires ACK-on-exit.
4369 */
4370 if (irq == vmx->nested.posted_intr_nv) {
4371 /*
4372 * Nested posted interrupts are delivered via RVI, i.e.
4373 * aren't injected by KVM, and so can be queued even if
4374 * manual event injection is disallowed.
4375 */
4376 if (block_non_injected_events)
4377 return -EBUSY;
4378
4379 vmx->nested.pi_pending = true;
4380 kvm_apic_clear_irr(vcpu, irq);
4381 goto no_vmexit;
4382 }
4383
4384 if (block_nested_events)
4385 return -EBUSY;
4386
4387 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT,
4388 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR | irq, 0);
4389
4390 /*
4391 * ACK the interrupt _after_ emulating VM-Exit, as the IRQ must
4392 * be marked as in-service in vmcs01.GUEST_INTERRUPT_STATUS.SVI
4393 * if APICv is active.
4394 */
4395 kvm_apic_ack_interrupt(vcpu, irq);
4396 return 0;
4397 }
4398
4399 no_vmexit:
4400 return vmx_complete_nested_posted_interrupt(vcpu);
4401 }
4402
vmx_get_preemption_timer_value(struct kvm_vcpu * vcpu)4403 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
4404 {
4405 ktime_t remaining =
4406 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
4407 u64 value;
4408
4409 if (ktime_to_ns(remaining) <= 0)
4410 return 0;
4411
4412 value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
4413 do_div(value, 1000000);
4414 return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
4415 }
4416
is_vmcs12_ext_field(unsigned long field)4417 static bool is_vmcs12_ext_field(unsigned long field)
4418 {
4419 switch (field) {
4420 case GUEST_ES_SELECTOR:
4421 case GUEST_CS_SELECTOR:
4422 case GUEST_SS_SELECTOR:
4423 case GUEST_DS_SELECTOR:
4424 case GUEST_FS_SELECTOR:
4425 case GUEST_GS_SELECTOR:
4426 case GUEST_LDTR_SELECTOR:
4427 case GUEST_TR_SELECTOR:
4428 case GUEST_ES_LIMIT:
4429 case GUEST_CS_LIMIT:
4430 case GUEST_SS_LIMIT:
4431 case GUEST_DS_LIMIT:
4432 case GUEST_FS_LIMIT:
4433 case GUEST_GS_LIMIT:
4434 case GUEST_LDTR_LIMIT:
4435 case GUEST_TR_LIMIT:
4436 case GUEST_GDTR_LIMIT:
4437 case GUEST_IDTR_LIMIT:
4438 case GUEST_ES_AR_BYTES:
4439 case GUEST_DS_AR_BYTES:
4440 case GUEST_FS_AR_BYTES:
4441 case GUEST_GS_AR_BYTES:
4442 case GUEST_LDTR_AR_BYTES:
4443 case GUEST_TR_AR_BYTES:
4444 case GUEST_ES_BASE:
4445 case GUEST_CS_BASE:
4446 case GUEST_SS_BASE:
4447 case GUEST_DS_BASE:
4448 case GUEST_FS_BASE:
4449 case GUEST_GS_BASE:
4450 case GUEST_LDTR_BASE:
4451 case GUEST_TR_BASE:
4452 case GUEST_GDTR_BASE:
4453 case GUEST_IDTR_BASE:
4454 case GUEST_PENDING_DBG_EXCEPTIONS:
4455 case GUEST_BNDCFGS:
4456 return true;
4457 default:
4458 break;
4459 }
4460
4461 return false;
4462 }
4463
sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)4464 static void sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
4465 struct vmcs12 *vmcs12)
4466 {
4467 struct vcpu_vmx *vmx = to_vmx(vcpu);
4468
4469 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
4470 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
4471 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
4472 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
4473 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
4474 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
4475 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
4476 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
4477 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
4478 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
4479 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
4480 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
4481 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
4482 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
4483 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
4484 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
4485 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
4486 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
4487 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
4488 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
4489 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
4490 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
4491 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
4492 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
4493 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
4494 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
4495 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
4496 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
4497 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
4498 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
4499 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
4500 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
4501 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
4502 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
4503 vmcs12->guest_pending_dbg_exceptions =
4504 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
4505
4506 vmx->nested.need_sync_vmcs02_to_vmcs12_rare = false;
4507 }
4508
copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)4509 static void copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
4510 struct vmcs12 *vmcs12)
4511 {
4512 struct vcpu_vmx *vmx = to_vmx(vcpu);
4513 int cpu;
4514
4515 if (!vmx->nested.need_sync_vmcs02_to_vmcs12_rare)
4516 return;
4517
4518
4519 WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01);
4520
4521 cpu = get_cpu();
4522 vmx->loaded_vmcs = &vmx->nested.vmcs02;
4523 vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->vmcs01);
4524
4525 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4526
4527 vmx->loaded_vmcs = &vmx->vmcs01;
4528 vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->nested.vmcs02);
4529 put_cpu();
4530 }
4531
4532 /*
4533 * Update the guest state fields of vmcs12 to reflect changes that
4534 * occurred while L2 was running. (The "IA-32e mode guest" bit of the
4535 * VM-entry controls is also updated, since this is really a guest
4536 * state bit.)
4537 */
sync_vmcs02_to_vmcs12(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)4538 static void sync_vmcs02_to_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
4539 {
4540 struct vcpu_vmx *vmx = to_vmx(vcpu);
4541
4542 if (nested_vmx_is_evmptr12_valid(vmx))
4543 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4544
4545 vmx->nested.need_sync_vmcs02_to_vmcs12_rare =
4546 !nested_vmx_is_evmptr12_valid(vmx);
4547
4548 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
4549 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
4550
4551 vmcs12->guest_rsp = kvm_rsp_read(vcpu);
4552 vmcs12->guest_rip = kvm_rip_read(vcpu);
4553 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
4554
4555 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
4556 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
4557
4558 vmcs12->guest_interruptibility_info =
4559 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
4560
4561 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
4562 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
4563 else if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4564 vmcs12->guest_activity_state = GUEST_ACTIVITY_WAIT_SIPI;
4565 else
4566 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
4567
4568 if (nested_cpu_has_preemption_timer(vmcs12) &&
4569 vmcs12->vm_exit_controls & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER &&
4570 !vmx->nested.nested_run_pending)
4571 vmcs12->vmx_preemption_timer_value =
4572 vmx_get_preemption_timer_value(vcpu);
4573
4574 /*
4575 * In some cases (usually, nested EPT), L2 is allowed to change its
4576 * own CR3 without exiting. If it has changed it, we must keep it.
4577 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
4578 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
4579 *
4580 * Additionally, restore L2's PDPTR to vmcs12.
4581 */
4582 if (enable_ept) {
4583 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
4584 if (nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
4585 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
4586 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
4587 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
4588 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
4589 }
4590 }
4591
4592 vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
4593
4594 if (nested_cpu_has_vid(vmcs12))
4595 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
4596
4597 vmcs12->vm_entry_controls =
4598 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
4599 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
4600
4601 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS)
4602 vmcs12->guest_dr7 = vcpu->arch.dr7;
4603
4604 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
4605 vmcs12->guest_ia32_efer = vcpu->arch.efer;
4606 }
4607
4608 /*
4609 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
4610 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
4611 * and this function updates it to reflect the changes to the guest state while
4612 * L2 was running (and perhaps made some exits which were handled directly by L0
4613 * without going back to L1), and to reflect the exit reason.
4614 * Note that we do not have to copy here all VMCS fields, just those that
4615 * could have changed by the L2 guest or the exit - i.e., the guest-state and
4616 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
4617 * which already writes to vmcs12 directly.
4618 */
prepare_vmcs12(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,u32 vm_exit_reason,u32 exit_intr_info,unsigned long exit_qualification,u32 exit_insn_len)4619 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
4620 u32 vm_exit_reason, u32 exit_intr_info,
4621 unsigned long exit_qualification, u32 exit_insn_len)
4622 {
4623 /* update exit information fields: */
4624 vmcs12->vm_exit_reason = vm_exit_reason;
4625 if (to_vmx(vcpu)->exit_reason.enclave_mode)
4626 vmcs12->vm_exit_reason |= VMX_EXIT_REASONS_SGX_ENCLAVE_MODE;
4627 vmcs12->exit_qualification = exit_qualification;
4628
4629 /*
4630 * On VM-Exit due to a failed VM-Entry, the VMCS isn't marked launched
4631 * and only EXIT_REASON and EXIT_QUALIFICATION are updated, all other
4632 * exit info fields are unmodified.
4633 */
4634 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
4635 vmcs12->launch_state = 1;
4636
4637 /* vm_entry_intr_info_field is cleared on exit. Emulate this
4638 * instead of reading the real value. */
4639 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
4640
4641 /*
4642 * Transfer the event that L0 or L1 may wanted to inject into
4643 * L2 to IDT_VECTORING_INFO_FIELD.
4644 */
4645 vmcs12_save_pending_event(vcpu, vmcs12,
4646 vm_exit_reason, exit_intr_info);
4647
4648 vmcs12->vm_exit_intr_info = exit_intr_info;
4649 vmcs12->vm_exit_instruction_len = exit_insn_len;
4650 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4651
4652 /*
4653 * According to spec, there's no need to store the guest's
4654 * MSRs if the exit is due to a VM-entry failure that occurs
4655 * during or after loading the guest state. Since this exit
4656 * does not fall in that category, we need to save the MSRs.
4657 */
4658 if (nested_vmx_store_msr(vcpu,
4659 vmcs12->vm_exit_msr_store_addr,
4660 vmcs12->vm_exit_msr_store_count))
4661 nested_vmx_abort(vcpu,
4662 VMX_ABORT_SAVE_GUEST_MSR_FAIL);
4663 }
4664 }
4665
4666 /*
4667 * A part of what we need to when the nested L2 guest exits and we want to
4668 * run its L1 parent, is to reset L1's guest state to the host state specified
4669 * in vmcs12.
4670 * This function is to be called not only on normal nested exit, but also on
4671 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
4672 * Failures During or After Loading Guest State").
4673 * This function should be called when the active VMCS is L1's (vmcs01).
4674 */
load_vmcs12_host_state(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)4675 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
4676 struct vmcs12 *vmcs12)
4677 {
4678 enum vm_entry_failure_code ignored;
4679 struct kvm_segment seg;
4680
4681 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
4682 vcpu->arch.efer = vmcs12->host_ia32_efer;
4683 else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4684 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
4685 else
4686 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
4687 vmx_set_efer(vcpu, vcpu->arch.efer);
4688
4689 kvm_rsp_write(vcpu, vmcs12->host_rsp);
4690 kvm_rip_write(vcpu, vmcs12->host_rip);
4691 vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
4692 vmx_set_interrupt_shadow(vcpu, 0);
4693
4694 /*
4695 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
4696 * actually changed, because vmx_set_cr0 refers to efer set above.
4697 *
4698 * CR0_GUEST_HOST_MASK is already set in the original vmcs01
4699 * (KVM doesn't change it);
4700 */
4701 vcpu->arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits();
4702 vmx_set_cr0(vcpu, vmcs12->host_cr0);
4703
4704 /* Same as above - no reason to call set_cr4_guest_host_mask(). */
4705 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4706 vmx_set_cr4(vcpu, vmcs12->host_cr4);
4707
4708 nested_ept_uninit_mmu_context(vcpu);
4709
4710 /*
4711 * Only PDPTE load can fail as the value of cr3 was checked on entry and
4712 * couldn't have changed.
4713 */
4714 if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, true, &ignored))
4715 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
4716
4717 nested_vmx_transition_tlb_flush(vcpu, vmcs12, false);
4718
4719 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
4720 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
4721 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
4722 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
4723 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
4724 vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
4725 vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
4726
4727 /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */
4728 if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
4729 vmcs_write64(GUEST_BNDCFGS, 0);
4730
4731 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
4732 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
4733 vcpu->arch.pat = vmcs12->host_ia32_pat;
4734 }
4735 if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) &&
4736 kvm_pmu_has_perf_global_ctrl(vcpu_to_pmu(vcpu)))
4737 WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
4738 vmcs12->host_ia32_perf_global_ctrl));
4739
4740 /* Set L1 segment info according to Intel SDM
4741 27.5.2 Loading Host Segment and Descriptor-Table Registers */
4742 seg = (struct kvm_segment) {
4743 .base = 0,
4744 .limit = 0xFFFFFFFF,
4745 .selector = vmcs12->host_cs_selector,
4746 .type = 11,
4747 .present = 1,
4748 .s = 1,
4749 .g = 1
4750 };
4751 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4752 seg.l = 1;
4753 else
4754 seg.db = 1;
4755 __vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
4756 seg = (struct kvm_segment) {
4757 .base = 0,
4758 .limit = 0xFFFFFFFF,
4759 .type = 3,
4760 .present = 1,
4761 .s = 1,
4762 .db = 1,
4763 .g = 1
4764 };
4765 seg.selector = vmcs12->host_ds_selector;
4766 __vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
4767 seg.selector = vmcs12->host_es_selector;
4768 __vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
4769 seg.selector = vmcs12->host_ss_selector;
4770 __vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
4771 seg.selector = vmcs12->host_fs_selector;
4772 seg.base = vmcs12->host_fs_base;
4773 __vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
4774 seg.selector = vmcs12->host_gs_selector;
4775 seg.base = vmcs12->host_gs_base;
4776 __vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
4777 seg = (struct kvm_segment) {
4778 .base = vmcs12->host_tr_base,
4779 .limit = 0x67,
4780 .selector = vmcs12->host_tr_selector,
4781 .type = 11,
4782 .present = 1
4783 };
4784 __vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
4785
4786 memset(&seg, 0, sizeof(seg));
4787 seg.unusable = 1;
4788 __vmx_set_segment(vcpu, &seg, VCPU_SREG_LDTR);
4789
4790 kvm_set_dr(vcpu, 7, 0x400);
4791 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4792
4793 if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
4794 vmcs12->vm_exit_msr_load_count))
4795 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4796
4797 to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu);
4798 }
4799
nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx * vmx)4800 static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
4801 {
4802 struct vmx_uret_msr *efer_msr;
4803 unsigned int i;
4804
4805 if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
4806 return vmcs_read64(GUEST_IA32_EFER);
4807
4808 if (cpu_has_load_ia32_efer())
4809 return kvm_host.efer;
4810
4811 for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
4812 if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
4813 return vmx->msr_autoload.guest.val[i].value;
4814 }
4815
4816 efer_msr = vmx_find_uret_msr(vmx, MSR_EFER);
4817 if (efer_msr)
4818 return efer_msr->data;
4819
4820 return kvm_host.efer;
4821 }
4822
nested_vmx_restore_host_state(struct kvm_vcpu * vcpu)4823 static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
4824 {
4825 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4826 struct vcpu_vmx *vmx = to_vmx(vcpu);
4827 struct vmx_msr_entry g, h;
4828 gpa_t gpa;
4829 u32 i, j;
4830
4831 vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);
4832
4833 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
4834 /*
4835 * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
4836 * as vmcs01.GUEST_DR7 contains a userspace defined value
4837 * and vcpu->arch.dr7 is not squirreled away before the
4838 * nested VMENTER (not worth adding a variable in nested_vmx).
4839 */
4840 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
4841 kvm_set_dr(vcpu, 7, DR7_FIXED_1);
4842 else
4843 WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
4844 }
4845
4846 /*
4847 * Note that calling vmx_set_{efer,cr0,cr4} is important as they
4848 * handle a variety of side effects to KVM's software model.
4849 */
4850 vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
4851
4852 vcpu->arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits();
4853 vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
4854
4855 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4856 vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));
4857
4858 nested_ept_uninit_mmu_context(vcpu);
4859 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
4860 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
4861
4862 /*
4863 * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
4864 * from vmcs01 (if necessary). The PDPTRs are not loaded on
4865 * VMFail, like everything else we just need to ensure our
4866 * software model is up-to-date.
4867 */
4868 if (enable_ept && is_pae_paging(vcpu))
4869 ept_save_pdptrs(vcpu);
4870
4871 kvm_mmu_reset_context(vcpu);
4872
4873 /*
4874 * This nasty bit of open coding is a compromise between blindly
4875 * loading L1's MSRs using the exit load lists (incorrect emulation
4876 * of VMFail), leaving the nested VM's MSRs in the software model
4877 * (incorrect behavior) and snapshotting the modified MSRs (too
4878 * expensive since the lists are unbound by hardware). For each
4879 * MSR that was (prematurely) loaded from the nested VMEntry load
4880 * list, reload it from the exit load list if it exists and differs
4881 * from the guest value. The intent is to stuff host state as
4882 * silently as possible, not to fully process the exit load list.
4883 */
4884 for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
4885 gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
4886 if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
4887 pr_debug_ratelimited(
4888 "%s read MSR index failed (%u, 0x%08llx)\n",
4889 __func__, i, gpa);
4890 goto vmabort;
4891 }
4892
4893 for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
4894 gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
4895 if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
4896 pr_debug_ratelimited(
4897 "%s read MSR failed (%u, 0x%08llx)\n",
4898 __func__, j, gpa);
4899 goto vmabort;
4900 }
4901 if (h.index != g.index)
4902 continue;
4903 if (h.value == g.value)
4904 break;
4905
4906 if (nested_vmx_load_msr_check(vcpu, &h)) {
4907 pr_debug_ratelimited(
4908 "%s check failed (%u, 0x%x, 0x%x)\n",
4909 __func__, j, h.index, h.reserved);
4910 goto vmabort;
4911 }
4912
4913 if (kvm_set_msr_with_filter(vcpu, h.index, h.value)) {
4914 pr_debug_ratelimited(
4915 "%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
4916 __func__, j, h.index, h.value);
4917 goto vmabort;
4918 }
4919 }
4920 }
4921
4922 return;
4923
4924 vmabort:
4925 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4926 }
4927
4928 /*
4929 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
4930 * and modify vmcs12 to make it see what it would expect to see there if
4931 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
4932 */
__nested_vmx_vmexit(struct kvm_vcpu * vcpu,u32 vm_exit_reason,u32 exit_intr_info,unsigned long exit_qualification,u32 exit_insn_len)4933 void __nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 vm_exit_reason,
4934 u32 exit_intr_info, unsigned long exit_qualification,
4935 u32 exit_insn_len)
4936 {
4937 struct vcpu_vmx *vmx = to_vmx(vcpu);
4938 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4939
4940 /* Pending MTF traps are discarded on VM-Exit. */
4941 vmx->nested.mtf_pending = false;
4942
4943 /* trying to cancel vmlaunch/vmresume is a bug */
4944 WARN_ON_ONCE(vmx->nested.nested_run_pending);
4945
4946 #ifdef CONFIG_KVM_HYPERV
4947 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
4948 /*
4949 * KVM_REQ_GET_NESTED_STATE_PAGES is also used to map
4950 * Enlightened VMCS after migration and we still need to
4951 * do that when something is forcing L2->L1 exit prior to
4952 * the first L2 run.
4953 */
4954 (void)nested_get_evmcs_page(vcpu);
4955 }
4956 #endif
4957
4958 /* Service pending TLB flush requests for L2 before switching to L1. */
4959 kvm_service_local_tlb_flush_requests(vcpu);
4960
4961 /*
4962 * VCPU_EXREG_PDPTR will be clobbered in arch/x86/kvm/vmx/vmx.h between
4963 * now and the new vmentry. Ensure that the VMCS02 PDPTR fields are
4964 * up-to-date before switching to L1.
4965 */
4966 if (enable_ept && is_pae_paging(vcpu))
4967 vmx_ept_load_pdptrs(vcpu);
4968
4969 leave_guest_mode(vcpu);
4970
4971 if (nested_cpu_has_preemption_timer(vmcs12))
4972 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
4973
4974 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING)) {
4975 vcpu->arch.tsc_offset = vcpu->arch.l1_tsc_offset;
4976 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
4977 vcpu->arch.tsc_scaling_ratio = vcpu->arch.l1_tsc_scaling_ratio;
4978 }
4979
4980 if (likely(!vmx->fail)) {
4981 sync_vmcs02_to_vmcs12(vcpu, vmcs12);
4982
4983 if (vm_exit_reason != -1)
4984 prepare_vmcs12(vcpu, vmcs12, vm_exit_reason,
4985 exit_intr_info, exit_qualification,
4986 exit_insn_len);
4987
4988 /*
4989 * Must happen outside of sync_vmcs02_to_vmcs12() as it will
4990 * also be used to capture vmcs12 cache as part of
4991 * capturing nVMX state for snapshot (migration).
4992 *
4993 * Otherwise, this flush will dirty guest memory at a
4994 * point it is already assumed by user-space to be
4995 * immutable.
4996 */
4997 nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
4998 } else {
4999 /*
5000 * The only expected VM-instruction error is "VM entry with
5001 * invalid control field(s)." Anything else indicates a
5002 * problem with L0. And we should never get here with a
5003 * VMFail of any type if early consistency checks are enabled.
5004 */
5005 WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
5006 VMXERR_ENTRY_INVALID_CONTROL_FIELD);
5007 WARN_ON_ONCE(nested_early_check);
5008 }
5009
5010 /*
5011 * Drop events/exceptions that were queued for re-injection to L2
5012 * (picked up via vmx_complete_interrupts()), as well as exceptions
5013 * that were pending for L2. Note, this must NOT be hoisted above
5014 * prepare_vmcs12(), events/exceptions queued for re-injection need to
5015 * be captured in vmcs12 (see vmcs12_save_pending_event()).
5016 */
5017 vcpu->arch.nmi_injected = false;
5018 kvm_clear_exception_queue(vcpu);
5019 kvm_clear_interrupt_queue(vcpu);
5020
5021 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
5022
5023 /*
5024 * If IBRS is advertised to the vCPU, KVM must flush the indirect
5025 * branch predictors when transitioning from L2 to L1, as L1 expects
5026 * hardware (KVM in this case) to provide separate predictor modes.
5027 * Bare metal isolates VMX root (host) from VMX non-root (guest), but
5028 * doesn't isolate different VMCSs, i.e. in this case, doesn't provide
5029 * separate modes for L2 vs L1.
5030 */
5031 if (guest_cpu_cap_has(vcpu, X86_FEATURE_SPEC_CTRL))
5032 indirect_branch_prediction_barrier();
5033
5034 /* Update any VMCS fields that might have changed while L2 ran */
5035 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
5036 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
5037 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
5038 if (kvm_caps.has_tsc_control)
5039 vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
5040
5041 if (vmx->nested.l1_tpr_threshold != -1)
5042 vmcs_write32(TPR_THRESHOLD, vmx->nested.l1_tpr_threshold);
5043
5044 if (vmx->nested.change_vmcs01_virtual_apic_mode) {
5045 vmx->nested.change_vmcs01_virtual_apic_mode = false;
5046 vmx_set_virtual_apic_mode(vcpu);
5047 }
5048
5049 if (vmx->nested.update_vmcs01_cpu_dirty_logging) {
5050 vmx->nested.update_vmcs01_cpu_dirty_logging = false;
5051 vmx_update_cpu_dirty_logging(vcpu);
5052 }
5053
5054 nested_put_vmcs12_pages(vcpu);
5055
5056 if (vmx->nested.reload_vmcs01_apic_access_page) {
5057 vmx->nested.reload_vmcs01_apic_access_page = false;
5058 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
5059 }
5060
5061 if (vmx->nested.update_vmcs01_apicv_status) {
5062 vmx->nested.update_vmcs01_apicv_status = false;
5063 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
5064 }
5065
5066 if (vmx->nested.update_vmcs01_hwapic_isr) {
5067 vmx->nested.update_vmcs01_hwapic_isr = false;
5068 kvm_apic_update_hwapic_isr(vcpu);
5069 }
5070
5071 if ((vm_exit_reason != -1) &&
5072 (enable_shadow_vmcs || nested_vmx_is_evmptr12_valid(vmx)))
5073 vmx->nested.need_vmcs12_to_shadow_sync = true;
5074
5075 /* in case we halted in L2 */
5076 kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE);
5077
5078 if (likely(!vmx->fail)) {
5079 if (vm_exit_reason != -1)
5080 trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
5081 vmcs12->exit_qualification,
5082 vmcs12->idt_vectoring_info_field,
5083 vmcs12->vm_exit_intr_info,
5084 vmcs12->vm_exit_intr_error_code,
5085 KVM_ISA_VMX);
5086
5087 load_vmcs12_host_state(vcpu, vmcs12);
5088
5089 /*
5090 * Process events if an injectable IRQ or NMI is pending, even
5091 * if the event is blocked (RFLAGS.IF is cleared on VM-Exit).
5092 * If an event became pending while L2 was active, KVM needs to
5093 * either inject the event or request an IRQ/NMI window. SMIs
5094 * don't need to be processed as SMM is mutually exclusive with
5095 * non-root mode. INIT/SIPI don't need to be checked as INIT
5096 * is blocked post-VMXON, and SIPIs are ignored.
5097 */
5098 if (kvm_cpu_has_injectable_intr(vcpu) || vcpu->arch.nmi_pending)
5099 kvm_make_request(KVM_REQ_EVENT, vcpu);
5100 return;
5101 }
5102
5103 /*
5104 * After an early L2 VM-entry failure, we're now back
5105 * in L1 which thinks it just finished a VMLAUNCH or
5106 * VMRESUME instruction, so we need to set the failure
5107 * flag and the VM-instruction error field of the VMCS
5108 * accordingly, and skip the emulated instruction.
5109 */
5110 (void)nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
5111
5112 /*
5113 * Restore L1's host state to KVM's software model. We're here
5114 * because a consistency check was caught by hardware, which
5115 * means some amount of guest state has been propagated to KVM's
5116 * model and needs to be unwound to the host's state.
5117 */
5118 nested_vmx_restore_host_state(vcpu);
5119
5120 vmx->fail = 0;
5121 }
5122
nested_vmx_triple_fault(struct kvm_vcpu * vcpu)5123 static void nested_vmx_triple_fault(struct kvm_vcpu *vcpu)
5124 {
5125 kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5126 nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0);
5127 }
5128
5129 /*
5130 * Decode the memory-address operand of a vmx instruction, as recorded on an
5131 * exit caused by such an instruction (run by a guest hypervisor).
5132 * On success, returns 0. When the operand is invalid, returns 1 and throws
5133 * #UD, #GP, or #SS.
5134 */
get_vmx_mem_address(struct kvm_vcpu * vcpu,unsigned long exit_qualification,u32 vmx_instruction_info,bool wr,int len,gva_t * ret)5135 int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
5136 u32 vmx_instruction_info, bool wr, int len, gva_t *ret)
5137 {
5138 gva_t off;
5139 bool exn;
5140 struct kvm_segment s;
5141
5142 /*
5143 * According to Vol. 3B, "Information for VM Exits Due to Instruction
5144 * Execution", on an exit, vmx_instruction_info holds most of the
5145 * addressing components of the operand. Only the displacement part
5146 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
5147 * For how an actual address is calculated from all these components,
5148 * refer to Vol. 1, "Operand Addressing".
5149 */
5150 int scaling = vmx_instruction_info & 3;
5151 int addr_size = (vmx_instruction_info >> 7) & 7;
5152 bool is_reg = vmx_instruction_info & (1u << 10);
5153 int seg_reg = (vmx_instruction_info >> 15) & 7;
5154 int index_reg = (vmx_instruction_info >> 18) & 0xf;
5155 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
5156 int base_reg = (vmx_instruction_info >> 23) & 0xf;
5157 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
5158
5159 if (is_reg) {
5160 kvm_queue_exception(vcpu, UD_VECTOR);
5161 return 1;
5162 }
5163
5164 /* Addr = segment_base + offset */
5165 /* offset = base + [index * scale] + displacement */
5166 off = exit_qualification; /* holds the displacement */
5167 if (addr_size == 1)
5168 off = (gva_t)sign_extend64(off, 31);
5169 else if (addr_size == 0)
5170 off = (gva_t)sign_extend64(off, 15);
5171 if (base_is_valid)
5172 off += kvm_register_read(vcpu, base_reg);
5173 if (index_is_valid)
5174 off += kvm_register_read(vcpu, index_reg) << scaling;
5175 vmx_get_segment(vcpu, &s, seg_reg);
5176
5177 /*
5178 * The effective address, i.e. @off, of a memory operand is truncated
5179 * based on the address size of the instruction. Note that this is
5180 * the *effective address*, i.e. the address prior to accounting for
5181 * the segment's base.
5182 */
5183 if (addr_size == 1) /* 32 bit */
5184 off &= 0xffffffff;
5185 else if (addr_size == 0) /* 16 bit */
5186 off &= 0xffff;
5187
5188 /* Checks for #GP/#SS exceptions. */
5189 exn = false;
5190 if (is_long_mode(vcpu)) {
5191 /*
5192 * The virtual/linear address is never truncated in 64-bit
5193 * mode, e.g. a 32-bit address size can yield a 64-bit virtual
5194 * address when using FS/GS with a non-zero base.
5195 */
5196 if (seg_reg == VCPU_SREG_FS || seg_reg == VCPU_SREG_GS)
5197 *ret = s.base + off;
5198 else
5199 *ret = off;
5200
5201 *ret = vmx_get_untagged_addr(vcpu, *ret, 0);
5202 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
5203 * non-canonical form. This is the only check on the memory
5204 * destination for long mode!
5205 */
5206 exn = is_noncanonical_address(*ret, vcpu, 0);
5207 } else {
5208 /*
5209 * When not in long mode, the virtual/linear address is
5210 * unconditionally truncated to 32 bits regardless of the
5211 * address size.
5212 */
5213 *ret = (s.base + off) & 0xffffffff;
5214
5215 /* Protected mode: apply checks for segment validity in the
5216 * following order:
5217 * - segment type check (#GP(0) may be thrown)
5218 * - usability check (#GP(0)/#SS(0))
5219 * - limit check (#GP(0)/#SS(0))
5220 */
5221 if (wr)
5222 /* #GP(0) if the destination operand is located in a
5223 * read-only data segment or any code segment.
5224 */
5225 exn = ((s.type & 0xa) == 0 || (s.type & 8));
5226 else
5227 /* #GP(0) if the source operand is located in an
5228 * execute-only code segment
5229 */
5230 exn = ((s.type & 0xa) == 8);
5231 if (exn) {
5232 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
5233 return 1;
5234 }
5235 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
5236 */
5237 exn = (s.unusable != 0);
5238
5239 /*
5240 * Protected mode: #GP(0)/#SS(0) if the memory operand is
5241 * outside the segment limit. All CPUs that support VMX ignore
5242 * limit checks for flat segments, i.e. segments with base==0,
5243 * limit==0xffffffff and of type expand-up data or code.
5244 */
5245 if (!(s.base == 0 && s.limit == 0xffffffff &&
5246 ((s.type & 8) || !(s.type & 4))))
5247 exn = exn || ((u64)off + len - 1 > s.limit);
5248 }
5249 if (exn) {
5250 kvm_queue_exception_e(vcpu,
5251 seg_reg == VCPU_SREG_SS ?
5252 SS_VECTOR : GP_VECTOR,
5253 0);
5254 return 1;
5255 }
5256
5257 return 0;
5258 }
5259
nested_vmx_get_vmptr(struct kvm_vcpu * vcpu,gpa_t * vmpointer,int * ret)5260 static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer,
5261 int *ret)
5262 {
5263 gva_t gva;
5264 struct x86_exception e;
5265 int r;
5266
5267 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5268 vmcs_read32(VMX_INSTRUCTION_INFO), false,
5269 sizeof(*vmpointer), &gva)) {
5270 *ret = 1;
5271 return -EINVAL;
5272 }
5273
5274 r = kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e);
5275 if (r != X86EMUL_CONTINUE) {
5276 *ret = kvm_handle_memory_failure(vcpu, r, &e);
5277 return -EINVAL;
5278 }
5279
5280 return 0;
5281 }
5282
5283 /*
5284 * Allocate a shadow VMCS and associate it with the currently loaded
5285 * VMCS, unless such a shadow VMCS already exists. The newly allocated
5286 * VMCS is also VMCLEARed, so that it is ready for use.
5287 */
alloc_shadow_vmcs(struct kvm_vcpu * vcpu)5288 static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
5289 {
5290 struct vcpu_vmx *vmx = to_vmx(vcpu);
5291 struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
5292
5293 /*
5294 * KVM allocates a shadow VMCS only when L1 executes VMXON and frees it
5295 * when L1 executes VMXOFF or the vCPU is forced out of nested
5296 * operation. VMXON faults if the CPU is already post-VMXON, so it
5297 * should be impossible to already have an allocated shadow VMCS. KVM
5298 * doesn't support virtualization of VMCS shadowing, so vmcs01 should
5299 * always be the loaded VMCS.
5300 */
5301 if (WARN_ON(loaded_vmcs != &vmx->vmcs01 || loaded_vmcs->shadow_vmcs))
5302 return loaded_vmcs->shadow_vmcs;
5303
5304 loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
5305 if (loaded_vmcs->shadow_vmcs)
5306 vmcs_clear(loaded_vmcs->shadow_vmcs);
5307
5308 return loaded_vmcs->shadow_vmcs;
5309 }
5310
enter_vmx_operation(struct kvm_vcpu * vcpu)5311 static int enter_vmx_operation(struct kvm_vcpu *vcpu)
5312 {
5313 struct vcpu_vmx *vmx = to_vmx(vcpu);
5314 int r;
5315
5316 r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
5317 if (r < 0)
5318 goto out_vmcs02;
5319
5320 vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
5321 if (!vmx->nested.cached_vmcs12)
5322 goto out_cached_vmcs12;
5323
5324 vmx->nested.shadow_vmcs12_cache.gpa = INVALID_GPA;
5325 vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
5326 if (!vmx->nested.cached_shadow_vmcs12)
5327 goto out_cached_shadow_vmcs12;
5328
5329 if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
5330 goto out_shadow_vmcs;
5331
5332 hrtimer_setup(&vmx->nested.preemption_timer, vmx_preemption_timer_fn, CLOCK_MONOTONIC,
5333 HRTIMER_MODE_ABS_PINNED);
5334
5335 vmx->nested.vpid02 = allocate_vpid();
5336
5337 vmx->nested.vmcs02_initialized = false;
5338 vmx->nested.vmxon = true;
5339
5340 if (vmx_pt_mode_is_host_guest()) {
5341 vmx->pt_desc.guest.ctl = 0;
5342 pt_update_intercept_for_msr(vcpu);
5343 }
5344
5345 return 0;
5346
5347 out_shadow_vmcs:
5348 kfree(vmx->nested.cached_shadow_vmcs12);
5349
5350 out_cached_shadow_vmcs12:
5351 kfree(vmx->nested.cached_vmcs12);
5352
5353 out_cached_vmcs12:
5354 free_loaded_vmcs(&vmx->nested.vmcs02);
5355
5356 out_vmcs02:
5357 return -ENOMEM;
5358 }
5359
5360 /* Emulate the VMXON instruction. */
handle_vmxon(struct kvm_vcpu * vcpu)5361 static int handle_vmxon(struct kvm_vcpu *vcpu)
5362 {
5363 int ret;
5364 gpa_t vmptr;
5365 uint32_t revision;
5366 struct vcpu_vmx *vmx = to_vmx(vcpu);
5367 const u64 VMXON_NEEDED_FEATURES = FEAT_CTL_LOCKED
5368 | FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
5369
5370 /*
5371 * Manually check CR4.VMXE checks, KVM must force CR4.VMXE=1 to enter
5372 * the guest and so cannot rely on hardware to perform the check,
5373 * which has higher priority than VM-Exit (see Intel SDM's pseudocode
5374 * for VMXON).
5375 *
5376 * Rely on hardware for the other pre-VM-Exit checks, CR0.PE=1, !VM86
5377 * and !COMPATIBILITY modes. For an unrestricted guest, KVM doesn't
5378 * force any of the relevant guest state. For a restricted guest, KVM
5379 * does force CR0.PE=1, but only to also force VM86 in order to emulate
5380 * Real Mode, and so there's no need to check CR0.PE manually.
5381 */
5382 if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_VMXE)) {
5383 kvm_queue_exception(vcpu, UD_VECTOR);
5384 return 1;
5385 }
5386
5387 /*
5388 * The CPL is checked for "not in VMX operation" and for "in VMX root",
5389 * and has higher priority than the VM-Fail due to being post-VMXON,
5390 * i.e. VMXON #GPs outside of VMX non-root if CPL!=0. In VMX non-root,
5391 * VMXON causes VM-Exit and KVM unconditionally forwards VMXON VM-Exits
5392 * from L2 to L1, i.e. there's no need to check for the vCPU being in
5393 * VMX non-root.
5394 *
5395 * Forwarding the VM-Exit unconditionally, i.e. without performing the
5396 * #UD checks (see above), is functionally ok because KVM doesn't allow
5397 * L1 to run L2 without CR4.VMXE=0, and because KVM never modifies L2's
5398 * CR0 or CR4, i.e. it's L2's responsibility to emulate #UDs that are
5399 * missed by hardware due to shadowing CR0 and/or CR4.
5400 */
5401 if (vmx_get_cpl(vcpu)) {
5402 kvm_inject_gp(vcpu, 0);
5403 return 1;
5404 }
5405
5406 if (vmx->nested.vmxon)
5407 return nested_vmx_fail(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
5408
5409 /*
5410 * Invalid CR0/CR4 generates #GP. These checks are performed if and
5411 * only if the vCPU isn't already in VMX operation, i.e. effectively
5412 * have lower priority than the VM-Fail above.
5413 */
5414 if (!nested_host_cr0_valid(vcpu, kvm_read_cr0(vcpu)) ||
5415 !nested_host_cr4_valid(vcpu, kvm_read_cr4(vcpu))) {
5416 kvm_inject_gp(vcpu, 0);
5417 return 1;
5418 }
5419
5420 if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
5421 != VMXON_NEEDED_FEATURES) {
5422 kvm_inject_gp(vcpu, 0);
5423 return 1;
5424 }
5425
5426 if (nested_vmx_get_vmptr(vcpu, &vmptr, &ret))
5427 return ret;
5428
5429 /*
5430 * SDM 3: 24.11.5
5431 * The first 4 bytes of VMXON region contain the supported
5432 * VMCS revision identifier
5433 *
5434 * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
5435 * which replaces physical address width with 32
5436 */
5437 if (!page_address_valid(vcpu, vmptr))
5438 return nested_vmx_failInvalid(vcpu);
5439
5440 if (kvm_read_guest(vcpu->kvm, vmptr, &revision, sizeof(revision)) ||
5441 revision != VMCS12_REVISION)
5442 return nested_vmx_failInvalid(vcpu);
5443
5444 vmx->nested.vmxon_ptr = vmptr;
5445 ret = enter_vmx_operation(vcpu);
5446 if (ret)
5447 return ret;
5448
5449 return nested_vmx_succeed(vcpu);
5450 }
5451
nested_release_vmcs12(struct kvm_vcpu * vcpu)5452 static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
5453 {
5454 struct vcpu_vmx *vmx = to_vmx(vcpu);
5455
5456 if (vmx->nested.current_vmptr == INVALID_GPA)
5457 return;
5458
5459 copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
5460
5461 if (enable_shadow_vmcs) {
5462 /* copy to memory all shadowed fields in case
5463 they were modified */
5464 copy_shadow_to_vmcs12(vmx);
5465 vmx_disable_shadow_vmcs(vmx);
5466 }
5467 vmx->nested.posted_intr_nv = -1;
5468
5469 /* Flush VMCS12 to guest memory */
5470 kvm_vcpu_write_guest_page(vcpu,
5471 vmx->nested.current_vmptr >> PAGE_SHIFT,
5472 vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
5473
5474 kvm_mmu_free_roots(vcpu->kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5475
5476 vmx->nested.current_vmptr = INVALID_GPA;
5477 }
5478
5479 /* Emulate the VMXOFF instruction */
handle_vmxoff(struct kvm_vcpu * vcpu)5480 static int handle_vmxoff(struct kvm_vcpu *vcpu)
5481 {
5482 if (!nested_vmx_check_permission(vcpu))
5483 return 1;
5484
5485 free_nested(vcpu);
5486
5487 if (kvm_apic_has_pending_init_or_sipi(vcpu))
5488 kvm_make_request(KVM_REQ_EVENT, vcpu);
5489
5490 return nested_vmx_succeed(vcpu);
5491 }
5492
5493 /* Emulate the VMCLEAR instruction */
handle_vmclear(struct kvm_vcpu * vcpu)5494 static int handle_vmclear(struct kvm_vcpu *vcpu)
5495 {
5496 struct vcpu_vmx *vmx = to_vmx(vcpu);
5497 u32 zero = 0;
5498 gpa_t vmptr;
5499 int r;
5500
5501 if (!nested_vmx_check_permission(vcpu))
5502 return 1;
5503
5504 if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
5505 return r;
5506
5507 if (!page_address_valid(vcpu, vmptr))
5508 return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
5509
5510 if (vmptr == vmx->nested.vmxon_ptr)
5511 return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_VMXON_POINTER);
5512
5513 if (likely(!nested_evmcs_handle_vmclear(vcpu, vmptr))) {
5514 if (vmptr == vmx->nested.current_vmptr)
5515 nested_release_vmcs12(vcpu);
5516
5517 /*
5518 * Silently ignore memory errors on VMCLEAR, Intel's pseudocode
5519 * for VMCLEAR includes a "ensure that data for VMCS referenced
5520 * by the operand is in memory" clause that guards writes to
5521 * memory, i.e. doing nothing for I/O is architecturally valid.
5522 *
5523 * FIXME: Suppress failures if and only if no memslot is found,
5524 * i.e. exit to userspace if __copy_to_user() fails.
5525 */
5526 (void)kvm_vcpu_write_guest(vcpu,
5527 vmptr + offsetof(struct vmcs12,
5528 launch_state),
5529 &zero, sizeof(zero));
5530 }
5531
5532 return nested_vmx_succeed(vcpu);
5533 }
5534
5535 /* Emulate the VMLAUNCH instruction */
handle_vmlaunch(struct kvm_vcpu * vcpu)5536 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
5537 {
5538 return nested_vmx_run(vcpu, true);
5539 }
5540
5541 /* Emulate the VMRESUME instruction */
handle_vmresume(struct kvm_vcpu * vcpu)5542 static int handle_vmresume(struct kvm_vcpu *vcpu)
5543 {
5544
5545 return nested_vmx_run(vcpu, false);
5546 }
5547
handle_vmread(struct kvm_vcpu * vcpu)5548 static int handle_vmread(struct kvm_vcpu *vcpu)
5549 {
5550 struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
5551 : get_vmcs12(vcpu);
5552 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5553 u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5554 struct vcpu_vmx *vmx = to_vmx(vcpu);
5555 struct x86_exception e;
5556 unsigned long field;
5557 u64 value;
5558 gva_t gva = 0;
5559 short offset;
5560 int len, r;
5561
5562 if (!nested_vmx_check_permission(vcpu))
5563 return 1;
5564
5565 /* Decode instruction info and find the field to read */
5566 field = kvm_register_read(vcpu, (((instr_info) >> 28) & 0xf));
5567
5568 if (!nested_vmx_is_evmptr12_valid(vmx)) {
5569 /*
5570 * In VMX non-root operation, when the VMCS-link pointer is INVALID_GPA,
5571 * any VMREAD sets the ALU flags for VMfailInvalid.
5572 */
5573 if (vmx->nested.current_vmptr == INVALID_GPA ||
5574 (is_guest_mode(vcpu) &&
5575 get_vmcs12(vcpu)->vmcs_link_pointer == INVALID_GPA))
5576 return nested_vmx_failInvalid(vcpu);
5577
5578 offset = get_vmcs12_field_offset(field);
5579 if (offset < 0)
5580 return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5581
5582 if (!is_guest_mode(vcpu) && is_vmcs12_ext_field(field))
5583 copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5584
5585 /* Read the field, zero-extended to a u64 value */
5586 value = vmcs12_read_any(vmcs12, field, offset);
5587 } else {
5588 /*
5589 * Hyper-V TLFS (as of 6.0b) explicitly states, that while an
5590 * enlightened VMCS is active VMREAD/VMWRITE instructions are
5591 * unsupported. Unfortunately, certain versions of Windows 11
5592 * don't comply with this requirement which is not enforced in
5593 * genuine Hyper-V. Allow VMREAD from an enlightened VMCS as a
5594 * workaround, as misbehaving guests will panic on VM-Fail.
5595 * Note, enlightened VMCS is incompatible with shadow VMCS so
5596 * all VMREADs from L2 should go to L1.
5597 */
5598 if (WARN_ON_ONCE(is_guest_mode(vcpu)))
5599 return nested_vmx_failInvalid(vcpu);
5600
5601 offset = evmcs_field_offset(field, NULL);
5602 if (offset < 0)
5603 return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5604
5605 /* Read the field, zero-extended to a u64 value */
5606 value = evmcs_read_any(nested_vmx_evmcs(vmx), field, offset);
5607 }
5608
5609 /*
5610 * Now copy part of this value to register or memory, as requested.
5611 * Note that the number of bits actually copied is 32 or 64 depending
5612 * on the guest's mode (32 or 64 bit), not on the given field's length.
5613 */
5614 if (instr_info & BIT(10)) {
5615 kvm_register_write(vcpu, (((instr_info) >> 3) & 0xf), value);
5616 } else {
5617 len = is_64_bit_mode(vcpu) ? 8 : 4;
5618 if (get_vmx_mem_address(vcpu, exit_qualification,
5619 instr_info, true, len, &gva))
5620 return 1;
5621 /* _system ok, nested_vmx_check_permission has verified cpl=0 */
5622 r = kvm_write_guest_virt_system(vcpu, gva, &value, len, &e);
5623 if (r != X86EMUL_CONTINUE)
5624 return kvm_handle_memory_failure(vcpu, r, &e);
5625 }
5626
5627 return nested_vmx_succeed(vcpu);
5628 }
5629
is_shadow_field_rw(unsigned long field)5630 static bool is_shadow_field_rw(unsigned long field)
5631 {
5632 switch (field) {
5633 #define SHADOW_FIELD_RW(x, y) case x:
5634 #include "vmcs_shadow_fields.h"
5635 return true;
5636 default:
5637 break;
5638 }
5639 return false;
5640 }
5641
is_shadow_field_ro(unsigned long field)5642 static bool is_shadow_field_ro(unsigned long field)
5643 {
5644 switch (field) {
5645 #define SHADOW_FIELD_RO(x, y) case x:
5646 #include "vmcs_shadow_fields.h"
5647 return true;
5648 default:
5649 break;
5650 }
5651 return false;
5652 }
5653
handle_vmwrite(struct kvm_vcpu * vcpu)5654 static int handle_vmwrite(struct kvm_vcpu *vcpu)
5655 {
5656 struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
5657 : get_vmcs12(vcpu);
5658 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5659 u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5660 struct vcpu_vmx *vmx = to_vmx(vcpu);
5661 struct x86_exception e;
5662 unsigned long field;
5663 short offset;
5664 gva_t gva;
5665 int len, r;
5666
5667 /*
5668 * The value to write might be 32 or 64 bits, depending on L1's long
5669 * mode, and eventually we need to write that into a field of several
5670 * possible lengths. The code below first zero-extends the value to 64
5671 * bit (value), and then copies only the appropriate number of
5672 * bits into the vmcs12 field.
5673 */
5674 u64 value = 0;
5675
5676 if (!nested_vmx_check_permission(vcpu))
5677 return 1;
5678
5679 /*
5680 * In VMX non-root operation, when the VMCS-link pointer is INVALID_GPA,
5681 * any VMWRITE sets the ALU flags for VMfailInvalid.
5682 */
5683 if (vmx->nested.current_vmptr == INVALID_GPA ||
5684 (is_guest_mode(vcpu) &&
5685 get_vmcs12(vcpu)->vmcs_link_pointer == INVALID_GPA))
5686 return nested_vmx_failInvalid(vcpu);
5687
5688 if (instr_info & BIT(10))
5689 value = kvm_register_read(vcpu, (((instr_info) >> 3) & 0xf));
5690 else {
5691 len = is_64_bit_mode(vcpu) ? 8 : 4;
5692 if (get_vmx_mem_address(vcpu, exit_qualification,
5693 instr_info, false, len, &gva))
5694 return 1;
5695 r = kvm_read_guest_virt(vcpu, gva, &value, len, &e);
5696 if (r != X86EMUL_CONTINUE)
5697 return kvm_handle_memory_failure(vcpu, r, &e);
5698 }
5699
5700 field = kvm_register_read(vcpu, (((instr_info) >> 28) & 0xf));
5701
5702 offset = get_vmcs12_field_offset(field);
5703 if (offset < 0)
5704 return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5705
5706 /*
5707 * If the vCPU supports "VMWRITE to any supported field in the
5708 * VMCS," then the "read-only" fields are actually read/write.
5709 */
5710 if (vmcs_field_readonly(field) &&
5711 !nested_cpu_has_vmwrite_any_field(vcpu))
5712 return nested_vmx_fail(vcpu, VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
5713
5714 /*
5715 * Ensure vmcs12 is up-to-date before any VMWRITE that dirties
5716 * vmcs12, else we may crush a field or consume a stale value.
5717 */
5718 if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field))
5719 copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5720
5721 /*
5722 * Some Intel CPUs intentionally drop the reserved bits of the AR byte
5723 * fields on VMWRITE. Emulate this behavior to ensure consistent KVM
5724 * behavior regardless of the underlying hardware, e.g. if an AR_BYTE
5725 * field is intercepted for VMWRITE but not VMREAD (in L1), then VMREAD
5726 * from L1 will return a different value than VMREAD from L2 (L1 sees
5727 * the stripped down value, L2 sees the full value as stored by KVM).
5728 */
5729 if (field >= GUEST_ES_AR_BYTES && field <= GUEST_TR_AR_BYTES)
5730 value &= 0x1f0ff;
5731
5732 vmcs12_write_any(vmcs12, field, offset, value);
5733
5734 /*
5735 * Do not track vmcs12 dirty-state if in guest-mode as we actually
5736 * dirty shadow vmcs12 instead of vmcs12. Fields that can be updated
5737 * by L1 without a vmexit are always updated in the vmcs02, i.e. don't
5738 * "dirty" vmcs12, all others go down the prepare_vmcs02() slow path.
5739 */
5740 if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field)) {
5741 /*
5742 * L1 can read these fields without exiting, ensure the
5743 * shadow VMCS is up-to-date.
5744 */
5745 if (enable_shadow_vmcs && is_shadow_field_ro(field)) {
5746 preempt_disable();
5747 vmcs_load(vmx->vmcs01.shadow_vmcs);
5748
5749 __vmcs_writel(field, value);
5750
5751 vmcs_clear(vmx->vmcs01.shadow_vmcs);
5752 vmcs_load(vmx->loaded_vmcs->vmcs);
5753 preempt_enable();
5754 }
5755 vmx->nested.dirty_vmcs12 = true;
5756 }
5757
5758 return nested_vmx_succeed(vcpu);
5759 }
5760
set_current_vmptr(struct vcpu_vmx * vmx,gpa_t vmptr)5761 static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
5762 {
5763 vmx->nested.current_vmptr = vmptr;
5764 if (enable_shadow_vmcs) {
5765 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
5766 vmcs_write64(VMCS_LINK_POINTER,
5767 __pa(vmx->vmcs01.shadow_vmcs));
5768 vmx->nested.need_vmcs12_to_shadow_sync = true;
5769 }
5770 vmx->nested.dirty_vmcs12 = true;
5771 vmx->nested.force_msr_bitmap_recalc = true;
5772 }
5773
5774 /* Emulate the VMPTRLD instruction */
handle_vmptrld(struct kvm_vcpu * vcpu)5775 static int handle_vmptrld(struct kvm_vcpu *vcpu)
5776 {
5777 struct vcpu_vmx *vmx = to_vmx(vcpu);
5778 gpa_t vmptr;
5779 int r;
5780
5781 if (!nested_vmx_check_permission(vcpu))
5782 return 1;
5783
5784 if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
5785 return r;
5786
5787 if (!page_address_valid(vcpu, vmptr))
5788 return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
5789
5790 if (vmptr == vmx->nested.vmxon_ptr)
5791 return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_VMXON_POINTER);
5792
5793 /* Forbid normal VMPTRLD if Enlightened version was used */
5794 if (nested_vmx_is_evmptr12_valid(vmx))
5795 return 1;
5796
5797 if (vmx->nested.current_vmptr != vmptr) {
5798 struct gfn_to_hva_cache *ghc = &vmx->nested.vmcs12_cache;
5799 struct vmcs_hdr hdr;
5800
5801 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, vmptr, VMCS12_SIZE)) {
5802 /*
5803 * Reads from an unbacked page return all 1s,
5804 * which means that the 32 bits located at the
5805 * given physical address won't match the required
5806 * VMCS12_REVISION identifier.
5807 */
5808 return nested_vmx_fail(vcpu,
5809 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5810 }
5811
5812 if (kvm_read_guest_offset_cached(vcpu->kvm, ghc, &hdr,
5813 offsetof(struct vmcs12, hdr),
5814 sizeof(hdr))) {
5815 return nested_vmx_fail(vcpu,
5816 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5817 }
5818
5819 if (hdr.revision_id != VMCS12_REVISION ||
5820 (hdr.shadow_vmcs &&
5821 !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
5822 return nested_vmx_fail(vcpu,
5823 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5824 }
5825
5826 nested_release_vmcs12(vcpu);
5827
5828 /*
5829 * Load VMCS12 from guest memory since it is not already
5830 * cached.
5831 */
5832 if (kvm_read_guest_cached(vcpu->kvm, ghc, vmx->nested.cached_vmcs12,
5833 VMCS12_SIZE)) {
5834 return nested_vmx_fail(vcpu,
5835 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5836 }
5837
5838 set_current_vmptr(vmx, vmptr);
5839 }
5840
5841 return nested_vmx_succeed(vcpu);
5842 }
5843
5844 /* Emulate the VMPTRST instruction */
handle_vmptrst(struct kvm_vcpu * vcpu)5845 static int handle_vmptrst(struct kvm_vcpu *vcpu)
5846 {
5847 unsigned long exit_qual = vmx_get_exit_qual(vcpu);
5848 u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5849 gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
5850 struct x86_exception e;
5851 gva_t gva;
5852 int r;
5853
5854 if (!nested_vmx_check_permission(vcpu))
5855 return 1;
5856
5857 if (unlikely(nested_vmx_is_evmptr12_valid(to_vmx(vcpu))))
5858 return 1;
5859
5860 if (get_vmx_mem_address(vcpu, exit_qual, instr_info,
5861 true, sizeof(gpa_t), &gva))
5862 return 1;
5863 /* *_system ok, nested_vmx_check_permission has verified cpl=0 */
5864 r = kvm_write_guest_virt_system(vcpu, gva, (void *)¤t_vmptr,
5865 sizeof(gpa_t), &e);
5866 if (r != X86EMUL_CONTINUE)
5867 return kvm_handle_memory_failure(vcpu, r, &e);
5868
5869 return nested_vmx_succeed(vcpu);
5870 }
5871
5872 /* Emulate the INVEPT instruction */
handle_invept(struct kvm_vcpu * vcpu)5873 static int handle_invept(struct kvm_vcpu *vcpu)
5874 {
5875 struct vcpu_vmx *vmx = to_vmx(vcpu);
5876 u32 vmx_instruction_info, types;
5877 unsigned long type, roots_to_free;
5878 struct kvm_mmu *mmu;
5879 gva_t gva;
5880 struct x86_exception e;
5881 struct {
5882 u64 eptp, gpa;
5883 } operand;
5884 int i, r, gpr_index;
5885
5886 if (!(vmx->nested.msrs.secondary_ctls_high &
5887 SECONDARY_EXEC_ENABLE_EPT) ||
5888 !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
5889 kvm_queue_exception(vcpu, UD_VECTOR);
5890 return 1;
5891 }
5892
5893 if (!nested_vmx_check_permission(vcpu))
5894 return 1;
5895
5896 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5897 gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5898 type = kvm_register_read(vcpu, gpr_index);
5899
5900 types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
5901
5902 if (type >= 32 || !(types & (1 << type)))
5903 return nested_vmx_fail(vcpu, VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5904
5905 /* According to the Intel VMX instruction reference, the memory
5906 * operand is read even if it isn't needed (e.g., for type==global)
5907 */
5908 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5909 vmx_instruction_info, false, sizeof(operand), &gva))
5910 return 1;
5911 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
5912 if (r != X86EMUL_CONTINUE)
5913 return kvm_handle_memory_failure(vcpu, r, &e);
5914
5915 /*
5916 * Nested EPT roots are always held through guest_mmu,
5917 * not root_mmu.
5918 */
5919 mmu = &vcpu->arch.guest_mmu;
5920
5921 switch (type) {
5922 case VMX_EPT_EXTENT_CONTEXT:
5923 if (!nested_vmx_check_eptp(vcpu, operand.eptp))
5924 return nested_vmx_fail(vcpu,
5925 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5926
5927 roots_to_free = 0;
5928 if (nested_ept_root_matches(mmu->root.hpa, mmu->root.pgd,
5929 operand.eptp))
5930 roots_to_free |= KVM_MMU_ROOT_CURRENT;
5931
5932 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5933 if (nested_ept_root_matches(mmu->prev_roots[i].hpa,
5934 mmu->prev_roots[i].pgd,
5935 operand.eptp))
5936 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5937 }
5938 break;
5939 case VMX_EPT_EXTENT_GLOBAL:
5940 roots_to_free = KVM_MMU_ROOTS_ALL;
5941 break;
5942 default:
5943 BUG();
5944 break;
5945 }
5946
5947 if (roots_to_free)
5948 kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
5949
5950 return nested_vmx_succeed(vcpu);
5951 }
5952
handle_invvpid(struct kvm_vcpu * vcpu)5953 static int handle_invvpid(struct kvm_vcpu *vcpu)
5954 {
5955 struct vcpu_vmx *vmx = to_vmx(vcpu);
5956 u32 vmx_instruction_info;
5957 unsigned long type, types;
5958 gva_t gva;
5959 struct x86_exception e;
5960 struct {
5961 u64 vpid;
5962 u64 gla;
5963 } operand;
5964 u16 vpid02;
5965 int r, gpr_index;
5966
5967 if (!(vmx->nested.msrs.secondary_ctls_high &
5968 SECONDARY_EXEC_ENABLE_VPID) ||
5969 !(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
5970 kvm_queue_exception(vcpu, UD_VECTOR);
5971 return 1;
5972 }
5973
5974 if (!nested_vmx_check_permission(vcpu))
5975 return 1;
5976
5977 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5978 gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5979 type = kvm_register_read(vcpu, gpr_index);
5980
5981 types = (vmx->nested.msrs.vpid_caps &
5982 VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
5983
5984 if (type >= 32 || !(types & (1 << type)))
5985 return nested_vmx_fail(vcpu,
5986 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5987
5988 /* according to the intel vmx instruction reference, the memory
5989 * operand is read even if it isn't needed (e.g., for type==global)
5990 */
5991 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5992 vmx_instruction_info, false, sizeof(operand), &gva))
5993 return 1;
5994 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
5995 if (r != X86EMUL_CONTINUE)
5996 return kvm_handle_memory_failure(vcpu, r, &e);
5997
5998 if (operand.vpid >> 16)
5999 return nested_vmx_fail(vcpu,
6000 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6001
6002 /*
6003 * Always flush the effective vpid02, i.e. never flush the current VPID
6004 * and never explicitly flush vpid01. INVVPID targets a VPID, not a
6005 * VMCS, and so whether or not the current vmcs12 has VPID enabled is
6006 * irrelevant (and there may not be a loaded vmcs12).
6007 */
6008 vpid02 = nested_get_vpid02(vcpu);
6009 switch (type) {
6010 case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
6011 /*
6012 * LAM doesn't apply to addresses that are inputs to TLB
6013 * invalidation.
6014 */
6015 if (!operand.vpid ||
6016 is_noncanonical_invlpg_address(operand.gla, vcpu))
6017 return nested_vmx_fail(vcpu,
6018 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6019 vpid_sync_vcpu_addr(vpid02, operand.gla);
6020 break;
6021 case VMX_VPID_EXTENT_SINGLE_CONTEXT:
6022 case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
6023 if (!operand.vpid)
6024 return nested_vmx_fail(vcpu,
6025 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6026 vpid_sync_context(vpid02);
6027 break;
6028 case VMX_VPID_EXTENT_ALL_CONTEXT:
6029 vpid_sync_context(vpid02);
6030 break;
6031 default:
6032 WARN_ON_ONCE(1);
6033 return kvm_skip_emulated_instruction(vcpu);
6034 }
6035
6036 /*
6037 * Sync the shadow page tables if EPT is disabled, L1 is invalidating
6038 * linear mappings for L2 (tagged with L2's VPID). Free all guest
6039 * roots as VPIDs are not tracked in the MMU role.
6040 *
6041 * Note, this operates on root_mmu, not guest_mmu, as L1 and L2 share
6042 * an MMU when EPT is disabled.
6043 *
6044 * TODO: sync only the affected SPTEs for INVDIVIDUAL_ADDR.
6045 */
6046 if (!enable_ept)
6047 kvm_mmu_free_guest_mode_roots(vcpu->kvm, &vcpu->arch.root_mmu);
6048
6049 return nested_vmx_succeed(vcpu);
6050 }
6051
nested_vmx_eptp_switching(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)6052 static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
6053 struct vmcs12 *vmcs12)
6054 {
6055 u32 index = kvm_rcx_read(vcpu);
6056 u64 new_eptp;
6057
6058 if (WARN_ON_ONCE(!nested_cpu_has_ept(vmcs12)))
6059 return 1;
6060 if (index >= VMFUNC_EPTP_ENTRIES)
6061 return 1;
6062
6063 if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
6064 &new_eptp, index * 8, 8))
6065 return 1;
6066
6067 /*
6068 * If the (L2) guest does a vmfunc to the currently
6069 * active ept pointer, we don't have to do anything else
6070 */
6071 if (vmcs12->ept_pointer != new_eptp) {
6072 if (!nested_vmx_check_eptp(vcpu, new_eptp))
6073 return 1;
6074
6075 vmcs12->ept_pointer = new_eptp;
6076 nested_ept_new_eptp(vcpu);
6077
6078 if (!nested_cpu_has_vpid(vmcs12))
6079 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
6080 }
6081
6082 return 0;
6083 }
6084
handle_vmfunc(struct kvm_vcpu * vcpu)6085 static int handle_vmfunc(struct kvm_vcpu *vcpu)
6086 {
6087 struct vcpu_vmx *vmx = to_vmx(vcpu);
6088 struct vmcs12 *vmcs12;
6089 u32 function = kvm_rax_read(vcpu);
6090
6091 /*
6092 * VMFUNC should never execute cleanly while L1 is active; KVM supports
6093 * VMFUNC for nested VMs, but not for L1.
6094 */
6095 if (WARN_ON_ONCE(!is_guest_mode(vcpu))) {
6096 kvm_queue_exception(vcpu, UD_VECTOR);
6097 return 1;
6098 }
6099
6100 vmcs12 = get_vmcs12(vcpu);
6101
6102 /*
6103 * #UD on out-of-bounds function has priority over VM-Exit, and VMFUNC
6104 * is enabled in vmcs02 if and only if it's enabled in vmcs12.
6105 */
6106 if (WARN_ON_ONCE((function > 63) || !nested_cpu_has_vmfunc(vmcs12))) {
6107 kvm_queue_exception(vcpu, UD_VECTOR);
6108 return 1;
6109 }
6110
6111 if (!(vmcs12->vm_function_control & BIT_ULL(function)))
6112 goto fail;
6113
6114 switch (function) {
6115 case 0:
6116 if (nested_vmx_eptp_switching(vcpu, vmcs12))
6117 goto fail;
6118 break;
6119 default:
6120 goto fail;
6121 }
6122 return kvm_skip_emulated_instruction(vcpu);
6123
6124 fail:
6125 /*
6126 * This is effectively a reflected VM-Exit, as opposed to a synthesized
6127 * nested VM-Exit. Pass the original exit reason, i.e. don't hardcode
6128 * EXIT_REASON_VMFUNC as the exit reason.
6129 */
6130 nested_vmx_vmexit(vcpu, vmx->exit_reason.full,
6131 vmx_get_intr_info(vcpu),
6132 vmx_get_exit_qual(vcpu));
6133 return 1;
6134 }
6135
6136 /*
6137 * Return true if an IO instruction with the specified port and size should cause
6138 * a VM-exit into L1.
6139 */
nested_vmx_check_io_bitmaps(struct kvm_vcpu * vcpu,unsigned int port,int size)6140 bool nested_vmx_check_io_bitmaps(struct kvm_vcpu *vcpu, unsigned int port,
6141 int size)
6142 {
6143 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6144 gpa_t bitmap, last_bitmap;
6145 u8 b;
6146
6147 last_bitmap = INVALID_GPA;
6148 b = -1;
6149
6150 while (size > 0) {
6151 if (port < 0x8000)
6152 bitmap = vmcs12->io_bitmap_a;
6153 else if (port < 0x10000)
6154 bitmap = vmcs12->io_bitmap_b;
6155 else
6156 return true;
6157 bitmap += (port & 0x7fff) / 8;
6158
6159 if (last_bitmap != bitmap)
6160 if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
6161 return true;
6162 if (b & (1 << (port & 7)))
6163 return true;
6164
6165 port++;
6166 size--;
6167 last_bitmap = bitmap;
6168 }
6169
6170 return false;
6171 }
6172
nested_vmx_exit_handled_io(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)6173 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
6174 struct vmcs12 *vmcs12)
6175 {
6176 unsigned long exit_qualification;
6177 unsigned short port;
6178 int size;
6179
6180 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
6181 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
6182
6183 exit_qualification = vmx_get_exit_qual(vcpu);
6184
6185 port = exit_qualification >> 16;
6186 size = (exit_qualification & 7) + 1;
6187
6188 return nested_vmx_check_io_bitmaps(vcpu, port, size);
6189 }
6190
6191 /*
6192 * Return 1 if we should exit from L2 to L1 to handle an MSR access,
6193 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
6194 * disinterest in the current event (read or write a specific MSR) by using an
6195 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
6196 */
nested_vmx_exit_handled_msr(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,union vmx_exit_reason exit_reason)6197 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
6198 struct vmcs12 *vmcs12,
6199 union vmx_exit_reason exit_reason)
6200 {
6201 u32 msr_index = kvm_rcx_read(vcpu);
6202 gpa_t bitmap;
6203
6204 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
6205 return true;
6206
6207 /*
6208 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
6209 * for the four combinations of read/write and low/high MSR numbers.
6210 * First we need to figure out which of the four to use:
6211 */
6212 bitmap = vmcs12->msr_bitmap;
6213 if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
6214 bitmap += 2048;
6215 if (msr_index >= 0xc0000000) {
6216 msr_index -= 0xc0000000;
6217 bitmap += 1024;
6218 }
6219
6220 /* Then read the msr_index'th bit from this bitmap: */
6221 if (msr_index < 1024*8) {
6222 unsigned char b;
6223 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
6224 return true;
6225 return 1 & (b >> (msr_index & 7));
6226 } else
6227 return true; /* let L1 handle the wrong parameter */
6228 }
6229
6230 /*
6231 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
6232 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
6233 * intercept (via guest_host_mask etc.) the current event.
6234 */
nested_vmx_exit_handled_cr(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)6235 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
6236 struct vmcs12 *vmcs12)
6237 {
6238 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
6239 int cr = exit_qualification & 15;
6240 int reg;
6241 unsigned long val;
6242
6243 switch ((exit_qualification >> 4) & 3) {
6244 case 0: /* mov to cr */
6245 reg = (exit_qualification >> 8) & 15;
6246 val = kvm_register_read(vcpu, reg);
6247 switch (cr) {
6248 case 0:
6249 if (vmcs12->cr0_guest_host_mask &
6250 (val ^ vmcs12->cr0_read_shadow))
6251 return true;
6252 break;
6253 case 3:
6254 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
6255 return true;
6256 break;
6257 case 4:
6258 if (vmcs12->cr4_guest_host_mask &
6259 (vmcs12->cr4_read_shadow ^ val))
6260 return true;
6261 break;
6262 case 8:
6263 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
6264 return true;
6265 break;
6266 }
6267 break;
6268 case 2: /* clts */
6269 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
6270 (vmcs12->cr0_read_shadow & X86_CR0_TS))
6271 return true;
6272 break;
6273 case 1: /* mov from cr */
6274 switch (cr) {
6275 case 3:
6276 if (vmcs12->cpu_based_vm_exec_control &
6277 CPU_BASED_CR3_STORE_EXITING)
6278 return true;
6279 break;
6280 case 8:
6281 if (vmcs12->cpu_based_vm_exec_control &
6282 CPU_BASED_CR8_STORE_EXITING)
6283 return true;
6284 break;
6285 }
6286 break;
6287 case 3: /* lmsw */
6288 /*
6289 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
6290 * cr0. Other attempted changes are ignored, with no exit.
6291 */
6292 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
6293 if (vmcs12->cr0_guest_host_mask & 0xe &
6294 (val ^ vmcs12->cr0_read_shadow))
6295 return true;
6296 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
6297 !(vmcs12->cr0_read_shadow & 0x1) &&
6298 (val & 0x1))
6299 return true;
6300 break;
6301 }
6302 return false;
6303 }
6304
nested_vmx_exit_handled_encls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)6305 static bool nested_vmx_exit_handled_encls(struct kvm_vcpu *vcpu,
6306 struct vmcs12 *vmcs12)
6307 {
6308 u32 encls_leaf;
6309
6310 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SGX) ||
6311 !nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENCLS_EXITING))
6312 return false;
6313
6314 encls_leaf = kvm_rax_read(vcpu);
6315 if (encls_leaf > 62)
6316 encls_leaf = 63;
6317 return vmcs12->encls_exiting_bitmap & BIT_ULL(encls_leaf);
6318 }
6319
nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,gpa_t bitmap)6320 static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
6321 struct vmcs12 *vmcs12, gpa_t bitmap)
6322 {
6323 u32 vmx_instruction_info;
6324 unsigned long field;
6325 u8 b;
6326
6327 if (!nested_cpu_has_shadow_vmcs(vmcs12))
6328 return true;
6329
6330 /* Decode instruction info and find the field to access */
6331 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6332 field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
6333
6334 /* Out-of-range fields always cause a VM exit from L2 to L1 */
6335 if (field >> 15)
6336 return true;
6337
6338 if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
6339 return true;
6340
6341 return 1 & (b >> (field & 7));
6342 }
6343
nested_vmx_exit_handled_mtf(struct vmcs12 * vmcs12)6344 static bool nested_vmx_exit_handled_mtf(struct vmcs12 *vmcs12)
6345 {
6346 u32 entry_intr_info = vmcs12->vm_entry_intr_info_field;
6347
6348 if (nested_cpu_has_mtf(vmcs12))
6349 return true;
6350
6351 /*
6352 * An MTF VM-exit may be injected into the guest by setting the
6353 * interruption-type to 7 (other event) and the vector field to 0. Such
6354 * is the case regardless of the 'monitor trap flag' VM-execution
6355 * control.
6356 */
6357 return entry_intr_info == (INTR_INFO_VALID_MASK
6358 | INTR_TYPE_OTHER_EVENT);
6359 }
6360
6361 /*
6362 * Return true if L0 wants to handle an exit from L2 regardless of whether or not
6363 * L1 wants the exit. Only call this when in is_guest_mode (L2).
6364 */
nested_vmx_l0_wants_exit(struct kvm_vcpu * vcpu,union vmx_exit_reason exit_reason)6365 static bool nested_vmx_l0_wants_exit(struct kvm_vcpu *vcpu,
6366 union vmx_exit_reason exit_reason)
6367 {
6368 u32 intr_info;
6369
6370 switch ((u16)exit_reason.basic) {
6371 case EXIT_REASON_EXCEPTION_NMI:
6372 intr_info = vmx_get_intr_info(vcpu);
6373 if (is_nmi(intr_info))
6374 return true;
6375 else if (is_page_fault(intr_info))
6376 return vcpu->arch.apf.host_apf_flags ||
6377 vmx_need_pf_intercept(vcpu);
6378 else if (is_debug(intr_info) &&
6379 vcpu->guest_debug &
6380 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
6381 return true;
6382 else if (is_breakpoint(intr_info) &&
6383 vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
6384 return true;
6385 else if (is_alignment_check(intr_info) &&
6386 !vmx_guest_inject_ac(vcpu))
6387 return true;
6388 else if (is_ve_fault(intr_info))
6389 return true;
6390 return false;
6391 case EXIT_REASON_EXTERNAL_INTERRUPT:
6392 return true;
6393 case EXIT_REASON_MCE_DURING_VMENTRY:
6394 return true;
6395 case EXIT_REASON_EPT_VIOLATION:
6396 /*
6397 * L0 always deals with the EPT violation. If nested EPT is
6398 * used, and the nested mmu code discovers that the address is
6399 * missing in the guest EPT table (EPT12), the EPT violation
6400 * will be injected with nested_ept_inject_page_fault()
6401 */
6402 return true;
6403 case EXIT_REASON_EPT_MISCONFIG:
6404 /*
6405 * L2 never uses directly L1's EPT, but rather L0's own EPT
6406 * table (shadow on EPT) or a merged EPT table that L0 built
6407 * (EPT on EPT). So any problems with the structure of the
6408 * table is L0's fault.
6409 */
6410 return true;
6411 case EXIT_REASON_PREEMPTION_TIMER:
6412 return true;
6413 case EXIT_REASON_PML_FULL:
6414 /*
6415 * PML is emulated for an L1 VMM and should never be enabled in
6416 * vmcs02, always "handle" PML_FULL by exiting to userspace.
6417 */
6418 return true;
6419 case EXIT_REASON_VMFUNC:
6420 /* VM functions are emulated through L2->L0 vmexits. */
6421 return true;
6422 case EXIT_REASON_BUS_LOCK:
6423 /*
6424 * At present, bus lock VM exit is never exposed to L1.
6425 * Handle L2's bus locks in L0 directly.
6426 */
6427 return true;
6428 #ifdef CONFIG_KVM_HYPERV
6429 case EXIT_REASON_VMCALL:
6430 /* Hyper-V L2 TLB flush hypercall is handled by L0 */
6431 return guest_hv_cpuid_has_l2_tlb_flush(vcpu) &&
6432 nested_evmcs_l2_tlb_flush_enabled(vcpu) &&
6433 kvm_hv_is_tlb_flush_hcall(vcpu);
6434 #endif
6435 default:
6436 break;
6437 }
6438 return false;
6439 }
6440
6441 /*
6442 * Return 1 if L1 wants to intercept an exit from L2. Only call this when in
6443 * is_guest_mode (L2).
6444 */
nested_vmx_l1_wants_exit(struct kvm_vcpu * vcpu,union vmx_exit_reason exit_reason)6445 static bool nested_vmx_l1_wants_exit(struct kvm_vcpu *vcpu,
6446 union vmx_exit_reason exit_reason)
6447 {
6448 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6449 u32 intr_info;
6450
6451 switch ((u16)exit_reason.basic) {
6452 case EXIT_REASON_EXCEPTION_NMI:
6453 intr_info = vmx_get_intr_info(vcpu);
6454 if (is_nmi(intr_info))
6455 return true;
6456 else if (is_page_fault(intr_info))
6457 return true;
6458 return vmcs12->exception_bitmap &
6459 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
6460 case EXIT_REASON_EXTERNAL_INTERRUPT:
6461 return nested_exit_on_intr(vcpu);
6462 case EXIT_REASON_TRIPLE_FAULT:
6463 return true;
6464 case EXIT_REASON_INTERRUPT_WINDOW:
6465 return nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING);
6466 case EXIT_REASON_NMI_WINDOW:
6467 return nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING);
6468 case EXIT_REASON_TASK_SWITCH:
6469 return true;
6470 case EXIT_REASON_CPUID:
6471 return true;
6472 case EXIT_REASON_HLT:
6473 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
6474 case EXIT_REASON_INVD:
6475 return true;
6476 case EXIT_REASON_INVLPG:
6477 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
6478 case EXIT_REASON_RDPMC:
6479 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
6480 case EXIT_REASON_RDRAND:
6481 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
6482 case EXIT_REASON_RDSEED:
6483 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
6484 case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
6485 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
6486 case EXIT_REASON_VMREAD:
6487 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
6488 vmcs12->vmread_bitmap);
6489 case EXIT_REASON_VMWRITE:
6490 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
6491 vmcs12->vmwrite_bitmap);
6492 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
6493 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
6494 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
6495 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
6496 case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
6497 /*
6498 * VMX instructions trap unconditionally. This allows L1 to
6499 * emulate them for its L2 guest, i.e., allows 3-level nesting!
6500 */
6501 return true;
6502 case EXIT_REASON_CR_ACCESS:
6503 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
6504 case EXIT_REASON_DR_ACCESS:
6505 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
6506 case EXIT_REASON_IO_INSTRUCTION:
6507 return nested_vmx_exit_handled_io(vcpu, vmcs12);
6508 case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
6509 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
6510 case EXIT_REASON_MSR_READ:
6511 case EXIT_REASON_MSR_WRITE:
6512 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
6513 case EXIT_REASON_INVALID_STATE:
6514 return true;
6515 case EXIT_REASON_MWAIT_INSTRUCTION:
6516 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
6517 case EXIT_REASON_MONITOR_TRAP_FLAG:
6518 return nested_vmx_exit_handled_mtf(vmcs12);
6519 case EXIT_REASON_MONITOR_INSTRUCTION:
6520 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
6521 case EXIT_REASON_PAUSE_INSTRUCTION:
6522 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
6523 nested_cpu_has2(vmcs12,
6524 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
6525 case EXIT_REASON_MCE_DURING_VMENTRY:
6526 return true;
6527 case EXIT_REASON_TPR_BELOW_THRESHOLD:
6528 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
6529 case EXIT_REASON_APIC_ACCESS:
6530 case EXIT_REASON_APIC_WRITE:
6531 case EXIT_REASON_EOI_INDUCED:
6532 /*
6533 * The controls for "virtualize APIC accesses," "APIC-
6534 * register virtualization," and "virtual-interrupt
6535 * delivery" only come from vmcs12.
6536 */
6537 return true;
6538 case EXIT_REASON_INVPCID:
6539 return
6540 nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
6541 nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
6542 case EXIT_REASON_WBINVD:
6543 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
6544 case EXIT_REASON_XSETBV:
6545 return true;
6546 case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
6547 /*
6548 * This should never happen, since it is not possible to
6549 * set XSS to a non-zero value---neither in L1 nor in L2.
6550 * If if it were, XSS would have to be checked against
6551 * the XSS exit bitmap in vmcs12.
6552 */
6553 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_XSAVES);
6554 case EXIT_REASON_UMWAIT:
6555 case EXIT_REASON_TPAUSE:
6556 return nested_cpu_has2(vmcs12,
6557 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE);
6558 case EXIT_REASON_ENCLS:
6559 return nested_vmx_exit_handled_encls(vcpu, vmcs12);
6560 case EXIT_REASON_NOTIFY:
6561 /* Notify VM exit is not exposed to L1 */
6562 return false;
6563 default:
6564 return true;
6565 }
6566 }
6567
6568 /*
6569 * Conditionally reflect a VM-Exit into L1. Returns %true if the VM-Exit was
6570 * reflected into L1.
6571 */
nested_vmx_reflect_vmexit(struct kvm_vcpu * vcpu)6572 bool nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu)
6573 {
6574 struct vcpu_vmx *vmx = to_vmx(vcpu);
6575 union vmx_exit_reason exit_reason = vmx->exit_reason;
6576 unsigned long exit_qual;
6577 u32 exit_intr_info;
6578
6579 WARN_ON_ONCE(vmx->nested.nested_run_pending);
6580
6581 /*
6582 * Late nested VM-Fail shares the same flow as nested VM-Exit since KVM
6583 * has already loaded L2's state.
6584 */
6585 if (unlikely(vmx->fail)) {
6586 trace_kvm_nested_vmenter_failed(
6587 "hardware VM-instruction error: ",
6588 vmcs_read32(VM_INSTRUCTION_ERROR));
6589 exit_intr_info = 0;
6590 exit_qual = 0;
6591 goto reflect_vmexit;
6592 }
6593
6594 trace_kvm_nested_vmexit(vcpu, KVM_ISA_VMX);
6595
6596 /* If L0 (KVM) wants the exit, it trumps L1's desires. */
6597 if (nested_vmx_l0_wants_exit(vcpu, exit_reason))
6598 return false;
6599
6600 /* If L1 doesn't want the exit, handle it in L0. */
6601 if (!nested_vmx_l1_wants_exit(vcpu, exit_reason))
6602 return false;
6603
6604 /*
6605 * vmcs.VM_EXIT_INTR_INFO is only valid for EXCEPTION_NMI exits. For
6606 * EXTERNAL_INTERRUPT, the value for vmcs12->vm_exit_intr_info would
6607 * need to be synthesized by querying the in-kernel LAPIC, but external
6608 * interrupts are never reflected to L1 so it's a non-issue.
6609 */
6610 exit_intr_info = vmx_get_intr_info(vcpu);
6611 if (is_exception_with_error_code(exit_intr_info)) {
6612 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6613
6614 vmcs12->vm_exit_intr_error_code =
6615 vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6616 }
6617 exit_qual = vmx_get_exit_qual(vcpu);
6618
6619 reflect_vmexit:
6620 nested_vmx_vmexit(vcpu, exit_reason.full, exit_intr_info, exit_qual);
6621 return true;
6622 }
6623
vmx_get_nested_state(struct kvm_vcpu * vcpu,struct kvm_nested_state __user * user_kvm_nested_state,u32 user_data_size)6624 static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
6625 struct kvm_nested_state __user *user_kvm_nested_state,
6626 u32 user_data_size)
6627 {
6628 struct vcpu_vmx *vmx;
6629 struct vmcs12 *vmcs12;
6630 struct kvm_nested_state kvm_state = {
6631 .flags = 0,
6632 .format = KVM_STATE_NESTED_FORMAT_VMX,
6633 .size = sizeof(kvm_state),
6634 .hdr.vmx.flags = 0,
6635 .hdr.vmx.vmxon_pa = INVALID_GPA,
6636 .hdr.vmx.vmcs12_pa = INVALID_GPA,
6637 .hdr.vmx.preemption_timer_deadline = 0,
6638 };
6639 struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6640 &user_kvm_nested_state->data.vmx[0];
6641
6642 if (!vcpu)
6643 return kvm_state.size + sizeof(*user_vmx_nested_state);
6644
6645 vmx = to_vmx(vcpu);
6646 vmcs12 = get_vmcs12(vcpu);
6647
6648 if (guest_cpu_cap_has(vcpu, X86_FEATURE_VMX) &&
6649 (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
6650 kvm_state.hdr.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
6651 kvm_state.hdr.vmx.vmcs12_pa = vmx->nested.current_vmptr;
6652
6653 if (vmx_has_valid_vmcs12(vcpu)) {
6654 kvm_state.size += sizeof(user_vmx_nested_state->vmcs12);
6655
6656 /* 'hv_evmcs_vmptr' can also be EVMPTR_MAP_PENDING here */
6657 if (nested_vmx_is_evmptr12_set(vmx))
6658 kvm_state.flags |= KVM_STATE_NESTED_EVMCS;
6659
6660 if (is_guest_mode(vcpu) &&
6661 nested_cpu_has_shadow_vmcs(vmcs12) &&
6662 vmcs12->vmcs_link_pointer != INVALID_GPA)
6663 kvm_state.size += sizeof(user_vmx_nested_state->shadow_vmcs12);
6664 }
6665
6666 if (vmx->nested.smm.vmxon)
6667 kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
6668
6669 if (vmx->nested.smm.guest_mode)
6670 kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
6671
6672 if (is_guest_mode(vcpu)) {
6673 kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
6674
6675 if (vmx->nested.nested_run_pending)
6676 kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
6677
6678 if (vmx->nested.mtf_pending)
6679 kvm_state.flags |= KVM_STATE_NESTED_MTF_PENDING;
6680
6681 if (nested_cpu_has_preemption_timer(vmcs12) &&
6682 vmx->nested.has_preemption_timer_deadline) {
6683 kvm_state.hdr.vmx.flags |=
6684 KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE;
6685 kvm_state.hdr.vmx.preemption_timer_deadline =
6686 vmx->nested.preemption_timer_deadline;
6687 }
6688 }
6689 }
6690
6691 if (user_data_size < kvm_state.size)
6692 goto out;
6693
6694 if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
6695 return -EFAULT;
6696
6697 if (!vmx_has_valid_vmcs12(vcpu))
6698 goto out;
6699
6700 /*
6701 * When running L2, the authoritative vmcs12 state is in the
6702 * vmcs02. When running L1, the authoritative vmcs12 state is
6703 * in the shadow or enlightened vmcs linked to vmcs01, unless
6704 * need_vmcs12_to_shadow_sync is set, in which case, the authoritative
6705 * vmcs12 state is in the vmcs12 already.
6706 */
6707 if (is_guest_mode(vcpu)) {
6708 sync_vmcs02_to_vmcs12(vcpu, vmcs12);
6709 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
6710 } else {
6711 copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
6712 if (!vmx->nested.need_vmcs12_to_shadow_sync) {
6713 if (nested_vmx_is_evmptr12_valid(vmx))
6714 /*
6715 * L1 hypervisor is not obliged to keep eVMCS
6716 * clean fields data always up-to-date while
6717 * not in guest mode, 'hv_clean_fields' is only
6718 * supposed to be actual upon vmentry so we need
6719 * to ignore it here and do full copy.
6720 */
6721 copy_enlightened_to_vmcs12(vmx, 0);
6722 else if (enable_shadow_vmcs)
6723 copy_shadow_to_vmcs12(vmx);
6724 }
6725 }
6726
6727 BUILD_BUG_ON(sizeof(user_vmx_nested_state->vmcs12) < VMCS12_SIZE);
6728 BUILD_BUG_ON(sizeof(user_vmx_nested_state->shadow_vmcs12) < VMCS12_SIZE);
6729
6730 /*
6731 * Copy over the full allocated size of vmcs12 rather than just the size
6732 * of the struct.
6733 */
6734 if (copy_to_user(user_vmx_nested_state->vmcs12, vmcs12, VMCS12_SIZE))
6735 return -EFAULT;
6736
6737 if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6738 vmcs12->vmcs_link_pointer != INVALID_GPA) {
6739 if (copy_to_user(user_vmx_nested_state->shadow_vmcs12,
6740 get_shadow_vmcs12(vcpu), VMCS12_SIZE))
6741 return -EFAULT;
6742 }
6743 out:
6744 return kvm_state.size;
6745 }
6746
vmx_leave_nested(struct kvm_vcpu * vcpu)6747 void vmx_leave_nested(struct kvm_vcpu *vcpu)
6748 {
6749 if (is_guest_mode(vcpu)) {
6750 to_vmx(vcpu)->nested.nested_run_pending = 0;
6751 nested_vmx_vmexit(vcpu, -1, 0, 0);
6752 }
6753 free_nested(vcpu);
6754 }
6755
vmx_set_nested_state(struct kvm_vcpu * vcpu,struct kvm_nested_state __user * user_kvm_nested_state,struct kvm_nested_state * kvm_state)6756 static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
6757 struct kvm_nested_state __user *user_kvm_nested_state,
6758 struct kvm_nested_state *kvm_state)
6759 {
6760 struct vcpu_vmx *vmx = to_vmx(vcpu);
6761 struct vmcs12 *vmcs12;
6762 enum vm_entry_failure_code ignored;
6763 struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6764 &user_kvm_nested_state->data.vmx[0];
6765 int ret;
6766
6767 if (kvm_state->format != KVM_STATE_NESTED_FORMAT_VMX)
6768 return -EINVAL;
6769
6770 if (kvm_state->hdr.vmx.vmxon_pa == INVALID_GPA) {
6771 if (kvm_state->hdr.vmx.smm.flags)
6772 return -EINVAL;
6773
6774 if (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA)
6775 return -EINVAL;
6776
6777 /*
6778 * KVM_STATE_NESTED_EVMCS used to signal that KVM should
6779 * enable eVMCS capability on vCPU. However, since then
6780 * code was changed such that flag signals vmcs12 should
6781 * be copied into eVMCS in guest memory.
6782 *
6783 * To preserve backwards compatibility, allow user
6784 * to set this flag even when there is no VMXON region.
6785 */
6786 if (kvm_state->flags & ~KVM_STATE_NESTED_EVMCS)
6787 return -EINVAL;
6788 } else {
6789 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_VMX))
6790 return -EINVAL;
6791
6792 if (!page_address_valid(vcpu, kvm_state->hdr.vmx.vmxon_pa))
6793 return -EINVAL;
6794 }
6795
6796 if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6797 (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6798 return -EINVAL;
6799
6800 if (kvm_state->hdr.vmx.smm.flags &
6801 ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
6802 return -EINVAL;
6803
6804 if (kvm_state->hdr.vmx.flags & ~KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE)
6805 return -EINVAL;
6806
6807 /*
6808 * SMM temporarily disables VMX, so we cannot be in guest mode,
6809 * nor can VMLAUNCH/VMRESUME be pending. Outside SMM, SMM flags
6810 * must be zero.
6811 */
6812 if (is_smm(vcpu) ?
6813 (kvm_state->flags &
6814 (KVM_STATE_NESTED_GUEST_MODE | KVM_STATE_NESTED_RUN_PENDING))
6815 : kvm_state->hdr.vmx.smm.flags)
6816 return -EINVAL;
6817
6818 if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6819 !(kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
6820 return -EINVAL;
6821
6822 if ((kvm_state->flags & KVM_STATE_NESTED_EVMCS) &&
6823 (!guest_cpu_cap_has(vcpu, X86_FEATURE_VMX) ||
6824 !vmx->nested.enlightened_vmcs_enabled))
6825 return -EINVAL;
6826
6827 vmx_leave_nested(vcpu);
6828
6829 if (kvm_state->hdr.vmx.vmxon_pa == INVALID_GPA)
6830 return 0;
6831
6832 vmx->nested.vmxon_ptr = kvm_state->hdr.vmx.vmxon_pa;
6833 ret = enter_vmx_operation(vcpu);
6834 if (ret)
6835 return ret;
6836
6837 /* Empty 'VMXON' state is permitted if no VMCS loaded */
6838 if (kvm_state->size < sizeof(*kvm_state) + sizeof(*vmcs12)) {
6839 /* See vmx_has_valid_vmcs12. */
6840 if ((kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE) ||
6841 (kvm_state->flags & KVM_STATE_NESTED_EVMCS) ||
6842 (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA))
6843 return -EINVAL;
6844 else
6845 return 0;
6846 }
6847
6848 if (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA) {
6849 if (kvm_state->hdr.vmx.vmcs12_pa == kvm_state->hdr.vmx.vmxon_pa ||
6850 !page_address_valid(vcpu, kvm_state->hdr.vmx.vmcs12_pa))
6851 return -EINVAL;
6852
6853 set_current_vmptr(vmx, kvm_state->hdr.vmx.vmcs12_pa);
6854 #ifdef CONFIG_KVM_HYPERV
6855 } else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
6856 /*
6857 * nested_vmx_handle_enlightened_vmptrld() cannot be called
6858 * directly from here as HV_X64_MSR_VP_ASSIST_PAGE may not be
6859 * restored yet. EVMCS will be mapped from
6860 * nested_get_vmcs12_pages().
6861 */
6862 vmx->nested.hv_evmcs_vmptr = EVMPTR_MAP_PENDING;
6863 kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
6864 #endif
6865 } else {
6866 return -EINVAL;
6867 }
6868
6869 if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
6870 vmx->nested.smm.vmxon = true;
6871 vmx->nested.vmxon = false;
6872
6873 if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
6874 vmx->nested.smm.guest_mode = true;
6875 }
6876
6877 vmcs12 = get_vmcs12(vcpu);
6878 if (copy_from_user(vmcs12, user_vmx_nested_state->vmcs12, sizeof(*vmcs12)))
6879 return -EFAULT;
6880
6881 if (vmcs12->hdr.revision_id != VMCS12_REVISION)
6882 return -EINVAL;
6883
6884 if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6885 return 0;
6886
6887 vmx->nested.nested_run_pending =
6888 !!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
6889
6890 vmx->nested.mtf_pending =
6891 !!(kvm_state->flags & KVM_STATE_NESTED_MTF_PENDING);
6892
6893 ret = -EINVAL;
6894 if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6895 vmcs12->vmcs_link_pointer != INVALID_GPA) {
6896 struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
6897
6898 if (kvm_state->size <
6899 sizeof(*kvm_state) +
6900 sizeof(user_vmx_nested_state->vmcs12) + sizeof(*shadow_vmcs12))
6901 goto error_guest_mode;
6902
6903 if (copy_from_user(shadow_vmcs12,
6904 user_vmx_nested_state->shadow_vmcs12,
6905 sizeof(*shadow_vmcs12))) {
6906 ret = -EFAULT;
6907 goto error_guest_mode;
6908 }
6909
6910 if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
6911 !shadow_vmcs12->hdr.shadow_vmcs)
6912 goto error_guest_mode;
6913 }
6914
6915 vmx->nested.has_preemption_timer_deadline = false;
6916 if (kvm_state->hdr.vmx.flags & KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE) {
6917 vmx->nested.has_preemption_timer_deadline = true;
6918 vmx->nested.preemption_timer_deadline =
6919 kvm_state->hdr.vmx.preemption_timer_deadline;
6920 }
6921
6922 if (nested_vmx_check_controls(vcpu, vmcs12) ||
6923 nested_vmx_check_host_state(vcpu, vmcs12) ||
6924 nested_vmx_check_guest_state(vcpu, vmcs12, &ignored))
6925 goto error_guest_mode;
6926
6927 vmx->nested.dirty_vmcs12 = true;
6928 vmx->nested.force_msr_bitmap_recalc = true;
6929 ret = nested_vmx_enter_non_root_mode(vcpu, false);
6930 if (ret)
6931 goto error_guest_mode;
6932
6933 if (vmx->nested.mtf_pending)
6934 kvm_make_request(KVM_REQ_EVENT, vcpu);
6935
6936 return 0;
6937
6938 error_guest_mode:
6939 vmx->nested.nested_run_pending = 0;
6940 return ret;
6941 }
6942
nested_vmx_set_vmcs_shadowing_bitmap(void)6943 void nested_vmx_set_vmcs_shadowing_bitmap(void)
6944 {
6945 if (enable_shadow_vmcs) {
6946 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
6947 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
6948 }
6949 }
6950
6951 /*
6952 * Indexing into the vmcs12 uses the VMCS encoding rotated left by 6. Undo
6953 * that madness to get the encoding for comparison.
6954 */
6955 #define VMCS12_IDX_TO_ENC(idx) ((u16)(((u16)(idx) >> 6) | ((u16)(idx) << 10)))
6956
nested_vmx_calc_vmcs_enum_msr(void)6957 static u64 nested_vmx_calc_vmcs_enum_msr(void)
6958 {
6959 /*
6960 * Note these are the so called "index" of the VMCS field encoding, not
6961 * the index into vmcs12.
6962 */
6963 unsigned int max_idx, idx;
6964 int i;
6965
6966 /*
6967 * For better or worse, KVM allows VMREAD/VMWRITE to all fields in
6968 * vmcs12, regardless of whether or not the associated feature is
6969 * exposed to L1. Simply find the field with the highest index.
6970 */
6971 max_idx = 0;
6972 for (i = 0; i < nr_vmcs12_fields; i++) {
6973 /* The vmcs12 table is very, very sparsely populated. */
6974 if (!vmcs12_field_offsets[i])
6975 continue;
6976
6977 idx = vmcs_field_index(VMCS12_IDX_TO_ENC(i));
6978 if (idx > max_idx)
6979 max_idx = idx;
6980 }
6981
6982 return (u64)max_idx << VMCS_FIELD_INDEX_SHIFT;
6983 }
6984
nested_vmx_setup_pinbased_ctls(struct vmcs_config * vmcs_conf,struct nested_vmx_msrs * msrs)6985 static void nested_vmx_setup_pinbased_ctls(struct vmcs_config *vmcs_conf,
6986 struct nested_vmx_msrs *msrs)
6987 {
6988 msrs->pinbased_ctls_low =
6989 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6990
6991 msrs->pinbased_ctls_high = vmcs_conf->pin_based_exec_ctrl;
6992 msrs->pinbased_ctls_high &=
6993 PIN_BASED_EXT_INTR_MASK |
6994 PIN_BASED_NMI_EXITING |
6995 PIN_BASED_VIRTUAL_NMIS |
6996 (enable_apicv ? PIN_BASED_POSTED_INTR : 0);
6997 msrs->pinbased_ctls_high |=
6998 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6999 PIN_BASED_VMX_PREEMPTION_TIMER;
7000 }
7001
nested_vmx_setup_exit_ctls(struct vmcs_config * vmcs_conf,struct nested_vmx_msrs * msrs)7002 static void nested_vmx_setup_exit_ctls(struct vmcs_config *vmcs_conf,
7003 struct nested_vmx_msrs *msrs)
7004 {
7005 msrs->exit_ctls_low =
7006 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
7007
7008 msrs->exit_ctls_high = vmcs_conf->vmexit_ctrl;
7009 msrs->exit_ctls_high &=
7010 #ifdef CONFIG_X86_64
7011 VM_EXIT_HOST_ADDR_SPACE_SIZE |
7012 #endif
7013 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT |
7014 VM_EXIT_CLEAR_BNDCFGS;
7015 msrs->exit_ctls_high |=
7016 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
7017 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
7018 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT |
7019 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
7020
7021 /* We support free control of debug control saving. */
7022 msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
7023 }
7024
nested_vmx_setup_entry_ctls(struct vmcs_config * vmcs_conf,struct nested_vmx_msrs * msrs)7025 static void nested_vmx_setup_entry_ctls(struct vmcs_config *vmcs_conf,
7026 struct nested_vmx_msrs *msrs)
7027 {
7028 msrs->entry_ctls_low =
7029 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
7030
7031 msrs->entry_ctls_high = vmcs_conf->vmentry_ctrl;
7032 msrs->entry_ctls_high &=
7033 #ifdef CONFIG_X86_64
7034 VM_ENTRY_IA32E_MODE |
7035 #endif
7036 VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
7037 msrs->entry_ctls_high |=
7038 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER |
7039 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL);
7040
7041 /* We support free control of debug control loading. */
7042 msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
7043 }
7044
nested_vmx_setup_cpubased_ctls(struct vmcs_config * vmcs_conf,struct nested_vmx_msrs * msrs)7045 static void nested_vmx_setup_cpubased_ctls(struct vmcs_config *vmcs_conf,
7046 struct nested_vmx_msrs *msrs)
7047 {
7048 msrs->procbased_ctls_low =
7049 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
7050
7051 msrs->procbased_ctls_high = vmcs_conf->cpu_based_exec_ctrl;
7052 msrs->procbased_ctls_high &=
7053 CPU_BASED_INTR_WINDOW_EXITING |
7054 CPU_BASED_NMI_WINDOW_EXITING | CPU_BASED_USE_TSC_OFFSETTING |
7055 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
7056 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
7057 CPU_BASED_CR3_STORE_EXITING |
7058 #ifdef CONFIG_X86_64
7059 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
7060 #endif
7061 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
7062 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
7063 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
7064 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
7065 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
7066 /*
7067 * We can allow some features even when not supported by the
7068 * hardware. For example, L1 can specify an MSR bitmap - and we
7069 * can use it to avoid exits to L1 - even when L0 runs L2
7070 * without MSR bitmaps.
7071 */
7072 msrs->procbased_ctls_high |=
7073 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
7074 CPU_BASED_USE_MSR_BITMAPS;
7075
7076 /* We support free control of CR3 access interception. */
7077 msrs->procbased_ctls_low &=
7078 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
7079 }
7080
nested_vmx_setup_secondary_ctls(u32 ept_caps,struct vmcs_config * vmcs_conf,struct nested_vmx_msrs * msrs)7081 static void nested_vmx_setup_secondary_ctls(u32 ept_caps,
7082 struct vmcs_config *vmcs_conf,
7083 struct nested_vmx_msrs *msrs)
7084 {
7085 msrs->secondary_ctls_low = 0;
7086
7087 msrs->secondary_ctls_high = vmcs_conf->cpu_based_2nd_exec_ctrl;
7088 msrs->secondary_ctls_high &=
7089 SECONDARY_EXEC_DESC |
7090 SECONDARY_EXEC_ENABLE_RDTSCP |
7091 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
7092 SECONDARY_EXEC_WBINVD_EXITING |
7093 SECONDARY_EXEC_APIC_REGISTER_VIRT |
7094 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
7095 SECONDARY_EXEC_RDRAND_EXITING |
7096 SECONDARY_EXEC_ENABLE_INVPCID |
7097 SECONDARY_EXEC_ENABLE_VMFUNC |
7098 SECONDARY_EXEC_RDSEED_EXITING |
7099 SECONDARY_EXEC_ENABLE_XSAVES |
7100 SECONDARY_EXEC_TSC_SCALING |
7101 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
7102
7103 /*
7104 * We can emulate "VMCS shadowing," even if the hardware
7105 * doesn't support it.
7106 */
7107 msrs->secondary_ctls_high |=
7108 SECONDARY_EXEC_SHADOW_VMCS;
7109
7110 if (enable_ept) {
7111 /* nested EPT: emulate EPT also to L1 */
7112 msrs->secondary_ctls_high |=
7113 SECONDARY_EXEC_ENABLE_EPT;
7114 msrs->ept_caps =
7115 VMX_EPT_PAGE_WALK_4_BIT |
7116 VMX_EPT_PAGE_WALK_5_BIT |
7117 VMX_EPTP_WB_BIT |
7118 VMX_EPT_INVEPT_BIT |
7119 VMX_EPT_EXECUTE_ONLY_BIT;
7120
7121 msrs->ept_caps &= ept_caps;
7122 msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
7123 VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
7124 VMX_EPT_1GB_PAGE_BIT;
7125 if (enable_ept_ad_bits) {
7126 msrs->secondary_ctls_high |=
7127 SECONDARY_EXEC_ENABLE_PML;
7128 msrs->ept_caps |= VMX_EPT_AD_BIT;
7129 }
7130
7131 /*
7132 * Advertise EPTP switching irrespective of hardware support,
7133 * KVM emulates it in software so long as VMFUNC is supported.
7134 */
7135 if (cpu_has_vmx_vmfunc())
7136 msrs->vmfunc_controls = VMX_VMFUNC_EPTP_SWITCHING;
7137 }
7138
7139 /*
7140 * Old versions of KVM use the single-context version without
7141 * checking for support, so declare that it is supported even
7142 * though it is treated as global context. The alternative is
7143 * not failing the single-context invvpid, and it is worse.
7144 */
7145 if (enable_vpid) {
7146 msrs->secondary_ctls_high |=
7147 SECONDARY_EXEC_ENABLE_VPID;
7148 msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
7149 VMX_VPID_EXTENT_SUPPORTED_MASK;
7150 }
7151
7152 if (enable_unrestricted_guest)
7153 msrs->secondary_ctls_high |=
7154 SECONDARY_EXEC_UNRESTRICTED_GUEST;
7155
7156 if (flexpriority_enabled)
7157 msrs->secondary_ctls_high |=
7158 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7159
7160 if (enable_sgx)
7161 msrs->secondary_ctls_high |= SECONDARY_EXEC_ENCLS_EXITING;
7162 }
7163
nested_vmx_setup_misc_data(struct vmcs_config * vmcs_conf,struct nested_vmx_msrs * msrs)7164 static void nested_vmx_setup_misc_data(struct vmcs_config *vmcs_conf,
7165 struct nested_vmx_msrs *msrs)
7166 {
7167 msrs->misc_low = (u32)vmcs_conf->misc & VMX_MISC_SAVE_EFER_LMA;
7168 msrs->misc_low |=
7169 VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
7170 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
7171 VMX_MISC_ACTIVITY_HLT |
7172 VMX_MISC_ACTIVITY_WAIT_SIPI;
7173 msrs->misc_high = 0;
7174 }
7175
nested_vmx_setup_basic(struct nested_vmx_msrs * msrs)7176 static void nested_vmx_setup_basic(struct nested_vmx_msrs *msrs)
7177 {
7178 /*
7179 * This MSR reports some information about VMX support. We
7180 * should return information about the VMX we emulate for the
7181 * guest, and the VMCS structure we give it - not about the
7182 * VMX support of the underlying hardware.
7183 */
7184 msrs->basic = vmx_basic_encode_vmcs_info(VMCS12_REVISION, VMCS12_SIZE,
7185 X86_MEMTYPE_WB);
7186
7187 msrs->basic |= VMX_BASIC_TRUE_CTLS;
7188 if (cpu_has_vmx_basic_inout())
7189 msrs->basic |= VMX_BASIC_INOUT;
7190 }
7191
nested_vmx_setup_cr_fixed(struct nested_vmx_msrs * msrs)7192 static void nested_vmx_setup_cr_fixed(struct nested_vmx_msrs *msrs)
7193 {
7194 /*
7195 * These MSRs specify bits which the guest must keep fixed on
7196 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
7197 * We picked the standard core2 setting.
7198 */
7199 #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
7200 #define VMXON_CR4_ALWAYSON X86_CR4_VMXE
7201 msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
7202 msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
7203
7204 /* These MSRs specify bits which the guest must keep fixed off. */
7205 rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
7206 rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
7207
7208 if (vmx_umip_emulated())
7209 msrs->cr4_fixed1 |= X86_CR4_UMIP;
7210 }
7211
7212 /*
7213 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
7214 * returned for the various VMX controls MSRs when nested VMX is enabled.
7215 * The same values should also be used to verify that vmcs12 control fields are
7216 * valid during nested entry from L1 to L2.
7217 * Each of these control msrs has a low and high 32-bit half: A low bit is on
7218 * if the corresponding bit in the (32-bit) control field *must* be on, and a
7219 * bit in the high half is on if the corresponding bit in the control field
7220 * may be on. See also vmx_control_verify().
7221 */
nested_vmx_setup_ctls_msrs(struct vmcs_config * vmcs_conf,u32 ept_caps)7222 void nested_vmx_setup_ctls_msrs(struct vmcs_config *vmcs_conf, u32 ept_caps)
7223 {
7224 struct nested_vmx_msrs *msrs = &vmcs_conf->nested;
7225
7226 /*
7227 * Note that as a general rule, the high half of the MSRs (bits in
7228 * the control fields which may be 1) should be initialized by the
7229 * intersection of the underlying hardware's MSR (i.e., features which
7230 * can be supported) and the list of features we want to expose -
7231 * because they are known to be properly supported in our code.
7232 * Also, usually, the low half of the MSRs (bits which must be 1) can
7233 * be set to 0, meaning that L1 may turn off any of these bits. The
7234 * reason is that if one of these bits is necessary, it will appear
7235 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
7236 * fields of vmcs01 and vmcs02, will turn these bits off - and
7237 * nested_vmx_l1_wants_exit() will not pass related exits to L1.
7238 * These rules have exceptions below.
7239 */
7240 nested_vmx_setup_pinbased_ctls(vmcs_conf, msrs);
7241
7242 nested_vmx_setup_exit_ctls(vmcs_conf, msrs);
7243
7244 nested_vmx_setup_entry_ctls(vmcs_conf, msrs);
7245
7246 nested_vmx_setup_cpubased_ctls(vmcs_conf, msrs);
7247
7248 nested_vmx_setup_secondary_ctls(ept_caps, vmcs_conf, msrs);
7249
7250 nested_vmx_setup_misc_data(vmcs_conf, msrs);
7251
7252 nested_vmx_setup_basic(msrs);
7253
7254 nested_vmx_setup_cr_fixed(msrs);
7255
7256 msrs->vmcs_enum = nested_vmx_calc_vmcs_enum_msr();
7257 }
7258
nested_vmx_hardware_unsetup(void)7259 void nested_vmx_hardware_unsetup(void)
7260 {
7261 int i;
7262
7263 if (enable_shadow_vmcs) {
7264 for (i = 0; i < VMX_BITMAP_NR; i++)
7265 free_page((unsigned long)vmx_bitmap[i]);
7266 }
7267 }
7268
nested_vmx_hardware_setup(int (* exit_handlers[])(struct kvm_vcpu *))7269 __init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *))
7270 {
7271 int i;
7272
7273 if (!cpu_has_vmx_shadow_vmcs())
7274 enable_shadow_vmcs = 0;
7275 if (enable_shadow_vmcs) {
7276 for (i = 0; i < VMX_BITMAP_NR; i++) {
7277 /*
7278 * The vmx_bitmap is not tied to a VM and so should
7279 * not be charged to a memcg.
7280 */
7281 vmx_bitmap[i] = (unsigned long *)
7282 __get_free_page(GFP_KERNEL);
7283 if (!vmx_bitmap[i]) {
7284 nested_vmx_hardware_unsetup();
7285 return -ENOMEM;
7286 }
7287 }
7288
7289 init_vmcs_shadow_fields();
7290 }
7291
7292 exit_handlers[EXIT_REASON_VMCLEAR] = handle_vmclear;
7293 exit_handlers[EXIT_REASON_VMLAUNCH] = handle_vmlaunch;
7294 exit_handlers[EXIT_REASON_VMPTRLD] = handle_vmptrld;
7295 exit_handlers[EXIT_REASON_VMPTRST] = handle_vmptrst;
7296 exit_handlers[EXIT_REASON_VMREAD] = handle_vmread;
7297 exit_handlers[EXIT_REASON_VMRESUME] = handle_vmresume;
7298 exit_handlers[EXIT_REASON_VMWRITE] = handle_vmwrite;
7299 exit_handlers[EXIT_REASON_VMOFF] = handle_vmxoff;
7300 exit_handlers[EXIT_REASON_VMON] = handle_vmxon;
7301 exit_handlers[EXIT_REASON_INVEPT] = handle_invept;
7302 exit_handlers[EXIT_REASON_INVVPID] = handle_invvpid;
7303 exit_handlers[EXIT_REASON_VMFUNC] = handle_vmfunc;
7304
7305 return 0;
7306 }
7307
7308 struct kvm_x86_nested_ops vmx_nested_ops = {
7309 .leave_nested = vmx_leave_nested,
7310 .is_exception_vmexit = nested_vmx_is_exception_vmexit,
7311 .check_events = vmx_check_nested_events,
7312 .has_events = vmx_has_nested_events,
7313 .triple_fault = nested_vmx_triple_fault,
7314 .get_state = vmx_get_nested_state,
7315 .set_state = vmx_set_nested_state,
7316 .get_nested_state_pages = vmx_get_nested_state_pages,
7317 .write_log_dirty = nested_vmx_write_pml_buffer,
7318 #ifdef CONFIG_KVM_HYPERV
7319 .enable_evmcs = nested_enable_evmcs,
7320 .get_evmcs_version = nested_get_evmcs_version,
7321 .hv_inject_synthetic_vmexit_post_tlb_flush = vmx_hv_inject_synthetic_vmexit_post_tlb_flush,
7322 #endif
7323 };
7324