xref: /linux/arch/x86/kvm/svm/nested.c (revision 4ea7c1717f3f2344f7a1cdab4f5875cfa89c87a9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * AMD SVM support
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Yaniv Kamay  <yaniv@qumranet.com>
12  *   Avi Kivity   <avi@qumranet.com>
13  */
14 
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/kvm_types.h>
18 #include <linux/kvm_host.h>
19 #include <linux/kernel.h>
20 
21 #include <asm/msr-index.h>
22 #include <asm/debugreg.h>
23 
24 #include "kvm_emulate.h"
25 #include "trace.h"
26 #include "mmu.h"
27 #include "x86.h"
28 #include "smm.h"
29 #include "cpuid.h"
30 #include "lapic.h"
31 #include "svm.h"
32 #include "hyperv.h"
33 
34 #define CC KVM_NESTED_VMENTER_CONSISTENCY_CHECK
35 
nested_svm_inject_npf_exit(struct kvm_vcpu * vcpu,struct x86_exception * fault)36 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
37 				       struct x86_exception *fault)
38 {
39 	struct vcpu_svm *svm = to_svm(vcpu);
40 	struct vmcb *vmcb = svm->vmcb;
41 
42 	if (vmcb->control.exit_code != SVM_EXIT_NPF) {
43 		/*
44 		 * TODO: track the cause of the nested page fault, and
45 		 * correctly fill in the high bits of exit_info_1.
46 		 */
47 		vmcb->control.exit_code = SVM_EXIT_NPF;
48 		vmcb->control.exit_code_hi = 0;
49 		vmcb->control.exit_info_1 = (1ULL << 32);
50 		vmcb->control.exit_info_2 = fault->address;
51 	}
52 
53 	vmcb->control.exit_info_1 &= ~0xffffffffULL;
54 	vmcb->control.exit_info_1 |= fault->error_code;
55 
56 	nested_svm_vmexit(svm);
57 }
58 
nested_svm_get_tdp_pdptr(struct kvm_vcpu * vcpu,int index)59 static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
60 {
61 	struct vcpu_svm *svm = to_svm(vcpu);
62 	u64 cr3 = svm->nested.ctl.nested_cr3;
63 	u64 pdpte;
64 	int ret;
65 
66 	/*
67 	 * Note, nCR3 is "assumed" to be 32-byte aligned, i.e. the CPU ignores
68 	 * nCR3[4:0] when loading PDPTEs from memory.
69 	 */
70 	ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(cr3), &pdpte,
71 				       (cr3 & GENMASK(11, 5)) + index * 8, 8);
72 	if (ret)
73 		return 0;
74 	return pdpte;
75 }
76 
nested_svm_get_tdp_cr3(struct kvm_vcpu * vcpu)77 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
78 {
79 	struct vcpu_svm *svm = to_svm(vcpu);
80 
81 	return svm->nested.ctl.nested_cr3;
82 }
83 
nested_svm_init_mmu_context(struct kvm_vcpu * vcpu)84 static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
85 {
86 	struct vcpu_svm *svm = to_svm(vcpu);
87 
88 	WARN_ON(mmu_is_nested(vcpu));
89 
90 	vcpu->arch.mmu = &vcpu->arch.guest_mmu;
91 
92 	/*
93 	 * The NPT format depends on L1's CR4 and EFER, which is in vmcb01.  Note,
94 	 * when called via KVM_SET_NESTED_STATE, that state may _not_ match current
95 	 * vCPU state.  CR0.WP is explicitly ignored, while CR0.PG is required.
96 	 */
97 	kvm_init_shadow_npt_mmu(vcpu, X86_CR0_PG, svm->vmcb01.ptr->save.cr4,
98 				svm->vmcb01.ptr->save.efer,
99 				svm->nested.ctl.nested_cr3);
100 	vcpu->arch.mmu->get_guest_pgd     = nested_svm_get_tdp_cr3;
101 	vcpu->arch.mmu->get_pdptr         = nested_svm_get_tdp_pdptr;
102 	vcpu->arch.mmu->inject_page_fault = nested_svm_inject_npf_exit;
103 	vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
104 }
105 
nested_svm_uninit_mmu_context(struct kvm_vcpu * vcpu)106 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
107 {
108 	vcpu->arch.mmu = &vcpu->arch.root_mmu;
109 	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
110 }
111 
nested_vmcb_needs_vls_intercept(struct vcpu_svm * svm)112 static bool nested_vmcb_needs_vls_intercept(struct vcpu_svm *svm)
113 {
114 	if (!guest_cpu_cap_has(&svm->vcpu, X86_FEATURE_V_VMSAVE_VMLOAD))
115 		return true;
116 
117 	if (!nested_npt_enabled(svm))
118 		return true;
119 
120 	if (!(svm->nested.ctl.virt_ext & VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK))
121 		return true;
122 
123 	return false;
124 }
125 
recalc_intercepts(struct vcpu_svm * svm)126 void recalc_intercepts(struct vcpu_svm *svm)
127 {
128 	struct vmcb_control_area *c, *h;
129 	struct vmcb_ctrl_area_cached *g;
130 	unsigned int i;
131 
132 	vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
133 
134 	if (!is_guest_mode(&svm->vcpu))
135 		return;
136 
137 	c = &svm->vmcb->control;
138 	h = &svm->vmcb01.ptr->control;
139 	g = &svm->nested.ctl;
140 
141 	for (i = 0; i < MAX_INTERCEPT; i++)
142 		c->intercepts[i] = h->intercepts[i];
143 
144 	if (g->int_ctl & V_INTR_MASKING_MASK) {
145 		/*
146 		 * If L2 is active and V_INTR_MASKING is enabled in vmcb12,
147 		 * disable intercept of CR8 writes as L2's CR8 does not affect
148 		 * any interrupt KVM may want to inject.
149 		 *
150 		 * Similarly, disable intercept of virtual interrupts (used to
151 		 * detect interrupt windows) if the saved RFLAGS.IF is '0', as
152 		 * the effective RFLAGS.IF for L1 interrupts will never be set
153 		 * while L2 is running (L2's RFLAGS.IF doesn't affect L1 IRQs).
154 		 */
155 		vmcb_clr_intercept(c, INTERCEPT_CR8_WRITE);
156 		if (!(svm->vmcb01.ptr->save.rflags & X86_EFLAGS_IF))
157 			vmcb_clr_intercept(c, INTERCEPT_VINTR);
158 	}
159 
160 	/*
161 	 * We want to see VMMCALLs from a nested guest only when Hyper-V L2 TLB
162 	 * flush feature is enabled.
163 	 */
164 	if (!nested_svm_l2_tlb_flush_enabled(&svm->vcpu))
165 		vmcb_clr_intercept(c, INTERCEPT_VMMCALL);
166 
167 	for (i = 0; i < MAX_INTERCEPT; i++)
168 		c->intercepts[i] |= g->intercepts[i];
169 
170 	/* If SMI is not intercepted, ignore guest SMI intercept as well  */
171 	if (!intercept_smi)
172 		vmcb_clr_intercept(c, INTERCEPT_SMI);
173 
174 	if (nested_vmcb_needs_vls_intercept(svm)) {
175 		/*
176 		 * If the virtual VMLOAD/VMSAVE is not enabled for the L2,
177 		 * we must intercept these instructions to correctly
178 		 * emulate them in case L1 doesn't intercept them.
179 		 */
180 		vmcb_set_intercept(c, INTERCEPT_VMLOAD);
181 		vmcb_set_intercept(c, INTERCEPT_VMSAVE);
182 	} else {
183 		WARN_ON(!(c->virt_ext & VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK));
184 	}
185 }
186 
187 /*
188  * This array (and its actual size) holds the set of offsets (indexing by chunk
189  * size) to process when merging vmcb12's MSRPM with vmcb01's MSRPM.  Note, the
190  * set of MSRs for which interception is disabled in vmcb01 is per-vCPU, e.g.
191  * based on CPUID features.  This array only tracks MSRs that *might* be passed
192  * through to the guest.
193  *
194  * Hardcode the capacity of the array based on the maximum number of _offsets_.
195  * MSRs are batched together, so there are fewer offsets than MSRs.
196  */
197 static int nested_svm_msrpm_merge_offsets[7] __ro_after_init;
198 static int nested_svm_nr_msrpm_merge_offsets __ro_after_init;
199 typedef unsigned long nsvm_msrpm_merge_t;
200 
nested_svm_init_msrpm_merge_offsets(void)201 int __init nested_svm_init_msrpm_merge_offsets(void)
202 {
203 	static const u32 merge_msrs[] __initconst = {
204 		MSR_STAR,
205 		MSR_IA32_SYSENTER_CS,
206 		MSR_IA32_SYSENTER_EIP,
207 		MSR_IA32_SYSENTER_ESP,
208 	#ifdef CONFIG_X86_64
209 		MSR_GS_BASE,
210 		MSR_FS_BASE,
211 		MSR_KERNEL_GS_BASE,
212 		MSR_LSTAR,
213 		MSR_CSTAR,
214 		MSR_SYSCALL_MASK,
215 	#endif
216 		MSR_IA32_SPEC_CTRL,
217 		MSR_IA32_PRED_CMD,
218 		MSR_IA32_FLUSH_CMD,
219 		MSR_IA32_APERF,
220 		MSR_IA32_MPERF,
221 		MSR_IA32_LASTBRANCHFROMIP,
222 		MSR_IA32_LASTBRANCHTOIP,
223 		MSR_IA32_LASTINTFROMIP,
224 		MSR_IA32_LASTINTTOIP,
225 	};
226 	int i, j;
227 
228 	for (i = 0; i < ARRAY_SIZE(merge_msrs); i++) {
229 		int bit_nr = svm_msrpm_bit_nr(merge_msrs[i]);
230 		u32 offset;
231 
232 		if (WARN_ON(bit_nr < 0))
233 			return -EIO;
234 
235 		/*
236 		 * Merging is done in chunks to reduce the number of accesses
237 		 * to L1's bitmap.
238 		 */
239 		offset = bit_nr / BITS_PER_BYTE / sizeof(nsvm_msrpm_merge_t);
240 
241 		for (j = 0; j < nested_svm_nr_msrpm_merge_offsets; j++) {
242 			if (nested_svm_msrpm_merge_offsets[j] == offset)
243 				break;
244 		}
245 
246 		if (j < nested_svm_nr_msrpm_merge_offsets)
247 			continue;
248 
249 		if (WARN_ON(j >= ARRAY_SIZE(nested_svm_msrpm_merge_offsets)))
250 			return -EIO;
251 
252 		nested_svm_msrpm_merge_offsets[j] = offset;
253 		nested_svm_nr_msrpm_merge_offsets++;
254 	}
255 
256 	return 0;
257 }
258 
259 /*
260  * Merge L0's (KVM) and L1's (Nested VMCB) MSR permission bitmaps. The function
261  * is optimized in that it only merges the parts where KVM MSR permission bitmap
262  * may contain zero bits.
263  */
nested_svm_merge_msrpm(struct kvm_vcpu * vcpu)264 static bool nested_svm_merge_msrpm(struct kvm_vcpu *vcpu)
265 {
266 	struct vcpu_svm *svm = to_svm(vcpu);
267 	nsvm_msrpm_merge_t *msrpm02 = svm->nested.msrpm;
268 	nsvm_msrpm_merge_t *msrpm01 = svm->msrpm;
269 	int i;
270 
271 	/*
272 	 * MSR bitmap update can be skipped when:
273 	 * - MSR bitmap for L1 hasn't changed.
274 	 * - Nested hypervisor (L1) is attempting to launch the same L2 as
275 	 *   before.
276 	 * - Nested hypervisor (L1) is using Hyper-V emulation interface and
277 	 * tells KVM (L0) there were no changes in MSR bitmap for L2.
278 	 */
279 #ifdef CONFIG_KVM_HYPERV
280 	if (!svm->nested.force_msr_bitmap_recalc) {
281 		struct hv_vmcb_enlightenments *hve = &svm->nested.ctl.hv_enlightenments;
282 
283 		if (kvm_hv_hypercall_enabled(vcpu) &&
284 		    hve->hv_enlightenments_control.msr_bitmap &&
285 		    (svm->nested.ctl.clean & BIT(HV_VMCB_NESTED_ENLIGHTENMENTS)))
286 			goto set_msrpm_base_pa;
287 	}
288 #endif
289 
290 	if (!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_MSR_PROT)))
291 		return true;
292 
293 	for (i = 0; i < nested_svm_nr_msrpm_merge_offsets; i++) {
294 		const int p = nested_svm_msrpm_merge_offsets[i];
295 		nsvm_msrpm_merge_t l1_val;
296 		gpa_t gpa;
297 
298 		gpa = svm->nested.ctl.msrpm_base_pa + (p * sizeof(l1_val));
299 
300 		if (kvm_vcpu_read_guest(vcpu, gpa, &l1_val, sizeof(l1_val)))
301 			return false;
302 
303 		msrpm02[p] = msrpm01[p] | l1_val;
304 	}
305 
306 	svm->nested.force_msr_bitmap_recalc = false;
307 
308 #ifdef CONFIG_KVM_HYPERV
309 set_msrpm_base_pa:
310 #endif
311 	svm->vmcb->control.msrpm_base_pa = __sme_set(__pa(svm->nested.msrpm));
312 
313 	return true;
314 }
315 
316 /*
317  * Bits 11:0 of bitmap address are ignored by hardware
318  */
nested_svm_check_bitmap_pa(struct kvm_vcpu * vcpu,u64 pa,u32 size)319 static bool nested_svm_check_bitmap_pa(struct kvm_vcpu *vcpu, u64 pa, u32 size)
320 {
321 	u64 addr = PAGE_ALIGN(pa);
322 
323 	return kvm_vcpu_is_legal_gpa(vcpu, addr) &&
324 	    kvm_vcpu_is_legal_gpa(vcpu, addr + size - 1);
325 }
326 
__nested_vmcb_check_controls(struct kvm_vcpu * vcpu,struct vmcb_ctrl_area_cached * control)327 static bool __nested_vmcb_check_controls(struct kvm_vcpu *vcpu,
328 					 struct vmcb_ctrl_area_cached *control)
329 {
330 	if (CC(!vmcb12_is_intercept(control, INTERCEPT_VMRUN)))
331 		return false;
332 
333 	if (CC(control->asid == 0))
334 		return false;
335 
336 	if (CC((control->nested_ctl & SVM_NESTED_CTL_NP_ENABLE) && !npt_enabled))
337 		return false;
338 
339 	if (CC(!nested_svm_check_bitmap_pa(vcpu, control->msrpm_base_pa,
340 					   MSRPM_SIZE)))
341 		return false;
342 	if (CC(!nested_svm_check_bitmap_pa(vcpu, control->iopm_base_pa,
343 					   IOPM_SIZE)))
344 		return false;
345 
346 	if (CC((control->int_ctl & V_NMI_ENABLE_MASK) &&
347 	       !vmcb12_is_intercept(control, INTERCEPT_NMI))) {
348 		return false;
349 	}
350 
351 	return true;
352 }
353 
354 /* Common checks that apply to both L1 and L2 state.  */
__nested_vmcb_check_save(struct kvm_vcpu * vcpu,struct vmcb_save_area_cached * save)355 static bool __nested_vmcb_check_save(struct kvm_vcpu *vcpu,
356 				     struct vmcb_save_area_cached *save)
357 {
358 	if (CC(!(save->efer & EFER_SVME)))
359 		return false;
360 
361 	if (CC((save->cr0 & X86_CR0_CD) == 0 && (save->cr0 & X86_CR0_NW)) ||
362 	    CC(save->cr0 & ~0xffffffffULL))
363 		return false;
364 
365 	if (CC(!kvm_dr6_valid(save->dr6)) || CC(!kvm_dr7_valid(save->dr7)))
366 		return false;
367 
368 	/*
369 	 * These checks are also performed by KVM_SET_SREGS,
370 	 * except that EFER.LMA is not checked by SVM against
371 	 * CR0.PG && EFER.LME.
372 	 */
373 	if ((save->efer & EFER_LME) && (save->cr0 & X86_CR0_PG)) {
374 		if (CC(!(save->cr4 & X86_CR4_PAE)) ||
375 		    CC(!(save->cr0 & X86_CR0_PE)) ||
376 		    CC(!kvm_vcpu_is_legal_cr3(vcpu, save->cr3)))
377 			return false;
378 	}
379 
380 	/* Note, SVM doesn't have any additional restrictions on CR4. */
381 	if (CC(!__kvm_is_valid_cr4(vcpu, save->cr4)))
382 		return false;
383 
384 	if (CC(!kvm_valid_efer(vcpu, save->efer)))
385 		return false;
386 
387 	return true;
388 }
389 
nested_vmcb_check_save(struct kvm_vcpu * vcpu)390 static bool nested_vmcb_check_save(struct kvm_vcpu *vcpu)
391 {
392 	struct vcpu_svm *svm = to_svm(vcpu);
393 	struct vmcb_save_area_cached *save = &svm->nested.save;
394 
395 	return __nested_vmcb_check_save(vcpu, save);
396 }
397 
nested_vmcb_check_controls(struct kvm_vcpu * vcpu)398 static bool nested_vmcb_check_controls(struct kvm_vcpu *vcpu)
399 {
400 	struct vcpu_svm *svm = to_svm(vcpu);
401 	struct vmcb_ctrl_area_cached *ctl = &svm->nested.ctl;
402 
403 	return __nested_vmcb_check_controls(vcpu, ctl);
404 }
405 
406 static
__nested_copy_vmcb_control_to_cache(struct kvm_vcpu * vcpu,struct vmcb_ctrl_area_cached * to,struct vmcb_control_area * from)407 void __nested_copy_vmcb_control_to_cache(struct kvm_vcpu *vcpu,
408 					 struct vmcb_ctrl_area_cached *to,
409 					 struct vmcb_control_area *from)
410 {
411 	unsigned int i;
412 
413 	for (i = 0; i < MAX_INTERCEPT; i++)
414 		to->intercepts[i] = from->intercepts[i];
415 
416 	to->iopm_base_pa        = from->iopm_base_pa;
417 	to->msrpm_base_pa       = from->msrpm_base_pa;
418 	to->tsc_offset          = from->tsc_offset;
419 	to->tlb_ctl             = from->tlb_ctl;
420 	to->int_ctl             = from->int_ctl;
421 	to->int_vector          = from->int_vector;
422 	to->int_state           = from->int_state;
423 	to->exit_code           = from->exit_code;
424 	to->exit_code_hi        = from->exit_code_hi;
425 	to->exit_info_1         = from->exit_info_1;
426 	to->exit_info_2         = from->exit_info_2;
427 	to->exit_int_info       = from->exit_int_info;
428 	to->exit_int_info_err   = from->exit_int_info_err;
429 	to->nested_ctl          = from->nested_ctl;
430 	to->event_inj           = from->event_inj;
431 	to->event_inj_err       = from->event_inj_err;
432 	to->next_rip            = from->next_rip;
433 	to->nested_cr3          = from->nested_cr3;
434 	to->virt_ext            = from->virt_ext;
435 	to->pause_filter_count  = from->pause_filter_count;
436 	to->pause_filter_thresh = from->pause_filter_thresh;
437 
438 	/* Copy asid here because nested_vmcb_check_controls will check it.  */
439 	to->asid           = from->asid;
440 	to->msrpm_base_pa &= ~0x0fffULL;
441 	to->iopm_base_pa  &= ~0x0fffULL;
442 
443 #ifdef CONFIG_KVM_HYPERV
444 	/* Hyper-V extensions (Enlightened VMCB) */
445 	if (kvm_hv_hypercall_enabled(vcpu)) {
446 		to->clean = from->clean;
447 		memcpy(&to->hv_enlightenments, &from->hv_enlightenments,
448 		       sizeof(to->hv_enlightenments));
449 	}
450 #endif
451 }
452 
nested_copy_vmcb_control_to_cache(struct vcpu_svm * svm,struct vmcb_control_area * control)453 void nested_copy_vmcb_control_to_cache(struct vcpu_svm *svm,
454 				       struct vmcb_control_area *control)
455 {
456 	__nested_copy_vmcb_control_to_cache(&svm->vcpu, &svm->nested.ctl, control);
457 }
458 
__nested_copy_vmcb_save_to_cache(struct vmcb_save_area_cached * to,struct vmcb_save_area * from)459 static void __nested_copy_vmcb_save_to_cache(struct vmcb_save_area_cached *to,
460 					     struct vmcb_save_area *from)
461 {
462 	/*
463 	 * Copy only fields that are validated, as we need them
464 	 * to avoid TOC/TOU races.
465 	 */
466 	to->efer = from->efer;
467 	to->cr0 = from->cr0;
468 	to->cr3 = from->cr3;
469 	to->cr4 = from->cr4;
470 
471 	to->dr6 = from->dr6;
472 	to->dr7 = from->dr7;
473 }
474 
nested_copy_vmcb_save_to_cache(struct vcpu_svm * svm,struct vmcb_save_area * save)475 void nested_copy_vmcb_save_to_cache(struct vcpu_svm *svm,
476 				    struct vmcb_save_area *save)
477 {
478 	__nested_copy_vmcb_save_to_cache(&svm->nested.save, save);
479 }
480 
481 /*
482  * Synchronize fields that are written by the processor, so that
483  * they can be copied back into the vmcb12.
484  */
nested_sync_control_from_vmcb02(struct vcpu_svm * svm)485 void nested_sync_control_from_vmcb02(struct vcpu_svm *svm)
486 {
487 	u32 mask;
488 	svm->nested.ctl.event_inj      = svm->vmcb->control.event_inj;
489 	svm->nested.ctl.event_inj_err  = svm->vmcb->control.event_inj_err;
490 
491 	/* Only a few fields of int_ctl are written by the processor.  */
492 	mask = V_IRQ_MASK | V_TPR_MASK;
493 	/*
494 	 * Don't sync vmcb02 V_IRQ back to vmcb12 if KVM (L0) is intercepting
495 	 * virtual interrupts in order to request an interrupt window, as KVM
496 	 * has usurped vmcb02's int_ctl.  If an interrupt window opens before
497 	 * the next VM-Exit, svm_clear_vintr() will restore vmcb12's int_ctl.
498 	 * If no window opens, V_IRQ will be correctly preserved in vmcb12's
499 	 * int_ctl (because it was never recognized while L2 was running).
500 	 */
501 	if (svm_is_intercept(svm, INTERCEPT_VINTR) &&
502 	    !test_bit(INTERCEPT_VINTR, (unsigned long *)svm->nested.ctl.intercepts))
503 		mask &= ~V_IRQ_MASK;
504 
505 	if (nested_vgif_enabled(svm))
506 		mask |= V_GIF_MASK;
507 
508 	if (nested_vnmi_enabled(svm))
509 		mask |= V_NMI_BLOCKING_MASK | V_NMI_PENDING_MASK;
510 
511 	svm->nested.ctl.int_ctl        &= ~mask;
512 	svm->nested.ctl.int_ctl        |= svm->vmcb->control.int_ctl & mask;
513 }
514 
515 /*
516  * Transfer any event that L0 or L1 wanted to inject into L2 to
517  * EXIT_INT_INFO.
518  */
nested_save_pending_event_to_vmcb12(struct vcpu_svm * svm,struct vmcb * vmcb12)519 static void nested_save_pending_event_to_vmcb12(struct vcpu_svm *svm,
520 						struct vmcb *vmcb12)
521 {
522 	struct kvm_vcpu *vcpu = &svm->vcpu;
523 	u32 exit_int_info = 0;
524 	unsigned int nr;
525 
526 	if (vcpu->arch.exception.injected) {
527 		nr = vcpu->arch.exception.vector;
528 		exit_int_info = nr | SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_EXEPT;
529 
530 		if (vcpu->arch.exception.has_error_code) {
531 			exit_int_info |= SVM_EVTINJ_VALID_ERR;
532 			vmcb12->control.exit_int_info_err =
533 				vcpu->arch.exception.error_code;
534 		}
535 
536 	} else if (vcpu->arch.nmi_injected) {
537 		exit_int_info = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
538 
539 	} else if (vcpu->arch.interrupt.injected) {
540 		nr = vcpu->arch.interrupt.nr;
541 		exit_int_info = nr | SVM_EVTINJ_VALID;
542 
543 		if (vcpu->arch.interrupt.soft)
544 			exit_int_info |= SVM_EVTINJ_TYPE_SOFT;
545 		else
546 			exit_int_info |= SVM_EVTINJ_TYPE_INTR;
547 	}
548 
549 	vmcb12->control.exit_int_info = exit_int_info;
550 }
551 
nested_svm_transition_tlb_flush(struct kvm_vcpu * vcpu)552 static void nested_svm_transition_tlb_flush(struct kvm_vcpu *vcpu)
553 {
554 	/* Handle pending Hyper-V TLB flush requests */
555 	kvm_hv_nested_transtion_tlb_flush(vcpu, npt_enabled);
556 
557 	/*
558 	 * TODO: optimize unconditional TLB flush/MMU sync.  A partial list of
559 	 * things to fix before this can be conditional:
560 	 *
561 	 *  - Flush TLBs for both L1 and L2 remote TLB flush
562 	 *  - Honor L1's request to flush an ASID on nested VMRUN
563 	 *  - Sync nested NPT MMU on VMRUN that flushes L2's ASID[*]
564 	 *  - Don't crush a pending TLB flush in vmcb02 on nested VMRUN
565 	 *  - Flush L1's ASID on KVM_REQ_TLB_FLUSH_GUEST
566 	 *
567 	 * [*] Unlike nested EPT, SVM's ASID management can invalidate nested
568 	 *     NPT guest-physical mappings on VMRUN.
569 	 */
570 	kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
571 	kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
572 }
573 
574 /*
575  * Load guest's/host's cr3 on nested vmentry or vmexit. @nested_npt is true
576  * if we are emulating VM-Entry into a guest with NPT enabled.
577  */
nested_svm_load_cr3(struct kvm_vcpu * vcpu,unsigned long cr3,bool nested_npt,bool reload_pdptrs)578 static int nested_svm_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3,
579 			       bool nested_npt, bool reload_pdptrs)
580 {
581 	if (CC(!kvm_vcpu_is_legal_cr3(vcpu, cr3)))
582 		return -EINVAL;
583 
584 	if (reload_pdptrs && !nested_npt && is_pae_paging(vcpu) &&
585 	    CC(!load_pdptrs(vcpu, cr3)))
586 		return -EINVAL;
587 
588 	vcpu->arch.cr3 = cr3;
589 
590 	/* Re-initialize the MMU, e.g. to pick up CR4 MMU role changes. */
591 	kvm_init_mmu(vcpu);
592 
593 	if (!nested_npt)
594 		kvm_mmu_new_pgd(vcpu, cr3);
595 
596 	return 0;
597 }
598 
nested_vmcb02_compute_g_pat(struct vcpu_svm * svm)599 void nested_vmcb02_compute_g_pat(struct vcpu_svm *svm)
600 {
601 	if (!svm->nested.vmcb02.ptr)
602 		return;
603 
604 	/* FIXME: merge g_pat from vmcb01 and vmcb12.  */
605 	svm->nested.vmcb02.ptr->save.g_pat = svm->vmcb01.ptr->save.g_pat;
606 }
607 
nested_vmcb02_prepare_save(struct vcpu_svm * svm,struct vmcb * vmcb12)608 static void nested_vmcb02_prepare_save(struct vcpu_svm *svm, struct vmcb *vmcb12)
609 {
610 	bool new_vmcb12 = false;
611 	struct vmcb *vmcb01 = svm->vmcb01.ptr;
612 	struct vmcb *vmcb02 = svm->nested.vmcb02.ptr;
613 	struct kvm_vcpu *vcpu = &svm->vcpu;
614 
615 	nested_vmcb02_compute_g_pat(svm);
616 
617 	/* Load the nested guest state */
618 	if (svm->nested.vmcb12_gpa != svm->nested.last_vmcb12_gpa) {
619 		new_vmcb12 = true;
620 		svm->nested.last_vmcb12_gpa = svm->nested.vmcb12_gpa;
621 		svm->nested.force_msr_bitmap_recalc = true;
622 	}
623 
624 	if (unlikely(new_vmcb12 || vmcb_is_dirty(vmcb12, VMCB_SEG))) {
625 		vmcb02->save.es = vmcb12->save.es;
626 		vmcb02->save.cs = vmcb12->save.cs;
627 		vmcb02->save.ss = vmcb12->save.ss;
628 		vmcb02->save.ds = vmcb12->save.ds;
629 		vmcb02->save.cpl = vmcb12->save.cpl;
630 		vmcb_mark_dirty(vmcb02, VMCB_SEG);
631 	}
632 
633 	if (unlikely(new_vmcb12 || vmcb_is_dirty(vmcb12, VMCB_DT))) {
634 		vmcb02->save.gdtr = vmcb12->save.gdtr;
635 		vmcb02->save.idtr = vmcb12->save.idtr;
636 		vmcb_mark_dirty(vmcb02, VMCB_DT);
637 	}
638 
639 	if (guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK) &&
640 	    (unlikely(new_vmcb12 || vmcb_is_dirty(vmcb12, VMCB_CET)))) {
641 		vmcb02->save.s_cet  = vmcb12->save.s_cet;
642 		vmcb02->save.isst_addr = vmcb12->save.isst_addr;
643 		vmcb02->save.ssp = vmcb12->save.ssp;
644 		vmcb_mark_dirty(vmcb02, VMCB_CET);
645 	}
646 
647 	kvm_set_rflags(vcpu, vmcb12->save.rflags | X86_EFLAGS_FIXED);
648 
649 	svm_set_efer(vcpu, svm->nested.save.efer);
650 
651 	svm_set_cr0(vcpu, svm->nested.save.cr0);
652 	svm_set_cr4(vcpu, svm->nested.save.cr4);
653 
654 	svm->vcpu.arch.cr2 = vmcb12->save.cr2;
655 
656 	kvm_rax_write(vcpu, vmcb12->save.rax);
657 	kvm_rsp_write(vcpu, vmcb12->save.rsp);
658 	kvm_rip_write(vcpu, vmcb12->save.rip);
659 
660 	/* In case we don't even reach vcpu_run, the fields are not updated */
661 	vmcb02->save.rax = vmcb12->save.rax;
662 	vmcb02->save.rsp = vmcb12->save.rsp;
663 	vmcb02->save.rip = vmcb12->save.rip;
664 
665 	/* These bits will be set properly on the first execution when new_vmc12 is true */
666 	if (unlikely(new_vmcb12 || vmcb_is_dirty(vmcb12, VMCB_DR))) {
667 		vmcb02->save.dr7 = svm->nested.save.dr7 | DR7_FIXED_1;
668 		svm->vcpu.arch.dr6  = svm->nested.save.dr6 | DR6_ACTIVE_LOW;
669 		vmcb_mark_dirty(vmcb02, VMCB_DR);
670 	}
671 
672 	if (unlikely(guest_cpu_cap_has(vcpu, X86_FEATURE_LBRV) &&
673 		     (svm->nested.ctl.virt_ext & LBR_CTL_ENABLE_MASK))) {
674 		/*
675 		 * Reserved bits of DEBUGCTL are ignored.  Be consistent with
676 		 * svm_set_msr's definition of reserved bits.
677 		 */
678 		svm_copy_lbrs(vmcb02, vmcb12);
679 		vmcb02->save.dbgctl &= ~DEBUGCTL_RESERVED_BITS;
680 	} else {
681 		svm_copy_lbrs(vmcb02, vmcb01);
682 	}
683 	svm_update_lbrv(&svm->vcpu);
684 }
685 
is_evtinj_soft(u32 evtinj)686 static inline bool is_evtinj_soft(u32 evtinj)
687 {
688 	u32 type = evtinj & SVM_EVTINJ_TYPE_MASK;
689 	u8 vector = evtinj & SVM_EVTINJ_VEC_MASK;
690 
691 	if (!(evtinj & SVM_EVTINJ_VALID))
692 		return false;
693 
694 	if (type == SVM_EVTINJ_TYPE_SOFT)
695 		return true;
696 
697 	return type == SVM_EVTINJ_TYPE_EXEPT && kvm_exception_is_soft(vector);
698 }
699 
is_evtinj_nmi(u32 evtinj)700 static bool is_evtinj_nmi(u32 evtinj)
701 {
702 	u32 type = evtinj & SVM_EVTINJ_TYPE_MASK;
703 
704 	if (!(evtinj & SVM_EVTINJ_VALID))
705 		return false;
706 
707 	return type == SVM_EVTINJ_TYPE_NMI;
708 }
709 
nested_vmcb02_prepare_control(struct vcpu_svm * svm,unsigned long vmcb12_rip,unsigned long vmcb12_csbase)710 static void nested_vmcb02_prepare_control(struct vcpu_svm *svm,
711 					  unsigned long vmcb12_rip,
712 					  unsigned long vmcb12_csbase)
713 {
714 	u32 int_ctl_vmcb01_bits = V_INTR_MASKING_MASK;
715 	u32 int_ctl_vmcb12_bits = V_TPR_MASK | V_IRQ_INJECTION_BITS_MASK;
716 
717 	struct kvm_vcpu *vcpu = &svm->vcpu;
718 	struct vmcb *vmcb01 = svm->vmcb01.ptr;
719 	struct vmcb *vmcb02 = svm->nested.vmcb02.ptr;
720 	u32 pause_count12;
721 	u32 pause_thresh12;
722 
723 	nested_svm_transition_tlb_flush(vcpu);
724 
725 	/* Enter Guest-Mode */
726 	enter_guest_mode(vcpu);
727 
728 	/*
729 	 * Filled at exit: exit_code, exit_code_hi, exit_info_1, exit_info_2,
730 	 * exit_int_info, exit_int_info_err, next_rip, insn_len, insn_bytes.
731 	 */
732 
733 	if (guest_cpu_cap_has(vcpu, X86_FEATURE_VGIF) &&
734 	    (svm->nested.ctl.int_ctl & V_GIF_ENABLE_MASK))
735 		int_ctl_vmcb12_bits |= (V_GIF_MASK | V_GIF_ENABLE_MASK);
736 	else
737 		int_ctl_vmcb01_bits |= (V_GIF_MASK | V_GIF_ENABLE_MASK);
738 
739 	if (vnmi) {
740 		if (vmcb01->control.int_ctl & V_NMI_PENDING_MASK) {
741 			svm->vcpu.arch.nmi_pending++;
742 			kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
743 		}
744 		if (nested_vnmi_enabled(svm))
745 			int_ctl_vmcb12_bits |= (V_NMI_PENDING_MASK |
746 						V_NMI_ENABLE_MASK |
747 						V_NMI_BLOCKING_MASK);
748 	}
749 
750 	/* Copied from vmcb01.  msrpm_base can be overwritten later.  */
751 	vmcb02->control.nested_ctl = vmcb01->control.nested_ctl;
752 	vmcb02->control.iopm_base_pa = vmcb01->control.iopm_base_pa;
753 	vmcb02->control.msrpm_base_pa = vmcb01->control.msrpm_base_pa;
754 
755 	/*
756 	 * Stash vmcb02's counter if the guest hasn't moved past the guilty
757 	 * instruction; otherwise, reset the counter to '0'.
758 	 *
759 	 * In order to detect if L2 has made forward progress or not, track the
760 	 * RIP at which a bus lock has occurred on a per-vmcb12 basis.  If RIP
761 	 * is changed, guest has clearly made forward progress, bus_lock_counter
762 	 * still remained '1', so reset bus_lock_counter to '0'. Eg. In the
763 	 * scenario, where a buslock happened in L1 before VMRUN, the bus lock
764 	 * firmly happened on an instruction in the past. Even if vmcb01's
765 	 * counter is still '1', (because the guilty instruction got patched),
766 	 * the vCPU has clearly made forward progress and so KVM should reset
767 	 * vmcb02's counter to '0'.
768 	 *
769 	 * If the RIP hasn't changed, stash the bus lock counter at nested VMRUN
770 	 * to prevent the same guilty instruction from triggering a VM-Exit. Eg.
771 	 * if userspace rate-limits the vCPU, then it's entirely possible that
772 	 * L1's tick interrupt is pending by the time userspace re-runs the
773 	 * vCPU.  If KVM unconditionally clears the counter on VMRUN, then when
774 	 * L1 re-enters L2, the same instruction will trigger a VM-Exit and the
775 	 * entire cycle start over.
776 	 */
777 	if (vmcb02->save.rip && (svm->nested.ctl.bus_lock_rip == vmcb02->save.rip))
778 		vmcb02->control.bus_lock_counter = 1;
779 	else
780 		vmcb02->control.bus_lock_counter = 0;
781 
782 	/* Done at vmrun: asid.  */
783 
784 	/* Also overwritten later if necessary.  */
785 	vmcb02->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
786 
787 	/* nested_cr3.  */
788 	if (nested_npt_enabled(svm))
789 		nested_svm_init_mmu_context(vcpu);
790 
791 	vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
792 			vcpu->arch.l1_tsc_offset,
793 			svm->nested.ctl.tsc_offset,
794 			svm->tsc_ratio_msr);
795 
796 	vmcb02->control.tsc_offset = vcpu->arch.tsc_offset;
797 
798 	if (guest_cpu_cap_has(vcpu, X86_FEATURE_TSCRATEMSR) &&
799 	    svm->tsc_ratio_msr != kvm_caps.default_tsc_scaling_ratio)
800 		nested_svm_update_tsc_ratio_msr(vcpu);
801 
802 	vmcb02->control.int_ctl             =
803 		(svm->nested.ctl.int_ctl & int_ctl_vmcb12_bits) |
804 		(vmcb01->control.int_ctl & int_ctl_vmcb01_bits);
805 
806 	vmcb02->control.int_vector          = svm->nested.ctl.int_vector;
807 	vmcb02->control.int_state           = svm->nested.ctl.int_state;
808 	vmcb02->control.event_inj           = svm->nested.ctl.event_inj;
809 	vmcb02->control.event_inj_err       = svm->nested.ctl.event_inj_err;
810 
811 	/*
812 	 * next_rip is consumed on VMRUN as the return address pushed on the
813 	 * stack for injected soft exceptions/interrupts.  If nrips is exposed
814 	 * to L1, take it verbatim from vmcb12.  If nrips is supported in
815 	 * hardware but not exposed to L1, stuff the actual L2 RIP to emulate
816 	 * what a nrips=0 CPU would do (L1 is responsible for advancing RIP
817 	 * prior to injecting the event).
818 	 */
819 	if (guest_cpu_cap_has(vcpu, X86_FEATURE_NRIPS))
820 		vmcb02->control.next_rip    = svm->nested.ctl.next_rip;
821 	else if (boot_cpu_has(X86_FEATURE_NRIPS))
822 		vmcb02->control.next_rip    = vmcb12_rip;
823 
824 	svm->nmi_l1_to_l2 = is_evtinj_nmi(vmcb02->control.event_inj);
825 	if (is_evtinj_soft(vmcb02->control.event_inj)) {
826 		svm->soft_int_injected = true;
827 		svm->soft_int_csbase = vmcb12_csbase;
828 		svm->soft_int_old_rip = vmcb12_rip;
829 		if (guest_cpu_cap_has(vcpu, X86_FEATURE_NRIPS))
830 			svm->soft_int_next_rip = svm->nested.ctl.next_rip;
831 		else
832 			svm->soft_int_next_rip = vmcb12_rip;
833 	}
834 
835 	/* LBR_CTL_ENABLE_MASK is controlled by svm_update_lbrv() */
836 
837 	if (!nested_vmcb_needs_vls_intercept(svm))
838 		vmcb02->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
839 
840 	if (guest_cpu_cap_has(vcpu, X86_FEATURE_PAUSEFILTER))
841 		pause_count12 = svm->nested.ctl.pause_filter_count;
842 	else
843 		pause_count12 = 0;
844 	if (guest_cpu_cap_has(vcpu, X86_FEATURE_PFTHRESHOLD))
845 		pause_thresh12 = svm->nested.ctl.pause_filter_thresh;
846 	else
847 		pause_thresh12 = 0;
848 	if (kvm_pause_in_guest(svm->vcpu.kvm)) {
849 		/* use guest values since host doesn't intercept PAUSE */
850 		vmcb02->control.pause_filter_count = pause_count12;
851 		vmcb02->control.pause_filter_thresh = pause_thresh12;
852 
853 	} else {
854 		/* start from host values otherwise */
855 		vmcb02->control.pause_filter_count = vmcb01->control.pause_filter_count;
856 		vmcb02->control.pause_filter_thresh = vmcb01->control.pause_filter_thresh;
857 
858 		/* ... but ensure filtering is disabled if so requested.  */
859 		if (vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_PAUSE)) {
860 			if (!pause_count12)
861 				vmcb02->control.pause_filter_count = 0;
862 			if (!pause_thresh12)
863 				vmcb02->control.pause_filter_thresh = 0;
864 		}
865 	}
866 
867 	/*
868 	 * Merge guest and host intercepts - must be called with vcpu in
869 	 * guest-mode to take effect.
870 	 */
871 	recalc_intercepts(svm);
872 }
873 
nested_svm_copy_common_state(struct vmcb * from_vmcb,struct vmcb * to_vmcb)874 static void nested_svm_copy_common_state(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
875 {
876 	/*
877 	 * Some VMCB state is shared between L1 and L2 and thus has to be
878 	 * moved at the time of nested vmrun and vmexit.
879 	 *
880 	 * VMLOAD/VMSAVE state would also belong in this category, but KVM
881 	 * always performs VMLOAD and VMSAVE from the VMCB01.
882 	 */
883 	to_vmcb->save.spec_ctrl = from_vmcb->save.spec_ctrl;
884 }
885 
enter_svm_guest_mode(struct kvm_vcpu * vcpu,u64 vmcb12_gpa,struct vmcb * vmcb12,bool from_vmrun)886 int enter_svm_guest_mode(struct kvm_vcpu *vcpu, u64 vmcb12_gpa,
887 			 struct vmcb *vmcb12, bool from_vmrun)
888 {
889 	struct vcpu_svm *svm = to_svm(vcpu);
890 	int ret;
891 
892 	trace_kvm_nested_vmenter(svm->vmcb->save.rip,
893 				 vmcb12_gpa,
894 				 vmcb12->save.rip,
895 				 vmcb12->control.int_ctl,
896 				 vmcb12->control.event_inj,
897 				 vmcb12->control.nested_ctl,
898 				 vmcb12->control.nested_cr3,
899 				 vmcb12->save.cr3,
900 				 KVM_ISA_SVM);
901 
902 	trace_kvm_nested_intercepts(vmcb12->control.intercepts[INTERCEPT_CR] & 0xffff,
903 				    vmcb12->control.intercepts[INTERCEPT_CR] >> 16,
904 				    vmcb12->control.intercepts[INTERCEPT_EXCEPTION],
905 				    vmcb12->control.intercepts[INTERCEPT_WORD3],
906 				    vmcb12->control.intercepts[INTERCEPT_WORD4],
907 				    vmcb12->control.intercepts[INTERCEPT_WORD5]);
908 
909 
910 	svm->nested.vmcb12_gpa = vmcb12_gpa;
911 
912 	WARN_ON(svm->vmcb == svm->nested.vmcb02.ptr);
913 
914 	nested_svm_copy_common_state(svm->vmcb01.ptr, svm->nested.vmcb02.ptr);
915 
916 	svm_switch_vmcb(svm, &svm->nested.vmcb02);
917 	nested_vmcb02_prepare_control(svm, vmcb12->save.rip, vmcb12->save.cs.base);
918 	nested_vmcb02_prepare_save(svm, vmcb12);
919 
920 	ret = nested_svm_load_cr3(&svm->vcpu, svm->nested.save.cr3,
921 				  nested_npt_enabled(svm), from_vmrun);
922 	if (ret)
923 		return ret;
924 
925 	if (!from_vmrun)
926 		kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
927 
928 	svm_set_gif(svm, true);
929 
930 	if (kvm_vcpu_apicv_active(vcpu))
931 		kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
932 
933 	nested_svm_hv_update_vm_vp_ids(vcpu);
934 
935 	return 0;
936 }
937 
nested_svm_vmrun(struct kvm_vcpu * vcpu)938 int nested_svm_vmrun(struct kvm_vcpu *vcpu)
939 {
940 	struct vcpu_svm *svm = to_svm(vcpu);
941 	int ret;
942 	struct vmcb *vmcb12;
943 	struct kvm_host_map map;
944 	u64 vmcb12_gpa;
945 	struct vmcb *vmcb01 = svm->vmcb01.ptr;
946 
947 	if (!svm->nested.hsave_msr) {
948 		kvm_inject_gp(vcpu, 0);
949 		return 1;
950 	}
951 
952 	if (is_smm(vcpu)) {
953 		kvm_queue_exception(vcpu, UD_VECTOR);
954 		return 1;
955 	}
956 
957 	/* This fails when VP assist page is enabled but the supplied GPA is bogus */
958 	ret = kvm_hv_verify_vp_assist(vcpu);
959 	if (ret) {
960 		kvm_inject_gp(vcpu, 0);
961 		return ret;
962 	}
963 
964 	vmcb12_gpa = svm->vmcb->save.rax;
965 	ret = kvm_vcpu_map(vcpu, gpa_to_gfn(vmcb12_gpa), &map);
966 	if (ret == -EINVAL) {
967 		kvm_inject_gp(vcpu, 0);
968 		return 1;
969 	} else if (ret) {
970 		return kvm_skip_emulated_instruction(vcpu);
971 	}
972 
973 	ret = kvm_skip_emulated_instruction(vcpu);
974 
975 	vmcb12 = map.hva;
976 
977 	if (WARN_ON_ONCE(!svm->nested.initialized))
978 		return -EINVAL;
979 
980 	nested_copy_vmcb_control_to_cache(svm, &vmcb12->control);
981 	nested_copy_vmcb_save_to_cache(svm, &vmcb12->save);
982 
983 	if (!nested_vmcb_check_save(vcpu) ||
984 	    !nested_vmcb_check_controls(vcpu)) {
985 		vmcb12->control.exit_code    = SVM_EXIT_ERR;
986 		vmcb12->control.exit_code_hi = 0;
987 		vmcb12->control.exit_info_1  = 0;
988 		vmcb12->control.exit_info_2  = 0;
989 		goto out;
990 	}
991 
992 	/*
993 	 * Since vmcb01 is not in use, we can use it to store some of the L1
994 	 * state.
995 	 */
996 	vmcb01->save.efer   = vcpu->arch.efer;
997 	vmcb01->save.cr0    = kvm_read_cr0(vcpu);
998 	vmcb01->save.cr4    = vcpu->arch.cr4;
999 	vmcb01->save.rflags = kvm_get_rflags(vcpu);
1000 	vmcb01->save.rip    = kvm_rip_read(vcpu);
1001 
1002 	if (!npt_enabled)
1003 		vmcb01->save.cr3 = kvm_read_cr3(vcpu);
1004 
1005 	svm->nested.nested_run_pending = 1;
1006 
1007 	if (enter_svm_guest_mode(vcpu, vmcb12_gpa, vmcb12, true))
1008 		goto out_exit_err;
1009 
1010 	if (nested_svm_merge_msrpm(vcpu))
1011 		goto out;
1012 
1013 out_exit_err:
1014 	svm->nested.nested_run_pending = 0;
1015 	svm->nmi_l1_to_l2 = false;
1016 	svm->soft_int_injected = false;
1017 
1018 	svm->vmcb->control.exit_code    = SVM_EXIT_ERR;
1019 	svm->vmcb->control.exit_code_hi = 0;
1020 	svm->vmcb->control.exit_info_1  = 0;
1021 	svm->vmcb->control.exit_info_2  = 0;
1022 
1023 	nested_svm_vmexit(svm);
1024 
1025 out:
1026 	kvm_vcpu_unmap(vcpu, &map);
1027 
1028 	return ret;
1029 }
1030 
1031 /* Copy state save area fields which are handled by VMRUN */
svm_copy_vmrun_state(struct vmcb_save_area * to_save,struct vmcb_save_area * from_save)1032 void svm_copy_vmrun_state(struct vmcb_save_area *to_save,
1033 			  struct vmcb_save_area *from_save)
1034 {
1035 	to_save->es = from_save->es;
1036 	to_save->cs = from_save->cs;
1037 	to_save->ss = from_save->ss;
1038 	to_save->ds = from_save->ds;
1039 	to_save->gdtr = from_save->gdtr;
1040 	to_save->idtr = from_save->idtr;
1041 	to_save->rflags = from_save->rflags | X86_EFLAGS_FIXED;
1042 	to_save->efer = from_save->efer;
1043 	to_save->cr0 = from_save->cr0;
1044 	to_save->cr3 = from_save->cr3;
1045 	to_save->cr4 = from_save->cr4;
1046 	to_save->rax = from_save->rax;
1047 	to_save->rsp = from_save->rsp;
1048 	to_save->rip = from_save->rip;
1049 	to_save->cpl = 0;
1050 
1051 	if (kvm_cpu_cap_has(X86_FEATURE_SHSTK)) {
1052 		to_save->s_cet  = from_save->s_cet;
1053 		to_save->isst_addr = from_save->isst_addr;
1054 		to_save->ssp = from_save->ssp;
1055 	}
1056 }
1057 
svm_copy_vmloadsave_state(struct vmcb * to_vmcb,struct vmcb * from_vmcb)1058 void svm_copy_vmloadsave_state(struct vmcb *to_vmcb, struct vmcb *from_vmcb)
1059 {
1060 	to_vmcb->save.fs = from_vmcb->save.fs;
1061 	to_vmcb->save.gs = from_vmcb->save.gs;
1062 	to_vmcb->save.tr = from_vmcb->save.tr;
1063 	to_vmcb->save.ldtr = from_vmcb->save.ldtr;
1064 	to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
1065 	to_vmcb->save.star = from_vmcb->save.star;
1066 	to_vmcb->save.lstar = from_vmcb->save.lstar;
1067 	to_vmcb->save.cstar = from_vmcb->save.cstar;
1068 	to_vmcb->save.sfmask = from_vmcb->save.sfmask;
1069 	to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
1070 	to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
1071 	to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
1072 }
1073 
nested_svm_vmexit(struct vcpu_svm * svm)1074 int nested_svm_vmexit(struct vcpu_svm *svm)
1075 {
1076 	struct kvm_vcpu *vcpu = &svm->vcpu;
1077 	struct vmcb *vmcb01 = svm->vmcb01.ptr;
1078 	struct vmcb *vmcb02 = svm->nested.vmcb02.ptr;
1079 	struct vmcb *vmcb12;
1080 	struct kvm_host_map map;
1081 	int rc;
1082 
1083 	rc = kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.vmcb12_gpa), &map);
1084 	if (rc) {
1085 		if (rc == -EINVAL)
1086 			kvm_inject_gp(vcpu, 0);
1087 		return 1;
1088 	}
1089 
1090 	vmcb12 = map.hva;
1091 
1092 	/* Exit Guest-Mode */
1093 	leave_guest_mode(vcpu);
1094 	svm->nested.vmcb12_gpa = 0;
1095 	WARN_ON_ONCE(svm->nested.nested_run_pending);
1096 
1097 	kvm_clear_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
1098 
1099 	/* in case we halted in L2 */
1100 	kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE);
1101 
1102 	/* Give the current vmcb to the guest */
1103 
1104 	vmcb12->save.es     = vmcb02->save.es;
1105 	vmcb12->save.cs     = vmcb02->save.cs;
1106 	vmcb12->save.ss     = vmcb02->save.ss;
1107 	vmcb12->save.ds     = vmcb02->save.ds;
1108 	vmcb12->save.gdtr   = vmcb02->save.gdtr;
1109 	vmcb12->save.idtr   = vmcb02->save.idtr;
1110 	vmcb12->save.efer   = svm->vcpu.arch.efer;
1111 	vmcb12->save.cr0    = kvm_read_cr0(vcpu);
1112 	vmcb12->save.cr3    = kvm_read_cr3(vcpu);
1113 	vmcb12->save.cr2    = vmcb02->save.cr2;
1114 	vmcb12->save.cr4    = svm->vcpu.arch.cr4;
1115 	vmcb12->save.rflags = kvm_get_rflags(vcpu);
1116 	vmcb12->save.rip    = kvm_rip_read(vcpu);
1117 	vmcb12->save.rsp    = kvm_rsp_read(vcpu);
1118 	vmcb12->save.rax    = kvm_rax_read(vcpu);
1119 	vmcb12->save.dr7    = vmcb02->save.dr7;
1120 	vmcb12->save.dr6    = svm->vcpu.arch.dr6;
1121 	vmcb12->save.cpl    = vmcb02->save.cpl;
1122 
1123 	if (guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK)) {
1124 		vmcb12->save.s_cet	= vmcb02->save.s_cet;
1125 		vmcb12->save.isst_addr	= vmcb02->save.isst_addr;
1126 		vmcb12->save.ssp	= vmcb02->save.ssp;
1127 	}
1128 
1129 	vmcb12->control.int_state         = vmcb02->control.int_state;
1130 	vmcb12->control.exit_code         = vmcb02->control.exit_code;
1131 	vmcb12->control.exit_code_hi      = vmcb02->control.exit_code_hi;
1132 	vmcb12->control.exit_info_1       = vmcb02->control.exit_info_1;
1133 	vmcb12->control.exit_info_2       = vmcb02->control.exit_info_2;
1134 
1135 	if (vmcb12->control.exit_code != SVM_EXIT_ERR)
1136 		nested_save_pending_event_to_vmcb12(svm, vmcb12);
1137 
1138 	if (guest_cpu_cap_has(vcpu, X86_FEATURE_NRIPS))
1139 		vmcb12->control.next_rip  = vmcb02->control.next_rip;
1140 
1141 	vmcb12->control.int_ctl           = svm->nested.ctl.int_ctl;
1142 	vmcb12->control.event_inj         = svm->nested.ctl.event_inj;
1143 	vmcb12->control.event_inj_err     = svm->nested.ctl.event_inj_err;
1144 
1145 	if (!kvm_pause_in_guest(vcpu->kvm)) {
1146 		vmcb01->control.pause_filter_count = vmcb02->control.pause_filter_count;
1147 		vmcb_mark_dirty(vmcb01, VMCB_INTERCEPTS);
1148 
1149 	}
1150 
1151 	/*
1152 	 * Invalidate bus_lock_rip unless KVM is still waiting for the guest
1153 	 * to make forward progress before re-enabling bus lock detection.
1154 	 */
1155 	if (!vmcb02->control.bus_lock_counter)
1156 		svm->nested.ctl.bus_lock_rip = INVALID_GPA;
1157 
1158 	nested_svm_copy_common_state(svm->nested.vmcb02.ptr, svm->vmcb01.ptr);
1159 
1160 	kvm_nested_vmexit_handle_ibrs(vcpu);
1161 
1162 	svm_switch_vmcb(svm, &svm->vmcb01);
1163 
1164 	/*
1165 	 * Rules for synchronizing int_ctl bits from vmcb02 to vmcb01:
1166 	 *
1167 	 * V_IRQ, V_IRQ_VECTOR, V_INTR_PRIO_MASK, V_IGN_TPR:  If L1 doesn't
1168 	 * intercept interrupts, then KVM will use vmcb02's V_IRQ (and related
1169 	 * flags) to detect interrupt windows for L1 IRQs (even if L1 uses
1170 	 * virtual interrupt masking).  Raise KVM_REQ_EVENT to ensure that
1171 	 * KVM re-requests an interrupt window if necessary, which implicitly
1172 	 * copies this bits from vmcb02 to vmcb01.
1173 	 *
1174 	 * V_TPR: If L1 doesn't use virtual interrupt masking, then L1's vTPR
1175 	 * is stored in vmcb02, but its value doesn't need to be copied from/to
1176 	 * vmcb01 because it is copied from/to the virtual APIC's TPR register
1177 	 * on each VM entry/exit.
1178 	 *
1179 	 * V_GIF: If nested vGIF is not used, KVM uses vmcb02's V_GIF for L1's
1180 	 * V_GIF.  However, GIF is architecturally clear on each VM exit, thus
1181 	 * there is no need to copy V_GIF from vmcb02 to vmcb01.
1182 	 */
1183 	if (!nested_exit_on_intr(svm))
1184 		kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
1185 
1186 	if (unlikely(guest_cpu_cap_has(vcpu, X86_FEATURE_LBRV) &&
1187 		     (svm->nested.ctl.virt_ext & LBR_CTL_ENABLE_MASK)))
1188 		svm_copy_lbrs(vmcb12, vmcb02);
1189 	else
1190 		svm_copy_lbrs(vmcb01, vmcb02);
1191 
1192 	svm_update_lbrv(vcpu);
1193 
1194 	if (vnmi) {
1195 		if (vmcb02->control.int_ctl & V_NMI_BLOCKING_MASK)
1196 			vmcb01->control.int_ctl |= V_NMI_BLOCKING_MASK;
1197 		else
1198 			vmcb01->control.int_ctl &= ~V_NMI_BLOCKING_MASK;
1199 
1200 		if (vcpu->arch.nmi_pending) {
1201 			vcpu->arch.nmi_pending--;
1202 			vmcb01->control.int_ctl |= V_NMI_PENDING_MASK;
1203 		} else {
1204 			vmcb01->control.int_ctl &= ~V_NMI_PENDING_MASK;
1205 		}
1206 	}
1207 
1208 	/*
1209 	 * On vmexit the  GIF is set to false and
1210 	 * no event can be injected in L1.
1211 	 */
1212 	svm_set_gif(svm, false);
1213 	vmcb01->control.exit_int_info = 0;
1214 
1215 	svm->vcpu.arch.tsc_offset = svm->vcpu.arch.l1_tsc_offset;
1216 	if (vmcb01->control.tsc_offset != svm->vcpu.arch.tsc_offset) {
1217 		vmcb01->control.tsc_offset = svm->vcpu.arch.tsc_offset;
1218 		vmcb_mark_dirty(vmcb01, VMCB_INTERCEPTS);
1219 	}
1220 
1221 	if (kvm_caps.has_tsc_control &&
1222 	    vcpu->arch.tsc_scaling_ratio != vcpu->arch.l1_tsc_scaling_ratio) {
1223 		vcpu->arch.tsc_scaling_ratio = vcpu->arch.l1_tsc_scaling_ratio;
1224 		svm_write_tsc_multiplier(vcpu);
1225 	}
1226 
1227 	svm->nested.ctl.nested_cr3 = 0;
1228 
1229 	/*
1230 	 * Restore processor state that had been saved in vmcb01
1231 	 */
1232 	kvm_set_rflags(vcpu, vmcb01->save.rflags);
1233 	svm_set_efer(vcpu, vmcb01->save.efer);
1234 	svm_set_cr0(vcpu, vmcb01->save.cr0 | X86_CR0_PE);
1235 	svm_set_cr4(vcpu, vmcb01->save.cr4);
1236 	kvm_rax_write(vcpu, vmcb01->save.rax);
1237 	kvm_rsp_write(vcpu, vmcb01->save.rsp);
1238 	kvm_rip_write(vcpu, vmcb01->save.rip);
1239 
1240 	svm->vcpu.arch.dr7 = DR7_FIXED_1;
1241 	kvm_update_dr7(&svm->vcpu);
1242 
1243 	trace_kvm_nested_vmexit_inject(vmcb12->control.exit_code,
1244 				       vmcb12->control.exit_info_1,
1245 				       vmcb12->control.exit_info_2,
1246 				       vmcb12->control.exit_int_info,
1247 				       vmcb12->control.exit_int_info_err,
1248 				       KVM_ISA_SVM);
1249 
1250 	kvm_vcpu_unmap(vcpu, &map);
1251 
1252 	nested_svm_transition_tlb_flush(vcpu);
1253 
1254 	nested_svm_uninit_mmu_context(vcpu);
1255 
1256 	rc = nested_svm_load_cr3(vcpu, vmcb01->save.cr3, false, true);
1257 	if (rc)
1258 		return 1;
1259 
1260 	/*
1261 	 * Drop what we picked up for L2 via svm_complete_interrupts() so it
1262 	 * doesn't end up in L1.
1263 	 */
1264 	svm->vcpu.arch.nmi_injected = false;
1265 	kvm_clear_exception_queue(vcpu);
1266 	kvm_clear_interrupt_queue(vcpu);
1267 
1268 	/*
1269 	 * If we are here following the completion of a VMRUN that
1270 	 * is being single-stepped, queue the pending #DB intercept
1271 	 * right now so that it an be accounted for before we execute
1272 	 * L1's next instruction.
1273 	 */
1274 	if (unlikely(vmcb01->save.rflags & X86_EFLAGS_TF))
1275 		kvm_queue_exception(&(svm->vcpu), DB_VECTOR);
1276 
1277 	/*
1278 	 * Un-inhibit the AVIC right away, so that other vCPUs can start
1279 	 * to benefit from it right away.
1280 	 */
1281 	if (kvm_apicv_activated(vcpu->kvm))
1282 		__kvm_vcpu_update_apicv(vcpu);
1283 
1284 	return 0;
1285 }
1286 
nested_svm_triple_fault(struct kvm_vcpu * vcpu)1287 static void nested_svm_triple_fault(struct kvm_vcpu *vcpu)
1288 {
1289 	struct vcpu_svm *svm = to_svm(vcpu);
1290 
1291 	if (!vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_SHUTDOWN))
1292 		return;
1293 
1294 	kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
1295 	nested_svm_simple_vmexit(to_svm(vcpu), SVM_EXIT_SHUTDOWN);
1296 }
1297 
svm_allocate_nested(struct vcpu_svm * svm)1298 int svm_allocate_nested(struct vcpu_svm *svm)
1299 {
1300 	struct page *vmcb02_page;
1301 
1302 	if (svm->nested.initialized)
1303 		return 0;
1304 
1305 	vmcb02_page = snp_safe_alloc_page();
1306 	if (!vmcb02_page)
1307 		return -ENOMEM;
1308 	svm->nested.vmcb02.ptr = page_address(vmcb02_page);
1309 	svm->nested.vmcb02.pa = __sme_set(page_to_pfn(vmcb02_page) << PAGE_SHIFT);
1310 
1311 	svm->nested.msrpm = svm_vcpu_alloc_msrpm();
1312 	if (!svm->nested.msrpm)
1313 		goto err_free_vmcb02;
1314 
1315 	svm->nested.initialized = true;
1316 	return 0;
1317 
1318 err_free_vmcb02:
1319 	__free_page(vmcb02_page);
1320 	return -ENOMEM;
1321 }
1322 
svm_free_nested(struct vcpu_svm * svm)1323 void svm_free_nested(struct vcpu_svm *svm)
1324 {
1325 	if (!svm->nested.initialized)
1326 		return;
1327 
1328 	if (WARN_ON_ONCE(svm->vmcb != svm->vmcb01.ptr))
1329 		svm_switch_vmcb(svm, &svm->vmcb01);
1330 
1331 	svm_vcpu_free_msrpm(svm->nested.msrpm);
1332 	svm->nested.msrpm = NULL;
1333 
1334 	__free_page(virt_to_page(svm->nested.vmcb02.ptr));
1335 	svm->nested.vmcb02.ptr = NULL;
1336 
1337 	/*
1338 	 * When last_vmcb12_gpa matches the current vmcb12 gpa,
1339 	 * some vmcb12 fields are not loaded if they are marked clean
1340 	 * in the vmcb12, since in this case they are up to date already.
1341 	 *
1342 	 * When the vmcb02 is freed, this optimization becomes invalid.
1343 	 */
1344 	svm->nested.last_vmcb12_gpa = INVALID_GPA;
1345 
1346 	svm->nested.initialized = false;
1347 }
1348 
svm_leave_nested(struct kvm_vcpu * vcpu)1349 void svm_leave_nested(struct kvm_vcpu *vcpu)
1350 {
1351 	struct vcpu_svm *svm = to_svm(vcpu);
1352 
1353 	if (is_guest_mode(vcpu)) {
1354 		svm->nested.nested_run_pending = 0;
1355 		svm->nested.vmcb12_gpa = INVALID_GPA;
1356 
1357 		leave_guest_mode(vcpu);
1358 
1359 		svm_switch_vmcb(svm, &svm->vmcb01);
1360 
1361 		nested_svm_uninit_mmu_context(vcpu);
1362 		vmcb_mark_all_dirty(svm->vmcb);
1363 
1364 		if (kvm_apicv_activated(vcpu->kvm))
1365 			kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
1366 	}
1367 
1368 	kvm_clear_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
1369 }
1370 
nested_svm_exit_handled_msr(struct vcpu_svm * svm)1371 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
1372 {
1373 	gpa_t base = svm->nested.ctl.msrpm_base_pa;
1374 	int write, bit_nr;
1375 	u8 value, mask;
1376 	u32 msr;
1377 
1378 	if (!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_MSR_PROT)))
1379 		return NESTED_EXIT_HOST;
1380 
1381 	msr    = svm->vcpu.arch.regs[VCPU_REGS_RCX];
1382 	bit_nr = svm_msrpm_bit_nr(msr);
1383 	write  = svm->vmcb->control.exit_info_1 & 1;
1384 
1385 	if (bit_nr < 0)
1386 		return NESTED_EXIT_DONE;
1387 
1388 	if (kvm_vcpu_read_guest(&svm->vcpu, base + bit_nr / BITS_PER_BYTE,
1389 				&value, sizeof(value)))
1390 		return NESTED_EXIT_DONE;
1391 
1392 	mask = BIT(write) << (bit_nr & (BITS_PER_BYTE - 1));
1393 	return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
1394 }
1395 
nested_svm_intercept_ioio(struct vcpu_svm * svm)1396 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
1397 {
1398 	unsigned port, size, iopm_len;
1399 	u16 val, mask;
1400 	u8 start_bit;
1401 	u64 gpa;
1402 
1403 	if (!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_IOIO_PROT)))
1404 		return NESTED_EXIT_HOST;
1405 
1406 	port = svm->vmcb->control.exit_info_1 >> 16;
1407 	size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >>
1408 		SVM_IOIO_SIZE_SHIFT;
1409 	gpa  = svm->nested.ctl.iopm_base_pa + (port / 8);
1410 	start_bit = port % 8;
1411 	iopm_len = (start_bit + size > 8) ? 2 : 1;
1412 	mask = (0xf >> (4 - size)) << start_bit;
1413 	val = 0;
1414 
1415 	if (kvm_vcpu_read_guest(&svm->vcpu, gpa, &val, iopm_len))
1416 		return NESTED_EXIT_DONE;
1417 
1418 	return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
1419 }
1420 
nested_svm_intercept(struct vcpu_svm * svm)1421 static int nested_svm_intercept(struct vcpu_svm *svm)
1422 {
1423 	u32 exit_code = svm->vmcb->control.exit_code;
1424 	int vmexit = NESTED_EXIT_HOST;
1425 
1426 	switch (exit_code) {
1427 	case SVM_EXIT_MSR:
1428 		vmexit = nested_svm_exit_handled_msr(svm);
1429 		break;
1430 	case SVM_EXIT_IOIO:
1431 		vmexit = nested_svm_intercept_ioio(svm);
1432 		break;
1433 	case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
1434 		if (vmcb12_is_intercept(&svm->nested.ctl, exit_code))
1435 			vmexit = NESTED_EXIT_DONE;
1436 		break;
1437 	}
1438 	case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
1439 		if (vmcb12_is_intercept(&svm->nested.ctl, exit_code))
1440 			vmexit = NESTED_EXIT_DONE;
1441 		break;
1442 	}
1443 	case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
1444 		/*
1445 		 * Host-intercepted exceptions have been checked already in
1446 		 * nested_svm_exit_special.  There is nothing to do here,
1447 		 * the vmexit is injected by svm_check_nested_events.
1448 		 */
1449 		vmexit = NESTED_EXIT_DONE;
1450 		break;
1451 	}
1452 	case SVM_EXIT_ERR: {
1453 		vmexit = NESTED_EXIT_DONE;
1454 		break;
1455 	}
1456 	default: {
1457 		if (vmcb12_is_intercept(&svm->nested.ctl, exit_code))
1458 			vmexit = NESTED_EXIT_DONE;
1459 	}
1460 	}
1461 
1462 	return vmexit;
1463 }
1464 
nested_svm_exit_handled(struct vcpu_svm * svm)1465 int nested_svm_exit_handled(struct vcpu_svm *svm)
1466 {
1467 	int vmexit;
1468 
1469 	vmexit = nested_svm_intercept(svm);
1470 
1471 	if (vmexit == NESTED_EXIT_DONE)
1472 		nested_svm_vmexit(svm);
1473 
1474 	return vmexit;
1475 }
1476 
nested_svm_check_permissions(struct kvm_vcpu * vcpu)1477 int nested_svm_check_permissions(struct kvm_vcpu *vcpu)
1478 {
1479 	if (!(vcpu->arch.efer & EFER_SVME) || !is_paging(vcpu)) {
1480 		kvm_queue_exception(vcpu, UD_VECTOR);
1481 		return 1;
1482 	}
1483 
1484 	if (to_svm(vcpu)->vmcb->save.cpl) {
1485 		kvm_inject_gp(vcpu, 0);
1486 		return 1;
1487 	}
1488 
1489 	return 0;
1490 }
1491 
nested_svm_is_exception_vmexit(struct kvm_vcpu * vcpu,u8 vector,u32 error_code)1492 static bool nested_svm_is_exception_vmexit(struct kvm_vcpu *vcpu, u8 vector,
1493 					   u32 error_code)
1494 {
1495 	struct vcpu_svm *svm = to_svm(vcpu);
1496 
1497 	return (svm->nested.ctl.intercepts[INTERCEPT_EXCEPTION] & BIT(vector));
1498 }
1499 
nested_svm_inject_exception_vmexit(struct kvm_vcpu * vcpu)1500 static void nested_svm_inject_exception_vmexit(struct kvm_vcpu *vcpu)
1501 {
1502 	struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit;
1503 	struct vcpu_svm *svm = to_svm(vcpu);
1504 	struct vmcb *vmcb = svm->vmcb;
1505 
1506 	vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + ex->vector;
1507 	vmcb->control.exit_code_hi = 0;
1508 
1509 	if (ex->has_error_code)
1510 		vmcb->control.exit_info_1 = ex->error_code;
1511 
1512 	/*
1513 	 * EXITINFO2 is undefined for all exception intercepts other
1514 	 * than #PF.
1515 	 */
1516 	if (ex->vector == PF_VECTOR) {
1517 		if (ex->has_payload)
1518 			vmcb->control.exit_info_2 = ex->payload;
1519 		else
1520 			vmcb->control.exit_info_2 = vcpu->arch.cr2;
1521 	} else if (ex->vector == DB_VECTOR) {
1522 		/* See kvm_check_and_inject_events().  */
1523 		kvm_deliver_exception_payload(vcpu, ex);
1524 
1525 		if (vcpu->arch.dr7 & DR7_GD) {
1526 			vcpu->arch.dr7 &= ~DR7_GD;
1527 			kvm_update_dr7(vcpu);
1528 		}
1529 	} else {
1530 		WARN_ON(ex->has_payload);
1531 	}
1532 
1533 	nested_svm_vmexit(svm);
1534 }
1535 
nested_exit_on_init(struct vcpu_svm * svm)1536 static inline bool nested_exit_on_init(struct vcpu_svm *svm)
1537 {
1538 	return vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_INIT);
1539 }
1540 
svm_check_nested_events(struct kvm_vcpu * vcpu)1541 static int svm_check_nested_events(struct kvm_vcpu *vcpu)
1542 {
1543 	struct kvm_lapic *apic = vcpu->arch.apic;
1544 	struct vcpu_svm *svm = to_svm(vcpu);
1545 	/*
1546 	 * Only a pending nested run blocks a pending exception.  If there is a
1547 	 * previously injected event, the pending exception occurred while said
1548 	 * event was being delivered and thus needs to be handled.
1549 	 */
1550 	bool block_nested_exceptions = svm->nested.nested_run_pending;
1551 	/*
1552 	 * New events (not exceptions) are only recognized at instruction
1553 	 * boundaries.  If an event needs reinjection, then KVM is handling a
1554 	 * VM-Exit that occurred _during_ instruction execution; new events are
1555 	 * blocked until the instruction completes.
1556 	 */
1557 	bool block_nested_events = block_nested_exceptions ||
1558 				   kvm_event_needs_reinjection(vcpu);
1559 
1560 	if (lapic_in_kernel(vcpu) &&
1561 	    test_bit(KVM_APIC_INIT, &apic->pending_events)) {
1562 		if (block_nested_events)
1563 			return -EBUSY;
1564 		if (!nested_exit_on_init(svm))
1565 			return 0;
1566 		nested_svm_simple_vmexit(svm, SVM_EXIT_INIT);
1567 		return 0;
1568 	}
1569 
1570 	if (vcpu->arch.exception_vmexit.pending) {
1571 		if (block_nested_exceptions)
1572                         return -EBUSY;
1573 		nested_svm_inject_exception_vmexit(vcpu);
1574 		return 0;
1575 	}
1576 
1577 	if (vcpu->arch.exception.pending) {
1578 		if (block_nested_exceptions)
1579 			return -EBUSY;
1580 		return 0;
1581 	}
1582 
1583 #ifdef CONFIG_KVM_SMM
1584 	if (vcpu->arch.smi_pending && !svm_smi_blocked(vcpu)) {
1585 		if (block_nested_events)
1586 			return -EBUSY;
1587 		if (!nested_exit_on_smi(svm))
1588 			return 0;
1589 		nested_svm_simple_vmexit(svm, SVM_EXIT_SMI);
1590 		return 0;
1591 	}
1592 #endif
1593 
1594 	if (vcpu->arch.nmi_pending && !svm_nmi_blocked(vcpu)) {
1595 		if (block_nested_events)
1596 			return -EBUSY;
1597 		if (!nested_exit_on_nmi(svm))
1598 			return 0;
1599 		nested_svm_simple_vmexit(svm, SVM_EXIT_NMI);
1600 		return 0;
1601 	}
1602 
1603 	if (kvm_cpu_has_interrupt(vcpu) && !svm_interrupt_blocked(vcpu)) {
1604 		if (block_nested_events)
1605 			return -EBUSY;
1606 		if (!nested_exit_on_intr(svm))
1607 			return 0;
1608 		trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
1609 		nested_svm_simple_vmexit(svm, SVM_EXIT_INTR);
1610 		return 0;
1611 	}
1612 
1613 	return 0;
1614 }
1615 
nested_svm_exit_special(struct vcpu_svm * svm)1616 int nested_svm_exit_special(struct vcpu_svm *svm)
1617 {
1618 	u32 exit_code = svm->vmcb->control.exit_code;
1619 	struct kvm_vcpu *vcpu = &svm->vcpu;
1620 
1621 	switch (exit_code) {
1622 	case SVM_EXIT_INTR:
1623 	case SVM_EXIT_NMI:
1624 	case SVM_EXIT_NPF:
1625 		return NESTED_EXIT_HOST;
1626 	case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
1627 		u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
1628 
1629 		if (svm->vmcb01.ptr->control.intercepts[INTERCEPT_EXCEPTION] &
1630 		    excp_bits)
1631 			return NESTED_EXIT_HOST;
1632 		else if (exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR &&
1633 			 svm->vcpu.arch.apf.host_apf_flags)
1634 			/* Trap async PF even if not shadowing */
1635 			return NESTED_EXIT_HOST;
1636 		break;
1637 	}
1638 	case SVM_EXIT_VMMCALL:
1639 		/* Hyper-V L2 TLB flush hypercall is handled by L0 */
1640 		if (guest_hv_cpuid_has_l2_tlb_flush(vcpu) &&
1641 		    nested_svm_l2_tlb_flush_enabled(vcpu) &&
1642 		    kvm_hv_is_tlb_flush_hcall(vcpu))
1643 			return NESTED_EXIT_HOST;
1644 		break;
1645 	default:
1646 		break;
1647 	}
1648 
1649 	return NESTED_EXIT_CONTINUE;
1650 }
1651 
nested_svm_update_tsc_ratio_msr(struct kvm_vcpu * vcpu)1652 void nested_svm_update_tsc_ratio_msr(struct kvm_vcpu *vcpu)
1653 {
1654 	struct vcpu_svm *svm = to_svm(vcpu);
1655 
1656 	vcpu->arch.tsc_scaling_ratio =
1657 		kvm_calc_nested_tsc_multiplier(vcpu->arch.l1_tsc_scaling_ratio,
1658 					       svm->tsc_ratio_msr);
1659 	svm_write_tsc_multiplier(vcpu);
1660 }
1661 
1662 /* Inverse operation of nested_copy_vmcb_control_to_cache(). asid is copied too. */
nested_copy_vmcb_cache_to_control(struct vmcb_control_area * dst,struct vmcb_ctrl_area_cached * from)1663 static void nested_copy_vmcb_cache_to_control(struct vmcb_control_area *dst,
1664 					      struct vmcb_ctrl_area_cached *from)
1665 {
1666 	unsigned int i;
1667 
1668 	memset(dst, 0, sizeof(struct vmcb_control_area));
1669 
1670 	for (i = 0; i < MAX_INTERCEPT; i++)
1671 		dst->intercepts[i] = from->intercepts[i];
1672 
1673 	dst->iopm_base_pa         = from->iopm_base_pa;
1674 	dst->msrpm_base_pa        = from->msrpm_base_pa;
1675 	dst->tsc_offset           = from->tsc_offset;
1676 	dst->asid                 = from->asid;
1677 	dst->tlb_ctl              = from->tlb_ctl;
1678 	dst->int_ctl              = from->int_ctl;
1679 	dst->int_vector           = from->int_vector;
1680 	dst->int_state            = from->int_state;
1681 	dst->exit_code            = from->exit_code;
1682 	dst->exit_code_hi         = from->exit_code_hi;
1683 	dst->exit_info_1          = from->exit_info_1;
1684 	dst->exit_info_2          = from->exit_info_2;
1685 	dst->exit_int_info        = from->exit_int_info;
1686 	dst->exit_int_info_err    = from->exit_int_info_err;
1687 	dst->nested_ctl           = from->nested_ctl;
1688 	dst->event_inj            = from->event_inj;
1689 	dst->event_inj_err        = from->event_inj_err;
1690 	dst->next_rip             = from->next_rip;
1691 	dst->nested_cr3           = from->nested_cr3;
1692 	dst->virt_ext              = from->virt_ext;
1693 	dst->pause_filter_count   = from->pause_filter_count;
1694 	dst->pause_filter_thresh  = from->pause_filter_thresh;
1695 	/* 'clean' and 'hv_enlightenments' are not changed by KVM */
1696 }
1697 
svm_get_nested_state(struct kvm_vcpu * vcpu,struct kvm_nested_state __user * user_kvm_nested_state,u32 user_data_size)1698 static int svm_get_nested_state(struct kvm_vcpu *vcpu,
1699 				struct kvm_nested_state __user *user_kvm_nested_state,
1700 				u32 user_data_size)
1701 {
1702 	struct vcpu_svm *svm;
1703 	struct vmcb_control_area *ctl;
1704 	unsigned long r;
1705 	struct kvm_nested_state kvm_state = {
1706 		.flags = 0,
1707 		.format = KVM_STATE_NESTED_FORMAT_SVM,
1708 		.size = sizeof(kvm_state),
1709 	};
1710 	struct vmcb __user *user_vmcb = (struct vmcb __user *)
1711 		&user_kvm_nested_state->data.svm[0];
1712 
1713 	if (!vcpu)
1714 		return kvm_state.size + KVM_STATE_NESTED_SVM_VMCB_SIZE;
1715 
1716 	svm = to_svm(vcpu);
1717 
1718 	if (user_data_size < kvm_state.size)
1719 		goto out;
1720 
1721 	/* First fill in the header and copy it out.  */
1722 	if (is_guest_mode(vcpu)) {
1723 		kvm_state.hdr.svm.vmcb_pa = svm->nested.vmcb12_gpa;
1724 		kvm_state.size += KVM_STATE_NESTED_SVM_VMCB_SIZE;
1725 		kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
1726 
1727 		if (svm->nested.nested_run_pending)
1728 			kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
1729 	}
1730 
1731 	if (gif_set(svm))
1732 		kvm_state.flags |= KVM_STATE_NESTED_GIF_SET;
1733 
1734 	if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
1735 		return -EFAULT;
1736 
1737 	if (!is_guest_mode(vcpu))
1738 		goto out;
1739 
1740 	/*
1741 	 * Copy over the full size of the VMCB rather than just the size
1742 	 * of the structs.
1743 	 */
1744 	if (clear_user(user_vmcb, KVM_STATE_NESTED_SVM_VMCB_SIZE))
1745 		return -EFAULT;
1746 
1747 	ctl = kzalloc(sizeof(*ctl), GFP_KERNEL);
1748 	if (!ctl)
1749 		return -ENOMEM;
1750 
1751 	nested_copy_vmcb_cache_to_control(ctl, &svm->nested.ctl);
1752 	r = copy_to_user(&user_vmcb->control, ctl,
1753 			 sizeof(user_vmcb->control));
1754 	kfree(ctl);
1755 	if (r)
1756 		return -EFAULT;
1757 
1758 	if (copy_to_user(&user_vmcb->save, &svm->vmcb01.ptr->save,
1759 			 sizeof(user_vmcb->save)))
1760 		return -EFAULT;
1761 out:
1762 	return kvm_state.size;
1763 }
1764 
svm_set_nested_state(struct kvm_vcpu * vcpu,struct kvm_nested_state __user * user_kvm_nested_state,struct kvm_nested_state * kvm_state)1765 static int svm_set_nested_state(struct kvm_vcpu *vcpu,
1766 				struct kvm_nested_state __user *user_kvm_nested_state,
1767 				struct kvm_nested_state *kvm_state)
1768 {
1769 	struct vcpu_svm *svm = to_svm(vcpu);
1770 	struct vmcb __user *user_vmcb = (struct vmcb __user *)
1771 		&user_kvm_nested_state->data.svm[0];
1772 	struct vmcb_control_area *ctl;
1773 	struct vmcb_save_area *save;
1774 	struct vmcb_save_area_cached save_cached;
1775 	struct vmcb_ctrl_area_cached ctl_cached;
1776 	unsigned long cr0;
1777 	int ret;
1778 
1779 	BUILD_BUG_ON(sizeof(struct vmcb_control_area) + sizeof(struct vmcb_save_area) >
1780 		     KVM_STATE_NESTED_SVM_VMCB_SIZE);
1781 
1782 	if (kvm_state->format != KVM_STATE_NESTED_FORMAT_SVM)
1783 		return -EINVAL;
1784 
1785 	if (kvm_state->flags & ~(KVM_STATE_NESTED_GUEST_MODE |
1786 				 KVM_STATE_NESTED_RUN_PENDING |
1787 				 KVM_STATE_NESTED_GIF_SET))
1788 		return -EINVAL;
1789 
1790 	/*
1791 	 * If in guest mode, vcpu->arch.efer actually refers to the L2 guest's
1792 	 * EFER.SVME, but EFER.SVME still has to be 1 for VMRUN to succeed.
1793 	 */
1794 	if (!(vcpu->arch.efer & EFER_SVME)) {
1795 		/* GIF=1 and no guest mode are required if SVME=0.  */
1796 		if (kvm_state->flags != KVM_STATE_NESTED_GIF_SET)
1797 			return -EINVAL;
1798 	}
1799 
1800 	/* SMM temporarily disables SVM, so we cannot be in guest mode.  */
1801 	if (is_smm(vcpu) && (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
1802 		return -EINVAL;
1803 
1804 	if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE)) {
1805 		svm_leave_nested(vcpu);
1806 		svm_set_gif(svm, !!(kvm_state->flags & KVM_STATE_NESTED_GIF_SET));
1807 		return 0;
1808 	}
1809 
1810 	if (!page_address_valid(vcpu, kvm_state->hdr.svm.vmcb_pa))
1811 		return -EINVAL;
1812 	if (kvm_state->size < sizeof(*kvm_state) + KVM_STATE_NESTED_SVM_VMCB_SIZE)
1813 		return -EINVAL;
1814 
1815 	ctl = memdup_user(&user_vmcb->control, sizeof(*ctl));
1816 	if (IS_ERR(ctl))
1817 		return PTR_ERR(ctl);
1818 
1819 	save = memdup_user(&user_vmcb->save, sizeof(*save));
1820 	if (IS_ERR(save)) {
1821 		kfree(ctl);
1822 		return PTR_ERR(save);
1823 	}
1824 
1825 	ret = -EINVAL;
1826 	__nested_copy_vmcb_control_to_cache(vcpu, &ctl_cached, ctl);
1827 	if (!__nested_vmcb_check_controls(vcpu, &ctl_cached))
1828 		goto out_free;
1829 
1830 	/*
1831 	 * Processor state contains L2 state.  Check that it is
1832 	 * valid for guest mode (see nested_vmcb_check_save).
1833 	 */
1834 	cr0 = kvm_read_cr0(vcpu);
1835         if (((cr0 & X86_CR0_CD) == 0) && (cr0 & X86_CR0_NW))
1836 		goto out_free;
1837 
1838 	/*
1839 	 * Validate host state saved from before VMRUN (see
1840 	 * nested_svm_check_permissions).
1841 	 */
1842 	__nested_copy_vmcb_save_to_cache(&save_cached, save);
1843 	if (!(save->cr0 & X86_CR0_PG) ||
1844 	    !(save->cr0 & X86_CR0_PE) ||
1845 	    (save->rflags & X86_EFLAGS_VM) ||
1846 	    !__nested_vmcb_check_save(vcpu, &save_cached))
1847 		goto out_free;
1848 
1849 
1850 	/*
1851 	 * All checks done, we can enter guest mode. Userspace provides
1852 	 * vmcb12.control, which will be combined with L1 and stored into
1853 	 * vmcb02, and the L1 save state which we store in vmcb01.
1854 	 * L2 registers if needed are moved from the current VMCB to VMCB02.
1855 	 */
1856 
1857 	if (is_guest_mode(vcpu))
1858 		svm_leave_nested(vcpu);
1859 	else
1860 		svm->nested.vmcb02.ptr->save = svm->vmcb01.ptr->save;
1861 
1862 	svm_set_gif(svm, !!(kvm_state->flags & KVM_STATE_NESTED_GIF_SET));
1863 
1864 	svm->nested.nested_run_pending =
1865 		!!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
1866 
1867 	svm->nested.vmcb12_gpa = kvm_state->hdr.svm.vmcb_pa;
1868 
1869 	svm_copy_vmrun_state(&svm->vmcb01.ptr->save, save);
1870 	nested_copy_vmcb_control_to_cache(svm, ctl);
1871 
1872 	svm_switch_vmcb(svm, &svm->nested.vmcb02);
1873 	nested_vmcb02_prepare_control(svm, svm->vmcb->save.rip, svm->vmcb->save.cs.base);
1874 
1875 	/*
1876 	 * While the nested guest CR3 is already checked and set by
1877 	 * KVM_SET_SREGS, it was set when nested state was yet loaded,
1878 	 * thus MMU might not be initialized correctly.
1879 	 * Set it again to fix this.
1880 	 */
1881 
1882 	ret = nested_svm_load_cr3(&svm->vcpu, vcpu->arch.cr3,
1883 				  nested_npt_enabled(svm), false);
1884 	if (WARN_ON_ONCE(ret))
1885 		goto out_free;
1886 
1887 	svm->nested.force_msr_bitmap_recalc = true;
1888 
1889 	kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
1890 	ret = 0;
1891 out_free:
1892 	kfree(save);
1893 	kfree(ctl);
1894 
1895 	return ret;
1896 }
1897 
svm_get_nested_state_pages(struct kvm_vcpu * vcpu)1898 static bool svm_get_nested_state_pages(struct kvm_vcpu *vcpu)
1899 {
1900 	if (WARN_ON(!is_guest_mode(vcpu)))
1901 		return true;
1902 
1903 	if (!vcpu->arch.pdptrs_from_userspace &&
1904 	    !nested_npt_enabled(to_svm(vcpu)) && is_pae_paging(vcpu))
1905 		/*
1906 		 * Reload the guest's PDPTRs since after a migration
1907 		 * the guest CR3 might be restored prior to setting the nested
1908 		 * state which can lead to a load of wrong PDPTRs.
1909 		 */
1910 		if (CC(!load_pdptrs(vcpu, vcpu->arch.cr3)))
1911 			return false;
1912 
1913 	if (!nested_svm_merge_msrpm(vcpu)) {
1914 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1915 		vcpu->run->internal.suberror =
1916 			KVM_INTERNAL_ERROR_EMULATION;
1917 		vcpu->run->internal.ndata = 0;
1918 		return false;
1919 	}
1920 
1921 	if (kvm_hv_verify_vp_assist(vcpu))
1922 		return false;
1923 
1924 	return true;
1925 }
1926 
1927 struct kvm_x86_nested_ops svm_nested_ops = {
1928 	.leave_nested = svm_leave_nested,
1929 	.is_exception_vmexit = nested_svm_is_exception_vmexit,
1930 	.check_events = svm_check_nested_events,
1931 	.triple_fault = nested_svm_triple_fault,
1932 	.get_nested_state_pages = svm_get_nested_state_pages,
1933 	.get_state = svm_get_nested_state,
1934 	.set_state = svm_set_nested_state,
1935 	.hv_inject_synthetic_vmexit_post_tlb_flush = svm_hv_inject_synthetic_vmexit_post_tlb_flush,
1936 };
1937